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Abstract

This Lin;1 report under 4,AS8-32481 contains three principal, items. The first

des •:ribes a simple and novel reflectometer which can separately evaluate the spectral

and diffuse reflectivities of surfaces. A phase locked detection system for the

reflectometer is also described. The second item is a selective coating on aluminum

potentially useful for flat-plate solar collector applications. The coating is com-

posed of strongly bound copper oxide (divalent) and is formed b y an etching process

performed on an aluminum alloy with high copper content. Because of this one step

fabrication process, fabrication costs are expected to be small. Process parameters,

however, need further definition. The third item contains conclusions gleaned 'from

the literature as to the required optical properties of flat plate solar collectors.
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1. Introduction

This is the final report under contract NAS8-32481; The project was directed

toward development ai:,i understanding of selective surfaces suitable for use in

flat plate collectors. The accomplishments of the p roject are included under the

following categories:

1. Development of facilities for parameterization of selective surfaces. In

particular a reflectometer has been developed which separately measures

the specular and diffuse components of surface reflectivity over the de-

sired spectral range. We believe the reflectometer and mechod of data

analysis to be novel and of possible general utility for reasonably accu-

rate total reflectance measurements with simple equipment. The implementa-

tion of a simple phase locked amplifier for detection of small light signals

is al:o discussed.

2. Development of an inexpensive selective coating on aluminum for solar

collector use. The surface described here is simply fabricated from the

appropriate aluminum alloys and has "good" seleccive properties. Coating

stability is however somewhat spurious although it is believed that further

work will solve such problems.

3. Literature investigations to determine properties and preparation methods

of selective surfaces and their application to flat plate solar collectors.

We were partic,! larly interested in theoretical explanations of selectivity

with the view toward optimization of surface parameters through an under-

standing of selectivity mechanisms, Results of the survey are briefly

summarized in this report.

4. Conciusions as to the parameterization of selective surfaces under given

applications. In particular the degree of selectivity required for appli-

cation conditions is discussed.

r
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S. ether lines of investigation pursued by this contract which were not

carried to any conclusion.

Most of the work of this contract. wits :L,—complished .luring the first two quarters

+f the ciontr,wt period. The main achievements have been the development and pctrti:tl

paratarterizatton of selective surfaces on iluminum by our to:hnikime mW the develop-

tuettt of it ret 1.'Otometry technique.	 Rv%'0uunen. tat tens for fort her wOrk are ins • laded

in ttie text.

t
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Figure 1: Illustration and definition of the specular and diffuse
components of light reflected from a surface. Note that a reflecto-
meter adjusted to measure specular radiation fails to detect most of
the diffuse component.	
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Reflectometry of Surfaces With Both Diffuse and Specular Characteristics

2A. Reflectance Measurements

In general, evaluations of selective surfaces found in the literature

have been accomplished through Specular reflectance measurements. Such measure-

ments are simple to perform and give a quick figure of merit for surfaces which

are essentially specular. However, large errors can be made for surfaces which

do not exhibit overwhelmingly specular behavior. For example, surfaces have been

reported with regular faceting on a microscopic scale which exhibit intense re-

flection lobes in their angular distributions at angles depend!.ng on the inclina-

tion and size of facets and direction of incident light. Less exotic surfaces

may reflect in part specularly and partially scatter light in a diffuse manner

(e.g. a dusty mirror). In general the diffuse reflection from such a surface

will have a Lambertian distribution as in Fig. 1, i.e. proportional to the cosine

of the angle from the surface normal for light incident near the normal direction.

The specular reflection is, of course. located in a narrow angular interval.

From Fig. 1 it can be seen that if a substantial portion of the reflected

light lies in the diffuse distribution large errors will be made in the measured

reflectance, defined as the ratio of radiation power detected to that incident.

This is so since only a small portion of the diffuse light is intercepted by the

detector.

2B. Specular and Diffuse Reflectances

In orde to parameterize selective surfaces it is necessary to measure the

"spectral Hemispherical reflectance" for small angles of incidence , from the Sur-

face normal. This quantity is defined as

I^ r kO, 1 , t3, Q,) dil
a (^, ") _ — - I

o (- D, -)

j

i

1

(1)
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Sr - Ss + S 	 (2)

♦ ^	 ^	 1	 I ll	 ^	 f	 ^	 ^	 ^	 ^--.^ .	 I	 1	 r	 1	 ^	 ^	 _
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where a !e the wavelength, 9 and R the polar and azimuthal angles About the surface

normal, S r the reflected light intensity per unit solid angle and 
1  

the total inci-

dent light intensity in a narrow beam of negligible angular dispersion. The inte-

gral is over the solid angle dP, characterized by 0 and 2 and includes the entire

h?misphere of reflected light ere R is referenced from the azimuth of the incident

beam.

To a good approximation S r can be divided up into a diffuse and a spectral

where S
s 

takes on appreciable valaes only for £ - n and 0 - a. Note that ^ is a

re l atively unimportant parameter since only "unusual" surfaces sustain substantial

variations in reflectance with angle of incide,^ce less than 60°. In any case solar

applications regaire a small value of m. Dropping the dependence on ' and substi-

tuting (2) into (1)

Is	 fSd(a,A) d
P - i +	 I —	 (3)

o

where the integration over the spectral distribution has been performed to give

the specular intensity, I s , to a narrow solid angle and where the wavelength para-

meter, a, has been omitted as implicit. An explicit form for the diffuse angular

distribution of reflected light., S d (0,2) is assumed. Thz form is arbitrary but

must nearly coincide with a reference distribution (for later experimental calibra-

tion) which for nearly all possible cases of interest will be the Lambertian dis-

tribution, i.e. a cos0. This w-ill give an explicit value to the second term of

E;qn. 3; call it I d /I o . Defining the two terms as p  and p d , the spectral and diffuse

a

1

t
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Figure 2: A reflectance plot for a diffuse copper oxide surface. Data
below : micron s are total hemispherical while these above
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^.	 hemispherical •eflectivities respectively, Eqn. ] hecomer

p	
1^ + la • u e + O d	 (4)
0	 0

From the above it can be clearly seen that specular reflectometers are

in error by the magnitude of the last term in Fqn. 4. We have experienced diffi-

culty in interpreting our measurements and those of others heeause of the existence

of a diffuse reflected component as shown in Fig. :. A c'.ear example of this occurs

in comparing the reflectance of an MgO coated surface with a gold surface. The

measured gold reflectivity may be several times that of an 4g0 coated sample even

though the total hemispherical reflectivities are very nearly the :came (-0.98 in the

near infrared).

.^

	

	 Total reflectance measurements can be accomplished most accurately through

a diffuse integrating sphere whereb y the collection efficiency for reflecteO light

is independent of angle. This method, however, suffers from sensitivity problems

and is difficult to extend into the infrared. A supposedly "good" integratir.,z sphere

device we had access to failed the gild-MgO test. Unless elaborate precautions are
r

taken, the integrating sphere and other integrating; approaches will usuall y under-'

emphasize the diffusely reflected light.

2C. Reflectometer Geometry

We have developed a procedure whereby a simply constructed, inexpensive

reflectometer can be used to assess both spectral and diffuse reflectivities. The

reflectometer is shown in Fig. 3 and consists of a suitable light source (vingsten

in the visible and a globar in the it,frared), a chopper with a phototransistor sync

signal generator for later s ynchronous detection of the light signal and a disper-

sive instrument, in our case a salt prism spectrometer covering the range from 0.E 	 I

to 20 microns. The chopped dispersed beam enters a gold coated hemispherical re-

flector and is reflected by a sample or reference suc mounted on an indexed

L; '
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rotatable holder which accurately positions one of four disc shaped samples at a

point off the center of the hemisphere and near a diametral plane. The reflected

light is focussed onto a triglyettie sulphate detector located at .tit optically con-

N	 Fugate poi tit . Sine the hemispherical mirror is a low order focusing device not

all of the reflected light stri p es the 1 ;dui ' detector. Detector. mirror a nd sample

!	 positions are independently adjustable. Hence. although alignment procedure is

clearly defined it is tedious and lengthy.

1*11

	

	 Reflectometer geometr y is shown more adetluate i y for di scu : ision tit Fig. ti.

In addition to the elements shown in Fig. 1 a pair of light absorbt:nt "fl.^!+s" are

W-sortable into the path of the diffusely reflected light without interfering with

the specul.tr beam. Flap positioning is non-critical and need only remain constant

during a single set of meals urerient a at o is waveletleth as lettg as no portion of

the sltecularly reflected beam is intercepted. The sample holder contains two

. nples under investig.ition as well is a carefull y prepared MgO surface and a

glass disc unto which a laver of gold has been evaporated. The reflectometer is

ad +,usted so that: t1) readings, for both the gold and Mgkl samples are independent

of which holder the sample is Mounted and t_) mirror .tud .'!etector positioning are
I
1, .

	

	 such th.it readings do %lot depend on sinall deviations of the -;ample holder shaft

attgle aGout itlt:ex points.

:D.	 1 1ata P.v,iuetion:	 Theory

As shown al,ove it is l+ossible to divide the light reflected b y ,1 surface

into specular and diffuse components. For perfect collection efficieticy of both

compotlents the light collected K is

K	 I +	 I
s	 .i o

'i	 i'or a nun-ideal s y stem tile• measured value of g will be modified by the instrumental

COL lect ion ef ficiency.	 In getler.tl this collection eft is iencv will differ tar the

i

(S)
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to

0

two components with a smaller value for the diffuse light and will depend on reflec-

tance angle and detector and collector geometries. If f is the efficiency of kr'.ee-

tion for a purely specular sample and assuming a reflectivity of unity for a specu!ar

gold surface. the gold intensity will be

	

RAu - 
f1 
	 (6)

For a high reflectivity with a Lambertian distribution of reflected light, such as

MgO, let the collection efficiency be oc. Then the MgO intensity will be

	

RMkO - KI 0	 (7)

For an arbitrary mple the collected light intensity will be approximately given by

R where
t

Rt - f:, s I 0 + 
Kadlo

Eq.. 8 will of course only hold for surfaces with an angular reflectance distribu-

tion like that of MgO or whatever reference sample is used. This assiunption will

be ,rrect for effectively incoherent surfaces but large errors are possible for

unusual cases.

From eqn. 8 it can be seen that the cwo reflectivities are

1 At	
1 ) R t

_

s	 I	 a f	 ad - I	 3K0	 0

While many schemes come to :Hind for the measurement of these derivatives we have

chosen to rearrange eqn. 8 b y dividing through by eqn b;

R

RAu a 	
+ f Jd	

(10)

•	 where 
t 
may be experimentally determined by the ratio of Fqn. 7 to Eqn. o. a similar

relation may be obtained by inserting the flaps in Fig. 4 to block some of the diffuse

1

(8)

(9)

I
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component (about 307, blockage is a convenient experimental figute). The new inten-

sity in this case is

	

Rt 
r o e 

+ f 
C d	 (11)

Au

with K' /f determinable by Eqn. 3 with the flaps in position, e.g.,

RrI 
g0	

K' Io	 (12)

! 

i	 while, by construction of the flaps Rai remains unchanged.
4

Fi
A reflectivity determtnati.,n can then be made for a given wavelength by

measurement of R
Au

, Rrt J , R IgO , RS and R' and simultaneous solution of equations
R

6, 7, 10, 11 and 12. This can be done by computer or rapidly by hand since a

'	 closed express--':)n for the reflectivities can be found, specifically

	

R	
R

t	
t.

D r	 I —
d	 _

	

R'g0	 g0

RMgO	 R  - R 	
R 

(13)Ps	

RM' g0 - R:Igo	
RAu	 RAu

The accuracy of the method depends primarily on the accuracy to which R

and Rs can be determined; i.e. it can be shown that the Lelative error in o  and

pd is

	

AP 	 Opd A(RS - Rs)
--

	

a s	 ad	 R - R'
s	 s

where A(R - Rs ) is the incertainty in the measurement of these rwe ^uantities. If

th^? collection efficiency is not adequate it is possible that A(R s - Rs ) may be

limited by instrumental sensiti-iity. We have encountered this problem in our instru-

mentation at the wavelength extremes of light sources due to the fact that our detector

1

..OM
i
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area is small (1 mm`) and hence a small value of Of is obtained because of the

width of the diffuse image at the detector. A "perfect" focusing system (e.g., an

ellipsoidal collector mirror) or a larger detector should eliminate this problem.

More rapid approaches to gathering data than the above procedure could

involve chopping of Lite diffusely reflected light with direct readout of the two

reflectivities through a small analog or digital computer. Other changes which

would increase the general utility and speed of the device can be envisioned.

A reflectance curve obtained with this apparatus for a primarily diffuse

surface is shown in Fig. S.

?F.. Reflectometer Electronics

In line with our small equipment budget we have designed a simple ampli-

fier for detection of the small light signals involved in the reflectometer imple-

mentation. Figure 6a illustrates the mechanical layout of the light detection

system. Light from the source is chopped at a frequency of 107 hertz by a three-

bladed mechanical chopper driven by a synchronous motor. Hie chopper also interrupts

a beam from a D.C. driven light emitting diode producing a square wave reference

signal as output of a phototransistor. This reference signal is mechanically

adjusted to be in phase with the signal beam and after amplification (by a 741

OpAmp-not shown) is fed to the reference signal input in Fig. 6b.

The chopped light signal is dispersed by the monochromator, and?yzed by

the reflectomeLir and detected by a triglycine sulphate detector. A change of

impedance to about 10K is effected by a FET preamp located within the detector cas-

ing. The signal is then capacitively coupled to a two stage amplifier using 536 FET

operational amplifiers. The amplifer has gain variable from 300 to 10,000. The

emergent signal is buried in 60 hertz noise and a gray background. It then passes

through ? demodulation circuit driven by the reference signal. During the low phase

f
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of the reference sigu.tl the (.711 1 5 switch is off .uld the 1: K resistor arts as the

input resistor for till' second 141 operation. ► 1 amplifier in Fig. ob.	 With a 591,,

feedback resistor the net demodulator gain is -5. During the positive phase of

the reterence signal the 171115 switch conducts so that hoth amplifiers are operative.

The f eedback resistors are arranged -;o that t he gain is tiow +5.	 11 the detector

signal is in phase with the reference sigrl.tl there is .1 net 1).C. voltage on the

demodulator out put proixirt ion&1 to t Ile s tgna 1 . 	 For f regttettr ies other than tilt-

chopping  frequency the ph.ise relative to the chopper phase will var y rapidly with

time producing no net D.C. output.	 It is advantageous to increase the output

amplifier tittle constant by means of an RC filter ill 	 with the feedback

resistor.	 Phis eliminates low t requency out,`l,t f luctuat iotis.

The amplifier is callable of detecting signals of loss titan 0.1 microvolt

from the nreamp olitintt correspon.iitig to a light iiltonsiity dotect ion threshold of

about 3 x 10-10 w;tttsr'etnt ` .	 The ;unplif ter han.i 1,a:::• is not directly meastlreable but

an active filter  with a Ili:. bandpass placed on tilt' detector i111`l1C produces tit, change

in the tioise or signal intetlsit y . Behavior w ith smaller handpass filter:: w.ls dif-

ficult to assess since tho chopper frequency drifted ill 	 out of the fixed handpass

region. A very narrow bandpass filter co'.tld possibly increase noise rejection. How-

ever narrow handwidths require either filter track-ing or close chopper ire•;ucnc^'

control. Sixty hert z- rejection was such that tilt. , 1111"Heldod .Ipparatus could be

used with the f luoresrent room lights on even though this resulted in ;1 fivefold

increase of rlo'.sit. to the demodulator ittput .

1
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3. A Selective Absorbing Cop;-er Oxide Surface

3A. Surface Selectivity

Addition of selective properties to absorbing and transmitting surfaces

of solar collectors improve collector efficiency b y preventing reradiation of

absorbed energy. The ideal transition wavelength of an absorber from low to high

reflectance depends on collector temperature but for most applications there is

little overlap between the solar spectrum and the reradiation distribution. A

nominal figure for the transition wavelength lies between 2 to i microns. The

degree of selectivity required or desiieable for maximum efficiency depends on

the collector temperature and other application parameters. Some of the practical

aspects of selectivity requirements are discussed in section 5 of this report and

literature references to basic concepts of selectivity are there given clong with

the references contained in section 4. We have used the reflectance p(N), at wave-

length \, for the parameter characterizing selective properties. Other discussions

use the emittance c:(.1) or the absorptance a(:1) as parameters characterzing the sur-

face. The relationship between these parameters is simple. Assuming that there

are no unusual channels for conversion of radiation to other wavelengths (e.g.,

fluorescence) energy conservation for an opaque material requires that

PM a 1 - a(.1)

and that

E(X) 3 a(A)	 .

Selective materials are usually evaluated as to quality by the size of the selec-

tivity parameter a/e where a is the average absorbtance at visible wavelengths and

E is the average infrared emittance. A "good" value for the selectivity parameter

is around twenty with a greater than 0.95 and e less than 0.5. As we note in section	 i

^I
I

,i
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4 extreme care must be exercised in this figure of merit. Trade-offs between a • ►ud

L to achieve high selectivity may decrease collector efficiency as well as cost

effectiveness.

The theoretical basis of selectivity is not well founded. In general the

phenomenon involves throe factors which in most cases combine to form the surface

properties:

(1) The material electronic band structure as modified by size effects.

Most selective materials have band structure such that an absorption

edge in the bulk material occurs not "too far" from the selective

transition wavelength. The absorption edge cued selective wavelength

however are apparently not simply related for thin layers or powders.

(2) Particle size effects. It is well known that surface geometry affects

reflectivity. In particular :1 surface with an abundance of small deep

pits will absorb light at short wavelengths. However, as the ratio

of mean square surface roughness to wavelength decreases far below

unit y , surface reflectivity increases. This is a presumed mechanism

for the selective properties of gold black. Particle size effects may

also be expected to affect material optical properties.

(3) Interference effects. A thin dielectric layer on a reflective surface

.is well known to cause interference effects. Multiple layer coatings

!i.ive been used to fabricate selective surfaces.

It is likel y that all three of these effects combine to some extent to

1

produce observed selectivity.

Many types of coatings using both inorganic and organic materials have

been developed which exhibit selective properties. The coatings with organic c

{	 ponents (In goneral paints) have been expensive and often unstable with respect
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infrared reflectance. Inorganic coatings show greater stability and can often be

tailored to desirable reflectance curves, but are in general expensive to fabricate

and may require exotic substrates. A noteable exception to this has been black

chrome coatings which have achieved commercial viability and appear to be very

durable. To date, however, we know of no process for fabricating black chrome

coatings on aluminum. Copper is used for the substrate and recently techniques

have been developed for laminating thin sheets of coated copper to aluminum

basest. A more desirable process would directly utilize on aluminum substrate, have an

inorganic coating, and be inexpensive to fabricate.

^ I	
Our approach to the development of a surface meeting these criteria

I	 utilizes material present in the Substrate as a component of the selective coating.

Specifically we have chosen aluminum alloys with high copper content. By chemical

etching of the aluminum a matrix of coppe r oxide is left on the surface. Ulovs

with high titckel content produce nickel oxide coatings which is of interest since

nickel oxide coatings are known to be selective. However, nickel aluminum alloys

are not suitable for solar collectors because of poor malleability and high cost.

3B. Formation of Impurity Oxides on Etched Surfaces

The formation of "smut" on alloy surfaces during cleaning and electrol-

ysis operations has long been a bane to processing operations. The Smut forms in

general, due to residual alloy constituent oxides which are not soluble in the

chemical bath. Experience with cleaning aluminum alloys by etching in strong bases

'	 led uS to believe that coatings of selective materials might be formed during such

processing. It is well known that thin films of nickel or copper on highly reflec-

tive substrates can produce selective coatings.

The mechanism for impurity oxide formation has not to our knowledge, been

elucidated and in itself forms an interesting field for possible study. lie have
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found Chat, for many of the canes in, •_stigated by us, the oxide layer forma an inter-

laced matrix of small granules spaced at approximately the metal grain size with

relatively strong cohesion and substrate adhesion. In other cases the layer is

microscopically coherent so that interference colors are visible. The granular case

which occurs with annealed alloys may involve either initial impurity aggregation

around metal grain boundaries, intergranular solution precipitation, or oxide crys-

tallization about the disappearing grain as it dissolves in the etchant. The coherent

case occurs with tampered alloys and results in a continuous coating indicating;

uniform impurity dispersion. These results may either reveal interesting facts

about the spatial distribution of material in an alloy or describe surface etching;

on a microscopic scale. We did not investigate the mechanisms of oxide formation

except as related to optimization of surface selectivity. However, unless; explana-

tions for the phenomena we observed lie in the scattered literature of surface

chemistry, further work is appropriate and may have applications to surface treat-

meet procedures and corrosion control.

3C. Incoherent Coatings

Alloys with low copper content such as 2024 (4.5X) upon etching in sodium

hydroxide or other suitable strong base produced weakly bound powder-like coatings

with mildly selective properties. Increasing the copper content tai 6.3% by using

2219-0 samples produced a blacker surface with better cohesive and optical properties.

A plot of reflectance versus wavelength for a heavily coated Surface produced by

etching of sand blasted 2219-0 aluminum in 2N NaO11 for 10 minutes is given in Fig.

5. The coating is mainly diffuse.

The chemical composition of the coating was confirmed b y x-ray fluorescence

spectra to be the predominant heavy element (i.e., atomic number less than 20) and

its oxidation state infered from color and relative solubilitv in nitric .acid and

r

1

si



20

ammonium h ydroxide. Optical and scanning electron microscopy indicate an inter-

leaved matrix of granules and fibers depos i ted in some manner by the etching process.

As previously stated the formation process is probabl y very interesting. Coating

morphology studies of heat treated substrates indicated a correlation between sub-

strate grain size and coating particle dimensions. If tho particle size could be

tailored to somewhat less than the desired cutoff wavelength, the theory of scatter-

ing from powders indicates that the coating wo-ild be transparont to long wavelength

light (with reflectivit y characterized by the metallic substrate) but absorbent for

short wavelengths. Wo wore hence induced to study heat treated materials with very

smooth surfaces.

all. Coherent Coatings on Polished :219-T87 Aluminum

Because of commercial availabilit y we investigated the properties of TR7

tempered 2219 :al:uninu:ta which had been pol ishod b y acid bright dipping. We dis-

covered a qualitativoly different type of cor_ting which exhibited sufficient coher-

once to produce uniform interference ioloratiotl. After some .aging or low te:aper:atuf'e

baking (50°C) the coatings are comparable to selective paint:: we have encountered

in hardness and durability. Our initial results indicated good high temperature

stabilit y with X50°C temperatures for several dais, producing little effect upon

the coating. However. as discussed later, we have found spurious instabilities

after high temperature processing.

E1lipsometric measurements at O.r3 microns show that for thin coatings the

0
growth rate in 1N NaOH is 1100 A; minute for 221 13 -T87 aluminum at 20°C. Under those

eonditions the freshly prepared coatings have a teal index of refraction, n, of

1.05. The imaginar y part of the index of refraction, k, often called the attenua-

tion coefficient, was 0,1. Upon baking at 450°C. for 24 hours the measurements

indicated a rise in n to 1.25, a dee, • ease in k to 0.046 and a 20% deorease in coat-

ing thickness. presum.lbly ropresenting a compacting of the coating. The coatings

i
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produced in IN N40H showed rattier pale interference colors which changed slightly

during the first hour of baking. Futher baking for up to three days caused no per-

ceptible change in coating pro rtics.

Treatment of 2219- T 	 samples in 2N Na011 solutions gave deeper intsr-

ference colors. We are hence led to believe that the absorptivity (i.e..:c) is

affected by solution normality. Baking at 450'C produced a shift in color during

the first few hours with no further change over several days. In general the

samplers were bright-dipped to a fair degree of specularity. Rougher samples ie.g.

:sandblasted surfaces) produced graver and presumably less cuherent coatings. This

is possibly due to uneven film formation so that film interference is averaged out

over macroscopic surface areas with subsequent enhancement of absorption by small

particle scattering.

Coating colors in I N NaOH evolved to ligh t straw at 1 minute, light blue

at 2 minutes. yellow-green at 3, violet at 4. deep green at 5, deep violet at 6,

dark green at 7, very dark purple at 8, with successive interference orders appear-

ing at longer times. These timers are approximate and will vary with solution pro-

perties, surface pretreatment and temperature of formation. Film darkness increased

with etching time until after about 12 minutes the interference colors could no

longer be observed. An 18-minute sample was extremely black. measurements at 0.8

microns gave a reflectivity below our threshold (about 1") for meaningful determina-

t iot. q .

Figure 7 shows a plot of reflectivity versus wavelength for a commercial

black chrome sample and one of our Cu0 samples. We are able to obtain mach the

same optical properties as the black chrome in the infrared. The visible portion

of the spectrun, was not exploted in this investigation but the greenish appearance
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of the sample leans us to expect a higher absorbtivity than black chrome in the

visible region. In Fig. 7 the aluminum sample was highly polished before etching.

Figures 8 through 15 show some of the curves obtained for a series of

unbaked samples for various treatment times. This data is here presented without

extensive comment. The samples were bright dipped so that the surface was fairly

specular (v s . 0.8) although for the small sample size used substrate polish was

difficult to control. Coating specularity was determined primarily by initial

sample speculsrity and the long wavelength limit for lightly coated samples showed

a reflectivity equal to or better than that of the untreated alumintun sample. The

samples with. lower initial polish showed a higher diffuse component of reflectivity.

Data in Figs. 8-15 are uncorrected for diffuse reflectivity and represent the spec-

ular reflectivity with approximately 20% of the diffuse component added in. Data

were reduced through simply dividing the reflected intensity by that for an evapo-

rated gold sample. Taking this factor into account and incorporating other possible

errors, we estimate that correction factors in the data would increase the given

total reflectance values by up to 25%. Hence nominal long-wavelength limits for

the reflectivities are of the order of 0.9, i.e. approximately the reflectivity

of the bare aluminum.

Fig. 8 shows a reflectivity curve for an uncoa,ad aluminum sample which

had been bright dipped. The variation in reflectivity with wavelength is believed
.

due to a thin coating of copper oxide (- 100 ^) left on the surface. Fig. 9 shows

the results for a 2 minute sample which appeared light blue; the reflectivity appears

to swing upward in the visible region of the spectrum. Figs. 10 and 11 show a

bight yellow-green sample (3 min.) and a green-violet sample (5 min.), respectively.

Both of these samples show selectivity but are obviously reflective in regions of

the visible. Fig. L2 shows data for a sample (6 min.) we believe to possess excel-

lent selective properties; the sample looks extremely black, by actual measurement

r
i
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has low reflectivity (- 1%) in the noar infrared .ind high reflectivity (after correc-

t ions for tlitNeu reflections	 85-90t) It lung wavelengths.	 Figilre:. 11, 1 . 0, .lntt

15 show t1.lt.I for samplas treated for S. 11, tkiiA 1,14 minutes respectivel y .	 A getietal

blackelling is observed with treatment time with the rise in rei lt • tl ivity moving to-

wiled longer wavelength.	 Me "htimild ll in the Bata are bel ievett to be Atte to iliter-

ferellet• ' • t IOc[s ill tIle coat ing.

3F.. Fabrieititm and Rnvirotimental Paramett-t-

We li.tvv spent sonit' time in confirming and itivest igat itig the reproducibility

tit :il •-e Jilta Presented ill setttott l).	 We tint) that the optical properties presented

in sett ton 11 are very reproducible for a given soluttoll ltot•ulaltty Anti .11100 conlposl-

t (t41.	 Howevel , Beat t re.ltilit-lit Ot t ilt' coatt'd mat erial does not ill vvet \ t , .Iso le:ld

to tht' same tltlalitative etteets.	 We beltt've tlii:l	 to be title to Coming

sell::it ivity to tabriem it'll par.lnleter::.	 The ettects of the I,.., t I: ; heat t ro.lt meat,

-it b.;tr.lte surface t tit i::It, solution characteristic-;, a ► loy comilosititl lt, itlttl ilunti.Iity

are titSCUSAett helow.

3F:- 1.	 Cont ing Heat '1'r oat lltetit

Our origin.it experience with heave t • .'.tt ill% led us to believe th.lt the

C0 1 11%el ' Oxide plat inti l:t,10 very ' stable with ve::l'e't to Itigtl temperatures.	 ^t:lll\ oI

om- sallil'le:: c"Illd be hakett Out fo. .1.1\': : It telllpt'l.I(kiv s ot'e.Iter than ••lttl
r,
 t, with Ito

IppaYellC V i t ett except for .tit increase tit coating co p es ivelles:: and	 ^, t c, ► It 	ttlor

ch.tuges.	 In t.10t, a t` ' 'eller of it :lallipIL' coultt be tle41t0'1 l:it11 a t01-011 almost until

melting of the altimilitlni occured with little chango in the ,t'.tttng.	 Light coating:

tiitl :,liow appreciable „'lot change:; upon b.1ktng 1'tlt this . As not tell :t disa.iv.tlltage

.:into the .'llallgt'	 were sm.11.1 a s tt(sctlssed ill -;vetion 31) .lied tollld be compviisiited

for b\' there,-'sing the ttt'mmetit tilde,	 llou-ver, Iloto tocout ic'.tilta proditcott spllriolis
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reins in the sense that heat treatment made drastic changes in the coating to the ex-

tent of nearly complete coatings disappearance for lightly coated samples. After

many experiments we were led to consider the possibility that these changes were

due to an interaction of water and residual NaOH on the surface. The evidence for

this included the fact that the critical temperature for coating changes occurred

at 100°C. The degree of rinsing, a difficult parameter to establish, had an effect

on results. We also noted that immersion in boiling water would renew the etching

process, indicating residual sodium hydroxide. A further factor also emerged;

aging of the samples in air at room temperature for several days increased sur-

face stability against both abraaion and heat deterioration. This fact provides

an alternative explanation to the heat degradation phenomenon. Formation of CuAl,,

intergranular precipitate occurs at 100°C, possibly causing reduction of the sur-

face coating into the intergranular precipitate. Aging may help prevent this through

passive layer formation.

Our observations as to the heat deterioratiun problem are unfortunately

still very qualitative. We note however that with careful control of sample pro-

cessing, reproducible and small changes occur during heat treatment repre,,enting

mainly a compacting of the coating. Very heavy coatings, which have not been care-

fully processed, upon baking; provide a hard stable brownish surface with moderate

selectivity (a • 0.93, e - 0.3). These latter coatings may be of sonic interest.

We cannot at this point give an optimum procedure for surface preparation but are

convinced that one exists and is worth pursuing. The behavior of the material under

thermal cycling is of course a very crucial point for applications.

3E-2. Substrate Surface Finish

Experimental results, demonstrate that initial surface finish is an

important factor in coating characteristics. Initially rough surfaces such as pro-

duced by sandblasting result in loose granular surfaces which reflect diffusely and



i

I^

30

do not demonstrate high selectivity.

Surfaces with smooch mill finishes (presumably highly passivated) and

no pretreatment except for degreasing result in fine grained poorly adhering coat-

ings. 'me beat pretreatment for producing coherent coatings that we have used is

an acid bright dip to produce a smooth specular surface. Mie reasons for surface

pretreatment dependence are not obvious although speculations as to the effect of

original passive laver thickness are possible. An assessment of the amount of

material removal needs to be made.

3E-3. Solution Characteristics

Most of our experiments have been done with 2N NaOH as the etchant solu-

tion. In accordance with well known corrosion data, the rate of etnhing increases

rapidly with solution pH above 14 which is the nominal pH of a IN NaOH solution.

The coating growth rate, however, decreases wit' i',,ickness so that like many corro-

sion processes there appears to be a limiting; effect on the depth of the corrosion

layer. Solution temperature also has an effect on the coating characteristics. High

temperatures (near 100°C) tend to produce verb I Lie dendrite structures which cause

the surface to look velvety and very black. lie have not investigated the effects

of solution temperature except for some qualitative observations. It is likely

that solution additions will alter the process significantly. For example it is well

known that addition of C1- ions strongly affect aluminum corrosion.

3E-4. Alloy Composition

Alloy composition has been discussed previously. A continuous spectrum

of copper composition cannot be readily obtained. We have, however, noted that low

copper content alloys (< 1%) produce no coating; the copper oxide formed is appar-

ently not dense enough to cohere. Medium copper content (-4%) alloys produce grayer

and more powdery coatings than does 2219. Allo y temper has a strong effect on coat-

ing characteristics as we have noted above. This too may be related to intergranular
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copper precipitation or simply grain size. We have found that high nickel alloys

also produce a deep black coating but did not investigate these alloys since they

could not be obtained in wrought forms.

A-5. Humidity

We approximated MIL test specifications for humidity and found little

effect on coatings that were well rinsed anal aged. Coatings with residual Nn011 will

resume dendritic growth at high vapor temperatures. Hamidity tests are of course

important for simulation of applied situations.

3F. Theoretical Investigation of Surface Optical Properties

We consider the coating optical properties to be due to a combination of

effects involving particle size, band structure and interference. The effect of

particle size is very difficult to evalu.ite and has not been accomplished except

for very idealized and particularized cases. We did not. , at any rate, feel that

particle size was the predominant consideration for many of the surfaces iilvesti-

bated. Thin coherent coatings are possibly selective due co interference with layer

indico% of refraction determined by band structure (e.g. multilayer selective sur-
	

r'

faces l ). Using the measured indices of refraction in section 3D aloag with handbook

figures for aluminum and inserting them into the Rayleigh coefficients gives values

for the reflectance results in the plot of Fig. 16. The quantitative asaects of the

measured curves are not reproduced by this calculation. Phis miebt ,,e expected

since the indices of refraction presumably vary with wavelength in this region of

the spectrum and surface microstructure may be important. We have not completed

our work on introduction of the CUL) band structure into the calculation.

3G. Sunmiary and Conclusions

The copper oxide surface developed appears to be of possible practical

iw:erest for use in flat plate solar collector systems. Light coherent coatings on
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2219-TV aluminum have high selectivity but stability with respect to temperature

cycling is not yet reproducible. Heavy coatings which have been well baked have

moderate selectivity and will withstand high temperatures. The nature of the coat-

ing formation is poorly understood but is believed due to a combination of original

CuAl 2 intergranular precipitate and process precipitation from the binary solution..

Further work is needed on understanding the coating formation mechanism and the

optical properties as well as defining procedures to produce durable surfaces.

1
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4. Summary of Literature Investigation

4A. Literature Surveyed

The field of research which involves the study of selective surfaces for

solar energy utilization is rapidly growing and has accumulated a significant body

of research papers. In the past 10-20 years new journals dealing exclusively

with solar energy applications have been started and have met with considerable

success. 3 "flee conventional Engineering and Scientific journals also publish re-

search results pertinent to solar energy applications. Some Journals have developed

topical sections for publishing results in solar energy research.4

The Department of Energy (Formerly ERDA) publishes Energy Research Ab-

stracts. 5 This publication abstracts publications on all phases of energy research

including Solar Energy. Although the abstract service was started only in the past

several years an effort was made to search earlier literature for information

appropriate to the abstracting effort. this abstract service is an invaluable tool

to the researcher entering the tnergy fields.

Pars the effort of this contract was to explore the basic physics of

selective absorbers and to understand the nature of their blackness. A similar

effort was made in the appraisal of the use of infrared reflecting coatings on

glass cover plates used in most flat plate solar collector designs. A considera-

tion for the selective absorbers was to assess the information available oil the

basic theoretical physical description of their properties. While experimental

data exists on a great variety of surfaces, there appears to be paucity of theoret-

ical description.

In this section _ will briefly summarize what conclusion we arrived at in 	 i

examining the literature. We will not attempt to give an exhaustive summary as that

I^
^J
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S
is done elsewhere	 Our effort was directed more at looking over the literature in

conventional scientific journals  and covered several hundred papers in various fields.
I^

	:.^	 4b. Theoretical Studies

A surface blackness in a given region of the spectrum ie due to tbree

general reasons: 1) absorption by internal modes !electrons, plasmons, phonons etc.)

2) surface roughness 3) interference. The first is treated in standard texts on

solid state physics ? and will only be discussed incidentally. The second cate-

gory has received considerable attention in the literature. A practical case in

point is that of "Gold Black". Cold black exhibits blackness from the ultraviolet

to far in the infrared region of the spectra. 8 Zaeschrar and Nedoluka (ZN) 9 treat

the optical properties of gold black using an equivalent circuit formulation and

a Drude-Zener model for the complex dielectric function. They obtain sonic agreement

with some of the samples reported b y Harris. 8 The problem of the rough surface and

its effects have been treated by a number of authors, 
10-16 

however there is little

reference to materials utilized for solar energy applications. Several books on

Solar Energy applications contain discussions on the basic properties of black ab-

sorbers. 
18,19 

These books also contain a great deal of experimental information on

the various selective surfaces used for flatplate collectors. Ritchie and Window

have calculated the properties necessary to make a graded-index single film solar

ab;:orbers. 17 Their results show a good absorber could be made with the right kind

of material deposition on a metal substrate.

It is our conclusion that the theoretical understanding of selective sur-

faces in terms of fundamental physical properties is somewhat incomplete. The

various effects contributing to selective blackness of absorber surfaces need to

be better understood from a theoretical basis. The relative contributions and

importance of surface roughness, internal electronic and lattice structure and inter-

ference effects needs to be determined. If this were accomplished it would be some-

.w

T
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what morn direct to evaluate and parameterize proposed absorbing surfaces. The

selection of materials for new surfaces would be facilitated if the parameterization

of the properties in terms of basic physical quantities were availablit.

4C. Experimental Studied

The optical properties of gold black have been studied b y several authors. 20.21

The importance of the particle size and film thickness on absorption properties are

discussed. McKenzle 20
 also studies the effect of oxygen and tungsten oxide on the

!	 selective absorption properties of gold-black. Although gold-black surfaces may
i

not themselves be used as solar collectors. the understanding of gold-black serves

as a useful model for understanding other systems.

Yamaguchi has studied the structural effects of copper black and platinium

black. 
22 

lie discusses the importance of the roughness of the surface in forming

ligh t. tr-ps and hence creating a non-reflecting surface.

Nc,v materials consisting of organic polymers have been reported in the re-

cent literature as having selective properties. ̀ d This is a particularly attractive

pursuit as the indication.; are that they would be inexpensive. Other now surfaces

have been reported in the published literature and in unpublished contract reports.

They are to numerous for us to attempt to list. This information is available in

the Energy Abstracts in a concise and comprehensive form.

Another procedure that shows some promise for increasing Lite efficiency of

that plate collectors is the costing of the cover plates with a suitable infrared

reflector. hedaelli has reported on the reflectance properties of tir. oxide films

as glass in the infrared region.` ~ If such a film could be made without substan-

tially reducing the visible transmissions Solar collector efficiency would be signi-

ficantly improved.

f

4
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S. Considerations for Collector Design:

Several authors 
2 5
	 have recently reported calculations for the efficiencies

of various types of solar energy collectors under varying conditions and with dif-

ferent types of cover plates and absorbing surfaces. While the details of the

calculations and considerations differ somewhat, many of the results "re in general

agreement and arc pertinent to some of the objectives of this project.

A diagram of a flat plate collector is shown schematically in Fig. 17a. The

relevant heat flaw parameters are given in the figure where:

QT - total incident flux

QA - heat absorbed by collecting fluid

Q.a
 - heat absorbed by absorbing surface

Q,	 heat loss by radiation
.r

Qicd	
heat loss by conduction

Qfcv	
heat lass by convection

This notation follows that given by Ahmadzadeh and Gascoigne 25 (AG). The effi-

ciency of :he collector is then defined by

1 - QA/`T .

The various authors treated the details of the calculation somewhat differently.

(AG), for example. found an expression or Q  in terms of an integral over radia-

tion distributions and absorptivity as a function of wavelength. loung, `6 however,

treats the problem in terms of average emissivity. In addition, the boundary condi-

tions for the heat flow problem are handled differently.

The losses from the flat panel include radiation loss. conduction, and

convective losses. The relative amounts of each loss is a function of temperature

a

I

i

1
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anus the details of the emissive properties. The loss of energy from the absorber

to the glass cover plate ih dominated at all temperatures by radiation, although

convection and conduction play a part. The loss from the glass cover is dominated

by convective losses for temperature: 50% above ambient. The radiation loss is

about constant 
26 

since the temperature of the cover plate does not depart too far

ft.)m ambient temperature.

In terms of the parameteri zzation given, the heat absorbed by the collecting

fluid is

QA	 Qa - Q >Zr	 Q tcd	 Q tcv '

Each of the heat loss; terms, 
Q 	 QRed' ,uad Q2cv' 

can be calculated or estimated

with v:_ ving degrees of sophistic...tan. The degree of sophi:itication of these

estimates is the primar- difference in the mc:del calculations performed. The

results of (C) for a black flirt plate collector with a single plc ► in glass window

and with a r^fleeting window is shown in Figure 12[3. Also shown are results for
	

11

a selective surface, with two types of windows, one plain glass window and one

coated to be infrared reflecting. At low temperature, i.e. less than 50°C above

ambient (assumed to be 20°), the black absorber wit!i a plain window exhibits a

higher efficiency than the other models. It is only for temperatures in excess

of 70% that the selective absorber helps. It is further noted that a reflecting

window does little good for either case at low temperatures. The results of Young

show the same general trend. The solar absorptivity, a, of the surface is the

dominant and most important parameter for low temperatures. It is more important

to maintain a high a than to strive for a low infrared emi-,sivity t.

Dolan S experiment ally determinoil the efficiency of a number of collector designs

and surfaces both with a solar simulator and in actual solar absorbing conditions.
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