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DFS II-N OF I'R,:NSt1N I C AIRFOIL  SECT l ONS USING A SIMILARITY  'I'lWoRY

David Nixon*

Ames Research Center

SUMMARY

A :stud y of the available mt thods tot' transonic .tirfoll .md wing design
indicates that the most powertul technique is tlit , nunteric,tl optimization pro-
cedure.	 Ilowever, the con ► putor t ime fur tit I.; tuct. hod Is rcl at. ivel y large
because of the :nnount of computation t'ee;uired in the searches during opt imir.a-
t hill.	 The opt imi::at ion method retluires that "baNe" :Intl "cal ill, -it lull" so14-
t It•ns be computed to determine a "minimum drag" direction.	 l'h. design space
Is then comptIt. ► tittn. ► IIV searched in this: direction; it is these starches that
dominate the computation time.	 A recent similarity thcor y .11lowe certaln
tratisoaic flows to lit' c.ticulatcd rapidly from the base and calibration solu-
tiolls.	 111 tit is report the application of the similarit y theory to design prob-
lems Is examined with the object of at Ivast partially eliminating the costly
searches of the design optimization mt•thod. An example of all airfoil Ot,sign
is presented.

i N'I'Rol ► I C I' It1N

New interest fit 	 ink; the tut 1 consumption of existing and t ut ure air -
. tatt has hceu prompted h* the world-wide furl shortage. A logic.tl place to
;tart the search for lower furl consumption is to reduce drag, especially at
till , transonic speeds at which most aircr:ti t cruise. The most common descr'.tj-
tion of .t transonic flow is when there is it 	 "hubble" totally
embedded in it subsonic flow.	 The superronic 1 • uhblc ma y be tct'minatcel by it
s it, t'k wave produt' Ing wave drag or, ill ccrLitfit	 it' cumstancos, ma y return to
subsonic conditions: through tit 	 compression with no wave drag. This
wave drat; is .associated with the entropy change across the shock. Soots after
.t shock wave .tiipoars fit 	 flaw, the drag will increase rapidly with Increas-
itlh; irec- strv.Im Kit, It uumher, I --iditig to the tit • I - init it+n of it "drag rise Mo-11
number," which is defined as the free-stream Mach number at which this rabid
dral,- rise begins.	 One of t lit , nut in objects of designing it wing for t ransonic
sp•.I cds is to obtain as high .1 "drag 1-Ise Mach number" as possible, subject,
to tertaitt constraint`:. Tho obvious way tv reduce the wave drag, at least lit
it study, is to use it supercritical shock-free airfoil section
where there Is no shock wave .mcl, consetluently, no wave drag. However, these
shock-free airfoils ma y have undesit-:tble off-design k-liaracteristics, such as
;trong sho:k w.tv:s suddenly appealing when the Math number is perturbed
slightiv from its design value.	 'Thus, .an important Constraint in the design

*NRC Research Associate, presently with Flow Research t'omp.uly, Kent,
W:lsIIiIII;t on .



of airfoils is that there shoulti be good off-design behavior. lit design
(i.e., three-dimensional flows) the design can be it1tertrd b y rtpanwise changes
(e.g.. sweep or twist); and this can complicate the design procedure.

M. , thods for calculating transonic flow Characteristics around given air-
tuil -. were first derived I,v Mitrman curd Cole (ref. 1), with it later correction
by Murman (ref. 2), using the Concept of tvpc -tic pendent finite IifIcrentes

`	 applied to the transonie small disturbance equation. Later work resulted in
methods using Lite full potential equation such as th.tt b y Jameson (ref. 3).
'Three-dimensional extensions of the small disturbance methods were made by
Hal Ihaus, Bailey, and Frick (ref. 4), and extensions of the full potent i.ii
equation methods were made by Jameson and Caughey (ref, 5). All these meth-
ods are for isentropic flow, which, strictly speaking, cannot produce a wave
drag that (as noted above) would be a consequence of an entrony change. How-
ever, iseotropic flow does produce it momentum deficit across the shock wave
that Can i .- thought of at; .t wave drag (ref , b), an ltssumpt ion that seems to
be corroborated by experiment. These calculation methods must be ditferenced
(ref. 2) in conservative form otherwise the shock location and stren} , th may
be incorrect.

The earliest attempt to design transonic airfoil sections used the hodo-
graph transtormcttion, in which the velocity components are the independent
variables rather than the usual govometric variables; (x,y). The hodograph
transformation leads to .+ linear equation for transonie flow rather than the
usual nonlinear equation in the physical coordinate system, lied known of
these methods are those of Nieuwland (ref'. 7) and Bauer, Garabedian, and Korn
(ref. 8). 'These methods; require complex mappirtgs and transformations and can
be difficult to use.	 In addition, neither Lite design pressure distribution
or the design Mach number is known in advance. only shock-free designs are
possible, thus precluding the inclusion of off-design criteria into the
dosiim process. Also, it is difficult to apply constraints, such as maintain-
ing a specified minimum lift coefficient.

A Second type of design method is the reversal of the direct finite dif-
ference procedures, with the pressure distribution specified at it Riven Mach
number and the corresponding airfoil shape obtained. Examples of this type
of procedure are given by Steger and Klineberg (ref. 9) ar.d by Carlson
(ref. 10). The main problems associated with this line of attack are:

1. The specified pressure may not produce it 	 airfoil (e.g..
nonclosure of the trailing edge).

2. Constraints on the lift coefficient or section thickness are diffi-
cult to Implement.

3. tiff-design criteria cannot be incorporated into the design process.

A third method of transonic witig design is the numerical optimization
procedure developed by Hicks (re f s. 11 and 12) and his coworkers. The nnmer-
lcal optimization method seeks to minimize some specific parameter (e.g., the
drag coefficient, C U) for it set of design variables describi.nu the airfoil
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^;t,omet rv. wit 114 , sat ist v ing .I number tit spot' it ied const ra tilt s.	 The coast ra itits
ma y be acrodvnamic (e.g.. IIIt -coefficient or oft -design criteria) or geo-
nletric (t'.g., .111-10 11 thicknt'ss or volume).	 1'ht' design method uses .ul aero-
dvnamic analvsis prop'.nn cothltled with a numerical olit Ind ,..iltion program; tlic
design process is bristly out lined below.

A base airtoil prof tie is chosen and is perturbed by the use of shape
1 lltict trills wit ich cont rot t he t inal prof i iv.	 1'he c tie f f icIvitts of t hese shape
Iun • tlons .Ire tilt , design variables.	 flit • %ti l t imizat ion scheme pertul'hs each of
these coetIicients lit 	 returning to tilt` aerodynamic analyst:: lirogram for
the evaluat ilia 

of 
I. 	 drag coef f icient after t`ach perturbat ion. At ter I ht,

change of Cl) for each change of design variabl y has bevil notl,d, the opt Imi-
zat ton progt'au1 conlputl,s the gradiec; tit 	 ga l OT 11 ) with respect to y ,icl ► dl,sign
var tab Iv.	 The ti ptimi.!,It Intl program thell i tic rvint , iit.s tilt , covII icit , it t14 one to
four times ill 	 -VC.p direct itilt, searchin^; :or it 	 valtlt , %if	 C O 	that
satisfies tile consir.liuts.	 At etch increment. (ht, aerodynamic :ulalysis pro-
gram is used to conyttlte the drag and acrodynuai, characte ristics and any off-
des igll l'ollst ra ilit t:.	 It .1 t' MIS t Fa I it 	 i ii rv,IcIit-it %tr t he drag i tie re aces (tole t o
noel 1dear it v) , t hell .I new grad t y rlt i s t , 01111M ed .Intl t b y process rvlivaI cd.	 fill,
%','nyiut ing t im y of t his opt tmizat ion procedure is tairly large.	 File hulk tit
the comput ing time. however, is used lit 	 for the mininiun drag. w.ten
Lite analysis program has to tit` ltst'd :1t %'.It'll Int,rt'illellt:ll step.	 Thy iIll`ittsit'll
Lit till-design crttori.l ill the constraints require all .iddiLiollal caletila tioll
of tht, al,rodyllattli%' .'h.11'ar'l%'1'1titiC8 at tilt' spl,eltit'd till-design Mach 1111111ht'r.
An outcome of this design citort (rats. It and 12) is the determitlatiotl of
useful airfoil shape Millet ions that, when ;Jkldt'ti to the base airloll. permit
it large class of airfoil contour,; these shape lunctionl .Ilwa ,vs hint• closut•y
tit the airtoil.	 Extt,nstorls of the numeric. ► 1 opt imizat ion procedurl, to t illite
wings has bet'n repotted by llick:: and Ilt,nnc (ref. 13).	 In tilts threv-
dimensionat procedure, f ive shape illllt'tit itla are used at. two sp:nl-wise sta-
tions. togethvr with all angle of atta%'k vari:lt ion, giving .h tot.hl of t,levt,11
design par.uut,tt,rs.	 Whi It , angle of I(t ick and wing twist are computattollalI\
efficient to us•' it% the design code, other design criteria (such as sweep.
aspect ratio. .111,1 taper) require it great y xttt,n.litur y of computing power.	 'Phis
Is because tht,St . dc—;Igll variahles . ► ftect the local ion of the wing I • %`I.It iv y to
t he t ill ire d i t t et • ence mesh (wit icIt i s usua l I v ::ilea red so t h. ► t t he gr id I i nl,s
coi lit , ide with the leading and traiIing eilges). and modificat ions to the uu.s1 ►

are .tesit• . ► hle for each change. Anotht,r application of this design pruccilllrt,
is by Hant,v, W:lggon'r, Mitt BAIIIaas (t'yl. 14).

It would seem trom (ht , above discussion that tilt- most powerful of the
availabl y design methods is the numerical optimization technique, since aero-
dynamic constraints such as lilt coefficient. olf -ticsign criteria. and geo-
metrit• constrailits (such as wing thicknt-ss) can lit , incorporated into tit,,
design process. however. the computing requirenu`ats can he considerablt,.

especially for three-dimensional designs. The hulk of the computin tin y is
used fit 	 L ;c.lrclivs where Lite acru	

g
dynamdc unalvsi:: program must hl, used at

each step.	 It some wav of reducing the tinge for the seal• ches could ht , found,
then Lite computer roquirenivias would be less formidable.
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Recently, a similarity theory has been derived by Nixon (refs. 15 and lb)

by which a range of transonic flow solutions call 	 found by simple algebra,

provided two solutions, it base solution and a calibration solution, are known.
Hie analysis is based on a perturbation expanslon of the transonic equations,
which leads to a linear nerturbation equation. The nonlinear phenomena of

shock movement due to .a perturbation is treated b y using a strained coordinate

system in which the shock location is invariant. Essentially, this device

treats tl ►e nonlinear flow changes due to a perturbation in some flow charac-
teristic, such as Mach number, by a nonlinear combination of two linear prob-
lems that can be solved in sequence. Since these equations are linear, the

principle of superposition applies; and hence, the effect of several pertur-

bations can be considered at once. 'rhe nonlinearity appears only in the last
step of the procedure, which is the nonlinear combination of the linear prob-
lems. Generally, if N parameters are perturbed, then the procedure requires
N + 1 solutions composed of one base solution and N calibration solutions.

Once the-►e solutions are known, any related "nearbv" solution can be ohtained
rapidly. Using a CDC-7600 computer for a three-dimensional, two-parameter

example, eight cases call 	 computed in 0.38 s of CPU time. The theory has

been applied to three-dimensional wings (ref. 16) with multiple shock waves.
The main restriction of the theory is that shock waves cannot be generated or

destroyed in the perturbation; although in principle a shock of zero strength

can be treated, that is, it shock-free supercritical airfoil.

Since the computation time required to calculate the "nearby" flow char-

acteristics is so small, it seems that this similarity method would be
extremely advantageous in the numerical optimization design procedure. The
costly searches previously carried out by reversion to the aerodynamic analy-
-,Is program can now be done using the inexpensive similarity theory. Also,
since the similarity theory gives the "nearby" solutions as analytic rather

than numerical functions of the parameters, it is possible that the optimiza-
tion procedure itself could be inproved by a study of the analytic dependence

of the design criteria on these parameters. Furthermore, off-design con-
straints in the transonic regime, e.g., drag at a slightly lower Mach number,

can be easily computed since a change in tl ►e Mach number is just another per-
turbation parameter. This avoids the need to calculate off-design character-

istics at each point in the design loos: using; the aerodynamic program.
Another example is the effect of wing sweep angle its three-dimensional flows;

which, again, is _just another perturbation parameter, the effect of which need

only be computed once.

"Phis report begins to investigate the applications of the similarity
theory to design problems. Only two-dimensional flows are considered, and a

total of five parameters are used to characterize the shape functions. At
this stage an optimization procedure is not used, since the basic aim is to

establish the validity of the design applications of the theory. The main
objective in the present design study is to reduce tl ►e wave drag coefficient
of an airfoil and to deduce the necessary ground rules for this design objec-

tive. Applications of these rules to the design of an airfoil section are

presented, and the design pressure distribution agrees satisfacto_-ily wirh a

direct calculation.

4



BASIC PKIN1'lPLES

it an .lirfoll section IN sPet'itied b y several Shope I'mictions with
miknown amp Iit11dos. tllt • Problem under vonsideratit'll is to t • hoose these .11111, 11
tildes stich tll.lt some des lgn criteria is met. CeteraI Iv. it' the tour me .if
rhoos ills; t hose des i gn 11.11 amet ers. .Inv shock waves i it t he ( low w l l l t•hange
10C.lt 1011, (11um inv.11idat ing the 11811.11 tvi le o f Perlut-11at i0II tleorv.	 ThIN Ir:
11e4 • au8e t h•` 1 1 1'essure t • hanges in the region t raver,Wd by tilt- shock wave are not
small. even for it sm.11l change lit shock locations. 	 A me.uls tit treating this
kind tit Perturbation is given b y Nixon (ref. IS). 11sinp, .1 strained voordinatt,
system in whi: • h the shock location is itvariant with Alan i;tl s 111 the }lerturba-
t it'll v.Iri.1111e.	 Using this terhnitlut`. the nonlitlear tratlSklui: llrablem is split
into two linear problems whit - 11 call lit , solit-od ill sotltiv ot'4 1 .	 lit`t'.Itlse ti t this
I inearltV.. von11'Iex solut ions ran be cons' t'ut • te,; t rom s imI , 	I soI tit ion>. by
srlPerPosIt i till .	 In .1 des il,It probIvill Iho eitet • t tit eat • h design pal'.1111etcl ,,In
t114 , FOItire be k . aI ' 'ulaIetl sella rat vIv .111.1 the ill- itw1111v tit suPt , rl i t'siI.it'll tisci to
0011stt , IIt't .1 solllt ion giving the Q If I vC 1 t'1 ally t't'111b111.1t it i ll ti t the tlo::1Fit
}i .11'.Iillt`t t`1'8.

I 'lle analysis givt'il b y Nixoil (rot . I") 0011C O.'rns oIIIV the t rallsollit 8111,11 i

d i st urb..nco etlliat ioll and 8111t`e design met hods are most al drat e it the fill 1
1 1 1 1 t.`Ilti.11 t`tltl.ltit'll	 is IISeti,	 the Ntt'.lilIv%I t'ool*dIllate tet'1111itlilt` ilttist 	 tit` dt'vel-
O P t`d f or eurh all t't11l.1t It'll.

if (X,\') is a Cartes1a11 coordinate 8\'t:t0Ill, Ilt'IhIiI11o1L:i' i11:111:et1 l:ith

resPet• t to the airfoil c lit , rd and witit	 x	 aligned with the tirtoiI , • II, , rt1, tlion
t he fill 1 Potent i.l I otlu.lt ion is

k.1' , - tv )^
xx -- 

.'uvf 
xy 

+ (a' - v' ) m yy a 11
	

(1)

Wile re	 11 and	 V are t he ve ltiv it y et i111Potlotlt 8 ill tilt`	 x aild	 v	 .Ii rot . t ions .
I't's Pet' t iVe Iv, nolidinlenstolmll zed Wit 11 re8l it`t't to tie tt't`o-!:t1'vaill vei oc Ity
, l ,t, . .Illd .11't` givell by

u . 1x	
V ^ t	

(2)

Where	 f	 is the veltlt'it y 1 1otont ial, .l	 is the slived of a 1 1111d. agaitl llondi-
mensional i. •.ed with respoct to y,., and given by

Ml. + \) 2 I 	 ki - V 2 )	 (3)

Pt„ is the Irev -stream Rath number.	 1'he boundary condition on the Art t'iI
stlrfare is given by
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where c6x 8 is the shock movement and xl(x'

Xt(x,) = x'^1 - x' )
X, - x;)

x t ( x') _ 0

6
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v(x.ys)

	

it(x,Ys)	
78x (x)	 (4)

where y - y (x) defInes3 the surface of the airfoil. An infinite distance
upstream of the airfoil

U - q,,cosa

v - q.sina	 (S)

where a to the angle of att: .

'File pressure velocity relation is given by

Y^Y-1

	

i ^ (X .Y) - Y ft, , [t + (	 -1)pl.,' (I - u ? - v 2 l1	 (6)

It is now proposed to change the airfoil boundary by some small amount char-
acterized by r. Thus. the new airfoil is clef illed by

	y - vs (x) - y s (x) + CV	 (x)(7)

ac,' the corresponding boundary condition Is

v(x,ys)

u(x,ys ) = v, (x) + rys (t) (x)	 (^)

	

x	 x

The c{uer;t ion is. given the solution of the problem defined by e,lua-
t ion s; (1) and (4), find the solution of the problvin detined by equations; (1)
and (8). As in reference 15, it is assumed that an y shock waves in th,: flow
are normal to the x-axis an,l that there is onl y one shock wave on ear', airfoil
surface. The strainod coordinate x' Is th n introduced where

	

x = x' + , ,5xs x I (x' )	 (`I)

a 



where X' is the origi-ml shock location and c6x'	 is the shol •. k movement.
Hie variables to its etc., are then expanded an the series

O( x .Y) - 0 OW-Y + f 1 W,Y) +	 ( il)

and

u(x.y) - u o
 W,Y)I 

L	 x
I - r6x xl x
	 J
, ( x l )l + rul (x' . Y) . .

(l2)

v (x.Y) - vo (x' .Y) + -v l ( x " y ) . . .

a(x.Y) - a tl kx'.y) + ca l( x '. y ) . . .	 (13)

The expression for a(x.y) can be found in terms of u, v, and bx.using
equations (3) and (9).

Substituting; equations ( y ), (11), (12), and (13) into equation, (1) and
(H) and equating coefficients of r gives. to first order in 	 the follow-
ing two equations with associated boundary conditions

( it `s* — U lf .,
 
)0 0 x / x 1 — 2u0v (1 0 0x' v + ( a02 — v0 7 ),o o	 - Q	 (14)

YY

v0W'ya)
u (x',v )	 Y s f(x')

o	 s	 x

and

(a ?- u 2)m 1 xx ,- _'uuvu^lx' + (a' - vo2 ) m l	 + 2(a 
o 

a l - u u )^,>	 ,,	 y	 y y u 

2 ( uov l + voul)sux1y + 2(a oa l - vov1 )moYY

-2^	 u 
:1
 bx x, , - 20	 bx x l ^ (a 2 - u ?)

u x , x , o	 s x	 ox,x, s x	 o	 0

- ( ao2 - u0 2 )bx sx l 0
0
	(16)+ u v bx x

x,x Suxl
	

u o v l x ► 	 x.
Y

u l ( x '.Y^)	 YO) (x')ui,(X,.Y^) + \lil — 6x^ut,xlx,/`Nx^(x')

.+ x i	 )Ysx^x^(x,)

(15)

(l1)

L-



i

Provided the perturbation is not ,z function of M-, then equations (16)

and (17) do not contain the parameter c. Hence, if the variables 11. 6%,
etc.. ► re kno, m for one value of r, then the value of the variables for any
other value of -	 can be found by simple proportion. Thus,

eu 1 (x',Y) - .I,Icoul(x'.Y)J

	

E6xs	
Co ` 06X8J
	 (18)

The omission of the Mach number variation from the analysis is because the
term al contains Mm ; hence equation (16) is not independent of e. How-
ever, Mach number variations can be treated it it is assumed that for such
changes the trar.sonic small disturbance equation is it valid approximation. 	 In

this c. ► .ie, the analvbis of reference 16 can be used.

Wli i le the linear pert urbat ion equation. equation (1 t,) , can he solvee, for
u l , 6x s , etc., it is much more convenient to use the same to 'tnique to solve

both the babe and calibration solutions. Fquattou (16) multiplied by co
represents the first order of magnitude in E 	 the difference of two solu-

tions to equation (1). Hence, expressions for u i and 6x s in equation (13)
can be found by ; suitable combination of two known nonlinear r,^sults.

If. by soma method, the solution to the base problem defined by equa-

tions (14) and (15) is known and if the solution to some perturbed problem.
characterized by some parameter E , is alst, known (the calibration solution),
then the terms (c owl) and ( ►: 0 (Sx 8 ) 't'an be found its follows:

1. The change in the shock location eo6x s between the base and cali-

bration - • olutions is easily tound by inspection.

2. If u (l) (x,y) is the solution of the perturbed problem and if

u (0) (x',y) is the solution of the base problem, then

e ou l (x'. y ) - «(i) ( x + y ) - u(°)(x',.v) 11 - c o6x s x l	(x')1	 (19)
d.	 x'	 J

where

X = x' + eo6xsxl(x')
	

(20)

and x l (x') is given by equation (10).

Havin), obtained 6x 	 and u I (x',y) ore can then obtain the final

solutions	

r
u ( X .Y) - u(0)(x',y)rl - E6x s x txt (x')^ + cu t (x'.Y)	 (21)

8
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and

	

x - X , + c6xs x I ( x 1 )	 (22)

The other velocity component Is Aimply given by

vl( x .Y) - c 1v (t) (X.Y) - v (0) (x.Y)l	 (23)
O

where v( o )(x,y) and v (I) (x,v) are the solutions of the base acid ,alibration

problems, respectively. The total veincity in the y direction i-, then

given by

v(x,y) - v (0) (x.Y) + cv l (x.Y)	 (24)

The pressure coefficient can then be found from equations (6), (21),

(22). and (24).

Since the basic equation derived in the preceding sections are linear,
the effect of more than one parameter can be obtained by superposition.

Thus, for N parameters, ei:wtions (21). (22), and (24) can be generalized
to give

N	 N

u ( X .Y) - u(0)(x',y)I -	 6x x	 %x')	 +	 c u	 (x ► .Y)	 (25)
	i =1 i s i l x'	 i-1 i

where

N

x - x' +	 c 6x X, W	 (26)

i-1 i si

N

v ( x ► Y) - v (0) (X.Y) 
+ i` 

l i v li (X.Y)	 (27)

The N parameters are denoted by
i
 (i-1,N), the change in ehock location

due to the ith parameter change is c i6x s .
i

DESIGN APPLICATIONS

In the direct calculations, the parameters t , are Specified and u(x,y)

	

,utd v(x,y) on the airfoil surface are obtained. 	
III
	 design application,

the velocity u(x,y) on the airfoil surface can be specified at N - 1

stations and the 
C  

found; the Nth equation for the c 	 is found by
N

specifying the total shock movement	 ei6xs , ttous giving the relationship

i-1	 i

9



betwoen the coordinate syot.cros x and x'. Once u(x.y) on the airfoil
surface and the' I ' tre knowli, the v(x,y) can be obtained from the tangency
boundary conditio. An alternative to specifying u(x.y) is to use some form
of optimization procedure. The parameters r 	 m.ay he changes In angle of

eattack. geometric shape functions, or, if th l Small disturbance equation is
used, changes in Mach number.

As shown fit 	 16. Lite adequate calculation of Lite drag coeffi-
cient involves a flow field calculation around the shock waves and is a cubic
equation in Lite parameter E. This would lead to a complicated analysis in
the design applicatton. Therefore, for optimization purpose", it is proposed
that Lite possibility of minimizing the function 1C P+ - C p * 1 	rather than CD
is investigated, where C	 is the surface pressure Just ahead of the shock
wave and C * is the critical pressure. The applicability of thins assumption
rests on C9 being a monotonic function of 1Cp+ - (: p * 1. In figure 1. it
of C D against ICp + - Cp * I for 14 different direct calculations Is shown,
and it may be even that within the limit s *of numerical accuracy C D is
indeed a monotonic function of 1 C p+ - C  I.

An obvious design objective is to reduce the drag coefficient by reducing
the shock strength to zero or nearly zero. In theory, this should give some-
thing close to a shock-free airfoil. In order to establish some ground rules
for such a design objective, a test case using the transonic small disturbance
eglsation with linear boundary conditions is considered. Tae base airfoil is
a 10% biconvex section at zero angle of .attack and the object is to find the
feee-stream Mach number at which the shock strength is nearly zero. The base
Hach number is 0.828 and the calibration Mach number is 0.838. A shock fit-
ting small disturbance code was used to compute these solutions. The design
Mach number is 0.7905 and the result obtained by the similarity solutions is
compared to a direct calculation in figure 2. The difference in shock loca-
tious and pressure distributions ;ahead of the shock are probably slue to the
magnitlade of the perturbation in Mach number being too large. However, the
main discrepancy between the similarity and direct rc:.alts is In the large
supersonic. expansion Ili the former behind the shock wave. This expansion is
dut• to the postshock expansion behavior exhibited by the base and calibration
solutions, which .apparently does not scale when a shack-free • limit is
approached. This Suggests that in order to adequately compute shock-free or
nearly shock-free solutions, both bast and calibration solutions+ should fairly
closely model the essential flow features of ti p final design. For example,
the rapid postshock expansion should not be large in the vase and calibration
solutions. in figure 3, Lite pressure distribution close to the shock at
K - 0.798 for the same biconvex airfoil is shown, but with a baste Mach num-
ber of 0.818 and a calibration Mach number of 0.808. It can be seen that the
rapid postshock expansion has been eliminated. These results lead to the
following design criteria for shuck-free or nearl y shock-free designs.

1. The base and calibration solutions should represent all of the essen-
tial features of the final design.

2. The flow must not accelerate supersonically behind a shock wave
(including a zero strength shock) and must be supersonic just ahead of the
shock (i.e., the shock must be compressive).
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7. 'rhe tinal design should be realistic, that is, there should be no
crossover of the upper aA lower surfacers of the airfoil.

4. For a shock-free design, it is desirable that any discontinuities in
the pressure gradient at the "shock" be at it minimum in order to have a
smooth recompression.

A final criterion is that the perturbations should not be too large.
Generally, this is indicated when the strained coordinate overshoots the air-
foil chord, thr.t is, gives values of x that lie outside the airfoil. Con-
sequently, a fifth condition is as follows:

S. For values of the strained coordinate x' on the airfoil chord, the
coordinate x must alwa ys Ile on the chord line.

These then are the criteria used in the preliminary tests of design
applications of the similarity theory.

F:XAMI'I.E

In order to test the above ideas, an airfoil is designed using the ideas
of Hicks (re`	 11 and 12). The base airfoil is a laminar flow design.

Pert .- 'jations of the form

y - .i i ( sin nxb i ) 3	 i - 1,5	 (28)

are used to modify the airfoil geometry. The values of bi and a i used
in computing the calibration solutions rlrN shown in table 1. Both hale and
calibration solutions were computed using, a full potential equation code.
The object is to reduce the shock strength and hence, the wave drag by
noosing a I (i - 1,5). The magnitude of the perturbations is limited to

1-1/2 times that used in the base and calibration solutions, although the sign
can change. This Is effectively a constraint on section thickness. The
free-stream Match number is 0.74 and the angl . of attack is zero. The optimi-
zation is simply done by a search of the relevant range of parameters with
12 steps in each range. This scheme 1s not by any means the best, but is easy
to program and is used here only to validate the theory. The magnitude of the
parameters found by this procedure is given in table 1. The resulting pres-
sure distribution is shown in figure 4 and compared to a direct calculation.
It can be seen that the predicted and t'.rect calculations agree faixiy well.
The total computing time. is 3.7 s on a 'DC-7600 computer, provided the base
and calibration solutions are known.

In this paper, only one design iteration is considered; that is, only one
set of base and calibration solutions is used. This serves to test the ideas;
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. ► nd. lu an y i!,% , , Me such computa 9 ion may be sut Iicient . It the base and
calibration ,olutlotis do need to le recalculated, then the whole procedure
can easily be repeated.

CONCLUDING Rh:MARKS

The similarity theory d.evo-loped by Nixon (refs. 15 and 16) for direct
calculations is extended to design optimization problems. Some ground rules
for the design of ,hock -free or nearly shock-free airfoils are deduced. A
simple example is computed. The adv. ► ntages of the sL • hem.' of Incorporating
the similarity theory into the numerical opti:niza;ion design procedure are as
follows:

I .	 In the lilt herLo expensive searches, t Ile comput ii ► g t Ime can be reduced
conmiderahl y using the similarity theory.

2. M f-design criteria can be easily and inexpensively incorporated into
the design process.

3. In three-dimensional applications, the difficult design parameters,
such as wing ,weep or taper, can be much more easily taken into account since
only one calibration solution is required rather than the multiple finite dif-
ference calculations required in the existing numerical optimization scheme.

4. The analytic nature of the similarity theory may lead to improve-
ments is the optimization scheme itself.

The author thanks 1'. L. Hoist and R. M. clicks of NASA Ames for their help
and A. R. Seebass and N. J. Yu of tho , University of Arizona for the shock-
fitting, small distW ! 'Ance results.
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TABLE 1. DESIGN PARAMETERS

i bi
a 
	 (calibration) di	 (design)

1 0.2314 -0.003 0.0034

2 0.3654 0.0005 0.0008

3 0.6603 0.002 -0.0013

4 0.8681 0.001 0.0001

5 2.4094 -0.002 -0.0022
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