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DESICN OF TRANSONIC ALRFOIL SECTIONS USING A SIMILARITY THEORY
David Nixon*

Ames Research Center

SUMMARY

A study ot the available methods for transonic airfoil and wing design
indicates that the most powerful technique is the numerical optimization pro-
cedure, However, the computer time for this method is relatively large
because of the amount of computation required in the searches during optimiza-
tion. The optimization method requires that "base" and "calibration" solu-
tions be computed to determine a "minimum drag" direction. The design space
is then computationally searched in this direction; it is these searches that
dominate the computation time. A recent similarity theory allows certain
transoaic flows to be calculated rapidly from the base and calibration solu-
tions., In this report the application of the similarity theory to design prob-
lems is examined with the object of at least partially eliminating the costly
searches of the design optimization method. An example of an airfoil design
is presented.

INTRODUCTION

New interest in reducing the fuel consumption of existing and future air-
craft has been prompted by the world-wide fuel shortage. A logical place to
start the search for lower fuel consumption is to reduce drag, especially at
the transonic speeds at which most alrcraft cruise. The most common descrip-
tion of a transonic flow is when there is a supersonic "bubble" totally
embedded in a subsonic flow, The superronic bubble may be terminated by a
shock wave producing wave drag or, in certain circumstances, may return to
subsonic conditions through an isentropic compression with no wave drag. This
wave drag is associated with the entropy change across the shock. Soon after
a shock wave appears in the flow, the drag will increase rapidly with increas-
ing free-stream Mach number, leading to the definition of a "drag rise Mach
number," which is defined as the free-stream Mach number at which this rapid
drag rise begins. One of the main objects of designing a wing for transonic
speeds is to obtain as high a "drag rise Mach number" as possible, subject
to certain constraints. The obvious way te reduce the wave drag, at least in
a two-dimensional study, is to use a supercritical shock-free airfoil section
where there is no shock wave and, consequently, no wave drag. However, these
shock=free airfoils may have undesirable off-design characteristics, such as
strong shock waves suddenly appearing when the Mach number is perturbed
slightiv from its design value., Thus, an important constraint in the design
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of airfoils is that there should be good off-design behavior. In wing design
(il.e., three-dimensional flows) the design can be altered by spanwise changes
(e.g., sweep or twist); and this can complicate the design procedure.

Methods for calculating transonic flow characteristics around given air-
foils were first derived by Murman and Cole (ref. 1), with a later correction
by Murman (ref, 2), using the concept of type-dependent finite differences
applied to the transonic small disturbance equation. Later work resulted in
methods using the full potential equation such as that by Jameson (ref. 3).
Three-dimensional extensions of the small disturbance methods were made by
Ballhaus, Bailey, and Frick (ref, 4), and extensions of the full potential
equation methods were made by Jameson and Caughey (ref. 5). All these meth-
ods are for isentropic flow, which, strictly speaking, cannot produce a wave
drag that (as noted above) would be a consequence of an entrony change. How-
ever, isentropic flow does produce a momentum deficit across the shock wave
that can o thought of as a wave drag (ref, 6), an assumption that seems to
be corroborated by experiment. These calculation methods must be differenced
(ref, 2) in conservative form otherwise the shock location and strength may
be incorrect.

The earliest attempt to design transonic airfoil sections used the hodo-
graph transformation, in which the velocity components are the independent
variables rather than the usual geometric variables (x,y). The hodograph
transformation leads to a linear equation for transonic flow rather than the
usual nonlinear equation in the physical coordinate system. Best known of
these methods are those of Nieuwland (ref. 7) and Bauer, Garabedian, and Korn
(ref. 8). These methods require complex mappings and transformations and can
be difficult to use. In addition, neither the design pressure distribution
or the design Mach number is known in advance. Only shock-free designs are
poesible, thus precluding the inclusion of off-design criteria into the
design process. Also, it is difficult to apply constraints, such as maintain-
ing a specified minimum lift coefficient.

A second type of design method is the reversal of the direct finite dif-
ference procedures, with the pressure distribution specified at a given Mach
number and the corresponding airfoil shape obtained. Examples of this type
of procedure are given by Steger and XKlineberg (ref. 9) and by Carlson
(ref. 10)., The main problems associated with this line of attack are:

1. The specified pressure may not produce a realistic airfoil (e.g.,
nonclosure of the trailing edge).

2. Constraints on the lift coefficient or section thickness are diffi-
cult to implement.

3. Off-design criteria cannot be incorporated into the design process.

A third method of transonic wing design is the numerical optimization
procedure developed by Hicks (refs. 11 and 12) and his coworkers. The numer-
ical optimization method seeks to minimize some specific parameter (e.g., the
drag coefficient, Cp) for a set of design variables describing the airfoil
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geometry, while satisfying a number of specified constraints, The constraints
may be aerodvynamic (e.g., lift-coefficient or off-design criteria) or geo-
metric (e.p., airfoil thickness or volume). The design method uses an aero-
dynamic analysis program coupled with a numerical optimization program; the
design process is briefly outlined below,

A base airfoil profile is chosen and is perturbed by the use of shape
tunctions which control the final profiie. The coefficients of these shape
functions are the design variables. The optimization scheme perturbs each of
these coefficients in turn, returning to the aerodynamic analysis program for
the evaluation of the drag coefticient after each perturbation. After the
change of Cp for each change ot design variable has been noted, the optimi-
zation program computes the gradfect of Cp (VC) with respect to each design
variable. The optimization program then increments the coefficients one to
ftour times in the -V(; direction, searching for a minimum value of C that
satisfies the constraints. At each increment, the aerodynamic analysis pro-
gram is used to compute the drag and aerodynawic characteristics and any off-
design constraints, 1If a constraint is reached or the drag increases (due to
nonlinearity), then a new gradient is computed and the process repeated. The
comput ing time of this optimization procedure is fairly large. The bulk of
the computing time, however, is used in searching for the minimum drag, when
the analysis program has to be used at each incremental step. The inclusion
of off=design criteria in the constraints require an additional calculation
of the aerodynamic characteristics at the specified off-design Mach number.
An outcome of this design effort (refs., 11 and 12) is the determination of
useful airfoil shape functions that, when added to the base airfoil, permit
a large class of airfoil contours; these shape functions always give closure
of the airfoil. Extensions of the numerical optimization procedure to finite
wings has been reported by Hicks and Henne (ref. 13). In this three-
dimensional procedure, five shape functions are used at two span-wise sta-
tions, together with an angle of attack variation, giving a total of eleven
design parameters. While angle of attack and wing twist are computationally
efficient to use in the design code, other design criteria (such as sweep,
aspect ratio, and taper) require a great expenditure of computing power. This
is because these design variables affect the location of the wing relative to
the finite difference mesh (which is usually sheared so that the grid lines
coincide with the leading and trailing edges), and modifications to the mesh
are desirable for each change. Another application of this design procedure
is by Haney, Waggoner, and Ballhaus (ref. 14).

It would seem from the above discussion that the most powerful of the
available design methods is the numerical optimization technique, since aero-
dynamic constraints such as 1ift coefficient, off-design criteria, and geo-
metric constraints (such as wing thickness) can be incorporated into the
design process. However, the computing requirements can be considerable,
especially for three-dimensional designs. The bulk of the computing time is
used in the searches where the aerodynamic analysis program must be used at
each step, 1If some way of reducing the time for the searches could be found,
then the computer requirements would be less formidable.



Recently, a similarity theory has been derived by Nixon (refs. 15 and 16)
by which a range of transonic flow solutions can be found by simple algebra,
provided two solutions, a base solution and a calibration solution, are known.
The analysis is based on a perturbation expansion of the transonic equations,
which leads to a linear nerturbation equation. The nonlinear phenomena of
shock movement due to a perturbation is treated by using a strained coordinate
system in which the shock location is invariant. Essentially, this device
treats the nonlinear flow changes due to a perturbation in some flow charac-
teristic, such as Mach number, by a nonlinear combination of two linear prob-
lems that can be solved in sequence. Since these equations are linear, the
principle of superposition applies; and hence, the effect of several pertur-
bations can be considered at once. The nonlinearity appears only in the last
step of the procedure, which is the nonlinear combination of the linear prob-
lems., Generally, if N parameters are perturbed, then the procedure requires
N + 1 solutions compused of one base solution and N calibration solutions.
Once these solutions are known, any related "nearby" solution can be obtained
rapidly., Using a CDC-7600 computer for a three-dimensional, two-parameter
example, eight cases can be computed in 0,38 s of CPU time., The theory has
been applied to three-dimensional wings (ref. 16) with multiple shock waves.
The main restriction of the theory is that shock waves cannot be generated or
destroyed in the perturbation; although in principle a shock of zero strength
can be treated, that is, a shock-free supercritical airfoil.

Since the computation time required to calculate the "nearby" flow char-
acteristics is so small, it seems that this similarity method would be
extremely advantageous in the numerical optimization design prccedure. The
costly searches previously carried out by reversion to the aerodynamic analy-
¢is program can now be done using the inexpensive similarity theory. Also,
since the similarity theory gives the "nearby" solutions as analytic rather
than numerical functions of the parameters, it is possible that the optimiza-
tion procedure itself could be improved by a study of the analytic dependence
of the design criteria on these parameters. Furthermore, off-design con-
straints in the transonic regime, e.g., drag at a slightly lower Mach number,
can be easily computed since a change in the Mach number is just another per-
turbation parameter. This avoids the need to calculate off-design character-
istics at each point in the design loop using the aerodynamic program.
Another example is the effect of wing sweep angle in three-dimensional flows;
which, again, is just another perturbation parameter, the effect of which need
only be computed once.

This report begins to investigate the applications of the similarity
theory to design problems. Only two-dimensional flows are considered, and a
total of five parameters are used to characterize the shape functions. At
this stage an optimization procedure is not used, since the basic aim is to
establish the validity of the design applications of the theory. The main
objective in the present design study is to reduce the wave drag coefficient
of an airfoil and to deduce the nccessary ground rules for this design objec-
tive. Applications of these rules to the design of an airfoil secrion are
presented, and the design pressure distribution agrees satisfacto.ily with a
direct calculation,



BASIC PRINCIPLES

If an afrfoil section is specified by several shape functions with
unknown amplitudes, the problem under consideration Is to choose these ampli-
tudes such that some design eriteria {s met. CGenerally, in the course of
choosing these design parameters, any shock waves in the flow will change
location, thus invalidating the usual type of perturbation theory. This is
because the pressure changes in the region traversed by the shock wave are not
small, even for a small change in shock locatfons. A means of treating this
kind of perturbation i{s given by Nixon (ref., 15), using a strained coordinate
system in which the shock location is invarifant with changes in the perturba-
tion varfable. Using this technique, the nonlinear transonic problem is split
into two linear problems which can be solved in sequence. Because of this
linearity, complex solutions can be constructed from simpler solutions by
superposition, In a design problem the effect of each design parameter can
therefore be calculated separately and the principle of superposition used to
construct a solution giving the effect of any combination of the design
parameters,

The analysis given by Nixon (ref. 15) concerns only the transonic small
disturbuance equation and since design methods are most ac. urate {f the full
potential equation is used, the strained coordinate technique must be devel-
oped for such an equation,

If (x,y) is a Cartesian coordinate system, nondimensionalized with
respect to the airfoil chord and with x aligned with the airfoil chord, then
the full potential equation is

(a® - u'Nxx - Zuwxy + (a® - \.")@),y =0 ()

where u and v are the velocity components in the x and y Jirections,
respectively, nondimensionalized with respect to the free-stream velocity
Q.+ and are given by

u-i&

ax

v-%% (2)

where ¢ 1is the velocity potential; a 1is the speed of sound, again nondi-
mensionalized with respect to q, and given by

o = o (5 )a - W - v )

M. is the free-stream Mach number. The boundary condition on the airfoil
surface is given by



vix,y,)

;2;:;:3 . .x(x) (4)

where y = vy (x) defines the surface of the airfoil. An infinite distance
upstream of !he airvfoil

u = q cosa
v = q_sina (5)
where a {8 the angle of atte-',

The pressure velocity relation is given by

/y=1
-2u? S Fe 80s L0y ’
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It is now proposed to change the airfoil boundary by some small amount char-
acterized by e¢. Thus, the new airfoil is defined by

(n

y =¥, (x) =y (x)+ ey, (%) (7)
ard the corresponding boundary condition is
vix,y )
s (1)
—_— = + € 8
o algd Mindll | R0 .

The question is, given the solution of the problem defined by equa-
tions (1) and (4), find the solution of the problem defined by equations (1)
and (8). As in reference 15, it is assumed that any shock waves in thr flow
are normal to the x-axis and that there is only oune shock wave on eac' airfoil
surface. The strained coordinate x' s rb .n introduced where

x=x"' + r.ﬁxsxl (x') (9)

where céxs is the shock movement and x;(x') is given in reference 15 by

x(x') = 5U=X) <y <)
s N
x1(x") =0 xt <0 (10)
x>}



where x; is the original shock location and eéx' 1is the shock movement.
The variables 4, u, ete,, are then expanded as the series

Pix,y) = Oo(x'.y +ed(x',y) +. .., (1)
and
. w e 1 - g8 ' + s i
ulx,y) u, (x y)[ € ","l,‘.(" )] cuyp (x',y) an
viy) = v (x',y) +evix',y) . . .
a(x,y) = ao(x'.y) *emintyy) « ¢ & (13)

The expression for a(x,y) can be found in terms of wu, v, and Gx'. using
equations (3) and (9).

Substituting equations (9), (11), (12), and (13) into equations (1) and
(8) and equating coefficients of ¢ gives, to first order in ¢, the follow-
ing two equations with associated boundary conditiens
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Provided the perturbation i{s not a function of M., then equations (16)
and (17) do not contain the parameter e¢. Hence, if the variables ¢, dx..
etc., are knoom for one value of ¢, then the value of the variables for any
other value of ¢ can be found by simple proportion. Thus,

r
cuy (x'yy) = - :[‘oul (x'.y)]

€
ebx_ = ;-;[coax.] (18)

The omission of the Mach number variation from the analysis is because the
term a; contains M_,; hence equation (16) is not independent of ¢, How~
ever, Mach number variations can be treated if it is assumed that for such
changes the trarsonic small disturbance equation is a valid approximation. In
this case, the analysis of reference 16 can be used.

While the lincar perturbation equation, equation (16), can be solved for
up, 6xg, ete., it is much more convenient to use the same te ‘nique to solve
both the base and calibration solutions. Equation (16) multiplied by ¢,
represents the first order of magnitude in € the difference of two solu-
tions to equation (1). Hence, expressions fof u; and 8xg in equation (13)
can be found by & suitable combination of two known nonlinear results.

If, by some method, the solution to the base problem defined by equa-
tions (14) and (15) is known and if the solution to some perturbed problem,
characterized by some parameter ¢ , is also known (the calibration solution),
then the terms (50“1) and (codx.) Can be found as follows:

1. The change in the shock location ep8xg between the base and cali-
bration rolutions is easily tound by inspection,

as &I u(‘)(i.y) is the solnution of the perturbed problem and if
u(°)(x'.y) is the solution of the base problem, then

coul(x'.y) = ull)(X,y) = u(®(x',y) [1 - coﬁx'xlx'(x')] (19)
where
x=x'+ codxsxl(x') (20)

and x);(x') is given by equation (10).

Having obtained éx. and ul(x'.y) ore can then obtain the final
solutions

v(x,y) = u(°)(x'.y)[1 - :stxlx'(x‘)] + ey (x',y) (21)



and

x=x'+ ccx.u|(u') (22)
The other velocity component {s simply given by

vi(x,y) = ;L1v("(x.y) - v (x,9)) (23)
(8]

where v(%)(x,y) and v(!)(x,y) are the solutions of the base and calibration
problems, respectively. The total velocity in the y direction is then
given by

vix,y) = vi® (x,y) + ev, (x,y) (24)

The pressure coefficient can then be found from equations (6), (21),
(22), and (24).

Since the basic equation derived in the preceding sections are linear,
the effect of more than one parameter can be obtained by superposition .,
Thus, for N parameters, e u. tions (21), (22), and (24) can be generalized
to give

N N
ulx,y) = u® ',y |1 - e dx. x, x|+ eu, (x',y) (25)
;E% i ll lx' i;; i 11
where
>
x=x'+ e, 8x = (x") (26)
-
N
vix,y) = v(°)(x.y) » X €V (x,y) (27)
1-1 i

The N parameters are denoted by ¢, (i=1,N), the change in shock location
due to the ith parameter change is ciox' .
i

DESIGN APPLICATIONS

In the direct calculations, the parameters ¢ are specified and u(x,y)
and v(x,y) on the airfoil surface are obtained. In a design application,
the velocity u(x,y) on the airfoil surface can be specified at N - 1
stations and the €y found; the Nth equation for the €y is found by

N
specifying the total shock movement I: ci6x‘i, thus giving the relationship
i=1



between the coordinate systems x and x'., Once wu(x,y) on the airfoil
surface and the ¢ are known, the v(x,y) can be obtained from the tangency
boundary condltlonx. An alternative to specifying u(x,y) is to use some form
of optimization procedure. The parameters €, may be changes in angle of
attack, geometric shape functions, or, {f the small disturbance equation is

used, changes in Mach number.

As shown in reference 16, the adequate calculation of the drag coeffi-
cient involves a flow fleld calculation around the shock waves and is a cubic
equation in the parameter €. This would lead to a complicated analysis in
the design application. Therefore, for optimization purposes, it is proposed
that the possibility of minimizing the function |Cp* - C *| rather than ¢
is investigated, where C is the surface pressure just' ahead of the shock
wave and C * 18 the crigicnl pressure, The applicability of this assumption
rests on C§ being a monotonic function of |c + - C,*|. 1In figure 1, a plot

of Cp against |Cp* - ¢ for 14 different direct calculations is shown,
and it may be geen that wgthtn the limltuﬁof numerical accuracy Cp is

: +
indeed a monotonic function of ICP - Cp b

An obvious design objective is to reduce the drag coefficient by reducing
the shock strength to zero or nearly zero. In theory, this should give some-
thing close to a shock=free airfoil. In order to establish some ground rules
for such a design objective, a test case using the transonic small disturbance
equation with linear boundary conditions is considered. Tue base airfoil is
a 10% biconvex section at zero angle of attack and the object is to find the
free-stream Mach number at which the shock strength is nearly zero. The base
Mach number is 0.828 and the calibration Mach number is 0.838. A shock fit-
ting small disturbance code was used to compute these solutions., The design
Mach number is 0.7905 and the result obtained by the similarity solutions is
compared to a direct calculation in figure 2., The difference in shock loca-
tionus and pressure distributions ahead of the shock are probably due to the
magnitude of the perturbation in Mach number being too large. However, the
main discrepancy between the similarity and direct rccults is in the large
supersonic expansion in the former behind the shock wave. This expansion is
due to the postshock expansion behavior exhibited by the base and calibration
solutions, which apparently does not scale when a shock=free limit is
approached. This suggests that in order to adequately compute shock-free or
nearly shock-free solutions, both base and calibration solutions should fairly
closely model the essential flow features of tio final design. For example,
the rapid postshock expansion should not be large in the tase and calibration
solutions. In figure 3, the pressure distribution close to the shock at
M, = 0.798 for the same biconvex airfoil is shown, but with a base Mach num-
ber of 0.818 and a calibration Mach number of 0.808., It can be seen that the
rapid postshock expansion has been eliminated. These results lead to the
following design criteria for shock-free or nearlv shock-free designs,

1. The base and calibration solutions should represent all of the essen-
tial features of the final design.

2. The flow must not accelerate supersonically behind a shock wave
(including a zero strength shock) and must be supersonic just ahead of the
shock (i.e., the shock must be compressive).
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3. The final design should be realistic, that is, there should be no
crossover of the upper and lower surfaces of the airfoil.

4., For a shock-free design, it is desirable that any discontinuities in
the pressure gradient at the "shock" be at a minimum in order to have a
smooth recompression.

A final ceiterion is that the perturbations should not be too large.
Generally, this {s indicated when the strained coordinate overshoots the air-
foil chord, that is, gives values of x that lie outside the airfoil. Con-
sequencly, a fifth condition is as follows:

5. For values of the strained coordinate x' on the airfoil chord, the
coordinate x must always lie on the chord line.

These then are the criteria used in the preliminary tests of design
applications of the similarity theory.

EXAMPLE

In order to test the above ideas, an airfoil is designed using the ideas
of Hicks (ref 11 and 12). The base airfoil is a laminar flow design.

Pert+: Lations of the form
y = a (sin mxby)? £ = 1,5 (28)

are used to modify the airfoil geometry. The values of by and aj used

in computing the calibration solutions are shown in table 1, Both base and
calibration solutions were computed using a full potential equation code.

The object is to reduce the shock strength and hence, the wave drag by
noosing a (i = 1,5). The magnitude of the perturbations is limited to

1-1/2 times that used in the base and calibration solutions, although the sign
can change. This is effectively a constraint on section thickness. The
free-stream Mach number is 0.74 and the angzl: of attack is zero. The optimi-
zation is simply done by a search of the relevant range of parameters with

12 steps in each range. This scheme is not by any means the best, but is easy
to program and is used here only to validate the theory. The magnitude of the
parameters found by this procedure is given in table 1. The resulting pres-
sure distribution is shown in figure 4 and compared to a direct calenlation.
It can be seen that the predicted and (’'rect calculations agree fairiy well.

The total computing time is 3.7 s on a "DC-7600 computer, provided the base

and calibration solutious are known.

In this paper, only one design iteration is considered; that is, only one
set of base and calibration solutions is used. This serves to test the idecas;

11



and, in any case, one such computar lon may be sufficient. If the base and
calibration solutions do need to 'e recalculated, then the whole procedure
can easily be repeated.

CONCLUDING REMARKS

The similarity theory developed by Nixon (refe. 15 and 16) for direct
calculations is extended to design optimization problems. Some ground rules
for the design of shock=free or nearly shock-free airfoils are deduced., A
simple example is computed. The advantages of the scheme of incorporating
the similarity theory into the numerical optimizaiion design procedure are as
follows:

1. In the hitherto expensive searches, the computing time can be reduced
considerably using the similarity theory.

2, Off-design criteria can be easily and inexpensively incorporated into
the design process.

3. In three-dimensional applications, the difficult design parameters,
such as wing sweep or taper, can be much more easily taken into account since
oniy one calibration solution is required rather than the multiple finite dif-
ference calculations required in the existing numerical optimization scheme.

4, The analytic nature of the similarity theory may lead to improve-
ments ia the optimization scheme itself,

The author thanks 7. L. Holst and R. M. Hicks of NAS\ Ames for their help

and A, R. Seebass and N, J. Yu of the University of Arizona for the shock-
fitting, small disturbunce results.
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TABLE 1. DESIGN PARAMETERS

b1 a (calibration) ay (design)
0.2314 -0.003 0.0034
0.3654 0.0005 0.0008
0.6603 0.002 -0.0013
0.8681 0.001 0.0001
2.4094 -0.002 -0.0022

14




———=MEAN LINE OF C,
O DRAG COEFFICIENT

+ -
|cp_cp '

Figure 1.~ Variation of drag coefficient with Il?
I\

15



SIMILARITY THEORY
v v = == DIRECT CALCULATION
? s e s BASE SOLUTION (M.,~0.828)

-
4 | | 1 | |
0 2 4 6 £ 1
x/c

Figure 2.- Pressure distribution around a 10% biconvex airfoil; M_ = 0,7905.
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Figure 3.- Pressure distribution at the shock wave 102 biconvex airfoil;
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