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SUMMARY 

A prac t ica l  and w e l l  correlated procedure for  predicting helicopter 
in te rna l  noise i s  presented. The development of the  method was  supported 
by NASA Contract NAS1-14446. It accounts for  the propagation of noise 
along multiple paths on an octave-by-octave basis. 
c ient ly  general t o  be applicable t o  conventional helicopters as w e l l  as 
other a i r c r a f t  types, when the appropriate s t ruc tura l  geometry, noise 
source strengths,  and material acoustic properties are defined. A guide 
i s  provided f o r  the  prediction of various helicopter noise sources over a 
wide range of horsepowers for use when measured data are not available. 

The method is  suf f i -  

The method is  applied t o  the  prediction of the  in t e r io r  levels  of 
the NASA/Sikorsky Civil  Helicopter Research Aircraft  (CHRA) , both w i t h  
and without soundproofing instal led.  Correlation with measured leve ls  
was very good. 
dB a t  a l l  conditions. A sample problem i s  a l so  shown i l l u s t r a t i n g  the  
use of the  procedure. T h i s  example calculates the  engine casing noise 
observed i n  the passenger cabin of the CHRA. 

Speech Interference Level (SIL) w a s  predicted within 1.5 

INTRODUCTION 

Design efficiency has become an increasingly important character is t ic  
i n  the helicopter industry as manufacturers s t r i v e  t o  improve a i r c r a f t  
performance and operators s t r i v e  t o  hold operating costs down. 
in te rna l  noise requirements become more stringent fo r  increased passenger 
comfort, soundproofing weight becomes an important issue. k designer 
needs t o  know the  acoustic environment i n  a bare a i r c ra f t  cabin t o  be 
able t o  define an effect ive soundproofing configuration. 
waste of valuable a i r c r a f t  weight-empty t o  carry many pounds of sound- 
proofing i n  areas where they are  not needed. 
serious e r ror  i f  an in t e r io r  failed t o  meet the design requirement 
because not enough soundproofing was used. 
in te rna l  noise prediction method that can provide the dis t r ibut ion and 
spectral  content of the cabin noise signature. The goal is  t o  subst i tute  
an analytic evaluation of an in t e r io r  configuration in to  the noise model 
t o  determine the  most e f f i c i en t  placement of treatment weight. 

As cabin 

It would be a 

But it would also be a 

What i s  needed i s  a pract ical ,  

33 

. There are many challenges i n  attempting t o  formulate and predict  
helicopter in te rna l  noise. 
produced by several, widely varying source types. For example, rotor 
noise is  generated by the  aerodynamic forces of lift and drag. 

The noise observed i n  a helicopter cabin i s  

Trans- 
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mission noise i s  generated by the  mechanical forces transmitted i n  gear 
tooth contact.  Further complicating t h e  formulation, a given source's 
noise may be propagated v i a  d i f fe ren t  means: airborne,  structure-borne, 
o r  both. 

The noise sources t h a t ,  i n  general, make a s igni f icant  contribution 
t o  cabin levels are t h e  main transmission, engines, ro tors ,  and boundary 
layer .  Transmission noise i s  composed of d i scre te  tones at gear c lash 
frequencies and t h e i r  harmonics and i s  propagated as both airborne and 
structure-borne noise. It dominates cabin noise f o r  several  reasons. 
F i r s t ,  t h e  transmission i s  coupled t o  t h e  l i g h t l y  damped airframe which 
acts as an e f f i c i e n t  radiator .  Second, primary clash frequencies are 
high and of ten f a l l  wi th in . the  ear's range of peak sens i t i v i ty :  500-2000 
Ha. F ina l ly ,  d i sc re t e  tones are more annoying than broadband noise of 
t h e  same l eve l .  Engine noise is  broadband, peaking at 250-500 Hz, except 
f o r  t h e  compressor shaf t  ro ta t iona l  and i n l e t  vane passage tones. Its 
propagation i s  both airborne and structure-borne and it contributes t o  
t h e  cabin noise  spectrum i n  p rac t i ca l ly  every octave. Rotor noise har- 
monics are found at t h e  lowest octaves. Their propagation i s  airborne, 
but because soundproofing i s  not very e f f ec t ive  at these frequencies , 
ro to r  harmonics are d i f f i c u l t  t o  keep out of the cabin. Boundary layer  
noise i s  broadband and high i n  frequency. For t h i s  reason it is  r e l a t ive ly  
easy t o  treat .  

An i n t e r n a l  noise prediction method must, therefore ,  be many-faceted. 
It must in tegra te  ideas from such diverse areas as aerodynamic and 
structure-borne noise,  radiat ion and propagation e f f ec t s ,  material 
transmission l o s s  and absorption, and ro tor ,  engine, and gear noise 
source s t rength prediction. Even though t h e  method must represent a 
complex physical system, it must a l so  be simple enough t o  apply within 
r e a l i s t i c  cons t ra in ts  of t i m e  and e f fo r t .  Ideal ly ,  it should be suff ic-  
i e n t l y  f l ex ib l e  t o  be useful  i n  preliminary design as w e l l  as i n  the  
d e t a i l  design s tage with spec i f ic  (possible  measured) data. 

The method discussed i n  t h i s  paper has those capabi l i t i es .  While a 
more de ta i led  development and exercise of t h i s  method i s  presented i n  
Reference 1, t h i s  paper w i l l  serve as a guide t o  i t s  development and use. 
The user can assemble t h e  noise model i n  whatever de ta i l  desired. When 
spec i f ic  t es t  data i s  not avai lable  f o r  individual noise sources, t he  
generalized predict ion methods w i l l  provide a reasonable guide. These 
methods predict  ro to r ,  engine, gear, and boundary layer  noise source 
s t rengths  over a wide range of hel icopter  operating parameters. A means 
of estimating panel transmission loss  based on the  barrier's m a s s ,  s t iff-  
ness, and physical dimensions i s  a l so  included t o  supplement t h e  user's 
data base. 

The approach of t h e  method i s  t o  follow t h e  propagation of each 
noise source t o  t h e  observer 's  location. 
one path so each must be dealt with separately.  
intervening barriers and cav i t i e s  are considered and applied t o  t h e  sound 
transmitted through each. i s  allows one t o  account for the  room 
acoustics and t o  show t h e  relative importance of t h e  d i r ec t  radiated 

'h i s  may occur v i a  more than 
The propert ies  of a l l  
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i-ersus the  reverberant f i e lds .  The frequency breakdown uses the  nine 
?referred octave bands from 31.5 Hz t o  8000 Hz (Reference 2) .  
%i rc ra f t  noise specifications a re  i n  octave for  
we the  three. SIL or Speech Interference Level 
2000 Hz. These frequencies tend t o  govern an 
ioise environment. Not only i s  human hearing 
mt the voice also appears primarily within t 

Most 

The method considers two forms of sound propagation, a 
structure-borne, Conventional room acoustics i s  used t o  represent air- 
borne propagation. For t he  frequencies and cabin dimensions involved, 
this  approach i s  reasonable. While cabin standing waves cannot be pre- 
dicted with t h i s  technique, it i s  assumed tha t  noise measurements are  
spacially averaged. Only at  the lower frequencies, where wavelength and 
cabin dimensions a re  of the  same order, do the assumptions begin t o  break 
down. The propagation and radiation of structure-borne noise i s  a d i f f i -  
c u l t  process t o  analyze i n  an exact form. So many unknowns ex is t  i n  
describing the  properties (mass, s t i f fness ,  and damping) of complex 
structures tha t  a very simplified approach has t o  be employed t o  obtain a 
workable solution. Some gross assumptions are made concerning the block- 
age of structure-borne noise at turns,  s t ruc tura l  breaks, and at heavy 
frames. These assumptions serve t o  define the extent and shape of the 
radiating areas. 
within the  areas bounded by s t ruc tura l  breaks and equally well at a l l  
frequencies. While t h i s  i s  not en t i re ly  accurate, present knowledge of 
the subject i s  insuff ic ient  t o  permit a more specif ic  analysis. It w i l l  
remain for' fur ther  work i n  the areas of s t ruc tura l  impedance and radiation 
efficiency t o  formulate an exact solution of the  program for  a rb i t ra ry  
structures.  

Skin panels and frames are assumed t o  radiate  uniformly 

SYMBOLS 

*b 

h 

2 rotor  t o t a l  blade area,  f t  

C , Co , C1 ¶.  . 
Cavg average directivity/distance factor  

directivity/distance factor 

C 

f S 

f O  

speed of sound (sea l eve l  s t d ) ,  340 m/sec (1116 f t / s e c ) ;  
blade chord, ft 

rotor  broadband noise peak frequency, Hertz 

boundary layer peak frequency 

h progected blade th:ckness, f t  

'3 'obs 
acoustic intensi ty  w a t t s / m  2 

reference intensi ty  10-13 w a t t s / m 2  IO 
597 



L 

m 

radiat ing surface dimension, ft 

harmonic number 

N number of cavi t ies  

9 dynamic pressure 

R ,  Ro,  R1,.. . room constant; distance t o  observer, ft 

1 r 

r2 

ST 

near-field distance 

f ar-f i e l d  distance 

t o t a l  area 

source area 
sS 

S, So, S1,. . . 
T th rus t  , pounds 

t blade thickness,  f t  

ba r r i e r  area 

urn f r ee  stream velocity 

ro tor  t i p  speed, f t / s e c  vt 

wT 

w, w i  acoustic power, w a t t s  

t o t a l  acoustic power, w a t t s  

X distance from leading edge 

a absorption coefficient 
- 
a average room absorption coeff ic ient  

n non-dimensional f luctuat ing pressure leve ls  

6 boundary layer  moment& thickness 

6" boundary layer  displacement thickness 

E % leakage 

0 blade l i nea r  equivalent t w i s t ;  degrees 

P ,  P i  

c SUm 

density of air ,  i n t ens i ty  r a t i o  
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radiating surface area r a t i o  

To convert from 

ft 

f t 2  

horsepower 

lbm 

l b  f 

l b f / f t 2  

slugs / f t  3 

transmission coefficient 

effect ive transmission coefficient 

radiat ing surface power r a t i o  

CONVERSION FACTORS 

To 

m 

m 2 

kW 

Multiply by 

0.3048 

0.0929 

0 7457 

0.4536 

4.448 

47.88 
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FORMULATION OF THE MODEL 

Approach 

There are  two types of acoustic processes t h a t  must be expresged 
mathematically t o  predict the  in te rna l  noise environment. 
the  airborne propagation of sound through several cavi t ies  and structure- 
borne propagation over large radiat ing surfaces, shown i n  Figure 1. 
These two propagation modes are  the  paths by which sound e n e r a  reaches 
the  cabin. 

They include 

It i s  convenient t o  break the  cabin down in to  elementary radiat ing 
surfaces. The d i rec t iv i ty  character is t ics  of these simple radiators 
determine the  d i rec t  sound f i e l d  for  a given observer position. The 
standard equations of room acoustics are used t o  es tabl ish the  reverberant 
f ie ld .  The two f i e lds  a re  combined t o  form the  complete in te rna l  noise 
environment . 

599 



Propagation and Radiation Formulas 

Consider an arbi t rary surface of some area S t o  be radiating noise 
The t o t a l  energy emitted by the  p la te  i s  W (watts). (Figure 2 ) .  

sound power l eve l  (PWL) of t h i s  radiating p la te  r e l a t ive  t o  a standard 
source radiating 10-12 w a t t s  (wO) i s  

The 

(1) PWL = 10 log w/(w,) 
The in tens i ty  I (watts/m2) on the surface of t h i s  p la te  (outgoing 

energy per uni t  area) i s  related t o  the p la te ' s  area, S. Since 

W = I . S  or I = w/s 

then the Intensi ty  Level ( I L )  i s  

W I L  = 10 Log - 
wO 

1 
S 
- = 10 Log w/wo - 10 Log s 

o r  

(2 )  I L  = PWL - 10 Log s 
The sound pressure leve l  (SPL) actual ly  observed a t  an arbi t rary 

point i n  a room i s  given by the sum of both the reverberant and direct  
radiated components. Different types of acoustic sources radiate  differ-  
ent ly  depending on the  source type and i t s  extent i n  space. The point 
source radiates i t s  power symmetrically about any sphere with tha t  source 
at  i t s  center. Because of spherical spreading, the SPL observed drops 
off  6 dB per doubling of: distance from the source. 
l i n e  or surface sources t h i s  decay w i t h  distance i s  not the same. The 
works of E. 2. Rathe (Reference 3)  and R. B. Tatge (Reference 4)  deal 
expl ic i t ly  with t h i s  subject. Close t o  a l i n e  source, SPL drops off a t  a 
slow r a t e ,  -3dB/doubling. 
greater than the  source length the  roll-off increases t o  the rate of a 
point source, -6dB/doubling. 
the roll-off i n  observed sound pressure leve l  w i t h  distance for  one 
c i rcu lar  and several rectangular sources of different  aspect ra t ios .  
They are  non-dimensionalized with respect t o  distance i n  terms of the 
source dimensions and assume tha t  the observer i s  e i the r  over the center 
of the  source o r  i n  i t s  plane. 

However, for  f i n i t e  

A s  the  distance t o  the observer becomes much 

Tatge developed several curves which plot 

Recalling equation (2), it would be convenient t o  determine the 
observed SPL j u s t  by adding a correction factor.  This factor would 
account fo r  source shape and the distance and orientation of the observer 
t o  it. Rewriting (2 ) :  

( 3 )  SPL = PWL - 10 log s + Correction 

On the  radiating surface, the  term would account for  pressure doubling. 
Far away fromthe source it would show a 6 dB reduction w i t h  each doubling 
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Df distance. This i s  exactly what Tatge does i n  h i s  work. The curves 
are derived f o r  radiatYon normal t o  a surface's  center or in-plane from 
the mid-point of one edge (See Figure 3). 
dB. These curves were replot ted i n  terms of t h e i r  antilogs: 

Tatge's curves a re  i n  terms of 

Corr . / l o  c = 10 

Equation (3)  i s  then redefined as 

(3A) SPL = PWL - 10 Log S + 10 Log C 

Figures 3-7 p lo t  C f o r  rectangles of 1:1, 2:1, 4:1 and 8:1 aspect r a t i o s  
and f o r  a c i rcu lar  disk,  respectively. Distance i s  non-dimensionalized 
i n  terms of the  source's long dimension. One may interpolate  between 
curves t o  f ind  values of C fo r  intermediate aspect r a t io s .  When the  
observer point i s  not d i r ec t ly  over the  center of the  radiat ing surface, 
t he  distance from the  point t o  the source center may be used as an approx- 
imation. Equation 3A formulates the d i rec t  f i e l d  due t o  elementary 
radiat ing surfaces and may be used with Figures 3-7 for  a given source 
type and observer location. 

When describing how sound i s  attenuated i n  passing through a ba r r i e r ,  
we speak of t he  b a r r i e r ' s  transmission loss  (TL) .  Transmission loss 
r e fe r s  t o  t h a t  portion of the  incident pressure t h a t  i s  dissipated or 
reflected.  The w a l l ' s  sound transmission l o s s  (STL) can be expressed i n  
terms of a transmission coeff ic ient  T: 

1 STL = 10  Log 7 ( 4 )  

The transmission coeff ic ient  T i s  r ea l ly  the  fract ion of the incident 
pressure t h a t  i s  transmitted through the bar r ie r :  

( S T L / ~ O  ) ( 5 )  T = 10- 

AS T goes t o  1, a l l  of the  pressure i s  transmitted and STL goes t o  0. 

The effect ive transmission loss  (or t he  effect ive t ransmissibi l i ty  T e f f )  
of a ba r r i e r  made up of more than one section l i e s  somewhere between the  TL of 
each ind iv idud  section. 
whose T'S are given by,Tl, ' c z . . .  T ~ ,  t he  net ETL i s  given by 

For a ba r r i e r  of t o t a l  area S ,  composed of N sections 

ETL = 10 Log S = 10 Log U T e f f  
s T +s T +... s T 1 1  2 2  N N  

This re la t ion  can be used t o  model the presence of an acoustic leak i n  
the  panel. Consider a hole (where T = 1) of some fract ion E of a panel's 
t o t a l  area. Asstune a uniform transmission loss  over the  r e s t  of the  area 
(T~). Then the  e f fec t ive  transmission loss  of the e n t i r e  panel i s  given 
by 

= (&€)TI + E e f f  T 
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Take E = .01 (1% leakage) as an example. The quantity 1--E is  .99 s 
1.0; then 

= T + .01 
T e f f  1 

Note t h a t  f o r  a high transmission loss panel, T i s  very s m a l l .  
l imi t ing  value of T 
20 dB. 
of the  t o t a l  area,  t he  net ETL of the  panel W i l l  be dramatically reduced. 
Figure 8 i l l u s t r a t e s  t he  importance of leakage t o  panel transmission lo s s  
performance. It p lo ts  the actual  TL obtained from a panel designed for  a 
spec i f ic  value but suffering from leakage e f fec ts .  From the  figure,  it 
i s  seen t h a t  a panel designed for  40 dB attenuation at a spec i f ic  octave 
w i l l  y ie ld  only 20 dB i n  the  presence of 1% leakage. 
i s  usually designed f o r  0.1% leakage; 

The 
i s  .01, meaning t h a t  the  maximum E;TL possible is  eff Should the  area of the  acoustic leak be anything la rger  than .I% 

An e f f i c i en t  i n t e r i o r  

The sound f i e l d  inside an a i r c r a f t  cabin or any other cavi$y i s  
composed of both d i rec t  radiated and reverberant components. Direct 
radiation, as the  name implies, involves only one path between the  source 
and receiver. Reverberation, on the other hand, involves multiple paths 
because of re f lec t ions  from the cavity w a l l s .  The a b i l i t y  of a w a l l  t o  
absorb sound i s  the  same qual i ty  tha t  dist inguishes an acoustically 
"live" (reverberant) room from an acoust ical ly  "dead" one. The absorption 
coeff ic ient  a represents t h a t  f rac t ion  of the  incident pressure t h a t  i s  
diss ipated when the  w a l l  would otherwise be a perfect re f lec tor .  When 
very l i t t l e  energy is dissipated at  each re f lec t ion ,  the  sound pressure 
i n  the  cavity due t o  a source can bui ld  up t o  many times the corresponding 
free-field 'value.  
10 dB or more. In t h i s  case, it i s  highly advantageous t o  add absorption. 
To reduce the  in te rna l  leve ls  by 10 dB through blockage (transmission 
lo s s )  might require adding several  hundred pounds of i n t e r i o r  weight. 
The addition of absorptive material  in to  the  cabin w i l l  reduce the  
reverberant sound f i e l d  by diss ipat ion at each ref lect ion.  To achieve 
t h e  same reduction using absorption, only a small weight penalty i s  
required since acoustically absorbant materials such as f iberglass  
ba t t ing  and polyurethane foams are  extremely l i gh t .  

In a highly re f lec t ive  room, these leve ls  can grow by 

The acoustic livenejjs of a room depends upon the room constant R. 
It i s  i n  uni t s  of length and represents the area of perfect ly  absorbent 
material present i n  the  room. Embelton (Reference 5 - Chapter 9 )  derives 
R as follows: The absorption coefficient of a w a l l  at one octave i s  
given by a. I f  t he  t o t a l  surface area of a cavity i s  given by 

i=l 
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ien the  cavity 's  average absorption coefficient is  defined as 

N 

nd, subsequently, t he  room constant becomes 

The Equations of Multibarrier Acoustics 

We now have a l l  the  too ls  required t o  derive the equations governing 
Figure 

The formula tha t  
he propagation of sound through an a rb i t ra ry  number of cavities.  

xpresses t h e  impinging sound pressure leve l  SPL 
erms of the  source power l eve l  P a s ,  source area S 
s d  d i rec t iv i ty /  distance term Co i s  given by 

shows a source cavity (0) and an observer cavity (1). 
on the out le t  w a l l  i n  

room constant Ro, 0 
S '  

( 9 )  SPLo = PwLs - 10 Log Ss + 10 Log (Co + 4/RO)  

:quation ( 9 )  repeats quantitatively that the SPL observed at an arbi t rary 
koint i n  a cavity i s  the  sum of both the  d i rec t ly  radiated and reverberant 
:omponents. 

The sound pressure l eve l  transferred through barrier 0 in to  cavity 1 
;PLol is given by the  impinging sound pressure leve l  SPL minus the  
Iarrier's sound transmission loss STL or 0 

0' 

(10) SPLol = SPLo - STLO 

Recall STLO i s  given by 10 Log l / ~ ~  i n  equation ( 4 ) .  
entering cavity 1 (PWL 

The power leve l  
) i s  the in tens i ty  times the barrier area, o r  01 

(11) PWLOl = SPLOl + 10 Log so 

(1lA) PWLol = PWLs - 10 Log Ss + 10 Log (Co + 4/RJ- 10 Log l / T o  

+ 10 Log so 
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i s  now t h e  sound power source i n  cavi ty  1. Again applying Equation pwLol ( 9 ) ,  t h e  SPL impinging on the observer i n  cavi ty  1 (SPL ) i s  given by 1 
(12) SPLl = PWLol - 10 Log So + 10 Log ( C  + 4/R1) 1 

By subs t i tu t ing  equation(1l.A) SPL may be expressed i n  terms of the 
o r ig ina l  source power l e v e l  1 

(13) SPLl = PWLs - 1 0  Log Ss + 10 Log (Co + 4 / R O )  

+ 10 Log T 0 + 10 Log (C1 + 4/R1) 

A s  more cav i t i e s  are added, t h e  terms can be grouped together.  For N 
c a v i t i e s ,  t h e  sound pressure l eve l  i n  cavi ty  N i s  given by 

(14)  SPLN = PWLs - 10 Log Ss + 1 0  Log [ ( C o  + 4/RO)(C1 + 4/R1) 

. (cN + 4 / ~ ~ ) ]  

It i s  in t e re s t ing  t o  consider some l imi t ing  cases. A s  STL+O, ~+l. 
If there  were no b a r r i e r s ,  t h e  product of a l l  the  T ' S  would be 1. Since 
Log(1) = 0,  there  would be zero barrier attenuation. 
e i t h e r  more transparent or absorptive, R grows l a rge r  and the  component 
due t o  reverberant build-up disappears. 
of t h e  terms C and 4 / R  w i l l  show whethen d i r ec t  radiat ion or reverberation 
dominates t h e  sound f i e ld .  The proper treatment fo r  noise reduction 
becomes apparent. Adding absorption w i l l  reduce t h e  reverberant component 
only, while adding transmission loss w i l l  reduce the  d i r ec t  radiation. 
This points  out t h e  need f o r  a balanced treatment, i n  t h a t  over-treating 
one component does nothing for the  other.  Should the  source impinging on 
S be i n  t h e  open a i r ,  such as with ro tor  noise, SPL reduces t o  

A s  t he  w a l l s  become 

Comparing t h e  r e l a t ive  magnitude 

0 0 

(15)  SPLo = PWLs - 10 Log Ss + 10 Log Co 

Hence, when the re  i s  no source cavity and t h e  sound pressure l eve l  impinging 
on w a l l  S 
r igh t  hang side of  equation (15 )  can be replaced simply with SPLo. 

i s  already known, t h e  terms i n  equation ( 1 4 )  t h a t  are on the  

S t ruc tura l  Radiation 

Radiation by s t r u c t u r a l  members i s  d i f f i c u l t  t o  predict  without 
measured values of s t r u c t u r a l  impedance o r  mobility. 
l i n e  (frames, s t r i n g e r s ) ,  and surface (skin)  sources Contribute t o  t h e  
t o t a l  p ic ture  of s t r u c t u r a l  radiation. 
each component, a more s t a t i s t i c a l  approach should be used. 
faces are assumed t o  radiate instead of d i scre te  par t s .  The power fed 

Point (attachments 

Rather than attempt t o  i d e n t i 0  
Whole sur- 
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ito t he  cabin by the  source i s  d is t r ibu ted  among the  individual radiat ing 
vfaces  The resu l t ing  in tens i ty  d is t r ibu t ion  on each surface (power/unit 
*ea) i s  assumed t o  be uniform. 

When more than one surface within a cavity radiates ,  the  expression 
)r the  SPL at the observer can become very complex. Some simplification 
in be accomplished by expressing the  radiat ion in tens i ty  of the  surfaces 
I terms of t h a t  of one surface. The t o t a l  in tens i ty  observed at one 
x i t i o n  i s  the  sum of t h e  in t ens i t i e s  propagated from each surface. 
nere a re  N surfaces of area S 

!l 

If ... S radiat ing power W 13 W2’ - 0 .  1’ s23 N then t h e  t o t a l  i n t ens i ty  observed i s  

C2, ... C here C1, represent t h e  d i r ec t iv i ty  fac tors  f o r  the  radiat ing N 
urfaces. Define a radiat ion in tens i ty  r a t i o  pi = -. wl/sl Equation (16) 
an be rewrit ten w i  /Si 

I 

hen the  l e v e l  i s  given by 

(18) SPLobs = PWLl - 10 Log S1 + 1 0  Log [C1 + C2/p2 +. . .+ CN/pN] 

The r a t i o  p i  i s  r ea l ly  the r a t i o  of t he  in tens i ty  of w a l l  1 t o  the 
.ntensity of w a l l  i. If w e  assume t h a t  the  in tens i ty  l eve l  drops 6 dB at 
1 corner or in te rsec t ion  with a heavy frame, as i l l u s t r a t e d  i n  Reference 
i ,  Chapter 11, we are saying tha t  the in tens i ty  i s  cut i n  half .  In  other 
rords, the  radiat ion r a t i o  l / p i  equals 1/2. This great ly  simplifies the  
?quation fo r  t h e  t o t a l  in tens i ty  observed. A generalized expression for  
s t ructural  radiat ion t h a t  includes panel transmission loss and room 
kcoustics follows : 

(19) SPLobs = PwLl - 10 Log s1 

T ~ ( C ~  + 4 / R )  + 4 / R )  + N + ... + 
p2 PN 
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SOURCE STRENGTH PREDICTION OF MAJOR COMPONENTS 

A guide t o  t h e  predict ion of noise generated by t h e  major hel icopter  
noise sources i s  presented. Trends are shown over a wide range of oper- 
a t ing  parameters. Specif ic  examples are given based on t h e  predict ion of 
noise i n  t h e  NASA/Sikorsky Civ i l  Helicopter Research Aircraf t  (CHRA),  a 
modified CH-53 A/D. 
i n  t h e  15 900 kg (35,000 I b )  weight c l a s s ,  powered by two G.E. T-64 engines. 

The CHRA i s  a s i x  bladed, s ing le  main ro tor  hel icopter  

Transmission Noise 

The prediction of gear noise remains the  most challenging of a l l  t h e  
aspects of hel icopter  i n t e rna l  noise. 
(Reference 6 )  has demonstrated consistent t rends with such var iables  as 
horsepower, spec i f ic  tooth load, pi tch- l ine veloci ty ,  manufacturing 
tolerances,  and gear type. Other s tud ies  (Reference 7 )  attempt t o  orre- 
l a te  with t h e  noise f i e l d  surrounding the  gearbox casing. 
other f i n i t e  element models are j u s t  now being used at acoustic frequencies 
t o  ana ly t ica l ly  predict  frequency response and acoustic radiat ion (Reference 
8) .  
stopped a t  t h e  gearbox casing fee t :  
However, t h e  casing i s  mounted t o  an a rb i t r a ry  airframe which i s  driven 
by t h e  casing 's  foot motions: a problem i n  structure-borne noise. 
Differing airframe geometries, casing designs, and gearbox mounting 
techniques add a new s e t  of var iables  t o  t h e  noise problem. Figure 10 
shows t h e  t r end  i n  bare cabin gear c lash tones with a var ie ty  of gearbox 
mounting types.  The curves show t h e  influence of t h e  propagation path 
from t h e  primary gear c lash source t o  t h e  rad ia t ing  airframe. 
t h e  data can be a t t r i bu ted  t o  l o c a l  (but s ign i f i can t )  frame resonances. 

Recent work by Grande e t  a1 

NASTRAMd and 

It would be a d i f f i c u l t  enough problem i f  t h e  noise rad ia t ion  
a problem i n  d i r ec t  radiat ion.  

Sca t te r  i n  

How, then, can t h e  designer determine t h e  cabin noise leve ls  generated 
by t h e  main transmission i n  an a rb i t r a ry  helicopter? Some assumptions 
must be made about t h e  propagation of structure-borne noise along t h e  
airframe. When driven by a gearbox foot ,  a heavy s t ruc ture  such as a 
forging w i l l  tend t o  radiate along i t s  e n t i r e  length. Intersect ions 
between heavy s t ruc ture  and l i g h t  s t ruc ture  (skins and s t r inge r s )  tend t o  
r e j e c t  structure-borne noise because of t h e  impedance mis-match. 

Beraneck considers t h e  problem of t h e  attenuation of structure-borne 
noise a t  corners and in te rsec t ions  (Reference 5,  Chapter 11). H e  assumes 
t h a t ,  with t h e  same s t r u c t u r a l  propert ies  on e i t h e r  side of a 90 
a 3 dB at tenuat ion i n  power w i l l  be observed. Similarly,  crossing over a 
heavy frame i s  assumed t o  give a 3 dB reduction. 
analyst  can examine t h e  a i r c r a f t  s t ruc ture  and es tab l i sh  t h e  rad ia t ing  
areas. 

0 t u rn ,  

On t h i s  basis, t he  

As  an example, f igure 11 i l l u s t r a t e s  t he  rad ia t ing  areas used t o  
model t h e  CHRA structure-borne noise induced by the  main transmission. 
The model resu l ted  from a review of t h e  CHRA NASTRAN work performed by M. 
W. Dean (Reference 9 ) .  The primary area of radiat ion i s  the  ce i l ing  from 
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t a t ion  282 t o  s$ation 442. 
erves t o  carry t h e  landing gear loads. 
a jor  s t ruc ture  and ca r r i e s  t h e  engine support loads. Beyond these 
t a t ions ,  a 3 dB reduction i n  in t ens i ty  is  assumed. These areas are 
ounded forward by t h e  cockpit bulkhead (STA 162) and af t  by t h e  ta i lcone  
ntersect ion (STA 522). Radiation from t h e  side 
xtend from t h e  ce i l i ng  (waterline 191) down t o  on 
t waterline 132. The presence of t h e  f u  t i n g  
t ruc tu re  within t h e  sponson i s  assumed t 
u f f i c i en t ly  t o  eliminate i t s  rad ia t ion  of structure-borne noise. 

The frame at STA 442 i s  a major forging and 
The frame at STA 282 i s  a l so  a 

In t h e  absence of a detailed predict ion scheme, some t rends can be 
eveloped based on measurements taken i n  untreated CH-53 a i r c r a f t .  
igure  12 p l o t s  t h e  observed r e l a t ion  between the  t o t a l  radiated acoustic 
ower within the  cabin at each gear c lash  fundamental and t h e  consumed 
P. This p lo t  was derived from typ ica l  CH-53 data measured at Sikorsky. 
'here a re  separate l i n e s  fo r  t h e  three  major gear types i n  the  main 
ransmission. For t h e  CH-53D, t h e  phased 2nd stage planetary gears 
;enerate near ly  15 dB less acoustic power than t h e  unphased f irst  s tage 
danetar ies .  The main bevel i s  another 5 dB down from t h e  second s tage 
) lanet  ary leve l .  

A s  discussed i n  t h e  sect ion on s t r u c t u r a l  rad ia t ion ,  t he  observed 
Iound pressure l eve l s  can be determined from the  rad ia t ion  in t ens i ty  of 
,he dominant surface (PWL - 10 Log S ) ,  t h e  room constant R and 1 1, l i rec t iv i ty /d is tance  fac tors  C (equa-kion 22). The value of t he  sound 
)ewer l e v e l  radiated by t h e  dominant overhead region can be expressed i n  
,erms of t h e  t o t a l  power (From Figure 11) and the  area r a t i o s  of t he  
:econdary regions. If t h e  t o t a l  power radiated by t h e  s t ruc ture  i s  given 
)Y 

i 

(20)  WT = w + w +...+ WN 
1 2  

md i f  t he  in t ens i ty  r a t i o  between t h e  dominant (1) and secondary surfaces 
:i) i s  assumed t o  be 

'i si 1 
w1 s1 
- = - -  ir 

;hen t h e  t o t a l  power radiated 
35 

(21) WT = 

znd 

122)  PWLT 

'i = -  
2 

i n t o  t h e  cabin by N surfaces can be expressed 

'N = PwLl + 10 Log (1 + "2 + . * .  + -> 
2 2 
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Final ly ,  t h e  sound power l e v e l  radiated by the  dominant area (Pa1)  i n  
terms of t h e  t o t a l  power from Figure 12 (PWLT) is  8 

This equation expresses t h e  acou d by t h e  dominant 
ce i l i ng  area i n  terms of t he  t o t a l  ac i a t e d  with the  
gearbox. The gear noise octave spect ed by calculat ing 
t h e  harmonic frequencies of each gear and applying t h e  generalized harmonic 
spectrum of Figure 13. This spectrum w a s  developed from the  findings of 
Grande, e t  al. i n  Reference 6 and agrees w e l l  with observed CH-53D data. 
Once t h e  harmonic frequencies and l eve l s  are determined, the  t o t a l  octave 
l eve l s  can be summed according t o  t h e  bands in to  which the  harmonics 
fall .  

For example, t h e  C H - 5 3  consumes 3.7 Mw (5000 Kp) (approximately) i n  
both 150 knot c ru ise  and hover at sea level,  operating near 15 900 kg 
(35 000 l b )  gross weight. Figure 12 ind ica tes  t h a t  t h e  acoust ic  power 
radiated at t h e  fundamental gear c lash frequencies a re  134, 118.5, and 
115 dB f o r  t h e  f irst  s tage p lane tar ies ,  second s tage p lane tar ies ,  and main 
bevel gear ,  respectively.  
f irst  s tage gear clash frequency of 527 Hz, and bevel c lash frequency 
of 2710 Hz. 

Gear noise harmonics occur at multiples of t h e  

~ 

t h e  octave spectrum: 

TOTAL ACOUSTIC POWER - 

Octave Level - dB 
Gear 500 Hz 1000 Hz 2000 Hz 

PWLT 

4000 Hz 8000 Hz 

The following table of power l eve l s  summarizes t h e  construction of 

2nd P1. 118.5 118.5 103.5 103.5 93.5 

Bevel -- -- 115 5 115 5 100.5 
100.5 

SWn 118.5 134.5 134.5 123.3 113.0 

The above table refers t o  t h e  t o t a l  structure-borne acoustic power 
Only a small radiated i n  each octave because of t he  main transmission. 

percentage of t h i s  t o t a l  power i s  radiated by t h e  transmission casing 
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t s e l f  due t o  i t s  r e l a t i v e l y  s m a l l  exposed area and t h e  f ac t  t h a t  it i s  
mered by a rubber d r ip  pan. Most of it i s  radiated by t h e  cabin ce i l ing ,  
idewalls, and frame m e m b e r s .  
etermine PWL Subs t i tu te  PWL i n t o  equation (19) t o  determine cabin 
o i s e  leve ls .  

Subs t i tu te  PWLT i n t o  equation ( 2 3 )  t o  

1' 1 

Engine Noise 

A review of turboshaft  engine noise radiated by i n l e t ,  casing, and 
Figure 1 4  shows t h e  xhaust reveals  consis tent  t rends with horsepower. 

ound power l e v e l  rad ia ted  by severa l  types of turboshaft  engines over a 
ide range of horsepower. 
dd i t iona l  Sikorsky data ,  follows t h e  r e l a t i o n  PWL = 10 Log(KP) -t 108 dB. 
o s t  of t h e  noise  i s  radiated by t h e  casing and exhaust except when t h e  
ngine blade passage frequency fa l ls  within the  8000 Hz octave. Then 
n l e t  noise w i l l  dominate t h e  uppermost octave. With the  current CH- 
3A/D engine i n s t a l l a t i o n ,  i n l e t  noise i s  not heard i n  the  passenger 
abin. 
HRA cabin. By overlaying t h e  spectra  of t h e  engines onto one p lo t  
ormalized by HP, a close correspondence i n  shape w a s  noted. 
ive ,  generalized spec t r a l  shape w a s  averaged through the  upper l i m i t  of 
he data f o r  casing, exhaust, and i n l e t  power levels .  These a re  p lo t t ed  
n Figures 15, 16, and 17. By adding 10 Log (HP) t o  these non-dimension- 
. l ized spectra ,  a close estimate of t h e  engine octave power leve ls  can be 
Ibtained. Note t h a t  t h e  T-64 i s  quieter  i n  t h e  lower octaves than the  
;eneralized spectrum. To ca lcu la te  t h e  engine noise radiated i n t o  the  
. i r c r a f t  cabin, t h e  rad ia t ing  areas must be determined. The f i rewal l  
'ransmits t h e  casing noise while t h e  a i r c r a f t  skin aft of t he  engine 
lacelle t ransmits  t h e  exhaust noise. The calculat ion procedure fo r  
!ngine casing noise i s  demonstrated i n  t h e  sample problem la ter  i n  the 
)aper. Note t h a t  t he  
.evels f a l l  o f f  sharply i n  t h e  near-field:  15  dB down at a distance of 
,wo exhaust diameters. 

This char t ,  derived from Reference 6 and 

Therefore? i n l e t  noise w a s  not considered a major source i n  the  

A conserva- 

Exhaust noise contours a re  p lo t ted  i n  Figure 18. 

Rotor Noise 

Few methods e x i s t  f o r  t h e  predict ion of near-field ro tor  noise. 
h ther land  and Brown (Reference 10)  provide an excel lent  technique f o r  
letermining blade passage harmonic l eve l s  within a radius o f  one ro to r  
tiameter. 
nain and t a i l  ro to r  noise. The method i s  adequately explained i n  Reference 
LO and w i l l  not be reproduced here. What i s  required i s  a means of 
?redict ing near-field ro to r  broadband noise i n  terms of octave bands. Many 
zomputer programs e x i s t  f o r  t h e  predict ion of ro to r  noise i n  t h e  far- 
Field. The method employed at Sikorsky Aircraf t  i s  based on the  Lowson 
wd Ollerhead ro to r  ro t a t iona l  noise program (Reference 11) modified by 
2 .  L. Munch t o  a l so  predict  ro to r  broadband noise (Reference 12) .  The 
nethod has s ince been updated t o  include t h e  e f f ec t s  of blade t w i s t  based 
Dn extensive whirlstand t e s t ing .  
nethod was  prepared by W. Bausch of Sikorsky Aircraf t  and w a s  included 
in a comprehensive V/STOL noise  predict ion report  authored by B. Magliozzi 

It has been applied successfully t o  t h e  predict ion of both 

A graphical representation of t h i s  
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(Reference 13). 
both ro to r  ro t a t iona l  and broadband noise i n  t h e  f a r - f i e ld  and correct  it 
back t o  near-field leve ls .  
fur ther  simplify t h e  equations. 

The approach taken w i l l  be t o  use t h i s  method t o  c a l c d a t e  

The observer pos i t ion  w i l l  be on-axis t o  

Broadband Noise 

Rotor broadband noise  i s  a function of t i p  speed (V ), t h rus t  ( T ) ,  
t o t a l  blade a rea  (%) , blade l i nea r  equivalent t w i s t  ( 0 f , and distance 
t o  t h e  observer ( R ) .  On t h e  ro tor  axis ,  t h i s  r e l a t ion  i s  given by 

sP$ = 20 Log v 20 Log T - 10 Log Ab - .56 ( 0 ) b t 
- 20 Log R + 21.9 

This represents  t h e  overa l l  ro tor  broadband noise leve l .  To obtain the  
octave l eve l s ,  a generalized spectrum shape based on the  ro tor  Strouhal 
frequency i s  used. Rotor broadband noise has long been associated with 
t h e  unsteady vortex shedding at t h e  a i r f o i l  t r a i l i n g  edge. The exact 
mechanism i s  not c l ea r  but a scal ing with Reynolds number i s  observed, 
hence t h e  associat ion with vortex shedding. The frequency of peak broad- 
band noise ( f  ) i s  well  predicted i n  terms of blade chord 
( t )  and ve loc i ty  S 

f s  = .28 v 

hl 

.7 

where h, = c s i n  o + t cos o 

and V and 0 represent t he  veloci ty  and blade angle of 
70% r d i u s  , r6gpectively. 

- 7  - 7  

( c ) ,  thickness 

a t tack at t h e  

octave center 
it equal t o  250 

It i s  convenient t o  set t h e  peak frequency t o  the  closest  
frequency. For example, i f  f i s  found t o  be 225 Hz, set 
Hz. 
octave l eve l s ,  SPLocT, are determined by adding the  corresponding band 
l e v e l  SPLBL t o  t h e  overa l l  broadband l e v e l ,  SPLOA 

Using t h e  generalized oczave spectrum of  Figure 19, t h e  individual 

SPLOCT = SPLOA + SPLBL 

Rotational Noise 

The harmonics of blade passage f o r  a hovering ro to r  can be determined 
from t h r u s t ,  torque, t i p  speed, and t w i s t .  Because the  th rus t  t e r m  
dominates on-axis, t h e  torque component w i l l  be neglected. 
p a r t i a l  l e v e l  SPLT from Figure 20 corresponding t o  t h e  ro tor  t h rus t  ( T ) .  
For each harmonic, m, ca lcu la te  mB and f ind  t h e  corresponding p a r t i a l  
l e v e l  SPL from Figure 21. Find t h e  correct ion fo r  blade t w i s t ,  SPLo 
from Figuge 22. 

Obtain the  

The swn of these p a r t i a l  l eve l s  f o r  one harmonic, S P k ,  
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epresents t h e  t o t a l  on-axis l e v e l  for a hovering ro to r  at a dis tance of 
00 f t .  A t  any dis tance,  R 

S P k  = SPLT + SPL, + SPL0 + 20 Log (-) R 
200 

The t o t a l  ro to r  noise octave spectrum i s  obtained by adding t h e  
o tor  harmonics i n  each octave, logarithmically,  and combining these with 
he respective broadband leve ls .  In  general ,  ro to r  noise dominates only 
he lowest octaves. This i s  because of t h e  rapid rol l -off  of ro to r  
armonics and t h e  s m a l l  amount of transmission loss  provided by s t ruc tu ra l  
iaterials at low frequencies. 

The problem now i s  t o  t r a n s l a t e  far-field octave band data i n t o  t h e  
.ear-field. 
urve for a c i r cu la r  source from Figure 7. By taking the  noise measured 
o r  predicted)  on t h e  ro to r  center l ine  at  10 ro to r  diameters, and then 
loving t h e  l eve l s  i n  on t h e  curve t o  t h e  desired distance below t h e  ro tor  
lead, an approximation t o  t h e  near-field ro to r  spectrum i s  obtained. One 
.mportant assumption i s  made f o r  ro tor  noise very close t o  t h e  ro to r  disk. 
jecause a ro to r  i s  not a s o l i d  surface rad ia tor ,  it i s  assumed t h a t  C can 
,e no l a rge r  than 1.0. Rea l i s t i ca l ly ,  t he re  i s  no pressure doubling i n  
;pace as the re  i s  near a w a l l .  In  equation form, 

This can be accomplished by using t h e  d is tance /d i rec t iv i ty  

There r i s  t h e  f a r - f i e ld  distance,  r i s  the  near-field distance,  and L 
ts t h e  ro to r  diameter. 
Level measured at 720 ft i s  100 dB and t h e  l e v e l  7.2 f t  under the  ro tor  
is desired,  then 

2 A s  an example?; l e t  L = 72 f t .  If the  octave 

C (7.2/72) 
C(720/72) = 100 + 1 0  Log near SPL 

loing t o  curve 1 of Figure 7 ,  C(.1) = 1.8 and C(10) = .001. 
:annot be grea te r  than 1.0, s o  take C(.1) = 1.0.  

30 and 

However, C 
Then 10 Log (1.0/.001) 

near SPL = 100 + 30 = 130 

Note t h a t  using a simple 6 dB/doubling of distance r e l a t i o n  would have 
given 140 dB f o r  t h e  near-field leve l .  
for t a i l  ro to r s  when in-plane l eve l s  are required by obtaining C from 
curve 2 of Figure 7. 

This technique can a l so  be used 

Boundary Layer Noise 

In high speed f l i g h t ,  boundary layer  noise can be a s igni f icant  pa r t  
Airframe noise is generated o f  t h e  noise observed i n  t h e  a i r c r a f t  cabin. 

by any pa r t  of t h e  a i r c r a f t  s t ruc ture  protruding i n t o  t h e  flow. It can 
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be espec ia l ly  intense when generated by s t r u t s ,  f laps ,  doors, or open 
cav i t i e s .  However, t h e  de ta i led  predict ion of airframe noise is  beyond 
t h e  scope of t h i s  report  and w i l l  not be dealt with*. 
i s  r e l a t i v e l y  clean i n  the  airframe sense, with no major sources. Only 
the  noise generated by t h e  turbulent  boundary layer  w i l l  be considered. 
The method used f o r  calculat ing boundary*layer noise i s  due t o  B i e s  
(Reference 1 4 ) .  
m e i n t s  made of turbulent  boundary layer  pressure f luctuat ions over a wide 
range of Reynolds and Mach numbers. 

The CH-53D a i r c r a f t  

H i s  work i s  a summary of wind tunnel and a i r c r a f t  measure- 

The procedure i s  summarized as follows. Calculate t h e  overa l l  fluc- 
tua t ing  pressure l eve l s  from t h e  equation 

= 20 Log q + (25) FPLover a l l  

where q i s  the f r ee  stream dynamic pressure 
displacement thickness i s  approximated by 

(26 1 6" = 0.0016 x 

84 dB 

1/2pUz. The boundary layer  

where X i s  t h e  distance from t h e  leading edge (assumed greater  than 10 
f t ) .  The cha rac t e r i s t i c  frequency i s  determined from 

f = 0.1 u,/s+ ( 2 7 )  0 

Figure 23 p lo t s  t h e  non-dimensionalized f luc tua t ing  pressure leve ls  
1 Hz octave bands. To determine the  dimensional octave l eve l s ,  use t h e  
following equations : 

A i n  

- - 
octave SPL 

where t h e  octave bandwidth ( b w )  
frequency. 

i s  given b y &  t i m e s  t he  octave center 
2 

The following example calculated t h e  boundary layer  noise at s t a t ion  
342 on t h e  CHRA fuselage at 150 knots (253.5 f't/sec). 
q i s  

The dynamic pressure 

2 
q = 1/2 (.00238) (253.5) = 76.5 l b / f t 2  

= 20 Log (76.5) + 84 = 121.7 dB FPLove rail 

The boundary Layer momentum thickness i s  

6 = 0.0016 (21) = 0.0336 f t  
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is  then given by 0 

fo  = 0.'1 (253.5/0.0336) = 754.5 Hz 

he following t a b l e  l i s ts  t h e  values of A obtained from Figure 23, t h e  
alues of SPLlHz9 and t h e  octave l eve l s :  

Octave %fo A 
frequency 

10 Log(bw) SPLIHz octave SPL 

31.5 .04 -3 
63 .08 -3 

125 17 -3 
250 .33 -4 
500 * 67 -5 

1000 1.34 -7 
2000 1.67 - 10 
4000 5.30 - 1 4  
8000 10.60 -20 

15 
18 
2 1  
24 
27 
30 
33 
36 
39 

10 5 
108 
111 
113 
115 
116 
113 
112 
109 

The SPL's of t h e  above t a b l e  indicate  t h e  f luc tua t ing  pressure l eve l s  on 
the  outside skin induced by t h e  turbulent  boundary layer.  

INTEGRATED METHOD 

Checkli s t  

A step-by-step checkl is t  i s  presented below t o  summarize the  process 
of t r ans l a t ing  an external  source s t rength i n t o  an in t e rna l  noise leve l .  

1. Define a i r c r a f t  s t ruc ture  and geometry. 

2. Ident i fy  t h e  major sources and paths. 

3. Define t h e  source s t rengths  at t h e  required operating parameters. 

Engine noise from Figures 14-18 and Equation ( 1 4 ) .  a. 

b. Gearbox noise from Figure 12 and Equations (23) and (19).  

c. Rotor noise from near-field data  and Figure 7. 

d. Boundary layer  noise from Equations (25)-(29). 
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4. Translate t h e  source s t rengths  i n t o  t h e  cabin using Equation 
(14)  or (19) as required: 

a. Determine C ' s  from radia t ing  surface s i z e  and distance i t o  t h e  observer v i a  Figures 3-7. 

b.  Obtain transmission loss  data from a data  base. 

c .  Calculate room constant data  from cabin dimensions and 
Equations ( 6 )  - (8).  

d. Apply Equation ( 1 4 )  or ( 1 9 )  octave by octave. 

5. Tabulate and sum t h e  octave data from each source and path t o  
obtain t o t a l  observed sound pressure leve l .  

Application t o  Engine Casing Noise 

The use of t h e  equations of mult ibarr ier  acoustics w i l l  be demon- 
strated by working through t h e  calculat ion of engine casing noise i n  t h e  
bare a i r c r a f t  cabin (Figure 24). 
t he  engine/nacelle arrangement. 
i n s t a l l a t i o n  i s  e s sen t i a l  i n  determining t h e  physical dimensions required 
for t h e  calculat ions.  The complicated arrangement can be s implif ied by 
making a f e w  assumptions. F i r s t ,  l e t  t h e  nacel le  be a rectangular struc- 
t u r e  with ;he f i r ewa l l  corresponding t o  the  ou t l e t  w a l l  b 
t h e  source be a f l a t  surface with dimensions equal t o  t h e  engine's average 
cross-section. Faces ao, e and f can be combined s ince they represent 
t h e  cy l indr ica l  nacel le  fa i r ing .  Face d reduces t o  an open annulus 
around t h e  t a i l  pipe extension t h a t  serves as the  engine cooling air  
e x i t .  Face c includes t h e  surface area of t h e  engine (which a c t s  as an 
inner w a l l )  as well  as t h e  f iberg lass  engine intake duct. 

Figure 25 presents an idea l iza t ion  of 
Having engineering drawings of t h e  

Next, l e t  
0' 

0' 0 
0 

0 

The nacel le  f a i r i n g  i s  made of reinforced f iberg lass  approximately 
0.838 mm (0.033 i n . )  th ick .  There i s  one f i re - f igh t ing  access hole i n  t h e  
f a i r ing .  The f i r e w a l l ,  i n t e g r a l  with t h e  a i r c r a f t  sk in ,  i s  made of t i tanium 
The presence of numerous s t i f f e n e r s  and doublers makes it necessary t o  use 
two average values of f i r e w a l l  thickness.  Engineering p r i n t s  ind ica te  t h a t  
0.457 and 1.09 mm (0.018 and 0.043 i n . )  are appropriate values. 
t i ons  are 59% and 41%, respectively.  
engineering drawings. 
access holes and j o i n t s .  
approximation, 

The propor- 

Some allowances must a l so  be made f o r  leakage through 
Geometric parameters come from t h e  

One percent has been found t o  be a good 

Consider t h e  nace l le  cavi ty  at t h e  31.5 Hz octave. Table I summarizes 

Wall a. (nacel le  

This serves t o  reduce t h e  net t rans-  

t h e  data  and shows how t h e  room constant i s  calculated f o r  t h a t  octave. 
Most of t h e  w a l l s  are made up of two d i f f e ren t  materials. 
f a i r i n g )  i s  b u i l t  of .033 f iberg lass  (69.8 f t 2  area) but a l so  has a fire- 
f igh t ing  access hole (.34 f t2 )  i n  it. 
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ission loss of t h e  w a l l .  
e a composite panel,  use t h e  r e l a t ion  

To ca lcu la te  t h e  e f f ec t ive  transmission loss  (ETL) 

1:= ST 
T S1~l + S2r2 

nd 

ETL = 10 Log 1: 
T 

The absorption coeff ic ient  a for f iberg lass  at 31.52Hz i s  .02. 
Multiplying by t h e  f a i r i n g  area (70.1 f t  ) then S(T + a )  

Then 
+ 01 i s  0.72. 

s 50.4 ft2. 
t 31.5 Hz i s  calculated t o  be 101 f t  

Repeating t h e  process f r t h e  other  w a l l s ,  t h e  room constant R 8 

Following t h e  path of  transmission i n t o  cavi ty  1, the d i r ec t iv i ty /  
i s tance  function C must be determined t o  f ind  t h e  l e v e l  impinging on 
u t l e t  w a l l  bo. 
ide  dimension 6.7 f t .  There i s  
o chart  for C f o r  a 3/1 rectangle ,  so t h e  average of t h e  2 /1  and 4 / 1  
alues must be taken. Cav i s  0.371. 
'irewall (bo) i s  9.7 dB an6 T = . lo8 at 31.5 Hz. 
'ind t h e  d i s t ance ld i r ec t iv i ty  fac tor  C 
If t h e  casing noise from t h e  Sirewall  ko t h e  cabin center.  
,hat t h e  f i r ewa l l  i s  a 6 x 1 rectangle w i t h  long dimension 8.3 f t .  
, e t t ing  t h e  observer be posit ioned under the  main transmission, r/L 
Iecomes 4.4/8.3 = 0.53. Taking the average between the  4/1 and 8/1 
*ectangular source curves, C1 i s  0.085. The work sheet of table I1 
:ummarizes a l l  of t h e  data f o r  each octave including t h e  casing power 
.eve1 f r o m t h e  source s t rength  data base. 
;he engine i t s e l f ,  while Source 1 i s  t h e  firewall. 
.nformation i s  known and can now be entered i n t o  Equation ( 1 4 ) .  
?esul t ing SPL's are l i s t e d  i n  t h e  last  column. 

0 The engine i s  approximately a 3 x 1 rectangle with long 
The distance r/L i s  1.9/6.7 = 0.28. 

Table I shows that the  ETL of the  

t o  account fo r  t he  propogation 
All t h a t  remains is  t o  

Figure 25 shows 

Source 0 on t h e  work sheet i s  
All of the required 

The 

CORRELATION 

The method w a s  applied t o  the predict ion of CHRA i n t e r n a l  noise for  
30th t h e  t r e a t e d  and untreated cases. The model included main ro tor ,  
t a i l  ro to r ,  engine, main transmission and boundary layer  noise. 

The noise l eve l s  predicted i n  the bare cabin agree very w e l l  with 
the measured da ta  as shown i n  Figures 26-27. 
ex i s t s  i n  t h e  middle octaves which are dominated by gear noise. 
is  predicted within 1.2 dB. 
hover. This i s  due t o  an overprediction of main ro to r  noise which controls 
the l e v e l  of these octaves. 
uniform, c i r c u l a r  source t o  approximate a ro to r  disc.  The cor re la t ion  
improves i n  cruise .  
dB i n  both hover and cruise.  

The best cor re la t ion  
The SIL 

The lower octaves are high by 2-4 dB i n  

This points  out the shortcomings of using a 

The upper octaves are underpredicted by as much as 10 
A review of t h e  narrow-band spec t ra  at these 
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f l i g h t  conditions confirmed t h e  existence of these high broadband leve ls  
over t h e  gear c lash  harmonic tones. It i s  s igni f icant  t h a t  t h i s  occurs at 
such high frequencies. Because of t h e  la rge  amount of transmission loss  
associated with most materials at  t h e  upper octaves, these upper octave 
levels should be very low. This implies that there  is  some d i r ec t  r ad ia t io  
f romthe  skin surface or through a leak. The one source t h a t  could provide 
t h e  necessary l eve l s  at the  upper octaves i s  t h e  engine. It i s  l i k e l y  
t h a t  engine-induced vibrat ion w a s  being fed t o  the  f i r e w a l l  and surrounding 
frames v i a  t h e  engine mounts and forced s t ruc tu ra l  radiat ion i n  t h i s  area. 
Engine-induced structure-borne noise was’ not considered i n  t h e  calculat ions 
because of a lack  of t h e  appropriate data. 

Correlation of t h e  treated cabin l eve l s  shows some in t e re s t ing  
e f f e c t s  (Figures 28 and 29). Predicted and measured l eve l s  agree very 
w e l l  i n  t h e  upper octaves, unlike t h e  bare a i r c r a f t  case. This tends t o  
confirm t h e  contention t h a t  engine-induced vibrat ion i s  being radiated by 
t h e  skins  or frames. This 
i s  due t o  t h e  f a c t  t h a t  t h e  af t  bulkhead w a s  rad ia t ing  a s igni f icant  
amount of structure-borne noise. This w a s  confirmed during f l i g h t  t e s t s  
of t h e  t r e a t e d  CHRA when a lead-vinyl cur ta in  w a s  placed over t he  bulkhead. 
The l eve l s  observed i n  t h e  gear noise-dominated octaves dropped 2-6 dB. 
The l eve l s  i n  t h e  125-500 Hz octaves are underpredicted. This frequency 
region i s  dominated by main ro tor  and engine casing noise implying t h a t  
t he re  w a s  some s o r t  of leakage or panel resonance. It i s  probable t h a t  
these sources entered t h e  ECU ducting behind t h e  valances. The treatment 
i s  not continuous over t he  frames where t h e  valances are attached. Since 
there  i s  not treatment within the  ECU ducts,  any noise entering would be 
free t o  propagate along t h e  length of t h e  ducting. 
t h e  ECU system was not included i n  the  noise prediction method because an 
adequate model w a s  not yet  available.  

The 500 Hz octave i s  underpredicted by 6 dB. 

The contribution of 

Overall,  t h e  cor re la t ion  of predicted l eve l s  with measured data i s  
excel lent .  Comparisons indicate  tha t  t h e  method could be improved by 
adding t h e  e f f e c t s  of engine-induced structure-borne noise and developing 
a procedure t h a t  would account f o r  t he  ECU ducting. 

CONCLUSIONS 

1. 

2. 
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The integrated method presented provides an eas i ly  workable and 
correlated procedure f o r  t he  predict ion of hel icopter  i n t e rna l  
noise. The method i s  su f f i c i en t ly  general t o  be applicable t o  
hel icopters  and other  a i r c r a f t  types when t h e  appropriate s t r u c t u r a l  
geometry, noise source s t rengths ,  and material acoustic propert ies  
are defined. 

The l eve l s  predicted by t h e  method f o r  t h e  CHRA cor re la te  w e l l  with 
measured data i n  both hover and cruise.  The hover SIL w a s  predicted 
within 1.2 dB f o r  t h e  bare a i r c r a f t  and 0 .1  dB f o r  t h e  treated air- 
c r a f t .  In  c ru ise ,  t h e  SIL correlated within 0.2 dB f o r  t he  bare 
a i r c r a f t  and within 1.2 dB f o r  t he  treated case. 



3. An accurate def ini t ion of the  problem i s  essent ia l  for  good correla- 
t i o n  between measured and predicted levels.  This includes the 

loss  and abso 

near-field ro tor  noise 
over-predict the  levels  very close t o  the rotor  disc. A more exact 
model i s  required tha t  accounts for  the fac t  t ha t  most of the 
acoustic energy i s  generated by the outboard sections o 
disc  and is  not uniformly distributed. 
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TABLE 1.- CAVITY AND WALL NOMENCLATURE 

r l  
52 

ETL2 

I E T L i  11.5 114.51 1.5 I 0 I I 
.7 .035 .7 I 1 I 

0 8 27 I 
.34 6.5 63 ' 1 

- 
T 2  1 1 

I ETL 11.5 19.7 I 10.11 0 I 1 
I .158 .0012 

r e f i -  .7 .lo81 .097 1 I 
.02 .02 .02 0 I 

;?eff+a .72 .128 .117 1 
S f r ~ + a ) r 5 0 . 4  1.41 8.5 1 .62 I 

I 
Q 

1 t ft2 1 I 154 

Sa' 
I- a I R=- 181 

D 

A - OUTROARD 
R - ItlBO&?D 
C - FOR\IARD 
D - AFT 
E - UPPER 
F - LOHER 

NOTE: For tone dominance use 
transmission loss a t  
tone frequency, 

I ft2 =.093 m2 

DIMENSIONS LISTED IN FEET 
FOR COMPATI BlLlTY WITH 
BARRlE R EQUATIONS 
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Figure 1.- Modes of propagation for cabin noise. 
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Figure 2.-  The relation of PWL, IL,  and SPL for a plane source. 
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Figure 7.- Directivity factor for a circular disk. 
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Figure 8.- Effect of leakage on panel transmission loss. 
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Figure 9.- Two-cavity problem. 
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Figure 11.- Radiating surfaces for transmission noise based on 
the CHRA NASTRAN model. 
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Figure 12.-  Total radiated sound power levels  versus consumed horsepower for  
CH-53 A/D aircraft.  
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Figure 13.- Genetalized gear noise harmonic spectrum. 
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Figure 16.- Composite engine exhaust noise .  
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Figure 17.- Composite engine i n l e t  no ise .  
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Figure  19.- Rotor broadband n o i s e  oc tave  spectrum shape. 
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Figure  20.- He l i cop te r  r o t a t i o n a l  n o i s e  p a r t i a l  level based on t h r u s t .  
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Figure 21.- On-axis thrust component SPL vs. harmonic order as a 
function of rotor tip Mach number MT. 
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Figure 22.- Effect of twist on rotational noise harmonic thrust component. 
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PHYSICAL PROBLEM 
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Figure 24.- Engine casing noise  in  bare cabin. 
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Figure 25,- Source cavity representation. 
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FREQUENCY IN HERTI 

Figure 26.- Correlation of measured and predicted bare aircraft noise 
levels .  Middle cabin; OGE hover. 

FREQUZNCV IN HERTZ 

Figure 27.-  Correlation of measured and predicted bare aircraft noise 
levels .  Middle cabin; 150 knots indicated air  speed. 
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Figure  28.- C o r r e l a t i o n  of measured and p red ic t ed  t r e a t e d  a i r c r a f t  
n o i s e  levels. Middle cabin;  OGE hover. 
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Figure  29. -  Cor re l a t ion  of measured and p red ic t ed  t r e a t e d  a i r c r a f t  
n o i s e  levels. Middle cabin;  150 kno t s  i nd ica t ed  a i r  speed. 
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