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ASTROPHYSICAL MATERIALS SCIENCE: THEORY

PROJECT SUMMARY: 1972-1978

Since the initial award of Grant NGR~33-010-188 in summer of 1972, the
aim of the project "Astrophysical Materials Science: Theory'" has been to
develop analytic methods to better our understanding of common astrophysical
materials particularly those subjected to extreme physical conditions. The
program has been administered in the past by the staff of the Lewis Research
Center, National Aeronautics and Space Administration, Cleveland, Ohio.
Beginning Oct. 1, 1978 the project will be administered by N.A.S.A. Washington,
re-appearing under the same title as NSG-7487. :

This document briefly summarises the research discoveries and work carried
out over the last six or so years. Hydrogen and helium constitute by far the
most abundant of the elements and it is no accident that the research has
focussed heavily on these elements in their condensed forms, both as pure
substances and in mixtures. It will be seen below. that the research has
combined the fundamental with the pragmatic. The proper and complete under-
standing of materials of astrophysical interest requires a deep appreciation
of their physical properties, especially when taken into the unusual ranges
of extreme conditions. Fundamental theoretical condensed matter physics has
played a very important part in the research to date, and will continue to be
a dominant element in the research carried out under NSG-~7487. The collaborati
with the experimentalists (Prof. Ruoff and his group) have also been exceedingl:
beneficial, and this too will continue in the future.

The research will now be summarized. (Notice that publication #3(a) on
aluminum under high-pressure is discussed in the Final Technical Report on

NGR-33-010-189.)
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Paper #1, on the ground state energies of simple metals developed the
method of structural expansions for use in determining the equation of state
of metallic hydrogen (and indeed other metals) up to 4th order in perturba-~
tion theory. Previously, work in the Soviet Union and elsewhere had made
predictions on the nature of the structure of metallic hydrogen based on
lower order perturbation theory. Paper #l called this into question, at least
for static lattices.

Paper #2 concerned itself with nature of the deep intericr of Jupiter,
particularly with respect to the transport properties. We were able to
calculate both the electrical and thermal transport properties of the planetary
interior and henéé comment on the origin ¢f the Jovian magnetic field.

Paper #3 is devoted to a problem in molecular hydrogen, specifically the
natur¥e of the interaction between molecules at short range and the importance
of multi-center terms in arriving at an adequate description of the thermo-
dynamic functions of condensed molecular hydrogen.

Paper #4& returned to the subject of Paper #l and took up the question
of proton dynamics, again arriving at a method applicable to many metals.

In accounting for the structural energies in a dynamic lattice we also obtained
*

a method for determining x-ray structure factors (particularly diffuse thermal

scattering) which has been very useful.

Paper #5 addresses a problem raised in Paper #2, namely are metallic
hydrogen and metallic helium mutually solubleunder the conditions prevailing
in the deep interior of Jupiter? The results of the caleculations presented
in Paper #5 show fairly convincingly that almost complete phase separation is
to be expected and this has interesting consequences in the transport propertie
as a function of depth into the planet.

Paper #6 tackles a gquestion emerging from Paper #&, namely, can the proton

and electron degrees of freedom really be separated when dealing with the
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thermodynamic functions of hydrogen, or should they be treated as coupled
systems? The latter is found to be the case and the structural consequences
are really quite important. Simple structures are favored by this approach,
rather than the grossly anisotropic structures proposed by the Soviet groups.
Paper #7 continues the work of Paper #5, but continued into the domain
of liquid rather than solid solutions of hydrogen and heliim. The misci-
bility gap in the solid is found to persist in the liquid alloys unless the
temperature gets exceedingly high. This has application in some stellar
exteriors.

Paper #8 begins a study of molecular hydrogen and its band-structure and

continues the work begun in Paper #3. The ultimate intent is the determina-
tion of the thermodynamic functions of the molecular phase, and then the
estimation of the metallization pressure. The results of the calculation
introduce the notion that metallization by isostructural band-overlap may
be a possibility.,

Paper #9 deals with the quantum aspects of ground state defects in
hydrogen and asks whether "quantum-defectons" can be present in metallic
hydrogen crystals, and if so whether they can co~agulate inkto macroscopic
voids whose surfaces may then be unstable to molecule formation. This prospect
is ruled out by calculation: again a general method for dealing with systems
other than hydrogen is introduced.

Paper #10 introduces a new idea: that the ground state of metallic
hydrogen might be a quantum liquid. To obtain the ground state energy of
such a system it is then necessary to extend the theory of ligquids somewhat
and the paper deals with a method for obtaining the necessary distribution
functions.

Paper #11 then takes up the idea of Paper #10 to calculate the ground

state energy of a proposed liquid phase of metallic hydrogen and indeed finds
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that up to third order at least (in the electron-proton interaction) such a
state is z very strong possibility. It also examines the likelihood of
partially ordered magnetic phases, and notes that some of the ordering
energles are quite characteristic of superconducting ordering energies.

Paper #12 extends the notions discussed in Paper #2 and discusses both
the metallic and insulating form of hydrogen and helium in the context of -
models of the interior of Jupiter and Saturn.

Paper #13 is also concernad with Jupiter and Saturn, but from the
standpoint, of dynamic aspects, specifically convection and the influence on
it of composition gradients in the mixture of hydrogen and helium.

In conecluding this report, it is worth recording that the systems studied
so far have yielded a richness in their physical properfies that considerably
exceeded the initial expectations. There is every reason to believe that this
situation will continue, and that the low temperature highly quantum aspects
of both ‘high density hydrogen and helivm will remain fascinating systems for

further study.

N.W. Ashcroft

Ithaca, N.Y.-Fall 1978
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ABSTRACT

In the preceding paper (Paper I) we discussed the thermodynamic and microscopic transport
properties of hydrogen-helium flmd mixtures. These results are used in the present paper for a
semiquantitatrve analysis of the thermal and compostiional history of an evolving hydrogen-
helium planet such as Jupiter or Saturn

Furst, the evolution of a homogeneons planet with no first-order phase transitions or 1mmis-
ctbilities 1s considered The temperature gradient is at least adiabatic (since thermal conduction
cannot transport a sufficient heat flux) and is also large enough to ensure that the fluid state
prevatls everywhere, Convection 1s therefore ypinhibited by molecular viscosity, and the frac-
tional superadiabaticity 1s very small, despite the inhibitory effects of rotation and magnetic field.
Adiabatic, evolutionary models are discussed. The times taken for Jupiter and Saturn to reach
therr observed luminosities are about 4 x 10 and 2 x 10° years, respectively, essentially inde-
pendent of formation details The result for Saturn appears to be mnconsistent with its actual age,
assumed to be ~4 5 x 102 years.

Next, the efiects of a first-order molecular-metallic hydrogen transition are discussed for a
pure hydrogen planet: A well-defined interface between the phases persists, despite the presence
of convecticn. The temperature is continuous at the interface and the entropy 1s discontinuous,
the change i entropy being equal to the Iatent heat of transition. Consequently, the heat content
and dersved “age™ differ from that determined for a purely adiabatic model (by a factor between
1 and 2, depending on the unknown latent heat) :

Convection in the presence of a composition gradient is discussed, and the importance of
overstable modes and diffusive-convective equilibria established. The convective transport of
helium away from a localized helium source 1s shown to be inefficient becanse hehum diffusivity
1s much less than heat diffusivity.

Evoletions with helium immiscibility (but ne first-order molecular-metallic hydrogen transi-
tion) are discussed. Helium droplets nucleate from the supersaturated mixture, grow to ~1 cm
radius, and fall under the influence of gravity, despite the convection Most of the energy release
from this differentiation 1s available for radiation, and the decay time for the planet’s excess
[umnostty 1s increased, typically by about a factor of 5

Fmnally, more complicated cases are discussed which include both immiseiality and the first-
order character of the molecular-metallic hydrogen transition. The Gibbs phase rule leads to a
discontinuity of the helium fraction at the transition, the formation of a helium-rich core, and an
energy release comparable to that for immiscibility. This core can grow at the expense of the
helium content 1n either the metallic or molecular region. In some cases, the molecular envelope
helium content 18 actually enhanced by upward convective transport of helium.

The various parameters (especially the critical temperature of the molecular-metallic hydrogen
transthion) are too uncertain for detailed quantitative conclusions The success of adiabatic,
homogeneous evolutionary calculations for Jupiter suggests that helum differentiation has not
yet begun for that planet or has begun very recently {5 10° years ago), which in turn suggests
that the critrcal temperature for the molecular-metallic hydregen transition cannot greatly exceed -
20,000 XK. Helium differentiation i Saturn (and deviations from primordial abundance for
helrum and minor constituents in the atmosphere) appears to be required to explain the observed
excess Jummosity.

Subject headings planets: abundances — planets- mteriors — planets: Jupiter
I INTRODUCTION {(Podolak and Cameron 1975, Zharkov and Trubitsyn
1976, Hubbard and Slattery 1976; Stevenson and
Modeling of the giant planets 15 a well-constrained Salpeter 1970; Podolak 1977) and Saturn (Podolak

problem and has reached a quite high level of sophis- and Cameron 1974, Zharkov and Trubiisyn 1976)
tication m recent years. Present models of Jupiter are substantially m agreement regarding the major
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features of these planets However, none of these mod-
els systematically investigates the imphcations of the
hydrogen-hehum phase diagram. The hydrogen and
helinm are assumed to be umformly mixed, and first-
order phase transitions are either assumed to not exist,
or are inadequately treated. In the preceding paper
(Stevenson. and Salpeter 1977, hereafter Paper I) the
phase diagram was discussed in detail, and o this
paper, those results are applied to the thermal and
compositional history of the hydrogen-heliom planets.

Before outlining our approach to this problem, we
summarize the main features of Jupiter and Saturn
which are common to all the models referenced above.
For Jupiter, these features are (@) 2 composition that is
roughly 65% H, 30%, He, and 5%, other elements by
mass, the latter being somewhat concentrated toward
the center of the planet, (b) an adiabatic temperature
structure such that the temperature rises from about
180K at P = 1 bar, to about 10,000 K at P ~ 3 Mbar
(the molecular-metallic hydrogen transition) and
20,000 K. at the mmnermost hydrogen-helinm region
(P = 45 Mbar); {¢) a metallic hydrogen-helinm core
that 15 3 or 4 tumes more massive than the molecular
envelope.

The main features for Saturn are less well established
(@) a composition of 50-55%, H, 20-25%, He, and
15-20%, other elements by mass, but with wider
variations concervable, (b) an adiabatic temperature
structure such that the temperature rises from about
140-150 K at P =1 bar to about 8500K at P =
3 Mbar (the molecular-metallic hydrogen transition)
and a central temperature of perhaps ~11,000 K; (¢)
a metallic hydrogen-hellum core that is as little as
one-third or as much as equal in mass to the molecular
hydrogen envelope. For more details and comparisons
for Jupiter and Saturn, see Stevenson (1977).

The main question we address in this paper is, Are
the above models consistent with the hydrogen-helum
phase diagram? In attempting to answer this, the
following substdiary questions necessarily arise:

L. Under what circumstances does a hydrogen-
helivi planet have an adiabatic thermal structure?
Smce the discovery of the excess infrared emission of
Jupiter (Aumann et af 1969, Ingersoll ef al, 1976) and
Saturn (Aumann ef al. 1969, Nolt ef al. 1974; Rieke
1975), it has been assumed that these planets are con-
vective almost everywhere and hence adiabatic How-
ever, this 1s not correct 1if there are first-order phase
transitions or composition gradients

2. Under what circumstances 15 a hydrogen-helum
planet homogeneous? It 1s mevitable that some part
of the planet will eventually evolve mto a phase ex-
cluded region of the hydrogen-helium phase diagram,
erther because of the mmmiscibility or because of the
Gibbs phase rule requirement that the heltum content
be discontromous at the molecular-metallic hydrogen
phase transition The only doubt is whether this has
occurred already, is occurring now, or will only occur
in the future evolution of Jupiter or Saturn In-
homogeneity is ensured for a temperature less than
about 10,000 X at the molecular-metaliic transition.
The similarity between this and the actual temperature
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predicted by homogeneous models may not be a
coincidence.

3 What imphcations does inhomogeneity have for
the thermal evolution? Recent evolutionary calcula-
tions for Jupiter (Graboske ef af 1975, Flubbard 1977)
appear capable of explaimng the excess mfrared
emission as the release of primordial heat content
from a homogeneous planet. A similar calculation for
Saturn (Poliack er ¢/, 1977) appears to be incapable
of predicting sufficient heat fiux after 4.5 x 10? years.
However, if gravitational Iayering is possible, with the
more dense helium separating toward the center of the
planet, then a large energy source becomes available
to augment the primordial heat content {(Kiefer 1967,
Salpeter 1973). Helum differentiation always occurs
eventually, but the details are found to be quite com-
plicated, 1n general Approximate calculations indicate
that the present lumunosity of Saturn 1s readily ex-
plained by hellum differentiation durnng the last
2 x 10° years

4. What implications do the phase transitions have
for the distribution of minor constituents (e g, HoQ,
CHa, NHg)7 Although we will not attempt a quan-
titative answer to this question, it 1s found from quite
general considerations that the atmospheric com-
position 18 not m general representative of the bulk
composition of the planet, even at levels deeper than
any possible clouds In view of the difficulty of estimat-
ing atmospheric helium abundance from remote cbser-
vations, this fact may be the best observational test of
our theory

5. Can atmospheric observations be used to deter-
mine constraints on the thermal evolution of a fluid
planet? The present distnbution of constituents
depends in a complicated way on the previous evolu-
tion of the planet. Unfortunately, we find that the
current uncertamties i the hydrogen-heltum phase
diagram and transport properties preclude any firm
predictions that relate the present compositional
distributions to the past thermal evolution

In this paper we proceed from the simple to the
complex. In §II we discuss the particularly simple
case of a homogeneous planet 1n which there are no
first-order phase transitions. The assumption of
homogeneity 15 common to almost all recent models
of the evolution and mternal structure of Jupiter. In
this particular case, convective heat transport domin-
ates almost everywhere, and the specific entropies of
the atmosphere and deep interior are almost equal.
Homogeneous, adiabatic evolutionary calculations
then mdicate that the times taken for Jupiter and
Saturn to reach their observed excess luminosities are
about 4 x 10° years and 2 x 10° years, respectively,
essentially independent of the details of planctary
formation

In § 11T we discuss a pure hydrogen planet 1n which
there 15 a fluid molecular hydrogen to fluid meitallic
hydrogen first-order phase transition It is assumed
that convection dominates the heat transport every-
where, except possibly near the pressures and tem-
peratures corresponding to the phase transition, This
general situation was considered n detail by Salpeter
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F1c. I —Vartous possible evolutionary regimes depending on
the relative values of 7.(H-He), T.(H.-H), and T This figure
assumes T.(H,-He) = 12T {H-He) and 15 the analog of Fig 6
mPaperl InSector I, immiscibility effects dommate In Sector
111, the effects of the molecular-metallic hydrogen transition
dommate Sector IT 1s intermediate and complicated (see"text
for discussion) The dashed line separates “hot’ evelotions
from “cold> evolutions

and Stevenson (1976) We apply those considerations
to Jupiter and Saturn, and conclude that a well-defined
interface exists between the phases, strongly mnhibiting
convective flow i 1ts vicinity. ‘Smce the temperature
1s essentially confnuous across the nterface, the
entropies of the iwo phases are found to differ by the
latent heat of the trapsiion Under these circum-
stances, the temperature in the metallic core can differ
by up to a factor of 2 from that predicted for a fully
adiabatic planet (but the actunai factor 18 probably
nearer unity than 2). A similar effect on the derived
“age” of the planet 15 also predicted

In § IV we discuss some general aspects of convec-
tion 1 the presence of compositional gradients.
Particular attention 18 given fo the most relevant case,
in which thermal diffusion is greater than particle
diffuston. Overstabihty and the convective transport
of solute are discussed

Sections V and VT are devoted to particular evolu-
tionary sequences. In Figure 1, the various possibilities
are characterized by the critical temperatures 7,(H-Ho,)
and T,(H-He), for the molecular-metallic hydrogen
transition and the metallic hydrogen-hehum mixture,
respectively Thus figure is directly analogous to Figure
6 of Paper 1. As i that paper, we set T(H,-He} =
1/27,(H-He), where T,(Hz-He) 1s the crttical tempera-
ture for the molecular mixture. The evolution of a
planet can be charactenized m Figure 1 by a straight
Iime segment, the extension of which passes through
the origin. Thus the evolution lies in one of the three
sectors shown For the purposes of our considerations,
the starting point of the evolution 1s defined as the
temperature of the central hydrogen-hellum region of
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the planet, when that region first becomes degenerate
(1.e, reaches megabar pressures). The dashed hne in
Figure ! further subdivides the sectors according as to
whether that starting pomnt 1s “hot” or “cold” A
“cold” situation is one in which a phase excluded
region is encountered at the beginning of the evolution
A “hot” situation i1s one in which the evolutionary
starting point 1s side the dashed boundary. It is
necessary to consider several possibilities, primarily
because T,(H-H,) is so uncertain (see the discussion
in Paper I} There 1s also considerable uncertainty as
to the starting temperature for the evolution

Tn § V, Sector I of Figure 1 1s considered Since the
mmmiscibility of helwm m hydrogen 1s the mamm con-
sideration here, this section assumes, for simplicity,
that there 1s no first-order molecular-to-metallic hy-
drogen transmtion. It is also assumed that the starting
point is “hot,” since the starting temperature 1s likely
to be well m excess of T (H-He) = 1 x 10*K Asthe
planet cools down, it becomes possible for droplets of
hellum-rich fluid to nucleate from the mixture, grow
rapudly, and dnft downward The subsequent m-
homogeneous evolution is discussed, using parameters
appropriate to Jupiter and Saturn. Once this differen-
tiation 1s 1nitiated, a large energy source becomes
avarlable Most of this energy 1s available for radiation.
The rate at which the excess lummosity decreases with
tume 1s found to decrease by typically a factor of 5
relative to homogeneous evolution, once differenti-
ation begins.

In § VI we discuss Sector 11T of Figure 1. The main
consideration here 1s the first-order character of the
molecular-metalic hydrogen transition, but helium
misolubility 18 also an mmportant consideration Both
“hot” and “cold” startmng points are considered. In
the “cold” case, the evolution depends on the relative
densities of the coexisting heltum-rich molecular phase
and helwm-poor metallic phase If the former is more
dense then there 15 a met downward transport of
helium, if the latter is more dense then there is mtially
a small net upward transport of helium. We also
discuss the “hot” case, in which there 15 always a net
downward transport of helium

Sector II 1 Figure 1 1s not discussed in detail since
there are no new effects in this sector that are not
already present in Sector I or Sector III. The results
for Sector I are, however, summarized 1n the conclud-
ing § VII There, we summarize the various possible
cases and their implications. A brief discussion of the
disposition of mmor constituents (such as water) 1s
given, and some posstble inadequactes m our analysts
are assessed Unfortunately, the uncertainties in the
phase diagram and transport properfies are still so
great that we are unable to predict, say, the hellum
abundance 1 the Jovian and Saturman atmospheres.
However, the success of adiabatic, homogeneous
evolutionary calculations for Juprter suggest that
belmm differentiation has not yet begun for that
planet, or has begun very recently (<10° years ago).
Helum differentiation in Saturn appears to be re-
quired to explamn its observed excess Iuminosity, but
the uncertainties are large.
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I THE THERMAL EVOLUTION OF A HOMOGENEQUS PLANET

We consider first the unhkely case where the molec-
ular metallic hydrogen transition 15 not first-order
and there 15 unlimited solubility of helem in hydrogen.
The infrared excesses of Jupiter and Saturn led
Hubbard (1968, 1973) to propose that such planets are
convective almost everywhere, with the consequence
that the specific entropies of the deep atmos-
phere and metallic interior are equal (1.e, the tem-
perature and pressure are adiabatically related). This
““adiabatic hypothesis™ 15 based on three assertions:
(1) The mternal heat flux is too high to be transported
by conduction (electronic, molecular, or radiative) ata
subadiabatic temperature gradient. (11) The resuiting
mternal temperature is therefore high enough to ensure
that the fiuid state prevails everywhere. {iu} Convection
is therefore not inhibited by wiscosity and readily
transports the required heat flux with only 2 very small
superadiabaticity.

The inadequacy of electronic conduction has been
discussed elsewhere (Stevenson and Ashcroft 1974,
Stevenson and Salpeter 1976; Stevenson 1976) for the
particular case of Jupiter. Sumilar calculations can be
made for Saturn In both cases, the thermal con-
ductivity in the metallic core 15 about 2 x 10® ergs
cm~? 371 K-t (eq. [11], Paper I) and the adiabatic
temperature gradient is typrecally 2 x 109K em™3,
so the conductive heat flux is typically 400 ergs cm ~*2
$~1, The total iniernal heat flux that emerges into the
atmosphere is about (7 + 2) x 10 ergs cm~2s5"* for
Tupiter (Ingersoll ez al. 1976) and (4 + 1 5y x 10° ergs
cm™2 s for Saturn (Aumann ef @/ 1969, Nolt ef af
1974; Rieke 1975). In each case, the energy source
must be gravitational (Hubbard and Smoluchowski
1973), but the distribution of the energy source 15 not
accurately known. However, even for a highly de-
centralized energy source such as primordral heat, the
heat flux at the molecular-metallic hydrogen transition
is comparable to (and may even be larger than} the
heat flux emerging irto the atmosphere, because of the
smaller surface area. In both planets, the inequality
between conductive and total heat flux m the metallic
region 15 not enormous, but is nevertheless strong
enough to be almost certain. A smaller, purely con-
ductive region near the center of each planet 15 not
excluded.

In the molecular region, electronic or molecular
conduction is neghgible but radiative opacity couid
conceivably be low enough to allow a radiative rather
than adiabatic thermal structure. However, the discus-
sion 1mn Paper I indicates that the opacity of pure
hydrogen alone is sufficient to ensure convection,
except at temperatures where the 1500 cm~?* to
3000 cm~? window 1s important (Le, 400K < T'<
700K) In this region, a solar abundance of “ices™
(H.0, CH,, NH;) will probably “block™ the window
in the pure hydrogen spectrum. It follows that a deep
radiative layer, almost immedrately below the observ-
able atmosphere, cannot be discounted until we know
the abundance of munor constituents 1n such planets.
It should be noted, however, that a radiative layer is
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not compatible with the interpretation by Gulkis and
Poynter {1972) of the thermal radio emissions from
Jupiter and Saturn It would also be very difficult to
reconcile with the inversion of the higher gravitational
moment J;, made by Anderson, Hubbard, and
Slattery (1974).

The fluid state of these planets is assured by showing
that the adiabatic temperature profile which matches
the deep atmosphere gives a temperature that exceeds
the melting pomt of hydrogen (or the liquidus of a
hydrogen-helium muxture) at each depth. To a very
crude approxumation, the Jovian adiabat is

T ~ 10,0000V K , 1)

where p 1s in g cm~3, and the Saturnian adiabat has
the same form but is 10-20%, colder. This temperature
is comfortably mn excess of the melting temperatores
esttmated 1 § IT, Paper 1. The flud state ensures that
convectzon 15 readily inttiated once the adiabatic
temperature is shghtly exceeded, and 1s not inhibited
by molecular viscosity

To confirm the adiabatic hypothests, it remains to
be demonstrated that the thermal convection requires
only a very small fractional superadiabaticity Steven-
son and Salpeter (1976) have discussed thus for Jupiter,
but alinost identical numbers apply for Saturn. Even
if allowance is made for the strongly inhibrting effect
of rotation, the fractional superadiabaticity is found to
be much smaller than unity. The effect of rotation has
recently been analyzed in more detail (Gierasch and
Stevenson 1977), and the same conclusion was reached
The inhibiting effect of the magnetic field is not ex-
pected to be greater than that of rotation, if a dynamo
1s operating, since the Lorentz force will be at most
comparable to the Coriolis force (Eide 1974) Ap-
parently, the only other conceivable inhibition of the
convection is the molecular-metallic transition, but 1f
this is continuous, then an element of flurd can change
smoothly from one phase to the other as it moves
through the pressure region of the transition No super-
cooling or superheating would be possible, and 2
rising flurd element would always be only slightly less
dense than the surrounding field. Of course, the region
of the transitron willin general have an “anomalously™
large or “anomalously” smali adiabatic temperature
gradient In the case where the adiabatic gradient is
much larger in magnitude within the transition region
than elsewhere, electronic conduction can become
important and the adiabatic assumption could break
down This possibility 1s too unlikely to merit a
discussion.

Provided there exist mimor constrtuents to block
the window 1 the molecular hydrogen opacity spec-
trum, the adiabatic approximation 15 valid for a
homogeneous planet with no first-order phase transi-
tions or mmmiscibilitres.

Evolutionary calculations for Jupiter (Graboske
et al 1975; Hubbard 1977) and Saturn (Pollack et af.
1977) have been made only for this homogeneous,
adiabatic case The major part of the evolution is then
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the gradual loss of primordial heat during the de-
generate cooling phase. To an adequate first approx:-
mation, the luminosity is then equal to the rate of
change of internal thermal epergy-

L = 4nR%(T* — T,Y = _4 GaRC,T), (2
ar

where L 15 the excess luminosity, R 1s the radius, o is
the Stefan-Boltzmann constant, T, 1s the actual effec-
tive temperature, T 1s the effective temperature m the
absence of an nternal heat source, C, is the average
spectfic heat per unut volume, and 77 15 some average
miernal temperature. Since the entie iaterror is
assumed to be convective, T 18 related to T, by bemg
on the same adiabat

P)\n
T, TG(E) . 3)

where P; is a characteristic internal pressure, P, is the
effective pressure (i e., the pressure at optical depth
umty in the atmosphere) and # = 0.25 15 the average
ellgi&l;atlc mndex From. the virial theorem (Clayton

GM*>
P 417—124 » (4)
while optical depth unity corresponds to
~ 8,
P,z = )]

where g 1s the acceleration due to gravity and « 1s the
effective transmussion opacity of the atmosphere. In
the degenerate cooling phase, T; changes more raprdly
with time than C, or R, Furthermore, the atmgspheric
models of Graboske et al. (1975} indicate that «
changes Litfle, even as 7, changes by an order of
magnitude. It follows that P, and P, can be regarded
as constant during most of the evolution, so that
T; ec T, The solution of equation (2) is then

_ (o) (present heat content)
~ (present excess [UmMInosity)

to

aza—g%)fl"’f;‘fq—&, ©)

where £, 1s the “age” of the planet {the time that has
elapsed since 1t first became degenerate), g =T/T, ;
where T, , is the present effective temperature, and
Xp = T, sfT,,s where T, ; 1s the effective temperature
at the beginning of the degenerate cocling. The value
of e« 15 insensitive to x, for x, = 3. In the himit as
X5 —> €O,

_ 1 g _ 124° 2
a—g[l—T—,n + 0(¢"® €

For both Jupiter and Saturn at present, g* =~ 03
and « = 0 25. The value of «is substantially less than
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unity because the luminosity mncreases rapidly as one
goes back i time. For “typical® adiabatic, homo-
geneous models of Jupiter (Stevenson and Salpeter
19760) and Satura (Podelak 1974), one finds £, &~ 4 %
10° for Jupiter and t; & 2 x 10° years for Saturn, each
with about 1 x 10° years" uncertainty. The more
precise evolutionary caleulations for Jupiter (Graboske
et al. 1975; Hubbard 1977) and Saturn (Pollack et al.
1977} do not differ greatly from the above crude
analysis The major uncertainties are the present
luminosity, the transrmssion opacity, the specific heat
in the deep interior, and the average adiabatic gradient
The calculation suggests that a homogeneous Jupiter
with no first-order phase transitrons 1s consistent with
the assumed age of about 4 5 % 10° years. (There is no
direct evidence relating to the ages of the major
planets, but neither is there any reason to believe that
they differ greatly i age from the terrestrial planets.)
The uncertainties (especially in the present luminosity)
are greater for Saturn, but the small value of £, derived
for that planet suggests that Saturn may not be homo-
geneous, or at least may have a different evolution from
Jupiter. In “natural” (i e., gravitational) units, Saturn
has an “anomalously” large excess luminosity (see
Stevenson 1977) The two most likely explanations are
either that Saturn is inhomogeneous or that observers
have overesiimated the excess luminosity This dilemma
may be resolved with the flyby of Saturn by Proneer 11
m 1979 In§§ IV and V, we examine the hypothesis that
inhomogeneity 1s the explanation. We are not pre-
cluding inhomogeneity in Jupiter erther, smce the
uncertainties are stidl large i the homogeneous evolu-
tion Furthermore, even if the planets were pure
hydrogen, the adiabatic assumption would not be
valid 1f the molecular-metallic transition were first-
order At the end of the next section we discuss how
this can also affect the evolutionary time scale

Iil. THE MOLECULAR-METALLIC HYDROGEN TRANSITION

We consider now a pure hydrogen planet in which
the molecuiar-to-metallic hydrogen transition is first-
order at the temperatures of interest, but in which the
conductivity 18 always low enough (or the opacity high
enough) to ensure convection everywhere well away
from the transition. In a recent paper, Salpeter and
Stevenson (1976) constder a self-gravitatmng flud,
stratified into two phases of appreciably diufferent
densitics and heated from within Tt 1s assumed that,
away from the mterface between the phases, the heat
flux 1s mainly carried by turbulent convection with a
very smail superadiabaticity. Different modes are
mvestigated for transporting the heat flux across the
mnterface, and both possible signs for the phase-
transtiton latent heat L are considered. Under a wide
range of conditions, 1t is found that the transition region
near the interface is thin, with a small change in tem-
perature across it. The entropy difference between the
two phases is then L{T, where T 1s the temperature at
the transition In reaching this conclusion, the follow-
1ng assumptions were necded - (1) a fractional density
change at the transition that is not enormously less than
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umty, (11} a substantial positive surface energy o
between the phases, at both microscopic and macro-
scopic levels, (1) a substantial latent heat L, with
mapgmitude of order k,T per particle, where kg 18
Boltzmann’s constant; (1v) a heat flux which 1s deter-
mined by conditions elsewhere, and whose average 15
not affected by the dynamucs of the phase transition
(ii the éase of Jupiter and Saturn, the hedt flix 15
determined by conditions 1n the surface layers of the
planet and 1ts central temperature); (v) a Prandtl
number (defined as Pr = v/, where v is the kinematic
viscosity and « is the thermal diffusion coefficient) that
is not so enormously greater than unity that large-scale
convective flows are inhibited by viscosity

Of all these conditions, (1) and (v) are particularly
crucial. If the molecular-metallic hydrogen transifion
is mdeed first-order {see the discussion m Paper I),
then these conditions are probably satisfied.

This conclusion 1s m contrast to that reached by
Schubert, Turcotte, and Oxburgh (1970) in their dis-
cussion of the olivine-spinel solid-state phase transition
mn the Earth’s mantle. They propose no entropy dis-
coniinuity, but rather a “two-phase™ region where
the two phases are intermingled and neither phase pre-
dominates. To understand why their conclusion 1s not
mncompatible with ours, two aspects of the problem
must be considered. the predictions of linear stability
analysis, and the nature of the finite amplitude flow

A linear stability analysis was carried out for L > 0
by Busse and Schubert (1971} They found that a
state 1 which the phases are stratified with a well-
defined mterface becomes unstable to mixing when the
superadiabaticity becornes so large that an upward-
moving parcel of fluid can change phase, cool down
(because of the latent heat), and yet still remain
buoyant For L & kg7, thisrequires a fractional super-
adiabaticity of order umity Tlus mstability criterion
is apparently safisfied i the Earth, where viscosity
greafiy inhubits the flow in the solid phases, and the
superachabaticity must be large. This criterion is nof
satisfied for fluid phases 1n Juprter or Saturn, where
the superadiabaticity has a very small average value.

The second aspect of the problem is the nature of
the finite amplitude flow. Turcotte and Schubert (1971)
consider a sumple, one-dimensional model for the flow
and deduce a *“two-phase™ region. Since the two
phases have different densitics, there is a tendency for
them to separate under the action of gravity. However,
in the high viscosities prevailing m the Earth’s mantle,
the rate of separation is no greater than convective
speeds clsewhere, so a dynamic steady state can be
envisaged m which a two-phase region persists. In our
situation, where molecular viscosity is essentially
irrelevant, no iwo-phase region 1S conceivable in
steady state, since it would separate almost at sound
speed, on a time scale much less than typical convective
time scales. To sumimarize, the mosi 1mportant
difference between the Earth’s mantle and the interiors
of fluid hydrogen-helium planets 1s the factor of ~ 1024
difference m Prandtl numbers.

This does not prove that our conclusion of an
essentially “isothermal™ (rather than “adiabatic™)
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interface 1s correct To prove that, we would need to
constder all possible modes for fimte-amphtude dis-
turbance of the mterface This has not been done, but
those modes that were considered were found to be
stable (Salpeter and Stevenson 1976). Turner (private
communication) has pointed out that a major (pos-
sibly the major) source of mass transfer between the
phases was not considered in Salpeter and Stevenson
(1976). Experiments on turbulent entrainment across
densrity interfaces (between fluids of different com-
position) i the large Reynold’s number imut (Turner
1968b; Linden 1973; Long 1975) indicate that a small
amount 1s ejected at high speed from one fiuid into the
other during the recoil of a large eddy that has Iut the
interface The ejection velocity is comparable to %y,
the wave velocity on the interface

Ap\ii2
Uy = (ngP) , (®

where g 1s the acceleration due to gravity, [ 1s a length
scale characterizing the turbulence (e, eddy size),
Ap 18 the density contrast at the mterface, and p 15 the
average flmd density. The amount gjecied (in each
durection) can be expressed as an entramnment velocity
%, (the ejected volume per unit interface area per unit

tume) given by
U U\
7 (%—W) » )

where % 1s a characteristic turbulent (convective)
veloaty for eddy size I, and » = 3 according to
Turner (1968b) and Linden (1973) Neglecting rotation,
% = 10 cm s~ for Jupiter and Saturn and / & 10% cm
(Hubbard and Smoluchowsk: 1973), so that 4%, ~
10~ cm s~ The latent heat flux %L 1s therefore
<10 %2ergscm~2s5~! 1n magmtude, and neghgible
compared with the sensibie heat flux. Unlike the
experiments, the two fluds are phases of the same
substance and the net effect of ejection 1s zero. (There
18, however, a small but finite probability of encounter-
ing a macroscopic amount of the “wrong” phase at
large distances from the phase boundary.)

Experiments by Long on shear-induced turbulence
(1975) have been interpreted as implyingr = 2 In ths
case, both the latent heat and sensible heat fluxes are
proportional to %72, but the lateni heat flux 1s never-
theless smaller by |L|/p%* < 1. In this case, the
entrained fluid, although small in total volume, can
have a thermal effect comparable to the sensible heat
flux. Even 1f Long’s experiments are applicable {which
they probably are not), the interface would still e well
defined, although the convection would be substan-
tially different from the “normal™ {(# = 3) case

An “1sothermal” interface appears to be ensured
provided % « %y and R, = ¥ifv » 1, where v 15 the
kinematic viscostty The conclusions of Salpeter and
Stevenson (1976) can be applied to Jupiter and Saturn
as follows In the molecuilar-metallic hydrogen transi-
tion, the metallic phase 1s about 307, more dense than
the molecular phase. The sign of L 1s not known, but
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Fic. 2 —Temperature versus vertical coordinate z, for
positive latent heat and no nucleation BCDE 1s part of the
phase boundary, while 4B and EF are adiabats corresponding
to the same specific entropy In a fully adiabatic case, the
temperature profile would be ABEF, with a two-phase region
between B and E The actual temperature profile (——-) 1s
almost adiabatic except for a thin region near the mterface
This region, labeled by AT, 15 exaggerated for clarity. The
temperature profile for pure conduction ( ) 1s also shown

| L|f#e5T 15 probably slightly less than unity (Stevenson
and Salpeter 1976). Consider the case where L > 0
and no nucleation of one phase withm the bulk of the
other 1s possible. We predict the formation of a
thermal boundary layer between the phases, m which
heat conduction dominates (small-scale convection 1s
inhibited by heat leakage or molecular viscostty) A
simple mixing-length analysis yields a boundary layer
thickness of order 10 cm, across which there 1s a very
small temperature drop AT = 1072 K, as shown m
Figure 2 (AT is enlarged for clanty) Flow across the
phase boundary is mhibited by the density difference
and the inability of a macroscopic volume of flmd to
change phase instantaneously. Instead, there are
gravity waves on the interface, with amplitudes as
great as 10® cm for the longest wavelengths X & 10°
cm. This mainly trepresents a moving up and down of
the boundary iayer, with the actual thickness of the
boundary layer 1tself being appreciably less.

Suppose, now, that nucleation is possible It is
evident from Figure 2 that the fluid between B and the
interface C 1s supercooled and molecular, while the
flmid between Cand D 1s superheated and metallic. At
T 2 10* X 1n Jupiter or Saturn, homogeneous nuclea-
tion is probably the only nucleation mechanism. Using
a surface energy comparable to that of pure metallic
hydrogen relative to vacuum (about 0.1 eV per surface
atom, according to the theory of Lang and Kohn
1970), Salpeter and Stevenson find that the amount of
superheating or supercocling is never encugh fo
inttiate sigmificant nucleation. If heterogeneous nuclea-
tion were somehow possible, then only mfinitesimal
superheating or supercooling might be needed How-
ever, 1t 1s still not possible for a large amount of fluid
to rapidly change phase, since the superheating (or
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supercooling) 1s generally much less than the latent
heat. Consider, for example, a crest of metallic hy-
drogen on the wavy mnierface. Since the mterface
itself can be neither superheated nor supercooled, the
mterface itself hes on the phase boundary. However,
the flusd just below the crest is superheated and metal-
Iic. If nucleation seeds are available, then bubbles of
the molecular phase begin to grow at a rate determmed
by the diffusion of heat onto the bubble. However, only
a small amount of fluud has changed phase before the
entire crest has cooled to the local phase boundary,
and superheating no longer exists. This nucleation
process cools the metalhc hydrogen and: thus con-
trbutes to an upward heat flux. Since the total heat
flux must be constant, it follows that the thermal
profile will rearrange itself so that the interface 15
actually more hydrodynamically quescent than it
would be in the absence of nucleation

In the case L < 0, no supercooled or superheated
regions arise, and the thermal boundary layer 1s
similar to that for L > O if there are no waves at the
interface. The phase change of fluid at the interface in
a wave crest or trough might enhance the upward heat
flux, so a temperature 1aversion may be needed to
inhibit excessive heat flow This temperature mversion
15 at most about AT & 107 3T = 10K

The effect of planetary rotation on these considera~
tions 18 small Far from the interface, the super-
admabaticity 1s much larger m the presence of rotation
than 1n 1ts absence, but 1t 1s st1ll much less than nmty.
Simple mixmg-length theory (without rotation) pre-
dicts a fractional superadiabaticity € & 10721 Jupiter
or Saturn, if the mixing length 15 of the order of the
pressure scale height. Allowance for rotation (Steven-
son and Salpeter 1976, Gierasch and Stevenson 1977)
yields ¢ & 10~%, in simular circumstances As one
approaches the interface, a pomnt 1s reached at which
rotatton 15 no longer mmportant (1e, Coriolis force
becomes smaller than buoyancy force). This occurs at
a distance z from the interface, given by

v(z)
2o &1 (10)

where #(2) is the convective velocity appropriate to a
mixing length z, and £ 1s the planetary angular velocity.
This is satisfied m Jupiter or Saturn by z ~ 10°cm,
withm an order of magnriude. Since the thermal bound-
ary layer is much thinner than this, rotation is not
rapid encugh to change 1ts structure.

The effect of magnetic fields on the structure of the
interface 1s difficult to assess, especially if there 1s a
large discontinmity im electrical properties across the
mterface According to most dynamo theories (Steven-
son 1974) the Lorenfz force is no greater than the
Coriolis force, so 1t seems likely that magnetic field
effects are unimportant, 1f rotation 18 unimportant
Magnetic “buoyancy” of the metallic fluid immediately
below the interface may enhance the amplitude of
imnterfacial waves, but since magnetic pressure 1s
probably many orders of magnitude less than the
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hydrostatic pressure, this should not be an important
consideration.

To summanze If the molecular-to-metailic transi-
tion 1s first-order, and the conclusions of Salpeter and
Stevenson (1976) are applicable, then large deviations
from full adiabaticity may result In contrast to
Hubbard’s hypothesis, which states that

Sc = Satm s (11)

where S, S, are the specific entropies of the central
and atmospheric regions of the planet, respectively, we
have nstead

S, + AS = Suem, (12)

where AS = L/T" 1s the entropy change at the trans:-
tion It follows that a central temperature T, evaluated
according to equation (11) could be wrong by as much
as a factor of 2 (Stevenson and Salpeter 1976) in either
sense. This 1s an extreme upper bound, and 1t 1s more
Iikely that T, determuned by equation (11) 1s wrong by
only 107, or 20%,, but even this 1s not negligible 1n an
accurate intertor model. {The uncertamnty in AS 18
essentially the uncertainty in the adiabat for molecular
hydrogen atp > 0.1 gcm ™3, since the adiabats are well
known at lower densitres and at metallic densities. All
models of Jupiter and Satnrn—except Stevenson and
Salpeter [1976}—implicitly assume AS = 0.)

The existence or absence of a well-defined interface
is a gualitative feature which may have observable
consequences for the multipolanity of the magnetic
field, the large-scale convective pattern (Busse 1976),
or the normal modes of the planet, in addition to
modifying the compositional and thermal structure

We consider now the effect of this first-order phase
transition on the cooling of the planet For simplicity,
we assume that the actual temperature at the phase
boundary is much less than the critical temperature
for the first-order character of the transition, and we
assume that the entropy change and volume change
at the transition are independent of temperature. There
are two ways in which the cooling rate differs from
that for an adiabatic, homogeneous planet. First, the
present heat content 15 different since the spectfic
entropy in the metallic core is no longer equal to the
specific entropy 1n the atmosphere {eq. [12]). This1s a
primordial latent heat effect (1e, the nonadiabatic
structure resulted durmg the formation or very early
evolution of the planet) Second, the phase boundary
is evolving as the planet cools, because of the tempera-
ture-dependence of the transition pressure. This is a
contemporary latent heat effect.

The-primordial latent heat effect 1s readily evaluated
by noting that the age of the planetis proportional to its
present heat content (eq. [6]), provided the planet is
homogeneous. In Jupiter, most of the present heat
content 1s in the metallic core, and the temperature
m. this core differs from that for an adiabatic homo-
geneous planet by a multiplicative factor exp (—AS/2),
where AS ig the entropy change at the transition in kg
per proton (Stevenson and Salpeter 1976) The age of
the planet 15 therefore modified by roughly the same
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multiplicative factor, This factor could be as small as
0.5 or as large as 2.0, but is probably closer to unity.
The effect on Saturn 1s smaller, since a smalier fraction
of the total heat content resides in the metallic core
or in very dense molecular hydrogen.

The contemporary latent heat effect 1s much smaller.
As the planet cools, one phase grows at the expense of
the other. "THis “lead§ to gravitational and ifternal
energy changes that almost compensate, the net effect
bemng the purely thermal one of latent heat release
(Flasar 1973) According to the Clausius-Clapeyron

equation,
dP AS
(zf) = o 3

where the derivative 1s evaluated along the phase
boundary, and Av = 3g,%fproton (Stevenson and
Salpeter 1976) 1s the volume change at the transition.
The additional luminosity from latent heat generated
at the boundary, @y, 1s

4nR3L [dP\ {dT
O~ ——¢ (Ef)nn(ﬁ) ’ {14

where L = TAS 15 the latent heat per gram, and
(dT/d?) 15 the rate at which the temperature is changmg
at the phase boundary. Assuming d7Tjdf = —2 x
10~2* K s~1, which 1s appropriate to adiabatic, homo-
geneous models of Jupiter (see § IT), one finds that for
Tz 100K,

O =~ 6 x 10%%(AS5)%ergss—?, (15)

where AS 15 in k5 per proton Since |AS| < 1 kp per
proton (Stevenson and Salpeter 1976), 1t follows that
0y, 1s at most 107, of the total heat flux of 5§ x 10®*
ergs s% In Saturn, the mequality is even greater
because of the smallness of the metallic core Note that
0; 1s positive regardless of the sign of AS, (IFAS > 0,
then the metallic core grows at the expense of the
molecular mantle. If AS < 0, then the meolecular
mantle grows at the expense of the metallic core. In
erther case, heat 15 released )

These calculations are of limited usefulness for
Jupiter and Saturn, which are #ot pure hydrogen. In
fact, both planets contain a substantial mass fraction
of heltum The Gibbs phase rule enforces a discon-
tinuity of helbum fraction at a first-order molecular-
metallic phase transition, and this can have a much
larger effect on the cooling rate (see § VI).

+

IV CONVECTION IN THE PRESENCE OF A
COMPOSITIONAL GRADIENT

Thermal convection 1 the presence of composition
gradients 1s not a simple generalization of homogeneous
thermal convection, because the additional available
degrees of freedom can admit qualitatively new phen-
omena. There is an extensive literature on this problem
(see, for example, Spiegel 1972), but we lumit ourselves
here to those conditions which anse in hydrogen-
helium planets when the hehum 1s nonumformly
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distributed In particular, we assume that D < x
always, where D is the helium diffusivity and « 1s the
thermal diffusivity. We also assume that the tempera-
ture gradient is destabilizing. The first assumption 18
almost certainly valid for both molecular and metallic
phases (see Paper I, §§ VII and VIII).

With these assumptions, it is possible to eliminate
the “salt finger™ modes (Turner 1967) The remaining
steady states are: purely diffusive, overstable, and un-
stable. The purely diffusive solution 1s well understood
and exactly solvable. It need not concern us further
The unstable mode 1s a simple generahzation of
homogeneous thermal convection, and is highly effi-
cient 1n the transport of heat or solute The overstable
mede 15 qualitatively new and owes 1ts existence to
the presence of two diffusive processes of different
efficiencies (Shurtcliffe 1967, Turner 19684).

Consider, first, the unstabie mode. In direct analogy
to the well-known simple mmxing-length theory, we
can consider a parcel of fluid tn equilibrium with the
ambient medium, with composition and density given
by x and p, respectively. The parcel 1s then displaced
upward, expanding adiabatically and maintaming the
same composition. The condition for mstability is that
the parcel must then have lower density than the
ambient flmd, ie,

o dp
(ap)x.s @’ {16)

where s 15 the entropy, p 1s the pressure, and

£ (2). - (0.5 ()02
dp - op/ s oxJs.0\dp as Jxp\dp ’

which, after some elementary manipuiation, becomes

i (%) () (&)
dp B /) x.s ax}) .o\ dp

* ().l - ()]

If we define
_ 1/ap ar or @
<= ; (-a_j-q)x,p[_d-}; B (3_p)x,s:l dz HP ?
_ _1{op dx
x=-1(2) 2 an)

where z is a vertical coordinate and H,, 1s the pressure
scale-height, then

€>x (18)

1s the condition for instability, Generalizing the usual
arguments of srmple muxing-length theory, we can
then derive a velocity v

v & I)_;(E — X)”z(I/Hp 3 (19)

where [is the mixmg length, v, = (gH)Y 15 the sound
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speed, and g 1s the acceleration due to gravity. The
heat flux Fr 1s of order

Fr 2 ypv (e — x)Y2(I[HL), (20)
where we have used the fact that

&G _ P

_— 2
p ?PN'J’US:

_ 8ln p _{élnP

“=- (a‘ln T)q,x »r= (a I T)S.x » @D
and C, 1s the constant pressure specific heat. We can
also evaluate the solute mass flux F,

Fy & posx(e — XY([HLY (22)

The rate at which work 1s done agamst gravity in re-
distributing the solute 1s of order v ?F.(I/H,} An
obvious consequence of these results 15 that a very
small compositional grachent can have a large effect
on the convection properties, For example, ¢ & 1078
in Jupiter 1f x = 0, and the effect of rotation is neg-
lected (asitisabove) Thus,ify > 1078, the convection
properties would be modified. In the next section, we
consider situations in which y & 1. The effect of rota-
tion is not negligible, of course, but it does not change
the mstability criterion, and roughly speaking just
changes the right sides of equations (20) and (22) by
the same multiphcative factor &(J). [For Jupiter,
8(H,) =~ 1075 so that e 107* for =0, [ = H,
(Gierasch and Stevenson 1977).]

Consider now the overstable mode. In this mode, the
fluid 1s stably stratified (¢ < y), but smail-scale flmd
oscillations can grow because of the greater efficiency
of heat diffusion relative to helum diffusion Constder
a displacement of an element of fluid that 1s sufficiently
small for molecular diffusion effects to be significant.
In the displaced position, heat and solute diffuse from
the fluid element mfo the surrounding ambient
medum. If the density increase from this heat drffusion
exceeds the density decrease from the solute diffusion,
then the density contrast batween the fluid element and
the ambient medium is enhanced, and a growing
oscillation is possible, driven by the thermal buoyancy
force. In the absence of viscosity, the condition for
overstability is

ke > Dy. (23)

Molecular viscosity » is always important, however,
and the correct result incorporating v is (Walin 1964)

(¢ + »)e > (D + v)y 24

for overstability The regime of overstability 1s slice
of (e, x)-space, bounded on one side (¢ > x) by the
unstable region and on the other side by the stable
(diffustve) regime. In Figure 3, the stability diagram
1s given for the situation of interest (« > D = »,
e> 0, x> 0)

The overstable mode 15 most efficient when the
characteristic time for heat diffusion across a fluid
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Fic 3 —The stability diagram for thermosolutal convec-
tion, assummg ¢ > 0, x > 0, « > D The dashed line sche-
matically represents a constant heat flux contour For clarity,
the ¥ = 0 mtercept (¢ = &) 18 shown well-displaced from the
ongm Usually ¢ (the value of e for pure heat conduction) 1s
many orders of magmtude larger than ¢; The transition from
unstability to overstability (at a given heat flux) 1s not well
defined, but occurs 1 a region of e that 1s not greatly less than
€

element 1s comparable to the oscillation time
’\2/"5 =~ (Hp/vs)(x - E)—lm s (25)

provided » 15 not many orders of magnitude greater
than x. The characteristic horizontal length scale
(“wavelength”) A 1s typically of order 10 cm mn the
situations of interest (x — € & 1). The vertical am-
plitude cannot be estumated from Iinear stability
analysis, but experiments (Caldwell 1974) indicate that
heat and solute fluxes are not very much greater than
they would be from pure diffusion. This means that
the amplrtude of the oscillations 18 never enormously
greater than the wavelength, a physically reasonable
conclusion. Overstability should therefore be regarded
as a mechanicaily enhanced diffusion process rather
than a convective mixing process. This means that the
ratio of thermal to solute fluxes should be roughly the
same as it would be if only diffusion were acting. {This
is only true for ¢ > « since thermal diffusion 1s driven
by the fetal temperature gradient, not just the super-
adiabatic excess This criterion is always satisfied in
laboratory-sized experiments, and 1s satisfied in many
of the sitwations that we consider m subsequent
sections.)

In Figure 3, the dashed hne schematically indicates
a contour of constant heat Hux In the stable region,
€= ¢ (a constant for all ¥ if we neglect the Soret
effect—see Paper I, § VII) The onset of overstability
is accompanied by a gradual reduction in « for a given
heat flux, but because of the inherent inefficiency of
the overstable modes relative to normal convection,
the reduction in e is never very great, probably less
than an order of magnitude The transition from over-
stable to unstable behavior 15 complicated, and 15 not
accurately represented 1n Figure 3. Once unstabihity
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predommates, equation (20) shows that ¢ — y < ¢
until near y = 0, where € = ¢, + x/3. An interesting
feature of the unstable regime mm which e — ¥y € € 15
that equation (19) then predicts very slow convective
velocities. Under these crcumstances, convection 1s
likely to be mtermittent

In thermoseclutal convection, nonfocal (Turner and
Stommel 1964) dnd time-dependent effécts fiay oceur
The foliowmg situation is of particular relevance n
evolving hydrogen-helinm planets

Consider a senu-infinite pure fluid, bounded below
by a rigid, perfectly conducting plate Incident on this
plate is a constant, given upward heat flux F.,.. Experi-
ments and theory (Howard 1964) indicate that an
intermuttent boundary layer 1s formed which grows by
thermal diffusion until the local Rayleigh number 1s
exceeded for a layer of thickness ~ (x£)*2, where ¢ 13
the elapsed time and « is the thermal diffusrvity A
thermal plume forms which removes the buoyant finid
from the plate, and the whole process 1s then repeated.
Now suppose that solute 1s also intreduced at the plane
z = 0 ata constant mass rate F, Assumethatats =0
there 18 no deviation from neutral stability in the fiud,
and let Ap; and Ap,. be the subsequent z = 0 density
changes caused by heat and solute (Both are defined
to be positive, but the thermal effect 15 destabilizing
and the solute effect 1s stabilizing ) The exact form of
the subsequent diffusive solution need not concern us
(see, for example, Jeffreys and Jeffreys 1950), but the
general features are that (@) both Ap; and Ao, 1ncrease
as 1Y% and their ratio is constant; (b) the characteristic
distances over which the density changes extend are
(1112 and (D)2 for heat and solute, respectively
Let Fv° and F,." be the respective z = 0 fluxes m
density umts, It follows that

DAp,

A
o oy KBPy F"‘*%(_Dt—)lﬁ (26)

" Gy

These equations are approximate, but the ratio
equation 1S exact.

Fx" _ DLz APx
B = () Bos @n

Provided Apy > Ap,, a thermal can still form at the
plate surface, and all the introduced solute can be
transported away by convection However, If Ap, >
Apy, then a stable layer must form near z = 0. Experi-
ment and theory (Linden 1974, Linden and Shirtcliffe
1976) show that a diffusive “core” forins. At the edge
of this core there 1s a new mtermuttent boundary layer
which has the property that F.,” = (D/«)Y2F;* locally.
To conclude If F.* < (Dfe}PFy* at z = 0, then all
the mtroduced solute can be transported away by
convection. If F,.* > (Dfx)Y2F;™, then a stable diffusive
layer grows, and the amount of soluie transported
away by convection 15 at most (Df«)*2F/™ m density
units. For relevant values of D and « (see Paper I) this
limmits the work done 1n redistributing helnurm wpward
to ~10%, of the thermal energy flux Thts lim1t applies
to mitially localized perturbations of the helum frac-
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tion (e.g , at an interface between phases, or an inter-
face between convective and diffusive or overstable
regions).

In addition to the diffusive-convective equilibrium
described here, there 1s direct mxing of helum by
entrainment (1.e., wave-breaking at the interface)
This 15 neghgible 1f convective speeds are more than
an order of mapnitude smaller than wave speeds
(Linden 1974). This criterton 1s satisfied in most cases

Finally, we should consider whether more com-
phcated global 1nstabilities are favored relative to the
simple steady states already considered. A common
situation 1 experiments {Turner and Stommel 1964)
is the formation of a steplike distribution of solute, 1n
which uniformly mixed convective layers are separated
by thin, diffusive layers where the temperature and
solute concentration change rapidly. Experiment and
theory (Linden and Shirtcliffe 1976) show that thisis a
posstble steady state provided

Apy e\l

1 < ( D) , 28)
where App, Ap, (both posifive) are now the total
density drops across the fluid for the (destabihzing)
superadiabatic temperature difference and (stabihzing)
sclute concentration difference, respectively. If this
criterion is not satisfled, then the diffusive interfaces
thicken with time and the system reverts to a purely
diffusive or overstable state Equation (28) may not
be satisfied 1n some of the situations considered in
subsequent sections Furthermore, if is not clear
whether layers could form at all. The usual laboratory
and oceanographic situations m which layers form are
not analogous to the planetary evolutions we consider
in thus paper.

V. HELIUM IMMISCIBILITY

In this section, we consider the effects of helium
insolubility n a cooling hydrogen-helium planct. We
assume throughout this section that the molecular-
metallic hydrogen transition 1s no# first-order. Never-
theless, the discussion of this section essentially
corresponds to the “hot™ case of Sector I m Figure 1.

The thermal energy content of Jupiter 1s about
3 x 10* ergs at present. An even larger energy 1s
available, in prnciple, 1f Jupiter changed from a
chemically homogeneous structure to one where the
denser helium resides in a central core (Kiefer 1967,
Flasar 1973). Helum differentiation was origmally
mvoked to explain the excess Juminosity of Jupiter
(Smoluchowsk: 1967), but appears to be even more
desirable for Saturn (Pollack ef af. 1977)

It might be supposed that chemical separation and
gravitational layering are impossible 1n the presence
of fully developed turbulent convection, because
diffusion times are enormously large compared with
convecttve times. Salpeter (1973) pomted out that
layering may nevertheless take place m the presence
of convection, if helilum becomes msoluble mn hy-
drogen.

Salpeter origmally proposed that this insolubility
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Fic 4 —The mhomogeneous evolution of a hydrogen-
helium planet 1n which the only first-order transifion 1s helium
immuscibiity  The dashed line 15 the actual heltum number
fraction as a function of the actual pressure (or, equivalently,
the actual temperature) within the planet The regmion of
immuscibiity 1s shaded The center of the planet (or the surface
of a small rocky core) 1s P = P. In (@) (fop), the planet 1s
homogeneous, but phase separation 15 about to begmn at
P = Py In(5) (nuddle), the planet has cooled down more, and
the region of immscibility has expanded somewhat An in-
homogeneous layer forms, but the helium-enriched central
region 1s still predominantly hydrogen In (¢} (bortom), the
Ela{net 1s cooler still, and now the 1nner region 18 predommantly

elrum

would occur first in the metallic phase, but near the
molecular-metallic transition. Our discussion 1 Paper
I corroborates this guess At the molecular-metallic
transition, helum rmuxed i solar proportions first
becomes insoluble when the temperature drops below
about 8000 K (see Fig. 3, Paper I). The critical helium
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concentration x, substantially exceeds the primordial
solar abundance x, & 0 1 (Cameron 1973) where x 15
the hellum number fraction. A supercooled mixture
of primordial composition would therefore preferen-
tially separate mto hydrogen-rich and hellum-rich
phases.

Suppose T(P) is the actual temperature within the
planet, x(®P) is the helmm abundance, and Tpn(x, P)
1s the phase boundary temperature (the temperature
below which the fluid would preferentially phase-
separate} At an early stage i the degenerate cooling
phase of the planet, T(P) > Tp(xy, P) and x(P) = x,
everywhere. Eventually, as the planet cools down, a
time will be reached at which T(P,) = Tpu(Xo, Po) for
some pressure Py, close to the molecular-metallic
trapsition, as shown in Figure 4a. A shght further
reduction 1n temperature leads to a macroscopic layer
of supercooled metastable flmd. Droplets of helium-
rich fluid begin to nucleate from the mixture and grow.
We consider three important questions® What size
droplets are necded for efficient helium separation?
Can droplets of this size be grown ? How much supez-
cooling 1s needed ?

First, we consider how large a helium-tich droplet
must be to have a terminal velocity m excess of typical
convective speeds (~ 10 em s~ *). This convective speed
is derrvable from mixing-length theory (with the effects
of planetary rotation incorporated [Grerasch amd
Stevenson 1977]). Let & be the radms of a droplet, Iet
¥, be its terminal velocity, and let Ap be the density
difference between the helium droplet and the sur-
rounding fluid The velocity is found by equating
gravitational and drag forces:

CopVy2h? = Apbg, (29)

where Cp 1s the drag coefficent Assuming Re =
bVyfv = 10°% we can approximate Cp = 005 (Landau
and Lifshitz 1959). It 1s also adequate to approximate
Ap 22 p. Thus

V2 o2 20bg, (30)

and ¥V, > 10cms™t provided 6> lem For b=
1 cm, Re = 10% confirmng our choice of Cp.

The diffusivity of helium m metaihic hydrogen is
roughly D = 10-% cm® s~ (Paper I), so the charac-
terstic diffusion tume for the droplet 1s b3/ D 103 s,
This tume is much less than 10% s, a typrcal large-scale
convective time scale, so droplets can grow large
enough to overcome convective motion before they
are transported by convection to a region where they
would preferentially dissolve However, we must also
consider whether dropiets of this size are fragmented
by the hydrodynamic pressure differences on the
droplet surface. A measure of the distortion of the
droplet from a sphere 1s the ratio of the work done by
the hydrodynamic pressure in distorting a droplet to
the addrtional surface energy created. This ratio 1s 3,

where
e o
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ap 1s a typical interparticle separation, ¢ & 1072 Ry
18 the surface energy per surface particle, and v, is the
sound velocity For b 22 1 cm, we find 8 & 1, so these
droplets are near the maximum: stable size Regardless
of the exact values of the parameters, it 15 clear that
the downward flow of helium droplets is not Jughly
meffictent

Smce the effictency is not much less than urity, the
gravitational energy release 1s at least of order pb®gJH,
where J 1s the nucleation rate of droplets per unit
surface area for the entire supercooled layer, and H is
the typical distance a droplet falls. The energy release
could be much larger because each droplet can produce
a cascade of droplets by successive fragmentations, but
an upper bound to the nucleation rate (and the super-
cooling) can be found by 1gnoring this complication
The homogeneous nucleation rate 1s given by Feder
et al (1966) as

J. - ﬂg —O'akBT
=t P | 2 TaaT |

where A 1s the latent heat per atom for the addition of
helium-rich flwd to a droplet, and AT 1s the super-
cooling For a rough estimate of AT, we equate the
Jovian heat flux to pbPgH/J:

(G2)

TNz  (20%,T
A_ ~ 3 In 7,
d (33)
HR®Y
K (Ho‘1 )En o

where ;32 1s the ratio of the heat flux to p2,® For
Jupiter, ¢ = 107% and Inn a5 100 The theoretical
calculations (Stevenson 1975) indicate that A
0 5kyT at T a2 10* K, so we finally get AT{T = 1072
If heterogeneous nucleation 1s possible, then the
required superheating would be even smaller, If the
supercooling becomes larger, then more droplets are
nucleated and more energy is released, heating up the
fluid. This acts as a servomechanism, keeping the
supercooling at just the right level to supply the re-
quired energy output. In our subsequent analysis, we
neglect AT relative to T. It 1s almost certainly small
enough to ensure that nucleation rather than spinodal
decomposition occurs (see Paper I)

Once helium separation has been mitiated, three
regions are formed (see Fig 4b): (1) P < P, and
x(P) = x; < xp; (1) Py < P < Py where Tyu[x(P), P]
= T(P), (1) P > P, and x(P) = %, > x. Regions
(1) and (i) are homogeneous and fully convective.
The intermediate region 1s necessarily inhomogeneous
because of the region of immiscibility. Consider, now,
the Iife of a helinm-rich droplet which nucleates out
of the slightly supercocled mixture at P = Py, X = x;.
According to Figure 4b, it has composition x = Xs.
It eventually grows to about 1 cm size and begins to
fall toward the center of the planet. Since diffusion
times are much less than convective times, it will
evolve along the right-hand-side boundary of the
1mmiscibility region. At P = Py, when the droplet has
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composition x = x,, the droplet merges with the mner

homogeneous region. However, 1t must continue to -

evolve along the phase boundary until 1t either reaches
the critical point (x = x,) or the center of the planet.
In Frgure 4b the most likely case 1s shown, in which the
critical pownt 1s reached first, The droplet then
evaporates, enriching the mmner region with belium.
During this phase of the evolution the mner region is
being enriched with helium, but 1s still predominantly
hydrogen.

Later in the evolution, the innermost hydrogen-
helium region reaches the critical composition x,. After
this, hellum-rich droplets fall all the way without
evaporating, and a predominantly helium core must
begin to form Ths 15 mdicated in Figure 4¢ Notice
that a well-defined density discontinuity exists at
P = P,. The negative slope of the phase diagram on
ihe right side ensures that the predominantly helinm
core 15 homogeneously mixed.

Consider, now, the thermal structure of the in-
homogeneous mtermediate layer The temperature
drop AT, and pressure drop AP, across the layer are
given by

AT = I;,h(x% -Pl) - Tph(xla PO) H (34)
AP = P1 — PQ .

Choice of x; (say) then gives a unique solution for the
other parameters as a function of d, the layer thickness,
given the phase diagram and the total helium content
The thermal and solute gradients can then be evaluated
from equation (17) In the limit where d « H,, we find

ez 0 os(A—;) (%) : 55
X % 3Ax(%’) :

where Ax = x, — x,. For the metallic hydrogen-
helinm phase diagram (Stevenson 1975) we typically
find AT/T ~ 10Ax and e « y. This inequality arises
because the fluid is degenerate and has 2 small thermal
expansibility (e, [(@lnpfdlnT), | « 1) It would
appear that unstable modes never exist for any layer
thickness 4. This could be misleading, however, since
it does not take into account such nonlocal effects as
“convective overshoot™ (Gierasch 1971, Shaviv and
Salpeter 1973) or the interaction of convection with
the phase diagram tself.

Consider, for example, a fluid eddy of size I moving
upward with velocity v, This eddy impinges on the
inhomogeneons layer from below, and begins to slow
down as 1t loses buoyancy and penetrates the layer
The uppermost parts of this eddy are then helmm-rich
relative to the phase boundary composition, and
helum droplets can nucleate and grow We first
evaluate the penetration of the eddy assuming that
there 15 no nucleation Its penetration distance / can
be found approximately by equating 1ts initial kinetic
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energy to the work done against gravity in penetrating
the lower density mhomogeneous layer:

poPI® 2 pgerh®l?, (36)

where g, 15 the effective deceleration of the eddy

dx
8orr = —gh Z €7)
Thus,
27 13

b —”-—) . 38
(e ¢

For v, &~ 10 cms~%, / & 10° cm (the largest concerv-
able eddies m Jupiter, say), £ =~ [0°cms~% and
|dxfdz] &~ 10-° em~!; we get £ = 10° cm. This means
that “waves” of this amplitude exst at the transition
between homogencous and mhomogeneous layers.
Regardless of nucleation, 1t follows that if the layer
thickness is less than about 10° cm, then convective
overshoot can transport heat through the layer.

Suppose, now, that the ambient fluid 15 on the
verge of nucleation Since nucleation is such a strong
funciion of supercooling, nucleation would then begm
immediately as the eddy began to penetrate the
inhomogeneous layer, Droplets would grow at a rate
Iimited by D, the helm diffusion coefficient (since
heat diffusion is much more efficient). For D =
10~% cm?® s, dropiets reach a size of 1 cm radws 1n
10°% 5. Since 1t takes ~10%s for the eddy to penetrate
i 10° cm, these droplets begin to separate out
before the eddy comes to rest The droplet separation
15 1nefficient, since the droplet velocity 1s only com-
parable to the convective velocity. Nevertheless, the
theoretical calculations (Stevenson 1975) mdicate that
phase separation 1s accompanied by heating of the
fluid (1 e., the latent heat is **positive™), so part of the
eddy might become buoyant if 1t loses some of its
hellum We shall now show that this instability does
not in general occur, since 1t requires an unreasonably
efficient separation process.

The nppermost portions of the eddy are helium-rrch
relative to the surrounding fluzd by at most k|dxfdz| =
Ax. Suppose a fraction 8 of this excess 15 completely
eliminated by nucleation, growth, and removal of
droplets. Smce the latent heat 1s of order %pT per
particle, the fluid 1s hotter than the surroundmgs by
roughly 78Ax. Consequently, it 1s more dense than
the surrounding fwd by Ap, where

Ap dlnp _ wf@np
> NAxa[(a L T)m +d a)( In )T] (39)

where the second term arises because the fiud is still
more helium-rich than the ambient medrom Smce
(@InpfoIn T, , = —0.05, whereas (8 In p/0x)7 , = 2,
1t follows that Ap > 0 provided & < 097, which 15
tnost Iikely

In § 1T, the hugh-speed ejection of small volumes of
fluid from one phase mto the other dunng the recoil
of an eddy was discussed for pure hydrogen. A similar
effect probably occurs here, if the eddy 1s much Iarger
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than the thickness of the inhomogeneous region (so
that gravily waves at the now diffuse “interface”
would be possible). However, the application of
equation (9) indicates that the amount of ejected flud
woulid have no significant effect on the distribution of
thermal energy or helium.,

‘We conclude that the inhomogeneous layer 18 prob-
ably stable with respect to convective overshoot or
eniraimnment Swmce the phase diagram (Paper I)
predicts AT/T = 10Ax, equation (35) predicts e
0.1x In Paper I, we found (x + v) &~ 0.5cm? s and
(D 4+ v) = 0.005cm?s57%, s0(x + v)e > (D -+ v)x(eq
[24]) and the condition for overstability 1s satisfied
The crterion for layers (eq [28]) may be margmally
satisfied, but even if 1t 15, the temperature gradient in
the mmhomogenecous layer will not differ greatly from
that predicted for overstability Overstable modes are
inherently very mnefficient, so the temperature gradient
will be larger within the mhomogeneous layer than
elsewhere. A consequence of this 1s that helmm
separation 18 accompanied by an inereasmg tempera-
ture n the innermost regions of the planet, despite the
decreasmg temperature externally This is illustrated
schematically 1 Figure 5.

HELIUM SEPARATION
3 (schematic)
—C
T 8 !
(16*K) |
A |
|
|
l |—
\“‘ﬁ\
~—p
- ‘-‘—C
E D
[ l
|
Kol |
|
X |
(He) |
—C
—B \\ ‘\ 1
%o A A ——A
-—B
—
~-D
tr “—P
—_—

F16 5 —Temperature T and helmum composition x as a
function of pressure P (or radial coordmate r) in a cooling
hydrogen-helmim planet The curves A, B, C, D are n order
of mcreasing time Note that m the early stages of hehum
separation, the central temperature mcreases as the external
temperature decreases Much later (D), a hellum core begms
to form, and the temperature gradient in the inhomogeneous
region decreases because the total internal heat flux 15 lower
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Assuming overstable modes, the thickness d of the
mhomegeneons layer can be estrmated For Jupiter, if
we assume that the inner and outer hellum fractions are
X, =012 and x, = 006, respectively, we find d =
10%-10° cm, a sigmficant fraction of the planetary
radius (The precise value of d depends on the efficiency
of the overstable modes.) As the planet cools, the heat
flux becomes less, and this layer becomes even thicker.
The discussion of § IV indicates that convection above
the mhomogeneous layer transports some helium up-
ward, but this 1s always counteracted by nucleation

To conclude, helium separation has the effect of
prolonging the thermal evolution of the planet. Once
1t becomes thermodynamcally favored, the separation
proceeds with an efficiency that 1s nerther very small
nor very near 100%, It leads to depletion of helmm
from the atmosphere, and a thermal structure that 1s
substantially different from that of an adiabatic,
homogeneous planet An inhomogeneous layer is
formed which is eventually stable with respect to large-
scale convective flows, and which can encompass 2
significant fraction of the planetary mass.

The effect of hellum differentiation on the cooling
rate of the planet can be large. We shall estimate this
for the early stages of differentiation, where no pre-
dominantly helum-rich region has formed {case B,
Fig. 5) The correct procedure for constructing an
evolutionary sequence is to compare total (gravita-
tional and 1nternal) energies for a sequence of models
with gradually decreasing effective temperatures. How-
ever, an examination of the calculations of Kiefer
(1967) and Flasar (1973) indicates that the energy
release from differentiation that is available for excess
Iurminosity or heating of the planet can be adequately
approximated as Qgyay, given by

aM
QGrav ~ (W)HegH; (40)

where (dM/dt)g. 15 the rate at which a helinm mass 1§
moved down a distance H in a gravity field g. In our
case, H is roughly the vertical separation of the centers
of masses for the metallic and molecuiar fluids. Since
differenbation increases the heat content of the core
(even as the outer layers of the planet cool), we first
consider what fraction of Qgpay 18 required for this
heating. Suppose the core composition changes from
Xg to X5 + Ax,. The mass of helmm required to do
this 1s

AAx, M,
TN (1)

where M 1s the mass of the core. We assume that the
mass of the mhomogencous layer is neghgible (a good
approximation during the early stages of evolution).
The gravitational energy release 1s therefore

EGI'&V ~ MHegH (42)

However, T3, the temperature at the boundary between
the mmhomogeneous layer and the metallic core, 1s
related to x, according to the miscibility curve. Thus

Mg, =
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T, must change to T + AT,, where
. {dar
AT, = (E)phsz' 43
According to the H-He phase diagram (Paper 1),
ary " 1
(E)ph =723 x 100K 49

for x, 25 0.1. The thermal energy icrease of the
{adiabatic) core, Ey,, 15 therefore

By & yCToAx.M, , (45)

where C,, 15 the specific heat per umt mass and y 1s ithe
ratio of the average core temperature to the boundary
temperature Ty, The ratio of E,, to Fg.. 15 therefore

By ~ yCoTo
EGI‘&V ~ 3gH

assuming x; ¥ 01, p 15 g3 x 10%cm?s 1,
Com2x 10%ergsg™, and H=x4 x 10°cm for
Jupiter. (Similar figures apply to Saturn ) We conclude
that most of the energy release from differentiation
must be radiated The ratio above 1s an upper bound
corresponding to highly mefficient heat transport
through the mnhomogeneous layer.

We proceed now to evaluate the cooling rate during
drfferentiation. (Cooling rate 1s here defined to mean
dT./dt, where T, 1s the effective temperature, smce the
total heat content of the planet may actually inciease
during the early stages of differentiation ) Let 73 be
the temperature at the boundary of the nhomogeneous
region and the molecular envelope We assume that
T, and T, lie on the same adiabat, so that

Lo (&)
2 (R %)

where P, 1s the pressure at T, and » is the average
adiabaticmdex. As the hellnm differentiation proceeds,
P, changes much less rapdly than 77 and can be
assumed to be constant The transmussion opacity of
the atmosphere 1s also only shghtly affected by a change
in hehum content (Trafton and Stone 1974} and the
gravitational acceleration also changes hitle, so P,
{eq [5]) s approxmumately constant The adiabatic
index n 15 affected significantly by the helum content
(especially 1n the outermost layers) because helium is
monatomic whereas hydrogen is diatomic Since
decreases as the helium content decreases, the decrease
in T, dunng differentiation 1s actually Jess than it would
be if # were constant (A change in # also indirectly
changes F, by changing the level in the atmosphere at
which convective transport ceases to dormnate)
Nevertheless, numerical calculations indicate that these
effects are secondary and that Py, P,, and » can all be
considered constant in the first approximation Equa-
tion (47) then implies

dinT, ,dinT,
a " T dr
with a systematic error of typically 20-30%,

502, (46)

(48)
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Let x, be the composition of the molecular envelope
Conservation of hélrum implies M.AX, & — MenoAX1,
where M, is the mass of the molecular envelope. The
gravitational energy release 1s therefore

Otrar — 4Mony dr;
Grav T T W + o)l dF

Equating Qgpey = 5 x 1022 ergs s~ for Jupiter and
Ty = 10*K mmplies (from eq [47]) that dT,/dt =~
—1.5 X/10° yr In contrast, Hubbard’s homogeneous,
adiabatic model for Fupiter requires d7,/dt = —T7 K/
10° yr for the present era (Hubbard 1977) For Saturn,
equation (49) with Og,.. = 2 X 102*ergs 51 implies
d1./dt ~ —1 3 Kf10®° yr, whereas homogeneous evolu-
tion requires 4 or 5 times more rapid cooling Differ-
entration, once mitiated, therefore has the effect of
dramatically changing the luminosity-time relationship
and mcreases the Kelvin time by a factor of 4 or 5.
In conjunction with the results of the homogeneous
evolutionary calculations (§ IT), these resulis suggest
that Jupiter is not differentiating or at least has only
recently (within the last 10° years) begun different-
ation, whereas Saturn may already have been differ-
entiating for ~2 x 10% years. If Saturn’s luminosity
1s indeed 2 x 10%¢ ergs s~ at present, then the simple
model outimed above suggests that the molecular
envelope (and atmesphere) have already been depleted
by 20-30%, of its primordial helum (i.e., from x; =
009 to x; = 0.07). ,
The above calculations are applicable only if the
molecnlar-metallic hydrogen transition 1s nof first-
order. In the next section, we consider the addrtional
complications that arise m determuming the helium
distribution when this restriction is relaxed.

gH. @)

VI. MORE GENERAL CASES

In more general cases, both the first-order character
of the molecular-metallic hydrogen transttion and the
Irmuted solubility of helium 1n hydrogen must be con-
sidered A gualitatively new feature 1s the Gibbs phase
rule requirement that coexisting molecular and metallic
phases must have different helium mass fractions. The
discussion of Paper I indicates that helium would
prefer to be mixed with molecular hydrogen. We con-
sider in this section how that preference makes rtself
apparent in the hehum distribution m a hydrogen-
helilum planet

This section corresponds to Sector ITT of Figure 1
Both “hot™ and “cold ™ starling points are considered
because of the large uncertainty m T {H-F.) The
designation “hot” or “cold” need not imply anything
about the actual central temperature of the planet.
For example, a “cold” starting point corresponds to an
evolution in which the actual temperature was less
than the crtical temperature for the molecular-
metallic hydrogen transition, when the pressure first
exceeded a few megabars.

ay The “ Cold” Starting Pomnt

Consider a hydrogen-helum planet 1 1ts early
evolution, when the pressure in the innermost hy-
drogen-helimm region still has not reached several
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Fi6 6.—A sequence of phase diagrams for the “cold” stable case These dragrams are slices of the three-dimenstonal P, T, x
diagrams, usmg the P-T relatronshmp actually existing within the planet (The pressure coordmate P can equally well be labeled by
temperature ) The phase excluded region 1s shaded The actual helmm composition 1s represented by the dashed hine In (@), the
mnermost hydrogen-helium flud 1s just begmning to be compressed into the phase excluded region Later, in (§), an inhomogeneous
molecular layer 1s formed on top of a homogeneous metallic layer Subsequently, m (¢}, the molecular fluid evolves mto the triple
pomnt B, and helum-rich droplets form at € An inhomogeneous metallic layer begins to form at 4 Even later, at (d), the triple
pomni composiiion becomes equal to X, and the entire molecular layer begins to be uniformly depleted of helium The metallic
hydrogen layer at 4 1s nhomogeneous, while a homogeneous helivm-rich core forms n the mnermost region

megabars. We assume that the center of the planet 15
occupied by a small rocky core. This 15 a reasonable
assumption from cosmogonic considerations (Podolak
and Cameron 1974), but not crucial to our argument
As the planet contmmues to contract, the pressure
increases and any given element of fluid evolves up-
ward along the dashed Iine in Frgure 6a Eventually,
in thus *‘cold™ case, a time 1s reached when the mner-
most hydrogen-helium fluid evolves mto the phase
excluded region (shaded in Fig 6a) This occurs at
P = Py & 3 Mbar (sce Paper I) Nucieation then be-
comes possible, and metallic droplets of lower helium
content (x = x;) form and grow Meanwhile, the
molecular flmd becomes shghtly helium-rich and
evolves along the lower phase boundary. There are
two very different cases, depending upon whether the
helinm-xich molecular phase is less or more dense than
the hehum-poor metailic phase.

Consider, first, the “stable™ case in which the
metallic phase 1s more dense. Once a macroscopic
amount of this phase 15 formed, 1t settles mto a layer
covering the rocky core. The interface between this
metallic layer and the molecular fluud 1s sharply de-
fined, and lies exactly on the phase boundary for the
relevant pressure. If no heat flux 1s transported through

this interface, then the subsequent evolution is rather
simple: the molecular fhud contmues to evolve along
the phase boundary toward a more helium-rich mix-
ture The metalic phase remains uniformly mixed,
since the new fluid added to this phase 1s always a hittle
more dense than the fluid already present. Figure 65
shows the situation when the metallic-phase com-
position becomes almost the same as the original
molecular-phase composition Asteady-stateconfigura-
tion is then reached in which subsequent contraction
and compression effectively process molecular hy-
drogen into metallic hydrogen without changing the
helmm content Only the rather thin intermediate
molecular layer 1s inhomogeneous Notice that the
outer molecular layer retatns its primordial helium
content. We have, of course, assumed that the
molecular phase still remains less dense than the
metallic phase, even at P = P, in Figure 6c

As the planet continues to cool, a time must be
reached at which the molecular phase ceases to be less
dense, or hellum msolubility occurs The former case
18 discussed later In the laiter case, the insolubility
happens stmultaneously 1n the molecular and metalhe
phases, as shown m Figure 6c (This 1s a general
thermodynamic principle and not a consequence of
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our phase diagramn model ) Notice that the ipnermost
molecular region evolves into a triple point Droplets
of helium-rich fluid nucleate from the molecular find
at B and the metallic fimd at 4 These droplets form
at C and are more dense than either of the other
coexisting phases. The growth and separation of these
droplets then proceeds exactly as we discussed m § V.
Notice that an inhomogeneous layer begins to form
in the metallic layer, but the atmospheric helrum
content remains primordial still.

Even later m the evolition, the triple point evolves
toward the primordial hellum content, and the in-
homogeneous molecular layer is elimmated by helum
separation Figure 6d shows the point beyond which
the atmosphere begins to be depleted 1n helmam The
reason 1s that the innermost molecular region now
begins to be depleted in helmm reiative to fimid above.
This 1s an unstable situation, so the molecular layer
remams fully mixed at the triple pomnt composition,
while the core becomes progressively more enriched
The triple pomnt continues to evolve to lower helium
fraction as the immiscibility region expands to fill more
of (P, T, x)-space The final (zero temperature) state
is fully separated hydrogen above helium. If this case
1s applicable to Jupiter, then the current state of
Jupiter 15 probably nearest to Figure 6¢ some helium
separation may have occurred but there 1s no depletion
from the atmosphere.

Thus rather simple picture can become more com-
plicated when we consider (as we must) the transport
of heat through the molecular-metallic boundary We
assume a constant, given heat flux which is determined
by opacity considerations in the atmosphere, but which
1s ultimately derived from adiabatic contraction, or
helium separation, or latent heat, or even radicactive
heat from the rocky core The question is whether the
convective heat engine can do work transporting
helum up into the atmosphere dunng the early
evolution

Return, now, to Figure 6ag where a metallic layer 1s
Just being formed, and the helium content of the
molecular layer is beginning to be mcreased In the
presence of a fixed heat flux Fp, this is directly
analogous to the situation we discussed in §1V, in
which solute is added at the lower boundary of a
convecting flmd Provided the solute 1s added suffi-
ciently slowly, we found that it would alf be convected
upward In our context, the criterion for complete
mrxing 1s that the work required to completely mix the
hehum upward be at most (Df«)2F,, where D and «
are the helium and thermal diffusivities, respectively,
for the molecular phase If, as seems likely, electronic
degrees of freedom are available for heat conduction
{see Paper I), D/x =~ 102 so the upward muxing of
heliuvm will be rather mefficient The actual amount of
mrxing depends on the value of Fp, which was surely
many orders of magnitude larger during the early
evolution than 1t 158 now (Graboske et @/ 1975) The
amount of work required to redistribute heltum up-
ward m Jupiter 1s not prohibitive even now. For
example, the present internal heat flux of Jupster acting
for 10%° years could, in prnciple, supply energy suffi-
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cient to double the helmim content m the molecular
envelope of the planet (at the expense of the metallic
core) However, the small value of D/« ensures that
the actual amount of work done redistributing helmm
1s small.

It seems likely, therefore, that the inhomogeneous
layer (Fig 65) will form even i the presence of the
heat flux. An additional complication can then arise:
since the temperature gradient must be very large 1n
the inhomogeneous layer {with the heat flux carried
by inefficient, overstable modes), 1t 15 possible (and,
m fact, quite fikely) that the self-consistently deter-
mined phase boundary OB m Figure 6b no longer has
a positive slope! This can occur If the latent heat for
the pure molecular-metallic hydrogen fransition 1s
negative (in the sense discussed i § IIf) What then
happens 1s that the dashed line 1n Figure 6b ceases to
follow the phase boundary but mstead forms a purely
diffusive-convective solution Helmum transport in ot
out of the metallic phase 1s then mamtamed by
diffusion at the molecular-metallic mterface. The 1n-
homogeneous layer, the thickness of which was
previously determuned by the slope of the phase
diagram, 1s then a few times Dfw,, where u, 1s the
speed at which the molecular-metallic interface moves
outward from the center of the planet. Typical values
for Jupater might be D & 10~ * ecm? 5=, », == 10~ % cm
s™%, and D/v, ~ 105cm The upward transport of
helrem will then be close to the upper limit of (Df«<)“2Fy.
in energy units.

We now discuss the case where the molecular phase,
by virtue of its helum excess, ceases to be less dense
than the ceexisting metailic phase The theoretical
phase diagrams of Paper I indicate that this 15 quite
likely We suppose that the early evolution s as in
the stabie case, but that somewhere between the Figure
6a and Figure 65, the densities of the coexisting phases
become equal. The planet continues to contract, so
that at tume f later, there exists a thun melecular layer
of thickness »..f, which 1s more dense than the
metalhc fluid immediately beneath it. Here 2., is @
velocity characterizing the evolution rate, and is
comparable to the velocity of the molecular-metallic
boundary relative to the center of the planet

A Rayleigh-Taylor mstability 1s now possible The
time that disturbances of wavelength A take to attamn an
amplitude ~ A 1s (Chandrasckhar 1961)

dvp

TRT ~ E\Tp > (50)

where v 15 the kinematic viscosity and Ap 1s the density
difference between the overdense molecular layer and
the metallic fluud. Clearly,

Ap , Vot
P H (51)

AR Vgt

since only the layer of thickness v, can participate
i the instability, Equating ¢ to 7y gives the time
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for breakup of the layer:
e (va )113 ) (52)

2
ey

For v, » 107%*cms™}, r~ 10°s and A=~ 10cm.
For vey ¥ 107 %°cm s~ {a present-day value for the
motion of the mterface m Jupiter), ¢ = 10°s and
A 01cm Thus the mnstability is typically charac-
terized by the breakup of 2 very thin layer of flmid into
droplets of size 1 cm, to within an order of magnitude
or 2 The helinm diffuston time for such droplets 1s
small (about 10° s) relative to the time they would take
to fall a substantial fraction of a scale height, so these
droplets remain 1 equihbrium wiih the phase bound-
ary as they fall under gravity They evolve 1n the
direction of the arrow in Figure 7, becoming progres-
sively more dense than the metallic phase For the
choice of phase diagram in Figure 7, these droplets
merge in a helium-rich mner region at P > P,. The
helhum-poor metallic region 1s shown as homogeneous
in Figure 7, but 1f may actually tend to become stably
stratified (with more hehum 1n the mnermost regions),
for two reasons First, the hellum-rich and helinm-poor
fluuds at P = P, are not 1 phase coexistence- there 18
a chemical potential difference tending to drive helinm
upward into the helium-poor fluid. Second, the shaded
forbidden region m Figure 7 is actually expanding as
the planet cools, 0 belrum-poor droplets may nucleate
from the helium-rich fluid and rise to merge with the
helium-poor flmid above. These effects will not stop
convection in the entire hellmm-poor layer (P, < P <
P,), but rather lead to a diffusive-convective solution
of the type discussed m §IV. Except for a diffusive
layer near P = P,, most of the hellum-poor layer
continues to convect and transport some helium
upward.

The subsequent evolution in this case is actually
not much different from the stable case. The shaded

Py

no

~0

I

5]

X

A
e e s

3
>

FrG. 7.—The unstable *“cold’ case The coexisting phases
at P = P; have the same density Droplets break away from
the molecular fluid at P = Pi, and evolve m the direction of
the arrow to merge with the helem-rich core at P = P,
Subsequent evolution of this figure 15 simular to Fig 6
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region in Figure 7 will expand and form a diagram
somewhat hke Figure 6¢ The molecular fluid at P =
P, will then eventually evolve into the triple pomnt. The
situation will then be similar to Figure 6c, except that
(@) a predommantly helinm core has already formed,
(&) the helhum-poor metallic layer above this helium
core will have a lowerhelium content-than-the-primos-
dial rmixture, and (¢) the coexisting phases at P = Py
have the same density

The equality of densities at the molecular-metallic
mterface leads to another novel feature large-ampli-
tude gravity waves excited by convection In Salpeter
and Stevenson (1976), mterfacial gravity waves were
found to have small amplitude at a pure molecular-
metallic interface, because of the substantial density
difference between the phases In the case where the
densities are equal, however, the amplitude of the
waves 1s inuted only by the lower compressibility of
the metallic phase relative to the molecular phase Let
Az be the distance measured upward from the equal-
density interface. The densities of the two phases (one
stable, the other metastable) at this posiion are

Pumer = poll — elzfH}),

Pl = PO(I — BAz{H,), (53)

for the metallic and moiecular flinds, respectively. The
values of « and B are determuned mainly by the
properties of the pure hydrogen phases, rather than by
the helmm adomuxture, and are roughly o = 0.45,
B ~ 0.55. Consider an eddy of metallic fliud with
velocity », and size / mcident on the interface. It
penetrates a distance / given by

o020 2% pg(B — o) HRTP. (54)
For simple mixing-length theory, v, & 10~ 8o (J{ H )2,
whence we find
419
Le 10-4(%’) , 5)

so i = [ (.e, wavelength exceeds wave amplitude) for
I < 107 cm. At this size, molecular viscosity 1s not yet
important, so 1t 1s possible for drops of size ~ 10 cm
to break away from the interface and proceed a few
times their own length mnto the opposite phase Longer
wavelengths have larger amplitude but are com-
paratively stable (3f] < 1)

Despite the larger distortions of the interface 1n this
case, the interface will stil! not be completely destroyed.
In other words, the considerations of Salpeter and
Stevenson (1976; also see § III) sull apply, and the
interface 15 ““1sothermal,”

b) The “ Hot” Starting Point

We now consider a case in which the influence of
phase transitions occurs much Jater in the evolution of
the planet Figure 8a shows one particularly hiely
sitnation m which the phase-excluded region begins
small and then expands until it comes m contact with
the actual (homogeneous) helium distribution at some
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Fi¢ 8 —The “hot™ case The dashed line represents the
helim concentration, and the phase excluded region 1s shaded
In (g) (top), helium-poor droplets (B) nucleate from the fluid
at A and nse along the phase diagram as mdicated by the
arrow These droplets eventually become pure metallic hy-
drogen, then evaporate at P, < P < Py In (#) (»nddie), the
subsequent evolutron dilutes the heliumn content of the
molecular envelope, while a hellum-rich region forms In (o)
{bottom), hehum-poor metallic droplets at P = P, no longer
have lower density than hehum-mich molecular fluid, so a
metallic layer forms The final state 15 not shown since i 1s
egquivalent to Fig 64

pressure P = P,. From the fluid at 4, heltum-poor
metallic fluid droplets nucleate at B These droplets
are always less dense for any plausible phase diagram
Iike Figure 8a, so they begin to rise, maintaining
equihibrium with the phase boundary, as shown by the
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arrow in Figure 84. As usual (cf. § V), the droplets
never grow much larger than Icm radms before
fragmentmg The droplets evolve to become essentially
pure metallic hydrogen at P = P,. They can now
change phase, mainly by evaporation at the droplet
surface, but also by nucleation within the droplet. In
either case, the rate at which the droplet converts back
to the molecular phase 15 determined by latent heat
considerations We shall not discuss the details of this,
but we assume that the resulting dilution of the
molecular lmd at P ~ P, 15 sufficiently delocalized
that convection mamtains compositional umiformmty.
Presumably, mucroscopic droplets of metallic hy-
drogen have a very long Iifetime, but even they cannot
rise to pressures lower than P,, the pressure at which
the density of the droplet is the same as the ambient
medmm, unless they are transported by convection A
steady-state metastable metalic hydrogen “mist™
presumably exists, perhaps to quite low pressures,
because of convective transport.

As the phase excluded region expands toward
larger x, the region P > P, remains fizlly mixed smce
the region near P = P, is being continually enriched
in helim Above this layer, an inhomogeneous
molecnlar layer forms At even lower pressures, a
homogeneous layer, extending up to the atmosphere,
exists. Thus layer has a diluted composition relative to
primordial, because of the contmuous addition of pure
metallic hydrogen droplets This is 1llustrated in
Figure 85.

The homogeneous molecular layer cannot evolve all
the way to pure hydrogen because some level (labeled
P = P, n Fig 8b) exists at which the coexisting phases
now have equal density. Heltum-poor metallic droplets
at P = P; no longer rise, and begin to form a layer
separatng two molecular regions This 18 shown in
Figure 8¢ There are now two interfaces, at P =P,
and at P = P, The interface at P = P, is approxi-
mately a constant-depsity interface. It is rather un-
stable, since pieces of the metallic phase could break
away and become buoyant by losing their helium as
they continue to evolve along the phase boundary. The
actual dynamuc steady state presumably has the inter-
face slighily displaced from the equsal density level,
so as to ensure greater stability The discussion earlier
1 this section on waves at a constant-density mterface
mdicates that the instabrlity is not catastrophic

The subsequent evolution is then quife straight-
forward Eventually an inflection develops 1 the
molecular phase boundary m Figure 8¢, and the
phase excluded region evolves toward a diagram such
as Figure 64 The hellum distribution would then be
the same as 1 the “cold™ evolution. Thus the final
state 1s sumilar for “hot™ and “cold ™ starting points,
but the paths by which this state is reached are different

YII PISCUSSION AND CONCLUSION

In Figure 1, the entire evolution of a hydrogen-
helium planet can be characterized as a semi-infinite
line segment, the extensien of which passes through the
origin We first summarize in qualitative fashion the
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s1x possible evolutions corresponding to possible hugh-
temperature starting points m Figure 1. Some of these
evolutionary sequences also have further alternatives,
dependmmg on the relative densities of coexisting
molecular and metallic phases.

Sector I (hot) —As the planet cools down, helium
begins to separate out At first, a semewhat enriched
metallic region and a somewhat depleted molecular
region exist, separated by an mhomogenecus layer.
Later, a predominantly helrum core begins to form.

Sector I (cold) —During the early evolution, hehum
beging to separate out and (probably) forms a pre-
dominantly helium core. Depletion of helmm from the
atmosphere then begins very early in the evolution of
the planet.

Seetor Il (hot).—As the planet cools down, helum-
poor metallic droplets nucleate from the mixture, rise,
and eventually lead to the dilution of the atmospheric
helum abundance At first, a helium-poor molecular
layer and a helmum-enriched mner region exist, separ-
ated by an mhomogeneous layer Later, an inhomo-
geneous metallic layer also begmns to form, while the
mnper region slowly evolves toward a predominantly
helium composition

Sector HI (cold).—(a) Stable If the metallic phase
is more dense than the coexisting molecular phase, then
imtialty an inhomogeneous molecular layer 1s formed,
separating homogeneous molecular and metallic layers
of essentially primordial composition A small amount
of helium is transported upward mto the unrformly
mixed molecular envelope, Later, helium separation
begins in the metallic layer and the inhomogeneous
molecular layer Much later still, helnm begins to be
depleted from the homogeneons molecuiar envelope,
and a predominantly helium core begins to form (b)
Unstable If the metallic phase becomes less dense
than the coexisting raclecular phase, then formation of
a helimm core (or helinm-enriched inner region) pro-
ceeds immediately, usually by depleting helum from
the metallic phase Subsequent evolution 1s similar to
the stable case, except that the molecular-metallic
interface has no density discontmuity.

Sector II (hoty —This intermediate regune is difficult
to characterize since 1t combines the effects of Seciors
Iand III A typical sequence of events would be that
hehum-poor metallic droplets nucleate from the
muxture and rise to dilute the molecular envelope. Soon
after, the helrum-enriched 1nner region begins to phase-
separate Subsequently, there can be as many as three
inhomogeneous regions and four interfaces. These
complexities anse because Sector II corresponds to a
coincidental symilarity of the values of T,.(H-H,) and
T(H-He)

Sector I (cold).—Similar complexities to the “hot™
case. Figure 9 shows one possible helium distribution.

The complications of Sector II are not of concern
except when T,(H-H,) is fortuitously very similar to
T(H-He)

Tt is evident that detailed numerical calculations are
premature at this stage. To give an indication of the
impact of our considerations on the thermal history
of a hydrogen-helium planet, we shall consider how
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Fic¢ 9 —An intermediate case (Sector II of Fig 1, cold
gtartmg pomt) This 1s essenfially the sum of Fig 4e and Fig
c.

the homogeneous, evolutionary models of Jupiter
(Graboske ef al. 1975; Hubbard 1977) are modified,
using several possible choices of T (H-Hj), but for
T.(H-He) = 12,000 K and T.(F,-He) = 6000 K. Our
considerations may actually be more relevant to
Saturn, but we choose Jupiter because it 1s better
understood and better constrained by current observa-
tions. We shall also neglect Iatent heat effects, since
hehium redistribution generally has the dominant effect
on the planetary cooling rate.

In the homogeneous cooling models of Jupiter,
models for the very early evolution are very specula-
tive, and hydrodynamic effects may be important
(Bodenheimer 1974), but thus 1s of no concern here,
since we consider only the evolution subsequent to the
planetary center becoming degenerate (P > 1 Mbar
central pressure). The central temperature is then at
most about 50,000 K, and the planet is probably only
about 10° years old

Consider, first, T.(H-H,) = 60,000 K. In this case
we have a “cold” starting pornt, and the first-order
character of the molecular metallic transriion is en-
countered as the center first becomes degenerate The
phase diagram (Paper I) suggests that the unstable case
is probably appropriate, so a hebum-rich core 1m-
mediately begins to form and grow at the expense of a
helrum-depleted metallic hydrogen regron (Fig. 7).
The gravitational energy release would prolong the
high-luminosity phase of Jupiter, but since thus phase
lasts only a short fime, it would not greatly affect the
“age” (1 ¢, the time taken to reach the observed excess
Iunminosity). Nevertheless, the age 15 substantially
affected since the phase excluded region in Figure 7
continues to expand throughout the evolution, and
the helrum core becomes progresstvely more helium-
rich. The molecular envelope retamns its primordial
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hellum abundance and 1s even shghtly enriched with
helium by upward convective transport If the effective
temperature 1s decreased, then temperatures 1n the
deep interior are deci eased by a comparable fractional
amount and the excluded region 1n Figure 7 expands
slightly A rough calculation, analogous to thatin§ V,
mdicates that the rate of cooling 1s substantially less
than that for a homogeneous planet, because of the
continuing helium differentiation. (Unlike the simple
calcnlation in § V, a precise calculation is difficult,
since 1t necessarily depends on the efficiency of heat
trapsport through the mhomogeneous layer ) In other
words, 1f upward convective transport of hehum and
latent heat effects are both negligible, then the present
state of Jupiter 1s mot compatble with T.(H-H;) =
60,000 K uniess Jupiter 1s much older than 4 5 x 10°
years

Consider, now, T{(H-H;) = 20,000 K. The mtial
central temperature of 50,000 K then corresponds to a
“hot” starting point 1 Sector III of Figure 1. Over
10° years elapse before the situation mm Figure 8a
occurs Helium-poor metailic droplets then form, and
rise to lower pressures to dilute the molecular layer
above In this case, the present state of Jupiter would
have a helmm-rich core which jomns continuously with
an inhomogeneous molecular layer and ultimately with
a hellmm-poor molecular envelope The atmosphere
would be depleted of helum, but no density discon-
tinwuty would exist anywhere in the planet (until much
later in the evolution—about 101° years from now)
This 1s essentially as iliustrated in Figure &b, The
gravitational energy released, integrated Iuminosity,
and central temperature would all be larger than in an
adiabatic, homogeneous model. Once agam, it 1s
clear that if helium differentiation is in progress, then
the cooling rate would be much slower than for a
homogeneous model, and the present lummosity o
Jupiter would only be consistent with an age it excess
of 5 x 10° years Neveriheless, T.{H-H,) < 20,000 K
18 consistent with observations, when allowance 1s
made for all the uncertamties

Consider, finally, T(H-H,) = 0 K In this case, the
adiabatic, homogeneous evolutionary models are
correct until immiscibility begms 1n the helmm fluid
(seec § V). In Jupiter, immiscrtbility may have begun
withm the last 10° years, or is about to begin within
about 10° years

Similar comments apply to Saturn, but with a
lesser degree of certainty Present-day temperatures in
Saturn’s mterior are lower than those at comparable
pressures in Jupiter by perhaps 209, (see, for example,
Podolak and Cameron 1974). Immuiscibility has prob-
ably already been encountered, and this is an attractive
explanation for the observed anomalously large excess
tuminosity (Pollack et al. 1977) A possible (but less
hkely) alternative is that the molecular-metallic
trapsition 1s first-order 1 Saturn, but not 1n Jupiter
(These conclusions assume that current estimates of
the Saturmian excess luminosity are reltable )

Inthe preceding drscussion we have not tnied to keep
account of the various latent heat effects associated
with the vartous transitions and layer formations We
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predict (on the basis of the discussion of § ITI, and
extensions thereof) that the following rules will apply.
(1) In homogeneous layers, the temperature gradient 1s
essentially adiabatic (i) In inhomogeneous layers, the
temperature gradient appropriate to overstable modes
probably appiies (1) At each interface, the tempera-
ture (and not the entropy) 1s continuous {1v) No “two-
phase™ regions exist near first-order phase transitions
(1.e., transitions are “abrupt™).

These tules provide a unmique prescription for
evaluating the temperature everywhere.

We proceed, now, to a brief consideration of the
distribution of minor constituents (such as water) In
Paper I (§ VI) the partitioning of minor constituents
among the various hydrogen-helmm phases was dis-
cussed, but purely from a thermodynamic view, Ther-
modynamic equiibrium may not be achieved for two
reasons. First, in the growth of droplets from a nucle-
ation seed, any species which diffuses much more
slowly than helrum would mnot achieve equilibrium
partitioning if the droplet moves to a region of sub-
stantially different thermodynamicenvironment during
one diffusion time. For typical parameter values (§ V),
droplets are 1 cm in radius and move at ~10cms™?!
Except in special cases (such as at the begmning of
differentiation), a droplet would have to move 10° cm
or more to encounter a substantially different environ-
ment Nonequiltbrium partitioning would therefore
require a diffusivity less than ~10~%cm?®s~* This is
uniikely 1n the fluid state (the helinm diffustvity 18
~107%*cm2g~1, and larger molecules would not
diffuse more than about one order of magnitude more
slowly) The second and more important cause of non-
equilibrium is the difficulty that we have already
considered for helium: upward convective transport
in cases where the solute would prefer to be mixed
with the molecular phase (a likely situation, according
to Paper I) If, as 15 likely, the solute diffuses less
rapidly than helum, then 1t tends to be trapped in the
helium diffusive layer (see § IV) which forms at inter-
faces. Any solute that diffuses more rapidly than
helum probably aclueves a distribution close to
thermodynarmic equilibrium. Unlike helium, the re-
distribution of minor constituents is not fundamentally
limited by energy considerations (the convective heat
engine could m princple transport several teans of
Earth masses of material from the center to the
atmosphere of Jupiter 1n less than 4,5 x 10% years).
However, dynamic considerations may preclude effi-
cient redistribution, just as they did for hehum.

Nevertheless, any process which redistributes hehum
will also redistribute munor constituents The con-
siderations of Paper I (§ VI) mdicate that H,0, NH,,
and CH, probably prefer molecnlar and helum-rich
phases. An observational test of the considerations of
this paper would be accurate determunations of the
atmospheric compositions of the giant planets,
especially Saturn. Unfortunately, the interpretation
of such data is likely to be ambiguous.

We conclude by noting some of the inadequactes 1n
the present analysis, First and foremost, our analysis
lacks quantifative predictive power because the critical
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temperature of the molecular-metallic hydrogen first-
order transition 1s not known to better than an order
of magnitude Further quantitative progress in the
latent heats of transition and the molecular hydrogen-
helum ruscibiity gap 15 also needed, Until these
parameters are known, no detailed evolutionary model
of Jupiter or: Saturn.can.be very reliable. (Conversely,
evolutionary calculations may be useful m 1mposing
constramts on the various poorly known parameters )

Numerous assertions made 1n this paper about the
properties of convection in turbulent, inhomogeneous
fluids must be regarded as nonrnigorous Even if we
knew the hydrogen-helium phase diagram exactly, our
predictions could be subject to error, simply because we
may have overlooked some convective mode or
mstability.

Notwithstanding these admissions of 1gnorance, the
following conclusions are mmdicated:

1 The major cause of deviations from homogene-
ous, adabatic evolution 15 helwm differentiation.
Latent heat effects (erther contemporary or primordial)
are ikely to be much less important (It 15 not possible
to have latent heat effects without some hellum differ-
entiation and vice versa )

2 Hehum differentration can occur erther because
of rmmiscibility or because of the required discon-
timnity in helum fraction at a first-order molecuiar-
metallic hydrogen transition.
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3. Regardless of the cause of differentiation, 1t is
almost mvariably an ongomg process which, once
inztiated, has a domunant effect on the cooling rate of
the planet for all subsequent time

4. The assumed age and known lumimosity of
Jupiter indicate that helium differentiation began < 10°
years ago, or will beginin < 10° years from the present
time ‘This implies that the critical temperature
T.(H-Hg) cannot greatly exceed 20,000 K

5. The assumed age and known lumimosity of
Saturn indicate that differentiation may have been
proceeding for 2 x 10° years already, but the uncer-
tainties are large and this conclusion 1s necessarily
tentative

6 Helum differentiation is accompanied by =2
comparable (or even greater) redistribution of mmor
constituents This may provide an observational test
of our theory.
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Calculations are presented for the thermodynamic funchions and phase-separation boundaries of solid metallic
hydrogen-helum alloys at temperatures between 0 and 19000°K and at pressures between 15 and 90 Mbar
Expressions for the band-structure energy of a randomly disordered alloy (meluding third order mn the
electron-ion interaction} are derived and evaluated Short- and long-range order are mcluded by the
quasichemical methed, and lattice dynamics i the virtual-crystal harmomc approximation We conclude that
at temperatures below 4000°K. there is essentially complete phase separation of hydrogen-hehum alloys,
and that a miseibility gap remains at the highest temperatures and pressures considered The relevance of
these results to models of the deep ntenior of Jupiter 1s briefly discussed

I INTRODUCTION

Knowledge of the phase diagram of hydrogen-
helium alloys at high pressures (4-40 Mbar) 15
of ymportance in the study of the interior of the
giant planets.'™ Phase separation of hydrogen
and hehum during the coolmg process may partly
account for Jupiter’s excess emission of energy.?
This paper presents a calculation of the thermo-
dynamic functions and phase-separation boundaries
of sol:d hydrogen-hehwm alloys at pressures be-
tween 15 and 90 Mbar, and af femperatures be-
tween 0 and 19000°K  These metallic systems are
also of intrinsic mterest, since the particles car-
ry point charges, and the bare electron-electron,
electron-ton, and 1on-10n wnteractions are given
exactly by Coulomb’s law.

The caleulations reported here supplement ear-
lier results of Stevenson® on hydrogen-helium
phase separation in the lzguzd phase. Present
estimates of the melting curves of these mater-
1als? and of the temperature in the deep mterior of
Jupiter® mdicate that both hydrogen and helium
may well be ligquid in the planet’s mterior, at
temperatures far below 19 000°K. However, since
the uncertainties m the calculated melting tem-
peratures are quite large,® a solid-solid phase
separation calculation remains of particular m-
terest,

The phenomenon of sclid-solid phase separation
in alloys 18 not, of course, himited to the hydro-
gen-helwm system, but 1s known to oceur in many
alloys.® For example, L1 and Mg {both simple
metals) form solid alloys at all concentrations ex-
cept 1n the range of about (70—85Yh Mg, where
there exists a miseibility gap. An alloy formed 1n
this concentration range will separate into two

phases of diferent concentrations, It is noteworthy
that the miscibility gap 1s still present at tempera-~
tures just below melting. The hydrogen-helium
alloy is, however, different from many other al-
loys (such as In and Mg) n one mmportant respect.
Whereas the difference between the Mg and Lt
electron-ion interactions (pseudopotentials) is
small, hydrogen and helwm have eleciron-1on m-
teractions of very different strengths, and this
difference 1s expected to play an important role in
the thermodynamic properties of their alloys.

In Sec. I we discuss the general approach taken
1 formulating the Helmholtz free energy F for
hydrogen, helium, and theiwr alloys. The static m-~
ternal energy E, 15 calculated 1n Sec. I for any
giwven configuration of hydrogen and helium (con-
fined, however, to an underlying lattice), and is
subsequently evaluated for a randomiv-disorvdered
confhiguration. Contributions to F arismg from
long- and short-range order are treated m Sec.
IV, and the free energy associated with latiice dy-
namics in Sec. V. In Sec. VI we present the equa-
tions of state and the Gibbs free energy G per 1on
of hydrogen-helum alloys. Writing G as a func-
tion of its natural variables (pressure p, tempera-
ture 7, and the relative concentration by number
of helum ¢), we compute AG, which is defined by

AG=G(p, T, ¢}~ [cG b, T, 1)+ (1- €)G®, T, 0)]
w

From AG we determine the curves deseribing
solid-solid phase separation.
II HELIMHOLTZ FREE ENERGY

For a system of volume &, the free energy ¥ can
be written

1914
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F(T: ®,¢)=F,T,Q,c)+F,(T,%,¢), (2)

where F, (T, 2, ¢) is the static free energy, and

F, (7,9, ¢) the vibrational free energy. In prin-
ciple, I can be calculated from the partition func~
tion Z, which is-the-sum-of e~ 5% over alldegrees
of freedom, electrome and 1omie, and mn particular
over all configurations of hydrogen and helium on
the assumed underlying lattice. (Here 8=1/kxT
and E 1s the total energy.) It is useful to mtroduce
the following notation: Let (A), denote the en-
semble average of the variable A for a statec lat-
tice. The electronie degrees of freedom and the
configurational degrees of freedom remam sumn-
med over m obtamming (4).. We use the symbol
{4);,o to indicate the ensemble average of A for a
static lattice in which the configurations summed
over are restricted to be yandomly disordeved,
We can now write F, (T} @, ¢) of Eq. (2) as

-E; (T3 2, C) =(E)s - T<S)s ) (3)

where § 13 the entropy. We may also write Eq.
{2) as

F=(E)so+ (F; = (E),0)+ Fo +(F, - F}) , )

where FJ 1s the vibrational free energy of a ran-
domly disordered alloy,

We will 1gnore the last term 1n Eq. (4), and m
Sec. V calculate only F}, The validity of this ap-
proximation will be discussed in Sec. VI. The ne-
glect of the term (F, — Fy), and the separation of
the static free energy as shown m Eq. {4), are
motivated by the fact that those temperatures for
which hydrogen-helium alloys actually do form
are sufficiently high as to favor such rendom dis-
order. (This pomt will be argued more fully 1n
Sec VL) Thus we expect that at these tempera-
tures {E),, will be the major contribution to {E},.
Note that the second term of Eq. (4) includes the
configurational entropy, as well as corrections to
the static energy due to correlations of the posi-
trons of hydrogen and helium on the lattice.

I STATIC ENERGY

In this section we calculate (E),, , by writing a
general expression for E,, the static energy of any
configuration of the ions, and then computing its
average over randomly discrdered configurations.
The approach 1s to consider an alloy as congisting
of hydrogen and helium ions, located on a lathice,
and immersed in a responding electron gas of
compensatmg density. Theion-ion, electron-elec-
tron, and electron-ion mteractions are all given
by Coulomb’s law. The {divergent) long-wave-
length 1imits of these interactions sum to zero,
and are elimmated from the starting Hamiltoman,?

We can then write E; as
E,=E+E,+E,. (8)

Here £@1s the energy (per 10n} of 2 homogeneous
mteracting electron gas (in the presence of a pos-
itiwve, uniform background charge), the Madelung
energy E, is the electrostatic energy of the pownt
ions {1n the presence of a umiform negative back~
ground charge), and E, is the energy due o the
electrons’ response to the #oruniforim component
of the total ionic poteniial V. By treatmg V as
relatively weak, E;, which is known as the band-
structure energy, can be calculated by perturba-
tion theory. What we are describmng i1s conven-
tional pseudopotential theory,® applied to a system
for which the electron-ion interaction 1s known
exactly. This approach has been used extensively
m the context of metallic hydrogen,”® and 15 an
imporiant element 1n the alloy catculation of Ref,
3.
InEg (5), E@ 15 given by

E© = z%(g2/2a,) [%(%11)2/3 1/r 2 (3/217)(%17)‘/3
x1/%+(-0,115+0 0311n1,)], (6)

where Z* 15 the average iomec charge in umts of
ele>0). Since Zy,=2and Zy=1, Z¥=cZy+(1-c) 2y
=1+¢, Note that %, is the usual dimensionless
electron spacing parameter

La(ra,P=Q/Z*N, (7)

where a, 15 the first Bohr radius. Smce N is the
number of wons (In ), NZ*1s the corresponding
number of electrons. The first two terms 1 Eq,
(6) are the kinetic and exchange energies. The
last term 1s the correlation energy, and 1s only
known approximately. We have used the approxi-
mation due to Nozidres and Pines,!® wiich is ex-
pected to be quite satisfactory m the % range con-
sidered here (r,~1). Note that E©®)s independent
of both the configuration of hydrogen and helmm
ions on the underlying lattice, and of the lattice it-
self. Since we are interested in temperatures
much less than the Ferm) temperature

Tr=(5.82X% 105)/72 °K, (8}

the electron system' 1s taken to be 1n its ground
state,

The second term 1n Eq. (5} 1s the Madelung en-
ergy, and 1s given by®

_ 1 £ f 4 ;T{.(ﬁ _ﬁ)
EM-mNg,; et TRz 7 @)

where Z, is the charge of the 10n at site ¢ whose
position 1s given by E The prime on the sum
over z and § denotes the omission of the terms
i=7, The prime on the & sum denotes the omis-
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sion of k=0,

The Madelung energy is generally large and neg-
ative, and for a given family of structures often
assumes its lowest value for the most symmetric
structure,

Using perturbation theory™ ® E, can be developed
as a series 1n ascending orders of the electron-
10n nteraction

By=E® +E@ ... | (10)
with

125 v iy (L)

£ 2N% VEER) B\ m5-t) . aD
and

10 ’ L o
EP 3 2 & VERIVEV(E-E)

1 K2

x( 6 1 1 1
kp () (G} (8- T)

) 4 HE) (_'Eiv ?ig))

(12)
where the primes denote the omission of &, =0,
k,=0, and k, =-%,. In Egs. (11) and (12), V(&) 15
given by

v®=2 [arr e T iy, (13)
z,
V=2 AT a9

where V(T) 1s the total 1omic potential as seen by
the electrons. The restrictions on the sums in
Egs. (11) and (12) follow from the form of the Ham-
iltoman.” The vectors § are defined by § =k/2k,,
where the Ferm1 wave vector & 15 given by the
relation

k3 =3w2 Z*N/Q

In Egs. (11) and (12), (§) 15 the zero-frequency
limit of the dieleectric function of the homogeneous
interacting electron gas, and H (sa)is given in Eq,
(C3) of Ref. 7. We use Hartree atomic umts in the
equations above (and throughout the rest of the pa-
per).

Tt 1s 1mportant to note that Eq (11} 15 an ex-
act result for E®, for (:3/4m)[1/e(g,) - 1] mea-
sures the exact linear response of the number
density of the homogeneous interacting electron
gas to an external potential (in this case the po-
tential due to the 1ons). In contrast, Eq. (12)1s
only approximate, as the corresponding second-
order response function 1s not known exactly. The
approximation used in Eq. (12) corresponds to
treating the electrons as independent particles
moving 1n a self-consistent potential constiructed
from a Hartree potential and the external poten-
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tial, prowvided € 1s taken to be the Lindbard di-
electric function.”'? In the present caleulations
we have used the Geldart-Vosko' modified form of
the Hubbard dielectric function, which meludes
effects due to exchange and correlation, and yields
the correct §-0 limit, It 1s certainly preferable
to use ths form (rather than the Lindhard function)
m E®, but it 1stechnically meonsistent touse 1t m
EPas written in Eq. (12). However, these two di-
electric functions yield values of E®withm 1% of
each other, so that the effect on phase boundaries,
which depend on differences of free energies, 1s
meonsequential.

Although the hydrogen-helium alloys have been
taken as metallic, the convergence of the pertur-
bation series of Eq. (10) 15 not dependent on the
existence of a metallic state, as discussed in Ref.
3. The point 1s that the perturbation series should
be adeguate as long as the one-electron band gaps
are less than the bandwidths, which is the case
for helium above 10 Mbar, Since actual metallie
conduction may only occur® in helium at 70 Mbar,
this distmetion 15 of considerable importance.
(Hydrogen, on the other hand, 1s expected to be
metalhic at pressures of a few Mbar )

Considerable progress® has been made m cal-
culating E(g’), which however, we do not include
here, For metallic hydrogen Eg‘ﬂls smaller than
ED by roughly a factor of 10, and it includes the
effects of the change 1n the chemieal potential of
the electron gas due to the presence of the 10ns.
To correctly calculate E%, one must use fimte-
temperature perturbation theory, as discussed in
Ref. 7.

The terms Ey, E, and EP are valid as written
for any configuration of hydrogen and helium, and
contain contributions that depend both on the con-
figuration and on the structure of the underlying
lattice. More gpecifically, since the total poten-
tial V(¥) » Eq (14) takes the form of a sum over
sites, E, will contain the following classes of
terms:

(1) Structure -mdependent terms, that is, terms
mdependent of configuration and lattice structure,
These arise from the terms m E® and Efin which
all sites comeide.

(11) Two-body, or 1on-ion terms. These comprise
the remaining terms m Egz), and the terms m ES,"’)
for which only two site labels comneide.

(inz) Three-body, or 1on-1on-1on terms. These
arigse from the terms n E?’ 1n which no site labels
coincide.

There are, of course, four-body terms and
terms involving more than four ions, but these
originate 1 higher orders of perturbation theory.
Recogmizing that £y 1s also a sum over ion-10n
terms, we can group together contributions to E;
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mn Eq, (5) by the classes (i)-(iii) above, and ob-
tain

I T o U
E,=E®+5 2 $E-R)

R Rj

1 t - =
+§F-— Z - ¢(la;}k (B,— Ry By= Ry wr e+ .
Ri.Ry, Ry
(15)

Here the primes denote restrictions forbidding the
terms z=7 in the two-body term, and the terms
t=Fk and 7=k (but not £=7) in the three-body ferm,
Note that the two- and three-body potentials de-
pend on density and on the 1dentity of the ions at
sites z and j {las well as on the separations R,- &;).
All terms 1n E; which are mdependent of configura-
tion and lattice structure are mecluded 1 E@, The
pomt about rewriting Eq. (5) as 1n Eq. (15) 18 sium-
ply that by summing over the electron degrees of
freedom (at T =0%K), we have been able to write
E, as a sum over (density-dependent) effective
pair and three-body potentials, plus a term de-
pendent only on density. This recasting of Eg, (5)
is clearly valid for any configuration of hydrogen
and helium 1ons, and 1s a conceptually useful al-
ternative to Eq. (5).

We now calculate the first term m Eq. (4), the
static energy of a randomly disorderved system:

(B 0= E® +(E o +{(EDY +(EP)o+++- . (16)

To do this we must first give the defimition of ran-
domly disordered To this end we miroduce the
quantity p,:

P, =1 1if site ¢ 15 occupied by a helium 1on,
P, =0 if site 2 15 occupred by a hydrogen 1on.
(17

From its defimtion,’® we can see that p, obeys
the following relations:

(pi)n =pb
{p2 =c,

where the average in Eqg. (18b) 1s over all config-
urations. Introduecing the auxiliary variables d,:

(18a)
{18b)

n=2,3,...,

dl =p{ -C, (19)
we have
{dp =0. (20)

Since p; measures the probability that site 2 15 oc-
cupied by a helium 1on, d; measures the deviation
of that probability from its average value. In Eq.
(9) for E,,, we wrile Z, as

Zi =pl ZH: +(1_p;)ZH' (21)

Thus £, will clearly involve averages of the type

(pip,). In ferms of these correlation functions we
define a yandomly disordered system as one for
which the nth-order correlation-function factors
according to'®

(pil 1 et p:n)o =(p:1)o(p,2)o’ vees {_pln)o
'T‘(Pil) (Pia>, teey @in) > (22)
where
1FELF 0 F

Thus for the two-site correlation function we obtain

(pipj>0=<p!)<pj> =cz 1f i?ﬁj,

(23)
Bibido =03V =B)o=c if i=7.
Since z=j 15 excluded from Eq. (9), we immedi-
ately have
Z42 7 ! Ada TRt
= — — «(Rj=Rp)
(EH>O ZQN ; kz e i=Ry . '(24)

The Madelung energy of a randomly disordered al-
loy 1s that of a pure metal of ionic charge Z* (cor-
respondmg to the so-called “virtuzl erystal”),’® and
can be calculated by well-known techniques.®

To calculate {E;}, we must first use Egqs, (13) and
(14) to write V(k) in terms of the variable p,:

(GEILPRE o2y

ra-p) (THZY ], s

where R; 15 agam the position vector of site z In-
troducing d, via Eq. (19), we obtamn

vE) =Y e * Ri[T(R) +d, AUE], (26)
where
Tk =-[c 4nZy. /B0 + (1- ¢) 4uZ,/720]

=—dr 2%/, (27a)

and

AUER)=- Un/BQNZy, — Zy)= -4u/F0 . (2b)

From Egs. (11) and (17), we find

@y _ 18 < w o B2 i
(Ee=35 EE} (VEIV-ENo 75 (qu) —1)

(28)
and
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(V(El)V(—El))c,:z‘: e-‘ﬁi‘ﬁizj: e* %y Ro([T(R,) +d, aUE [ T(=K)+d; aUT D, - (29)
From Eq. (20) we see that the cross terms in Eq. (29) vanish, Using the relation

Z;: e~k Ry =No; % , (30)
where K 18 any vector of the reciprocal lattice, we have

(V& WV, = N70%,, FOE)UE )+ S e Kgrk e Re[a U(k,)a U=k )Id, d,), - (31)
: i
In the Appendix, we prove the relabtionship

Zij:e'&l Ry griky Ry (g d;Yo=Nlc-c?). {32)

Substituting Egs. (31) and (32) into (28), and using

1 1
1im 5;—(2—ﬂ)sfd3k ,

e
we have the final second-order result ) !

NZ*¥ ’}l(e_(laT_l) "'%(ZH,‘ZH)Z(C-CZ)I(%%?%% (E(%-—l) s (33)

20 @& K*
where @=K/2k;. In Eq (33), the first term is just the second-order band-structure energy' of a pure
metal of 1onic charge Z* This virtual-crystal result is nof correct for a randomly-disordered system,
because in Eq. (29) the terms in which the sites z and 7 corncide must be handled separately. However, 1t
18 worth noting that the virtual-crystal result correctly gives the stvuctural dependence of (E®),, simce
the second term in Eg. (33) is clearly independent of both the latfice structure and the configuration of hy-
drogen and helmm on the lattice.

We have written (@), in a form that is qute simlar to other expressions m the hiterature,® '® and have
used a rather mdirect method to do so. This method, however, avoiuds much of the confusion that woutd
otherwise arise 1n the calculation of (E(b'“")n, to which we now turn.

Equation (12) for (E$"), can be written m the following form'*:

(E(f))o=

EP=L T T VBV EIVED o T BT, 47, 4o s (34)

ky ko %3

where the function y, is defined by direct comparison of Egs. (34) and (12). However, we shall never need
the explicit expression for y,, but only its symmetry properties The form of the function H @) (~4,, @) 1
Bq. (12) guarantees that y, 15 symmetric with respect to the interchange of any two arguments.™ ** Usmng
Eqs (27) and (30), we have

(VERIVE) VD o= MP0T , % Bt %,00 %, UEITE)TE,) « Nog, g T K:) S ,&, ko)A U AT (&)
+Nog | % DS, KIA UR,)AU,) + Nog,, %, T(&,)S,(5s, K,)a Ul )a U K,)

+8,(k,, Ty, Fy)A U(R A UENAULE,), (35)
where we have defined
56 B)- DT e b g, (350
and
Sk, K, k) = ; > zﬂ: e Ry Rygmike Ry pmilae By {d; dp iy - (36b)
m

These functions are shown m the Appendix to be

Syk,, ,) = Nog . %, 7 (€ = ¢9) (37a)
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and

Sk, K, &,) =NOE 4T+ Ty, %(C— 3¢% +26°),

(3'7b)

Substituting Eqs. (35)—(37) into Eq. (34), and makmg use of the symmetry of y, we obtain

Q ¥ ! r _ _ .
(E(:))n:]v%: ; % [vo5z, & OF, 0%, &, DEIUE)UK,)
1 2 3

+3N0g;, %, DE)NOT 1, Rle— c)AU(R, A U,)

£NBE, L T, %, KO- 362 + 26000 UR A UEIA UG X, @, T B)07,47,, 5,0 - (38)
The first term in Eq, (38) 15 the third-order band-structure energy!” of the virtual crystal. As before,
there are corrections to the virtual-crystal result which have their origin n the comeidence of sites m Eq.
(34). However, now the corrections are sivucture dependent. To see this more explicitly, we recast (E®),
m terms of the function #®of Eq. (12). By using the symmetry properties of H® with respect to inter-
change of arguments (see Ref. 7), we can rewrite Eq. (38) as

1
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As before, @=K/2ky, and the prime m the double
sum means we omit Q, =0, §Q,=0, and §, =@,
Since the second term in Eq. (39) involves a sum
over the reciprocal lattice, it is clearly structure
dependent., Eguation (39) i1s our final result for
(Eg;))o'

The polynomals in ¢ that appear in Eqs {(33) and
(39) (the basic results of this section) are cumulant
polynomals P (c), famihiar from the theory of
eleciron states 1n the tight-binding model of ran-
domly cisordered alloys.”® They are defined by
the generating function

5’: p,(c)aé"fl-=1n(1 - c+ed), (40)
5=1 )

which gives,
Plc)=c, Pic)=¢c-&, Pict=c-3c+2¢%.. .
(41}

The cumulants arise in both problems for the same
reason, namely that the decoupling of the correla-
tion functions, 1llustrated in Eq. (22), does not
hold when two or more sites coincide. This pont
has been stressed previously in Refs. 20 and 21.

’
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IV LONG- AND SHORT-RANGE ORDER

We now turn to the second term 1n Eg. (4),
namely F,-(E),,. InSec. I we have summed
over the electrome degrees of freedom to obtain
an effective Hamiltonian for the ions [Eq. (15)].
The static partibion function (and hence he static
free energy) can be obtained by summing ¢ ~5/#sT
over all (static) configurations of hydrogen and
helmm ions on the underlying lattice, TO carry out
this sum, we need a convement language with which
to describe the configurations. At high tempera-
tures, this 15 achieved through the use of the cor-
relation functions® = {(p p,), (p;p,bs), ete., 1n-
troduced 1n Sec. III. In general, a helium 10n may
be more likely to have a hydrogen 10n as a nearest
neighbor than another helium 1on {or vice versa),
buf the probability (at high temperatures) of a very
distant neighbor of the helium 10n bewmg another
helium 10n will depend orly on the mean concentra-
tion of helum  The correlation functions (p;p; ),
etc., are 1deally suited to describe such short-
range order,?*?® for we expect the quantity { by
— (P p,) to become very small as K, and R, be-
come ncreasingly well separated. On the other
hand, at very low temperatures, and particularly
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for stowchiometric compositions, the alloy, 1if it
forms at all, 15 expected to take up an almost com-
pletely ordered state. (For example, 1f ¢=0.5,
the alloy may have the CsCl structure at T=0°K.}
It 15 clearly mappropriate to attempt to describe
this situation with the correlation functions of the
type {p,pp, since (p,p) — {P)(p) 15 expectedtobe in-
fimtely long ranged Instead, it1s convenienttointro-
duce the notion of long-range order,* %% which for
the example quoted above would be defined by the
number of helium ions on “right sites,” 1 e., the
number of He 10ons on the “helium 10n” sublattice.
The point 18, of course, that this number 1s 1.00
at T=0°K It also approaches rather abruptly the
disordered value of 0.5 at the critical temperature
{T.), above which there 18 no long-range order.
Thus, any theory used to calculate F, - (E); 4
must be capable of describing these two very dif-
ferent types of behavior at low and high tempera.-

tures More specifically, at low temperatures we
have

]i!-“mo(Fs—<E>s.D)=AE’ (42)

where AE 1s the energy difference between the
completely ordered phase and 1ts completely ran-
dom countervart. At extremely high temperatures
we have®

I]:I_I}l (Fs - (E>s.0)= "'T<S>s. 0
=kaT[elnc+(1=c)In(l—¢})], (43)

where the expression onthe right-handiside of Eq {43)
15 sunply the negative of the entropy of a randomly
disordered alloy, weighted by the temperature,

The first step 1n formulating such a theory is
drastieally to simplify Eq. (15), and replace 1t by
a nearest-neighbor model, iz

_ 1 ILn
E, =-2—,BT ;ﬂ[plt’mélr{e—l{e'l'zpl(l_pm)@m -H

+(1= ) (1= pp)By-uls (44)

where the sum 1s over nearest neighbors only, and
the pair interactions @y, e, Pye—y, andEy.y Willbe
chosen to satisfy Egs. (42) and (43) Note that
smee we are computing only the difference between
energles, the structure-mdependent term m Eq.
{15) may be neglected. The appeal of the simple
form 1n Eq. {44) 1s that 1t allows an exact mapping
of the problem onto the antiferromagnetic Ising
model 2527 In addition, the Hamiltonan of Eq, (44)
has received a great deal of attention as a model
Hamiltonian of an alloy.®?* Smce we only need keep
terms dependent on configuration, 1t 18 easy to
show that the pair inferactions do not enter separa-
tely, but only n the standard combination,

Uzq’ﬂe-l{"'%@l{-H']'@He-m): (45)
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where v 1s assumed to be negative **

The energy difference AE, as calculated from the
Hamiltoman of Eq. (44), 15 propertional to —v, with
the proportionality constant depending on the (sto1-
chiometric) composition and the assumed under-
lying lattice, It1s therefore compelling to choose
v 80 that the energy difference AF between ordered
and disordered alloy will be the {rue static energy
difference,?® as calculated by the methods of Sec,
I, 1 e., with no restrietions to nearest neighbors.
Providing our methods of solving the modelproblem
defined by Eq {44) satisfies the limit 1n Eq (43),
the resulting function F(T,Q, ¢} - (E), , will then
exhibit both the correct high- and low-temperature
behavior,

Such a method of solution of the model problem
1s provided by the quasichemical approximation ?-3°
The basic 1dea of the method 15 to treat clusters
of 10ns as independent units, subject only to the
conservation of the number of each type of 1on con-
sistent with a grwen long-range order. The proba-
bility of cluster having a certain configuration of
hydrogen and helwm 3i0ns 1s then sunply
given by the standard Boltzmann factor. If
the cluster 15 chosen to be the whole crystal, the
result 15 exact ¥For smaller clusters, (in particu-
Iar for a few atoms), error 1s mtroduced because
the fact that a given site may be part of two {or
more) clusters 1s 1gnored in assigning a probabili-
ty that the site 15 occupied by (say) a helum atom.
Nevertheless, the method does take into account
correlation effects 1n 2 manner reminiscent of clas-
sical liquid theory Thé:free energy can be written
down as a function of temperature and long-range
order only, and 1s to be mimimzed with respeet
to the latier The quasichemical approximation s
thus able approximately to deseribe both long- and
short-range order within one context.

The approximation 15 related to more accurate
methods® in that 1t 18 the first of a hierarchy of
approximations®? which can be substantially devel-
oped, although the caleulations become exfremely
mvolved, It 1s most readily applied in the follow-
mg cases {1) ¢=0.5, where the underlymg lattice
18 bee, and the assumed ordered state 1s the CsCl
structure, (11) ¢ =0 75 {or ¢ =0.25), where the
underiying lattice is fee, and the assumed ordered
state 18 the CuyAu structure. The method correct-
ly predicts that for ¢ =0.25 alloys (1), the order-
disorder transition 1s of first order,?s that 1s, the
Iong-range order drops discontmuously {o zero at
T.. It also correctly predicts that the transition
for alloys of type (1) 18 of second order, with the
long-range order vanishmg continuously at T,.

The existence of short-range order above the tran-
sition temperature, and hence a configurational
contribution to the specific heat, is also described


http:model.26.27

15 PHASE SEPARATION OF METALLIC HYDROGEN-HELIUM ALLOYS 1921

by the method,? but the details of the expermmental
spectic heats are reproduced only qualitative-
1y.?5*" When compared to more accurate solutions
of the Ising model, the quasichemical method’s
prediction of T, 15 only very roughly correct.®:*
However, calculation-shows that in the very low-
temperature region the quantity F, —{E), , for
¢ =0.5 agrees fairly well with the low-temperature
Ismg model series expansion #

We have used the guasichemical approximation o
caleulate F, —(E), ,for ¢=0.25, ¢ =0.50, and
¢ =0.75 alloys by using the solutions corresponding
to the categories (1) and (1i) above. The parameter
v was chosen to yield the true static energy dif-
ference AFE between ordered and disordered
phases, as previously described. However, the
assumed structures for the ordered and disordered
phases in the calculation of AE were chosen by
criteria to be explamed m Secs. V and VI, and
were nol consistent with the structures for which
the quasichemical method was evaluated [see (1)
and (11) above]. T addition, the contribution of
lattice vibrations and the third-order band-struc-
ture energy to AE were neglected.® These ap-
proximations are expected to have a serious effect
near T, but should make litile difference well
above or below T, * Since AE 1s a function of 7,
we have constructed an approximate form for
F(T,7s¢) —{E) , which has the correct high-
and low-temperature Iimits. We have nof assumed
that the order-disorder transifron occurs at con-
stant volume, for the actual behavior of the alloys
15 determined 1 See. VIfrom the Gibbs energy G
computed at constant pressure and temperature.

V LATTICE VIBRATIONS

To calculate the coniribution to the free energy
of the lattice vibrations we first assume that the
alioy 1s randomly disordered The “phonon”
spectrum of the random alloy is then calculated
by replacmg each ion with one of charge Z , and
mass M. The values of Z 4 and M, are chosen
s0 that the long-wavelength Iimit of the phonon
spectrum 15 gwen corrvectly.®+® This 1s readily
seen to require

My =M¥=cMy, +(1-c}My

(2
and (46)
Zerr=Z*=CZHe +(1—C)ZHu

The force constants for an alloy of arbitrary
configuration are defmed (fo second order i the
eleciron-1on mteraction) from Eq (15):

8u(R -R)=voVadi? (R)lag,-z, G#). (470

There are three types of force constants (corre-

sponding to hydrogen-hydrogen, hydrogen-heliem,
and helium-helm pairs), and from Egqs. (11)-(14)
these are

MR -R)=2;84(K -R).,
FHGH (R —R)=Z 2y, Fas(R—R),  (48)
FHs-He (R —F) =22 $es(K -R)

Here & ,5( ) depends on#, and may be wratten

o R LA S A
o TIE gL
21)° k% (%)

In terms of force constants, Eq. (46) 1s equivalent
to the replacement of the three types of force con-
stants with a particular type of “average” force
constant

The concept of phonons m disordered systems
n general, and more specifically the use of aver-
age masses and force constants, has met with
some success when applied to alloys whose con-
stituent elements have siumilar masses or force
constants.??4"4 (Clearly the masses and force
constants of pure hydrogen and helmm are nof
close to each other, but some justification for
the replacement of an alloy by an “equivalent”
pure system 1s givén by the “virtual-crystal ap-
proxunation” for the phonon Green’s function zo
More specifically, if we start with a pure system
of pomt 10ns having mass and charge given by Eq.
(46), and mtroduce the difference between the
physical charges and masses and the “average”
ones as a periurbation,®® then withimn thms approx:-
mation the perturbation causes no change mn the
phonon Green’s function.

We have evaluated the dynamical matrix of the
pure system defined by Eq (46) m the adiabatic
and harmeonic approximations, with the electron-
1on interaction taken mio account up fo second
order. This has been repeated for a variety of
crystal structures and conecentrabions, mcluding
pure hydrogen and helmum. From the phonon fre-
quencies, we calculate® the vibrational free en-
ergy F¢

B,5(R) =V, (49)

F=k, T3 In{2 smb [387(E]} (50
5

where f=1/k;T, w({qy) is the phonon frequency of
Wave number ¢ and branch mdex 7, and the sum
is over the first Brilloumn zone. This zZone sum
was carried out usmng the special-point tech-
nique®® with a modest number (~10) of special
pomts.

Note that by usmg the harmonic approximation,
the freguencies appearing m Eq. {50) depend on v,
but nof on temperature In order for them to ac-
quire a temperature dependence, a more sophisti-
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FIG 1 Equation of state of metallic hydrogen.

cated approximation, such as the self-consistent
phonon theory,*® would be needed However, some
thermal expansion s meluded by using the har-
monic frequencies, for the contribution of 72 to
the pressure 18 not negligible [see Fags. (1) and
). :

The calculation of the phonon frequencies of the
{randomly disordered) alloys and of hydrogen and
helium was used as a guide m the choice of the
lattice structure chosen for the calculations of
Sec OI The pomt 1s that these Coulomb systems
{(mn the virtual-erystal phonon approximation) are
very often harmonically unstable, as discussed by
Beck and Straus.?® (By an mstability, we refer to
the occurrence of imagmary phonon frequencies )
The lattice structures used m the caleuiations of
Sec. III, as described m detail m See¢. VI, were
chosen to give real frequencies Ii should be
noted, however, that the relationship between m-
stabililies m the virtual erystal approximation
and those 1 the real (randomly disordered) alloy
15 not clear, We shall assess the effect of our
approxrmate trealment of the phonons on the phase
boundaries m Sec. VI.

VI RESULTS AND DISCUSSION
A Choice of lattice structures

Here we discuss the lattice structures chosen
o calculate the various contributions to Eq. {4)
The static energy differences between latiices
are 1n general very small,™® especially when com-
pared to the energy n the phonon system. (How-
ever, these energy differences may not be small

compared to the differences i phonon energies
between latfices.) This raises the question of
whether these materials can ever solidify m the
conventional sense It should be noted that the
energy differences are also #of necessarily small
when compared to the difference AG of the Gibbs
energies between the alloy and the pure hydrogen
and helum systems, as Fig 3 tllustraies An
extensive search m Bravais lattice space for the
structure of lowest energy (as carried out in Ref.
9) 1s not feasible for this problem we limited
ourselves to the consideration of the bee, fee, and
hep (with variable ¢ /e ratio} lattices m the cal-
culations of { E}; , and F? in Eq (4) (Simple cubic
lattices are harmonically quite unstable for these
systems.)

For the randomly disordered alloys {and for
pure hydrogen and helmum), either fee or bee
proved fo be stable for all Z* excep! m the range
120=Z*=1 30, and the stable Iattice was chosen
for the caleulations. AtZ+*=125, hep (with ¢/a
=1.7} was stable, and this structure was therefore
chosen 11 the concentrafion range near Z *=1.25.
The lattices used to compute {E}, , and F{ are
summarized m Table I The absence of an enfry
for a particular contribution to the energy mdicates
that the value of that contribution was obtained by
mterpolation from its values at other concentra-
ticns Note that { EE,SJ}O was calculated for fcc, nof
hep, in the region 1 1052 %< 1,35, 1t 1s not ex-
pected that this procedure will cause any sigmifi-
cant error m the phase separation curves, In
additton, the designated phases for Z*=1 00 and
1 25 are harmonically unstable®® at low densibies
{correspondmg to pressures of less than 20 and
30 Mbar, respectively) Previous calculations®
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show that such mstabilities will only occur at much
higher values of 7, (lower pressures) when the
phonon spectrum is calculated m the self-con-
sistent harmonice theory. Thus we adopted the
procedure of extrapolating the phonon frequencies
to lower density to calculate F? at low pressure,
We now discuss the lattice structure of the or-
dered alloys used in calculating F, —( E), , by the
methods described in Sec. IV The energy differ-
ence AE between ordered and randomly disordered
states was calculated for ¢ =0.25, 0 50, and 0 75
(For pure hydrogen and helum, AE, as well as
F,—(E), o, clearly vamishes.) For the alloy of
¢ =0 50, we have considered two types of lattices
(1) Sumple tetragonal (st), with a basis of one
helium and one hydrogen 1on, situated so that
when ¢/a =1.0, this lattice has the CsCl struc-
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@ :{ P line determines the phase
g o e G separated region {g,5¢c
5 —1 5k e s¢;) The dotted Line
5 shows another possibility
(=] T Efce = Epge (Z*=150) for the phase-separated
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ture ¥ (11) Face-centered tetragonal (fct), with
a basis of one helium and one hydrogen ion, situ-
ated so that when c/a =1.0, this lattice has the
NaCl structure As the fct lattice proved unstable
for a wide range of ¢/a values, we used the sim-
ple-tetragonal lattice at ¢/a =1 0, where 1t 18
stable.

We considered two structures for the ordered
¢ =025 (¢ =0.75) alloys (1) Sumple tetragonal
(st} lattice of helum (hydrogen) i1ons with a four-
point basis. The helium (hydrogen) 1on resides
at the lattice pomt, and three hydrogen (helium)
ions sit at the face centers, H all the ions were
identical, the laftice would be face-centered tetra-
gonal. (This 1s the generalhization of the Cu,Au
structure to c/a#1 00.) (1) Body-centered tetra-
gonal (bet) lattice of helium (hydrogen) 1ons with a

TABLE 1. Lattices used in computations for randomly disordered alloys, and for pure hydro-

gen and helium.

zZ 1.00 105 4.0 445 120 4125 130 4.35 140 {45 150
(Byho+ By fec  fec hep® hep hep hep hep hep fec  bee  bee
(EEN, fee  fee fee fee fee fee  eee ere eee *+*  bee
FV fee [ see “en e hcp an P ‘e w - bee

z 1.50 155 160 165 1.70 {75 180 18 1,90 41,95 200
(Exdo+ (B bee bee  bee bee bee  bee  bee  bee  bec  bee bee
<Ebt3’)ﬂ hee ran ren “es ‘e bee e +na nas bee
Fy bee s cee e vee bee OERS R e PER hee

3hep refers to the hexagonal close—packed lattice with ¢/a=1.70.
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TABLE II. Order-disorder critical temperature T,
{in unats of 10°°K) as a function of pressure p (in units
of Mhar) (pressures are approximate only).

c=0.250 ¢=0 500 c=0 750
Te 4 T t T, P
5.06 2.0 3.45 30 0.79 25
4.82 45 4 40 7.0 121 7.0
4,65 75 5 63 13.5 1.70 14.5

445 13.0 6.67 21.0 2.16 23.5
4.40 2056 7.92 34.0 2.73 39.0
4.37 31.0 918 50.0 3.07 49.5
5.85 47 5 10 06 63.5 3 46 64 0
594 59.5 ii 03 805 3.89 82.5
6 61 745 12,10 i02 5 4.2 98 5
735 94 5 12 88 116 0 4.47 111 5
T 90 111 0 1331 134.5 475 127 0
833 125.0

four=poiwnt basis ‘The helwm (hydrogen) 10n re~
sides at the lattice pomnt, and three hydrogen
(heluum) 10ons sit at the face centers and edge mad-
pomts If all the ions were identical, ihe lathee
would be simple tetragonal, with half the origmal
lattice constant.*® Of these two structures, the st
latiace with ¢/a =0.7 proved, for ¢ =0.75, to have
the lowest static &iergy (to second order m the
eleciron-1on mteraction). Since this structure 1s
harmonically stable, the difference hetween its
static energy and that of the corresponding dis-
ordered alloy of Table I {bec} was set equal to AE,
as required in the application of the guasichemical
theory of Sec IV. For ¢ =0.25, neutier of the two
struetures are harmonically stable {over a wide
range of ¢/e values) This may be a dynamic -
dication® of immiscibility at T =0 °K, or alterna-
tively it may mdicate that these structures are
energetically quite far from the structure an or-
dered alloy actually assumes Of these two struc-
tures, the bet lathice with ¢/a =1 0 has the lowest
stafic energy for »,=0.920 (p <28 9 Mbar at

T =0°K}, but the st lattice with ¢/a =1.0 has the
lowest energy for r, <0 920 The static energy
differences between these sfructures and the cor-
respondiig random alloy {hep) were used for AE
1 the calculation of See. IV. In Table II we pre-
sent the eritical temperature T, as a function of
pressure for the order-disorder transifion, as
calculated from Seec IV.

In order to determine how serious an error was
made m negleciing lattice vibrations i the com-
putation of AE, we computed F, for the CsCl-
structure alloy at T=0"K and =0 99. The re-
sult 15 withm 7% (0 001 a.u per 1on) of the cor-
responding random alloy (bee) result The duffer-
ence 15 small, even on the scale of AG This also

shows that our neglect of the term (F, —FJ) in Eq.
{4) 1s quite justified.

B Phase separation

The equations of state of pure hydrogen and
helium are presented in Figs. 1 and 2. For hydro-
gen, at T =0°K, they agree well with Caron’s re-
sults (see Ref 29).

Under conditions of constant temperature and
pressure, the free energy to be mmimized 15 the
Gibbs free energy G:

G{(p,T,c)=F(p,T,c) +p,, (51)

where p 15 the pressure and 2, the volume per
10on  Stability of mixed phases 15 determined by
AG

AG =G(P1 T: C) - [CG(p: T: 1) +(1 "’C)G(p; T: 0)]
(52)
Here ¢ =1 refers to pure helium and ¢ =0 to pure
hydrogen In order for there to be any mixing,
AG must be negative. A miscibility gap occurs
when AG 15 negative but the system can lower 1ls
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FIG 4 YPhase separation curve at 15 Mbar x 1s the
relative congcentration (by number) of helwum The
cross-hatched regions show the uncertamty in the phase
separation boundary.
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FIG. 6 Phase separation curve at 21 Mbar,

Gibbs energy by separating mnto a helmum-rich
phase and a hydrogen-rich phase *® This 15 dem-
onstrated in Fig. 3, where we present typical re-
sults for AG{p,T,c) at fixedp and T At any con-
centration between ¢ =¢, and ¢ =¢, the system can
lower 1ts Gibbs energy by separating mnto a helium-
rich phase at ¢ =c; and a hydrogen-rich phase at

¢ =¢,, with the relative amounts of the two phases
being given by number conservation For such a
partiglly separated system, the Gibbs function 1s
given-by the dashed line m Fig. 3. The error bars
in Fig. 3 refer to the estimated computational
error,® not the error due to the various physical
approximations made We have also shown typical
static energy differences (to second order) between
lattice structures in Fig. 3, from which the sensi-
tivity of the phase boundaries to lattice structure
can be estimated.

The phase separation curves themselves are
presented 1 Figs. 4—8. Note that the temperafures
for which muixing occurs are generally well above
the order-disorder transifion temperatures listed
m Table I, Thus, as we have mentioned, the de-
taals of thas transition are not very important m
the calculation of the phase boundaries. The un-
certainties i AG are the cause of the uncertainties

1 the phase boundaries, wndicated by the cross-
hatched regions. The most striking features of
the results are (1} the persistence of a large mis-
cibility gap at the highest temperatures and pres-
sures, and (1) the large temperatures necesgsary
for any-mixmg-to-oceur:®* The occurrence of large
mixing temperatures 18 not dependent upon the
approximations we have used to take mnto account
short-range order and lattice vibrations, although
the precise values of the mixmg temperatures
clearly are. The prediction of complefe phase
separation® at temperatures|below some tempera-
ture T, reflects the large positive values of AG
for the static alloys (AG~R,T,). In contrast, the
Iarge miscibility gap is primarily due to the “pin-
nmng?” of the phase boundary near ¢ =0.25. This 1s
caused by the exceptionally low values of AG for
¢ =025 (see Fig 3) at hgh temperatures, an ef-
fect for which the latfice dynamics 15 entirely re-
sponsible

The relatively low phonon frequencies predicted
by the virtual crystal approximation for the ¢ =0.25
randomly desordered alloys should be compared
with the imaginary frequencies found for the
¢ =025 ovdered alloys In both cases the alloy ex-
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FIG. 7 Phase separation curve at 60 Mbar

hibits phonons whose frequencies squared are low,
This resulis, m one case, 1 a true mstability,
and m the other case the low energy and high en-
tropy resulting from these low frequencies greatly
favor mmxmg. In respect of the ¢ =0.25 alloys, it
appears that the treatment of the lattice dynamics
may be quite crucial. A more correct treatment
of the disordered alloy (within the harmonic the~
ory), and the application on the temperature-
dependent self-consistent (harmonie) phonon theory
for example, may produce gualitative differences
1 the phase boundaries. One such difference
might be the disappearance of the miscibility gap
at temperatures below 19000 °K,

In conclusion, the ecalculation predicts that untal
the temperature has reached a fairly high value,
which will certamly depend upon pressure, there
15 essentially complele phase separation® insolid
alloys of metallic hydrogen and helmm. This may
be regarded as a fairly firm result, since 1t 15
not dependent n any crucial way upon the approxi-
mations used fo compute AG. If hydrogen and
helwm are solid m some region of the mterior ’
of Jupiter, these conclusions have a direct hearmng
on any phase separation model of energy emission.

We also predict a Iarge miscibility gap that
persists to T=19000 °K and p =90 Mbar. How-
ever, this prediction depends upon the approxi-
mations we have used 1 treating the latfice dy-
namics of the alloys, and might well be substan-
tially modified by a more detailed treatment of the
phoncn spectrum, The third-order terms i the
band-structure energy have little effect, tending
to raise AG by only a small amount. Thus the
approxmmate response function used m (Esf))o, as
well as the neglect of { E?),, is not expected to
have any important effect on the phase boundaries.
The same 15 true of the use of the quasichemical
approximation
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APPENDIX

The calculation of (E@ ), and {(ES ) m Sec I
requires the evaluafion of the following averages.

TK) p =90 megabar
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S, (Eb—f‘lz)E Z Z e—lgl'ﬁs g”*ka R, (d: d.r >0 (A1)
"]

and

Sy (-}EI,T{2,T§3)E E Z Z e“‘ﬁl'-ﬁl-g“-ﬁz"ﬁm

i m n

xe*kaRalg a.d. ), (A2)

We will freely make use of the defimtions and
properties of the variables p; and d, as presented
m See HI Expressmgd, m terms of Py, We have

{d, 4,20=A(p, =) (p, =c))q

=(p,pj)0—c2=5i3(c_cz) (A3)

Simlarly,
(dydpdydo= Dy ~c) (Br—c) (Pr—€))g

= <Plpmpn)o_c<pmpn)ofc'(i)!pn >ro
~c{pyPmto+3c®=co. {Ad)
Note that if I#+m#n m By (A4), Eq. (22) guaran-
tees that the average will vanish. If only two of
the sites are equal, wé use Eq (18) and again the
average vanishes Thus
{dy G dy )5 =8y, 1B,y nlc — 36%+2¢°) {A5)
Substituting Egs. (A3) and (A5) mto (A1) and (A2),
and using Eq (30),
So(ky, ko) = No gL, 7 0 — ) (A86)

and

-

S,(k,, Kk, k) =NOT, 1iyeiny, & (€ — 367+ 207),
(AT)
where K 15 any vector of the reciprocal lattice

ES
-

*Work supported by the National Aeronautics and Space
Admumstration under Grant No. NGR-33-010-188

FAlso supported by the Swiss National Foundation.

W B Hubbard and R. Smoluchowsk:, Space'Scr. Rev, 14,
599 (1973)

’E. E. Salpeter, Astrophys. J 181, 183 (1973).

3D, J. stevenson, Phys. Rev. B 12, 3999 {1975).

‘D J Stevensonand N W Asheroft, ¥hys Rev A9,
782 (1974).

SFor wmstance, two duferent methods of caleulatng the
melfing temperature of hydrogen predict temperatures
different by a factor of 4 at about 40 Mbar See Ref
4

M Hansen, Constibution of Binary Alloys, 2ud ed.
(McGraw-Hill, New York, 1958),

'J Hammerberg and N W Asheroft, Phys Rev. B 9,
409 (1974),

8W. A, Harrison, Psendopotentials in the Theory of
Metals (Benjanmuin, New York, 1969).

9% G Brovman, Yu Kagan, and A Kholas, Zh
Eksp. Teor Iz E, 2429 (1971) [Sov Phys.-JETP
34, 1300 (1972)]

"D Nozidres and D. Pmes, Nuovo Crmento 9, 470
(1958); P. Nozidres and D Pmes, Phys Rev 111, 442
(1958); P Vashshia and K 8 Singwi, Phys. Rev. B §,
875 (1972)

1The firgt Iow—temperature correction to the free en-
ergy F of the free-electron gas can be shown to con-
tribute negligibly to the phase separation boundaries.

2p Lloyd and C A. Sholl, J. Phys. C 1, 1620 (1968).

BD. J W. Geldart and S H Vosko, Can J Phys. 44,
2137 (1966).

HMA. K. MaeMahan, H Beck, and J. Krumhansl, Phys.
Rev A 9, 1852 (1974) g

iNone of our final results depends upon the defimition
of p, m terms of hehum It mght just as well have
been defined in terms of hydrogen.

D Stroud and N W Asheroft, J Phys F1, 113
L971).

Ygince the caleulaiion 1s valid for all ¢, the c=0 (or ¢
=1) lumts of {Ey} g, {ESPY, and (B}, recover the

pure crystal resuit.

1%y Hewe and D, Weaire, 1n Soiid State Physics,
edited by H Ehrenreiwch, F. Seitz, and D. Turnbull
(Academic, New York, 1970), Vol. 24

BF Yonezawa and T Matsubara, Prog Theor. Phys,
35, 357 (1966); R. Kubo, 4 Phys. Scc. Jpn. 17, 1100
‘1962) -

®g J Ellwtt, J. A. Krumhansl, and P L Leath, Rev
Mod Phys. 46, 465 (1974).

Hy. Yonezawa and K., Morigaki, Prog. Theor. Phys.
Suppl. 53, 1 (1973).

2@ @. Shirley and S Wilkins, Phys Rev. B 6, 1252
{1972). -

BB_ Taggart and R. A. Talr-khel1, Phys. Rev 486,
1690 (1971}, R A. Tahir-khel, thed 188, 1142 (1969)

U7 Muto and Y Takagi, wn Solwd Stateﬁysws, edited
by F Seitz and D. Turnbull (Academic, New York,
1955), Vol. 1.

25y, Guttman, in Selid State Physics, edited by F. Seitz
and D Turnbull (Academic, New York, 1956), Vol, 3

%g, Domb, 1 Phase Transtiions and Crifical Pheno-
mena, edited by C. Domband M S8 Green (Academic,
New York, 1974), Vol. 3

%A Bienenstock and J. Lewis, Phys Rev 160, 393
(1967). -

2BIf By {44) 1s taken to define the complete HarmlItoman

of the system, then positive » rmplies the cccurrence
of phase separation at T'=0°K (and zero pressure).
Since we are using the Hamultoman of Eq (44) only to
describe the free energy involved n the ordermg of
an assumed alloy, it 15 necessary to take » as bemg
negative.

21f only two-body mteractions are kept m Eq (L5), then
such a choice of v 1s exact withn mean-field theory
(known as the Bragg-Williams approximation 1n the
alloy context). Since mean-field theory 1s expected to
be valid for very-long-vange interactions {II E. Stan-
ley, Intvoduction fo Phase Transitions and Crifical

Phenomena (Ocford U P, London, 1971), p 91],
and since the parr interactions in these alloys have a
range of at least 10 neighbors [H Beck and D Straus,



1928 DAVID M STRAUS, N W ASHCROFT, AND H BECK

Helv Phys Act 48, 655 (1975), L G. Caron, Fhys.
Hev BY, 8025 {1974)], mean-field theory should he
a reasonable approximation.

% H Fowler and E. A Cuggenheim, Proc. R Soc
A 174, 189 (1940), C N Yang and Y. ¥ i1, Chum. J.
Phys T, 59 (1947); Y. Y. La, J. Chem Phys i,

447 (1949)

YR Kikuchi, Phys Rev 81, 988 (1951), M Kurata and
R ¥ikuchi, J. Chem Phys 21, 434 (1958).

2Bach higher approximation censists of takmng a larger
group of 10ns as the basie cluster

%Ts 1s not true of mean-field theory

¥C Domb, Adv. Phys 9, 245 (1960)

%D M Burley, i Phase Transtitons and Crifical Pheno-
meng, edited by C Domb and M. S, Green (Academic,
New York, 1972), Val. 2

%A more subtle assumption made 1s that at every con-
centration, there 1s only one ordered phase For
examples of other possibihities, see N § Golosov and
A. M, Tolstik, J Phys Chem Solds 36 899, 903
(1975), N 8§ Golosov, A. M Tolshk, and L ¥a. Pudan,
ibid 37, 273 (1976); N S Golosovand A M Tolstlk
wbid 37, 279 (L976)

%0ne should note that the quasichemmeal approximation
itself is least accurate n the critical region,

BThe long-wavelength lumit of the vibrational spectrum
will yield a compressinhty which agrees wath that cal-
culated from the static energy (up to second order mn
the electron~10n interaction) only 1f some terms of
third and fourth order in the electron-1on mteraction
are wmecluded in the dynanucal matrix  [C J. Pethick,
Phys Rev B 2, 1789 (1970 ] Since we only keep
second-order terms w the dynamical matrix, the
replacement of Eq (46) 1s not exact, even i the
long-wavelength limit  The resulting error n the
compressibility 1s of order 10% [E Steil, P Meler,
and T, Schneider, Nuovo Cimento B 23, 90 (1974) ]
Tins discrepancy 1s also present in the case of pure
hydrogen and hehwm

®H Beckand D Straus (See Ref 29) define the “aver-

15

age mass” incorrectly However, since the massof a
pure system enters the dynamical matrix only as a
multipheative prefactor, none of their resulis are
affected

%W A Kamutakahara and B N Brockhouse, Phys Rev
B 10, 1200 {1974) Note that the “average” force con-
stants used 1n this reference do not correspond to the
average defined by Egs (46) and (48)

UE, C. svensson, B N. Brockhouse, and J M. Rose,
Sohd State Commun 3, 245 (1965); 3 C.Ngand B N
Brockhouse, ib1d 5, 79 (1967)

“This procedure 1s necessary to keep 7 constant

3D Choquard, The Anharmontc C'rystal (Benjamn,
New York, 1971) ™~

A Balderesch, Phys Rev B 7, 5212 (1973), D.J
Chadiand M L Cohen, zb2d 8, 5747 (1973).

D M Straus and N W Asheroft, Phys Rev B 14,
448 (1976}

45The type of “Kohn anomaly” nstability shown by these
two substances 1s discussed m Beck and Straus (see
Ref 29) ‘The self-consistent phonon theory mght well
stabilize these substances at low density

“UIn {he context of cubic lattices ¢/z 1S the ratio of the
distance between equivalent planes to the distance
between equivalent 1ons wn a plane

“F Dyson, Ann Phys (N Y) 63, 1 (1971)

Ymstabihties occur at long wavelength for both struc~
tures,

S0we describe the criterion for global mstability, The
expected exponentially small limiting solubilities are
not considered here

SIThe large error bars at ugher temperatures and low
concentrations of helhwum are largely due to the {(es-
fimated) errorin using only a few special (hep) points
to caleulate FY for ¢=025 The fractional error
AFY/P01s usually less than 5%, but F? can be large,
on the scale of AG (F) for ¢=0 25 m Fig. 315 of
order 01 au perion)

% These features should be contrasted with the phase
separation curves of Ref. 3.



VoLuME 38, NuMBER 8

PHYSICAL REVIEW LETTERS

21 FEBRUARY 1977

Self-Consistent Structure of Metallic Hydrogen*

David M. Straust and N. W. Ashcroit
Laboratory of Atomic and Solid State Physics and Materials Science Center, Corneil University,
Ithaca, New York 14853
{Recewved 23 November 1976)

A ealeulation 15 presented of the total energy of metallic hydrogen for a family of face-
centered tetragonal lattices carried out within the self-congistent phonon approximation.
The energy of proton motion is large and proper inclusion of proton dynamics alters the
structural dependence of the total energy, causing isotropic lattices to become favored,
For the dynamic lattice the structural dependence of terins of third and higher order in
the electron-proton interaction is greatly reduced from static lattice equivalents,

Perturbation theory has heen moderately suc-
cessiul in accounting for the structural depen-
dence of the sfafic energy in many simple crystal-
line metals,’? In this method, the structural en-
ergy 18 obtained by expansion in orders ¢f the ef-
fective conduction-electron—ion interaction {or
pseudopotential), the expansion usually being
truncated at the lowest term and resuliing i what
18 referred to as the second-order band-struc-
ture energy For perfect lattices, this term re-
duces to a relatively simple sum over the sites
of the reciprocal lattice.

In the case of metallic hydrogen, the electron-
ion (electron-proton or electron-deuteron) inter-
action is exactly known, and it is partly for this
reason that this system has atiracted theoretical
attention *7 Within the static-Iattice approxima-
tion, perturbation theory for the structural ener-
gy has been carried through to fourth order,”™ and
extensive seans of “Bravais lattice space” have
Ieen carried out in an attempt to determine, at
zero pressure, the structures with lowest static
energy.® Inthe latter caleulations (which were
at third order), Brovman ef al.® concluded that
static metallic hydrogen would take up structures
which are so highly amsofropic that near the zero-
pressure metastable density they would become
“lquidlike” in certain crystal directions upon n-
clusion of the proton dynamaics.

Since the 10nic mass 1n metallic hydrogen 1s

small, one expects on quite general grounds that
the ionic degrees of freedom can play a rather
significant role 1n determining the structure with
lowest overall energy. It 18 known®” that energy
differences between different structures are
small—much smaller, for example, than the esti-
mate of the energy bound up in the zero-point mo-
tion of the protons, Evidently, what 18 required
is a caleulation of siructural energies carried
out self-consistently for various lattices dis-
turbed by the presence of phonons. The purpose
of this Letter ig to report on the outcome of such
an mvestigation: We have completed a series of
calculations within the self-consistent harmome
phonon appreximation®® (SCHA) for a representa-
tive family of face-centered tetragonal (fct) Brav-
a1s lattices in their ground states at a density'®
of r,=1,36 [ with £7(r a,)*=n"!, n bewng the elec-
tron density N/Q). Two umportant results emerge:
Firsi, the inclusion of ion dynamics. radically al-
ters the structural dependence of the energy so
that, in the family which we consider, it 1s the
isotroprc lattice (fce) that 15 ulfimately favored,
Second, by the mclusion of ion dynamics n the
perturbation theory, the structural sensitivity of
the terms kighey than second order is greatly re-
duced irom that appropriate {o the static theory.
The arguments go as follows: To second order
1n the electron-proton interaction, the total
ground-siate energy per proton in the self-con-
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s1stent harmonic approximation can be written™

BZ -
Efr) <L Z} Re(q, 7} + % i?_‘_lodl(}st) + (terms independent of structure}.
§ =

4N 3T,

(1)

Here the sum of frequencies w({, ) of polarization § 15 taken over the first Brilloumn zone (BZ), and

*I)(X f (211')3 sz(k) p[__%k&ka_l'ﬂﬂ('i)]e}{p(gﬁ. 3.{), ]
where
X () = 2] (2t oK p(X)) = (oKhueg (O] = = = Z) (1 - cosq- X)e,(,7)eq (@) ™(@.7), (3)

ql-'l‘

with the brackets indicating an average over harmonic states. In Eq. (2), €(k) 1s the dielectric function
of the interacting electron gas taken, as 1s cusfomary, in its static limit. The small iome displace-
ments T(X) are defined by T(¥)=R - X, where R is the instantaneous position of the 10n, and X the lat-
tice site fo which it is atiached. Notice that the first term in (1) 1s the kinetic energy of the 1onic sys-
tem whereas the second is the potential energy averaged over the ions, motion. To carry out this aver-
aging, we require both the frequencies w(g,7) and the polarization vectors &(d,7) of the self-consistent

phonons; and these are given by the solution of

dk__4m

Mw"’(fl',j)ea(ﬁ,j)={RE°(cosq~X— 1)

2R B ok

exp| - %kukvhuy(i)] exp{e K- i)} ea(d, 7). (4)

Evidently, the sfafic energy can be formally re- |
covered by setting A =0 1n Egs. (1)-(3), and by
omitting the phonon kinetic energy 1n Eq. (1). The
harmonic approximation, on the other hand, can
be obtained by expanding in powers of X and re- .
taining the terms linear 1in A, In metallic hydro-
gen however, the root-mean-square proton dis-
placement is substantial,’? and such an expansion
(implicit 1n Ref, 3) is open to question. The sec-
ond-order static energies'!* (to which, in the
harmonic approximation, the phonon energies are
sumply added) are shown i Fig, 1, plotted against
c/a for the fet system (solid line), Note that
there 15 noticeable structure in the curve not
found, for example, m an ordinary simple metal
(e.g.,’® Al). In agreement with Ref. 3, we find a
structure with ¢/a <1 to have the lowest static en-
ergy. However, when we compute the dynamic
energy self-consistently, the situation changes
markedly, It 1s 1important to note that the solu-
tions of (4) do not always admit »eal frequencies:
The arrows 1 Fig, 1 indicate three such lattices;
the dashed line gives the fofal energy'®i? [ Eq. (1)]
for the ¢/a values for which Eq. (4) can be solved.
The reason for the apparent failure of the SCHA
is simply that, for certain values of the parame-
ter ¢/a, the small-oscillations problem 1s not
well defined, For example, latiices correspond-
g to ¢/a values lying in the range 0.5 <¢/a <0.7
are associated with a portion of the static-energy
curve (Fig. 1) that is removed from a local mini-
murm and for which the second derivative (with
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respect to ¢/u) 15 negative, In these Ilattices, the
existence of sfable small oscillations of the pro-
fons cannot be presumed, and the occurrence of
imaginary frequencies in the SCHA is an indica-

tion that they do not. For values of ¢/a near 1.5,

3 1 [T I T
-049f—
-0492—-
-0493- -0486
Estalic
04994 -04B7

E'I'orcl
-0495- -0488
-0496|-
0497 ] 1 I N | l 1
040 060 08B0 100 150 200

¢/a
FIG. 1. Static energy and total seli-consistent energy
for fet metalhic hydrogen (at #,=1,36 and T=0°K) as 2
function of ¢/a (all energies are in hartree atomic
units). Total {right-hand seale) is given by the dashed
line. Arrows refer to particular values of ¢/a for
which the crystal is unstable.
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the absence of stable oseillations is already sug-
gested by the results of the harmonic approxima-
tion, for which imaginary frequencies are found
everywhere 1n the BZ4. Although there 15 a mim-
mum 1n the static energy near ¢ /a=1.5 (Fig. 1),
the SCHA can still fail because 1in the wider Brav-
a1s lattice space referred to earlier this point
can be situated at a saddle on the energy surface,
in contrast to the regions corresponding to the
dashed curves which evnidently reflect local mini-
ma (as required for stability).

The total energy is mimimized at ¢ /¢=1 corre-
sponding to the fcc structure, which 1s the most
symmetric of the class considered. Since the
sharp variations of static-lattice energy found in
Fig. 1 and in the plots of Ref. 3 occur over values
of ¢ /a comparable to the ratio of {(#2}/2 to a
nearest-neighbor distance, it is not unreascnable
to expect similar behavior for other families of
Bravais lattices such as those investigated by
Brovman, Kagan, and Kholas.® Evidently, we
may conclude that 1n the metallic phase of hydro-
gen, lattice dynamical effects completely alter
the structural dependence of the energy: Ina
self-consistent calculation, 1t 15 i1Sofropic lathic-
es that are favored. (Indeed, it is worth noting
that none of the structures corresponding to the
minima of the static energy in Fig. 1 1s stable in
the simple-harmonic approximation,) Finally,
the energy of motion, defined by E-E ., 18"
0.0076 hartree umts per proton for the fec struc-
ture. This 1s a substantial fraction of the zero-
pressure bmding energy™ which, depending on
estimates of electron-gas correlation energy, 1s
in the range 0,02 to 0,03 hartrees per proton,

We now come to the structural dependence of
terms in the energy of third and higher order 1n
the electron-ion mnteraction, which have been
omttted from (1). In the SCHA the fofal second-
order band-structure energy can be written

E®= o T SB 5L

29 =0

[e(k) 1] ()

where the static strueture factor S(K) is given by'”

SE) = %}e‘i'fexp[ — gk oko o (X)]. (6)

This function is plotted 1n Fig., 2 for fee metalhc
hydrogen (r,=1.36) with K along the [100] direc-
tion, The large weight between peaks (and the
correspondingly sharp reduction in the strength
of the Bragg peaks themselves) can be traced
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FIG. 2. Structure factor S(k) for fec metallic hydro-
gen (at 7, =1,36 and T =0°K) for i along [100]. The fre-
quencies and polarization vectors used to compute S(k)
are the solutiong of the self-consistent equations,

to the value of the Debye-Waller factor e?¥ where

2W = ()= WE 'Z}eu(fi, Jep(@, N0 ™d,7) (7
1s appreclable.’? This transfer of weight from
the Bragg peaks to the continnum in between
means that the dynamzc second-order energy 1s
Iess sensitive to structure than the correspond-
ing statie lattice quantity, Now, in third and high-
er orders this effect is compounded: It is easy
to show'>!® that the dynamie third-order band-
structure energy has three Debye-Waller factors,
the fourth has six such factors, and sc on. The
extent to which the dynamics veduces the struc-
tural sensitivity 1s more marked at each succes-
swvely higher order. Thus, for purposes of cal-
culating the s#rucfural dependence of the energy,
perturbation theory converges more quickly 1n
the dynamic case than in the static counterpart,
Perturbation theory does not, of course, say
whether the assumption of a crystalline ground
state for metallic hydrogen 1s valid, However
withon such an assumption, it offers a means for
deciding on the preferred lattice; and in this con-
text the calculations described above appear to be
the first for a metal that go beyond the harmome
approximation,
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We obtan 1 closed analytic form, estimates for the thermodynamic properties of classical fluids with pair
potentials of Yukawa type, with special reference to dense fully 1omzed plasmas with Thomas-Fermu or
Debye-Huckel screening We further generalize the hard-sphere perturbative approach used for similarly
screened two-component mixtures, and demonstrate phase separation m this simple model of 2 hquid muxture

of metallic helium and hydrogen

L INTRODUCTION AND FORMALISM

The variational procedure of Mansoor: and Can-
field® has proven to be a fruitful source of approx-
i1mate thermodynamic information for dense clas-
sical fluids, Iwguid metals,? liquid alloys,*>* and,
more recently, the pure classical Coulomb gas.’
In thas brief paper we apply the method to obtain
analybic varational estimates analogous to those
of Ref. 5 for the case of certain screened Coulomb
systems.

We begin with the Hamiltoman for a system of
ZN electrons (coordinates F,, momentz P,, mass
m) and N fully 1omzed atoms [coordinates R, mo-
menta P(R), mass M and charge Ze¢]

a? Pz(R)
ZZm 22| _?,1+Z:R 20
lz Z%g? Ze?
+= _— = .
z-ﬁ#‘ﬁ.‘ ]R Rll iR lr —ﬁ‘

Let ¥ be the volume of the s system, and let pe(k)
—2 explik+ T .) and p,(k) Eﬁexp(zk R) be the
Fourier transforms of the density operators for
electrons and ions, respectively. In the limat
N—ow, V-~w, N/V-n, we may rewrite H as

Hasz@)Q;“ (o, Bos(=P)- 1]

4%5 p, ), (-K),

i
where A, 15 the standard interacting electron-gas
Hamaltonian, To obtain an approximate Helm-
holtz free energy for the ions, we follow the cus~
tomary procedure of first caleulating an adiabatic
linear response of the electrons to the ionic po-
tential, which leads to an i1onic Hamiltonian 1n
which the 1ons can be considered to move accord-
1ng to screened interactions. The variational
procedure! can then be applied by comparing two
isochoric systems, one a hard-sphere reference
system and the other a system of particles inter-

15

acting through a screened Coulomb force. Within
the linear screening approximation the free energy
1s bounded by?"

IZN 4472' e

F(0)=Fy g+ £t Folo)+ 222 (s -1]

P 3L L s ) W
2%V {®)
where £, 18 the free energy of the corresponding
1deal gas of 10ns, F,, 1S that of the interacting elec-
tron-gas, &(k)1s the usual dielectric function of the
electron gas [taken as lim,,. ,€(k, w}, m accor-
dance with the conventional approximation of the
theory of metal thermodynamacs that the elec-
trons follow the 1omc motion adiabatically], Fo(o)
18 the excess free energy of a gas of hard spheres
of diameter o, and S(k) 1s the structure factor of
the hard-sphere gas.
With n=N/V, we may rewrite Eq. (1) as

F(U)=Fig+Fes+Fo(0')+ ‘)124‘#2 ¢ ( (k) ])

iy dnZ%e®
2% K «®

we now 1denfify the fifth term as an effective-pair
interaction between ions, and the fourth as the
self-energy of the screened 10ns.

Our observation is that these terms can be ob-
tained 1n closed analyfic form for dielectric func-
tions of the type

e®)=1+4%/1 (3)

and the Percus-Yevick hard-sphere structure fac-
tor, Dielectric functions of this form are found in
two physically significant limifing cases: the
high-density low-temperature limit, 1in which the
Thomas-Ferm: dielectric function 18 appropriate
[with g= (67e*Zn/E)*72, Ep being the Fermi ener-
gyl; and the low-density hagh-temperature limt,
in which the Debye-Hiickel form for €(k} 15 sumt-
able [1.e., g= (4re2Zn/ETY].

Lis® -1, (2)

2072
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For dielectric functions of the form (3), the
structureindependent fourth term of (2) becomes

nN“dwZ%e?/ -q®\ _ NZ3%*%q 4
o I @

and the fifth term may be writien in coordinate
space as

4 Z2%g®
vy e

=Nn Zze j; ‘:1,, 4ﬂr2ﬂff7-q—ﬂ[g(r) -1}, 5

(S(r) 1]

where g{r) 1s the standard radial distribution func-
tion for the flmd, If should be noted that we have
here used the liguzd structure factor, from which
a b-function term at k=0 has been subtracted,
removing a term associated with the bulk isother-
mal compressibility of the electron gas.

Now, the right-hand side of (5) 1s essenfially the
Laplace transform of vg(), and is available ana-
lytically for the hard-sphere fluid in the Percus-
Yevick® approximation.”™® In a notation similar
to that of Wertheim,” with x=v/o

fwdx exp{— ) xgl(x) - x] =G(A) = 1/32,
[

where
ALY
G= 120 L)+ S )e]
with

L) =120 (1+z9)A+ (1+ 2n)],
S = (1 =73+ 691 = A2+ 1877 ~ 124(1 + 27).

Here 71 is the packing fraction, given by 7
= (7 /B)no®.

We thus achieve m closed form the following
single-parameter expression for the free energy:

F(n)=Fig+ Fop+ Foln) - NZ%e%q /24 N(Z%*/2r,)
X 122G (20 gy .} - (2 37 o) 2] (6)

where (47 /3)r3=V/N. An appropriate expression
for the excess iree energy of the hard-sphere
system 1s that of Carnahan and Starling®:

Fom)=NeTn(4 -3m/(1 -n)

An approximate lowest upper bound on F{n} can
now be obtained by appealing to the Gibbs-Bogolyu-
bov 1nequality?® and minimizing (6) 1n 7; that is,
for a fixed ¢ and 7,, we 1mpose 3F(n)/on=0. The
resulting transcendental equation in 1 can he solved
numerically to obtain the minimazing value of n,
which we denote 7%, we then approximaie the true
free energy as F(n*). The thermodynamic deriva-
tiwves can likewise be evaluated; we have, for ex-
ample,

Note thai differentiations may be performed at
fixed 7 by virtue of our varational condifion.

We now illustrate the procedure for the case of
Thomas-Ferml screémng.

I ONE-COMPONENT THOMAS-FERMI GAS

For this case, we have gr,= (122 /r)* /2 where
7 ¢ 15 the usual electron-gas parameter

= 1/3
¥ =v /2 Py,

Requiring 8F/an=0 imposes a transcendental
equation of the form f(T,r,,n*)=0. It proves most
convement to solve this equation numerically for
¥ (1, T) and find the eguation-of-state data 1n pa-
rametric form analogous to that of Ref. 5; we
present 1n Fig. 1 resulis for .. The Thomas-
Fermi approximation for the dielectric function
is appropriate for systems satisfying gr, < 1, 1.e.,
(with Z =1, for which we have done all our calcula-
tions) for v, <« 0.4, In Fig, 2 we plot the plasma
parameter I'pp=(Ze)2/r kT against 7 as well as
the corresponding I', for the unscreened Coulomb
system of Ref. 5. As expected, Iy approaches
I asr,~0.

Using for F, the zero-temperature RPA form,*
we next compute the free energy and the pressure;

05—

6 0%

03

[+

akT/e?20 1O

Q05—
004f 050

QO3

ooz~

ool I I 1 ] ! :
ol g2 o3 a4 o5 06

FIG. 1 7, as a function of the mimmizing value of
1 for the Thomas-Ferm:1 case, from numerical solution
of the transcendental equation of the variational condi-
tion
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1000~

100+

1 1 ! I 1
ol a2 03 04 05 06 7

FIG. 2. Plasma parameter I’ versus the mimmizmg
value of %, for the Thomas-Ferm: case and the un-
screened Coulomb gas, computed from the ¥ of Fig. 1
and Ref 5
these we plot mn Figs. 3 and 4, respectively.

Assomewhat analogous computation has recently
been earried out by Ross and Seale!? using the
RPA dielectric function (rather than the Thomas-
Fermi form) and 1n which the second-order band-
structure energy [the fifth term 1n (1)] 1s obtained

100,
sol= .
4o
30p
o F TN
20
1Qp=— —
s apkT/ =010 .
050
4t
070
3l N
2f
1 1 1 1 1

) 1
ol 05 Q20 025 030 035 ry

FIG 3. Free energy per lon as a function of #¢, 1n
atomic units, from Eq (6).

100 T

uspl 2%

40-

301

20p

! |
az25 ¢ 30 o35

10 !

3

FIG 4 Pressure in atomic umts as a function of 7,
from Eq. (7).

by numerical integration. We plot mn Fig. 5 their
excess free energy W [essentially the last three
terms of Eq. (2)], and 1n Fag. 6 the excess pres-
sure, for » =0.1, together with our results. The
agreement 18 seen to be excellent, especially in
the excess pressure. Furthermore, 1 Figs. 7 and
8 we exhibit the corresponding plots at » =1. We
again see excellent agreement despite the fact

that at this value of ¥, one would not expect the
Thomas-Fermi form of the dielectric function to

T 1 [ T T T T T
s s =010
3
S
60~ 4 -1
-W I’
NET //
/
50 /’ -
;
Y
40f= 77 B
7
fr
/s
i
30(- // -
’
&P
‘s
4
20 e -
I & Ross and Seole
/7
77
4‘5’ © Present Calculation
10 ;’ -
sy
[

ob— . s r 1 ¥
10 20 30 40 50 60 70 80 p

FIG 5 Excess free energy i temperature umits for

75 =01 as a function of I', compared with values from

Ref 12
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FIG 6 Excess pressure 1n {emperature units for
7. =01 as a function of I, compared with values from
Ref 12

closely approximaie the RPA form; the conclu-
s10n 18 perhaps that the two are essentrally equmva-
lent for the calculation of thermodynamic proper-
ties as the resulf of cancellations of somewhat for-
tuitous character in the integrals, at least at the
larger value of 7.

[} T T i T 1] ]

70} e
~W v
NKT //

80 // B

r
F
/ //
o
T/
50} // / .
// ¢
/
4o} // // .
/7
[+
/ S
/!
30- /f / 4
/ /A rs=10
/// 4 -~ Ross + Seale
sk Io// O - prasent
i ' calculation
%
/
V74
10} g/ .

0 20 30 40 S0 60 7O
FIG 7 Asm g 5, but with rgo=1 0.

/
20[- /
- - - /
~{p-palV /
NKT /
/
/
//

IG5 y;
/

; =10

& - Ross + Seale
© — Present cofculation
55 /

o

1 L 1

I'O 2'0 30 40 50 6l0 7|0 T
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It may be noted that modified forms of g() have
been proposed*® which match the resulis of com-
puter simulations somewhat better than the um-
ple hard-sphere Percus-Yevick resulis, especially
at higher densities. We have used the Percus-
Yevick result here chiefly because of its analytic
simplicity; we have, however, examined the cor-
rections resulting from the use of the forms for
£{r) proposed 1z Ref. 13, and have found them to
be only 1 or 2% of the pair energy, even at packing
fractions as high as 0.68,

Il TWO-COMPONENT THOMAS-FERMI SYSTEM

The above discussion can be readily generalized
to the case of a system consisting of a mixture of
fully 1omzed atoms of differing nuclear charges,
together with their neutralizing background of
elecirons. In particular, the free energy of the
two-component system with nuclear charges Z,e
and Z,e and respective mole fractions », and x,
may be written in a manner similar to Eq. (6)

Let ¥, now 1ndex electron coordinates, and Ri
(z=1,...,N,) the coordinates of 10ns of charge Z e
and mass M; (z=1, 2}, Then the Hammltoman for
the assembly of electrons and fully iomzed atoms is

PA(RE)
4= E2m EIr,—r I az;

2M,
1 y 2.7 e Z .e®
+ E ":i-'"{:“ EZ i i
o, 14 IRu—Rﬂl 1w X -
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or, introducing Fourler transforms of ionic den-
sities«

N
P
o]

we can rewrite the Hamiltoman as

dnZ 7 et
LT Gy
k20 1,7

) {(,N ) pler(®)plon(— ) — 6,

NI TS

where N =EN,.

The arguments leading to (1) are now repeated,
the esgsential difference here being that the refer-
ence system is taken as a two-component {rather
than one-component) hard-sphere fluid. The ap-
proximate free.energy 1s then

N
F=F, +F +F,0,,0,) - —— (xl 2+ x,28)

2

+.N’1rzi2 E Z fwdrilfrr

izl 2 j=1,2 "0

2 €xp(—g¥)
s

xZ,Z [ g,;t) -1y,
(8)

where F,_1s the free energy of a two-component
1deal mixture, F, the excess free energy of the
two-component reference system (i,e., a mixture
of hard spheres of diameters o7 and o,), and the
g,;'s are the appropriate radial distribuiion func-
tions for the reference system. The objects of
interest are again the Laplace transforms

6= [ " r expl= 2y, ).

These quanfities have been given for the two-com-
ponent hard-sphere system in the Percus-Yevick
approximation by Lebowitz.* We combine these
with the form for F, quoted by Umar et al.,® which
corresponds to an equation of state derived from

the hard-sphere partition function rather than from

the compressility, (or even an interpolation be-
tween the two), and 15 used because 1t convemently
separates into structure-dependent and structure-
independent parts. The free energy can again be
given in a closed form depending on two param-

efers, which it 15 useful fo take as the total packing
fraction 7=Lwr(ol+ ¢3) and the ratio of hard-sphere
dwameters, a=0,/0,, chosen to lie between 0 and 1,

For the dielectric function we use Eq (3) with

g= (6722 % /E 12,

p=5 Gbar

100
Ne?

1070, kT4 = |

3, 3
] a2 04 a6 [+]:] 10 Xpe

FIG 9 Typical excess Gibbs energies in atomic umts
for H-He mixtures at 5 Gbar, showing common tangents

with
Z*= E xiZ,.

Since we now have two independent parameters,
it proves most efficient to do the minimization by
a search procedure in (1, @) space, not using
derwvatives. We make use of Brent’s modification
of Powell’s algorithm?!® for this purpose, which is
found to give excellent convergence for the fune-
tions in question®

Our calculation has been directed primarily
toward the question of phase separation in these
flmids, Since physically meamngful calculations
of this type must be performed at constant pres-
sure, we compute the Gibbs function G(T,p,x,)
at the specified pressure, using a zero-finding
procedure to determine the necessary values of
¥y, and then perform a Maxwell common-tangent
construction to obtain the phase boundary.

Phase diagrams were computed 1n this manner
for hydrogen-helium mixtures at three pressures:
60 Mbar, 5 Gbar, and 10 Gbar, or, respectively,
0.204, 16 995, and 33.980 a,u The 60 Mbar pres-
sure corresponds to ¥,=20.84, which 1s ouisade
the regime in which the Thomas-Fermi dielecirie
function is expected to be realistic; it 15 provided
for comparison with the work of Stevenson,* who
performed a similar calculation using the Hubbard-
Geldart-Vosko dielectric function!” and including
in the free-energy terms arising from the next
order in the electron-gas response and the leading
quantum correction to the iomc structure factor.
For the 5 Gbar pressure, »,~0.38, and at 10
Gbar, v ,=0.33; so for these pressures the Thom-~
as-Ferm: form 1s swtable. We display in Fig. 9
some typical forms of the excess Gibhs potentral
defined as G(T,p,x,) -x,G(T,p,1) - (1 —-%,)G(T,p,0)
for a pressure of 5 Gbar, and 1n Fags. 10 and 11
the phase dlagrams themselves, together with

AT Pﬁﬁq
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p=60Mbar
Slevenson
————— Prasent
IO’ELT cakulation

0 oz 04 [+23 o8 le
He

FIG 10 Phase boundaries for H-He muxtures at
60 Mbar, together with resulis from Ref 4 Error bars
show estimated uncertamty mn phase boundary due to the
choice of interpolation scheme n the common tangent
construction.

Stevenson’s results. It will be noted that the phase
boundaries are highly asymmetriec—a characteris-
t1c they share with those recently calculated by
Hansen'® for the unscreened Coulomb system by
numerical solution of the hypernetted-chain equa-
tions—and are qualitatively sumilar to Stevenson’s,
but differ substantially 1n the temperature scale,
a difference which seems to be due to the differing
parr potential, i1n accordance with long-standing
belief* that the details of phase separation are
determined chiefly by the long-range portion of the
pair potenhial rather than the hard core, It 1s of
mterest to note that the ratio of hard-sphere dia-
meters 1s quite msensitive to temperature, pres-
sure, and composition; it stays in the range
0.76-0.78 throughout, a result also typical of
Stevenson’s calculations. Furthermore, at the
two lgher pressures considered, the critical
pomt 1s found to correspond to 7=0.62 or n=10.65
(for 5 and 10 Gbar, respectively). These values
of 1 are high enough to suggest that at the cor-
responding pressures the mixtures may solidify
before phase separation begins in the hiqud, a
fact which may be of some astrophysical interest,
Finally, the use of hard-sphere structure fac-
tors other than Percus-Yevick might be expected
to shift the phase boundaries, but should not alter
the conclusions concerning either the existence of
phase separation or the onset of solidification.

IV DISCUSSION

We have obtained analytic variational estimates
for the thermodynamie properties of a particularly

1
5a
. q cronin
10 u—:g = 5 Gbar
&+ —[0 Gbar
&l
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P T
{ - — -~
4 LV iy T
L sl o,
Fa »\"\ ~,
T s
! “ros \\m
o
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~ \\
2. ‘e{-e‘-‘
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' L L 1
0 o2 04 06 o8 12 x,.,

FIG 11 Phase boundaries for H-He mixtures at 5 and
10 Gbar, error bars as . Fig 10

simple class of screened Coulomb potentials,
which may provide useful comparisons both with
Monte Carloe calculations and astrophysical data.
Dense, fully 1onized sysiems of the type we con-
sider occur, and may be of observational interest,
1n cooled while dwarf stars; it 1s also possible
that some pellet-compression schemes for con-
trolled fusion may mvolve the formation of regions
of appropriate density and temperature—1i.e.,
7,=0.3, pressures of a few Gbar, and tempera-
tures of a few eV. Furthermore, our results may
be useful 1n 1mproving the accuracies of hard-
sphere variational calculations for metals under
more ordinary condifions by supplying a better
analytic approximation to the free energy than the
Madelung energy which has htherto been used.

As we mentioned above, our calculation can also
be performed for the case of Debye-Hiickel
screenng, In this case, we have gv,=(6T/Z) %,
where I' 15 the plasma parameter defined in Sec,
H. {Snce the Debye-Hiickel system is purely
classical, T 1s the sole parameter of interest;
1.e., the density and temperature dependences of
all thermodynamic quantities are related m a
simple scaling fashion.) The approximation is
again vahd for g, <1, or I' <% —prowvided, of
course, that the electron gas 1s far from degen-
eracy, that s, 27> E.. It 18 readily found, how-
ever, that in this regime the excess free energy
15 dominated by the structure-independent self-
energy terms, to which structure-dependent terms
add a correction of only a few percent. Neverthe-
less, if questions of phase separation in mixtures
in this regime prove to be of interest, calculations
analogous to those of Sec. I could be performed.
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A representation 15 described whose basis functions combime the important physical aspects of a finite set of
plane waves with those of a set of Bloch tight-binding functionss The chosen combination has a particularly
simple dependence on the wave vector ¥ within the Brilloun zone. and its use mn reducing the standard one-
electron band-structure problem to the usual secular equation has the advantage that the lattice sums
involved m the calculatton of the matnx elements are actually independent of ¥ For systems with
complicated crystal structures, for which the Korringa-Kohn-Rostoker, augmented-plane-wave, and
orthogonalized-plane-wave methods are difficulf to use, the present method leads to results with satisfactory
accuracy and convergence It 15 applied here to the case of compressed molecular hydrogen taken 1 a Pa3
(a-nitrogen) structure for varions densities but with mean interproton distance held fixed The bands show a
marked free-electron character above 5 to 6 times the normal density, and the overall energy gap 1s found to
vamsh at 9 15 times normal density Within the approximations made, this represents an upper bound for the”
molecular density i the transition to the metalhe state from an a-mitrogen structure

i INTRODUCTION

The method described below evolved from an at-
tempt to obtain the band structure of a system such
as molecular hydrogen in a relatively complex
crystal structure, and over a range of densifies,
For certain regions of the density 1t 1s expected
on general grounds that neither the low-density
tight-binding approach-[with a representation of
linear combinations-of-atomic-orbitals (LCAQ)
Bloch functions] nor the methods using a repre-
sentation with a basis of simple plane waves (PW)
are physically adequate.

For reascns principally connected with the struc-
ture, the other fam:liar methods are also not en~
tirely adequate,’-® at least in their standard formu-
latzons. The Korringa-Kohn-Rostoker {KKR) and
augmented-plane-wave methods not only regqumre
2 substantial amount of computational effort,
but are based on a muffin-tin approzxamation to the
aetual one-electron potential.®-% Thig means a
“sphericalization” (faking the average over angles)
of the potential arising from the contents of a umit
cell, a procedure which 1s difficult to justify when
the molecules in the crystal have no obvious
spherieal symmetry. Although such models yield
useful physical information especially at lower
densities, 1t 1s difficult to eshmate their accuracy,
particularly at higher densities, where steric ef-
fects and the requrements of proper crystal sym-
metry may become 1mportant. The effects of the
latter on the resulting band structure may well be
wmportant as has been shown by Pamter®in s
treatment of non-muffin-tin corrections to KKR
bands by the discrete variational methed.”

Furthermore, there 18 often no clear-cut sep-

16

arafion between core levels (actually nonexistent
for hydrogen)} for which fight binding 15 adeguate,
and the rest of the band levels {valence and con-
ductron}, which would make an orthogonalized-
plane-wave method appropriate. Even i1f one makes
an arbitrary separation between valence and con-
duction levels, and treats the first with tight-bind-
ing funchions and the second with orthogonalized-

- plane-wave functions orthogonalized to the valence
levels,? one still has the possiblity of sigmficant
overlap of these “core” levels in situations such as
the one here, where large variations in density are
of physical interest.

For these reasons 1t 1s natural to 1nvestigate al-
ternative representations whose basis funchons
combine in some way the advantages of both the
LCAO functions (with their physically correct
atomic behavior near the nucler) and the PW, which
are more satisfactory in the region between atoms.
One such basis set was recently used by Ramaker
et al.” in exact-exchange crystal Hartree-Fock
calculafions of molecular and metallic hydrogen.
Another, based on a more general and flexable ap-
proach, 1s described helow. It 1s a modification
of an i1dea used successfully by Brown and Krum-
hans],*® which was shown to be mathematically
equvalent to the orthogonalhized-plane-wave meth-
od.

In Sec. II, the representation will be developed
and its basic properties described. Sechion Il s
devoted to a discussion of the apphceation of the
representation to the solufion of the one-electron
problem m crystals. In Sec. IV, we present the
resulis of the applications of the method {o molec-
ular hydrogen [assumed to be in e-mirogen (Pa3)
c}:ystal structure] over a wide range of densihes,
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but with interproton distance generally held fixed.
The most interesting point to emerge from the re-
sulting band' structure 18 the observation that val-
ence and conduchion bands begn to overlap at a lat-
tice constant of g=4.78 bohr, which corresponds to
a density equal to 9.15 times ils zero-pressure_

* " “value., If the crystalhine phase remains stable at

such densities, this represents a metal-nsulator
transition at a density of approximately 0.83 g/
cm?, -

II, REPRESENTATION

The representation we introduce 1s formally in-
complete: If has a fimte set of basis wave func-
tions. Tius set 1s made up of a finite number of
PW and a set of specially constructed Bloeh fune-
tions. It is constructed in such a way that the
whole setf 15 orthonormal, and although the set is
fimte, linear comnations of them are expected to
give variationally good approsxamations to the exgen-
funchions and correspending elgenvalues, This ex-
pectation 1s based on the physical way the set 1s
construeted, which will be explained in what fol-
lows.

Consider first 2 monatomic (for example, a sim-
ple cubic) lattice with lattice constant ¢ and LCAO
Bloch function k(T) defined with atomie orbital
(),

@ =% % Tl ) )
R

where N1s the number of cells in a volume £, R
designates their position vectors, and K 1s the
Bloch wave vector., Expressing this Bloch function
in 1its well-known form

1 T T
@) =75 Z‘cg_ ge'tx-Rrr (2)
&

where K is the set of reciprocal-laitice vectors
corresponding to R, it is easy to see that

ey = (N/QY /%%y, @)

where &7 15 the Fourier transform of &(F).

For the purposes of defimng-a trial function,
&(T) may be any locahzed orbital, and not neces-
sarily an atommc one. This observation will be
used to construet a particularly convenient type of
Bioch function. But instead of defining 1t direcily
{(i.e., mn T spaceé) 1t is inferred from conditions 1m-
posed on [t In thzs way 1t 15 easier to enforce
(through them) the properties that:one would hke
the Bloch levels to have. First, some general ob-
servations. .

One expects the eigenfunctions notto'change too
much very near (and parhticularly inside, if there
is a core) the atoms or molecules forming the solid
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from the values they assume in corresponding free
atoms or molecules. This remains true even at
fairly mgh densities. Thus, one wants to include
in the basis set Bloch functions bult with atomic
or molecular orhitals to obtain 2 good representa-
tronin this region, But.at.as.clear that-for-this.pur-
pose only those componenis cj_i with sufficiently
large K are relevant (here, k 15 assumed to be re-
stricted to the first Brillouin zone B,). On the other
hand, 1f the ifinerant or free-electron character
becomes 1mportant (as it will at high densities),
plane waves with wave vectors (aboui the origin)
not too large 1n terms of 27/ are obyiously ndi-
cated, We now construct basis functions mncorpora-
ting these features. The Bloch function 1s first
modified by truncating its Fourier components of
low wave vectors, say G, in some fimte subset G
of the reciprocal lattice K. In thiz way, the plane
waves with wave vectors K — G have been set free
to be 1ncluded in the.basis set as independent mem-
bers orthogonal to the Bloch functions. (For simi-
plicity, in some of the algebraic mampulations the
subset G may'be chosen symmetrically to include
both G and -G, although this 15 not required in gen-
eral by the method.) For the simple~cubic-lattice
case, for example, we may choose G to be the set
of all reciprocal-lattice vectors within or on the
surface of a cube centered at the origin, and with
faces perpendicular to the.axes, Further, let T be
the complement of &, that is GN T is empty and
GUT=K., Next, the Bloch functions of the basis are
to be chosen to have as sunple a form as possible,
a reguirement for both analytical and computational
purposes. In particular, the most sxmple functional
dependence on E.as essential.

In the case of 2 Bravais lattice, a set of Bloch
functions satisfying these criteria can be taken to
have components

1/2 - —
o= (g) % xa,@ - Bhr(®% ¢ @

where the characterishe function y, (X} is given by

1 ifXcA
XA(E)z'
0 otherwise.

Here, &(T) is a locahzed orbital. Figure 1 shows
a schemadtic one-dimensional exanmiple of the pro-
cedure just outlined; there, the dotted curve rep-
resents the Fourrer transforms & of a locahzed
orbital and the discontinuous curve the components
(@/N)"*c, gven by Eq. (4); note also that the set
G contains by choice only the reciprocal-latfice
vectors 0 and +27/a.

The functions defined by Eq. (4) all have the prop-
erties of Bloch functions, and can, of course, be
written as
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1 P
kj,;('f)=v,—ﬁ E crgelafrr (5)

This reduces, for §=K& B,, to the standard form

()= et ’( Z Bzek ?) (6a)

KET

and 1s equivalent also to

+(F) = \/—_ et f[chp(" R—— E:@Geaf‘].
GEG
(8b)

where the quantity in square brackets clearly has
the periodicity of the lattice. The prefactor in the
expression for ¢y is not 1mportant except to keep
track formally, and 1n a consistent way, of the
various constants and factors mvolved. (It cancels,
of course, when normalizing the functions.)

The norm of iz(F), |2/, 15 independent of & and
is given by

IIhlla—— 2. leel?, (n
KET
or equivalently, by
izl = E(et»(’)lcb(* Rb-¢ ZI@ (8)
GeG

With the norma,hzed functions ky(F)/||%]|, the cor-
responding Wanmer function 2 (¥) can be obtained,

1
|
[
1
I

il ] |

7 -6 -5 -4 -3 -2 -
q/{2m/a)

FIG. 1 Schematic one-dimensional example of com-
ponents (@ /N)1/ ¢, of 2 member of the new representa-
tion given by Eq. {4) {discontinuous curve} mn terms of
the Fourler transform ¢, of a localized orbital (dotted
curve). The reciprocal-lattice vectors correspond here
to ¢/{2n/a) =1nteger. Note that ¢, 1s 1dentically zero
in the central zones (corresponding to a choice here
of a set of reciprocal-lattice vectors G={-2r/a, 0,
2n/a}) and constant within each zone corresponding to
the reciprocal-lattice vectors falling outside G (set T)

and 1s given by

1 - -
0= iR 2 o T ®

which in this form 1s aui:omahca.lly normalized. It
15, of course, orthogonal tow(F - E) for R#0. Sub-
stituting 1n Eq. {10) for ¢y, one gets

- 8] (G e o

or

o= (%) [Z‘I’(r ®
X S e s,

Gee
(10b)
where for the case of a simple cubic Bravais lattice
wof)= 72 T 7
oF) =
o kesB

N V2 ain(ma/a) sin{my/a) saninz/a)
(Q) nx/a m/a wz/a

(11)

15 the empty lattice lowest-band Wannier functron.
It 15 clear from the form of kg (F) and w(T) that
these functions have the right behavior near and at

the lattice sites ﬁ, particularly if the fimte set G
does nof contain large wave vectors. And for all
GEG, hi(F) 1s-automatically orthogonal to the plane
waves with wave vector k - G.

In this way, we have an incomplete but ortho-
normal bagis set which would clearly be sufficient
for a monatomic lathice if 1t were not necessary to
use more than one localized &(F).

Except for small E, the Biloch function hg;(i‘) Just
defined w1ll 120! 1n general be a good approximation
to the solution T3 (F) of the one-electron problem
of the crystal if G is empty (1.e., 1f no PW are in-
cluded in the basts), The functions ki (F) and $4(F)
can differ substantially for larger K, particularly
near the boundaries of the Brillouin zone, simply
because the Fourier components of e~ ¥ "¥z(¥) are
functions of K, while those of e™** z(F) are not.
Nevertheless, considering their expansions in re-
ciprocal space, we find that as K increases, the
difference 1n their components decrease, since by
construction both functions have the same form in-
stde the atoms. Therefore, by truncating the com-
ponents of low K, and including the corresponding
PW with wave-vector E—K 1n the basis, we will in-
creasingly improve the approximation as the num-
ber of PW increases.

Certainly 1t would be a better approxamation to
start by truncating the usual tight-binding Bloch
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function A% () [defined with &(¥)] and choosing com-

ponents

- 725+

c;=(N/Q)%%7 , {12)
50 that

k%(‘)—-—— PIR TR Tl L (13)

Ker
However, this would not have the immense compu-
tational advantages of form (6), which permts all
the terms there to be expressed in lattice sums
wmdependent of K Nevertheless, for some cases,
higher accuracy requirements together with the ne-
cessity tokeep the number of PW within reasonable
limits mught make it mandatory to use better Bloch
functions than those defined by Eq. (6). {One way
of defrming these that would still give lattice sums
mdependent of ¥, is to take

CF- = (/R0 _g+ B (Vidt_glimo+ -+ 1) (14)

up to some order, but, of course, the higher the
order chosen, the more cumbersome and time
consuming become the computa,hons.}

For the case where a set of more than one lin-
early-independent localized orb:tal must be used,
a special Bloch function %3 (F) must be included for
each. If the cell contains several atoms, say M
atoms, with posifion vectors E,(z= 1,2,...,M), a
set it(F-B,) (:=1,2,. .,M) of linearly-indepen-
dent Bloch functions, or M-independent linear com-
binations of them, must be meluded 1n the basis
set. All the special Bloch funcfions are assumed
constructed with a truncated set of plane waves of
wave vectors kK - G with reciprocal-lattice vectors
G belonging to one and the same subset G. The
basis will then contain for the same K (other than
the truncated set of plane waves) a set of linearly
independent Bloch functions orthogonal to them but
not 1n general to each other. An orthogonahzation
procedure must then be vsed to get an orthonormat
basis set. The use of tis orthonormal basis ulti-
mately results in a secular equation with the ener-
gy eigenvalues residing only on the main diagonal,
and has distinct analytical and computational ad-
vantages. The selection of one particular hnearly
independent set of Bloch functions (over other pos-
sible egwvalent sets) depends on a judicious eval-
uation (as far as this possible) of how well they
represent the true ergenfunctions of the crystal,
and how their form may help the orthogonahzation
procedure 1n efficiently producing a physically con-
vement orthogonal set.

Let the amtial set of Bloch functions, before the
orthogonalization procedure, be a set of linearly
independent combinations defined by

M
fiE) = D auh i@, n=1,2,...,M (15)
7=1

where the constants a,, will be determined short-
ly. Here, the k,(F) are the Bloch functions de-
fined-for simphicity (but without loss of-generality)
with only one locahzed orbital in one of the mona-
tomic sublattices of the hasis. Hence,

@) =k ~B,) . (16)

Now we use the Gram-Schmidt orthogonalization
procedure to get from {f,3} an orthogonal set

"{gz}. The g, have the following recursion rela-

tions:
If A - (17

%’;Z le® {eglip
&= N gmtll Ngnzll 1720
for u=2,3,...,M ,

Ig1k>

N
&0 = T

and the norms |/g,z[| are given by

Keuglrp P
learl=1- 5 pERfR (18)

These may be used in shghtly modified form
which subsequently reduces the numerieal work,
Let g,;(T) be expressed first as linear combina-
tions of 2,3 (F). ¥

leww = 2 bowlh,D fora=2,3,...,.M. (19)
K]

Then,
(guilfom = 2. 2 bEan by (20)
1 4

and

= Oy mklf,ﬁ‘s)
R RN

for n=2,3,...,M. (21)

(Note that, in general, these are functions of K.)
Further,

il £l = EZ ata b wlhn) . (22)

Next, let an orthonormal (incomplete) basis set
{#2(), acA, EB,} be defined by
Té..?l(f-):(l/m)e“k‘c’) T fora =Geg,
wE=) °F
k
: ¥ () =g/ lezl for a=n, 1<n<M.
n
(23}
Then, A=GU{n,1<n<M}. The superscript zero

indicates this 1572 basis w which fo expand the un-
known vartational approximations to the ergenfunc-

tions Ty(7), 1.e.,

®= 2 %

aEA

k,Iru-!:(-.) (24)
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Eguation (24), as an expansion of the one-electron
funchion, will be used in Sec. IH as a trial function
for the one-electron problem in crystals, Note
that, although incomplete, the finite basis set (23)
15 orthonormal and contains by construction local-
ized orbitals appropriate for the cores of the mole-
cules forming the crystal and plane waves ade-
quate for the miermolecular regaon. Therefore,
we can expect hnear combinations of them to be
good approximations for the eigenfunctions of the
lower bands, the accuracy improving as the num-
ber of PW in & increases, particularly for k near
the boundaries of the Brillown zone.

I APPLICATION TO THE SOL.UTION OF THE
ONE-ELECTRON PROBLEM IN CRYSTALS

Substituting Eg. (24) into the one-particle Schro-
dinger equation for the crystal, the band-structure
problem reduces to

Z Ho grxpn=Efxg for all ec A, (25)
BEA
with
(0}
Hoge=(¥ C|H|¥2) . (26)

Here, H1s the single-particle crystal Hamiltonan,
The reason why only one & is involved everywhere

ig the usual one, that A is a linear operator invar-
1ant under the translation group of the crystal, for

which

(o QAR =ore v AIVGD - (27)

The matrix elements H g7 are given by
Herr=0/2m) (-G ose+Us g , (28)
Hgai= Z: O k('Ir(O) |2 i) Nl ™ (29)

,..mz:g; 8%, Wt iR D lgil - ezl
13

{30)

where the plane-wave matrix element of the local
one-electron crystal potential is given by

& =W/ Vi, (31)
with
—=f dte— K Ty(@) (32)
and
U=y VE-R) . (33)
®

Because of the special form [Eq. (6)] of #,3(F),
the products (%, |k, &) and the matrix elements
(] A|h,7 and (i, glH|h,7 can be expressed i
tertic of reciproeal (or reciprocal and direct) lat-

tice sums which are independent of the pomnt 1n the
Brillowmn zone {all the k dependence being factored
out). For the case of only one locahzed orbital
but with a basis of several atorps, we have

(h,ilh,ﬁ) = /@)t Bi-Bag (34)
T | Al ) = (/)% -k ‘”SGJ , (35)
and
(hil8 1, =@/ 3-8
x{(z*/2m)(SY, - 2K-8],+ ¥°S, )+ 851 ,

{36)
where
T 1ol %er KBy (37)
Ker
8,= 3 Elagle X, (38)
Ker
> Kzléglze‘f("a*‘ﬁ’) i (39)
Ker
S @ gUz et (40)
Ker
and
¥, E"E
5%= B% BgUg zen & »,
[‘(zr K;T
(41)

These latfice sums can be expressed m part as
drect lathce sums, using the convolution theorem
or by application of Eg. (6b). For example,

S,;= Z(@(E)I@(ﬂi -B,-Rp

= 2 ;G (B —Bj) .

TGee

From this, §, ;and 87 ; can be obtained, respec-
tively, by taking the gradient and the negative of
the Laplacian with respect to the spatial variable.
A similar result can be obtained with Sg and 87,
but here it would be of no advantage 1f only the
Fourer transform of the potential 1s available.

The number of different lattice sums that must
be actually computed 15 greatly reduced by exploit-
1ng crystal symmetries, First of all, the sums
are invariant under a transposition of indices, ex-
cept for 5!, (which only changes s:gn) and §g,. In
general a simultaneous change of B Bj, and G
{an the case of Sz ,} under the same cubm or other
symmetry will also leave §,;, 87}, Sg,, and 57, un-
altered, and will take §" into the corresponding
symmetric vector. In thls way, for example, the
64 52 sums of the Pa3 (or ¢-N,) crystal structurd?®
are reduced to only four, and the Sz, sums to only
two for each G and m both classes of sums this
leads to an enormous reduction 1n computational
time.
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Once the lattice sums are evaluated, we can
proceed to solve the secular eigenvalue problem
[Eq. (25)] for 2 parhcular K by farst obtaimng the
corresponding basis set [Eq. (23)] wath the help of
Egs. (19)—(22), then the matrix elements H.g%
“with Eqs. (28)—(30), and-finally diagonalizing Eq.
{25). Inthis way, we obtain the valence and lowest
conduction bands and the coefficzents x, % 1n the
expansion of the corresponding eigenfunctions 1n
terms of the basis set [Eq. (23)].

IV BANDS OF COMPRESSED MOLECULAR HYDROGEN

We turn now to an application of the combined-
representations method to the case of sohd H, 1n
the @ -mtrogen phase. It should be mentioned that
this structure 1s not the only candidate for the
ground-state configuration of molecular hydro-
gen.'"'* We have selected i1t here because of the
various possibihities, it 18 lowest in symmetry
and therefore represents the most complex case
numerically, Other structures have higher sym-
metry and the method 1s computationally easier to
apply.

The a-N, structure!® has the space group Pa3.
It 1s simple cubic with a basis of four molecules.
In the case of hydrogen, there are eight protons
and eight electrons per primitive cell. There are
sufficient electrons to fill four valence bands pro-
vided there is no overlap with conduction bands.
In most of the results discussed below, 1it 15 1m-
portant to note that the interproton distance
{0.741 Z’&) 18 held fixed at all densities considered.
We return to this point in Sec. V.

To apply (25), we need to specify the one-elec-
tron potential U(F) that best represents the inter-
action of the electrons with the protons and with
themselves Since we are mostly interested in the
high-density situation we have taken this to result
from the bare Coulomb interaction of the protons
and screened by a Lindbard-type dielectric func-
tion. Unlhke other systems, hydrogen has the ad-
vantage that the bare interactions are known pre-
cisely. The dielectric approach accounts for the
bulk of the many particle effects and all residual
uncertainty in U(F) a reflection of exchange and
correlation 1n the choice of the dielectric function
itself. For the smallest reciprocal lattice vector
that enters 1n (28), the dielectric function is al-
ready close to umty and such corrections are of
duminishing concern as the density increases into
the primary range of interest (»,= 1.5).

The bands have been calculated along the stan-
dard simple cubic directions*®*® "X, MR, and RT
(see Fig. 2) for lattice constants of 10, 6, 5, and
4.5 bohrs. (Computational and other details may
be found 1n the Appendix). These bands are shown
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FIG. 2, The mner cube here 1s the Brillouin zone of
the Pa3 (a-N,) crystal structure The letters correspond
to migh-symmetry pomts and lines i the basic domawmn
(unprimed} or the larger representation domam (includ-
g primes). The oufer cube 1s Iimited by (100) planes,
and 1s an example of a set G with ;=1, contaming, then,
27 reciprocal-lattice vectors
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FIG 3 Band structure of the a~N, phase of hydrogen,
with lattice constant 2=10 bohrs or equivalently, 75
=3.102 (pressure zero} The energy E as normalized {o
(K2/2n)(27/a)=0 3948 Ry The numbers indicate, 1n
order, the ten lowest bands calculated. Note that in
order to display the overall form of the band structure
the seale does not permit-the resolution of certain
bands. ¥For example, 1n Figs.4, 5, and 6, bands 2, 3,
and 4 along RT are not all degenerate as can be seen
from Table I and algo-from ths figure.
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in Figs. 3—6. Figure T displays the empty lattice
bands to which the bands at lattice constants 4.5,
5, and even 6 bohrs reveal a striking similarity.
This nearly-free-electron character (at igh den-
sity) gives at least ex post facto support to the di-
electric formulation used in constructing the ma-
trix elements of the potential.

Although the primary interest here 1s in the
bands of lughly compressed hydrogen it 15 worth
noting that for the zero-pressure case (@~10 bohr)
we find an overall band gap of 9.2 eV. This s
cloge to the observed value for the onset of absorp-
tion 1n the optical spectrum®’, it 1s also close to
the value deduced from energy-loss experiments.'®
(Regarding the optical data, 1t must be said that
there 1s, at present, disagreement in the interpre-
tation of the data.'®*°} Further, the overall gap
agrees well with the value of 10.7 ¢V obtained by
Zunger?® using a truncated crystal approach, and
also with the energy of the lowest-allowed optical
transition obtained by the KKR method.’

V RESULTS AND CONCLUSIONS
We first comment on the form of the bands of
lghly compressed hydrogen, and then on the meth-
od uged to obtain these bands .
Referring to Figs. 4—6, perhaps the most inter-

25
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FIG 4 Band structure of the &~N, phase of hydrogen
with lattice constant =6 bohrs or equivalently, 7
=1 861 The energy E 18 normalized to (#2/2n)(27/a)?
=1 0966 Ry The numbers indicate 1n order the ten
lowest bands calculated.
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¥IG 5 Band structure of the o-N, phase of hydrogen,
wtth lattice constant @ =5 bohrs or equivalently, 7
=1 551 The energy E 15 normalized to (#2/2m{21/6)?
=1 5791 Ry The numbers indicate 1n order the ten
lowest bands caleulated
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FIG 6. Band structure of the a-N, phase of hydrogen,
with lattice constant a=4 5 bohrs or egumvalently, 7
=1 396 The energy E 1s normalized to (52/2n)(2n/a)?
=1 9496 Ry The numbers indicate 1n order the ten
lowest bands calculated Note that the overall band gap
. Figs. 3—5 18 no longer present n this figure
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—_—

esting point to emerge 1s the fact that the overall
band gap (which becomes indirect at mgher den-
sities) vamshes at a latiice constant of a=4.78
bohrs. The vanishing corresponds to the crossing
of the highest valence band at X and lowest conduc-
fion-band-at R, In Fig, 8, this-gap-has-been plotted
[normalized to (£°/2m)(2w/a)?] as a function of the
lattice constant ¢, and the critical value ¢=4,78

is determined by hnear interpolation between the
gap values for a=4.5 and @=5 bohrs. As suggested
by the calculated points, the normalized gap varies
almost linearly with a. For constant interproton
distance, the vamshing of the gap represents a
second~order metal-insulator transifion, prowided,
of course, that the crystalline phase of metallic
hydrogen remains stable up to this point 1n density.
The point where the molecular phase becomes
metallic, 1,e., p=0.83 g/ecm?®, represents a pos-
sible upper bound for the molceular density at
which, for fixed interproton distance, the transi-
tion 1s made to a metalhce state. The situation
here therefore parallels somewhat the case of
solid 10dine 1n its progression with mncreasing
pressure, As discussed recently by McMahan
efal.”™ the metalization of iodine 15 evidently not
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FIG 7 Band siructure of the sc empty lattice The
energy E 1s normalized to (#%/2m)(27/a)® The numbers
indicate the degeneracy of each band The bands drawn
with a full line are the Limit to which the ten lowest cal-
culated for H, tend as lattice constant approaches zero

a hirst-order transition, at least,at lower pres-
sures, and a band-overlap phenomenon preceding
total pressure dissociation 1s therefore possible.
It 1s important to reemphasize that the resulis
Just degeribed are apposite to an approxamation 1n
which-the protons are both stati¢ and held at con-
stant interproton separafion within molecules. The
inclusion of lattice-dynamical effects, particularly
at high density, can be expected to lead to notice-
able corrections, as they do for crystalline phases
of metallic hydrogen.*®?* As g decreases, we may
expect the intermolecular electron density to in-
crease in value at the expense of the intramolecu-
lar density. From a consideration of electrostatic
terms alone, we would anticipate that expressed
as a fraction of lattice constant, the interproton
separation will increase with increasing density.
A total energy calculation of the ground-state ener-
gy of molecular hydrogen will be required to deter-
mine thes trend. However, a gwde to the size of
the effects associated with possible variations in
interproton spacing 2D is relatively straightforward
to obtain, since 2D 1s one of the basic input pa-
rameters, We have recomputed the bands of Figs.
5-T with interproton spacing ranging between
about 1.1 and 1.7 bohrs and from these have ex-
tracted by interpolation the density, for a maiven D,
at which band overlap begins. The results are sum-
marized 1n Fig. 9 as a hine separating metallic
from insulabing regions for the Pa3 structure. The
implication of the apparent hnear trend over the
hmted range of parameters is that once a given
band-overlap state has been attained, the inter-
proton spacing 15 requred to fall with unreason-
able rapidity if such a state were imagined to pass
once again into an 1nsulating phase by imposing an
additional increase in density.
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FIG 8 Energy gap normalized to (5/2m)(2m/a)* as
a functicn of the lattice constant @ The solid line 15 an
approximate mterpolation between the calculated values,
which are mdicated by circles
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Finally, returmng to the method itself, we have
shown that the subspace spanned by the ortho-
normal fite basis set of functions [Eq. (28)] can
be expected to yield a satisfactory approxmation
to the one-electron exgenfunctions for electrons
moving 1n a periodie potential. The set 1s of man-
ageable size and at the same time leads to good
convergence by virtue of its construction n terms
of orbitals which represent both intra- and inter-
molecular features. This 15 accomplished 1n a
rather simple way with a few plane waves and op-
bitals depending on K only through a factor 2*%' 7,
It leads, however, to laitice sums independent of
K when calculating the matrix elements of the sec-
ular problem [Eq. (25)], to which the band-struc-
ture problem has been reduced. As a conseguence,
it 15 necessary to evaluate the sums only once for
a given latfice parameter and crystal siructure,
Even for low-symmetry structures, such as the
one treafted here, it 1s quite straightforward to ob-
tain the necessary matrix elements in (25) for any
K 1n the zone.

The method does not regure the muffin-fin ap-
proximation to the potential, as do the standard
formulations of the KKR or augmented-plane-wave
methods, It is readily adaptable to systems where
non-muffin-tin corrections are hkely to be impor-
tant, such as molecular systems or systems with
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FIG. 9 A plot of the variation of interproton spacing
2D required, for a given density {or lathice spacing 4)
to lead to a vamishing of the overall band gap of H; 1n the
Pa3structure. The region above the hnerepresents a
ground-state metallic phase, below it the phase1s insulat~
1ng. Plotted vertically at a=4.7815 alinewhichintersects
the boundary at an mterproton spacing 1 4 bohrs, Ths
summarizes the band-overlap results of Fig, 4—7
(Note that for a fixed lattice constant a reduction 1n 2D
tends to lead in this range of densities to a stronger one-
electron potential and henee to larger band gaps )

complex crystal structures which can be treated,
for example, hy systemahe correchion of the KKR
bands.® The level of analytic complexity and com-
putational difficulty does not exceed that of such
methods. When compared specifically with the
OPW method, its main advantage appears to be a
simpler formulation which makes no specific ref-
erence to core levels.

TABLE I TFour valence bands and the lowest conduec-
tion band at selected pomts of the Brillouwin zone and
functions of I, and I, (see Appendix}, Here, the lattice
constant 1s =5 bhohrs, and energies are normalized to
(2 /2m)(2n/a)? =1 5791 Ry.

1 L T X R
-1 4 13178 1 5679 2 4526
0.7384 0 9659 1.1085

0 7384 0 9519 11034

0 7884 0.5479 0.8786

~0 0537 0.1961 0 6948

-1 5 12930 1 5482 2 4314
0.7261 0 4530 1 0875

0.7261 0.9388 1.0875

0 7260 0 5817 0.8619

~0.0548 0 1951 0 6936

0 3 1 3739 1.5949 2.5006
0.7655 0.9942 11387

0.7655 0,9805 1 1386

0.7655 0 5836 0.9032

—0.0755 0 1737 0 6679

0 4 13176 1 5374 2 4526
0 7384 0 9659 1.1034

0.7884 0 9518 1.1033

0 7384 0.5478 0 8668

—0.0834 0.1656 0 6580

0 3 1.2927 15119 2 4275
0.7260 0 9529 1 0874

0.7260 0.9387 10873

0 7260 0 5316 0 8505

—0.0873 0.1616 0 6529

1 4 10318 1 2622 0 8442
0 7347 0 8121 0.5407

0.7247 0 8110 0 5407

0 7247 0 1681 0 5381

—0 0834 0 1592 0 5323

1 5 10283 1 2580 0 8428
0 7146 0 8010 0 5344

0.7146 0 8000 0 5344

0 7146 0 1632 0.5318

-0 0874 0 1549 0 0256

2 5 1.0246 1 2483 0 8318
0 7111 0 7808 0 4994

0 7111 0 7802 0 4990

0 7111 0 1629 0 4990

~0.0876 0.1504 0 4986
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APPENDIX

In the calculation of the bands shown in Fags.
3-6, some parts of the lattice sums defined 1n
Eqs. (37)—(41) were calculated in direct space and
some 1n reciprocal space. In general, the choice
1s dictated by the convergence properties of the
funchons under consideration, For the present
case, ®(¥) can be taken as a 1s orbital

&(7) = (a®/m)V2eor (A1)
with Fourter transform
&3 =(a’/m 8na/(g®+ o) .
The direct lattice sum in Eq, {42} requires®
(@F-F)EE D) =e ¥ (1+ar+a’r?) ,

which leads to ramd convergence 1n direct space
for the s,,, S!;, and S7,. Since S;, and S7; involve
both &(#) (falling exponentially with #) and V(%)
{falling roughly as #7Y), a simmlar conclusion can
be drawn about their convergence 1n direct space.
But we also observe that in reciprocal space the
convergence of the sums in (37)—(41) is also rapmd
since &, falls as K ~* and U eventually as K ~2,
We turn now to general convergence properties.
For the sumple cubic system, we select G, on the
basis of symmeiry, to be all the reciprocal-lattice
vectors within or on the surface of a cube centered
on the origin, with faces perpendicular to the ones
and aside of length (27/a)21, {see Fig. 2). Here,
I, 15 a positive 1nteger. Latfice sums in recipro-
cal space were computed by including only those
terms with reciprocal-lathtice vectors withan and
on the surface of a cube also centered at the origin
and also hawving 1ts faces normal to the axes. The
side of this cube 1s taken as (27/a)(21,+1). [For
sums 1n direct space, we include terms with di-

rect lattice vectors R lying within and on the sur-
face of 2 cube of side (21,+1)a). With-theserdefi-
nitions the number N}, of plane waves in the basis set
18 {21, +1)*: The corresponding number Nz, of
plane waves m the expansions of the ortho-normal
Bloch-functions of the-basis 1s (24 +1)*—~ N1,
{provided I,>1,). Table I shows convergence of
four valence-bands and the lowest conduction-band
energies at selected points of the zone lattice con-
stant ¢ =5 bohrs. (Note that the absence of any
plane waves m the expansion 1s symbolically de-
signated here by the chowice I, ==1.) At these den-
sities sums computed 1n direct space were found
to converge for I, below 4 or 5. Finally, the
maximum matrix order used was 133; symmetries
could be used to further reduce this number.

In construciting the Bloch functions for hydro-
gen, only a simple 1s orbital was used. That this
is reagonable ig indicated by the following Lef G
contain reciprocal-lathice vectors with components
of magmtude < 27/D, where 2D 1g the interprofon
distance (about 1,4q, if the separation 15 not much
affected by pressure). With this range of recip-
rocal-Iattice vectors, the truncated set of plane
waves will then represent well the electron dis-
tribufion 1n the intermolecular region., The inclu-
sion of 1s orbitals will give a good representation
within the molecule for spatial varations 1n the
wave funchion no more rapid than a change of sign
1n going from one proton in a molecule to the other.
More rapd spatial oscirllations imply the existence
of higher-energy components in the intermolecuiar
regmon and can therefore be neglected there al-
together, Wiihin a molecule, the spatial oscilla-
tions lowest in energy can be represented by atomac
orbrtals, the most important being 1s, 2s, 3s.,.,
ete. To first order, these have the same leading
form, 1.e., e¢"o,
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A method 1s proposed for calculating the formation energy of localized defects mn crystalline solids with pair
forces of arbitrary range The theory 15 most useful in the cases of small mass or high temperature for
which, 1n addition to the usual static relaxation, changes in the lattice vibrations make a significant
contribution Defect nmgration 15 not described however A self-consistent Emstemn approach s used, each
particle 1n the crystal oscillating with 1ts ewr frequency about an average positton The total free energy 15
mmmzed with respect to all of these frequencies and positions This mimmization 1s made tractable by the
assumption that Jarge changes m frequency and position occur only for & finite nember of pariicles near the
defect, the changes for all the other particles are treated Iinearly The result 1s very similar to Kanzakr's k-
space “lattice statics” formahism However, instead of bemng 3 X 3 the lattice-Green’s function becomes a 4 % 4
matnx, thereby encompassing changes i Emnstemn frequencies as well as particle positions The method 1s
applied to calculate the free energy of vacancy formation in metallic hydrogen

I INTRODUCTION

This paper deseribes a self-consistent Emstein
method for calculating formation energies of local-
1zed' crystal defects within a .-space formalism,
Changes in zero-pomt and/or thermal lattice nb-
rations are taken into account, together with static
lattice relaxation. The analysis, however, 18
hardly more involved than that required to caleu-
Iate the static relaxation alone by conventional
Kanzak:® or Green’s-function® techmques. One
therefore has the chance to handle qmte compli-
cated particle interactions. As an example, the
case of a vacancy 1n metallic hydrogen will be
computed using a screened profon-proton inter-
action which 1s long ranged and oscallatory. The
techmque 15 self-consistent and 15 expected to be
valid well mnto the high-temperature or small-mass
regunes where relaxation of lattice vibrations 1s
mnportant; this wall be referred to as “dynamic re-
laxation.”

To begin with, a brief account 18 given of some
previous work relevant to this problem and nec-
essary to place the present work m perspective,

A Defectsm “classical” crystals

These are crystals m which the thermal and/or
zero-point parficle vibrations are very small An
important phenomenon associared with such a clas-
sical defect is the static relaxation of the lattice to
accommodate the defect. This affects every par-
ticle in the crystal, the displacements typically
fall off only as the mverse square of the distance
from the defect. Descriptions of thus phenomenon
based on the “hnear lattice statics” method have
been discussed by Tewary.® In this method, one

16

derives a 3 X 3 matrix g(ﬁ) known as the “static
lattice Green’s function.” [Its Fourier transform
G{(q) for d#0 15 essentially the mverse of the well-
known dynamical matrix D() which governs pt}_og.on
motion,] The defect exerts a “Kanzak: force” F(R)on
the lattice particles, and quantities such as the
particle displacements and total strain field energy
can be calculated by integrating combinations of
G{J) and F(d) with respect to wave number J over a
DBrallown zone. In the small § limit, this theory
reduces to the “elastic-confinuum® model m which
a handful of elastic constants completely specify
the problem The theory as described so far allows
only for small relaxations of the lattice, but if one
has very-short-ranged forces one can also {reat
large displacements of a few particles near the de-
fect (as 1s done, for example, in the work of Bene-
dek and Ho'). Here, it 1s desired to treat forces
whose range may be many lattice spacings, so a
modified version of Benedek and Ho’s method will
be given. (This appears to be a new departure,
even in the context of “ciassical” crystals which
are not, however, the main concern of this paper.)
A second interesting feature associated with lo-
calized defect formation 1s a change in the phonon
spectrum. All modes are shifted shightly mn fre-
quency, and spatially localized modes may appear
with frequencies discretely separated from the
rest. Theories of these effects have been given by
Maradudin and co-workers,” and mndependently by
Lafsiitz and collaborators.® At fimte temperatures
the change 1 phonon modes will contribute to the
defect formation energy, but the effect is small for
“classical” crystals (in the sense defined above.)
In the “nonclassical” regime of higher temper-
atures, however, the phonon modes may be

5326
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strongly modified m a compheated fashion so that
a self-consistent theory 15 needed. Aksenov™ has
considered such a theory but omitted the static lat-
tice relaxation around the defects, his method is
therefore not suitable for examimng defeet for-
mation energies, since relaxation may contribute
a large fraction of the total formation energy.

B Localized defects in guantum crystals

A quantum erystal® is one m which particle mas-
ses and mterparticle forces are small, so that
large zero-point excursions occur. Static relax-
ation of average particle positions and modificafion
of the parficle motion are both mmportant here The
laiter effect is related to changes in the phonon
spectrum caused by the presence of the defect
Caron® has considered an average f-matrix ap-
proach for calculation of the phonon spectrum in
the presence of such defects taken as randomly
dastributed, his method does not appear to include
the statie deformations so umportant in calculating
the formation energy. In an earlier paper,!* Caron
used an Emsten model 1 calculating defect for-
mation energies in metallic hydrogen at T=0 °K.
He treated the static relaxation of only a few par-
ticles near the defect and omitted the change in
Emstein frequencies as neghgible. A theory per-
matting a change in Emstein frequency for one shell
of neighbors round a metallic defect was also re-
ported recently.™ The present work generalizes
these ideas and permits relaxation of ail positions
and frequencies in a tractable formalism. More
complex theories permitting such umyersal static
and dynamic relaxation have been proposed by Var-
ma'? and Jacobi and Zmuidzinas'® in terms of self-
consistent phonons,!* For quantum crystals the de-
fect causes significant changes m all the phonon
modes, making perturbation theory nvalid. A fully
self-consistent phonon scheme is, of course, very
difficult to implement here, because the defect
breaks the translational symmetry so that the
spatial dependence of the phonon modes should be
determined variationally along with the frequen-
cies. Varma overcomes this problem by using a
trial state in which the spatial variation of the pho-
non modes is obtained from a ¢lassical non self-
consistent theory®9; only the frequencies are de-
termmed self-consistently. While this enormously
simplifies the algebra, the method as if stands shill
requires iferation of some very complicated self-
consistent equations, much more involved than the
ones used for self-consistent phonons 1n a perfect
crystal.’? In fact, Varma®® resorted to a Debye ap-
proximation m order to obtain a practieal compu-
tation procedure {Jacobi and Zmuidzinas did not n-
dicate how one would actually solve their equa-

tions). Neither method appears to deal with the
difficulty that the stahic relaxation of the average
particle positions should be calculated self-consis-
tently with the changes in vibrational moticn, the
statie relaxation 1s simply added after the dynamic
relaxation has already been given., The Einstem
theory to be given here 15 quite explicit and tract-
able m both these respects, and has been apphed to
the vacancy problem in metallic hydrogen. For this
case, one regquires a complicated long-ranged os-
cillatory proton-proton mteraction which would
render the seli-consistent phonon theoriest®!® quite
unworkable without further approximation.

C Defect migration

For sufficiently high temperature or low mass,
the defect can diffuse or tunnel from site to site.
The tunneling at low temperature in a quantum cry-
stal seems to have been proposed first by Hether-
ington.'® Such tunnehng states or “defectons” have
subsequently received some theoretieal attention,'®
though there does not seem to be any firm experi-
mental evidence for them. Indeed, it appears that
such tunneling phenomena will be important only
for highly quantal crystals, if at all. Defecton mo-
tion was not considered 1n Refs 7, 9, 10, 11, 12,
or 13, nor will it be considered here (except briefly
in Sec VI). The diffusive migration of defects near
the melfing temperature 1s probably mmportant,
however, and although this phenomenon is not at-
tacked directly here, some suggestions are made
for use of the present work as mpuf to a betier cal-
culation.

Set now 1n the context of previous work the paper
is organized as follows- In Sec. II, the self-consis-
tent Emnstein picture is presented for T=0°K, and
its valiudity 1s discussed, In Sec. III, a generalized
“lattice statics™ 1s derived from the T'=0°K Em-
stem model. Relaxation of the zero-point motign
around a defect is included on a par with stahic re-
laxation, by introducting a 4 X4 “lattice Green’s
function” instead of the usual 3x 3 one. In Sec.
IV, the generalization to nonmigratory defects at
7'+ 0°K 18 shown to be almost trivial if one uses the
Gibbs- Bogolwwhov inequality. In Sec. V the method
is applied to calculate the free energy of vacancy
formationinfcc metailic hydrogenfor 0.6 =7 = 1.5
and 0= T<5000 °K, Sec. VI contains further discus-
sion, wiile See. VI gives conclusions.

I SELF-CONSISTENT EINSTEIN MODEL AT T=0°K

The meodel is a very simple variational one, per-
mithing a description of an wmperfect quantum cry-
stal at zero temperature. One mimmizes the total
energy over a trial N-parficle crystal wave funcfion
¥ of the Hartree type,
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11;(:'[-"“ seey irN) = ¢1(171 - 321)
X ¢g (11'2_§2)- - '¢N(fﬂ_iﬂ)' (1)
Here rl, ...,Ty are the particle coordinates, and

z,.. , £y are the average particle positions. For
a crystal without defects, the {X,} e on a perfect
lattice, while for a crystal with defects they lie on
a chstorted latiice extubiting a strain field as dis-
cussed m Sec. I. The localized functions {tp,} rep-
resent the zero-point motion of the particles about
therr average positions 1%,}; 1n general there will
be a different function ¢, for each site z, except m
the case of a perfect monatomic crystal.

An obvious deficiency of the Einstein trial state
{1) 15 that it fals to correlate the zero-pomt mo-
ton of particles on different sites. Corres-
pondingly, 1t does not describe any properties re-
lating to the long-wavelength phonon modes. How-
ever, these modes contribute least of all to the to-
tal energy, so (1) should be a reasonable ansatz
for calculating the total energy of defect formation.
Indeed, the total energy will be especially well
given compared with other quantities, since it 18
precisely the one which is stafionary in the best
trial state. {This point has already been noted by
Varma,'? who was concerned with thermal conduct-
wities and spmn relaxation rates for which an Ein-
stein theory 18 less likely to be accurate.) One
would seem to be justified 10 using (1) to obtain the
total energy 1n situations for which a more comph-
cated theory would prove intractable.

For sumplicity of exposition in this paper the
Hamultonian operator A will be assumed to include
only two-body forces

~ N oDz 1 . R
H=§:-2-%}—+—§i:]7(’}’,-—1’1), (%)

where '?, and 1‘5‘ are position and momentum oper-
ators for the #th particle. For metals, 1t may be
necessary to include effective volume-dependent
and many-hody forces acting between the 1ons
whose coordinates appear explicity in {2). The the-
ory canbegeneralized in surprisingly compactiorm
to include n-body forces; this work will be de-
scribed shortly.'”

The expectation value of the Hamiltonian (2) m
the trial state (1) 1s

@ =Dy +("

1 - -
=§5ts+§ iU{q"i:xi ¢j;xj}: (3)
3=L 1#5
where
t, = f——fdsxwgb @) ()
vo2M, *

and
U{qblsif ¢es§a}=fd3y1d3yzl¢16:1)|a

x| PVE T, - K- To)- (B)
One can regard U as an effective “smeared” pair
potential acting between point particles at X, and
%, If the {U} do not fall off rapidly with particle
separation |%,— %, 1t may be convenient to convert
to a k-space representation Defmmg Fourier-
transformed pair potent:als V(&) and particle-den-
sity distributions f by the relations

VE)= = O V(e F, (6)
2%
and

|6, g 2f,0etE, 1)

one obtams from (5),

0% 8, %)= LA 07,OVD

w gikn (4R ) (8)

Here 18 the volume and the sum ?; becomes an
finite imtegral £(2m)3 [ 4%k m the thermodynamic
Iimait

For a peyfect monatomic crysial, the local wave
functions ¢, are all the same and the average pos-
itrons X, are the perfect lattice sites R Thus, us-
ing the 1dent1ty

if’""' R, =Nbg :S(E) (9)

$=1

one obtamns from (8) the result for the total po-
tent1al energy 1n (3},

=3 (3 Lr@ves®

- dskfz(E)V(B)- (10)

Here the {g} are the reciprocal-lattice vectors and
S(£) 15 the structure factor of the unit cell [S{E)=1
for prumitive Bravais lattices]

So far nothing has been said about the form of the
local functions ¢,(%). For classical solds {those
with very little particle motion) a good choice for
¢ 15 a Gaussian In fact, the standard Emstein
model of a perfect crystal is obtained by choosing
¢, to be the (Gaussian) harmonic oscillator func-
tion which solves the one-particle Schridinger
equation m the spherically averaged harmomc po-
fential set up at each site ¢ by the other (¥— 1) par-
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ticles perfectly localized on therr lattice sites.

The present work 15 intended for modeyately non-
classical crystals for which a Gaussian should re-
main g reasonable trial function'®; however,
contrast to the classical Einstemn model described
above, this will be a “self-copsisient” harmonic.
Eimstein mode] m which the total energy is mini-
mized with respect to all the harmonic frequencies.
The localized trial wave functions are then general-
1zed Gaussians

_ M\ / (“Mﬁ'%'?
4)‘(?)—(%%:‘) (det&)‘)l ‘!ex'p ——27%—) 3 (11)

where M, 1s the particle mass If the 3 x 3 {re-
quency matrix w, 1s of the form

w,;=diaglw,,w;,w,), (12)

then one has an isoiropic Einstein trial state. For
amstropic erystals, it may be necessary to choose
different frequencies for the zero-point motion
along the three Cartesian axes, so that w, 1s of the
form

w,=diag{w;;, w,,,0,) (13)

Regardless of crystal symmetry, it may be nec-
essary, in the case of very strong lattice distor-
tions, to allow some frequency matrices wto have
principal axes in directions other than the Carte-
sian axes, and (11) 1s general enough to cover this
‘case also.

The Fourier-transformed density corresponding
to (11) 1s

fi®=exp(-zK-y, k) (14)
[see Eq. (7)]. Here,
= (ﬁ/zMg)‘-_‘) qu; {15)

and the trace of the matrix y, 1s the mean-square
displacement of the sth part?cle about 1ts average

position ;. For much of the rest of this paper, ¥
wil} be used in place of @ to specify the Einstemn
states.

III GENERALIZED KANZAKI METHOD AT T=0°K

In this section, a modified lattice “staties™ is de-
scribed which allows for changes in the zero-point
motion as well as relaxation of particle positions.
It is convement to specify both the average position
xj and mean-square Emstein amphiude matrix Ys
of the sth particle in terms of a smgle complex®®
column vector X ,, to be termed the “coordinate™
of particle 7. Symbolically,

=&y - 20 (18)
Thus, the first three components of X; are the Car-

tesian components of ¥,
X, =2, (b=1,2,3). 1n

The remaining components of X, are chosen ac-
cording to.the degree of generality that has been

_ built into the trial Emstem function. For example,

1f isofroprc Emstein states are expected fo give an
adequate trial function then the mean-square am-
plitude matrix 15 speciiied by a single number v,
v;=d1agly;, 7, v;); thus, X, has dimension 4 with
Xp==twy,. (18)

On the other hand, for.an anisoiropic crystal one
may need to have y,, =diag(y;, ¥ias ¥se) 10 Which
case X ; has dumension 6 with

Xiss, 9= z ¥ ez, 3) (19)

In the most general case, X, can be taken as a
nine-component column with the last six com-
ponents

X.M, 5,6,7,8,0° H UV j11s Viozs Visar Vioa
+Vja2:Ypua P Va0 Ve ¥ 7’;21)- (20)
The total energy can now be written

{H)=EX,,...,Xy

igi; Try;l-:-—iU(X,,'_J) (21)

=1

where the smeared pair potential U can be found
from {5) and (11) but 15 more compactly efpressed
mn £ space by using (8) with (14)

U(X;, X)) = (2% [ @ v@expl-3E- tr+7)-E
- ik (&, - %)]
L : *
=y J 4% V@ expl-iK- (X, - x37).
(22)

Here a ligher-dimensional wave number, syimbol-
ically

= (i, kk) (23)
has been mtroduced. To be specifie, 1ts cofn-
ponents are

K=(k,,k R®)

X1y .z)

or
K= (B, by by 2,12, FD)

x? Ty Ey e Ty

or (24)
K=k by b B2, 25k Ry Ry sk R B),

X3y ey My Ty g ity

mn the three cases previously outlmed m defining
X. (A caution: k=k, +k; does not imply K =K, +K,)
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The essence of lhe proposed methed 1s that 1n an
inhomogeneous situation one ean explicztly mim-
mize the energy {21) with respect tc alf the particle
“coordinates” {X }, provided that the deviations
from the perfect-crystal “coordinates” X9%=(R,,
-5 z-ya) can be treated linearly except at a fuute
number of sites. These few nonlinear sites near
the defect constitute the “core™ (e} of the defect,
the remaming sites will be termed the “bulk” sites,
The calculation proceeds mn several steps-

{a) The Emstem frequency wo = 15y5'/2M 15 found
which minimizes the energy for a perfect crystal.

(b) The core sttes are assigned “coordinates”
{X,:2ec}, which are later treated as explicit vari-
ational parameters. The energy cost of creating
the core 15 computed with the bulk ‘coordmnates”

{%, 2 £c} held at the perfect crystal values 9%

“(c) The bulk “coordinates” are given linear 1n-
crements X, —X +&;, 1 €c, the £, are chosen fo
mmlmlze the total energy sub]ect to the given core

“eoordinates.” This minimization 1s achieved ex-
phicitly n k space by a generahzation of the
Green’s—function method of lattice statics®
changes in the zero-pownt motion are computed
self-consistently with static relaxation, by making
the lattice Green’s funciion a 4X4 (or 6X6, or 9
X9} matrix instead of a 3X3 one as \n conventional
lathce staties.?®

(d) The relaxed crystal energy 15 now known as
a function of the core “coordinates * Finally,
these core “coordmnates” are chosen to give an
overall mmimum energy.

These four steps will now be discussed in detail.

Step (a) The perfect crystal

In the perfect crystal all sites have the same
Emnstewn oscillator width y,, and the particle co-
ordinates are

X0=(R,, 3w, (25)

Using (21), (22), and (25) and defining an equilib-
rium form U of the smeared potential,

UR)=U(Xe, X)), (26)
with X,= ©, —styy) and X, = R, —Z1y,), one obtains

the total energy per particle as a sum over direct
lattice vectors R,

X9,.. X
E(D)(Zo) ( 1 N 3L g)

- Bﬁz Tr(yol)+i > @ @
R"G

With the aid of (9) this can also be expressed n
reciprocal space

E‘°>(yo)=— Trivy?) [ Zs@v"@

S dskU"(B:’ (28)

Here U°(E) 15 the Fourier transform of the smeared
equilibrium pair potential,

U= V() exp(—K- o+ ) (29)

This step of the calculation 15 completed by choos~
mg y, to minimze (27) or (28), whichever 15 more
convenient.

Step (b) Formation of the core

The details of this step depend on the type of
local defect being considered. In the case of va-
cancy or interstitral formation at constant®® parii-
cle number N, a parficle presumably has to be
transferred to or from the surface. To begin with,
this process will be considered without any relax-
ation of the coordinates X, of the other (N -1) par-
ticles. There appears to be some ambiguity con-
cernmng the energy involved mn this process, and
1t has been the subject of some dispute.?! This
controversy will not be entered into here, since 1t
arises 1n any calculation mvolving vacancies or
interstitials, and has nothing specifically to do with
the new features of the model under consideration.
For definiteness, the results of Caron® for vacan-
cy and mterstitial formation without relaxation will
be adopted, they have the advantage of being cal-
culated 1n the framework of the Einstein model and
s0 are compatible with the present work. The con-
stant-volume method will be adopted. It 1s certain-
ly more convenient 1n the case of metals, since
the “volume-dependent forces” are not brought mto
play; at any rate, Caron*® has shown that the over-
all resulis at constant pressure must be the same.
For reference, his result for vacancies will be
gquoted 1n the notation of the present work

1= U%R)
22( R =8

AEo(vacancy) £al'g 3R

. U°(R)) (30)
1 the same notation as (27), where the two terms
come from compression of the lattice at constant
volume to create new sites, followed by removal
of particles from those sites. This result can also
be expressed in k space after an integration by
paris

1 N - dUor)
AEo(vacancy] =E E % S@)g' _"'g-ég'

+72—(§1;)-§ f ERUYE) . (31)

The considerations given so far in this step were
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special to vacancies and interstitials whose forma-
tion 1mvolved transfer of a particle to or from the
surface. The second half of the present step in-
volves a deformation of the core region (X7~ X,,

e
AE .= — Triy; =3+
o= 2 gap, T -6

[U(J_(n)_f‘?) - U(E?)é?)]"‘

1&c¢), this applies equally to all kinds of local de-
fects including for example mass defects and va-

cancy interstitial pairs® as well as the above types
considered The core deformation costs an energy

2 3 WE.x)-UELEY,  62)
i=f€c

with U given by (22). The second sum 1 (32) 15 an unrestricted sum on 7 over the direct lathice, with the
core sites excluded, With the aid of (9), it can be reduced to a fimte direct lattice sum, plus a reciprocal-

lattice sum:
2, Wx,x)-vELxN=- 2., [0, X)-U(X,X)]
igec,jae - - - = tecee®

X35 22 SEVE [exp(~2%- (Yo %) -8 %) — exp(—E+ 7§~ &+ B

‘Q:Ec g

(Here the perfect lathice sites 1n the core are de-
noted ¢*.}

Step (¢} Lumear relaxation mcluding zero-pomt motion

The major results of the present work are con-
tained m this step. The bulk particles are now
taken to undergo small “coordinate” changes

=X - X, (34)

The first three components of £; give the deviations
of the _average posttions %, from the perfect lattice
sites R, (1.e., they specify the conventional strain
field) while the higher components {E:p, >3} mea-
sure the changes in the mean-square displace-
ments y; around the average posifions.

X the defect were not present, the energy re-
quired to produce the bulk distortions {;,2<c}
could be expanded to second order in the {£.}

175 = =
ABES =g 20 2, Dyl -R)
nLr=1 f,jec -

XE, B+ O(%).  (35)

{Summation on ¢ and v will henceforth be implicit
for repeated indices.) In (35), D 1s the Taylor-
series expansion coefficient

o= = BPE(X,,. LX)
D ( _R):.......:.IAL 36
p(By — R, 2 Xy, 0K}, . (36)

The energy E(X,,...,Xy} 15 defmed m (21) and

the subscript 0 means that the X, are set to the
perfect lattice values }_f?= (R., —%zzo) after differ-

enfiation No linear term 1s present in (35) since
aE(}_{b M :_-KN)

=0 37
89Xy, R (87)

(33)

For p=1,2,3, (37) 15 just the statement that the
perfect erystal 1s 1n equilibrium under the pair
forees at the chosen volume or pressure, this is
automatic for systems with inversion symmetry.
For >3, (37) 15 not automatic but 15 satisfied
because y, has been chosen in step (a) to guarantee
precisely this stationarity of the energy

The zone Fourler transform of (36) 15 defined by
the direct lathce sum

D@ =3 DyBe™ 1R, (38)
R
with inversion formula
-~ 1 -
Du(®=55 22 Dusl@)e T, (39)
qE€Z

where Z is the Brillomn zone The matrix D,,(d)
15 a 4X%4 (or 6X6, or 9X9) generalization of {the
ordinary 3X3 dynamical matrx which appears in
the classic theories of lattice statics and dyna-
mics,**® The upper 3X3 block of D 1s Just the
ordinary dynamical mairix evaluated using the
“smeared” particle interaction U® [Eq. (26) or (29)]
in place of the pair potential ¥V [Eq. (2) or (6)]. The
remainng components of D (those with >3 or v>!
have no counterpart in the classic theory. they ex-
press the response of the Einstemn zero-point mo-
tion to disturbances n the crystal.®

Exphieit expressions for the generalized dyna-
mical matrix can be obtained by application of the
definition (36) and direct differentiation of the en-
ergy formula (21). For siumplicity only the 1s0-
tropic case will be written, so that I} 15 4X4 and
vo= d13g(yy, ¥s ¥o)- The result can be written 1n
terms of direct latfice sums on the smeared po-
tential U° of Eq. (26},
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Dp@= 2, (1-e™3¥) UoR) (1, v<3),

R okt dR
5%
= .. -3 ‘I' 0
2 sz ¢ Bt 3y, VR (e<3)
and (40)
2
D44@) 42 (1+e-=q R)—‘—‘ UD(R)—F 3}53 .
R0 JW'}’O

With the aid of Eq {9), these results can also be
written 1 & space, with &, v running from 1 to 3,

D@ =5 LS@IE+D. &+
- g“ngﬂ(é)] ¥
D=0, = 5 L S@E+D
X (E+9U°E+d),

D, ()= M 73 o Es(g) |g+al 0o +) +2°U°E)]

—2@n) ‘vf O BUYE). (41)

The last expression exhibits D(g) as a real sym-
metric matrix -

Equation (35) was derived for small distortions
1n the bulk of an otherwise perfect crystal In the
presence of a defect core, these bulk distortions
will cost an extra energy

& *
- Z_:Fu('ﬁ,)s,u +0(£%), (42)

where the “generalized Kanzak) force” F, 1s given
forr & ¢ by

FR)=-), aU(X s )lx x

E =14
3 3 (x,°, I_f‘)|
sEee* aXfu §‘=§g H (43)
while
F,(R,) =0 for 2 Ec*. (44)

{¢* agamn refers to the perfect lattice sites inside
the core regilon: for a vacancy, c* has one more
site than ¢ ) The neglect of terms higher than the
first order 1n (42) 18 a gtandard spproximation of
lathice statics known as the “first Kanzaki approx-
mmation 2 The total energy associated with the
bulk distortions {£,: 2 &c} 18 now

; E Duu(R Rj)gtp. e Z F (R )gsu * (45)

5. Te

This 15 mimmzed when the {£,} satisfy

> DR, -RE,=F,(R,), 1gc. (46)
JEC
If the {£;} satisfy (46) then (45) can be simplified
to give the minimum energy

- 1 -
ABpe= -5 [ B IE = - L rp@)s, @

The restriction 2 &€c has been dropped in the sum
(47) since F,, 15 defined 1n {44) to be zero for iGc*.
This 1s very convenient since (47) can now be di-
rectly transcribed into % space as

AEbu1k= ZF (Q)g (). (48)

The Fourier-~-lransiormed Kanzakt [orce1sobtained
from (43) and (44) with the help of (9) and (22);

F @)= EF (&, )e""R‘=—Z%Q.§ @VE+Q) Z exp( ~1Q-X7) - 3 exp(~1Q-X, )]

F=1-

; (Z s (Xe

rec 8X° *

[The four-columns @ =(g+7, (€+9)?), X; =(R,,
-2y, ), and X =(x;,, %z(}’o+y_,)) are mtroduced
for brewty 1

It remains to find the bulk distortions {4,}, which
are the solutions of (46). If it were not for the re-
striction 7 € ¢ on the left-hand side, Eq (46) would
be solved trivially by Fourier transformation Al-
though the translational imvariance 15 spoiled by
this restriction, an exact Z-space solution s still

Z BU(XnEj)) -ti'ﬁ{ (49)

sec®

—

possible at expense of solving a small matrix (of
order 4n, where % 18 the number of sites n the
core) If the pair forces determining D(R) are
very short-ranged the solution of (48) can be per-
formed by the matrix partifioming method of Ben-
edek and Ho ' An alternafive approach 1s given
here, since the assumpiion of short-ranged forces
15 1ot being made

The solution proceeds by first augmentmg (46)
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with a set of equations on .the core sites

Z Duv(ﬁt“ﬁf)gw=fp(ﬁi) y tECF, (50)
JEC
wheve f, s to be delfeymmed Equations (46) and

{50) can next be combined to give a single equation
oi thé enfire perfect lattice

; Dy, &, - R))E,,=5,(®,) (lly), (51)
J
where

[ {0’ JEC*:

=

£ JECK
and
. B *
5,(F)) = {fp(Ri)’ e (52)

F,(R), 1€c*

Since (51) has a translationally mvariant kKernel
and 18 valid on all sites, its solution (with per-
1odic boundary conditicns) 1S trivial in k space;

=, BY=D;L(E)5,(E) (k+0), (53)

where 2'1 means the 4X4 reciprocal mafrix, If
one defines the generalized laltice Green's
Junction G by

= 1 . ;.

Gy (B) = F;z DL ()R (54)
then (53) becomes, 1n real space,

=, &)= E} G, (R, -R,)%, &) . (55)

This 1s more convenlently represented 1n a 4N
X 4N matrix notation as

0620
£ - £, B Eaz Fa

where the maftrices have been partitioned so that,
for example, £1; 18 2 4nX4nsubmatrix, it 1s the
restriction of G to the core sites, 1= c*. Expan-
sion of the matrix product 1n (56) gives two equa-
tions, the first of which, namely

(56)

O0=gufi+&:k »
gwes the unknown “force” f,,
h= "_é_’ﬁ S 15

The second part of {56) now gives the desired so-
Iution

E=g.fi t8e B = (~Zug 1152 785 - (57)

The energy associated wath the linear relaxation
of all the “bulk” particles is now found by putting
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(57) mto (47)

AByp = —'%fg (gzz ‘gzlgﬁg}z)fg . (58)
Noting from (44) that F".(ﬁ,) vanishes for :=c*
fand that the Fourier fransform F,(K), Eq. (49), 1s
computed-with-thig i mind]-one can-extend (58)to
a full matrix equaficon on the whole space

AEyy=-3F*(G-GgOF, (59)

where

(gll g)
g=1 .
- 9_ g "

and

e (1)

Thig can be transeribed into &k space as

171 gy g
8B =337 2 PEEID OO

—;:L;f;}(ﬁf)gwm)) , (60)

where
£ =+ 2 e TR RIR, @)
ez
and f° 15 the solution of a small equation
,;G*G"”(ﬁ' ~R,FUR,) = £3R,) for iSc*  (61)

Equabons (59) or «(60).completely solve the prob-
lem of mimumizing the bulk distortion energy (45).
To evaluate (59) or (60), one need only compute
the generalized dynamical matrix D[] from (40)
or (41), the Green’s functron Q(ﬁ) from (54), and
the Kanzak: force F, from {43} or (49). ‘Thenithe
problem reduces to solution of the small maitrx
equation (61), equivalent to finding g~'. In prac-
tice, this solution 1s often dramatlc—any siumphified
by point symmetry at the defect.site.

The solution (60} becomes especially simple mnthe
case of completely linear vacancy relaxation. ‘Here
the strongly distorted core ¢ isa null set, sothat
AE, =0, while {(in the.case of a vacancy) c* con-
sists of the single site from which-a parhele 15
missing This sife can be taken as the origin. It
15 evadent from symmetry that the on-site general-
1zed Greew’s function G,,(0) 1s zero when v =1, 2,
3; this can be verified formally by mspection of
(54} and (41). ‘Further, the first three components
of the distortion vector £%0) also vamsh be-
cause of point symmetry at the defect site. Hence,
from (61), f3(0)=0 except for p =4. Specifically,
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~ [ £0)/6,,(0), n=4
f‘;j(O)={ L3 44 ? il (62)
0, p=1,23
The expression for the Kanzaki force F, can also
be simphified when there 1s no strongly distorted
core Equations {43)and (49) become

3l (X0, X ). . =
Py~ ToxE, py 0T Y (63)
e # E(:ZF

0, R=0

and
F@=2 2.1, s@U°E+D)
g

Wy,
2P

with.@ , defined as 1n (49).

Now, noting that the operatron (1/N)7]..
just the Brillown-zone average { ) 2 wh SEduce
(60) to the form

[ SrEPUOE) (64)

AR, =—} ((F*(k)ep(k) %BZ) (65)
with
£®) =0 RFR). (66)

Equation {65) 15 now the tofal distortion energy
including changes in wibrational energy. Only the
undistorted formation energy (30} or (31) need be
added to obtain the total vacancy formation energy
in this fully linear approximation.

It 15 also worth noting that in the absence of any
relaxation of the Einstern frequencies one would
have the usual 3x3 latiice stahics formalism. The
result for-the linear distortion energy would then
be

AEE) = (P, ®D O )®) By Dy, ,  (67)

where o and g are summed from 1 to 3 and D®¥ 18
the usual 3x3 dynamical matrix evaluated with
the smeared pair potential U?°, [2@ 15 the upper
33 block of the 4x4 dynamical matrx D defined
1 (40) or (41).] -

Step {d} Final mmmuization

The total energy reqmred to-form the defect
with a core configuration {X, rect 18

AE{X, iccD=AE,+ AE, +AE (68)

where the individual terms are given by (30) and
{31) {for the case of a vacancy??), (32)-(33), and
(59)-(60). If AE,,, 18 a substantial fraction of the
formation energy {which it can be even though the
bulk.distortions &; were treated linearly) then it

buik ?

will be necessary to treat AE,, and AE, , #o-
gether when searching for the optimal core “co-
ordinates” {X,,: ©c}. On the other hand, if AE,
15 formally regarded as a small quantity then only
AE_  need be varted explicitly, and AE, , can be
evaluated afterwards using the core coordinates
X, so determined, changes caused by varying the
two together are formally of second order. Wheth-
er or not the full procedure 15 necessary can only
be decided 1n specific.cases, according to the
accuracy required.

Tn erther.case, the appropriately computed mmini-
amum of (68) is the final answer for the defect for-
maton energy at 7'=0 °K within the Ewnstemn-
Kanzaki model,

IV EXTENSION TO FINITE TEMPERATURE

If the migration of defects between latlice sites
1s 1gnored, the generahzation of Sec., I to T+0 °K
1s straightforward. The procedure 15 essenhially
to minimize the free energy F over an Einstein
trial state, This imprecise notion can be forma-
lized by using the Gibbs-Bogohubov mnequality®®

F<F, =F+#-H),. (69)

Here H is the actual Hammltoman [1.e , (2)], H, 15
an exacily soluble trial Hamiltonian, and { ), 1s
an exact quantum thermal average over flo. In
(69}, F ° 18 the exact free energy for H,.

The trial Hamiltoman appropriate to an Einstein
picture is

ﬁo( 1 ..,?’N) EzM ('rg X;) ( X‘)

i=1

ﬁZ ~
=V (70)

1“1 3
Here, as in Sec. I, the varmational parameters
{%;} and w; are average particle positions and
Emstein frequency matrices. The idea is to
choose these parameters to mimmze F,.
Since the kinetic energy term 1s common to
and H,, {69) can be rewritten

F<F =FD"(I;0)0+(I;>0 (71)

The terms of (71) can be evaluated explicitly by
using standard harmonic-oscillator results®® As

‘before it 18 convement to.define a “coordmmate”

X, =‘&,, - 31y,) where the mean-square excursion
matirx y is now evaluated at fimte temperature;

Yi =((f'¢ - Eg)(ﬂ "ii»ﬂ"

4 (ﬁ ) {79
_ZM,E’ coth ZkBT—(i‘ . (72)

The trial free energy is
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(X oo o0 X

- i
= Z_; Tr{kBTln[2$1nh T )]

N N
-~ giz:,_u‘coth(z—zF @ i)}-l--lz U, X;), (73)

with U(X,, X,) defined, 1n terms of the {y,} and {x,},
by (22). Equation (73) is typical of the way
which the theory generalizes to finite temperature,
The potential energy terms U depend only on the
probability distribution of an Einstein particle,
and hence have the same dependence on mean-
square displacement y asthe corresponding T'=0°K
terms. [Note, however thaty 1s now related to
the frequency w by {72)]. On the other hand, the
kinetic energy terms do change when one goes to
finite temperature, as summarized 1 Table L.
The quantity ¢ appearing 1n the last column of the
table 15 the “kinetic” energy (free energy mnus
potential energy) of an Enstemn oseillator, and

15 given by

Hw)=kyTTr{In(2sinh y)- 3y cothy], (74)
with
=(1/2k5T)w . (75)

tnal

V EXAMPLE VACANCY INMETALLIC HYDROGEN

As an example of the method developed 1n Secs.
I-1IV, the free energy of vacancy formation in fee
metallic hydrogen will now be caleulated, The
problem is of mterest because of the possible role
of locahized defects m the decay of metastable me-
tallic hydrogen. This system may exhibit high-
temperature superconductivity®” (or other forms
or electronic or nuclear order) and also has astro-
physical significance,?®

Although pressures in excess of a megabar are

apparently reguired to form the metal 2 1t has
been conjectured that it may be metastable rela-
tive to the molecular phase when the pressure 18
decreased to more easily maintamed values, per-
haps on the order of tens of kilobars or less, Sur-
face-decay of the me{al?*-can probably-be-controlled
by a suitable ceoating, and in the absence of un-
stable phonon modes down to moderate pressures®
it appears that the principal decay modes wall in-
volve some kind of crystal defect, A likely decay
mode is the formation of hydrogen atoms or mole-
cules nside voids or aggregates of vacancies. The
proiotype of this configuration is the monovacancy,
which will be studied here, If this can be under-
stood properly, one can hope to proceed to more
complicated defects. A very low or negative va-
cancy formation energy would be suggestive of an
instabality; it will be shown here that no such m-
stability towards monovacancies occurs n low-
temperature fee metallic hydrogen,

The zero-temperature vacancy formation energy
in fece metallic hydrogen has already been esti-
mated by Caron,’® who used an Einstein model for
the proton zero-pomt motion. As noted above he
permutted relaxation of the positions of a few pro-
tons near the vacancy, but took as neghgible any
changes m the zero~point motion durmng defeet
formation. However, Straus and Ashcroft® re-
cently showed that the proton zero-point motion
18 crucial 1n determiming the structure of a per-
fect erystal of metallic hydrogen. One maght there-
fore suspect that changes n the zero-point motion,
not necessarily localized near the defect, would
be important in the vacancy formation process,

The motivation for the present calculation, then
15 twofold: (a) one would like fo know if there are
any slight but poorly localized changes in zero-
point motion which might significantly aifect the
free energy of formation, both at zero temperature
and above; and (b) such a caleulabion will demon-
strate that the present Ewmnstein-Kanzak: method

TABLE 1 Modifications for 7+ 0°K, [See Eqs. (74) and (75) for defimtions of Hw) and y ]
All equations mn Sec TII remain unchanged when one goes to finite temperature, except those
Iisted here

7=0 quantity T#=0 quantity 7T=0 kinetic term T 0 kmetie ferm
e
E, Eq {21} Firim Try! Hwy)
8M, =
o 7’
E®, Bgs. {27), (28) Fo _-Try tleag)
8 =
2
AEqorer Bq (32) AFore s Ty —vi) He,) - Huwy)
. s
Dyldl, Egs. (40), (41) Dyl —3£'2— 2451023 | cothy, + Yo -
M’Y% 0 e sinhyy
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can be carried out 1fi practice for a complicated
-flay gidederdz - 0 . -
long=ranged oscillatory pair potential.
The model used for metallic hydrogen was an fee
lattice of vibratmg protons™ interacting via an
electronically screened pair potential, given in

k space by

det /B2e (B /9% k0
V(k):{ we*/ f( /2kg), k=20, (76)

N =

Here € is the linear dielectric function of the elec-
tron gas, and the vamshing of the screened poten-

tial for k =0 reflects the overall charge neutrality

of the system, A screened pair-potential model of
this kind neglects two phenomenas

(1) Even 1n the linear screening regime the energy
depends on the total volume (1.e., there are “vol-
ume-dependent forces™). Here the formation ener-
gy at constant volume will be considered, so that
this effect does not enter into the caleulation.

(11) Nonlinear distortions m the electron gas,
caused by the protons, will give rise to wmany-pro-
ton forces as well as pair forces, While the pre-
sent formalism can in fact be generahized to cover
many-~particle potentials,'” the proton motion can
be expected to wash out such three-body and higher
effective forces to a large degree. (Thig pheno-
menon is discussed by Straug® in connection with
the perfect metallic hydrogen erystal.) Here only
pawr potentials were considered, as was the case
1 Caron’s!® work.

The lLinear electron-gas dielectric function was
taken to be the Hubbard*? version, as modified by
Geldart and Vosko® so as to satisfy the compres-
sibility sum rule, Thus

ex)=1+A (gl ar, /ax? (1)
g)=h+ 5 (-T2 (18)

g(x) )‘1 .

A= ey o)

Here 7, is the usual Wigner-Seitz radius measured
in Bohr radii, and @ ={4/97)". In (19), 7, =K/

(& — K} 15 determined by the ratio of the true
electron gas compressibility K to the compres-
sibility X, of the noninteracting electron gas. The
value of 7, was taken as that obtained by differen-
tiating the Vashishta-Singw: electron-gas energy
formula.*'3% Thus,

7%t =1 —I%-ﬂ = ;r—(:’j (1 + 0’02335 TV
0,022, 0.1 427, )
3 O1+7, /"
{80)

The above form of the dieleetric function has the

advantage of being analytic while yielding 2 good
“ecompressibility lunit”* as k—0. It is important
to treat € accurately near k=2k;, since the be-
havior there is responsible for the long-ranged
Friedel oscillations of the real-space screened
potential. However, for values k/2k,= 1.5, which
are safely away from the 2k singularity, it 1s
convenient to know the large-wave-number asymp-
totic expansion of (76)~(79),

-1 oty _ovs
€ (x);:;;l ar 157

_[ar-’_i(g.i)a]x-a
357 18\ 2

[ar, 1(9:_9'_52
“Lle3r 45\ 7w )

e (E) oo,

—4 %6

A

Since the mierest here is principally in any
shght but long-ranged disturbance to the proton
motion, the completely limear relaxation 1s suf-
ficient. There 15 thus no strongly perturbed
“core,” and the set of sites c¢* is just the vacant
site at the origin. The free energy AF of vacancy
formation was found by working through See. II
step by step, using the electronically screened
and motionally smeared proton-proton potential

dmere™ Vo k=0
U°(k) ={%Pe(B/2k,)’

0, k=0

The necessary steps are nowlisted for reference,
together with some relevant details of numerical
methods.

(a) The perfect crystal free energy F'9(y,) was
found from Eq. (28), modified as 1n Table I when
T#0°K. 7, was chosen to munimize F©),

(b) The free energy AF,  required to form the
vacancy without any lattice distortion was found
from Eg. (31): The “core distorfion” energy AF,
18, of course, zero.

{c) The total free energy of linear distortion
AF,n, mcluding relaxation of laitice vibrations,
was found from (65). For comparison, the cor-
responding result AF;,(U%Z wethout relaxation of lat-
tice vabrations was found from {67). The Brillouin-
zone averages specified in (65) and (67) were per-
formed using the ten-term *speeial pownt” pre-
seription given for fec lattices by Chady and
Cchen.*® The quantities needed in these zone
averages were the generalized dynam:cal matrix
D(k) [found from Egs. (41) with a T # 0 °K modif1-
cation as in Table I for D,,] and the Kanzaki force
vector F(k) [found from Eq. (64)].

{d) The total free energy of formation was found
as

’ (82)

core
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AF =AF +AF

Qrvac bulk ?

(83)

there being no need for a separate variation of
nonlinear core parameters m this purely linear
distortion calculation.

Steps (a), (b), and (e) involved mumerical eval-
uation-of reciprocal lattice sums of“thig fofm

3 [l B Joroner 9
% :
and 1ntegrals of the form

fdakk'"e“‘( ZkTF:) e 1o (85)

where z 15 a small positive integer. Since ¢*1~1
and y,>0, (84) and (85) are formally convergent
at large wave number, However, the value of y,
1s small enough that convergence was too slow for
direct numerical evaluation in practice. This dif-
ficulty was eircumvented by using the five-term
asymptotic expansion (81) for &/2k. >x, where A
~1.5 (The final results were independent of A
over a considerable range, of course.) The ad-
vantage of this 1s that one now has finite sums and
integrals, plus infimte sums and integrals of the
form

Z |'é+'é -pe-rommz’
B (86)

[rrrrer

for several posilive values of p The integrals can
be reduced to known special functions and com-
bined with terms which arise when the sums are
converted using modified Ewald methods, (See
the work of Cohen and Keffer® for details of the
Ewald methods). The cutcome 15 that one has a
number of fairly comphcated but rapidly conver-
gent sums. The results of the calculations are
shown m Tables IT and III and 1n Fig, 1.

TABLE II Calculated vacancy formation energy, AE
{rydbergs), m metallic hydrogen at 7=0°K and constant
volume Q=3 7N {r.a,)° The quantities listed are, from
left to right, the Wigner-Seitz radms #,, the rms proton
excursion in units of the nearest-neighbor separation,
the energy AE,ya, required to form a vacancy without
any-lattice relaxation, the linear lattice relaxation ener-
gy AEg}k 1gnorving changes 1 Emnstemn frequencies, the
linear lattice relaxation energy AEywy tncludimg changes
m the Emstein frequencies, the total vacancy formation
energy AE mn the lmmear approximation All energies are
mn rydbergs.

vs Gy dm ABgve AESY ABwp  AE

0.6 013, +057, -027; —027; +0 29
0.7 0 134 +0.42; —0.19; 020, =022
08 0 135 +032, —014, _015, +017,
09 0.13; +0.25, —01I, —011; +013;
1.0 0 135 ¥019; —008; —009, +0 10
1.1 0.13, +015; —007, —0.07, +0.08,
12 0 13, +012, —005; —005 +0 086,
13 0.14, +009; —004; -004 +004
14 0 14, +007; —003; —003; +003;
15 0.14g +0.05; -—003, _003, +0.02

Table II shows that the vacancy formation energy
15 not sigmficantly altered by relaxation of the
proton motion at 7=0 °K1n the range of densities
1.0, = 1.5 relevant to metastable metallic hy-
drogen. This 1s seen by comparing columns 4 and
5 of Table 1T, which give the relaxation energy,
first without, then with relaxation of zero-point
motion (AES), and AE, ;).

Figure I shows that, in the same range of den-
sities, the present results do not differ appreciably
from Caron’s'® values. This 15 actually a valuable
check on both caleulations, since Caron used a
real-space method 1in which only a few neighbors
were relaxed nonlinearly, while the present re-
sults came from a linear Z-space method which

TABLE III Temperature dependence of free energy of vacancy formation, AF {rydbergs),
in fece metallic hydrogen at v;=1 36 The quantities listed are, from left to right, the temper—
ature T°K, the rms proton excursions as a fraction of nearest-neghbor distance, the free
energy AF, v, required to form the vacancy without latfice relaxation, the lmnear lattice relax-
ation energy AF{E,{k ignoring changes m proton moefion, the lnear lattice relaxation energy
AFypgy tncluding changes 1n proton motion, the total free energy AF required to form a vacan-
¢y, the concentration exp(—AF/p 5T} of vacancies m an mdependent random vacancy model

TR Gy ¥dm  OFpe AF APy AF e aF/ kgt
0 0 144 +0 080, -0 040, -0 041, +0 038, 0
1000 0 15 + 0 0844 -0 039, -0 041, +0 043, 0 001,
2 000 0 18; +0 094, —0037;  —0040;  +0 054 001,
3000 020 +0 103, —0.037, -0 040; +0 063; 0 03
4000 0 224 +0 112 —0 037, —0 041, +0 070, 0 06,
5000 0 24, +0.120, —0 038 -0 042; +0 077 0.08¢

106000 0.30, +0 154, —0 045, -0 0514 +0 102, 0,19,
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FIG. 1. Vacanecy formation energy AE 1n fee metallie
hydrogen at T=0°K. Present calculation 1s compared
with the results of Caron, obtammed from Table VI and
Tigs. 12 of Ref. 10.

included static and dynamic relaxation of every
proton in the crystal

Table IIT shows the effect of raising the temper-
ature The quantities given are now Helmholtz
free energies AF for the formahion of an 1solated
vacancy, gnoring the entropy of vacancy location
In the model of randomly placed nominteracting
vacancies, the equilibrium vacancy concentration
15 then

C(T)=exp[ — AF{T)/k5T], (87)

whach 1s tabulated in the last column of Table III
Two trends are noticeable in Table IIT.

(1) The free energy of formation #creases with
temperature, so that the concentration of vacan-
cies does not rise as fast as exponentially when
the temperature increases. For example, if the
crystal still exists at 5000 °K, the present model
gives a concentration C(T)=9% of vacancies,
whereas the usual model mvolving the T=0 °K,
formation energy AF(0) would give

Co{T) = expl - AF(0)/k,T]=29%

of vacancies, a very substantial difference.

(11} With increased temperature the dynamic
relaxabhon becomes more 1mportant, so that at
5000 °K the dynamuc relaxation energy 1s 10% of
the total relaxation energy.

Actually 1t 15 likely that the crystal has melted
by 5000 °K. In addition to the 9% vacancy concen-
tration shown in column 7 of Table III, the notion
of melting by a few thousand degrees is also sup-
ported by column 2 which gives the Lindemann®
ratio vy, (This 15 the ratio of rms particle ex-
curson to nearest-neighbor distance. 1n classieal
crystals ¥, 15 about & at melting ) In hydrogen at
7.=1.36, 7, 15 already® & at T=0 °K, and doubles
by 5000 °K it should be borne mn mind, however,

that in computer experiments on quantum erystals
with soft-cored pair potentials, Chester® et al.
found values of ¥, sigmficantly above 1 at melting.

VI FURTHER POSSIBILITIES

Existence of the “generalized lattice statics™
approach suggests that an even sumpler theory
might be available; the Ei—— 0 lumit of the present
work should yeld a “nggling elastic continuum®
model, related to the present microscopic ap-
proach in the same way that the usual elastic con-
tinuum model 18 related to the conventional®® lat-
tice statics. This 18 currently under 1nvestigation.

An effect which was not directly considered 1n
Sec. I-1V {and 18 nussing also from Refs 9-13)
1s the mugration of point defects, This will be 1m-
portant 1n classical crystals near meliing,” and
may occur 1n gquantum crystals with small enough
mass to permit sigmficant tunneling 1% In the
classical case, a crude way to remedy the oms-
s1on 1s simply to assume that the toizl defect free
energy {at low defect concentration C=r/N) 1s

F/N=CAF +TS/N, (88)

where S~k In"C, 1s the configurational entropy
associated with the possible sites occupted by #
defects, and AF 1s the free energy of defect for-
mation as caleulated in See. OI-IV. Mimmizafion
of (88) leads to the equilbrium defect concentration
C(T) given 1n Eq. (87), and tabulated for metallic
hydrogen 1n Table III. A more complete approach
would be to use a lattice gas picture of the defect
crystal ™ Here AF will play the role of a temper-
ature-dependent chemical potential for defects and
1n this coniext one could also use the generalized
lattice statics to calculate an effective mnterachon
between defects,® as mediated by their static and
dynamzc strain fields.

In the case of quantal defect tunneling, the re-
laxation described n the present work can si1g-
nifically lower the tunneling probability or even
cause self-trapping ¥ To describe this case one
can invoke a bight-binding Hubbard model for de-
feet motion, 1n which the hopping mairix element
£1sto be computed from an overlapintegral between
two of the Ewmstein states (as used 1n this paper),
one with the defect on a neighboring site relative
to the other. The formation energy AF computed
above will then play the role of a site occupation
energy €;.

Thus, the present model may be useful even near
melting or for highly quantal erystals, in the sense
that 1t provides an exphicit method of computing
the input parameters to more sophisticated theo-
ries.
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VII CONCLUSIONS

it has been shown in detail how to use the Em-
stein model to calculate formation energies of
crystalline defects, 1ncluding relaxation of zero-
point and thermal lattice motions as well as the
usual static latfice deformation. Relaxation.of
every site 1 the crystal was explicitly calculated
by a generahization of the Kanzak: method; static
and dynamic contributions appeared self-consis-
tently in the same 4 X 4 matrix formalism.

The method 1s substanfially easier to carry out
in full than the seli-consistent phonon ap-
proaches,!? ! which require specific use of local-
1zed phonen modes as well as a separate mim-
muzabion for static relaxation On the other hand,
the method 15 more complete than previous Ein-

stein theories of defects'™ !t 1n which only a few
particles are usually relaxed. * S e

Application to metallic hydrogen shows that the
method 15 a practical means of calculafing stalic
and dynamic relaxation in the case of complhicated
long-ranged pair forces. For hydrogen.in the den-
sity range 0.6 <7,<1 5, it was possible to show
that dynamical relaxation does xnof upset the sta-
bility of the system to vacancy formation as might
perhaps have been supposed.
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We show that for a careful choie of the Jastrow wave function the solution of hypernetied-
chain and Per&?t‘f\’evuk integral equations can be analytically reduced to the solution of a set of
coupled algebraic equations These equations hre then solved numerscally and the ground-state
energies of hquid *He and hard-sphere bosons;are obtained.

PACS numbers 1977 67.40.-w 64.30 +t BR1059

!
1. INTRODUCTION

Various ntegral equation methods have been
used? to study the ground-state properties of boson
fluds. In these methods the analogy between the
many-particle Jastrow wave function' ? and the Gibbs
statistical-probabuility factor 15 exploited to carry over
the whole machinery of classical theories to the quan-
tum case. However, although there are two specific ]
cases,” namely the hard spheres lnLPercus-Yevick !
(PY) approximation, and mean spherical model !
(MSM)‘_ for Yukawa closure, whsfé'g these equations
can bg&@olved analytically 1n &€ classical statistical /Q/
mechanmcs, no such analytical solution exists to date in
the quantum case.

In this paper we shall show that, with a suitable
choice of the form of the Jastrow wave function, con-
siderable progress can be made towardjobtaining
analytical solutions of PY and hypernetied-chain
(HNC) equations. The method will be apphed to
quantum hard spheres and *He interacting via the
standard Lennard-Jones poteatial.

In Sec. II we outhine the formulation of the varia-
tional problem. The choice of the wave function
which ailows us to use analytical methods 15 intro-
duced in Sec. II] and the solution of the integral equa-
tion 1s discussed 1n Sec. IV. Finally in Secs. V and VI
we discuss 1ts applications to the helumn and hard-
sphere problems, respectively.

I, VARIATIONAL PROCEDURE

The Hamiltonian for particles of mass m interacting
with a pairwise potential v(r,) 15 teleamtorhe- 2

b

32+ 3 i)

1=} 1<)

&-2

2.1

For bosons a vanational many-particle Jastrow wave
function' 2

s=T1r(r,)

i<y

(2.2)

will be used to obtain an upper bound of the ground
state energy Given Eq. {2.2) the energy per particle
can be written

£=_ﬁ3£. = v 2
AR fdrVg(r) Vinf(r)

1 .

+—;—p f dtvirielr) ., (2.3
where p is the average number density and we have
used the well-known Jackson-Feenberg identity!-? to
write down the expectation value of the kinetic energy
operator. If £(r) is chosen so that it vanishes at a :
core distance, say a, but its dertvative 1s discontinuous
(the case of hard spheres) ar g, the derivation of - /e,
Jackson-Feenberg 1dentity requires a careful manipula-
tion of the surface integral at the infier surface. The
final result 1s, however, the same. The pair correla-
tion function g{r) appeanng in Eq. (2.3) is defined to .
be '
2= ... -
s =20 Jiobas - o

N X
_ﬁﬂzd'ﬁ s dTy '

Note that there are alternative forms of the kinetic
energy functronal which introducefthree particle corre-
lation function. The case 1s often made’ that the
Jackson-Feenberg identty [Eq. (2.3)] is too sensiuve '
to the short distance behavior of the pair correlation .
function and hence may be unsuitable for use in con-
junction with the correlation functions obtained from
approximate integral equations. These in turn are
considered inaccurate ai short distances and a practical
consequence is that such errors are important in the
balance betweesn the kinetic and the poteniial energies.
These objections apply to a certain extent in the
present calculation. We shall see later on, tor exam-
ple (Sec. V) for the case of *He, that although the po-
tential energy 1s calculated with an accuracy of --2%%
the corresponding error 1t kinetic energy 1s ~7% at
the equilibrium *He density (the companson is bemng
made with respect to a standard Monte Carlo calcula-
tton) A comparnson of the pair correlatron functions

=
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we calculate will reveal that the waccuracy is hmited
in its entirety to short distances{<2.556 A i the case
of *He). However the important point we want to
stress is that the different kinetic energy functionals
are all obtained by different integration by parts and
should in principle yield exactly the same answer in an
exact theory. The fact that in practice they do not
should be regarded as a shortcoming of the theory and
the spread in the results-can be considered to be a
measure of the accuracy. The alternative forms of the
kinetic energy requiring the knowledge of three-body
correlation functions ave invariably approximated by a
Kirkwood superposition approximation.’-? It has been
stated® that this approximation is exact within HNC
and therefore a perfectly consistent one to use. There
are indeed plausibility arguments in support of this
statement but no proof of its validity. If it is nota
rigorous result then use of these alternative forms in-
cur addironal approximations aad are therefore less
desirable. Further discussion of this problem is given
by Zabohtsky.®

Returning to Eq. (2.3} we note that a given wave
function {and the corresponding pawr correlation fune-
tion obtained through an integral equation) uniquely
defines a varational problem. To proceed further we
make use of the Ornstein-Zernike’ equation which in-
troduces a function ¢ {r) known as the direct correla-
tion function,

| - -

s g{rlz)_]_.-_-c(rlg\-i-pfd?;r.‘(rzg)[g(rﬂ)_1] .
(29

The equation can be regarded as an integral eguation
for g{r) if a further relation between c¢(r) and g(r} is
prescribed. The PY equanon)for example}_ sets

e () =g (r) (e 1)

for a classical ffuid. The generalization to the quan-
tum case! is given by

FHe(r) =g (A -11 . (2.6)

Simularly the corresponding relation for the
hypernetted-chain theory generalized to the quantum
case, links c(r) to g(r) by!

clry=g(r) -1 =1nlg )/ 2] . (2.7

These generalizations tothe quantum case are made
plausible by noting that TosF2(r) plays the role of the
classicai factor —gv{r)} Fora given f2(r) Eqgs
(2.5)—(2.7) can be solved to obtain the pair correla-
uon function which 15 subsequently used in vanational
search for the ground state energy.

ORIGINAL PAGE IS
OF POOR QUALITY

I11. CHOICE OF THE WAVE FUNCTION

We shail make a judicious choice of the wave func-
tion to map the problem onto the classical MSM.” The
wave function 1s defined in two regions; the physical
significance of the separating boundary will become
apparent later. For PY we choose

fz(r) 0, r<a ,

. -: (r—a}
r;f;(r)gr) - Eﬁ, ] , r=a(3l)
~p=]

lim g{ry=A,(r—a)", m=0,1,2,.. 3 3.2
r—at B S
while for HNC we take

s, r<a
f!(r) = —z'(r*-u) (3‘3)
g(r)exp l—g(r)+ZB, ] r=a
=]
and )
l:m+g(r)=A,,,(r—a)"", m=0,1,2,... . (3.4)
rf=—a

In either case we can easily verify that

c(r)= i Bt isa (3.5)

[

Along with a, which stands for the distance at which
we decide to set the wave function to zero, the set of
2n coefficients 18,.z,} should be regarded as variational
parameters. However, m of these parameters can be
eliminated immediately as a consequence of the boun-
dary conditions (3.2) or (3.4). Thus there are, in to-
tal, 2n +1 — m independent variattonal parameters.
The condition (3.2) or (3.4) brings out the quantum
nature of the problem and comes from the require-
ments of continuity of the wave function To see ¢
more clearly we may characterize the wave function by
the requirement that it satisfy
dg(r) am!

g(r)=T= R

g{ry=0asr—a*

(3.6)

which implies that

fz(r)=—d-f2(r)= . fz(r) 0asr—a*
dar

d m=1
a.mn

At this point one should note that except for the
conditions (3.6) and (3.7}, the problem is quite simi-
lar to classical mean sphericai model for a sum of n
Yukawa potentials, which 1s defined by imposing the
conditions

\hu-ht to
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(a) w(r}=0, r<a , (3.8)

-br

(b) kpTc{r) =— Z a*

r=1

s Ty, 3.9

-The similanty is, however, somewhat misleading, H=
In the theory of classical liQuds{MSM is an approxi-
mation Here on the other hand we are choosing a
warve function, and this closure which leads to Eq. (3.5)
can be regarded as a rigorous procedure 1 the sense
that the wave function s always at our disposal for a
variational calculation. Furthermore, the boundary
conditions discussed above do not arise n the classical
context.

IV¥. SOLUTION OF THE INTEGRAL EQUATION

‘We now turn to the Wienar-Hopl technique as used
by Baxter® in solving the classical PY equation for
hard spheres and later by Hoye and Blum? in the clas-
sical mean spherical approximation. We shall outline
the main argument and give the modifications neces-
sary for the present probiem. The details are given in
the Refs, 8 and 9. In Appendix A we shall give
another derivation which is more transparerms,
although Iess useful {rom the computational point of
view. The details of this method which was first used
by Waismana have not yet appeared in prmnt

The Fourter transform of Ornstein-Zermke equa-
tion, leads to

1+ph(E)=1/11 —pc k)] =5(k) {4.1)
where, S(k) 15 the static structure factor! and
hey =t " drcoskr [ t1le (D ~11de . (42)

Using (3.5) we find
’ ‘. az,ﬁ// <
1—pclk) =1 —4-.-pj; coskr I',‘f‘dt wefs) . S
g - r

zeros on the real axss, 1s regular within a strip contain-
ing the real axis, and tends umformly to unity at
nfinity, we follow Baxter® and factor 1 - pe (k) as fol-
lows 3

—

1 —peclk)

=00~k . (4 4)

-
/7 Note that the contnbutionyc{r) for r > a, has been 10

tntroduce 2n discrete poiesL on the imagnary axis at
*iz,. This factorization now leads to a set of two
coupled 1ntegral equations for Q (7}, ¢{r), and g{r).
At this point one nmght question what has been
achieved by the replacement of the original Ornstein-
Zernike equation by a set of two coupled equations in-

|volvmg vet another unknown function Q(r). The

point 15, however that the form of ¢(r} for r > aas

given by Eq. (3.5) 3) fully determines the for form of O(r) ool
forr>a. Thlwan venly by taking a ang a Fourer

transform of Q(r)‘aﬁtive@m—'“

Q(r)=Qo(r)+Zd,e >0 4 5)

where d,'s are the contribution due to the residues at
the poles {(—uz;) on the imaginary axis, and also that

Q¢(r) =0, . (4.6} -

We shall now see that the choice of a wave function
which vanishes for 7 < a {and correspondingly 2 g (+)
which also vanishes for r < gl immediately determines
O (r) for r < a as well. To ses how this comes about,
we examine the Baxter equations® relating g, ¢, and -

R
rz(r)=r—Q'(r)— 1277_!; {r—1)Q{t)dt
R
+124 j; (r—Dg{r—tDoi)d

r=a

@n

and

et A ——— = T —————Te—y i be o A
.

() m=Q' () +121 [ @ QDQG~r) . 4D

where we have introduced
t -

1= ';-—.':'pa3 4.9

and have measured all distances in units of a. (From
now on unless otherwise stated, all constants appear-
ing 1t our calculation which have dimensions of length
will be measured in units of 4). In (4 7) and (4.8) the
upper limit of integrationfR =1 for that part of O(r)  ° s
which 15 Qg(r) and co for the rest. The conditions
g{r)=0{r <V and Q{r) =S de "{r >1) can
now be trivially used in Eq. (4.7)_to give Q(r) for

r <1, This completely deterrmines Q{r) everywhere
and consequently ¢(r} everywhere from Eq, (4.8)

{We already know c{r) for » > 1 from the choice of
the wave function.} One can easily verify that the
form

Qo) =34 =D +BG -1+ Sl =)

r=l

4.10

"
; 3 “r SR P -
B(lT27?)+'2-7]A=127]r§?'2—[1—(1+-,+2-,}3 ‘1 S
a

+Z'éf .

P

(4.11)

Eﬁu@u’nﬂ\r\ (4 3Y) should ool

[__ _A—G‘P S o@k‘r Sow 'EC(.'E\



6B~ (1 —4mdd ==1 +129 3 {1 — (1 +2z)e ]

=] &1

+ 2 — 4.12)
=] Z,
and
zi(cl +dl) =IZTI¢G(-‘ r {4‘13)
FACHE
where

~

A O \M‘ﬁ’r : (4.14)

The solution is therefore not complete until we oblain
an independent equation for G(z,). This can be ob-
tained by taking a Laplace transform of Eq. (4.7) (see
Heye and Blum®). We then find

G(S)= 57(5)?—s

1—-12 '
) ondd ng{s)
i g(s) =ols) —7(s)e™ 4.15)
where,
7(s) =-‘(1 +35) -i-——l ce -t (4.16)
R z,+s
and
cr(s)==—(A +Bs) —|= +B+Ec, ]l
2 el S
A ¢ td
% P vl @17

The difficult question now is whether it is possible to
solve Eqs. (4.11}—(4.17) and hence obtan all the
constants appearing in 0{r). We shall see in Secs V
and V1 that although it is not possible bﬂ_obtain an
analytic solution in general,the equations can be
simplified considerably. The problern can be reduced
to a set of simple coupled algebraic equations which in
turn can be solved quite simply on a computer. This
) simphfication is due i its ent:rety/to the quantum

¥
Om conditions (3.4

/(3.7). The correspond-
ing classical case is considerably more complex.

For the tme bemg, let us assume that we have
solved Eqs. (4.11)—~{4 17) and have obtamed G {(r)
completely. We can now use this Q¢) in Eq (4.8)
and obtain ¢ (7). This calculation (see Hoye and
Blum®) s perfectly straightforward but s extremely
tedious. We shall merely give the final results:

—rc{r) =Adgr + Bor? +—;—nAur4 +3 Ai(p—e™
- &

. noo, ;
\/ TZZ e;-‘?(cmhz' -1, r<l (4.18)

T, = 2P =
& 2=t 2
where the new consmnls appeaTing are related to the
e

1
2o
=
P
N
‘l‘
— —

tal_values and s therefore cleacly unsutable for varia-
/u‘fl);fl purposeg, We take m \l,/ix:., we choose the .

boundary conditions such that

ORIGINAL PAGY Id
OF POOR QUALITY

old constants by

Ao=4%, {4.19)

(A +B) 4+ 4 zc,e Tat (4.20)

=1

Bo="'"1217

and

u,=24n3,e'G(z) . * (4.21)

We aiso note that the original parameters 5, which
first appeared tn the defimition of the wave function
[Eqs. (3 1) and (3.3)] are connected to these constants
by

B =zd[1—12ng ()] . 4 22)

where g(z,) is defined n Eqgs. (4.13)—{4 17). Equa-
tion (4.18) now completely determines S(g), the stat~
ic structure factor, and (by Fourier transfromation)
the pair correlattion function g(r).

We can now return to the variationat problem and
calculate the ground state energy However, this 15
still not =asy since the Fourier transformation from
$(g) to g(r) cannot be done analytcally and hence
one cannot obtan the required derivative of g{(r} ac-
curately. This is especially true for small r which en-
compasses the most important region for both kinetic e ,,\;
and potential energies forfshort-range singutar poten-
tials of interest here. Thus we need a more accurate
method to caiculate g{r) at short distances. This will
be discussed in the following sections.

V. GROUND-STATE ENERGY OF *He

By way of application we turn to hehum. For v{r)
we consider only the most extensively studied
Lennard-Jones potential for *He, defined by

v(r) =del{a/r) 2= (a/r)f] ,
e=10.22 K , - 5.1
o=2.556 A .

We shall present the results for HNC only. For PY ol
wa have found as others have found!® thar the com-
puted ground state energies fail felow the experimen-

_dgr)

dg(f) +
=48 _ = —17 . 2
z(r) . » Qasr—1 (5.2

These correspond to

)~ =1 asr—1i" . 3
e &
rough estimate of [s\enmg dp;%addltlona! denvative '(\

10 zero L a lowenng of energy of the order 1%

szres
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http:4.11)-(4.17
http:r(s)e(4.15
http:c,e-(4.16

I
i

F
and consequently all our calculations were done with /2
first four denivatives set to zero. Before we carry out |
the solution of Eqs. (3.11—4 17}, we define

£

7 At =e 206 ()] G4
Cr=ce ", .5 |
dr=de " . (5.6) \

Equation {4.7) can also be rewritten foc r > 1 gg
- -zr ;
rg{ry=Ar+B = zce '

=i
12q f; - =g lr —eD o War . N

5Dy

Then from Eq (5.7) one can easily show that the con- \
ditions expressed mnt (5 2) lead to the foliowing equa-
tions: \

.
A+B=3zC" , 5.8) |

=1

The derivation of Eq. (3-10) 15 lengthy and requires

an,

5 5
323G =320 = 325C, =0 | (5.10)
=1 =] =1 -

Th 15 woorth Suwamarizing Lot has hEJ_su; dowg, .
N < qua-

tons {5.8)—(5.10) imply relations between variational
parameters {z’s) and the constants (C,* 's}. We
would now keep z,'s as free variational parameters and
choose C,*'s such that Egs. {(5.8) and {5.9) are
satisfied; these in wrn fix the vanational parameters
(8,'s) through Eq. (4.22). Thus Egs. (5 8)—(5.10)
can easily be solved to express £, *’s n terms of vari- . 4
ational parameters_z,’s and two unknown constants 4 Tg-£cl
and 8. These can be Substituted in Egs. R Couting
(4.11)—(4.13) to eliminate the constants 4 and B. We
would then have C;*'s expressed in terms of only the
constants A,*’s and we may finally use Egs.
(4 15)—(4.17) to reduce the problem to coupled alge-
braic equations wnvolving the A,*’s. These can be
solved iteratively. This reduction is carried out in de-
tatl in Appendix B. Thus given a set of variational
parameters iz;,72,23,25,25) and 7, we start with a set of
guesses for A% A2% A3™ A" As ™) and analytically
solve for [C"Ca*C3%C37Cs*}, 4,8 and hence
181" B2* B:% Bs™ Bs*} such that the boundary condi-
tions (5.2} are satisfied. This knowledge is then used
e

to calculate a new set of A" Az% A3™ As™ As*).
procedure 15 iterated until the two successive sets of
A,*’s do not differ by more than 10™. For this pur-

A=—T:2C" , pose 1t 1S st o rewrte Eqs (4.15)—(4.17} in the
Pror form
. VA -4 \
)\..(5) =12n Az12271222 +g/§c¥76 /ISI(S ""Z) 53_\113/17 (A _!_B.\ _1“32)_533_62_.__}"& %lb) ~
1—1\(5) 1=2&35425% P 1S 4 L4} o < +Z, 1“)\(2,) > - ) “‘\.m;{:
- o ban
where -1t rg(r) =3 129y (1)
I T ‘(‘/ m=1
AsY=e "x*(s5) &x1) / - S
,, I S+ren N(S) trmrt)
and i x——_f —=| ey ds 5-13)
: c 13 2 Yo | P(s5)
A4 . i -
= 2 +8 +'§ G G427 +  where 515 to be chosen such that the contour lies to
51l . the right of the real zero of P(s) and \

extensive use of Eqs. (5.8)—{(5.10).

A. Pair correlation function

We remarked in Sec. IV that 2 more rehiable method
is required to calculate the pair correlation function,
especially at short distances This will be discussed
here. We have seen that all constants appearing mn
Eq (4 15) can be deterrmned expheitly, and this en-
ables us to mvert the Laplace transform of rg(r},
which is expressed by Eqs. (4 15)—(417) This can
be done in the manner indicated by Wertheim? and is
based on sirip-wise Laplace mversmr? It can be
shown that®

-

S

! P
. [3
5
N(Y=S TG +2)06) , Sy
il
tone 5
P(s) =5l (s +2)[1 —1290(s)] (5.15)

=1

Furthermore it can be verified that N (s} is only a first
order polynormual; this simphfication comes about,
once agamn. as a consequence of the conditions (3.2).
On the other hand P{s) s an eighth order polynomial.
We shall see below that g (r) can be obtained once we
know the roots of the polynomial P(5). (Allfdetnls
are to bas found thF_Append;x C) We hate;

L

Wz

(


http:5.8)--(5.10

C R g b
w;=2cu(:)e .

(5.17
=1
L\mﬁzdo(,) FNEWD DLW . 618
i~
\‘foy= Zen(r)e'& ¢ mﬂ{fgﬂ") +{r—3)es{s)
- / - | nfx ¢
+(r =3)es(N] , (5.19)

ol
8 w1, lr—d)
wy= 2 folee ™ L) +(r =4) £2(:)

=1

(e =821, + (=AY £ (]

- {5.20)

The coefficients are to be found in Appendix C. The
p,'s are the eight real or complex roots of the polyno-
mial P(s). It1s also easy to prove that o,”s are real,
as they should be.

B. Results

Given the expression for the pair correlation func-
tion we calculate the ground state energy from Eq.

(2.3): in kelvin per atom
(3
1 ]a’x ., (521)
X

% —1.855087T,

where, LA e
3
/ To=— 2 A8
1
= 1—g(x) || dglx)
+37 . dx x [ (o) e ] (522
and
s={a/a) = (Trp0'3/67])”3 - (5.23)

This expression is minimized for a given density {or a
given po’) as function of {zy,2;.23.24.25} and a {or 7).
The results are tabulated as a function of po® n Table
I, and compared m Fig 1, both with the molecular
dynamucs caleulation of Schiff and Verlet!! and with a
very recent conventional numerical solution of HNC
by Mller.’? The resulis are virtually identical (~—0 3%)

maolecular dynamcs resulls. 1 HE Pall LU11S1au-y a e
tion 1s in very good agreement for distances greater
than the Lennard-Jones diameter o =2.556 A. For

r < o there 1s apparently only a shght disagreement
but it is enough to cause a discrepancy of the order of
—1 K in comparisons of the total energy. It isn-
teresting to look at the separation of the energy at the
equilibrium density of *He. We obtain a kinetic ener-
gy of 14,75 K as/ o 13 73 obtained in tha
maolecular dynarmics calculation and —19.11 X for the
potential energy instead of —19 46 K. This validates
our sarlier staternent (Sec. II} that most of the error
lies in the Kinetic energy and the substantial cancella-
tion of the two energies lead finally to a large

discrepancy in thefrsum. = .

Finally we would like to comment on the numeric
aspect of the problem. The iterative solution of the
constants 1s rather trivial and very fasi, Potential
problems arise only in computing the roots of the po-
tynomuai P{s)}, and hence a very high accuracy should
be mamtained (we use the Laguerre iteration tech-
nique'). The reason is that from tire to tume for
some choice of the parameters the polynomial can be-
come 1lf condittoned” and the error may propagate ra-
pidly to the determination of coefficients appearing i
the expression for the patr correlation function [Ea.
{(5.16}] This happens especially for large distances
and at fow densities and is due to the cancellation of a

IIarge number of unwizidy termf_yas should be clear

-45
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FIG. 1 Calculated ground-state energy of liquid *He.
Sold curve, the present calculation; &, molecular-dynamucs
resuits obtained by Schiff and Verlet (Ret 11), =, HNC cal-
wulation of Miller (Rafl 12).
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TABLE I Ground-state energy ot hquid *ile.

pa’ 7 z Z, Z3
0.26 0.05 105 81 67
028 0053 115 78 04
¢ 30 0057 12.0 1.5 62
032 0 0605 13.0 81 6.5
0.34 0064 12.5 §4 68
0.3648 0 069 133 87 68

Z, Zs
1.3 80
73 50
73 30
10 80
7.0 8.0
7.0 77

KLCIN
(x)

8.424
9358
10 587
11672
12.926
14 752

PEIN
(K)

—13.458
—14.459
~-15.670
—-16 652
—17.100
=19 107

EIN
(K)

—5034
=5 101
—5083
—-4930 |
—4.774 ¢

el 'f\‘xL'b\«\'\\o\fe_ﬁ!\

. i~
/,D‘l‘he_.‘cglculmion proceeds'@xactly thé-(v—yy/&

from Appendix C. However, for 1 <r <2, the region
which contributes most to the energy it 1s very reli-
able. For larger distances (r ~4) it is more rehable to
obtain the pair correlation function from the Fourrer
transform of the structure factor. In any case with
care 1t 1s nat difficult to keep the total numerical error
in the energy less than %%. As is always the case

for a variational problem with a2 large number of
parameters, one cannot guarantee anything more than
a local munimum and we do not claim to have ob-
tained global minima although we have determined
that at the quoied munima all partial derivatives are
ZEero.

¥I. HARD SPHERES JMMM

a3 describad
in ut 15 conswderably simpler. We
shall therefore omit the details and content oursetves
with a simple two-parameter variational search instead
of a six-parameter search as described above. The
resuits could of course bhe improved by the introduc-
tion of more parameters but this is not necessary in
displaying the method In this case we have to keep
in mind that 7(r) must be continuous at the core

[

15 T T T
,.,v‘ﬂ--"
y 3
/ .
- .,
.,
1 Qp= /,/ ..."."‘.-O- pwrawt]
T H
2
A
Q5 /' -
/.
.
{
;
o LI 1 1
° [+ 1] 15 20 25

FIG 2. Comparison ol the pair correlation function g {r)
at the equihbrium density of hqud Jtie Sold curve, the
present caleulation, @, molecular-dynamuts results of Schiif
and Verlet {Rel 11)

lboundary but one must allow for the discontinuity of
the denvative f'{r) at this point. This requires

g(r)=0, r—1* (6.1)

and

dg(r) _
dr 0

The kinetic energy, which is also the total energy, can
be written

(6.2)

2
E _ = alde(x) ] 1—z(x}
N(#fmad) ’3”f1 Ll 2 (e)
1 z
~Lsaea . 63

1=t

where the notations of the previous sections have
been used. The resuits are tabulated in Table II, and
compared with the variational Monte Carlo results of
Hansen, Levesque and Schiff."* The results are n
reasonable agreement throughout and especially n the
flid phase which they found to exist for values

pa® < 0.244 (see Fig. 4).
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FIG. 3. Comparison of the static structure tactor S(A) at
the equihbrium density of hawd *He. Solid eurve, the
present calculation, ®, molecular-dynanues results of Schatl
and Verlet {Ref 11).
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TABLE H. G“’““d'ﬂ-’le enerzy of hard-sphere bosons the solutions of the algebraic equations mentioned
2, . Fy, W Cnos - above are known.
pa’ n e 74 (Eus/ N K2/ ma?) We consider this present calculation to be only a
' 5 first step toward obtaining a complete anaiytical solu-
0.1 0.053“3( 24 255 1.9583 tion and a considerable amount of mathematical
0 166 0 0R69LH 34 3.7 4.663 simphfication is still required to make this technique
0.2 0.1047F 4.4 37 , 6623 more efficient than a more conventional numerical
0243 0127758 54 43 . 9.886 . solution of the integral equations. We hope to look
027 013137, 5 4 S0 12.263 jnto it in the near future.
0.3 0.157be= 6.0 15 501 |
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equations used widely to calenlate variational upper
bound to the ground state energies for a vartety of APPENDIX A
Bose liquids can be reduced to a set of coupled alge- -
braic equations. Although simple in nature, these We present an alternative solution of the HNC in-
equations were solved numerically and the results tegral equzton, analogous to the method indicated by .
were applied to the cases of liquid *He and quantum Warsmarh2’ For the sake of demonstration, consider / \g’./'
hard spheres. The results for liquid *He turned out to only 2 one-Yukawa correction to ¢(r), 1e,
be almost identical to the more conventional -numeri-
cal solution. For hard spheres the resuits are n rea- clry=Be™/r forr >1 .

sonable agreement with theprevious variational

ing W im? one ite d L
}\ Mente Carlo calculationg, One of the advantages of Following Wertheim” one can write down the Laplace

transform of the Ornstein-Zermke equation

this method is the extreme accuracy with which the . ’ N
air correfation function can be calculated. This is be- Y O"-’{
P refati 101 alculated. is is be K Be 24782 i “ 7
cause the pair correlation function can be obtained G = 2 F () == T 6/@ Z L F= £
analytically from a Laplace inversion technique once \\__./,a’ =
. x =0 F(— ] .
200 ; [ I I
where
. K =1-24n | " xle(c)dx,
150~ . =
A= e’f‘ e xg (x)dx ,
{E,/N} =fm -tz T
s G(t) 4 xg{x)de ,
00 N and
!
F() =~ J xe(eax .
We abserve: (1)) Both F(¢) and F{—t)} (being Laplace
S0 ] transforms over finite range} are analytic in the entire
complex plane (u} G(¢) being 2 Laplace transform
over an infintte range can have singularities in the left
haif-plane but is analytic in the right half-plane. {ui)
. 1 : ' The only singularities of G{¢) are therefore the dou-
085 20 e 20 o5 ble pole at +=0. Note that r = +z are not singular
1/pa* points.
! One can also show that the function A () defined
FIG 4 Calwslated ground-state energies of quantum by
- hard spheres {bosons} Soiud curve, the present calcuiation,
error burs, Monte Carlo caiculation of Hansen, Levesqgue, H() =@ =GN {(=1) =z~ ) NN (=1}

and Sulff (Ref. 14) - D)



N(a‘)=‘{T—F(!)“":¢;—; —Z-—:‘:;_—'] ’ “"\-2_ -

o
and i where

A=anan=—anan

D=1+ 20 1r(y + £E _p(y - B

t

z—t 4+t and
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ON THE GROUND STATE OF METALLIC HYDROGEN

Sudip Chakravarty and N.W. Ashcroft
Laboratory of Atomic and Solid State Physics

Cornell University, Ithaca, N.¥. 14853

ABSTRACT

A proposed liguid ground state of metallic hydrogen at zero temperafure
is explored and g variational upper bound to the ground state energy is
caleulated. It is shown that the possibiliiy that the metallic hydrogen
is a laquad around the metastable point (rs—= 1.64) cannot be ruled out.
This conclusion cruecially hinges on the contribution to the energy arising

from the third order in the electron proton intersction which is shown here

to be more significant in the liguid phase than in crystals.



1. JINTRODUCTION

An interesting possibility of a zero temperature liquid ground state of
metallic hydrogen has been recently explored in a calculationl which makes
use of g Jastrow-S8later many particle variational WaVefunctionz’3 to calculate
the ground state energies of both solid and liquid phases. The symmetric
part of the wavefunction is treated by the Monte-Carlo technique; exchange
is neglected in the solid and approximated in the liquid by the Wu-Feenberg
expansixn?ﬂs It is found that the differences in the energies of the liquid
and the solid phases varies from 0.1% at rs = 1.6 to about 3% at rs = 0.8,
(here 4ﬂ/3(rsao)3 =1/n and n is proton or electron density). The solid
phase seems to be energetically more favorable throughout the entire range
of densities considered. However, the calculation is based on a model of
pair-interactions between protons and therefore contains only terms generated
to second order in the electron-proton interaction. The contribution coming
from the third order in the electron-proton interaction is known to be signi-
ficant in the calculation of the band-struciure energy4’5 in the solid.s In
view of the small energy difference between the solid and the liguid phases
it is therefore necessary to estimate the third order term for the ligquid as
well. Furthermore, since in the liguid ceriain configurations will permit

three protons to come closer together than they would in a solid, we might glso
expect that the contribution from the term third order in the electron -
proton interaction may be relatively more important in the liguid phase.

In this paper we shall first show that a simple one-parameter variational
wavefunction when combined with the Hypernetted Chain (HNC) integral equation2
can reproduce the energies calculated in Ref. 1 with a 6-parameter variational
wavefunction and the Monte-Carlo technique to within 0.025 - 4.2% and thereifore

provides a very reasonable upperbound. However, precise agreement is not

necessary in order to provide variational answers to the following questions
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(a) How much does the third order term contribute
to the ground state energy of the liquid? (b) What are the corrections in the
liguid state attributable to long wavelength phonons? (c¢) Is it possible
to lower the energy of the liquid by permitting partial alignment of the
spins of the protons?

The calculation described below is a judicious combination of variational
and perturbative methods and is intended to suggest that for certain densities
the possibility of a liquid metallic phase of hydrogen at zero temperature
cannot be ruled out. The conclusion hinges on the fact that the third order
term is significant and is perhaps more so in the liquid.

2, FORMULATION
In a sense hydrogen is the gimplest metal; its Hamiltonian is known

exactly: For N protens, N electrons and volume {} we write

H=E +H +8H
e D ep
’ 2 N 2 2 N 2
.. n h
2o B2 aE =) (- 2V%+ZTE_"_P
i=1 7i i< -, i=1 i i<j |R.-R,
SR P 3 IR -R;
2

i,J l;£—551 .

Here we have denoted the proton coordinates by {ﬁ;} and the electron coordinates
by {;g}. A major sinplification takes place6 when we realize that there are
two widely different time scales involved in the problem, allowing us to remove
electronic degrees of freedom by assuming that at any instant we can consider
the electrons to be in the ground state corresponding to the instantaneous
proton configuration. This Born-Oppenheimer adiabatic approximation reformu-~
lates the problem in terms of an effective Hamiltonian of protons. The price
we pay is that the indirect interaction between the protons, now mediated by

the electrons, is no longer a simple Coulombic pair interaction but containg
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many body forces . With electron coordinates now integrated out the total
Hamiltonian for the protons becomes:3
(2)

H = B + T + V +
Y eg P pp Eb

AR} + BEPAED + ... (2.2)

where Eeg’ which is the exact ground state energy of the interacting elecirons

in a uniform positive background appears as a constant energy, and simply
drops out of the calculation. Ian Eg. {(2.2) Tp and pr are the parts of the
original Hamiltonian of the protons and Eén)({ﬁm}) which are fuanctions of the

pProton coordinates are the electron mediated interactions between protons

which are generated by adiabatic perturbation theory. Provided Eg. (2.2)

converges, the procedure is exact within the adiabatic approximation. Most
importantly, note that to this point we have not made any assumptions regarding
the positions of the ions; the discussion holds for liguids and crystals
whether static or dynamic, The precise form of Eén)({Rﬂ}) can easily be

8
written down

(2) PR S B ¢ e

g, ({R,D =30 BVGVCED X6 (2.3)
1

Drh = ag | IEIVENVEY KP K, E) o (2.4)

5 gr= ey I k +k +k,,0 :
1’k2:k 1 2 3

and similarly for the nth order term. Here,

(2.4)

vE = - gty
)
and

(1)
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15 the exack f{irst order static response of the interacting electron gas to

n -_— =y — R
an external potential., Similarly XF )(kl’kz""kn+1) is the exact nth order

response. In otherwords 1f we know the nth order response function of the interacting
electron gas exactly, we would also know exactly these extra many body interactions

between protons, and we can proceed to diagonalize the proton Hamaltonian.

The interesting point to note is that the rewriting of the original
Hamiltonian in the form given in Eqg. (2.2) splits off a large volume dependent
term (order 1 Ry) which does not depend on whether the protons form a
liquid or a solid and therefore simply drops out of the difference in energies
between the 1liguid and the solid phases which is the interesiting quantity
in examining the phase transitions between the two. The uncertainties in
the electron gas response functions X(n)(Ei,ié,...i;+
each of the terms E;n)({Rz}) but, once again, they will not influence too

1) will surely affect

greatly the difference in energies. Thus this particular reformulation, Eg. (2.2),
should be a reliable starting point to calculate the energy difference between
liquid and solid phases.

g
(1)(k) we shall choose the Hubbard-Geldart-Vosko (HGV) form for the

For ¥y
dielectric function e(k) which 1s known to be of reasonable accuracy at least for
T, < 2, For XZ(E;,EQ,EE) we shall make use of the form used by Brovman, Kagan

5
and Holas in which the one body interactions are screened by the HGV dielec-
. - - . . (2, = - =
tric function. This approximation for Y (k_,k_,k_) has

been used extensively and is believed to be reasonably accurate. The

Hamiltonian can now explicitly be written down;gf we neglect Eén)({ﬁz}) for

n.z 41
2 N
o) 2 (2 (3)
H=E . ==— X V> +% §°7(R,.)+T & '(R..,R. ,R. ) (2.8)
@ 2m o1 By oueg 1 egex 137 3k ik

where,
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2
N N = 411e ( 1 )
E.=E -0 + — [dx = (== -1 (2.7)
0 eg  2nk 2(21‘1‘)3 (211 B) k.‘2 e(k)

is a large volume dependent term, which i1s convenient to separate out., In

(2.7) n is the number densgity (N/Q) and £ is the compressibility of the

uniform interacting electron gas neutralized by a uniform positive background at
the same density. Note that the terms Eéz) ({E ﬂ,}} and Vpp have been combined

to give

= 41 2 1 ik* (R
. —
J'dk < e:L ( i Rj).

(23 2 e®

!25(2) (R..) =

ij (2.8)

11
an effective linear-response pair potential. Finally the third order term

is given by,

(3) fi) k. -_R‘.-i(f; +E )R
87 (B, 5 By Ry ) = -(—Z:T)—‘rdkfdke A B R R’ (2.9)
A(kl,kz e —kz)
Here 'K is:
5 3
R K, 5y = (4me ) My By, K (2.10)
klkzkse(k Ye(k,)e(k,)

2k +k .

1\.(1-{' E 1_;)= ):‘. cosﬂ%‘ ‘—Ze(k—k)tan M

177223 (3121,14)(k1k2k3)[ Bk -k,

- {1'8 (kF'kR)} on 1+AAI:| 2.1

where 8(x) = 1 for x > 0 and zero for x < 0. The remaining parameters are

given below,

2 -1
kk k k+k+k
A = 123[1_%123] (2.12)

(2kL) L



X
k2_q2 3
_ LF R
A - ‘ 2 l ’
)
kk k
1723
qR = T (2.13)
2[k£k2:(k1 k2) ]
k 'k
3
cosel = i M s (2.14)
273
k_+k
cost, = - z kl , (2.15)
31
and
k .k
00593 = - i kl . (2.16)
21

If we take e(k) to be the RPA dielectric function then } would precisely be
the RPA approximation for the three tailed diagran.
As mentioned earlier the dielectric function (k) is taken to be of the HGV

form and is explicitly given as,

2
e() = 1+ GE (M /1 > , (2.17)
1 ~ aF(M /2T +8)
where
2
~ (1-1) ltn
F() =1+ 5= i =1 , (2.18)
o = (rs/zrr) (4/%)1/3 y (2.19)
_ 1
€ - 4 1/3 e (2.20
{1 + 0.031 (gEa —E—a
and N = k/ZkF.
Finally, we obtain
_ (2) (3}
H= EQ + H + 4] (Rij,Rjk,le) (2.21)

i<j<k
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where EQ is a constant volume dependent term and we have split off the ¢(3)

term fron H(z) given by
2 N
(2 _ u 2 (2) (2.22)
H =-5=— L vi+>:_¢ (Rij)

P i=1 i<

In Retf. 1, H was approximated by EQ + HCZ). We proceed from this point and

shall first attempt to diagonalize H(z) as well as possible with a one parameter varia-
tional function which,as we shall see ,will give an error of no more than 4% when
compared to the calculation of Ref. 1 employing 6 variational parameters. An

optimum wavefunction obtained in this way will be used to calculate the varia-

tional bound for the contribution from ¢(3).

3. CALCULATIONAL TECHNIQUE

In this section we shall outline the method used in calculating the ground
state energy of the Fermi liquid corresponding to the Hamiltonian given in
2
Eq. (2.6),A Jastrow-8later variational wavefunction »3

7 ,2,...0 = DTL_f (3.1)

will be used fto calculate an upperbound to the ground state energy. In Eg. (3.1)

D is a Slater determinant made out of plane waves and Eﬁ is a symmetric correlating
factor designed to take care of the strong inter-particle interactions. It is
responsible for a large part of the energy. A subsequent Wu-Feenberg expansion2’3
then uses an exact transformation to recast the problem into the calculation of

two distinet parts: Thus we shall set

= + 3.2
E EB Eex ( )
where Eex is the exchange contribution and EB is the eigenvalue of a symmetric

ground state corresponding io the Hamilionian. Then

a{r,) T = 23 (3.3)
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B . .
where ﬁo in Eg. (3.1) is chosen to be the eigenfunction of (3.3). The calcula-
tion of EB therefore does not involve the antisymmetric factor and results in

a counsiderably simplified problem. A knowledge of this Eﬁ is then utilized

to calculate,

B2 E Y —_
_ Eﬁ g Iﬂo VgD 'V113dr1...drN .0
ex 2m 2 .

=1 B¢ - -
Iﬂo drl...drN

which may be calculated by a statistical cluster expansion of the type

Eex = EF + EF + E% F oase (3.5)

(On)

where EF involves n-particle exchange. These terms are easily calculated
(at leastup to the 3rd order) as we shall see below. The entire procedure
is meaningful when EB is much greater than EeX and the series in Eex converges
rapidly. We shall see later that the first condition is very well satisfied,
EB being several orders of magnitude larger than Eex' However, the second is
only moderately well satisfied, each term dropping by a factor of 1/3 to 1/5
of the previous term.

So far we have implicitly assumed a paramagnetic ground state, each level
being doubly cccupied in the Slater determinant. However, it is easy to extend

12

2,3 .
the result to a departure from double occupancy '~ 7 . The resulting form for

E _(x) is then
ex
01 02
E x)=E, (X)) + E () + EPS(X) T o (3.8)
ex F
where x is the spin imbalance order parameter defined by,

Xx = — (3.7)



Here N;(N;) are the numbers of up (down) spins and N is the total number of
spins. A non zero value of x will signify a magnetically ordered phase
Clearly x = 1 will represent a ferromagnetically ordered phase. Notice that
Eﬁ does not depend on x. We shall try to determine whether Eex(x) possesses a
minimam sz(xm) at a non-zero value of x. It will turn out that the energy
difference AE(x) = Eex(x=0) - E@x(xm) per particle is small, only ~ 2 = 10-sRy.
(It is worth noting that this is not small on the scale of a superconducting
pairing energy.)

4, VARIATIONAL METHOD

¥rom the variational point of view EB in Eq. (3.2) is conveniently split

into three parts

_ (2 (3, , Ph
Bp = By 7+ By AE}; (4.1)

(2)

The first term, EB , is calculated by variationally optimizing the Hamiltonian

2
g )({Rz}) with the many-body Jastrow wavefunction given by,

&= HE ) (4.2)
i<j
where,
b,3 —(r/b)s
u(r) = (;9 e (4.3)

This wave function is a sinplified one-parameter form for that used in Ref. 1.
The energy functional is minimized with respect to the parameter b at every value
of s the resulting wavefunction is then used to calculate the expectation
value of 6(3)({§z}). The EéB) obtained in thig first order perturbation is also

a varistional bound. The w(r) expressed in Eq. (4.3) is short ranged and does
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not include the contribution due to the long wavelength phonons. This is

13
done perturbatively with the help of Chester-Reatto wavefunction . The

relevant formulae are summarized below:

m 2/3 @ b_.3 3 6 3
- 300" 2 oo o A
+ E;EES (%;)1/3 ii-z dx xzvo(x)g;(x) . (4.4)

where all distances are scaled with respect to the inverse Fermi wavevector,
l/kF, including the variational parameter b (b = bF/kF). In Eg. (4.4), T

denotes the average interparticle distance scaled by the Bohr radius and g;(x) =

2,3
gg(r), {(r = x/kFJ 1s the pair correlation function defined as: ’

B 2 — —
0 M(N-1) [ (V) drg. . .dry
g(Ty,) = 5 2 ) (4.5)
n B - —t
I$ dr, ...dr
<0 1 N

Note that yi iz defined in Eqs.(4.2)and(4.3). The corresponding static structure

factor Sg(k} is defined by the Fourier transform:z’3

~

Sp(k) = 1 + nfa¥ Q1B T [s9(x) - 1] (4.6)

Finally with the distance and the wavevector scaled,

< nx 1 T (2)
v (x) = [ay Sy = T 4y (4.7)
° £ xy e 2e2kF

is the screened interaction and e(y) is the HGV dielectric function. Once

again all wavevectors are scaled by kF(lk1 = ku). For g;(r) we shall use the



11

2,3
Hypernetted Chain Approximation ’“which is known to be satisfactory for Bose
2,3
fluids and has been tested for a variety of interaction potentials. ’

In this approximatlongg(r)is the solution of the non-linear integral equation

relating the direct correlation funection c(r) to g;(r);
o -5 — el 0
gp(x) - 1 = c(®) + nfdrre(fr—='D [gy(r)-1]1, (4.8)
o o
e(r) = gp(r) - 1 - log g (r) + u(x) (4.9)

The procedure is to solve Eqs.{4.8)and(4.9)for a given value of the variational
parameter b by a standard numerical procedure and to use the resulting gg(r)

in Eg. (4.4) to calculate the energy. This process is repeated for a number

of different values of b to find the oﬁtimum g;(r), u(r) and the minimum in

energy at a given density or rs. We then proceed to calculate the contribu-

tion due to ﬁ(3)({52}). Thus

@ (ol EdrDb
<ol

6
— — 1 1 1 e s e | e A =Y
= - 3 [akfdq — 5 5 Sp(K,d,-E-D AK,d,-k-D) (4.10)
T g elg) k e(k) (a+k) e(g+k)
where,
B B
o oo L | pop=p = =|U)
s2(x,q,-k-q) = —= kBq Ig)q—o (4.11)
|
Wl
and
¥ooRT -
pp = T e i, kK#0. (4.12)



12

A distinct featurell of the response function of A(gzz;—QLQB is its singular

beﬁavior when E-+ €>= 0: i.e.,
- = 2 2
Ak, -k,0) ~in |k - /4] . (4.13)

This singularity is stronger here than in the second order response where only
the derivative has a logarithmic singularity. This amplification is due to

the confluence of the usual second order Kohn anomaly which is always present
in the third order response and the intrinsic singularity of the third order
response. It is clear that the integral in Eg. (4.10) can only be defined if
this singularity is cancelled by other terms present in the integrand. To

this effect we prove rigorously in the Appendix the following result:

lim_ _OSB(E, Z,~k-D)~ ok if lim S (k) - ok Similar zesults hold when £ — 0 and
li@fi -+ 0.

Thus it is necessary that S(k) vanish at least linearly with k in the limit
of small k. TIurthermore, any approximation for the fthree particle structure
factor must be such as to preserve this property. One such zpproximation is
the convolution approximation2’3 for the three particle structure factor, an
approximation that has been extensively tested for soft core potentialsl4 and

. 4
in many othex 51tuat10ns}' Thus we set

— - — — -
~k~-q) ~ + 4.14
SB(k,q, k~q) SB(k)SB(q) S (+q) ( )
which clearly has the redquired property that it wanishes when any of the three
arguments vanaishes. As is made clear in the appendix this is simply because
of the fact that the convelution approximation satisfies all the normalization
conditions to be required of the probability distribution functions. However,

as is well known , the short range wavefunction written down in Eg. (4.3)

does not lead to a SB(k} which vanishes as k¥ = 0. This needs to be corrected
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for the presence, expected physically, of long range phonons hefore we can
evaluate the third order energy given by Eg. (4.10) and (4.14). The procedure
is almost standard15. The Cheqter and Reatto wavefunction is long ranged and

has the form

(4.15)

where we have scaled the distance by kF j.e. » - x/kF and z is a variational cutoff

parameter, -Here ¢ is the velocity of sound in this hypothetical Boson system and

can be obtained from the energy, E;z)/N:

1
c 1/3,r 2 a%g® ag'® %
s /3 s \o1T 2 drz s drS (4.16)
F mel
where, CBS = 73-(32;3and VF = (hkF/me). The choice of such a long range wave-

function leads to a sequence of changes given next. The structure factor
S;(k) calculated with the short ranged wavefunction gets modified to SB(k)
given by

o

(k)

SB(k) = S (4.17)
1+ n'sB(k) ULR(k)

and the corresponding correction in the pair correlation function is

-I(r)_

]

bg(r) gg(r) (e 1), . (4.18)

where

I

(o]
gB(r) gB(r) + Bg(r), (4.19)

and ULR(k) is the Fourier transform of ULR(T)' Finally,
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O 2

8 (B) U L (R) .

D) = —— Ielk r _B LRO dk (4.20)
(2m) I+ FJUL(k) SB(k)

The correction to the energy is then

AEP; th = 0 2 h‘?‘p =, 2
—5 = E 49T 5y (®) VUL () = [dTée(r) VO UG (x)]

+ épfv(r) 6g(r)d¥ . (2.21)

Finally, Eg. (4.10) can be rewritten to obtain the third order contribution

to the energy,

(3)
6o S (kK)o S (q)T b e e o
-E-§— = - 8% [ax -—:%) dg ]:—() [sinBas—2 L Sp(eta) Ak, q, ~k-q)
o o 5% (q+k)”  e(k+q)

- - ' (4.22)
where § is the angle hetween the vectors k and q. Thus Eés)/N can now be

calculated numerically if SB(q) is known.

5. EXCHANGE CONTRIBUTIONS

As mentioned earlier the Wu-Feenberg expansion is used to obtain the exchange

contributions to the energy. The total energy per particle is

il

E(x)/N EB/N + EeX/N

2 Eff) ¥ AEgh)/N + B (/N (5.1)

It}
~
ol

where, Eex(x)/N is the exchange energy of the Fermions (protons in this case).

In Eq. (5.1) the energy up to third order in exchange 1s given by:

Eex/N = Eg1@1,x)/N + E§2¢1,x)/N + E§301,x)/N + ... (5.2)

where



i5

7
EOI(n,x)/N = 1% eF[(1+x)5/3+(1-x)5/3] (5.3)

1
F 8
Eyp(n,x)/N = IZeF{(l-i-X) /3£ (y4- g y5+ %y7) [S(Zk;y)-lldy

1
8/3 4 5 7 -
s (8 e % v+ by ) [S(2k y)-1ldy (5.4)
o
and
e
F ___3(1)3{-‘_11/3 2 N + - o
an(n,x)/N- 5 \Bo (1+x) f<1y128(kFy12) {S(kFyzS) 1][S(kFy13)—1]dyldy2dy3
i
11/3 2 - - - - = =
+ (1) yj'<1y128(kFy12) [S(ky,) 11 [S(ujy, o) -1)47, 67,7, }
i
Note that eF = —EE;-, kf = kF(l i_x) and x = (N;-N_)/N. As mentioned

earlier our intention is to compute the ground state energy as a function of

X. The ternm E§3 is calculated by making the quadratic approximation described in Refs.
2 and 12.
6. RESULTS

In Fig. 1 we show the dimensionless potential functzon vo(x), Eq. (4.7),
for some typical values of rS. In Fig. 2 we show the corresponding pair corre-
lation functious gB(r). The actual Fermion pair correlation function can be
obtained from these by the Wu-Feenberg expan51on2’3, Fermion corrections being

1
small in this case. The reason why we have not displayed them 1s because they
are not explicitly required in the method of calculating the Wu-Feenberg series
used here, The structure factor SB(k) corresponding to gB(r) is shown in Fig. 3
for few typical values of rs. It is clear from these plots that there is a
considerable amount of short range order in liquad metallic hydrogen as compared
to say ligquid helaum. One should also note that the interaction potential
exhibits a strong density dependence.
(2)

Table 1 compares our resulis for EB , Eq. {(4.4), with the calculation

in Ref. 1. It is clear that our one parameter variational wavefunction gives
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a reasonably good upperbound. Also shown in the table 18 the

detailed decomposition of Eéz) intoe kinetic and potential

energies, We should emphbasize that precise agreement between our l-parameter
variational results with the 6-parameter Monte Carlo results, Ref. 1 is not
necessary since we are simply interested in an upperbound for the contribution
arising from the three body forces. These are given in Table 1 along with the
volume dependent terms . In calculating EQ and Eeg we have made use of

the Nozieres and Pines interpolation16 formula for the correlation energy of
electron gas which is consistent with our choice of HGV dielectric function.
From Table 1 one can also see that Aﬁgh/N, Eq. (4.21), makes a negligible
contribution to the total energy. The main effect of the long range phonons
is to produce an SB(k) which vanishes in the limit of small k which, in turn,
allows us to caleulate E(g)/N, Eq. 4.22, As noted above the integral is iil
conditioned if SB(k) approaches a non zero value as k goes to zero.

In Table 2 we have shown the exchange corrections. It is seen that a
partially spin aligned state of protons is in fact favored throughout the
entire range of densities considered. As mentioned earlier we should be
cautious about this conclusion since EF has been calenlated with the help

03
2
of the f::onven'tz:‘l.c>nea.12’]‘0’1

quadratic approximation, and thus may be quite
inaccurate especially for larger values of the order parameter x. In view
of the fact that this term is considerably smaller than the rest and that one

needs a complicated numerical procedure to calculate accurafely we have not

examined it using a more elaborate gomputational method. We do not believe

that the results will change gualitatively, Since the quadratic approximation
ie good in the neighborhood of X = o, the fact that the energy is lowered for
non zero values of x can be established although the exact value of x may be
inaccurate. ;t is also worth remembering that the convergence of Wu-Feenberg
series 1s not rigorously establashed.
The total energy for the liquid is compared, Tablie 3, with the static emergies for

4 .
the solid phase obtained by Hammerberg and Ashcroft . Note that the static
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i6
hydrogen could easily be of the order of 0.01Ry. The contribution of the

third order term in the liquid is more significant than in the solid. For
example at rs = 1.6, the third order energy in the ligquid is -0.0372Ry as
opposed to -0.0322 calculated by Hammerberg and Asheroft. The corresponding
comparison at T, = 1.36, yields -0.0326Ry for liquid as opposed to -0.0281
for the solile: Finally, the liquid state energies calculated in this paper
are a variational upperbound and the exact energy is expected to be lower.
Thus one cannot in principle exclude the existence of a liquid ground state
of metallic hydrogen thqugh it is eertainiy not established as a preferred
ground state.
7. CONCLUSION

We have investigated the possibility for a liquid ground state of metallie
hydrogen at zero temperature. We conclude that the possibility of a liquid
phase near the metastable zero pressure point cannot be ruled out. We have
found out that the third order terms in the liquid are significantly lower
than the corresponding ones in the solid and a careful estimate of these terms
in the solid phase which also incorporates the dynamies of the protons is
essential to determine the liquid-solid transition (if any). We have also found
that the contribution to the ground state energy due to the long range phonons
is negligible though their presence is necessary. An interesting part of our
calculation is the fact that the energy of this proton-electron liquid can be
lowered by a partial spin alignment of the protons.

We would like to thank Dr. P. Bhattacharya and Professor G.V. Chester for

interesting discussions. This work was supported by NASA, NGR 33-010-188.



Appendix
et i 4 - =t
We shall prove that the ILimiting value of SB(k,q,nk—q) as any one of the
wave vector approaches zero from above vanishes provided the static structure
factor SB(k) vanishes in the same limit. Strictly speaking this result should
be considered as a limiting value, defining the function by continuity at
the origin and true in the thermodynamic limit.

First note thatz,

R (B lope—p = =15
sp(k,a,-k-q) = Lo les? =4 =
UL

I

_— - —3 =) -3 =) -~
248 +s(@+S([Reg e § [ T1HH rz"‘(k*q)'rsl)(; 2
1’72773

o
drldrzdr3 (Al)

Ed — -
where the three particle disitribution function P(r1 ,r2 1T ) is,

o oo N1 (N-2) N
P(r,,TgsTg) = 3 5 . (A2)

n B - g
|
IHO drl...drN

2
B - -3
r¢0 dr4...dr

r——

Since SB(Q,q,—k—q) is invariant with respect to the interchange of its argu-

mentsit is sufficient to prove the result when any one of the wavevectors tend

—

to zero, say k — 0+. The following cluster decomposii;ion2 of P(rl,;é,;é) is
exact as long as one does not specify 6P(;1,;é,;é):
3
P(rl,rz,r Y=1n [lfh(rlz)fh(r13)+h(r23)+h(rlz)h(r23)+h(rzé)h(r31)
— e
3
+h(r31)h(r32)] + éPﬁﬁ,rz,rg) (A3)

where, h(r) = gB(r) - 1,
Then one can easily prove from the normalization of the probability distribu-

tion functions that2



—_ = - — 3 -5
jap(rl,rz,rs)drs = -n jh(rla)hcrzs) dr, (A4)

Now one can easily evaluate the right hand side of Eg. (Al) for k - d+ and

obtain the stated result.



Figure 1
Figure 2

Figure 3

Table 1

Table 2

Table 3

FIGURE CAPTIONS

vo(r) for some typical values of rS
gB(r) for some typical wvalues of T

SB(k) for some typical values of rS

TABLE CAPTIONS

(2) .
Eg~ (MC) is

Boson part, EB’ of the ground state energy.
the Monte-Carlo results of Ref. 1. All energies are expressed
in units of Rydbergs.

Exchange contribution to the ground state energy. All energies
are expressed in units of Rydbergs. i
Comparisons of the ground state enrergies of the liquid (E{x)/N)
and the solid phases (ES(HA)/N: Hammerberg and Ashcroft, Ref. 4).

All energies are expressed in units of Rydbergs. BSC: Simple

cubic; BCC: Body centered cubic; FCC: Face centered cubic.
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TABLE 1

rs bF '1‘1(32) /N P]gz) /N E1(32) /N Ef:,z} {MC)Y /N AE]r;h/N ElgS) /N EQ/N
0.50 5.35 0.07406 2,76268 2.83674 -0.00158 —0.01442 0.54062
0.80 5.55 0.03195 0.76254 0.79449 0.7943 -0.00054  _.Q,02120 ~0,86188
1.20 5.50 0.01386 0.19986 0.21372 0.2079 -0.00021  _0.02044 -1.10353
1.30 5.435 0.01143 0.14616 0.15759

1.36 5.40 0.01026 0,12104 0.13130 " 0.1262 -0.00016  -0.03258 -1.10050
1,40 5.37 0.00954 0.10665 0.11619

1.45 5.315 0.00865 0.09095 0.09960

1.488 0.0847

1.50 5,28 0.00794 0.07726 0.08520 ~0,00012 -0.03528 -1.08394
1.55 5,225 0.00723 0.06543 0.07266

1.60 5.175 0.00661 0.05510 0,06171 0.0592 -0.00011  -0,03718 _1,65790
1.70 5,05 0.00549 0.03824 0.04373 -0.00009  -0,03908 -1.04988
1.80 4.9 0,00452 0.02531 (.02983 -0,00008 -~0,04100 -1.03074



TABLE 2

r X Eex(x) /N
0.50 0.588 0.,002863
0.80 0.579 0.00102
1.20 0.582 0.00045
1.30 0.588 0.00039
1.36 0.587 0.,00035
1.40 0.588 0.00033
1.45 0.591 0.00031
1.50 0.583 0.00028
1.53 0.595 0.,00027
1.60 0.598 0.00026
1.70 0.603 0.00023
1.80 0.607 0.00021



0.80

1.00

1.20

1.25

1.30

1.36

1.50

1.860

1.65

1.70

1.80

TABLE 3

E° (HA) /N
sc FCC BCC
-0.71188 -0.71929 ~0.71818
~0.93796 -0.94019 -0,93902
-0.96842 ~0.96961 ~0.96843
-0.99217 -0.99242 -0.99122
~1.04104 ~1.03818 -1.03693
-1.04759 ~1.04345 ~1.04222
~1.04803 ~1.04338 ~1.04209

E(x) /N

3.36399

-0.08811

-(.91901

~1.00159

-1.03385

-1.04322

-1.04509

-1.04178
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ABSTRACT
Hydrogen and hehim are the major constituents of Jupiter and Saturn, and phase transitions

can have important effects on the planeiary structure. In this paper, the relevant phase diagrams
and microscopic transport properties are- analyzed in detail. The following paper (Paper 1I)
applies these results to the evolution and present dynamic siructure of the Jovian planets

Pure hydrogen 1s first discussed, especially the nature of the molecular-metallic transition
and the melting curves for the two phases It 1s concluded that at the temperatures and pressures
of interest (T = 10 K, P = 1-10 Mbar), both phases are fluid, but the transition between them
mght nevertheless be first-order The msulator-metal transition m helium occurs at a much higher
pressure {~70 Mbars) and is not of interest.

The phase dragrams for both molecular and metailic hydrogen-helivm mixtures are discussed.
In the metallic mixture, calculations indicate a miscibity gap for 7' 10* K. Immiscibility in
the molecular mixture is more difficult to predict but almost cerfainly occurs at much lower
temperatures. A fluid-state model is constructed which predicis the likely topology of the three-
dimensional phase diagram The greater solubility of helmum in the molecular phase leads to the
prediction that the HefH mass ratio 15 typically twice as large in the molecular phase as in the
coexisting metallic phase Under these circumstances a ‘““density mversion” is possible 1 which
the molecular phase becomes more dense than the metallic phase

The partitioning of minor constituents is also considered: The deunterinm/hydrogen mass
rat1o 15 essentially the same for all coexisting hydrogen-helium phases, at least for T3 5000 K
The partitioning of Hs0, CH,, and NH, probably favors the molecular (or helum-rich) phase.
Substances with high conduction electron density (e g , Al) may partrion into the metallic phase

Electronic and thermal conductivities, viscosity, helivm diffusivity, and Soret coefficient are
evaluated for the fluid molecular and metallic phases, all to at least order-of-magnitude accuracy
The properties of the metallic phase are typical of a iquid alkali metal, and those of the molecular
phase are typical of a dense neutral fluid (except that the conductivities may be almost metalhc
at the transition pressure) The opacities of molecular hydrogen and solar-composition mixtures
are discussed for T = 500 K, where molecular hydrogen alone may be insufficiently opaque to
ensure convection in the Jovian pianets. Sufficient opacity to initiate convection is probably
supplhied by the minor constituents. Current uncertainties are assessed

Subject headings: equation of state — planets: interiors

I. INTRODUCTION

Hydrogen and helium comprise roughly 85%, of the
total planetary mass in our solar system, and are the
major constituents of Jupiter and Saturn. They are
also the simplest atomic species, so their thermo-
dynamic and transport properties should be amenable
to first-principles calculation at those pressures which
are presently unattainable by experiment

There has been recent itensive modeling of the
interior of Jupiter by several groups (Podolak and
Cameron 1975; Zharkov et ol 1975, Hubbard and
Slattery 1976; Stevenson and Salpeter 1976; Podolak
1977), and much attention has been given to the
equation of state and other thermodynamic derivatives
for hydrogen and hydrogen-helmm mixtures. How-
ever, all these models assume a homogeneous mxture
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of hydrogen and belwm This assumption may be
fundamentally incompatible with the phase diagram
of hydrogen-helinm mixtures

The present paper and the following paper {Steven-
son and Salpeter 1977, hereafter Paper II) consider m
detail the phase diagram for hydrogen-hellum mix-
tures, and 1ts implications for the mteriors of the Jovian
planets. Since these mmplications depend on détails
of the transport (including fluid-dynamical) processes,
the present paper also contains a survey of the current
knowledge of the microscopic transport properties of
dense hydrogen-helium mixtures

The present paper concentrates on the condensed-
matter physics of such mixtures, with emphasis given
to the pressure-temperature domain appropriate to
Jupiter and Saturn The emphasis is on the fluid
state, which is almost certainly applicable to the
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present interiors of Jupiter and Saturn, but there is
also a discussion of melting curves for the hydrogen-
helium phases. Since the Jovian planeis contain
constituents other than hydrogen and helium, the
effects of these are considered briefly. The equation
of state and other thermodynamic derivatives are not
discussed in detail here, but an extensive review is to
be found elsewhere (Stevenson and Salpeter 1976).

In § II, we discuss the properties of pure hydrogen
and helum, especially the melting curves and in-
sulator-metal transitions. The nature of the molecular-
metallic hydrogen phase fransifion is not yet well
understood, but is expected to cccurat 2 Mbar € P <
4 Mbar and to be first-order at least until 7=~ 10° K
and quite possibly even for T 2 10* K. At 10¢ K, the
two phases are certamnly both fluid. The nsulator-
metal transitton in helmum occurs at P = 70 Mbar,
which is too high to be of interest for the Jovian
planets.

In § I1J, calcuiations (Stevenson 1975) for the phase
diagram of metallic hydrogen-helium mixtures are
reviewed. A muscibility gap is predicted for a solar
composition mixfure at megabar pressures and
temperatures less than 10¢ K

In § IV, the phase diagram of molecular hydrogen-
helwm. mixtures is discussed Unlike the metallic
phase, where an essentially first-principles calculation
can be made, calculations for the molecular phase
must rely on senuempirical mtermolecular potentials,
and are necessarily suspect However, the prediction
that helium 1s more soluble 11 molecular hydrogen
than 1n metallic hydrogen is reliable

In § V, the conclusions of the previous sections are
used to model a total phase diagram which simul-
taneously accounts for the first-order character of the
molecular-metallic hydrogen transition, the limited
solubility of helum, and the thermodynamic pre-
ference for helium fo be dissolved in the molecular
hydrogen rather than metallic hydrogen phase This
model may be numerically imprecise, but is expected
to predict the correct topology of the (three-dimen-
sional) phase diagram. The predicted phase diagrams
are similar to those suggested by Smoluchowski
(1973). This model contains two other useful features:
First, it predicts the circumstances for which a
“density inversion™ occurs (i e., when a helium-poor
metallic phase is less dense than a coexisting helivm-
rich molecular phase) Second, it predicts the limited
range of metastability for the molecular phase in the
metallic region, and vice versa.

In § VI, minor constituents are discussed. Immzsci-
bilities appear unlikely, but the partitioning of minor
constituents among the various hydrogen-helivm
phases is undoubtedly nonuniform A spectal case 1s
deuterium, for which calculations indicate that the
deutenum/hydrogen mass ratio in each phase 15
essentially uniform, at least for 7' 2 5000 K. A model
18 proposed for other minor constituents, in which
partitioning is in favor of the phase with the most
similar electron density at the Wigner-Seitz cell
boundary. This model predicts that H,Q, NH,, and
CH, prefer molecular or helium-rich. phases, but the

degree of nonuniform partitioning is probably less
than an order of magnitude

Section VII is a summary of the microscopic trans-
port properties of the metallic phase. Electronic and
thermal conductivities, viscosity, and helmm diffusivity
are given particular attention.

In § VIII, the corresponding transport properties of
the molecular phase are considered. In addition, the
opacities of dense molecular hydrogen and solar-
composition mixtures are discussed, especially for
temperatures of order 500 K.

Section IX concludes with an assessment of current
uncertainties. In the following paper (Paper II),
specific thermal and compositional evolutions of a
hydrogen-helmum planet like Jupiter are discussed
semiquantitatively

II THE PURE PHASES
ay Hydrogen

Even at T = 0K, there must be some sufficiently
high density for which the Pauli exclusion principle
precludes the existence of molecules or localized states
and dense hydrogen becomes 2 Coulomb plasma
protons immersed in an almost uniform, degenerate
sea of electrons. Wigner and Huntington (1935)
pomted out that this atomic state would be analogous
to the conventional alkali metals and therefore metallic
This atomic state is referred to as “metallic hydrogen™
to indicate that 1ts hugh conductivity 15 a consequence
of itinerant electronic stafes 1 a monovalent metal,
rather than being a consequence of temperature

If the density is reduced sufficiently and the tem-
perature is low enough, then 1t becomes therme-
dynamically favorable to pair the protons in the
form of H, molecules This is the experimentally
accessible molecular phase The transitton between
the molecular and metallic phases occurs at a pressure
given approximately by the dissociation energy per
molecule divided by the volume per molecule: a few
megabars The molecular phase exists in both solid
and liquid forms, and the metallic phase is expected to
behave hkewise. Additional low-temperature phases
that cannot be categorized as either metallic or molec-
ular are not yet rigorously excluded, but neither are
they indicated experimentally or theoretically. We
discuss below the metallic phase, the molecular phase,
and the metallic-molecular transition

1) Metallic Hydrogen

The evaluation of the thermodynamics of the alkali
metals from first principles is well established for both
the solid and flmd phases (see, for example, Stroud
and Asheroft 1972), and the properties of metallic
hydrogen can be evaluated in 2 sirmlar fashion. There
are two important respects in which metallic hydrogen
18 unlike the conventional alkalis: the effective electron-
ion mteraction is stronger (because there are no core
states) and quantum effects for the 10ns (L., protons)
are significant (because of the larger electron-1on mass
ratio) The former 1s pariicnlarly important at low
densities whereas the latter is most important at
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high densities and low temperatures Hubbard and
Smoluchowsk: (1973) have an excellent review of
earlier work on metallic hydrogen and we comment
here on more recent work, with a particular emphasis
on the solid-fluid transition.

The most recent calculations for a static metallic
hydrogen lattice by a vartety of perturbative and non-
perturbative techmiques are in excellent agreement
(Ross and McMahan 1976) The most favored lattice
structure has not been established, but this s un-
mportant for most purposes smce the energy difference
between structures 1s so small. k&t has been suggested
that the lowest energy structure 15 highly anisotropic
(Brovman, Kagan, and Kholas 1972), but this con-
clusion 1s premature (Hammerberg and Ashcroft
1974; Ross and McMahan 1976). The fimite tempera-
ture and zero-pont motion corrections are not as
well understood (Brovman, Kagan, and Kholas 1972;
Caron 1974, Straus and Ashcroft 1977) but appear
to be describable by a Debye model i which fwe
Debye temperatures are defined—one for the longi-
tadinal modes and one for the transverse modes.
Most of these calculations indicate that the transverse
modes are ““soft,” and in some instances the stability
of the lattice is in doubt

Recent fluid-state calculations have been made by
Hubbard and Slattery (1971), Stevenson (1975),
Hansen and Vieillefosse (1976), and Hubbard and
DeWitt (1976) As with all simple metals, the thermo-
dynamic derivatives with respect to volume or pressure
(e g, the equation of state) are very similar to the solid.
Thermodynamic derivatives with respect to tempera-
ture (e.g, entropy) are, of course, substantially
different from the solid, but the various methods used
are substantially in agreement. The results are sum-
marized 1n Stevenson and Salpeter (1976).

The only rigorous way to calculate the melting
temperature of a substance (assumung, of course, that
the solid state exists) i1s by equating the Gibbs free
energies for the two phases This is a very difficult
procedure smce, although the energy of each phase is
very accurately known, most of the energy 1s structure-
independent, and the energy difference between the
phases 1s very small at all temperatures Pollock and
Hansen (1973) used therr Monte Carlo results for
each phase to deduce a meltng temperature Ty, for
metallic hydrogen and found

Ty % 1500p18 K 1)

by eguating Gibbs energies, where p 1s the density in
g cm~? This is probably an upper bound smce 1t does
not include the effects of screenmng on the 1on-1on
miteraction A. similar calculation, including screening,
has been aitempted by Stevenson and Straus (un-
published) usmg the solid-state free energies of Straus,
Asheroft, and Beck (1977) and the flmd-state free
energies of Stevenson (1975) The fluid state appeared
to always have lower energy, but the energy difference
was found to be comparable to the errors inherent
in the calculations The conclusion reached 15 that
equation (19 1s indeed an upper bound

HYDROGEN-HELIUM FLUID PLANETS 223

Several other methods have been tried for estimating
T,; One common method is Lindemann’s rule, but
this method 1s unreliable for a substance such as
metallic hydrogen, where Ty 15 Jess than the Debye
temperature (Stevenson and Ashcroft 1974). Another
method is based on the solidification of the classical
hard sphere hquid at 459, packing (Wamwright and
Alder 1958), but thus method predicts Ty & 1100 K
at p = 1 gem™9, a value that may be too low for the
classical theory to be applicable (Stevenson 1975)

At sufficiently high densities, where screening is
unimportant, the large zero-pomt motion of the
protons precludes a solid at 7= 0 K. The density
above which there is no solid is about 10%-10° g cra—2
(Glyde ef al 1976; Van Horn 1967) This 1s too high
to be of interest in the giant planets Whether screening
precludes a solid phase at much lower densities has
not yet been established.

If the sohd exists at p =~ 1 gom ™3, then 1t 15 most
likely a superconductor below about 100 K (Ashcroft
1968, Caron 1974). If no solid exists, then an aniso-
tropic superfiuid may be possible However, these low-
temperature effects are not relevant to the giant
planets where 7" 10* K is implied (see Paper II),
and the fluid state 15 ensured without 1nvokmg
quantum effects Subsequent discassion of the metaliic
state m this paper is mawmly for the flwd

1) Molecular Hydrogen

At P < 01 Mbar this phase 1s quite well understood
experimentally, but the expermmental uncertainty
mcreases as the pressure increases (Ross 1974). Past
theoretical calculations are no more accurate than
experiment at the highest pressures because of the
failure of the pair potential approximation (Ree and
Bender 1974), but recent band structure calculations
(Ramaker, Kumar, and Harris 1975; Friedh and
Ashcroft 1976) are potentially capable of greater
accuracy Nevertheless, 1t is still necessary for most
purposes to resort to semiempirical pawr potentials
that are compatible with the experimental shock data
(Ross 1974) yet are also plausible modifications of
first-principles calculations (McMahan, Beck, and
Krumhansl 1974) The most recent first-principles
calculations of the effective pair potential are by
Etters, Pamlowicz, and England (1975) and include
detailed consideration of the anisotropy of the inter-
action. They found that the energy associated with
molecular orientation becomes larger than the zero-
point energy as the pressure increases, so that the
molecules become *‘frozen™ into a particular con-
figuration at T= 0K and P > 03 Mbar The pre-
ferred lattice configuration appears to be the tetragonal
y-nitrogen structure rather than the essentially cubic
e-nitrogen structure At megabar pressures, the energy
required to rotate a molecule 1s equivalent to a
temperature of order 2000 K. '

The excited states of molecular hydrogen are even
less well understood than the ground state The
characteristic temperature for intramolecuiar vibration
appears to be only weakly dependent on density and
may actually decrease at the highest pressures (Silver



224 STEVENSON AND SALPETER

and Stevens 1973). Electronic excitation and molecular
dissociation at the highest pressures are not under-
stood quantitatively, but are expected to be important
The thermodynamic uncertainties are discussed in
Stevenson and Salpeter (1976)

Recent fluid-state calculations have been made by
Ross (1974) and Stevenson and Salpeter (1976),
assuming a sphericalized potential As usual, the solid
and flmd equations of state at high pressure are very
similar, provided the same potential 13 used for each.
These flmid-state calculations suggest a melting
temperature Iy, accordmg to the criterion that the
packing fraction in the equivalent hard sphere liqud
not exceed 45%, (Wainwright and Alder 1958). For
p » 04 gcem—3 Stevenson (19764) finds

w = 2800 p2 K, 2

and Ross (1974) has obtained similar results. This
result 1s uncertain by perhaps 50%,, because of the
uncertainty in the effective potential, and also assumes
that the potential can be approximated by a spherical
average This may be valid for the fluxd phase, but if
the solid has an ordered configuration of molecular
orientations, then the hard sphere criterion may be
mvald, However, similar values for Ty, are suggested
by the Lindemann criterion (Neece, Rogers, and
Hoover 1971)

In summary, the thermodynamics of molecular
hydrogen at P 3» (.1 Mbar are not well understood,
and the best constramt on the equation of state 1s the
experimental shock data. The melting temperature
s known to about a factor of 2, but is nevertheless
almost certainly too low for the solid phase to exist in
the present giant planets (see Paper II). Unhke
metallic hydrogen, the molecular phase is increasingly
classical as the pressure mereases (Krumhansl and Wu
1968) Despite the uncertainties, we shall find that
useful quantitative calculations can be made

11y The Molecular-metallic Tiansition

There has not yet been a convincing experimental
verification of this transition, although two claims
(Grigoryev et al. 1972; Vereschchagin, Yakovlev, and
Timofeev 1975a2) have been made. The transition
pressure 15 therefore estimated by theoretical calcula-
tions for the energies of the two phases and the usual
common tangent construction The most recent and
most accurate calculations for 7' = 0 K (Ross 1974)
predict a transition pressure of between 2 and 4
Megabars. The factor of 2 uncertainty reflects the
uncertainty in the molecular equation of state It has
been suggested that there is a comparable uncertamnty
arising from the possibly incorrect usage of the free
electron correlation energy m the metallic-state cal-
culation (Monkhurst and Oddershede 1973; Ross and
McMahan 1976). Since the correlation energy is very
weakly density-dependent, this would represent an
uncertainty m the energy scale and ot 1n. the equdtion
of state (Computation of the correlation energy in the
molecular state from first principles would be even
more difficult. This problem does not arise in most
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calculations at present, which rely on the experimental
properties of molecular hydrogen ) In conclusion, it
seems almost certain that the transition pressure ex-
ceeds I Mbar An upper limit cannot be established
with the same certainty, but is probably about 5 Mbar
For the “most likely” transition pressure of ~3
Mbar, the densities at transition are roughly 0.9 g
cm~? for the molecular phase and 11 gem™2 for the
metallic phase

It 15 hikely that the transition 1s first-order at zero
temperature because of the apparent dissimilarity of
the two phases (for example, the large predicted
density change at the transition) The nature of the
transition 1s directly related to the sign of the micro-
scopic “‘surface energy” between the phases In a
simple model to be described below, this sign is found
to be positive

As the temperature increases, entropy considera-
tions ensure some “mixing™ of the phases, and some
temperature must exist beyond which the transition
ceases to be first-order It 1s possible that the upper
It of the first-order character 1s comcident with the
melting curve, 1 e, there exists a triple pomt at which
metallic solid, molecular solid, and a “mixed™ flmad
phase are in mutual equilibrium (cf Trubitsyn 1972).
On the other hand, Landau and Zel’dovich (1943)
favor at least one crifical point 1n the fluid region, 1n
which case distinct metallic fluid and molecular fluid
phases could coexist The sohd-fluid transition is a
rather subtle one, from an energetic standpoint, with
the main change being the absence of long-range order
i the flmd phase. Indeed, the volume change upon
melting for either phase is very small (less than 3%,),
whereas the volume change that accompames the
molecular-metallic transition is comparatively large
(20-30%,). In other words, the elecfronic structures of
the fluid and the solid are very similar whether one
considers the molecular or the metallic state, but the
electronic structure for molecular hydrogen differs
substantially from that for metallic hydrogen

Nevertheless, two caleulations (Kerley 1972, Aviram
et al 1976) suggest that the transifion is continuous 1n
the fluid state Neither caleulation can be regarded as
satisfactory, since nerther treats the two extremes (pure
molecular and pure metallic) with a comparable degree
of sophistication Calculation of the phase diagram
requires a very careful calculation of the Gibbs
energy for an arbifrary mixture of the two phases We
shall not attempt this, but the relevant energies m
such a calculation may be indicated by the following
model

We first note that 1t is rot meaningful to think of the
electrons as being *““localized” in very dense molecular
hydrogen With the exception of small regions centered
on each proton (in which the electron density 1s highly
nonuniform m both molecular and metallic phases),
the electron density 1s quite uniform In the language
of band theory, dense molecular hydrogen 1s insulating
because it 1s divalent, with a nonvanishing indirect
band gap In fact, this band gap is much less than the
band width at megabar pressures (Friedli and Ashcroft

1976)
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Our model rests on three hypotheses:

1 A hydrogen molecule exists as a bound, meta-
stable state when surrounded by metallic hydrogen
at P = P, the transition pressure. This hypothesis is
crucial to the model, but difficult to verify.

2. The volume per electron in a mixture of the
metaliic and molecular phases is approximately
mdependent of position, 1. , the electron density does
not fluctuate greatly according to whether one is near
a molecule or near an unbound proton. This 1s
reasonable, since the Thomas-Fermi screening length
18 comparable to typical mterproton distances.

3 The energy of a neutral entity (ie, a “mole-
cule,” or an unbound proton together with a screening
cloud of one electronic charge) is a function only of
the volume 1t occupies This 15 the Wigner-Seitz
hypothesis, and is expected to be quite accurate

Figure 1 shows the T = 0 K internal energies of the
two pure phases (Ross 1974). Consider the formation
of a molecule in the metallic state at the transition
pressure P, = 3 Mbar According to hypothesis 2,
this occurs with essentially no volume change.
According to hypothesis 3, the cost in energy per
proton is just the difference AFE, shown in Figure 1.
Similarly, AE, i1s the energy cost per proton for
breakimg up a molecule m the molecular phase. Since
these energies are both positive, we have established
from very simple considerations that the microscopic
surface energy, between the two phases, 1s positive
The transition will be first-order until a temperature
T, such that the entropy of muxmng, roughly kT, In 2
(where kg is Boltzmann’s constant), is comparable to
AE, or AE,. This predicts that T, is a few thousand
kelvins.

This model has been quantified (Stevenson 19764)
by expressing the Gibbs free energy per proton as a
function G{x, P) of pressure P and of the fraction x
of the protons which are bound in molecules. The
transition pressure, critical temperature, and critical
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Fic 1 —Internal energy at T = 0 K for molecular and
metallic phases Dashed Line 15 a common tangent with slope
P = 3 Mbar See text for discussion of AE;, AE..
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concentration are found from simultaneous solution
of the equations

2 3,
0G _¥G_PG_ 4 3)

where the derivatives are at constant pressure and
temperature. The results are P, ~ 3 Mbar, T, ~
3500 K, and x, = 04

The significance of this model is not in the numerical
results, but rather 1n the adentification of the relevant
energies. According to this model, the relevant energy
characterizing the transition 1s an order of magnitude
smaller than the dissociation energy of an isolated

I 1 ! f
4 |
tog T Liquid
{°K} -
3 ]
Solid
- / -
1/ 1
4q [ 7
log P {kar)
[ I 1 l
4_
logT
(°K}
3__
2
5 5]
log Piber)
T I T 5 ]
{H*,e~ ) Plasma i
,/
5 ]
Partiolly Neutfral Ligquid
Flurd {(H, Hz) H+
tog T4_ N
K}
3 —
Solid
W+
2/ -
ll 1
4 5 7
tog P (bar)

Fic 2.—Several possible phase diagrams of high-pressure
hydrogen In (a) (for) no critical point exists In (§) (rmddle)
there 1s a cntical pomt so that two distinet Iiquud states
coexist In (¢) (bottom) the low-temperature phase diagram
of (5) 1s yomed 10 a natural way to the hugh-temperature phase
dragram of Filinov and Norman (1975) The high-temperature
dashed [ine represents the onset of degeneracy or even the
possibility of another first-order transitton (¢f Landaun and
ZePdovich 1943) In all these phase diagrams, the solid
metallic phase 18 assumed o exist
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hydrogen molecule The estimated critical temperature
1s comparable to the melting temperature of the molec-
ular phase at p=x lgem™3, but this 15 purely
comcidental. Our model may, however, be misleading
and our first hypothesis may not even hold An upper
limit to T, 15 of order 10° K, and any value 1n the
range 10° < T, < 10°X cannot presently be dis-
counted In Figure 2, three possible high-pressure
phase dragrams of hydrogen are shown to illustrate
the large uncertamnty. The bottom phase diagram in
Figure 2 1s highly unconventional, but 1s 2 natural
extension of a recent suggestion by Filmov and
Norman (1975) thai hydrogen undergoes a gas-lhiguid
transition, analogous to that of cesium, 1 which the
gas is almost fully tomzed nondegenerate atomic
hydrogen, and the “liquid ” is partially 1onized atomic
hydrogen This last phase diagram is also 1n the spirit
of the Landan-Zel'dovich (1943) hypothesis.

To conclude, there 1s a quite high probability that
the molecular-metallic iransition is first-order ian part
of the flud phase The transition 1s possibly first-
order even at 10,000 K, the relevant temperature for
the present mterior of Jupiter (see Paper II).

by Helium

Helum is the most difficult element to 1onize and
the most difficult substance to metallize. Estimates of
the insulator-metal transition pressure range from
20 Mbar to 100 Mbar (Sumcox and March 1962;
Trubitsyn 1967; Brust 1972; Ross 1972; O@stgaard
1974, Stevenson 19764), but the most reliable of these
estimates are near the upper limit Since this transition
1s so far removed from the hydrogen transition, we
will effectively ignore 1t, but it may be important in
cold stars of low mass

There are two approaches to the thermodynamics
of helum At low pressures, an mteratomic pair
potential compatible with experiment can be used
(Trubitsyn 1967). Af sufficiently high pressures (P >
10 Mbars), a first-principles approach analogous to
metallic hydrogen can be used. This approach is
accurate provided the band gap (between valence and
conduction bands) is Iess than the valence band width,
and does notf require that the helium actually be
metallic. The overlap between the two procedures is
substantial and readily leads to a smooth interpolation
between the low-pressure and high-pressure limits
{Trubitsyn 1967). The considerations in the next three
sections are not sensitive to the shght mismatch of the
two approaches.

The melting temperature can be estimated from the
criterion for freezing of a hard sphere fluid or from
Lindemann’s rule. At low pressures, the hard sphere
criterion predicts Ty = 1700 K at P = 1 Mbar and
Ty = 4500 K at P = 4 Mbar (Stevenson 19764). At
high pressures, the melting temperature increases less
rapidly with

T_M Pid 4700[31[3 K (4)
for p in g cm™? (Trubitsyn 1967, Stevenson and Ash-

croft 1974) For example, Ty = 10,000 K at P = 50
Mbar Like hydrogen, helum also melis at T=0K
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for a sufficiently hugh density (Stevenson and Asheroft
1974), but this is of no interest for the giant planets

III METALLIC HYDROGEN-HELIUM MIXTURES

We first consider fluid mixtures The existence of
miscibility gaps in many liquid metal mixtures is well
known expermmentally, but 1s difficult to predict
theoretically since it depends on subtle free energy
differences between the muxed and separated states
Nevertheless, it has recently become possible to pre-
dict phase diagrams to roughly 109, accuracy, at least
for simple metals where the interactions are well
known (Stroud 1973) These calculations are based
on a nearly free electron theory of metals, and a
hard sphere perturbation theory for the structural
properties of the liquad.

Metallic hydrogen-helium mixtures differ from
alloys currently accessible in the laboratory, in that
there are no “core” electrons to contend with, so the
accuracy of a calculatzon 13 hmted only by our
knowledge of the dielectric response of the electron
gas and the structural properties of the liquid On
the other hand, the “bare” protons and e-particles
are rather severe perturbations on the electron gas,
so 1t 15 desirable to evaluate the electronic response
to higher order than the-susual low-order (linedr
response) approximation. A recent calculation (Steven-
son 1975) evaluates the Gibbs energy to third-order
m the electron-ion interaction, and uses a perturbation
theory of fluids This calculation predicts a muscibility
gap, the pressure dependence of which is shown in
Figure 3. Below the critical line, a mixture contaming
roughly 40%, helium by number will phase-separate
mto helum-rich and hydrogen-tich phases Below the
dashed line, any muxture with a composition between
10%, and 70%, helium will similarly phase-separate.
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Fre 3.—Cntical Iine for immiscibility in a metaliic H-He
mixture Also shown (—-) 1s the temperature below which a
solar composttion mixture (10%, He by number) would phase
separate, and two typical adiabats (--— -) appropriate to
Jupiter or Saturn.
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Calculations to second-order in the electron-ion
mteraction (Hansen and Vieillefosse 1976; Firey and
Ashcroft 1976) confirm the general features of the
phase diagram, but predict somewhat lower critical
temperatures The existence of a muscibility gap can
be explained merely by consideration of the Madelung
energy (the electrostatic energy of the pomt ions
mmmersed m a wumgform electron gas), although
correct allowance for the nonuniformity of the electron
gas appears to mcrease the gap. The Madelung energy
Ey. can be adequately approximated by assuming ion-
sphere charge averaging (Salpeter 1954), according to
which Ey at constant electron density is a linear
function of ionic concentration However, the com-
parison of alloy and separated phases must be made
at constant pressure, and Stevenson (1976f) shows
that under this constrant, there 18 a nonlinear de-
pendence of Ey on 1onic concentration such that the
alloy 1s unfavorable relative to the separated phases.
The crucial point 1s that at the densities and pressures
of interest, the pressure is not just the Fermi contribu-~
tion (independent of composition), but alsc has a
substantial (negative) contribution from Ey. At much
higher pressures (for which the electron gas is rela-
fivistic) the miscibility gap may no longer exist, since
constant pressure and constant electron density be-
come equivalent (Dyson 1971 ; Witten 1974). In Figure
3, Madelung energy considerations dominate for
P > 10° Mbar, whereas the rise in the critical tem-
perature at lower pressures is explained by higher-
ord)er effects (the nonuniforrmity of the electron
gas).

Poliock and Alder (1977) agree wiith the above
conclusions in the high-pressure limit (P 3= 102 Mbar),
but conclude that at the lower pressures relevant
to Jupiter, hellum may be highly soluble (perhaps
soluble 1n all proportions) However, this conclusion
15 based on very crude models for the low-density
mteractions, and it 15 possible to comstruct physi-
cally realistic models which predict that the helmm
solubiity 18 feast at zero pressure and increases
monotonically with pressure for 0 £ P < 102 Mbar.
More needs to be known about the electronic structure
of helium dissolved in low-density metallic hydrogen
before firm conclusions can be reached for the solu-
bility at the lowest pressures We shall adopt the
working hypothesis that helmum is least soluble in
metallic hydrogen at the lowest pressure of interest
(1.e , at the molecular-to-metallic hydrogen transitton),
and that phase separation begins for T < 10,000 K
at this pressure

Sold hydrogen-helium alloys have been considered
by Straus, Asheroft, and Beck (1977). Their calcula-
tions mdicate an even larger miuscibility gap in the
solid state than in the fluid state This suggests that
the liquidus for the alloy is lower than at least one of
the melting temperatures for the pure phases, at all
compositions. This effect of alloying on the melting
temperature was suggested by Smoluchowskl (1971)
on the basis of known trends in metallic alioys It
follows that the metallic core of the giant planets is
flwd (see Paper II).
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IV MOLECULAR HYDROGEN-HELIUM MIXTURES

In contrast to the metallic state, the molecular state
15 not readily amenable to first-principles calculations,
and we are forced to resort to semiempirical pair
potentials that are compatible with experimental data,
yet are also plausible modifications of first-principles
calculations. Expermments have been conducted on
molecular H,-He mixtures for pressures up to 7
kilobars, and a miscibiity gap has been observed
(Streett 1973) The calculation about to be described
for megabar pressures can only be suggestive, and is
not as quantitatively rehable as the metallic calculation
reviewed in the previous section

The Helmholtz free energy F was calculated by
Stevenson (19764) as a function of density, tempera-
ture, the fraction x (the number of molecules) of He
in the flimd H,-He muixture. Two different calculations
were carried out, one using a simple exponential 6-8
form for all the interaction potentials, with the
coefficients for the H,-H,, Ho-He, and He-He inter-
actions taken from Ross (1974), Shafer and Gordon
(1973}, and Trubitsyn (1967), respectively This cal-
culation was carried out for all pressures from 1 kbar
up to 5 Mbar. The second calculation used Lennard-
Jones 6-12 potentials and was carried out only at low
pressures. From F, the Gibbs free energy G(P, T, x}
was then obtained For each pressure P, the require-
ment 92G[ox? = &3G[ox® = 0 gives the critical tem-
perature T, and the critical helmum mole fraction x,
The calculated results for T,(P) are given in Figure 4
and agree famly well with Streeit's expermmental
results, especially with regard to slope. The calculated
ratio k5T, /G(P), where G, 1s the nonideal gas part of
the Gibbs free energy of the critical mixture, vanes
by only 50%, as the pressure changes by two orders
of magnitude The slopes of the curves for G.(P) and
T.(P) are probably fairly reliable, and, m view of the
agreement with the experimental data at low pressures,

10 i T o~
Adigbol | « ® *
- . * )
- L ]
. -
3 Critical ]
o Line d
T-Tc
TEK)
10 -
. -
L-2
o l l 1
¢ 16* 01 i 10

P { Mbar)

Fi¢ 4 —Crtical hine for mmmsability mn a floid He-He
mixture, for exp 68 and L-J potentials Also shown are
Streett’s experimental critical values (i) and a typmical Jovian
adiabat (e 0 ®)



228 STEVENSON AND SALPETER

the critical curve in Figure 4 1s better than an order-of-
magnitude estimate and perhaps within a factor of 2
of the correct value. The calculated value for the
critical helinm mole fraction was x, &~ 0 35 at pres-
sures appropriate to Streett’s experiment, close fo the
experimental value of x, = 0 58. The calculated value
changed little with pressure, decreasmg to x, & 0 50 +
005 at P = 3 Mbar

To summarize If the intermolecular potentials can
all be written 1 the simple form chosen, then Streett’s
expermmental results have imphcations for the phase
diagram at megabar pressures. It seems lhikely that
at P =~ 3 Mbar, 2000K 5 T, 5 6000 K This is at
least a factor of 2 smaller than the critical temperature
of the metallic mixture at P = 3 Mbar.

A notable feature of both Streett’s experimental
results and the above flmd-state calculations 1s that
T, 1s very smilar to the melting pomt of either pure
phase. The eutectic temperature may be substantially
lower, but there 1s nevertheless uncertamnty as to
whether fluid-state calculations are relevant. No solid-
state caleulation has been attempted for the mixture,
and all subsequent considerations are coafined to the
fluid state. This 1s justified in our discussions in Paper
II, smee only the evolution prior to ymmiscibility m
the molecular phase 1s considered in detail.

V. THE TOTAL PHASE DIAGRAM

The previous three sections have dealt with three
aspects of the hydrogen-helum phase diagram as
though they were distinct and unrelated We now
umfy these into a single, coherent topology for the
three-dimensional phase diagram (the dimensions
being pressure P, temperature 7, and composition x)
according to the following model

‘We consider an arbitrary hydrogen-helium mixtore
as a constramed ternary system of N protons and
helivm atoms, 1n which xN particies are helium atoms,
(1 — x)ypN are unbound protons, and (1 — x)(1 — y)N
are protons bound together as H, molecules. The
Gibbs energy of the system 1s approximated as

GP,T)=N [Z xGH(T) + %g %Py Gy ®(P )] R
(3

where : ranges from 1 to 3, and x, 1s the number
fraction for each of the three species (z = 1 15 He,
i=21s H* {=3 1s bound protons) P 1s the
probability that a particle of species : will have a
particle of species j as one of 1ts nearest neighbors
The G incorporate the ideal entropy of mixing and
any chemical potential relative to an arbitrarily chosen
energy zero. In other words,

G, = kpTln (xfs),

G = kgTIn[(1 — x)y/s] + 4D,

GV = 3, Thn [0 — ) — »)/25],
s=x+ (1 —-xp+30 -1 -», &

Vol 35

where D is the dissociation energy of the hydrogen
molecule Entropy effects (other than the ideal entropy
of mixing) are omitted 1n these expressions, since ther-
mal contributions are munor perturbations in cold
systems (fhese entropy perturbations can be readily
reintroduced for evaluatmg thermal derivatives along
phase boundaries) The diagonal elements of G, are
knownrsince-they-correspond to the three pure phases
(see § II) The three distmet off-diagonal elements are
found by assunung numerical values for the three
distinct critical temperatures T,(H-He), T.(Hy-He),
and T.(H-He). For example, T .(H-He) is the solution
of 82Gfox® = 83Gfex® =0 for y=1 A random
migture was assumed, so that Py, = x,/5 This simple
choice automatically implies the following simple
compositions for the critical mixtures: x, = 172 for
H-He, x, = 1/3 for Hy-He (balf H,, half He), and
y = 1j3 for H-H, (half H,, haif H)—all crude but
adequate approximations. The total Gibbs energy for
a given x, P, and T 1s then minimized with respect to
y to vield the equilibrium state of the hydrogen At
sufficiently low temperatures there are two minima—
one corresponding to “metallic™ hydrogen, the other
correspondmg to “molecular” hydrogen Except in
special cases, one minimum will be lower than the
other and correspond to the equlibrium state. The
higher minimum corresponds o the metastable state.
If the temperature is too high, or the helum content
1s too great, then the first-order character of the molec-
ular-metallic transition s “washed out,” and there
is only one minimum

For each (P,7T) the existence of ome or more
common tangents to the equilibrium Gibbs energy as
a function of x determines the coexisting phases and
the thermodynamically inaccessible regions. In this
way, the phase diagram was mapped out for all P, 7,
x of interest

We shall describe in detail the results for the choice

T,(H-He) = 12,000 K ,
T,(H-He) = 6,000K,
T.(H-H,) = 18,000K , 0]

which, according to the discussion of the previous
sections, is a possible selection. (For simphcity, the
pressure dependence of each T 1s ignored ) Figure 5
illustrates the results. Consider, first, diagram (2), for
which 7 = 13,000 K. At each pressure mn the range
3-4 6 megabars there coexist a helium-poor metallic
phase and a helmum-rich molecular phase whenever the
total helium content lies within the shaded region.
Below the dashed line, the metallic phase is more dense
than the molecular phase, whereas the reverse is true
above the dashed line. This “density inversion™ 15 a
consequence of the competition between the density
increase accompanying the addition of helium, and
the density decrease accompanying the metaliic-
molecnlar transition At sufficiently large helium
concentration x, the first-order character of the
metallic-molecular transition 1s lost and there are no
excluded regions.
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Fic 5.—Phase diagrams for three different temperatures:
(@ T=13000K, () T=T500K, () "= 4000 K. In each
cage, the phase-excluded region is shaded Above the dashed
Iine (—-), the phase on the right-hand side of the phase-
excluded region has greater mass density than the coexisting
phase on the left-hand side Below the lower dot-dashed curve
{ —~) the metallic phase ceases to be metastable Above the
upper dot-dashed curve the molecular phase ceases to be
metastable. Note the presence of a triple pomnt 4 1 diagram
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Consider diagram (5) of Figure 5. Simce T =
7500 K < T(H-He), there is now a muscibility gap
which extends to high pressures. This evolves smoothly
from the “loop” of diagram (g) Notice that there is
no clear distinction between the molecular-metallic
transition and the phase separation in the metallic
fluid Proceeding smoothly along the lower phase
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boundary from small x to large x, the fluid pro-
gresses smoothly from predominantly molecular to
predommantly metallic.

In diagram (c¢), T = 4000 K and there 1s now a
miscibility gap in the molecular flwid. This miscibility
gap forms smoothly from diagram (b), as T is lowered,
in the following way: At some critical temaperature,
T.*, an inflection becomes formed in the lower phase
boundary of diagram (b). In this model, T,* is com-
parable to T (Hz-He) For T’ < T,* a minimum m P
(as a function of x along the phase boundary) is
formed, and the miscibility gap rapidly grows as T'is
further reduced. Immediately below T.* a triple pomnt
Imarked A in diagram (c)] 1s formed Thus there is a
line of iriple points ending at a critical pomt T = T.*
(at P = 3 5 Mbar) The concentration at the triple
poimnt is a sensitive funciton of temperature, and be-
comes smaller as the temperature is reduced and the
excluded region expands to fill most of (P, x)-space.
At low temperatures, the “density inversion™ effect
eventually vanishes and the immuscibilhity -effects
dominate.

For general values of the parameters in equation
(?) one can define a “configuration space® in which
each point is itself a phase diagram This is shown in
Figure 6 for the choiwce T,(H-He) = 27(H,-He) For
given values of T (H-He), T,{H-H,), and T one can
find from this “configuration” diagram what the
topology of the physical phase diagram 1s

In the following paper (Paper IT) these model phase
dragrams will be used 1n considering specific composi-
tional and thermal histories of an evolving hydrogen-
helium planet such as Jupiter

VI. MINOR. CONSTITUENTS

It 1s clear both from atmospheric observations and
mierior models that the hydrogen-helum planets
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Fig 6 —Various possible phase diagrams, assuming
T(H-He) = 2 T.(H.,-He) Each small diagram within the
figure 15 a schematic representation of a {P, x)-diagram similar
to that ;mn Fig 5.

contain minor constituents at least to the extent of
solar abundance. The distribution of these minor
constituents is important both for model construction
and for relating the observed atmospheric abundance
to the total abundance. There is the possibility that an
appropriately chosen minor constituent or group of
constituents could be very precise “tracers” of internal
dynamic processes by virtue of their almost complete
partitioming 1nto one of the hydrogen-helium phases.
No especially appropriate tracer is indicated by the
analysis of this section, which deals primarily with
general trends. The special case of deuterium is dis-
cussed separately. This section deals only with thermo-
dynamme considerations The actual distmbution of
constituents within an evolving planet also depends
on flmd-dynamic and diffusive processes (Paper II)

a) Deufermum

Both CH,D (Beer et al 1972) and HD (Trauger
et al. 1973) have been observed in the Jovian at-
mosphere, and the inferred deuterium abundance has
been frequently quoted as mdicative of the primordial
solar (or even cosmic) abundance. The partitioning of
deuterium therefore has an importance out of pro-
portion to its abundance Unhke other fminor con-
stituents, the chemical potential of deuterium 1s readily
calculable (as a simple extension of the analysis of
ordinary hydrogen)

Consider, first, the partitioning of a small amount
of deuterium between pure, coexisting molecular and
metallic phases of ordimary hydrogen. Hubbard
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(1974) concluded that the mass fraction of denterium
in the metailic phase exceeds that in the molecular
phase by roughly 15%,. His calculation is for the
“classical” (1 e., high-temperature) limit but neglects
the vibrational degrees of freedom for the Hy and HD
molecules, and also neglects dissociation If, instead,
one assumes that the vibrational degrees of freedom
are fully excited and bafmonic, then the chemical
constant of HD is increased by % In () relative to Ho,
and the mass fraction of deutertum. 1n each phase is
exactly the same (This is a general result for the
classical imit and not a special property of hydrogen )
Excitation of the vibrational modes probably is
achieved at 10* K, the temperature of interest, since the
low-density vibrational temperature for H, is 6000 K,
and this does not appear to increase at high density
(Silver and Stevens 1973). As the temperature is re-
duced, another effect not considered by Hubbard
becomes important: quantum corrections to the
translational energy of the protons and deuterons mn
the metallic state This can be calculated from the
Wigner theory as in Stevenson (1975). This positive
contribution to the chemucal potential is larger for
protons than for deuterons and therefore favors
partitioming of deuterons inte the metallic phase (The
competing quantum effect in the molecuiar phase is
negligible ) The incomplete excitation of the vibra-
tional modes of H, and HD also favors partitioning
into the metallic phase. Numerical calculations indi-
cate that the mass ratio of deuterium (metallc) to
deuternum (molecular) 1s essentially unity for T =
8000 K, about 105 at T= 5000K, and 125 at
T = 2500 K.

Consider now the partitioning of deuterum between
hydrogen-rich and helwum-rich metallic phases. In the
relevant high-temperature limit, the only free energy
contribution tending to produce a partitioning of
deuterons different from the partitioning of protons
1s the quantum translational energy. According to the
Wigner theory, the shift m equilibrium 1s such as to
favor less variation of the iomic thermal de Broglie
wavenumber. The deuterium-to-hydrogen ratio is thus
greater in the hehum-rich phase. Numerical calcula-
tion, based on the evaluation of Fp in Stevenson
(1975), mmdicates that this ratio is 10%, larger m the
helmm-rich phase than in the hydrogen-rich phase
at T= 5000K, with the difference vamshing at
T = 10,000 K.

The deuterium-~to-hydrogen ratios in coexisting
hydrogen-rich and helwum-rich molecular phases
should coincide at the temperatures of interest, pro-
vided the rotational and vibrational degrees of free-
dom of the Hy, and HD molecules are not strongly
influenced by the fraction of helium in the local
environment. In the absence of a detailed model for
these modes, no quantitative calculatron can be made
Substantially unequal partitioning seems umnlikely,
however

In conclusion, the parfitioning of deuterium be-
tween the various hydrogen-helium phases appears to
preserve the deuterium-to-hydrogen mass ratio, at
least for 7" > 5000 K. The deuterium content in the
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uppermost convective layers of hydrogen-helium
planets should therefore be representative of the bulk
composition, provided the reservoir of material from
which the planet formed had a uniform distribution
of deuterium

by Other Mmor Constituents

First, consider the possibility of a phase transition
caused by a minor constituent (e g, msolubility of a
mimor constituent) This could occur independenily
of the existence of phase boundaries in the hydrogen-
helium, but it 1s improbable for the low concentrations
and high temperatures of interest. If the number
fraction of a minor constituent 1s z, then an energy of
about —i;TIn z, which favors the dissolved state,
must be compensated by an effect which favors the
separated phase For example, water at T < 300 K,
pressures of order of a few bars, and abundance
z 2 107® can preferentially form droplets since
—kzTInz £ 02eV can be overcome by the binding
energy of the iquid water In the deep interior of the
planet, however, —kzTIlnz x 6¢eV, and there 1s
apparently no correspondingly large binding effect.
Walter 1s probably msoluble 1n molecular hydrogen at
low enough temperatures or high enongh concentra-
tions, but this is probably not relevant to the deep
interiors of present giant planets. We shall therefore
restrict ourselves to a discussion of partitioning
between phases of the hydrogen-helium system.

The degree of partitioning 1s determned by equating
the chemical potentials for the impurity in the two
coexisting phases. At high pressures, the chemical
potential can be meanmgfully separated into four
parts. (i) the “nonchemrcal™ elecironic contribution
(e, a part which does not explicitly mvoke the
symmetry properties or discreet band structure of the
electromic spectrum), (1) residual chemical effects
[ie, electronic effects not meluded in (1)], (i) con-
figurational (including entropy) effects, resulting from
the different size of solute and solvent atoms; and
(1v) the ideal free energy of mixing

Consider first the “nonchemical” electronic contri-
bution. In the high-pressure limit, where the electrons
can be considered to be a uniform Fermi gas, Steven-
son (19765) showed that the miscibility gap in a
binary alloy mncreases as the difference between the
nuclear charges of the constituents mcreases A direct
corollary of this result is that 1ons wall partition so as
to minimize nuclear charge differences Thus all
elements with Z > 3 will preferentially pactition into
the helwm-rich phase of a hydrogen-helium mixture
A more general result, applicable to Jower pressures,
can be obtained by an extension of the Thomas-Fermi-
Dirac {TFD) method The usual TED procedure for
an alloy 1s to assume volume additivity, whereby the
locally evaluated “pressure’ at the Wigner-Sextz cell
boundary 15 assumed to be the same for every cell
If electron correlation 1s ignored, or evaluated 1n a
local approximation, then this also implies continuity
of the electron density across cell boundaries (Salpeter
and Zapolsky 1967). Clearly, this procedure predicts
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that the chemical potential of a constituent is inde-
pendent of its environment (at a given pressure) so
that no nonuniform partitionmg could occur The
failure of the TFD method 1s not so much m the
prescription for determinng the charge density (which
1§ very accurate at sufficiently high pressure) butin the
unphysical procedures for evaluating pressure and
assigning boundary conditions We propose that a
better, albeit more complicated, procedure 15 to en-
force contimuity of the electron density at the cell
boundaries, and calculate pressure according to the
rigorous (1e., nonlocal) thermodynamic .derivative
of the total energy with respect to velume Let p =
p(P) be the actual electron density at the Wigner-
Seitz cell boundary (approximated by a sphere) at
pressure P Let Fi{p) be the specific (cell) volume of
species 7, and E,(7) be the energy per cell (evaluated
as though the substance were purely species 1) In
accord with the Wigner-Seitz philosophy, the total
energy per atom 1s assumed to be

E= Zf xE{Vile(P)]} ®)

where x, is the number fraction of species ¢ [The
energy 1s #not a Immear function of the x;, stnce p(P) is
also a self-consistently determined function of the
alloy composition.] It then follows that 1n the lunit of
vanishing concentration for species 7, the chemical
potential g, is

o=+ Ay,
s = E{Vi[p(P)]} + PV [p{P)],

s==3(Z)|e-nZ| ] ©

to'lowest nonvanishing order in (py — py), Where p(F)
15 the cell boundary electron density for a pure sub-
stance composed of species 1, and po(P) 15 the cell-
boundary electron density for the solvent phase (the
relevant hydrogen-helum phase in this case). The
TFD procedure (without correlation or with locally
evaluated correlation) predicts py = p; and Ap, = 0.
The above procedure does not require that the E(V)
be evaluated according to TFD and, m general,
po # p. The Ap, 1s always positive, and can be re-
garded as a microscopic “surface energy.” The modei
predicts that a solute preferentially enters the phase
1n which the cell boundary electron density is most
compatible For example, p(He) is more smmilar to
p(Hg) than p(metallic H), and helum therefore prefers
'éhe molecular pbase, in accord with our discussion n

V.

Unfortunately, the pressure of interest 1s not high
enough for simple generalities based only on nuclear
chargé Forexample, Na and Al, elements with sumilar
nuclear charges, behave quite differently. Pseudo-
potential theory (with polarizable core states) suggests
that the essentially monovalent Na has p = 0.041q,~2
at 2 = 3 Mbar (g is the first Bohr radius), whereas the
trivalent Al has p = 0.058a,~3. (For a discussion of



232 STEVENSON AND SALPETER

psendopotential theory, see Ashcroft and Langreth
1967 ) The corresponding cell boundary densities for
hydrogen are 0.06q,~% (wetallic) and 0 035-0 0da,~3
(molecular). The metallic value 15 estimated from
Wigner-Sertz calculations (Neece, Rogers, and Hoover
1971) and the molecular value from band structure
calculations (Friedli and Ashcroft 1976). If metallic
hydrogen is the solvert, then (from eq. [9]), Apy, =
2eV and Ap, = 0; whereas if molecular hydrogen
is the solvent, then Auy, =~ 0 and Apyy = 15eV. If
other factors were neghgible then Al would prefer
metallic hydrogen and helwm-poor phases, whereas
Na would prefer molecular hydrogen and helium-
rich phases Further generalization 1s difficult, and
the partitioning of Fe and Mg (for example) is not
readily predicted One would expect, however, that
atoms or molecules with closed shell configurations
at low densities would, 1n most nstances, still have
low cell boundary electron densities even at megabar
pressures, and prefer molecular or hehum-rich phases
This mght mclude the abundant “closed shell”
species H,O, CH,, and NH; (but see the discussion
on H,0 at the end of this section)

Consider, now, the “chemical® effects that are not
mmplicit in the previous analysis These are difficult
to estumate, but appear to be small For example, 1t
might be supposed that a metal would not dissolve 1n
dense molecular hydrogen because the available con-
duction states in the hydrogen are separated from the
valence band by an energy gap. However, the band
gap is <1 eV at the transition pressure {Friedli and
Ashcroft 1976), so this effect may be less than that
predicted by equation (9). Similarly, the categoriza-
tion of polar and nonpolar molecules is meaning-
less at megabar pressures, and the distinctions
among covalent, ionic, and metallic bonding become
inapplicable.

The configurational contribution to the chemical
potential can be estimated for the flwd phase by
the hard sphere model (Lebowitz and Rowlinson
1964), with the effective (pressure- and temperature-
dependent) hard sphere diameters determined by
minmmization of the total free energy. Numencal
calculations wndicate that this contribution 1s several
k. at T~ 10* K, but that the difference between
solute potentials for the various solvent phases is
less than %zT =~ 1eV and therefore usvally small
compared with electronic differences

The 1deal free energy of muxing 18 k;T In z, where
z 15 the number fraction of the solute. Typically, the
electronic chemical potential differences between two
coexisting phases are a few eV, so that for kzT =~ 1 eV
the value of z could change by as much as an order of
magnitnde as one crosses a phase boundary

We conclude with a brief discussion of the parti-
tioning of H,0O, probably the most abundant minor
constituent in Jupiter and Saturn (although possibly
underabundant in the Jovian atmosphere, according
to Larson et al. 1975). According to the preceding
analysis, we would expect H.O to prefer molecular
and helium-rich phases However, this assumes that
the configuration—and the electromic structure—of
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H,C 15 similar for each phase. Pure water is completely
dissocrated into H;O* and OH~ at about 200 kilobars
(Hamann and Linton 1966) and 1s metalized at several
megabars (Ramsey 1963; Vereschchagin, Yakovlev,
and Timofeev 1975), at which pressure nothing is
known about the configuration. The dissociation does
not significantly modify the previous analysis, since
H;O* and OH~ are both 1soelectronic-with a closed
shell atom (neon). However, one should consider the
possibility that HoQ enters metallic hydrogen as
2H* + O** + (n + 2)e~, where » > 0 Approx-
mate numerical calculations suggest that this 1s highly
improbable, even for # = 1, desprte the similarity of
the first ionization energy of oxygen {~13 6 V) and
the bmding energy per electron of the metallic state.
The problem is that the energy reduction gamed by
“metalizing” the oxygen atom 1s small, and does not
compensate the rather large binding energy of the OH~
ion The chemical potential of H,0O mn molecular
hydrogen 18 ~20eV (relative to the isolated zero-
pressure H,O molecule), whereas the chemical po-
tental for the hypothetical metalized state (with the
oxygen 1 the O* form) has a chemical potential
~28 eV at least

VII. TRANSPORT PROPERTIES OF THE METALLIC
PHASE

‘We consider essentially all the “first-order’ atomic
transport coefficients in the following order: electrical
conductivity, thermal conductivity, viscostty, self-
diffusion, inter-diffusion, and radiative opacity. There
1s also a brief discussion of “second-order” (or off-
diagonal) transport coefficients such as the Soret
coefficient.

a) Electrical Conductivity

This has been evaluated by Stevenson and Ashcroft
(1974) using the well-known Zimman theory, and the
hard sphere static structure factors In that paper, the
temperature scale was only estimated, but subsequent
thermodynamic calculations (Stevenson 1975) estab-
lished the correspondence between hard sphere
diameter and temperature for each density. An esti-
mate can also be made for the dvnamic corrections,
using the theory of Baym (1964) and the molecular-
dynamucs results of Hansen, McDonald, and Pollock
(1975) for the one-component plasma The improved
temperature scale and the dynamic corrections each
modify the results of Stevenson and Ashcroft (1974)
by as much as a factor of 2—but in opposite directions
The final result 1s the following approximate formula
for the conductivity ¢:

5 x [020p40
CE Tt O

where p 18 the mass density in g cm™%, and x 15 the
helum number fraction This formula should be
correct to within a factorof 2for 1 < p < 10°gcem 2
and 10° £ T < 10°K, but should only be used for
x £ 0.2. In the conditions prevailing in the Jovian

u, (10)
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core at present, o & 10*7 esu, comparable to that of
room-temperature alkali metals. The value of & given
by equation (10) is about a factor of 2 larger than the
estimates for sofid metallic hydrogen by Abrikosov
(1964) and Hubbard and Larmpe (1969).

b) Thermal Conductinity

In the metallic phase, thermal conductivity is
dominated by electronic transport If the electrons
are degenerate, and 1f the Born approximation is
valid (see Stevenson and Ashcroft 1974 for a discussion
of this point), then the thermal conductivity 1s related
to the electrical conductivity by the Wiedemann-
Franz relation The thermomeiric conductivity x 1s
then given by

1.5 % 108,48
PCpK ~ W

or, if we assume C, & 3Nkp, where N is the number
of ions per gram,

ergsem~rsTrKY, (1D

k7 03p48 cm®s 1. (12)

Notice that the temperature T does not appear in
equations (11) and (12). The accuracy and validity of
these equations is the same as for the electrical con-
ductivity.

¢} Viscosity

Unlike the electromic transport properties above,
viscosity and atomic diffusion depend explicitly on the
dynamic properties of the fluid. There 15 no generally
accepted and successful theory for the dynamics of a
dense flmd However, models which work for the
conventional alkal: metals, such as the Longuet-
Higgms and Pople (1956) model, as adapted by
Ascarelli and Paskin (1968) and modified by Vadovic
and Colver (1971), probably are also satisfactory for
metallic hydrogen. The following approximate formula
is then deduced:

vardx 1078, Y2om2 -1 13

for any hydrogen-helum nuxture, where 7. is the
ternperature in umts of 10* K The apparent lack of
density dependence 1n this result is only approximate
At the temperatures and densities of interest, this
result should be correct to at least a factor of 5 (and
probably a factor of 2).

Thus calculation 1s based on a hard sphere appreach.
The opposite extreme 15 the one-component plasma,
which can be regarded as the unscreened metallic
state. Two calculations for this system (Fansen,
McDonald, and Pollock 1975; Vicillefosse and
Hansent 1975) agree that

v 2 0.2 (14)

to within a factor of 2, where w, 1s the 10n plasma
frequency and 7 1s the radms of that sphere which
contains one ion on the average. This formula yields
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a value that is typically a factor of 2 smaller than
equation (13), at least for 7, ~ 1, and it also predicts
a very weak density dependence (v oc p~ 1),

From equations (12) and (13), we can now estimate
the Prandt] number Pr:

Pr= T? & 10727, ~113p- 113 | (15)

provided the heltum content satisfies x < 0 2. (Hellum-
rich fluids may have a substantially lower «.) Thus,
for T, ® 1 and p =~ 1 gem~3, Pr = 10~2, which 1s
typrcal of hiquid alkal metals.

d) Self-Driffusion

This transport property may not be of great
interest itself, but it provides a means of estimating the
more 1nteresting interdiffusion (diffusion of helium
in hydrogen) We use the same theory as for the
viscosity (Vadovic and Colver 1971), which predicts
that the product of self-diffusion D and viscosity »
is given by

Do 0.1702(";; ) . (16)

where o is the effective hard sphere diameter, and M
the ion mass This result is experimentally verified
when ¢ is chosen by thermodynamic considerations
alone. Thus,

D=3 x 1073,-287,32 cm2s-1, an

for both pure hydrogen and pure helrum

The one-component plasma studies (Elansen, Mc-
Donald, and Pollock 1975, Vielllefosse and Hansen
1975) predict D oc p~ 28T gnd a magmtude that is
typically a factor of 3 smaller than that given by equa-
tion (17) This agreement is satisfactory, and suggests
that this transport property 1s not strongly dependent
on the details of the 1on-ion mteraction.

e) Interdiffusion

There is no sinularly successful model for inter-
diffusion, so we shall resort to empirical evidence.
Expermments on liguid metal mixtures (Ejima and
Yamamura 1973) mndicate that the mterdiffusion of
one atomic species in another differs from the self-
diffusion of the most abundant species to the extent
that the species differ in “size.” Thermodynamic
calculations (Stevenson 1975) indicate that the helium
pseudoatom {e-particle plus screening cioud of
clectrons) is 30%, larger than the hydrogen pseudo-
atom The experiments then indicate that a small
amount of helmm in hydrogen should diffuse about
half as rapidly as the self-diffusion of hydrogen Thus

Dy & 1.5 x 103,287,312 cpy25-1  (18)

and independent of composition to a first approxi-
mation,
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To see whether diffusion is anomalous near a phase
transition, we first express the interdiffusion co-
efficient D in a more fundamental form (Landau and
Lifshitz 1359):

p=° (g—i) , 19)

where p is the helum chemical potential, x is the
helium concentration, and « 18 a “canonical” kinetic
coeflicient, as explained by Landau and Lifshitz The
requirement that entropy increase with time implies
that ¢ > 0 Consider, now, the specific Gibbs energy
in Figure 7a (This 18 a schematic representation of
Fig. 2 in Stevenson 1975.) Between 4 and D, a flmd
mixture is energetically unfavorable relative to sepa-
rated helwm-rich and hydrogen-rich phases Between
A and B and between C and D the finid mixtures are
metastable (ie., 8*AG[ox® = Oufox > 0). In these
reglons, phase separation must proceed by nucleation
and can be strongly inhibited by the surface energy
between the phases. Between B and C, the flmd mix-
ture is unstable to spinodal decomposition (the onset

AG AT [

H He

Fic 7 (@) (fop)—Gibbs energy of muxing for a H-He
mixture at a grven pressure and temperature, as 2 function of
heliurn concentration x Fhe dashed line 15 a common tangent
to the Gibbs energy curve Regions 4B and CD correspond
to metastable flurd nuxtures, and the diffusion constant 1s not
anomalous, except near B and C. The region between B and
C corresponds to unstable mixtures (b) (bottom) The phase
dragram of H-Fle mixtures for a given pressure. In regron I the
umiform. muxture 18 thermodynamically favored In region IT
the umiform mrxtures are metastable and diffusion is not
anomalous. In region ITT the umform mixture 1s nnstable and
undergoes spmodal decomposmon The dashed line separates
regions of normal and “‘anomalous”™ diffusion.

Vol 35

of long-wavelength conceniration fluctuations), therate
of which 1s essentially limited only by diffusion rather
than by surface energy. In this region, 8u/dx < 0, and
the diffusion coefficient can be regarded as negafive
in the sense that compositional inhomogeneities tend
to grow rather than decay with time. At the points B
and C, the diffusion constant is zero In Figure 75 the
phase diagram for a given pressure is shown and the
various regions indicated. Spmodal decomposition
has recently been clearly simulated for the first time
1n computer experiments (Abraham ef o 1976) and has
been the subject of several theoretical investigations
(Abraham 1575, b)

The important point for our considerations is that,
provided one 1s not within or near regton Il in Figure
75, the diffusion coefficient 15 not anomalovs We will
return to this point in Paper II, where the dynamics
of the phase separation are discussed for a real system.

f) Radwative Opacity

At the temperatures of interest {T" = 10*K),
thermal photons have energies of order 1 eV. At the
densities of interest (p = 1 gcm™3), the electron
plasmon energy is of order 30eV. Photons cannot
propagate below the plasmon energy and still undergo
substantial absorption above the plasmon energy It
follows that the radiative opacity exceeds the electron
conduction “opacity” by many orders of magnitude
in the metallic phase. It can therefore be ignored.

g) Second-Order Transport Cocfficients

Among the many “second-order” transport co-
efficients, there are those which characterize the effect
of simultaneous concentration, thermal, and pressure
gradients in a nonconvecting fluad. First, there 1s the
barodiffusion caused by the pressurc gradient. In the
applications to be discussed in Paper 1I, the com-
position varies over a smaller iength scale than the
pressure scale height, so the effect of barodiffusion is
small (Of course, barodiffusion does nevertheless
ensure that the zero temperature final state of a self-
gravitating body is inhomogeneous.) Second, there
18 the effect of solute flux on the thermal gradient {the
DuFour effect). The Onsager reciprocal relations
ensure that this effect is always negligibly small for a
dense fluid (Caldwell 1973). Third, there is the effect
of the temperature gradient on the solute flux F,
(Landau and Lifshitz 1959),

F,=—pD (Vx + "—Iﬁ' VT) , 20)

where x is the fractional concentration of solute (ie,

helivm} and k. is the Soret (or thermodiffusion) co-
efficient. This coefficient 1s not small in general: it
can be as large as of order unity, and can bave either
sign. In a metal, an apparently successful model for
ks {Bhat and Swa]m 1971) evaluales this coeflicient
as the sum of a “dense gas” contribution (determined
by the mass and size of the pseudoatoms) and an
electronic contribution, given by Gerl (1967). The
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former was evaluated using the hard sphere diameters
mplied by thermodynamics, and the latter was
evaluated wusing the conductivity calculations of
Stevenson and Ashcroft (1974) Both contributions
were positive and approximately 0.5x each, where x is
the (assumed small) helnm number fraction. In the
situations of interest, we mughi therefore expect
kr =~ + 0.1 Asin the case of molecular diffusion, this
result should be viewed with suspicion 1f ihe fluid 13
near a phase transition A positive value of ky implies
that the helrum tends €o diffuse toward colder regions,
In most of the considerations in Paper II, k, should
be small enough to only slhightly modify the solute
flux (and certainly not change the direction of fux)
‘We shall therefore ignore 1t

VHI. TRANSPORT PROPERTIES OF THE MOLECULAR
PHASE

We repeat the considerations of the last section, but
for the molecular phase.

a) Electrical Conductivity

Except near the molecular-metallic phase transition,
molecular hydrogen is an insulator, and the only
electrical conduction arises from impurities (Smolu-
chowsk1 1972). However, quite general considerations,
together with recent band-structure calculations
(Friedir and Ashcroft 1976), indicate that the indirect
band gap 1n molecular hydrogen vanishes at or near
the molecular-metalhctransition Smoluchowski{1975)
has pomted out that under these circumstances, the
electronic conductivity at the phase transihion could
be within an order of magnitude of that given by
equation (10).

DY Thermal Conductivity

If electrical conduction 1s almost metallic at the
phase transifion, then heat can be transported by
electrons, with « = 0.1cm®s™! (eq. [I2]) If no
electronic degrees of freedom are available, then the
less efficient molecular motions must be utilized.
Neglecting the internal motion of the hydrogen
molecule, this implies

KR ca(k—jﬁ?)lm » @D

where ¢ 18 a correction factor of order unity, o is a
hard sphere diameter, and M 15 the mass of the
molecule The correction factor can be deduced from
Chapman-Enskog theory, or from Monte Carlo
results for hard spheres (Alder, Gass, and Wainwnight
1970). As usual, the hard sphere diameter 1s deduced
from thermodypanmuc models (eg, § IV} For a
Elyclilrogen-rich fiuid, the molecular contribution to «
1sthen

w5 10727, Y2 ¢cm2s—1, (22)

accurate to perhaps a factor of 2, forp & 1 goem™—3.
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¢) Viscosity

Dense molecular fluids, like gases, have a Prandtl
number close to unity This property is predicted by
kinetic theories and Monte Carlo calculations (Alder,
Gass, and Wainwright 1970), which show that both
viscosity and thermal conductivity vary hinearly as the
Enskog correction. We shall not attempt to evaluate
the Prandtl number more accurately, so it is adequate
to use

v 10727,"1% cm?s~?, 23)

If electronic transport 15 negligible, then Prx 1 If
electronic transport 1s almost metallic, then Pr & 0.1
or even 0 01.

dy Self-Dyffusion

This transport coefficient 1s comparable fo », but
varies inversely as the Enskog correction and thus has
a different density and temperature dependence. Using
equation (21), with ¢ given by Monte Carlo results
(Alder, Gass, and Wainwright 1970), one finds

D = 4 x 107875832 cm®g-t 24

for pure hydrogen or pure helium, to within a factor
of 2,

e) Interdiffusion

The thermodynamic calculations (§ IV) indicate that
the Hy molecule 1s 157, larger than the helmum atom
The diffusion of a small amount of helium 1n hydrogen
should therefore proceed slightly faster than the self-
diffusion of hydrogen This effect 15 smailer than the
probable inaccuracies 1n the caleulation, so equation
(24) suffices for the interdiffusion. As 1n the metallic
case, this result should be viewed with caution near
phase transitions

1) Second-Order Transport Coefficrents

The only second-order coefficient that is likely to be
mmportant is ky, the Soret coefficient. The dense-gas
theory (Chapman and Cowiing 1952) predicts &, &
0 5x, where x is the (assumed small) hellum mole
fraction The positive value is ensured by the greater
mass of the helium atom and the stromgly repulsive
character of the intermolecular potentials As usual,
this result 15 suspect near phase transitions.

2) Radwztive Opacity

Unlike the preceding discussion, which has con-
centrated on the dense fluid regime (px 01 tolg
cm~9), the radiative opacity is of interest for a much
wider range of densities and temperatures Intertor
models of Jupiter, for example, always assume an
adiabatic molecular envelope, and do not allow for the
possibility that molecular hydrogen may be sufficiently
transparent for radiation to transport the internal heat
fiux subadiabatically Stevenson (1976a)has considered
thits problem, and concludes that molecular hydrogen
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alone is sufficiently opaque to ensure convection,
except at temperatures and pressures for which the
1500 cm~* to 3000 cm™* window 1n the hydrogen
spectrum is important These calculations are based
on the theory and observations of Linsky (1969),
Welsh (1969), and Herzberg (1952) In Jupiter, the
1500 em~? to 3000 cm~! window is most mmportant
for400 K. < T < 700 K. For T < 400 K, pure transla-
ttonal and rotation-translational pressure-induced
bands provide sufficient opacity to ensure convection,
until the optical depth to free space becomes less
than voity at T = 150 K (Trafton and Stone 1974;
Wallace, Prather, and Belton 1974). At T > 700K,
the vibration-rotation translational band (v & 4000
em~1), and higher-order bands (v =~ 8000 cm™?,
12,000 cm~?1} ensure convection in Jupiter. Since the
pressure-induced opacity vartes roughly as P2, where
P 15 the pressure, and since the bands become
broadened and overlappmng at higher pressures, the
radiative heat transport decreases as one goes deeper
into the planet At even higher temperatures (T >
3000 K) free-free absorption, ansing from the small
rumber of conduction electrons i the molecular
flnid, begins to domnate. Unlike the free-free ab-
sorption usually considered (e g., Clayton 1968), the
molecular fluid is so dense that the electron-melecule
interactions are more important than electron-ion
interactions 1n ensuring momentum conservation

The region 400K < T 5 700K is nevertheless
probably convective, but oaly because of the small
amounts of strongly absorbing molecules such as
H.0, CH,, and NH,;. The opacities of these species are
“spiky™ at room temperature, with typical strong line
separations of about 1 cm~ However, the pressure
broadening exceeds the line spacing for pressures in
excess of 5 or 10 bars, so that the opacity becomes
quasi-continuous Assuming the validity of the quasi-
continuous approximation, Stevenson (1976a) esti-
mates that H;O0, CH,;, and NH; have sufficient
combined opacity to “block™ the 1500 cm™~? to 3000
cm~* hydrogen window in Jupiter The data used
1n thas calculation were Ferriso, Ludwig, and Thomson
(1966) for H;O; Burch and Williams (1962) and
Plyler, Tidwell, and Blame (1960) for CH,; and Gille
and Lee (1969) and Benediet, Plyler, and Tidwell
(1958) for NH,. Some uncertainty does remain,
however, especially in the 2000-2500 ¢m~* region
where none of H,O, CH,, or NH; is strongly absorb-
ing, so a careful band model is probably desirable

To conclude: A hydrogen-helium mixture 15 not
suffictently opaque to ensure convection in the deep
atmosphere under typical conditions (such as those
which prevail i Jupiter). The addition of a solar
abundance of minor constituents (HyO, CH,, NHy)
probably suffices to reduce the radiative heat transport
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to less than 107, of the total and ensure an adiabatic
thermal structure

X, CONCLUSION

It is evident from our discussion of the phase
dragram that the main uncertamty lics in the value of
the critical temperature for the pure molecular-
metallic hydrogen transition. Whereas this critical
value 15 only known to about an order of magnitude,
the metallic H-He critical temperature 18 known to
perhaps 20%,, and the Ho-He critical temperature
to perhaps a factor of 2 This uncertainty forces us to
consider a wide range of possibilities m Paper II
(Stevenson and Salpeter 1977), where specific thermal
and compositional evolutions are discussed Improve-
ments 1 the value of the molecular-metallic hydrogen
critical temperature will not be easy from purely
theoretical calculations, and some expertmental input
15 lughly desirable

The partitionmng of munor constituents is clearly
difficult to predict quantitatively, with the exception
of deutertum It 1s particularly desirable to understand
more about the high-pressure properties of HyO.
Generally speaking, the relevant temperature {~ 10%
K) is too great for highly nonuniform partitioning of
the kind that is observed in the Earth, for example.
Constituents such as H,0O, CH,, and NH; probably
prefer molecular or helium-rich phases.

With two notable exceptions (electronic con-
ductivity and radiative opacity of the molecular phase),
the transport properties are known to within a factor
of 3, typically. This is usunally quite adequnate for the
purposes of Paper I1 The uncertainty in the electronic
conductivity of the molecular phase near the molec-
ular-metallic phase transition is of concern, since if
electronic degrees of freedom are available for heat
transport, then the efficiency of upward transpoit of
helium by convection 15 generally low (see Paper II).
The uncertainty in the radiative opacity 1s generally
only large at those temperatures and pressures for
which the opacity 15 one or more orders of magnitude
in excess of that required to transport the heat flux
at an adiabatic temperature gradient

Apart from the radiative opacity, where minor
constituents are crucial, the effect of such molecules
as H,0, CH,, and NH; on the phase diagram and
transport properiies 15 small, provided their abun-
dances are close to solar.

We wish to thank N, W Ashcroft, M E Fisher,
W B. Hubbard, and R Smoluchowski for discussions
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Aeronautics and Space Administration grant NGR
33-010-188 and National Science Foundation grant
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Calenlations are reported for the onic structure factor and x-ray scattering cross section of sodum (at T =0
and 90°K) and hithwim (both 1sotopes at T = 0°K) withir the harmonic approximation An evaluation of the
appropriate displacement-displacement correlation finction by the special-point method circumvents the need
for a muluphoncn expansion In the case of sodium, the structure n the one-phonmon scattering 1s
straightforwardly accounted for and an approxumate expansion 15 obtamned for all multiphonon scattening By
treating core and conduction electrons on an equal footng 1t 15 shown that mformation on the conduction-
electron system 15 present m the forward-scattermg component In lithmum the one-phonon cross section at
small angles aids in the determination of the effective electron-ton nteraction

I INTRODUCTION

For some years x-ray thermal diffuse scattering
(TDS) has been used as a probe of lattice dynamics
1 simple materials ** Although information on
the phonon frequencies and polarizations (and also
the extent of anharmomeity) 15 contained mn the
TDS,*% 1t 1s generally hard to extract.® The cross
section for the scattering of x rays mtimately in-
volves the static structure factor of the ions,
Sion(k) The purpose of this paper 13 to present
calculations of (1) Sion(E), and (u) the x-ray scat-
termng cross section for Na and Li in the harmonie
approximation and in their ground states. The
significant features of the calculation are the use
of a special point technique®® 1n the computation
of the equal time displacement-displacement cor-
relation funchion {§,T,) [which enters into S, (K)]
and the separation of the scattering cross sechon
into contributions from core and valence electrons
In particular, the special pownt techmique enables
us to avoid the customary expansion® of the 1nelas-
tic part of §,,, (k) into terms involving the scat-
tering of a defimuie number of phonons. We deter-
mine the “one-phonon” term explicitly, but we
can also calculate all higher-order processes
without recourse fo expansion Further, our treat-
ment of the contribution of the valence electrons
to the cross section shows that x-ray scattering
should yield mformation, 1n Light metals, on the
effective electron-ion interaction, as we demon-
strate for the particular case of Li.

Section I contains a dermvation of the x-ray scat-
tering cross section do/dR in a model of a sunple
metal which distinguishes between bound and con-
duction electrons. In Sec, Il we outline the eal-
culation of S, (k) using the special pomnt technique
(discussed in detail in the Appendix), and compare
it with the other nonexpansion techniques in the
literature Sechon IV presents numerical results
for S, (k) and do/dQ for Na (at two temperatures)

14

and for both 1sotopes of Li. We draw particular
attention fo the secondary maxima associated with
the one-phonon term as observed in certain crys-
tallographic directions. These maxima have spe-
cial 1mportance 1n the determination of the elec-
tron-ion inferaction of Li, and also give informa-
tion about specific portions of the phonon spec-
trum directly

II THEORY
The differential cross section for scattering of
a photon from a solid of N 1ons 1 volume V{at 7
=0 °K) 18 proporfional to the space-fime Fourier
transform of the Van Hove correlation function

G, (T, )

&g _C * =
Hdo- T fd"'r J:m dE G,(T, ) explek - ¥ —208),
(2.1)
where C is a constant,!o-i2
G, 0= [ Lxlal®, 00 T, 1) @2)
and
k=k; -k, w=0;-w. (2.3)

We are considering the cross section per umt
volume for scattermg a photon of momentum 7k,
and energy kw, into a solid angle 42 with energy
loss between fiw and fi(w+dw). The quantities fik,
and kFw, are, respeciively, the momentum and en-
ergy of the scattered photon. In Eq. {2.2), A(F, )
15 the total electron number density operator and
the angular brackets { ) refer to a ground-state
average Introducing spatial Fourier transforms

dﬂdw"" fﬂ dte P Kp(k, Ok, 2),  (2.4)

where 2(K) 1s the Fourier transform of #(F).
We separate #(F) into contributions from core
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and valence electrons, and we treat the core elec-
trons as if they were rigidly attached to the ions.
Any core excitations or distortions of the ions are
therefore neglected; should these occur they must
be calculated separately. In practical terms this
means that.in-comparing experiment and-theory
the Compton scattering from the core electrons
must first be subtracted from the data. Incaddi-
tion we invoke the adiabatic approximation, so that
the conduction electrons {ce)} are always in a
ground state appropriate to an instantaneous ion

oV ® jat z: SEoR y(0) iER
—_— e —— - =1k SIS ]
@ de C f_,,dte (( s ¢ et >

J

ion

configuration (1on). By virtue of the rigid-ion
approximation we may write

Ak, t)=; eFRUDY (K ) (2.5)

Here (k) is the Fourier transform,of the average
core-electron dengity about a nucleus at the ori-
gin, and R;(t) refers to the instantaneous position
of the ion labeled . From KEqs. (2.4), (2 5), and

the adiabatic approximation, we then find

@1+ {3 RO B, )
i ion

+<E eii'-ﬁs“)f(ﬁxﬁce(—ﬁ; 0))::9) ) + J.w dte™* t(ﬁee(_‘E: O)ﬁce(E! t»ces ion* (2 6)

We suppose that the interaction between con-
duction electrons and 10ns can be represented by
a yeak pseudopotential with Fourier transform
v(k) (as is the case for many simple metals). The
density response may then be calculated to linear
order 1n v(k):

(oo, eo= 0 B0 (E) D eFRatt) @
with
3, () = (¢ /4me®) 1/ (E, 0) - 1], (2.8)

e(k, 0) being the static dielectric function of the
uniform interacting electron gas ** Equations
{2.6)—(2.8) now give

d?:gw % _ f_: dt e-;wt(( ;ZJG"E'&'(M'%“)?
x (Jr(&) |? + 2(R)x, (K)o E))
+ ﬁce(_i;’ O)ﬁce(E: t))ce,ion)

ion

(2.9)

In a typical x-ray experiment gll the radiation
emergmg at 2 grven angle is initially measured.’?
All possible energy transfers (on the scale of typ:-
cal electron and phonoh energies) #w are there-
fore included, and we pass from the eross section
for energy loss fiw(d6/dQ dw) to the total angular
cross section (do/dQ):

@.—J.”dw ___dzo-
ase ), " dfde

=zﬂ%((§e-fi-<ﬁrﬁﬁ) PG 24 27, B ()

ion

+ ﬁce(“'E)ﬁce(E»ce,;on) . (2.10)

Lo

r
Note that the last term 1s usually considered part
of the Compton scattering, and 1s therefore gen-
erally subtracted from the primary data.’> What
will become apparent, in Sec. IV, 1s that the value
of the lagt term in Eq. (2.10} (the valence electron
correlation function) should be readily obtainable
from x-ray measurements. The theoretical re-
sults we present are therefore best compared to
data from which only the z0me Compton scattering
has been subtracted.

The last term in Eq. (2.10) 1s difficult o cal-
culate for interacting electrons in the presence
of the 10ns. For purpoeses of illustration we use
the free-electron value,8-16

N BSB(E) = {ﬁw( —E)ﬁce(ﬁ» ce,froe?

=_(3% 1 B
0= (G ~Twh ) <=

Se(i) =1,

Here N, is the number of electrons, and & the
Fermi wave vector. Setting (for a2 monovalent
system) the number of electrons N, equal to the
number of ions N, Eqgs. (2.10) and (2.11) give us
the final result

. do V 1

W R N T

(2.11)

B=2ky.

=S1oalEH | ®) 12 + 27 @y, Rv BN +5,(K), (2.12)

where we have set
- 1 -
Sulf)= 3 L e Bri)
i

It should be clear that except for the elements of
lowest atormic number (e.g , L), Se(ﬁ) makes a
small contribution to W for all but the smallest
wave vectors k<2Fkp.

for k=0,

fon

{2.13)
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i1 ,CALCULATION OF IONIC STRUCTURE FACTOR

We now proceed to a calculation of S, (K) m a
model in which the solid 18 treated as a harmonic
crystal. Letung R, =X,+,, where X, 15 the equil-
lbrium position of the ith ion and %, its displace-
ment

- 1 S5 gt s
Sion(k) - E Z ok Xﬁ(e-i!: (ui-u;))ion_ (3_1)
11

Here, X,,=X, -X,, and the average 1s to be taken
over the states appropriate to a harmonic crys-
tal. With the defirutions

((ul ‘u})a(uz _ui)ﬂ)iunalmﬁ(—ﬁ; _'3.{!) (3 2)
and -

= (up Uy, us) s
we have the result® 7

(e-i.m'-aj))io

where

= -kakﬁlaﬂixg-]{:)f2’ (3-3)

Bz
- = L I
rapl®; = X,)= o= 2 (1 —cosF - X, e, @)
i

Y4 ea(aj) Bé{?}- coth['é'ﬁ'fw @.7 )]:

1

'8=E;F’

(3 4)
and M is the mass of an 1on. In Eg (3.4), w{dy)
and &(17) are the frequency and polarization vector
of the normal mode of wave vector { and polariza-
{ion indexy (3=1,2,3). The § sum extends over
the entire first Brilloumn zone (BZ) Using the
translational symmetry of the lattice, Egs. (3.1)-
(3.4) y1edd

S:I.on(E) - E e‘:E‘i,e"kakahuB(i;)l?.. (3 5)
t

Next we separate 1,,(X,) as follows:
Agg (}?;)= Ays(0) "‘Aas(i;): (3.6)-

Sion(E) _ Z e-:E.i{',e 22072 | E e"F.xie-ka‘\ofz[%kakBAaB(iz)}
] 3

+ Z e-xx-x,e-kznolz [ekakﬁ‘\aﬁtxf)lz -1- %kakﬁ
T

=85,() + 8, (k) + S,,(K)
Here SO(E) gives the elastic scatterng, 1L.e

S, =Ne"*X°/2 3 3oy 2,
¥

with
Aaa(i,-)— 26« d7)esds) —== w( 35
x cothf 3%, (§7)]cos@ + X,). (3.7)
Note that
Ao (Bi) = 20s0ttiadion (3.8)

We see, therefore, that A, (X) is the displace-
ment-displacement correlation function for two
ions separated (on average) by X. Clearly A(0)
is the displacement-displacement awtocorrelation
function. For a cubic system,

(440280 100= Bap3CH; 4,0, (3.9)
so that

AOLB(O) 6n:ﬂ. 3 MN E m(" )COth[Zﬂ;zw(ﬁj)]
= By A°. (3.10)

This defines A°, which is closely related to the
Debye-Waller? factor ¢,

2W = 3k ok 8o (0) = 32A° (3.11)
Substituting Egs. (3.6)—(3.11) mto Eq {3.9), we
find

S, (E) = ‘Z 1B g Ry Bl 5 (0)=A g (X )1/ 2
1

=Ee"‘7"iie A8z, rarahap(®y) 2

1

(3 12)

To proceed from this point the usual approach
15 to expand the last exponential in a power series
m Ag(X,). The leading (1.e., constant) term gives
the elastic {(Bragg) scattering peaks, the second
gwes the one-phonon scattering, the third the two-
phonon scattering, and so forth. Beyond the one-
phonon contribution each term is mcreasmgly la-
horious to evaluate, We can avoid this expansion
however, by writing S, (& as follows:

ORIGINAL PAGE IS
OF POOR QUALITY

Amﬂ(:ii)]

{3 13)

(3 14)

the K being the vectors of the reciprocal latiice, The one-phonen scattering term Sl(ﬁ) 15 easlly seen {o be
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- k2p0 s B
T T

x ,E e[ 7] e[dE) 7 ];[E%Hﬂ

x-coth{37zgwldd) 11 (3 15)
Where q(k) is the vector k reduced by an a.pproprl-
ate K to the first Brilloum zone [re., 4§ =k -XJ.
Fmally, the remainder S,,(k) will be calculated by
drwvect computation of AaB(X ), so that all higher-
order phonon terms are automatically taken mto
account. The reason for adopimg this procedure
is to assure convergence m the sum over z in
Sﬂ(k) This will be clarified in what follows.

Our method of caleulation of AQB(R) and A°
makes use of special pownts m the first Brillouin
zone®? to evaluate the ntegral of Eq. (3.7). By
calculating the integrand at these relatively few
special points, one obtamns a good approximation
to the entire mtegral. This procedure differs
markedly from ordinary numerical integration m
that (as shown in the Appendix) one 15 effectively
using an expansion of the integrand in symmetrized
plane waves. In connection with this method we
draw attention to the behavior of AX) for large
X. At large X the dominant contrlbutlon to the
mtegral 1 Eq. (3.7) comes from small §, and it
can be shown'® that at T=0°K,

Iim A, (X)~ 1/X2,

X=»ct

(3.18)

Thus to ensure convergence in SH(E} it is necessary
to make the separation indicated in Eq. (3.13).

The method may be compared with the nonexpan-
sion caleulations of Sm(k) by (1) Lomer,'® who
calcutates the 1onic structure factor directly using
the results of a computer experiment; (11} Se-
menovskaya and Umanskit,® who calculate AQ,B(X)
m closed form for a model sinusoidal phonon dis-
persion law; and (ni) Reid and Smith,? 2 wwho cal-
«culate the multiphonon seattering Su(k) for crys-
tals whose sizes range between 100 and 1000 wut
cells, Their evaluation of Aaﬁ(i) 15 achieved by
summmng over only those § correspondimng to the
normal modes of such a finite erystal. By sep-
arately calculating the §—0 portion of the integral
in Eq. (3.7), they find that a crystal of 500 umt
cells gives essentially the same Sy(k) as an mf1-
nite crystal, for q(k) belonging to the set of nor-
mal modes of the fimite crystal.

The method of Reid and Smith appears to be the
most accurate and practical, bui: has the disadvan-
tages that one can calculate S‘,,(k) at relatively few
points, and that the matrices Aaﬁ(x) for a real
crystal are maccessible. We are able {0 circum-
vent these Inmitations by dervectly calculating the

correlation matrices A {,3(3.{). (These are of con-
siderable mterest, of course, 1n a wide range of
problems.)

We illustrate the method by 1is application to Na
and Li. In both cases the phonon spectrum was
calculated from a force-constant model designed
to fit the experimental data, The corresponding
S;00(K) has been calculated for Na at two tempera-
tures (0 and 90°K) and for hoth 1sotopes of Li
(at T=0°K).

In the case of Na the force constants were those
that fit the data at T=90K.22 A sumple esiimate
(supported by some theoretical results?®) indicates
that the change m phonon frequencies between 0
and 90°K 1s everywhere less than the experumental
error. Hence the only effect of temperature we
allow 1s through the hyperbolic cotangent function
in Eq. (3.7).** To simplify the calculation we use
the T'=0°K value of Auﬂ(Xi) for X # 0 1n the 90°K
calculation, but use the T=90"K value of A,4(0).
The 90°K results are thevefore meant lo be tndicative
of the effects of temperature, but they are only
approxzmate. We use the value of v, determned
from the 5°K lattice constant measurement,*®1 e,
v,=3 931 a.u, (v, 1s defined by $n(ra, ) =V/N,,
where q, is the Bohr radius.)

The force constants for "Li were similarly taken
to be those which fit the experimental phonon dis-
persion®’ measured at T=98°K. The value of 7,
was also deduced from the lattice constant,® mn
this ease at 78°K (r,=3.248 a.u.). To calculate
S10n(K) we have set T=0°K In order to obtain
5,(K), A°, and AaB(XI) for ®L1, we have assumed
that hoth substances are truly harmonic. This
gwves

~1/2
woeM™/ e,

ARy M2 for all X,
and (3.17)

S, (i) /2,

IV. RESULTS

In this section we present numerical results for
both Sm(ﬁ) and the x-ray scattering cross sec-
tions for Na and Li. The structure factor calcula-
tions were carmed out as described above As
regards the cross sections, we give two sets of
results One corresponds to the theory outlined
in Sec, II:

_do ¥V 1
T 4t N 2#C

=SE[F @2+ 2 fli)x, o ©)1+ S, ), 1)

while the other corresponds to the more common-
1y used expression
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FIG 1 Structure factor $(k) and the one-phonen con~
tribution §; (1) for Na at T=0°K and at 7 =90 °K along
o0

. (ggz ;210) =S(E)[f. 6. (4.2)

Here £,(k) 1s the Fourier transform of the average
electron density of an assumed neutral atom, and
we write (and shall continue to do so) S(k) in place
of Sm(k) Both the 1ome (Na*, Li1*) and the atomic
(Na, Li) form factors were taken from Ref 28
The Geldart and Vosko® modified form of the
Hubbard dieleciric function e(k) was used, as well
as an empty-core pseudopotential to represent the
effectwe eleciron-10n mteraction,® Figures 1-4
show S for Na, and Figs. 57 show S{&) for both
1sotopes of L1.*! We present both cross sections
W and W, for Na {(at 7=0°X} m Figs. 8-11, and

m Figs, 12—-14 we show W for Li (at T=0°K) with
two chorces-of the core radms appearing in the
empty core pseudopotential.

The most noticeable feature of the strueture fac-
tor plots 1s the sizable structure between the
Bragg peaks along all directions excepi the [100]
and [110] directions (for a bee lathice). These
maximg are a direct consequence of the behavior
of the one-phonon term.*? Theiwr occurrence is

200 *

| 501
MNa

—

S(k) (Absolute Units)
o
S
T

000 L L 1 1 L
ocg 0350 100 150 200 250 300 Q

. %27 41,100

FIG. 2, Structure factor S(K) for MNa at T'=0°K and
T=50°K along [11.0]

200
®
< 1501
=2
o Na
5
& 100}
=
12 o50- : 1=0'K
e T=90°K
000

300 400 500 600 Q
=B Qo

000 100 200

FIG. 3. Structure factor S(K) for Na at 7=0°K and
T=090°K along [111] .

completely general, and has been noted for quite
some.time.®® For the sake of simpheity, however,
we can most easily explain them 1n terms of a
(polarization-independent) Debye model. Here (at
T=0°K),
520 /2 i 1

S, (k) e ZMk :\F-(?{-)—) (4.3}
where w(g)=cq is mdependent of polarization and
¢ 15 the approximate speed of sound. We have
plotted in Fig. 15 Imes along which the function
1/¢|G()| has constant value for a (001) plane of the
reciproeal lattice of a bee erystal. In any direc-
tion (except [100] and [110]), and as a consequence
of periodicity alone, the one-phonon term displays
secondary maxima as one passes over the ridges
of the function shown, Replacing Eq (4 3) with
Eq. (3.15) introduces three frequencies (one for
each polarization 7 at b every poimnt, each weighted
by the factor [k *8(;E(K)P. For example, Fig. 15
would indicate two secondary maxima between the
pomts® (0,0, 0) and {3, 1, 0), whereas Fig 4 shows
only one. The value of the one-phonon term ai the
point alongl310] marked P on Fig. 10 1s determined

200

2

£ 50t

2 Na

3

Q

3 100

=

13 o

» 0501 T=0°K
T=00%K.

000! 1 1 ] ] 1 ]
Q00 150 300 450 600 750 900 Q
¥ £ a(3,1,0

FIG. 4. Structure factor S{K) for Na at T=0°K and
T=90°K zlong [310].



14 THERMAL DIFFUSE X-RAY SCATTERING IN SIMPLE METALS 453

2350

200

1]
=]
T

1 O} Sy

-

Sk} {Absolute Units)

050 i/

000 I 1 L \
Q00 100 200 300 400 500 600 Q

2
®= £2q(1,0,0)

FIG 5. Structure factor S(K) for 51i and "Li at T=0°K
along [100]

by the phonons at the point §= (3, 3, 0) m the first
Brillouin zone. At (3,%,0), Na has an anomalous-
ly low transverse frequency.” Furthermore,
smce 15 nearly perpendicular to the {310] direc-
tion, the factor 2.[8(;) K] will select out the
transverse frequencies, The resultimg smgle,
large, maximum swamps any other effects Thus
we see that any paricularly low phonon frequency
will cause a seguence of one-phonon maxwma along
the appropriate direction. This property of the
one-phonon scattering has been widely used to
study soft modes,® but the discussion 1s often set
1 real space., In terms of identifying the maxima
with a particular vibralional mode we see that it
15 advanfageous to treat the problem in reciprocal
space,

The comparison of W and W, for Na m Figs.
8-10 shows that at large k the only significant dif-
ference is a shift arismng from the term Se(k) in
W, which 1s a constant for 2>2k,. However, at

-
o
o

T

S{k) {Abssiute Unlis)

050
Tt
T=0° K
o ks 1 1 — 1

0l
000 050 |00 150 200 250 300 3500
¥=ZZq1,1,0)

FIG. 6. Structure Factor S(K) for 514 and L1 at T=0°K
along [1140].
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FIG 7. Structure factor S(E) for ®Ly1 and "Li at
T=0°K along [111}

small k Fig. 11 shows that the presence of S, (E)

1 W contributes to a du_fference m shape between
W and W,. The small Kk portion of the x-ray cross
section (thh only ionic Compton scattering sub-
tracted out) thus gives us mformation about the
conduction electrons.’® Note also that for Na the
presence of the pseudopotential »(k) in W seems
to make little difference in the final cross section.
This 1s not so for elements of very low atomic
number. For example, m Figs. 12 and 13 we plot
W for "1a at low values of k for two cholces of
the core radius appearing in the empty-core pseu-
dopotential.’” Thé mazimum percentage differ-
ence 18 shight in both cases, bhut m Fig. 13 the
actual shape of the one-phonon maximum 18 no-
ticeably altered. In fact, the dufferences hetween
pseudopotentials will always be most noticeable m
low-k one-phonon maxima. In order for v(k) to
have any mfluence in Eq. (4.1), we need to have _
k <2k, (otherwise y, 15 exceedingly small) and S(k)
to be not foo small, Figure 14 emphasizes this
powmti: Here we plot W- Se(k), 50 we subtract «ll

2000

15 00|

W (k) , Wolk) (Absoiute Units)

1000
t
W
500
t
T=0k W
000 L 1 . ' s L
Qo0 100 200 300 400 500 s00 Q
k=2 201,000

FIG. 8. Cross sections W(k) and W, (k) for Na at
T'=( °K along [100].
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FIC 9 Cross sechions W(K) and W, (E) for Na at
T=0°K along [110].

the Compton scattering. What remams shows =
marked dependence on the pseudopotential.

We should dlSC‘LtSS the relative composition of
the TDS [1.e., of S$(&)]. Figure 1 shows the con-
tribution of the one~phonon term, and we see that
at large K the many-phonon terms become quite
important, From Egs. (3,11} and (3.13), we have®®

Sj,(E) =@ katahop(0) /2 ghakphos0d/z 7 _ %ko: I Aaﬂ(o)]

3+ Z o-TkX, gmhotgh op01/ 2
170

Pre [ek&kﬁ"" aﬂ(ii e _ 1- %kkaAuﬁ(-}E;)]

(4 4)

From the Appendix we also note that for Na,
'I‘rAaB(X )= TrAaa(O) (for X #0) Typically at
least 90% of S,(k) 1n Na comes from the first term
m Eq (4.4), 1 e,

S (B ~1 —e*ratphap@ /21 4 A _(0)]  (4.5)

in Eq (4.5) we have confirmed a well-known ap-
proximation (Eldridge and Lomex®).

In spite of the fact that the X sum m S”(k) con-
verges roughly as E (X,)°%, we have found 1t ade-
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FIG 10 Cross sections W (i) and W, (K) for MNa at
T=0"K along [113],
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FIG. 11. Cross sections ¥ (k) and W, (&) for Na at

T=0"K along [100] Note the expanded vertical and hori-
zontal scales, and the position of £ =2k .

quate to take only mmne shells (136 vectors)*m the

um. [Takmg only seven shells changes S(k} for
Na by considerably less than 1%, for example.]
This can be understood by noting that

TrA &)< TrA , K )< Trh 4 0), (4.6)

where i and i are typical vectors in the first

and mmth Shells. The pomnt 18 that the asymptotic
Limit of AQB(X } (<1/X2) 15 only reached at large
X where the structure factor 1s almost mdependent
of the contmbutmn of the remaining shells. In ad-
dition, the X sum actually converges more quick-
ly than 27, I/X“ smce the term e B%s 1n Fy. (4.4)
mtroduces (except for E=K) considerable self-
cancellation

L(T=0°K)

S
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=200
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1 1
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2m
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125 @

FIG. 12 Cross section W(E) for "Li at T7=0°K along
[114] for two different values of the core radius, », =1.06
and 7, =2.00. Note the expanded horizontal scale.
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V. DISCUSSION

The extension of our method of calculation of
the 10nic structure factor to systems without cubic
symmetry and to systems with a basis is complete-
1y straightforward. (Special points-have been
found® for systems of hexagonal symmetry, and
they can be generated for systems of any symme-
try.) The occurrence of one-phonon maxima 1s
equally general. The ability {o caleulate the
A,,B(fg) by a procedure which avoids a difficult
three-dimensional numerical integration should
prove valuable 1n a variety of contexts, includmng,
for example, the self-consistent harmome theory
of phonons!? and the computation of statie lattice
Green’s funchions.®®

Much of the theory of x-ray scattering from
simple metals presented in Sec. II can be extend-
ed to liquid metals. Egelstaff, March, and
McGilI*® have derived a formula for the x-ray
cross section in higquid metals that 1s 1dentical to
Eq. (2 8), except that they do not make the adia-
batic approximation mn the terms involving the cor-
relation of conduction electrons with the 1ons.
Makmg that approximation, and mtroducing the
pseudopotential v(E), we conclude that Eq. (2 12)
15 as vahd for liquid metals as 1t 1s for erystals.

[ 50F
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|.25}-
2 re=2 00
[
o | 00F
o
=
E
g O 751
=
‘g 050
TLi{T=0"K)
025
OOO ] 1 1 ]
000 ©025 050 075 1000Q
T=2Zqu,

FIG. 13 Cross section W{(EK) for "L1 at 7=90 °K along
[111] for two different values of the core radwms, 7, =1,06
and 7, =2.00, Note the expanded vertical and horizontal
scales

| 0OF T "
W
5
L °750 TLi(T=0°k) )
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]
§ 050k
—_ ) r.=1 06
to ¢
o« 025
|
= re=200
= 00 1 i I 1
= 000 025 050 075 100 Q
- 27
k ="a"Q (LI}

FIG. 14. Cross section with all Comptoh scatiering
subtracted, W{k) -5, (&), for "L1at T=0°K along [111],
for two different values of the core radius, 7, =1 06
and7, =2 00 Note the expanded vertical and horizontal
scales.

Finally, our caleulation has neglected possible
anharmonic effects, Those anharmonic terms
which are retained m the self-consistent phonon
theory'™ are m a sense taken nto account here
The formalism we have presented 1s not altered
by using the self-consistent theory, but the fre-
quencies are changed from their harmonic values

S

[010] —

FIG. 15. Lanes of equal value of the function 1/¢|q (k)|
in a (001} plane of the latfice reciprocal to the bee laitice.
R 1s the pomnt (2n/a}(0,0,0), P the point (2n/2) (2,2, 0},
and § is the point (2r/a)(3,1,0), where a is the laitice
constant. The numbers 1.00, 0 50, 0.33, and 0.25 indi-
cate the relative value of the function.
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In the case of sodium, this change 1s small,?®

I Other anharmome effects are not taken mio ac-
count For example, the interference between
one- and two-phonon seattermg can cause a no-
ticeable change™ m S, (%) As shown by Glyde,’
however, 1t amounts to only a small shift m the
one-phonon scatiering for Na at high temperatures
Simce both the anharmonie frequency shifts and the
wmverse phonon lifetimes become guite small at
low temperatures,® the size of this contribution
should decrease correspondmgly Interference
effects, as well as other effects due to anharmoni-
city, may of course be of somewhat greater 1m-
portance in the case of hithmum

APPENDIX

We briefly review the special point method,®®
which was designed for the mtegration of quan-
tilies varymng slowly over the first Brillouin zone
Here, by a slight modification, we use it to eval-
uate the integral of oscillatimg functions [see Eq.
(3.7)].

The general integral {o be evalualed 1s

133 )
¥ L@ =55 2ar®, (a1)

where f(q) is assumed to be invariant under the
operations of the crystal point group, and &, 1s
the primitive cell volume, [If f(§) 15 not symme-
tric, it can, of course, be easily symmetrized.]
One expands f(7) in symmetrized plane waves

A, @:

FD=1oe 22 1@, (a2)
with "

A, @= E ¥ (43)
and i

Fom i L, P @4,@. (44)

i; m refers to all lattice vectors X with the same
length X that are related by point group opera-
tions. N, 15 the number of vectors in this mth
shell, and the sum 1 Eq. (A2} 15 ordered so that
those shells with lowest X come first

A set {d,} of special pomnts 1s defined as a set of
n points m the BZ with associated weights o; which
satisfy

n
Y @A, E)=0 form=1,...,N, (45)

=l

Zn: a,=1. (A6)

Using Eqgs. (A5) and (A6) in Eq. (A2),
fo =21 aif(a:) - 21 a:AN-tl {Ei)fﬂ'ﬂ K (A7)

Smce f, 1s the desired ntegral, Eq. (A7) gives an
approximation to the mtegral consisting of an
evaluation of () at a (small} set of points 'The
first neglected term can be shown fo be zf,;.
Not all coefficients £, for » > N-have been neglect-
ed, as Eq. (A5) is always satisfied for an mfinite
number of shells, The index of the first shell for
which Eq. (A5) 18 not satisfied 1s N+ 1. With m-
creasing number of points » m the set, both ‘he
mumber and the magnifude of the neglected terms
become smaller.

At T=0°K, Trh .(0) mEml/w(ﬁi) 15 a smooth
function, and we may apply the special pont meth-
od. Although the expansion coefficients £, de-
crease slowly with mereasing m for large m, they
are much smaller than TrA,4(0) itself. Thus we
expect mereasing the number of special points »
to have a small effect on TrA,4(0). From Table
1 we see the convergence 1s more rapid for T
=0°K than for T=90°K. _

The caleulation of A(X,), X, #0 1s more trou-
blesome, and we 1llustrate by examining the trace
of thIS matrix, Symmetrizig the infegrand of

aa(xi)

BZ

TrAas(?c,)ocE (A8)

(Jq)

Applying the spec1al-p01nt method to this integral
means neglecting some of the coefficients 7,
whose form 15 (we are at T'=0°K)

BZ
— 1
Fo = 22 7y A (49)

Now A A is itself a sum of symmetrized plane

TABLE I M'=42k" A’ (in umts of 107%) (R
=§(2kF) Tr AOCB(R) {in units of 107, A 1s the number
of speeial points (Na, 7—0°K)

N=8 40 240
MNT=0°K) 3.4367 3 4762 3 4832
MHT=90°K) 7 9897 8 5890 & 8258
M{E=(1,1,1)) 1128 1134 {133
M{E=12,0,0)) 0 538 0 541 0 540
M(R @,2,00) 0 283 0 261 0259
M(R 3,1,1)} 0 240 0 223 0221
M(R 2,2,2)) 0473 0479 0 477
M(R 4,0,0)) 0.174 0.167 0164
M(R (3,3,1)) 0.169 0.152 0148
M(R {4,2,0)) 0140 0 099 0 085
MtE=4,2,2)) 0.116 0.137 0113
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e

waves

A@4,@= Xa,6,m)A4,@, (a10)
where the.first j-for which a;(7, ) #0185 that for
which X;=[X, -X,| From Egs. (A8)—(A10) 1t is
clear that the F., for large m will be much less than .
TrAcﬂ(X Jonly if the F, themselves decrease rapid-
ly with increasing sz This, however, is not the
case, for just as in Eq. (3.16),

BZ
o) 53 22 (3 gy ooleatsD) - @] cosCi-R o i 3. Mas@ 05 ),

and compute the first integral by the special pomt
method. Since the imtegrand has no troublesome
1/g behavior, its expansion coefficients f, should
then decrease rapidly, and the number of special
pomts then needed for an accurate determination
of A, B(_}E,) should be (and 1s 1 fact) correspond-
1ngly small.

To simphfy the calculation, we have actually
only treated the frace of A,(X,) m the above fash-
J.on, subtracting off a function M(d) whose behavior
as 0 is approxumately that of $27,1/w(sd. {As

b\
lim ZWA{(E) X7 (A11)

(_'n q
The origin of this behavior is the 1/4 behavior of
1/w(3Q) as q~0 (see Ref. 18 and Schober etal.,
Ref, 39)

To circumvent this difficulty one must find a
matrix M as('c]) whose behavior at the origin 15 the
same as that of 27,{1/w(79 e, (70)es J&) and which
leads to an mntegral [ ,,d3%q M (O cos(d+X), which
can be evaluated analytically. Then we write

(a12)

4-0, 23,1/w(3§) ~ 1/d(%)q, where d(3) 1s 2 function

of direction. We have approxmmated 4(g) with
[22; fa /e, ()T, where the ¢,(§) are the three
speeds of sound.} Tables I and I show the ele-
ments of AaB(X ), for X m the first nine shells
(T=0°K), TrAaB(X ), and A (0} for T=0°K and
T=90°K, Three different {(bce) special pomnt sets
were used, with n=8, 40 and 240. Although one
can only expect TrA“B(X ) to converge well, the
individual matrix elements also show good con-
vergence.

TABLE II Maﬂ(ﬁ)=%(2kp)21\a5(ﬁ) (i umts of 10®) N 1s the number of special pomts (Na,

T=0°K)

N M, M, M,, M., M, M,

B=(1,1,1) 8 3.754 2 610 3,754 2 616 2 610 3754
40 3 780 2.664 3.780 2 664 2.664 3 780

240 3 778 2.666 2778 2 666 2 666 3.778

R=(2,0,0) 8 0 822 0 2 278 0 0 2 298
40 0 716 )] 2 345 0 0 2 345

- 240 0 708 ¢ 2 345 0 0 2 346
R=(2,2,0} 8 1278 0 698 1278 0 0 0 270
40 1215 0 740 1248 0 0 0184

. 240 1.207 0 744 1.207 0 0 0181
R=(3,1,1) 8 0.745 0 225 0 842 0 225 0 316 0.842
40 0 557 0 230 0 836 0 230 0 444 0.836

- 240 0 541 0.233 0.832 0 223 0 448 0.832
R=(2,2,2) 8 1.578 1039 1.578 1038 1 039 1 578
40 1 598 1123 1 598 1.132 i.133 1.598

. 240 i 589 1139 1 589 1139 i139 1 589
BR={(4,0,0) 8 0 581 0 0 581 ] 0 0 581
40 0212 0 0 727 0 0 o 727

- 240 0186 ] 0 730 0 0 0 730
R=(3,3,1) 8 0 680 0 528 0.680 0 073 0073 0331
40 0.668 0.458 0.668 0 120 0120 0.188

. 240 0.653 0.464 0.853 0 125 ¢ 125 0.179
R=(4,2,0) 8 0 465 0275 0.465 0 0 0 465
40 0 356 0.167 0 400 0 0 0234

- 240 0 331 0.171 0391 0 0 0 227
R=(4,2,2) 8 0.388 0 304 0 388 0.304 0 0 388
40 0.386 0 208 0 491 o 208 0 303 0491

240 0.363 0 214 0.482 0.214 0.314 0 482
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A curve of applied pressure P versus lattice constaat ¢ 1s calculated for single-crystal alumunum. It resuits
from an application of the method of structurat expansions for denving the enerzies of simple metals, 2
method known to give reasonable results for the elastic constants even at second order in the effective electron-
ton mteracton The latter (in the present caiculation) 1s taken from Fermi-surface analysis and 1t 15 venfied
(wath this essentially expertmental information) that the extant face-centered cubic structurs remains the
preferred crystalhine phase up to the mghest pressures considered. Arguments are given to suggest that tne P
versus ¢ curve should have reasonable a priort accuracy, and can admat of possible improvement if
expenmental data 1n the mtermediate-presssire region can be provided to refine the {in pnincple) energy-
dependent pseudopotential. At three megabars the lattics constant 15 reduced by only 22%; the 10n corss at

this pressure are still very well separated.

I INTRODUCTION

Among the sumple metals, aluminum is 1t many
ways one of the simplest, being cubie close packed
under normal conditions and possessing 1on cores
occupied by electrons 1n lavels of s and p sym-
metry., It 1s mainly a consequence of the latter
that 1ts nearly-free-electron band structure can be
mterpolated so accurately by a spatiaily local
pseudopofential, a feature which distinguishes it
somewhat from the alkal: metals. Although the
Fermi surfaces of the alkal: metals are a gooed
deal simpler than that of alummipum, the apparent
complexity of its multiply-connected Fermi sur-
face can be used to advantage 1n a study of the
transport properties at high pressure. This will
he the conient of a later work; for the present we
are concerned with the equation of state of Al, a
necessary preitminary in discussing the depen-
dence of transport properties on pressure.! Ef-
fects of temperature (for normal conditions) are
quite small, and our aim here is therefore to ex-
press the equation of state in terms of pressure
versus lattiee constant. Such a relation can only
be considered potentially useful if no crystailine
phase changes are likely to occur.? We show by a
series of arguments that the common face-cen-
tered cubic phase of Al appears to remain the
stable phase for pressures exceeding 3Mbar. In
terms of the lattice constant (or equvalently the
7 electron spacing parameter) these colossal
pressures represent a rather modest change of
around 20%. The electron density 1s increased,
but not greatly. It 1s not unreasonable to suppose,
therefore, that the method based on structural
expansions about the uniform interacting electron
gas will continue to funcnion as it does for the sys-
tem taken at more reasonable pressures The

12

method 15 summarized in Sec. II, and in the course
of discussing the standard second-order theory®
we comment on the importance of higher-order
corrections to the present caleulations.

Section IIT describes the application of the for-
malism to the problem of deciding which of several
possible simple siructures (1ncluding fce) will
possess the lowest Gibbs energy. For the ice
phase, a curve of pressure versus lattice con-
stant a 1s presented (Sec, IV); up to and above 3
Mbar, the changes in g are quita monotonic. Up
to about 800 kbar, our calcuations, based on the
method of structural expansions i & weak pseudo-
potential, can be compared direcily with the re-
sults of Ross and Johnson® who obtain the equation
of state of aluminum from an a priort calculation
of the band structure by the augmented-plane-wave
{APW) method.

We estimate that not unt:l pressures of over 100
Mbar are reached will the ion cores of Al be sub-
stantially contiguous. This 1s a very different
situation from the one prevailing in 1wone ¢rystals
where the pressura secale 15 founded largely on
assumed short-range interactions.® Although the
atomic number of Al i1s relatively low, it may
compete reasonably well 1n x-ray scattermg power
with NaCl and may, therefore, be an alternative
candidate for calibration and use as a pressure
scale.

Ii. ENERGY OF SIMPLE METALS

On account of the compactness of its 1on core
(and the absence of filled d ~-shell leveis) the
pseundopotential in A}, aithough energy dependent
to a small degree® 1s remarkably local and pro-
vides an excellent interpolation to ¢ prtor: band

. structures. Invcking an adiabatic approximation,

LY
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12 ALUMINUM UNDER HIGH PRESSURE. I.

we shall take 1f that an 1on of the dynamic laitice
of Al carries with it a bare pseudopotential, (k)
known (at the Fermi energy) from Ferm: surface
analysis.” It 1s a function which as is well known
osciilates i sign as k& increases, a fact which
reflects the finite size of the Al 10n core Sinca
we shall shortly need to consider the.possibility
of corrections arising from dynamic lattice effects,
it 15 convement to set down a Hamiltonian for the
electron system that 1s written® for instantaneous
positions TR) of the 10ns near equlibrium sitas
R, i.e.,

H=Hye+Hy+Hyy, (1)

where for the present H,, can be taken ag the
standard Hamiltoman for the interacting eleciron
gas (uniform compensating positive background)
and the lomc Hamiltoman Hy leads to the
Madelung energy N £, of point ions. In rydbergs
1t can be wntten {for ZN electrons)

ZNE,= E TSE-1], (2)

g

where for the ions n a volume V the structure
factor for the ionic system 1s

S(RY = (1/NX Fgb_3) ~N0g,0 » (3)
with
FTR)
oE= Z e’ ]
7

and the average in {3) being taken over the states
of the erystal. The final term n (1), H,,, 1S the
electron 1on interaction i which it 1s.convenient
to inelude the largely compensating zeroth Fourier
component of all the long~range interactions; that 1s,
a term E, which although independent of structure
18 always difficult to calculate from first princi-
ples. It can, however, bhe elhiminated by exploiting
a fragment of experimental mformation such as,
for example, the eqmilibrium density.®
Accordingly we write

Hyi=Eo+ 3 Bro®Fs, @

kg

where for the electrons the density operator is
written

Fa= Y e 5

We turn first to the static lattice case for which
the contmbution of £, to the thermodynamic func-
tion 1s known, at least for most simple siructuras.
The problem of caleulating the energy of a sumple
metal then reduces to an expansion {relative to the
styuctureless electron gas system) 1n orders (be-
ginmng at the second) of &,;. Swince the onie cor-
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relation function [for example, S(K)] are then 6
funetions on the reciprocal lattice they reduce the
resulting summations 1n the perturbation series
fo lattice sums. Thus, in addition to the ground-
state energy'® from H,, (and E,) we have, as the
first term of the structural expansion, a sscond-
order band-structure contribution £ of the form

E@ =3 Y R ®/ (R (6)

(&1
[K] reciprocal -lattice set,

where ¢(K) 1s the dielectric function oi the mnter-
acting electron gas and yV(K) its (static) first-
order polarizality. At this level of approxima-
fion the internal energy 15 then

E:(Ee‘TEyTEO) -'I-E(z), (7)

and 1t 15 1mteresting, before proceeding further,

to examine their relative contributions to the pres-
sure at a2 gwen volume V, or what 15 equivalent, a
mean electron spacing v, (V/NZ =(r,z,)%$z]. Table
I shows!! that as pressure imereases the contri-
bution from E(® becomes progressively a smaller
fraction of the total. Since we know® the ground-
state energy and compressibility of Al to be quite
well given near P =0 by (7) and its derivatives, we
may conclude that even at high pressures the high-
er-order band-structure contributions to E are

not likely to be an mnportant factor in limuting the
aceuracy of a calculation of P vs 2. The most
sigmificant of these corrections is the third-order
band -structure energy. If the electron gas 1s
treatad, for example, within the random-phase ap-
proximation, this tarm can be written®'!®

vR) v v(E - §) LR R E-F 8
32 K)E(K')-——_EK Zh (K, K', L, (8

where x( 1s the second-order polarizability of the

TABLE I, The guanhities Ey,, £y, and E, are present
at any order of the calculation and are convenient to
group together 1n the comparison of the relative pressure
contmbuticns. The first column gives an estimate of the
pressure n Mbars) from E, ~£y ~E, and the second
column for E“g Energies are given m rydbergs.

Ts P (B, g+ Ey -E,) P (£

2.07 0.48 (-1.29} -0 48 (—0.097)
1.9 1,39 (—1.24} =1.07 (0 138)
18 2.38 (—1.189) -1.62 (—0.176)
1.7 3.95 ~1.110) —2.37 {~0.227}
L6 A7 {—0.993) —3,35 {—0.292)
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electron system. As remarked earlier, u(E} for Al
(and indeed any non-point-ion system) a2iternatesin
s1gn &s its argument mereases and, as 2 conse-
quence, there :s substantial self cancellation 1n
(8). Furthermore, relative to §p, the |2(X)| are
considerably less than ~Q ! (for example, {v,,/&|
=0.0209, and |v,,/Sp[=0.0657). It follows that
the higher-order band.-structure energies are quite
small in comparison with 2. This has already
been noticed by others,' although we must recog-
maze that the derwatives of the higher-order terms
(in the elastic constants for exarple} need not al-
ways be ummportant.

As far as a caleulation of the pressure 1s con-
cerned 1t seems a reasonable approximation to
negleet the migher.order band-structure energies.
The approximation would appear less justifiable 1n
the calculation of the ground-state energy for vari-
ous crystal structures. Buf in fact it remains
numerically valid. The concern 1s that differences
i Gibbs energy for different crystal structures
are quite small, about 4—6 mRy between hep
and fee per electron if calculated with a2 second-
order expression. And these can be less than
typical third-order energies. However, we need
not the absolute third-order energies, but their
differences for different structures; these are 1n
turn smaller by about an order of magnitude. We
shall see in 2 moment that inclusion of dynamic
effects are likely to reduce the third-order differ-

- |

k-R _§

RR/R"

ences still further, so that a calculation of the
energy at second order 15 sufficient for the pres-
ent purposes.

Relaxing the static lattice assumption requires
{a) the mclusion of phonon energy term, if indeed
the excitations are to be described by phonons, and
{b) the reintroduction in (6) and (7) of the corre-
sponding 1ome correlation functions, for example,
S(®) [Eq. (3)]. I T(R) 1s the displacement of an
ion from site B, then

=1 T h-L W P SRR T )
S(k)*ﬁ -iZR' e <€ =4 )9 (9)

and if the G(R) may be developed as a Linear syn-
thesis of phonon operators, 1t follows that™

S(E)= I\EI E; TR bl [RABP

~[ERR)P
[EI@EaR)D,
(10)

and this replaces the sequence of § functions which
led to the lattice sum in the second-order term
{6). The correlarion function corresponding to

{(9) and appearing wm the third-order expression

15 easily seen io be of the form

D, R ERR gl _Y([RARP +([GARIP ~[@ BB

+ARTRGER)] - 2FTR)E «-TE)]
~AEFRE+DTRIDT, (11

which 1s straightforward to generalize to higner
orders.

For metals with substantial Debye temperatures
(in which category we may place Al)} one method of
handling (10) and (11} 1s to proceed by a mult1-
phonon expansion The zero-phonon ferm leads
immadiately back to (6) and (8). The one-phonon
term leads, when combined with the kinetic energy
of the phonon system,'® to the internal energy of
the phonons. The remammng multiphonon terms,
as 1s known from the analysis of thermal diffuse
X-ray scattering are guite small. Thus we may,
with 2 sufficient accuracy, treat the phonons in-
dependently of the slectron system and calcuiate
the Gibbs energy of the latter assuming a rigid
lattice. The internal energy can then he written

E=(E, -E,+Ey) "‘E(azs) *‘Eph, {12)

where E™ 15 the internal energy of the phonon sys-
tem,

1l STRUCTURAL CONSIDERATIONS

From the known Fermi surface of Al (and the _
assumption of a static lattice) the values of oK), K
={1,1,1,),(2, 0, Q) can be extracted and these can be
interpolated and extended by an empty-core pseun-
dopotential [v(g)=(-87Z /2% coskr,]. The range
of validity (in k) of such a simple form i1s quite
sufficient to assurs convergence of the sums in
{6), and hence of the band-structure energy Since
v{k) is a property of the 10n we may repeat the
procedure at any chosen volume or density As-
suming for the moment that this 15 fixed we must
examume the structure-dependemnt terms in (12) as
the ions are rearranged n a variety of possible
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crystal structures.

To begin with we consider the electronic terms
(and Madelung energy) and allow ourselves at this
point the freedom of a structure with a two atom
basis. The task 1s to ascertain which of the struc-
tures (at least, which of the sumple structures) 1s
preferred for Al: to this end we will select care-
fully a system of primitive and basis veciors
which will allow us continnally to deform between
different siructures by means of a2 smooth vari-
ation of parameters.'® Refer now to Fig. 1{a). We
take 3, b, and T as primitive vectors which are
wratten 1 the form

R=afs,0,0), bB=alo’, £ 0}, T=a(0,0,n). (13)
Direct lattice vectors are then written
-R‘. =7£-3-. +PETQE.

We take the basis vectors

2 T
3 b
{a}
fee bece
R aff &1
g a . Z 1 el
11™0 % )
® Y
5,
1)z 2 12 pwet
39 2 |2 pw=
6] /; c-ufS
I 7 PR o
— el ‘,Ba
tife =
T3 (&) gty i
a /2 Al o
g 2 e
z « a Sy
hep
S u v W
s¢ | & lomitrary |eroitrary |arbitrary
bee | 1 | Q |
fee |1 Z ¢ 1
'ggg’ | |arbitrary| L i
hep | F |arbdrary | tr2 *1

{c)

FIG. 1. (2) General structure defined. (B} Some
particular cases and representanons of confimiouns one-
parameter transformations of them inio each other. (¢}
Values of the parameters for these particular cases.
The parameters ave defimed by Eqs. (13)~—(15).
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B,=0, B,=T=%a(2s-1, (2s -1}z, 7). {14)

In (13} and (14) the parameters v’, £, 7, and £ are
chosen in the following way:

v =(25 - 1)v,

E=y —v(2u =V3)+(1 =s)[1 = 2u +20(2u - V3)],
n=w + 20w T -1) +2(1-s)[1 —w - 20w (/I -1)],
t=u - -1/v3), (15)

withs, u, v, w taken as independent parameters.
Transformation (15) is only one of many ways of
continually deforming the standard simple crysial
structures., We have selected it because it permits
us to examine single-cubic {sc), face-centerasd
cubie (fce), body-centered cubie {(bee), and hexa-
gonal closed packed (hep) with variable (c/a) ra-
tio. As an example, note that when s=% we have
{whatever fimite values %, », w may assume) a
simple ~cubie structure. On the other hand, if
s=1, v=0, and w =1, the structure is fce for
u#=V2, and bee with 2 =1. Further, £s=1, u=g,
and w =1, we have hcp with 1deal ratio. These are
summarized on Figs. 1(b} and 1(c), Although it
cannot be deduced simply from the results we shall
give, 1t 1s interesting to note that the transfor-
mation we have chosen moves the atoms 1n a very
natural way, keeping them well apart, and pro-
ceading as directly as possible from one structure
to another. In a sense we are moving the atoms
along valleys in the energy-structure spacs.

The lattice reciprocal to {13) is spanned by
primitive vectors

A=(2r/a)1/s, v’ /sE,O),
B=(2r/a)(0, 1/¢,0), (16)
C=(27/a)(0,0, 1/7),

and the reciprocal-lattice vectors are
K=hA~IB-mC,

which we use to define in Al (Z=13)
=(22)7'K,

“N\Y3[ 2 (l -hv' /3 )2 mz]tlz

x= (lsgn) T +or
6z L5 2 m

With the choce of basis given mn (13) the strecture
factor, per 1on, 18

(17)

H1l+e™8),

where
B=R-T=n{h(2s-1)/s
+(l=hv' /s)(25 - 1)&/E +~m]. (18)

Accordingly, the band-structure energy (InRy/elec-
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tron) becomes

1 ki x2
(2) _1\7E 2 014 .
E'¥ —EZ (_e(:'c) 1)"8‘;7?11)(9:){ (1 +cosB). (19)
in {19), €(X) (the dielectric function of the inter-
acting electron gas) can be written

€(x) =1+ (33/) f()glx); A*=1/(7azks),

with

Fla) =2 +14“?"f In

1+%

1-.xp

and g(x,r,) a correction for exchange and corre-
lation. We have not found the latfer to make any
unportant correction in the matier of deciding
between relative structures at second order.

Using Ewald’'s method we can determine the
Madelung energy n the standard form (again in
Ry/electron)

Ey=CyZ%%r,. (20)
To find Cy, we normalize the direct latiice veciors
by the Wigner-Seitz radius

_,cz/pz
K /P?

ot

—2—;—5 (1 +cosf)

3
Cw--?—r P 2T

37 t

where P(>0) is Ewald’s dimensionless parameter
and erfc dencies the complementary error func-
tion. Then at second order, we evaluate (12) by
using (6) for EG? [with v(K) there replaced by
3(1+¢™'8)y(K)] and (20) and (21) for the Madelung
energy. For a given structural choice (corre-
gponding to a particular selection of 5, u, v, w) we
determine E, by the zero-pressure condition
(aE/a-rs),so:O. Expressed as an energy per elec-
tron, E,; always has the form

a/(Zars),

where a 18 a property of the 1on alone and 1s as-
sumed not to alter under reasonable variations of
density. Sinee the totzl energy near zero pressure
contains small contributions from the omitted
higher-order band-structure terms, the imposi-
tion of the zero-pressure condition forces their
mclusion in a crude way through the choice of .
To the extent that these terms are not sertounsly
density dependent the subsequent use of this «
will therefore continue to wncorporate such terms
If one takes the Nozidres-Pines form for the cor-
relation energy,” 1t is easy to see that

o =%{?§0[0.916 +Z¥3C , +0.0317,

8E (2)
*fio( o )rm]_4.42rm ,

(22)

P _erfe(zPt) _
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Ty = (358n/8m) g,
1.8., we define
p =R/ Yws»
Where
p=(8r/3sEmM [ (ns+pv')? +p°8 +q707 V2.
Similarly, put
T=T/rys
where
I3 +t=@8r/3sem {ns+pv ' +:(25 - DF

<[pE+5(2s - 1)) +(g +3)0%/?
Finally, put
G =7ysK,
with
G=20Z /4" %,
then

(21}

erfc(}Pp) _erfc3P{5 1))
Z( o 5t )

p=a

1)
where for the fec structure observed for Al i its
ground state® r,,=2.0647. What 15 required m
(22) 15 EQ(r,), and this can be calculated by a
combination of a direct numerical summation
{out to a chosen reciprocal-lattice shell) augmented
by integration {or the remainder This remander,
designated by S(x,, r.) (where x, 13 the radius of
the shell) is independent of structure and depends*
very weakly on »,. Iis contribution 1s mn any event,
auite small. At r,=»,, and for x;=2.5 we find
§=0.005 Ry/electron, which amounts to 3% of E(E
and 0.4% of E

IV ENERGIES AND PHASES RESULTS AND DISCUSSIONS

In Fig. 2 we show a selection of the resulis we
cbtain for the Helmoltz free energy E 2s the crys-
tal structure 1s continuously defermed from fee to
hep {c/a =J§-‘ }. In this example fee 15 lower n
energy at all densities considered. This result
remains true for other structures, the two that
are always closest m energy (at least of the sumple
structures we consider) being fee and hep. Itisa
straightforward matter to compute the PV term
and, hence, 1n the ground state the Gibbs energy
for different phases We find fec AL (with an as-
sumed static latice) to have the lowest Gibbs
energy and to be the preferred structure, even up
to theoretical pressures in excess of 3 Mbar
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Conirbutions to the thermodynamic functions
from the iomc degrees of freedom can be estimated
from the Debye model; in particular, the zero-
point energy 1s of order %kBGD per electron (about
0.001 Ry)and for temperatures less than the Debye
temperature will remamn of this order.. Changes in
this energy accompanying changes in crystal struc-
ture will be much less than 0.001 Ry. The coniri-
bution of the phonons to the pressure is readily
shown to be (2y)nk;8,, wheren =§/V 1s the 1onic
density and y 1s the Griineisen constant, Even for
changes of 50% in the equilibrium value of n, the
phonons change the pressure calculation above by
at most a few kilobars. Figures 3 and 4 give the
Gibbs energy as a function of pressure for fee and
hep, and (for comparative purposes) as a function
of », for se, fee, bee, and hep. In Fig. 3 we plot
the pressure on a single crysial of Al (under pure
hydrostatic strain) as a function of 1ts latiice con-
stant @ (rather than r ) at a nominal temperature
of 300°K The equation of state given there may
also be appropnate to polycrystalline samples
under less than pure hydrostatic conditrons. It 1s
worth remarking that at 3 Mbar, where g=3.14 3,
and the nearest-neighbor separation 15 (1/V2)a
,=2.224, the distance between ion cores (takingthem
tohavearadusof 0 59 A)1s shll1.04 A, Forthe
pressure rangein Fig. 5 the energy (apd the corre-
sponding pressure) 1s dominated by the terms aris-
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FIG. 2. Hebmholtz free energy as a function of 7,
and v; the other parameters fixed at themr fce values;
varymg v here takes the structure from fec to hep.
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ing from eleciron gas, Madelung energy, and to a
much lesser extent, band structure. ZEnergies
arising from the direet overlap of 10n cores (so
called core-core exchange, or Born-Mayer terms)
are evidently not important, although it 15 con-
ceivable that at very much higher pressures {we
estimate they will be in excess of 100 Mbar) they
could be. This kind of term 15 difficult {o caleu-
late with confidence from first principles, and 1s
normally parameterized in an exponential form
(or even as a power law) 1 expressions giving 1its
contribution to the internal energy. In pressure
scales based on these forms, the concern (aside
from the 1mplicit pair force approximation} is that
the low-pressure determined.parameters may not
remain valid in a region of substantial 1on-core
wave-function overiap. At 3 Mbar-we have only a
22% reduction in lattice constant, and corg-core
overlap 1s still a small effect, 1ts neglect leads to
errors which will be far less important than those
arising from the neglect of, for example, the
higher-order band-structure contributions to the

p{Mmbar]

B o aga0325[A]
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FIG. 5. Pressure as a function of lattice constant for
the fec structure, and experimental points cbtzined from
reduced shock-wave data for two dilunte alloys (O 2024 Al,
0 921-T Al; see Ref. 22) assumng their zero-pressure
lattice constant 15 equal fo that of pure Al.

ENergy.

As far ags the use of Al in hmigh-pressure devicas
15 concerned 1t suffers from the disadvantage that
its atomic number is quite low It should, how-
ever, bevisible toxraysimadiamond cell, and the
curve presented in Fig. 5 is therefore amenable
to experimental test, provided, of course, that
sufficiently hydrostatie conditions can be arranged.

If a test of this kind were found to establish as
mimerically sound the basic curve up to, say, 0.5
Mbar (corresponding to ¢ =3.614), then according
to the arguments we have given about it would then
appear reasonable to accept the balance of the
curve leading to the ultra-pressure region.® An
independent determination of the pressure can also
be used to refine, for example, the form of the
pseudopotential used in the high-density regume.

It 15 worthwhile mentioming that the equation of
state obtained here agrees within experimental
error with the results m the rangs from 0 to 0 2
Mbar obtained by Roy and Staward.?* It alsoagrees
very well with shock-wave results for 2024 alum:-
num and 921-T aluminum up to 1.2 Mbar.*® As-
suming these dilute alloys behave as pure alumi-
num (with the same lattice constant at zero pre-
sure), we get from the reduced shock data the
powmts plotted in Fig. 5. Small changes n the
actual lattice constant are to be expected, and in
addition we must expect minor eifects from the
different pseudopetentials and valences of the
impurihies. But i homogeneous diiufe alloys these
can only displace the experimentzl points slightly
from those plotied mm Fig 5. Finally, our curve is
almest parallel to the corresponding one extractad
from Ross and Johnson's paper,® but is shifted to
the left by A(V/V,) about -0.06. Although some of
this difference may be due to numericzl inaccuracy
(e.g., the APW calculations take only 2 few points
in the fundamental symmetry element of the
Brllown zone) and some due to questions sur-
rounding the correct choice of local excnange po-
tential, probably the bulk of the discrepancy can
be traced to the different methods of handling of
the zero-pressure condition. In the method of
structural expansions,® the contribution to the
total energy of the zeroth Fourer component of all
the mteractions 1s eliminated with the zero-pres-
sure condition at the corresponding experimentally
known v, the a priore caleulations (such as those
it Ref. 4) seek to obtain every term 1n the ground-
state snergy from firsi principles.

The reasons for choosing Al (the paradigm of
small-core, close-packed-cubic nearly-fres-
electron metals) do not exclude other matals dis-
playing simlar features, and it may well be that
the principles leading to the choice of a metal
rather than an ionic crystal for the measurement



12 ALUMINUM UNDER HIGH PRESSURE. I.

of pressure, can be applied to metals such as In,
or Ph, providing, of course, that closar attention
13 paid {o problems arising from spm-orbit cou-
pling, nonlocal effects, and the nature of neighbor-
mg levels above the Fermu energy.
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Recent calculations of the ground-state energy of a system of four hydrogen atoms are re-
viewed from the pomnt of view of discernmg the short~range interaction potential between two
hydrogen molecules. Consistency amongst the results of these calculations suggests that the
potential for mtermolecular separations n the region 1-2 5 A can now be-specified to about -
10% with considerable confidence Analytic fits to spherical averages of these results are
presented TFor calculaiions of properties of hgh-density solxd molecular hydrogen, the
bare pair potential may thus be regatded as well determuned. The role of muliicenter terms
can then be examuned, as for example, recent reported work seems to indicate that pairwise

additinity 15 not altogether valid in practice

[ INTRODUCTION

The purpose of this paper is to review recent
calculations of the ghort-rangs, repulsive part
of the interachon potential between two hydrogen
molecules, Uncertainty in this portion of the po-
tential has led to widely differing determinations
of the equation of state for molecular hydrogen at
very high pressures, and contributed to variations
by more than an order of magnitude amongst pre-
dictions of the molecular to atomic phase-transi-
tion pressure.!™® We demonstrate 1n this review
that recent calculations® ~2® of the short-range
part of the.potential are in sufficient agreement
with each other as to suggest that this'part of the
potential may now be fairly well established Un-
fortunately, there are still significant discrepan-
cies with the Iimited experimental information
available 273 Mast of the caleulations that we
discuss have appeared m the chemical physics
literature, and many have been motivated by other
concerns such as the four-center exchange me-
chanism between two impinging hydrogen mole-
cules. Since this review is intended for a more
general audience, we have included a brief de-
scription of the so-called @b wmufzo techniques that
have been used. Ii is not the purpose of this paper
to give a complete review of the H, calculations,
and we refer the reader ‘to the paper by Rubinstemn
and Shavitt’ for a more thorough lList and disecus-
sion of the earlier efforts.

The orgamzation of the paper is as follows. In
Sec.II we dezcribe the ab wmtfzo techniques, and
in Sec. III the numerical results for the H,-H, in-
teraction energy that have been obtained with these
methods. Possible analyhe forms for the short-
range part of the potential are discussed 1n Sec.
IV In Sec. V we comment on the apphicability of
these various results to calculations of the ground-

8

state energy of molecular solid hydrogen Finally,
our summary is presented in Sec, VI.

II MATHEMATICAL TECHNIQUES

We deseribe in thig section the ab mufio tech-
niques by which the ground-state energy of 2
system of four hydrogen atoms has been deter-
mined. '™ It 15 customary to begin by making
the Born-Oppenheimer approximation and neglect-
g any zero-point motion of the four nuclei. The
nuclear position veectors R 4, and thus the geom-
etry of the system, are accordingly parameters
in the problem. The desired energy is then the
ground-state eigenvalue of the Hamiltonian

- 1 lga v 10 1
H_AZQRAB +§‘:( 2v' ;"'s.& +§"'u ’

K

. D

where the indices 4 and ¢ run over the four nuclei
and four electrons respectively, R, ;= [R,~R,l,
74a=|7; —R,|, and atomic units®? have been used.
The methods by which this energy has been approx-
1mately determined have in general been varia-
tional, *® and thus have given upper bounds. These
methods may be categorized according to the gen-
erality of the trial wave function used.

Heitler - London (HL})

The simplest caleulation would appear to be a
generalization of the well-known Heitler-London
approach for the hydrogen molecule. In the case
of four hydrogen atoms, one has

Py, = [ (abed) —(@bed) —(abed) + (@bed)], 2

1852
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(abed) = 777 24 (=1 PLx(1F,-Re DI TR X F-Re DX (F,-ReDa(0BR a(3)8(4)] , ®)
P
x(P)=(g3/ o)t etr, (4) mafe them. Because of the extensive cancellation

As usual, the §ivo Spin functions are indicated by
aand B. InEq (2), the bars placed over certan
letters mndicate the arrangement of the spin fune-
tions as shown in Eq. (3). The permutation oper-
ator P runs over all 24 permutations of four ob-

jects, and permutes both spatial and spin variables.

Since it is presumed that the ground state will be
an eigenfunction of the total spin with eigenvalue
zero, it is necessary to combine four Slater de-
termmants as 1s done 1 Eq. (2). This is a cova-
lent (as contrasted to ionic) wave function, in that
each of the four atomic orbitals (one centered on
each nucleus) 1s singly occupied. If one substi-
tues Eq. {3) into Eq. (2), the apimn functions may be
grouped in the form of a singlet state for the elec-
trons on nucler & and b, multiplied by a smglet
state for those on ¢ and d One considers this wave
function to describe a state in which covalent bonds
exi1st between atoms a and &, and between atoms
c and d. It 1s possible to construct two more cova-
lent wave funchons, corresponding to bonds be-
tween other pairs of atoms, although only two of
the three wave functions are linearly independent
The given geometric arrangement of the nucle:
dictates which of the three (if any) is the best
choice.

The Heitler-London wave function has no varia-
tional pai‘ameters (unless the effective nuclear
charge ¢ is varied), and so one must only evaluate

g H gun)
Ba= ol 9m) (%)

The interaction energy between molecules may
then be found by subtracting the energy of two
1sclated molecules—also calculated in the Heitler-
London approximation. This is not a trivial ex-
ercise, for two reasons. The first is that for a
general geometry, Eq (5) involves some 64 dis-
tinct eleciron-nucieus attraction and electron-
electron repulsion mntegrals ** Cancellation
amongst these various terms results in the mter-
action energy being one or more orders of magm-
tude smalier than the size of some individual
terms Second, simple analytic expressions for
the 39 three- and four-center integrals do not
exist, and only in the last ten years have thesen-
tegrals been accurately evaluated by rather elab-
orate computer programs ** In the early work,

de Boer® neglected three- and four-center inte-
grals altogether, while Evett and Margenau®” and
Mason and Hirschfelder® attempted to approxi-

mentioned, such approximation-schemes are not
reliable While giving reasonable dependence of
the interaction energy on intermolecular separa-
tion, the calculations of de Boer and of Mason and
Hirschielder, for example, overestimate the
orientation dependence by more than a factor of 2
We return to this point later.

N

Fulil configuration mteraction

The two linearly independent covalent wave func-
tions are referred to as configurations. Given our
set of four atomic orbitals, one centered about
each nucleus, 1t is also possible to construet 12
singly 1omized configurations of the form

Daon —{(142)abec)-(@be) (6)
and six doubly ionized configurations of the form
Pdoon = (CIECE) . (7)

Bach is a linearly independent wave function, sdtis-
fying the Pauli principle, and a spmn-zero eigen-
function of the total spin. They correspond to the
20 possible ways of placing four indistinguishable
electrons on four protons {using only 1s states)
consistent with zero total spin

A variational calculation of the ground-state en-
ergy 1n which the trial wave function is composed
of a sum of these configurations, each multiphed
by a variational parameter,is referred to as a
“configuration-interaction” (CI} calculation. Ina
full eonfiguration-interaction calculation, all con-
figurations consistent with the geometric symme-
try of the ground state are employed. To be more
precise, the configurations referred to here are
actually linear combinations of the original con-
figurations which transform according to the ap-
propriate irreducibie representation of the point
group of the four-atom system Thus, for the
hinear geometry (see Fig. 1), only 12 (out of 20)
configurations are needed.

A full CI calculation may be 1mproved by en-
largmng the basts So far, we have considered
what 1s known as a 1s-Slater-type basts, meaning
that we used four atomic orbitals obtained by
centering a 1s-Slater-type orbital [Eq. (4)] about
each of the four nucletr. This is known as a “mm-
imal” basis get in that only the 1s orbital is oc-
cupied 1n the ground state of an isolated hydrogen
atom. Williams, * Magnasco and Musso, *® and
Wilson and Goddard*® have used this basis set in
their full CI calculations on the H, system
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Rubinstein and Shavitt, ¥® and Silver and Stevens®
have used a 1s,1s’-8later-type basis set The use
of two 1s orbitals (having different exponents) in
this “double-zeta” basis appears to be simply a
convenient device whereby minor improvements
can be made over-the minimal basis wave function,
most importantly in the region between the atoms.
Bender and Schaefer® have gone a step further by
adding p orbitals, using a 1s,1s’,2p., 2p,, 2P, -
Gaussian~type basis 1n their calculations, This 1s
orbital is a “contracted” sum of three Gaussians,
while the 1s’ orbifal 1s a single Gaussian Amaz-
mgly enough, full CI calculations with Gaussian
orbitals have proved quite successful Among the
advantages of their use 1s the easy evaluation of
multicenter integrals, while a disadvantage 15 that
generally a large enough basis must be used so as
to at least crudely be capable of representing a
Slater function A discussion of the philosophy be-
hind these various choices of basis sets 1s given
in the book by Schaefer *° One fact should be
borne in mnd: the number of configurations in-
volved increases dramatically with the size of
basis chosen. A full CI calculation for the linear
geometry, for example, involves 12, 176, and
2172 configurations, respectively, for the is;
1s,1s’s and 1s, 15, 3b,, 2p,, 2P, basis sets.

“Self - consistent field”

The “seli-consistent-field” (SCF) calculation, as
referred to in the papers of interest to us 1n this
review, 15 a particular version of the Hariree-
Fock approach. One seeks to minimize the energy
using a wave function of the form

bsce =7 3 (~DP PL2 ,(1)8,(2)2 ,3)
P

%&(4)a(1)8 (2)a(3)8 (4)] .
(8)

However, in contrast to the most general Hartree-
Fock approach, the molecular orbitals @, and @,
are restricted in this method to be linear combi-
nations of whatever basis functions are being used
In the case of the mimimal basis set, then

'I’I(;)=CMX(!.I—'-§¢ | )+ C]_bx(l;_ﬁb I )
+Cux (IT-R, D+ Cux (IFR: D, (9)

and the coefficients C would be the quaniifies to be
determined Actually, for such a small basis,
geometric symmetry alone will often be sufficient
to determine these coefficients Bender and
Schaefer?® and Tapia and Bessis!®“?! have used
is,18’, 2p, 2p,, 2p, and 1s,1s', 18", 2p,, 2p,, 2P, -
Gaussian bases in their SCF calculafions.
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Both the SCF and the Heitler-London (HL) wave
functions are contained as special cases within
the corresponding full CI wave funchon They offer
shorter computing time at the cost of less-accu-~
rate results. In general, the SCF wave function
exhibits too little spatial correlation amongst the
four electrons; the HIL, wave function, foo much.
The SCF wave funciion is best suited to geometries
1wt which all four atoms are closely spaced; the
HI wave function, when the atoms are far apart.
In any case, for a given basis, the full CI calcu-
lation always yields lower upper-bounds on the
ground-state energy than either the HL or SCF
methods '

Other methods

The same full CI wave function may be arrived
at from either the valence-bond pomt of view, in
which 1onic confrgurations are added to the cova-
lent configurations, or from the molecular-orbital
pomnt of view, 1n which excited configurations are
added fo the SCF configuration There are a num-
ber of limited CI calculations (1 e., not full} based
on one'or the other of these viewpomnts. These
methods include the “group function” approach of
Magnasco, Musso, and McWeeny, * and the “GI”
method of Wilson and Goddard **+1" The “SCF +
CI” method, which we shall take to mean the SCF
configuration plus all singly and doubly excited
configurations, has proved {o be very successful
for at least the linear geometry,?* Bender and
Schaefer, # Tapia and Bessig, ** Kochanski ef al,
and Ree and Bender? have used this approach.

II SURVEY OF NUMERICAL RESULTS

This section reviews numerical results obtamed
for the ground-state energy of the H, system by
the ab i techniques described previously, We
first make use of these results to give some 1n-
dication of when the concept of interacting H,
molecules is valid and where it breaks down, Then
we specialize to the problem of the angular (viz ,
Fiz. 1) and intermolecular separation dependence
of the H,-H, interaction energy. At this stage
quaniitative comparison of the various computa-
tional methods 1s made.

Interacting H, molecules

One may 1dentify a particular pair of hydrogen
atoms as constifuting an H, molecule 1f, when con-
sidered as a function of the distance between these
two atoms, the energy of the full H, system 1s near
a loeal mimmum A system of four infinitely-sep-
arated hydrogen atoms has an energy of -2.00
hartrees.’? The energy may be lowered to —2.35
harirees by grouping the atoms i1nto two mfinitely
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separated pairs, with the distance between atoms
composing a given pair being 1 40 bohrs. The H,
molecule binding energy, 0.17 hartree, accounts

for this energy reduction,®® The energy of the H,
system increases when the two pairs of hydrogen
atoms are pushed close fogether; 1.e , there-s-a
repulsive short-range interaction between the two
H, molecules.

One would expect the concept of interacting I,
molecules to remain vahid down to separations
for which the interaction energy approaches the
binding energy in magmitude. This appears to be
borne out by the caleulations, In Fig. 2, we show
the Silver and Stevens®® results for the rectangular
geometry. The abscissa specifies one sude of the
rectangle(R,); the curves are labelled according
to the other {R,). It 1s evident that the lowest en-
ergies are obfained when one gide 15 near 1 40
bohr (the equilibrium H, bond length), and the
other side is large. Decreasing this larger side
(the intermolecular distance) results in exponen-
tial-like increase as seen in the curve labelled
R, =1.4. The effect of intermolecular distance on
the local potential well associated with the H, bond
length can be seen in the dotted portion of the
curves, where R, is to be taken now as the inter-
molecular distance; and R,, the bond length The
calculations of Conroy and Malll,®® in particular
their F1g. 6, suggesi that the obvious trend here
does indeed result in an eventual loss of the
barrier for R,> 1.4 bohrs as R, is further de-
creased below 1.8 bohrs Somewhat before this
point, the vibrational Zero-point energy of the two
molecules associated with the coordinate R, (about

v [ hnear
T

perpendicuiar

rectangular

rI_ R O—,/) crossed

R = nYermolecular separation

r = intramolecular seporation
{bond length)

FIG. 1 Geometries of the Hy system. The Iinear,
perpendicular, and rectangular arrangements he 1n the
plane of the paper 2s shown. In the crossed geometry,
the intramolecular ax1s of the right-hand molecule 1s
perpendicular to the plane of the paper

0.02 hartree as estimated from the curvature at
R,=1.4 bohrs) will result in loss of the H, bonds.
Does the optimal bond length change as the two
molecules are pushed closer together? Analytic
fits to the potential wells shown m Fig, 2 yield
minima within a percent of 1.40 bohrs for the
range of intermolecular separations from 2 8 fo
1.8 bohrs On the other hand, Conroy and Malli,*
Wilson and Goddard, '™ and Tapia ef g1,** have
reported results for the same rectangular geom-
etry suggesting the optimal bond length shrinks
as the intermolecular distance 1s decreased
From the first two of these papers, the shrinkage
may be estimated to be about 4% for imtermolecu-
lar separations near 2.2 bohrs. For iwo H, mole-
cules approaching each other in a linear manner,
the results of Wilson and Goddard,'® as seen mn
their Fig 18, suggest a sumilar shrinking of the
optimal bond length. Extrapolation of their data
suggests about a 4% effect for wntermolecular
separations near 3.1 bohrs. Recent work of Ree*
implies the ophmal bond length decreases for all
geometries shown in ¥ig, 1. He obtains some-
what larger effects. The important point to bear
in mind, as can be seen 1t Fig. 2, is that fhese
uncertainties in the bond length lead to errors in

, TOTAL ENERGY (Hartrees)
'
n

I
n
[5+]

-2 3} 4
10

20 30
R (Bohrs)

FIG 2 Total energy of the Hy system for the rectan-
gular geomeiry The abscissa specifies one side of the
rectangle R, and the curves are labelled aceording to
the length of the other side R;. Both lengths are m bohrs
The H, bond length and the Hy-H, intermolecular separa-
tion may be 1dentified with R, and R,, respectively, for
the solid curves, and the reverse, for the dashed curves
These results are from Silver and Stevens (Ref 28).
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the mteraction energy generally less than a few
perceni, Accordingly, caleulations of the H,-H,
interaction enérgy based on a fixed bond length of
1.40 bohrs should be valid to within this same
accuracy.

As a rough summary one might say that the idea
of the H, bond, and an associaied length more or
less equal to 1.4 bohrs, are relevant down to sep-
arations where the distance befween the nearest
atoms on two approaching molecules is about equal
to, or perhaps half agawn as large, as this bond
length On further contraction, both the local po-
tential wells sigmifying the bonds, and the associ-
ated length are lost The Bender and Schaefer®?
results for the lmear H, system, for example,
show that in this regime it is energetically favor-
able to equally space the four atoms rather than
trying to maintam the 1.4-bohr hond length (see
Fig. 3). For lower (linear) densities this equally
spaced geometry, while a bound state with respect
to four separated atoms, is clearly unstable with
respect to the formation of H, molecules.

Interaction energy

A partial judgement of the relabive merit of the
computational techniques can be made by checking
their results for the ground-state energy of a
single H, molecule {see Table I). Since thesc ecal-

i I I T 1
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2 R * Rez )
e ODamiiaml—im)
5 —R—
T
- -2 20 -
o
4]
x
w
z . .
w
melecular
3 14
= =-230F O—O-vmr=r 0—0 —
e fo— R}
T——g———0—0—0—
-240 1 | ] I |
20 40 60 BO

R (Bohrs)

FIG.3 Total energy of the Hy system for the hnear
geometries. The solid curve corresponds to the “molec-
ular” arrangement in which the atoms are grouped mto
two pairg, as shown, with a “bond length” of 1 4 hohrs
The dashed curve corresponds to the “atorme” arrange-
ment m which the atoms are equally spaced, the mter-
atomic separation being B/2 The curves mntersect for
R=2 8 bohrs These results are from Bender and
Schaefer (Ref. 22)

culations are variational, the resulis are quite as
expected: Lower energies are obiained by using
larger basis sets, and by including all possible
configurations (full CI) which may be constructed
from the given basis set. This table 1s only in-
directly related to our problem, however, since
we are mterested in relafrve changes in the energy
of the H, system as the constituent H, molecules
are moved about. The interaction energy of two
H, molecules is calculated as the energy of the H,
system less the energy of two mnfimitely separated
molecules evaluated in the same approximation
Thus, for example, the large-basis SCF calcula-
tons of the interaction energy are superior to the *
minimal-basis full CI resulits, in spite of the fact
that the latter technique gives the lower H, mole-
cule ground-state energy.

The results of mimmal-basis full CI calculations
by Magnasco and Musso, ¥* Wilhams, ** and Wilson
and Goddard!® are shown in Fig. 4 for the linear
and rectangular geometries. The density depen-
dence 18 roughly exponential, €~ %%, with o rang-
ing between 1 80 and 1.85 bohrs™ for the lmnear
and 1.67-1.90 bohrs™ for the rectangular geometry
as the intermolecular distance R is increased from
3 to 5 bohrs The Williamg'? regults place the en-
ergy of the crossed and of the perpendicular geom-
etries, respectively, about 15% below and 50%
above those of the rectangular geometry. In con-
tradiction to the statement made by Hoover ef al.
1t is clear that the mteraction energy of the linear
geometry as calculated with the minimal basis set
ig only about a factor of 2 larger than that of the
rectangular geometry We have also included 1n
Fig 4 the results of the Heitler-London calcula-
tion using correct multicenter integrals.* The
fairly close agreement with the full CI resuits
clearly points out the danger of using approximate
multicenter mtegrals as in the early Heitler-
London calenlations by de Boer, 3¢ and Mason and
Hirschielder.® An angular dependence more than
twice as large as seen here was reported in those
papers.

The results of CI calculations using larger bases
(specified 1 Table I} are shown 1n Figs 5 and 65°
The results of Bender and Schaefer® and of Silver
and Stevens® shown here are from full CI calcula-
tions. Those of Tapia and Bess1s? and of Kockan-
ski ef gl,® are from the SCF + CI technique,
which gives values for the mieraction energy with-
1n 3 few percent of full CI values for the linear
case.® For intermolecular separations R around
3 bohrs, the curves in Fig 5 have about the same
dependence on this parameter as in the minitnal-
basig caleulations, 1 e., e”*® with =1 81 and
1 62 bohrs™ for the hinear and rectangular cases,
respechively. The actual values of the interaction
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TABLE I Ground-state energy of the Hy molecule as caleulated in various approxamations
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energy, however, are smaller by 36% and 12%
respectively, This reduces the rectangular-to-
linear variation from about a factor of 2.2 {o 1.6
In Fig, 6 it is seen that the interaction energy of
the perpendicular geometry has also been reduced
relabvely more strongly than that of the rectangu-
lar case, so that only about a 15% variahon 1 en-
ergy is involved in changing the orientation from
the crossed to the reclangular, and then to the
perpendicular geometry.

For values of the intermolecular separation
greater than about 4 bohrs, Fig. 5 shows that the
interaction energy begins to fall off considerably
faster than an exponential. This behavior, which
was only barely suggested by the minimal-basis
calculations, reflects the importance of the at-
tractive van der Waals or dispersion forces in
this region. In fact, Tapla and Bessis,* Bender
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FIG, 4 Mimmal-basis calculations of the Hy-H, mter-
actron energy for linear and rectangular geometries.
The full CI results of Magnasco and Musso (Ref 13},
Wilhiams (Ref. 11), and Wilson and Goddard (Ref. 16) are
shown Results of the Hertler-London caleulations (Ref
44} are meluded for comparison The two curves differ
by a factor of 2 2, 1 9, and 1 8 for mtermolecular
separations of 3, 4, and 5 bohrs, respectively The
uppermost two pownts of Wilson and Goddard were ob-
tained wath a bond length of 1 4 bohrs. The lowest two
pownts of Magnascoand Musse are from thewr himated
CI calculations (Ref 12}. Some of Williams’ question-
able (Ref 12) large separafion results have been omtted
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.

and Schaefer,? and Kochangki ef al,?* have all
observed some form of attractive van der Waals
minimum {depth~107* hartree) in the interaction
energy for intermolecular separations around
6.5-'7.0 bohrs. Kochanski ef al, note that caleula-
tions m this region are extremely sensitive to the
choice of basis, and that a 2p orbital with a small
exponent 1s essential. In contrast to the orienta-
tion dependence seen for smaller separations,
Kochanska ef al. find the perpendicular geometry
to be most stable for intermolecular separations
greater than about 4.5 bohrs. There does not
appear to be any one type of force responsible for
this fact, as they note that the valence, quadrupole,
and the dispersion forces all contribute to thas
stability,

Margenau and Kestner*® have argued that an SCF
calculation of the mnteraction energy cannot include

T [] [] T
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FIG 5 Extended-bass calculations of the Hy-H, mter-
action energy for lmear and rectangular geometries The
results of Bendér and Schaefer (Ref 22) and of Salver and
Stevens (Ref. 23) are full CI, while these of Kochansku
el al (Ref 24} were obtamed by the SCF -+ CI techmaue
The hases used are specified mm Table I. The two curves
differ by 2 factor of 1.6, 1 6, and 1 9 for mtermolecular
separations of 3, 4, and 5 bohrs. TFor these same sep-
arations, the Imear results are lower by 36%, 27%, and
31%, respectively, in comparison to the corresponding
mummal-hasis results (Fig 4); while the rectangular re-
sults.are lower by 12%, 12%, and 314%, respectively, m
comparison to the rectangular results m Fig 4

dispersion effects This seems intuitively clear
in that electron-eleciron correlations (aside from
those originating from the antisymmetrization)
are not incorporated in the SCF wave function, and
such correlations would appear to be essential to
an induced dipole-induced dipole interaction. In
Fig. 7 we show the resulis of SCF caleulations by
Bender and Schaefer?® and by Tapia and Begsis®
which are consistent with these expectations. For
mtermolecular separations less than 3 bohrs,
these results are in fairly close agreement with
the CI calculations. For larger separations they
fall off too slowly, roughly exponentially, and do .
not digplay an attractive van der Waals mimmum,
For very large separations, greater than 12.5
bohrs, the SCF calculations of Bender, Schaefér,
and Kollman* are in quantitative agreement with
the predicted classical quadrupole-quadrupole :
interaction.
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FIG 6 Extended-basis calculations of the H,-H, inter-'
action epergy for various geometiries The resulis of
Bender and Schaefer (Ref. 22) and of Silver and Stevens
(Ref 23) are full CI, while those of Tapa and Bessis
(Ref 21} and of Kochansk: ef al (Ref 24) were obtained
by the SCF + CI techniqe The bases used are specified
in Table I The results for the lmear and rectangular
geometries (open symbols) are 1dentical to those in Fig
5 For mtermolecular separations from 3 to 4 hohys,
the results for the perpendicular and crossed geometries
{closed symbols) are, respectively, about 10% above
and 5% below those for the rectangular geometry
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To summarize this section, we note that CI cal-~
culations using an extended basis that includes a
diffuse 2p orbital appear to be necessary {o ac-
curately determine the H,-H, interaction energy
for all separations. There is sufficient numer:cal
agreementfor intermolecular separations between
2 and 5 bohrs to suggest that the curves in Figs.

5 and 6 are correct to within better than 10%
Furthermore, these resulis are expected to in-
clude all contributions to the interaction energy.

IV ANALYTIC EXPRESSIONS

The inferaction energy of two hydrogen molecules
158 generally subdivided into contributions from (1)
the short-range valence {overlap, or exchange)
forces, (i1) the long-range dispersion forces, and
(iii) the electrostahe quadrupole-guadrupole forces.
Analytic expressions for the latter two contribu-
tions are fairly well established.?** ¥~ We con-
fine our attention to the short-range part of the
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FIG 7 Extended-bass SCF calculations of the Hy~H,
mteraction energy for various geometries The SCF re~
suilts of Bender and Schaefer (Ref 22) and Tapa and
Bessis (Ref 21) are shown The choice of basis 1s
specafied in Table I For intermolecular separations
less than about 3 0 bohrs these results are generally
within a few percent agreement with the CI results
shown m Figs 5 and 6 For intermolecular separations
around 5 hohrs, these SCF results are higher than the
CI results by about (35—90%), dependmng on geometry
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interaction energy.

Both de Boer® and Abrikesov?® chose forms for
the valence contribufion which may be interpreted
as represeniing pairwise interactions between the
aioms making up the two H, molecules;

30l —e(R, Y+ e(Rya)+ Ry} +€(Ryq). (10)

Atoms a and b constitute one molecule; ¢ and d,
the other While de Boer chose an exponential

for the function €(R), Abrikosov used an appropri-
ate average of the singlet and triplet interactions
between two hydrogen atoms. In light of the re-
sults discussed in Sec. III, however, there are
serious objections to the general form given by
Eq. (10). If the intramolecular separafion 1staken
to be near 1.4 bohrs, any chowce for the function
€(R) giving the right dependence on intermolecular
separation for some particular geometry resuits
in an orientation dependence of about a factor of

5. Yet all ab wmzfzo calculations have shown an
overall orientation dependence of a factor of 2 or
less. It is to be emphasized in particular, that
the de Boer potential can nof adequately represent
any of the results discussed 1n See. I, including
the mimimal basis work. Neece ef al.? were able
to fit the Magnasco and Musso®® results with a

de Boer potential only because the Magnasco and
Musso work did not include any of the high-energy
geometries such as the perpendicular or linear
arrangements. These facts are 1llustrated mn

Fig, 8, where the de Boer potential with the choice
of parameters used by Neece et al., 18 ploiied for
the standard geometiries, and compared to mni-
mal-basis full CI calculations for the rectangular
and linear cases,

Equation (10) can be made fo yield an overall
dependence on orientation of about a factor of 2
if the intramolecular separation is artificially
chosen to be a third or so smaller than 1.4 bohrs.
However, i this case ‘the perpendicular geometry
still falls midway beiween the linear and rectangu-
lar results, and the dependence of the mnteraction
energy on mtermolecular separation can not be
made satisfactory for all geomeiries.

The close agreement of the Heifler~London cal-
culations with the mimmal-hasis full CI results
shown in Fig 4, mught suggest that de Boer’s
original goal of selecting out a few dominant terms
from the Heitler-London expression might shill be
achieved. Unfortunately, there are simply too
many equally large, and parbally canceliing terms
for this to be feasible. The angular dependence
1mmmediately suffers from such selecfion processes
For example, in their book Margenau and Kestner®
make a shight approximation 1n the Heitler-London
expression based on neglecting the fourth power
of the ratio of the inter- to intramolecular overlap
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integrals. Evaluation of this expression using
correct mulbeenter mmtegrals yields resulis about
20% 'higher for the rectangular geometry and about
100% higher for the linear geometry, in compari-
son with the full Heitler-London result

The angular dependence of the 1nteraction poten-
t1al appears io be of rather high order, as 1s ewn1-
denced in Fig. 6. Low-order terms of the form

{cos?, + cos?a,)f (R},

where 6, 15 the angle between the axis of the first
meoelecule and the line joining the centers of mass
of the two molecules, would place the perpendicu-
lar results halfway between those for the rectan-
gular and linear cases. This is clearly not the
case. ,

The problem of fitting the angular behavior may
be aveided 1n first approximation by perferming
some form of average over the angular variables,
as is done by Hoover ef al.'° and by Ree and
Bender ¥ Hoover ef al arrive at the potential

8 2et et - -6
b= ™ LS (18475 + 1167 B)e ™00
0 Qo
(11)
T T T y T
r de Boer Potential b
3 [Neece et al parameters) 1
minmal basis werk
A Wiison and Goddard
\\ o—o0 Q=
ol ® Mognasco and Musso _|

00l

INTERACTION ENERGY {Hartrees)
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FIG. 8 de Boer potential for various geometries
The de Boer potential 15 plotted for the choice of param-
eters used by Neece el al (Ref 8),1e, €(R)=3 2¢ "LT630R
[atomic umts, see Eq (10)] Whle the curve for the
rectangular case 15 1n close agreement with the calcu-
lations of Magnasco and Musso (Ref 13), the curve for
the Imear case 15 too lugh by about a factor of 2 in com-~
parison to the calculations of Wilson and Goddard Ref 16)
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lewo

where x=R/a, and @,=1bohr=0.52917A The
first term is the valence energy, which they obtain
by a spherical average over SCF ecalculations for
the four standard geometries, The second ferm

.15 the usual expression for the dispersion en-

ergy, "' *®® multiplied by a short-range cutoff fac-
tor as suggested by Trubitsyn.® From a similar
spherical average of thewr SCF + CI calculations
for the four geometries, Ree and Bender obtain

$ = (3 .53 Gez/ao) e -1-242:-0'-0613‘&2 , (12)
for 2.5<R<4 5 bohrs As noted earlier, this ex-
pression should already mclude dispersion effects.
A spherical average of the results 1llustrated in
Fig. 6 may be fit by

&= (2 184eg/ao)e—o.aqszx -0 13811%° R (13)
which agrees to within 10% of the Ree and Bender
expression throughout the range 3—4 5 bohrs. The
Evett and Margenau® averaging procedure yields
results, only a few percent different from that of
Hoover etal ,'° which we have used in arriving at
Eq (13).

The various potentials [Eqs (11)-(13)] are shown
in Fig. 9. .On purely formal grounds, the extended-
basis CI results [solid curves, Eqs.(12) and (13)]
must be considered the most reliable determina-
tions of the spherically averaged inferaction be-
tween two hydrogen molecules. They represent
agreement to within about 10% of most of.-the re-
cent ab smzfzo CI calculations, and incorporate the
dispersion effects in a fundamental manner In
contrast, the expression of Hoover ef al. [dashed
line, Eq. (11)] relies on the presumption that the
standard long-range éxpression for the dispersion
energy may also be applied for short intermolecu-
lar separafions It 1s 1n fact this contribution
which 15 responsible for the sigmficanily weaker
repulsion of Eq (11) as compared to Eqs (12} and
(13)., We also show in Fig. 9 the potential used by
Neeee et al.,? which consists of a de Boer form
for the valence contribuiion plus the Margenau®®
result for the dispersion energy. Since their cal-
culation of the energy of the molecular sohd was
based on the “g-mtrogen” structure, we have
plotted their potential (dotted curve) for the near-
neighbor molecular orientations of this structure
This geometry is close in energy fo the perpen-
dicular case, and so the de Boer potenfial has
significantly overestimated the repulsive energy.

In spite of the consistency evidenced amongst
the recent extended-basis CI calculations for the
H.-H, interaction potential, there is not good
agreement between theory and experiment The
shaded region in Fig. 8 represents the determina-~
tion by Hoover ef al.'° of bounds on an effective
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pair potential which would be consistent with the
shock experiments of Dick® and van Thiel et al 7%
More recently, van Thiel et al3' have reported
shoek experiments on deuterum which are in ex-
cellent agreement with an analysis based on Eq.
{11) (dashed curve mn Fig 9). Experimental de-
terminations of the patr potential are evidently a
factor of 2 or so smaller than the ab wufio theo-
retical calculations. The recent work of Ree and
Bender?® suggests that this discrepancy 15 due to
the breakdown of pairwise additivaity for short-
range interactions amongst hydrogen molecuies
n the bulk.
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FIG. 9 Spherically averaged H;~H, mteraction poten-
tial The solid curves labelled “CI calculations™ and
“Ree and Bender” are from b mufio calcnlafions, and
are plots of Egs. {13) and {12), respectively The
shaded region labelled “Experiment” corresponds to
the determanation by Hoover ef el (Ref. 10) of bounds
on an effective pair potential consistent with shock ex-
permment (Ref. 29). More recent shock experiments
(Ref. 31) are consistent with analyses based on the
dashed curve, which 1s a plot of Eq (11), the potential
determined by Hoover ef @l The dotied curve is a plot
of the potential used by Neece ef @l (Ref 8) for the
molecular orentations characteristic of near neighbors
in the e-mirogen structure Caleulations of the T =0
molecular-to-atonuce phase transition pressure by Neece
et ql, (uswg the dotted curve}, Hoover ef al (using the
upper bound to the shaded region), and by van Thiel
et gl . (Ref. 31) (usmng the dashed curve) yield 0 84, 1 7,
and 4 2 Mbar, respectively In each case the atomic
calculations of Neece e al were used

V APPLICABILITY TO THE SOLID

The assumption of pairwise additivity means
that the behavior of a system of many molecules
15 characterized by a many-body potential of the
form

v =Z!I) [T (14)

i<j

where &;; is the mteraction potential for an
esolated system of two molecules. The calcula-
tions of Ree and Bender, 2° unfortunately, point

to rather large non-pairwise-addifive contributions
to the interaction energy of a collection of H,
molecules for intermolecular separations less than
4.5 bohrs. A many-body potential of the form given
by Eq. (14) may shtll be adequate, but then one
must replace ®,;; by some effecfive pair potenhal
¢, Ree and Bender suggest on the basis of

their calculations for a system of three H, mole-
cules that triplet corrections to the “bare” pair
potential @,; may be adequate to give a &7 1n fair
agreement with the phenomenological potentials

for intermolecular separations down to about 3 5
bohrs,

With an eye fowards calculation of the properties
of the solid, the unfortunate aspect of these results
18 that a rigorous theoretical determination of the
short-range part of the pair potential appropriate
to a solid 1s still fo be accomplished, and 15 now
considerably more complex. It does not appear
that one can avoid performing ab nifzo calculations
for three and perhaps more molecules For ex-
ample, one might have expected that 1mposition
of appropriate symmeiry constraints on an H,
calculation might improve matters. As an illustra-
tion, CI calculations for the lnear H, system
permit an 1mbalance 1n the weighting of 10nic con-
figurations for the mner with respect fo the outer
atoms. In a solid with inversion symmetry, these
must have equal weight. However, agreement of
the Heitler-London results with the minimal-basis
full CI results for this geometry suggests that at
least in this case the matter of symmeiry is not
important.

A comment should be made on the applicablity
of the spherically averaged potential to calcula-
tions for the solid, Because of the small mole-
cular moment of nertia and the weak angular
foreces, it 1s well known that at atmospheric pres-
sure, the H, molecules in solid hydrogen are es-
sentially freely rotating.*! As the solid 18 com-
pressed, however, the size of the amisotropic
component of the interaction energy continues fo
mcrease, uniil eventually the molecules undergo
rotational oscillations about some preferred ori-
entations. Since the low-lying eigenfunctions of
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a free rotator are sizeable throughout much of
[he angular phase space, in contrast to the more
localized eigenfunctions of a rotational ogcillator,
a spherical average over the angular variables of
the interaction potential 1s expected to be a good
approximation in this limit. A rough criterion
for rotational behavior would be to require that
the barrier to rotation U, be considerably smaller
than, say, the J=1-3 (orthohydrogen) level spac-
mg of the free rotator,

U,<10i2/21 =0.003 hartree ,

where J and I are, respectively, the angular mo-
mentum and moment of inertia of an H, molecule.
The overall angular variation of the interachion
potential as seen m Fig. 6 1s already of this order
for intermolecular separations of about 5 bohrs
Detailed calculations by Raich and Etters® place
the transition from rotation to rotational oscilla-
tion at densities corresponding fo a near-neighbor
separation of about 4.7 bohrs, These resulis are
based on the exaggerated angular dependence of
the de Boer potential, and so it is likely that ro-
tational behavior persists for near-neighbor sep-
arabions smaller than this. The molecular phase
18 likely to be stable for mtermolecular separations
as small as 3 § bohrs, !* and so the spherical aver-
age 18 probably not always an adequate approxima-
tion for ground-stafe energy calculations Ebner
and Sung, ¥ in particular, have siressed the im-
portance of retaining the anisotropic interaction
in such calculations. Itis felt that the spherical
average 15 justified for the high {emperatures in-
volved in the shock experiments,®

As mentioned in the Introduction, one source of
interest in the short-range part of the H,-H, n-
teraction potential is the desire to accurately de-
termine the molecular-to-atomic pha:se-trans:ttmn
pressure, Qualitative aspects of this problem are
evident 1n even the simple linear versus equi-
distant H, systems, whose energies are plotted
m Fig 3. In this figure, one can widentify a zero-
pressure atomic phase (interatomic distance
R/2=117 bohrs) that 15 unstable wmth respect to
the corresponding zero-pressure molecular phase
(intermolecular separation =6 5 bohrs; the van
der Waals minimum is not visible on this scale),
At sufficiently hagh pressure, the atorme phase
becomes the more stable A common tangent con-
structicn even yields a reasonable transition
pressure,

P-AE/3R?AR=3.3% 10-%a u=~1 Mbar,
where E 15 the energy per molecule and R is the

mtermolecular separation Turning to serious
calculations, we note that Neece ef al ,°® Hoaver
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ef al ,*° and van Thiel et ¢! 3 have all used the
same atomic phase calculations® in their deter-
mination of the transifion pressure. A glance at
the corresponding choices for the H,-H, inter-
action potential thus offers an 1dea as fo the sensi-
tivity of the transition pressure to this choice

The molecular pair potentials used are (see Fig. 9}
the dotted curve, the upper bound to the shaded
region, and the dashed curve, respectively. The
corresponding transition pressures are 0.84, 1.7,
and 4.2 Mbar respectively. Trubitsyn® obtained

a transition pressure-of 4.6 Mbar using a molecu-
lar pair potential withm 20% agreement of Eq. (11)
(the dashed curve, Fig 9) over the range 3-8
bohrs. If the non-pairwise-additive effects are
indeed as large as suggesied by Ree and Bender,
then there 13 moderate agreement between theory
and experiment, ponting to a transihon pressure
in the neighborhood of 4 Mbar, or larger.™

V1. SUMMARY

Extended-basis CI calculations which include a
diffuse 2p orbital appear io be capable of deter-
mining the total mteraction energy between two
hydrogen molecules for any separation. Consis-
fent resulfs among a number of such ab nzfzo0
calculations suggests that the potential 15 known
to better than 10% for inftermolecular separations
ranging from 2 5-5 bohrs. For shghtly smaller
separations, the compesite H, bonds are likely {o
become unstable The angular variation of the m-
teraction potential 1n the above range is about 15%,
except for geometries approaching the linear ar-
rangement, in which case the potential may in-
crease by about 60%. There are not yet sufficient
data to determine the analytic form of thig de-
pendence, although 1t appears to be of relatively
high order Analytic forms for a spherical aver-
age over the angular degrees of freedom are
readily obtained. As a function of intermolecular
separaiion, such potentials fall off somewhat
faster than an exponentral

With respect to a pair pofential smtable for use
in highly compressed liguid or solid molecular
hydrogen, the situation is somewhat more complex.
It appears that three-body corrections must be
added to the bare pair potential for mmtermolecular
separations between 3.5 and 4.5 bohrs, ang that
at shorter separations even higher many-body
correchions may he necessary. Such corrections
lead to much improved agreement between the
ab o caleulations and analyses of shock experi-
ments, with the impheation that the T =0 molecu-
lar-to-atomie phase transition in solid hydrogen
occurs in the neighborhood of 4 Mbar.
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Electron transport 15 considered i high-density fully 1omzed hiqud metals Iomc structure 15 described
m terms of hard-sphere-correlation functions and the scattering 15 deternuned from self-consistently
screened pomt tons Applications to the physical properties of the deep interior of Jupiter are bnefly

considered

I INTRODUCTION

We are concerned here with the problem of cal-
culating the resistivity of dense conducting fluids
consisting solely of massive pomt 10ns and a neu-
tralizing gas of mferacting electrons. Several
systems of physical and astrophysical interest
are mcluded m a calculation assurmng the follow-
mg: (1) The density of the system 1s such that the
electrons can be treated nonrelativistically, If
#, is the electron density, this restriction can be
stated as 7,>> 107%, where #, 15 the usual lmear
measure of electron density

n, =(Emriad)™ .

{11) The electron gas 1s degenerate. This 18 an
imphed restriction on the temperature, namely

T<(EX10%/2 K.

(111) The first Born approximation 18 adequate
for the calculation of electron scattering cross
sections from the 1onic system This condition
18 satisfied for #, S 1/Z (where +Ze 15 the charge
on the pomnt 1pn) and 15 discussed 1 detail i Ap-
pendix A. At lower densities (larger 7, ), the
validity of the results must be viewed with the
caution normally attributed to low-~order caleula-
tions m ligind metals,

{(1v) The density-density-correlation function
{static-structure factor) of the ionic system can
be approximated reascnably well by regarding the

d'k'r

©1_ g2l

T EQ) @2y
with

€ =H2R2/2m, € =H*kE/2m,
and

k%=31", ,

| <0

wons as an assembly of impenetrable spheres. In
the presence of an electron gas (and with due ac-
count for the effects of exchange, correlation, and
the adiabatic response to 1onic motion), the effec~
tive 1on-10n mteraetion 15 characterized at short
range by a steeply repulsive region, and at long
range by a weak oscillatory tail.' At sufficiently
high density (#,<< 1), the mferaction between 1ons
15 expected to depart from the hard-core model
and approach the simple screened mteraction fol-
lowmg from Thomas-Ferm theory (as uvsed by
Hubbard and Lampe?).

{v) The cortribufion to the resistivity from elec-
tron-electron collisions can be neglected, So long
as the electron system 1s highly degenerate, this
assumption 15 reasonable.

In Sec. It we outline the basis of the calculations
for the conduetivity, and in subsequent sections
estimate the melting temperatures of these fully
iomzed systems, The extensions to alloys are
also discussed, and insofar as they apply the re-
sults are considered mn the context of the physical
properties of the deep mierior of Jupiter.

II CALCULATION

Within the adiabatic approximation we may write
the resistivity of the dense iomzed fluid of N 1ons
in volume £ as

p=m/n, T, (1)

where the transport relaxation time 718 given by

1V & -K)o% /21 ~ cos O )0(ep— €} 2, (2)

T

Equation (1) represents ihe ensemble average of
the resistivaty caleulated in Born approximation
for elastic scattering from each configuration of
the 1ons described by the density components

=3 o iERIE, 3
PR = E e ] ( )
=1

782
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where {ﬁ,} ig the instantaneous set of 10nic posi~
tions. The matrix element of the (se-consistent-
ly screened) electron-ion scattering potential V({¥)
1s defmed for plane-wave levels k) by

Q{E|VIE) =V(E1E')=Ld¥e"‘(k'“')"V('f'). (4)

If the scatterng 1s sufficiently weak (Appendix A),
Egs. (1) and (2) reduce, as or1gmally shown by
Ziman,® to

o=t Z [* ayysia,

(5)

where y= |k —&'| /2%, and v(y) 1s the electron-
ion interaction scaled to 1ts long-wavelength
limit (3¢z). The guantity ai/e® may be viewed
as the atomic unit of resistivity and has the con~
venient practical value of 21.7 puQcm. S{E-%)1s
the liguid-strueture factor defined by

5@) = (l/N)[(( PP ?) -NB3 5 .° (6)

In the Percus-Yevick model* (for hard spheres of
diameter ¢), S(3) 1s a function of the packing frac-
tion 7 given by

n=tan,,0®, N N/Q-

107

(7

For most classical flmds near their solidification
points, %% 7=0,45,

We are dealing with point 1ons and the accuracy
with which #(¥) can be specified 13 linmated only
by the uneertamnties mn the dielectric function €(y).
In the neighborhood of ¥ ~1 [the regime dominating
the ntegrand of (5)), €(¥)1s quite well known and

783

we take the mterpolation form suggested by Hub~
bard,® so that

v(y}=—0.1667,/[1° +0.1667 . F(3)], (8)
where
F(»)=f(3)/[1 -0.1667,f (»)y*+2) "],
£=(1+0.0262r,)""
and
f(y)=— + 4;’ In f*i

In praciice, the replacement of F(¥) in (8) by the
Lindhard funchion f{¥) leads to the same resistiv-
ity (to within 2%), but the exchange and correlation
corrections contained in F{y) are important in cal-
culations of quantities mvolving (/e - 1], such
as the effective pair mteraction between 10ns,
Since (r, a,p)?=5{(97), we may rewrite (5) [using

(8)] as
p/(r2Z)=38.4
x[*dy3*5(5)[5* +0.1667, F()]  nem .
©)

The utility of this expression is that the right-
hand side 18, for #; 51, a weak function of 7, and
hence density Figure 1 demonstrates this clearly.
It 1s worth noting that the charge £ enters in the
structure factor.”

To obtam the resistivity as a function of temper-
ature, we require T'(n} at each density. This can

Z {valence)

40 =02
Resishivity of Fully lonized
Metailic Liquds at =045
Pl cm) 7 (=04
{r3z)
30 =06
208
rg=10 .
FIG. 1. Resishwity of
20k =12 fully-1omzed Liquids at
=4 7=0.45.
re= 16
10 f4
) I 1 [ | 1 1 [ 1 ]
| 2 3 4 5 0 5 20 40 100
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pls) I0N=ION INTERACTION
ENERGY

O3

F—r 12 s

-o3L

FIG 2. Effective ron-ion imnteraction energy in umts
of 1072¢,

be obtained from a variational technique,® but the
method is laborious and for the present purposes
1t 18 sufficient to use the approximate technique
suggested by Asheroft and Langreth, We evaluate
the pair interaction between pomnt 1ons from

¥
[06_ ESTIMATED MELTING TEMPERATURES
TM
K} o8
10'-
0% 1 1 1

4]

872 (= % sinsx
_ 3
$(s)=(0.16675)5 .L AR01667,F@)

(10)

which gives the pair energy at separation »(» =s/
2k) 1 units of €, (see Fig, 2). I ¢ is the mun-
mmum value of ¢(s), then the melting temperature T,
can be estumated from the relation

‘P(Zkf‘g) - t'abrrn.n =%k.BT.H/€F [

provided 2kp0 is evaluated at n=0.45, It may be
noted that this procedure gives Ty 1n sodium to
within 10%, The same close agreement 18 not
likely for fully iomized systems that have some-
what “softer” pair potentials (in reduced units)
than that appropriate for sodium,! To find dn/d7,
we evaluate the slope of ¢(s)

ot /o (32)1:]
2 lamfas( 22 ) , 11
ar n/s ds/°F s=2(1sffzn)'j3 ()

{where Tr=(6x10%)/#2 K) and 1n thie way obtain
T, (see Fig. 3} and the values of Tappropnate to
7<0.45. An alternative method for obtaimmng T,
exploits the Lindemann rule {see Appendix B), but
the simpler approach outlined above 18 no less ac-
curate and 15, 1n fact, more fundamental.

The results of our calculation for fully ionized
H, He, and C are found summarzed in Figs. 4,
5, and 6, respectively. We choose as a vertical
ax1s the quantity (resistivity Xdensity), since, as
noted above, this combination, near Ty, 18 weak-

FIG. 3. Estimated melt-
g temperatures.

| 10 100

!
1000
plg/em™)



9 CONDUCTION IN FULLY IONIZED LIQUID METALS 785

Resishivity x Density \
(s em)  (g/em®) \
1 A
\
536 g/ \ HYDROGEN
emd \
Fit]ad Y
\
4297 N\ KT
AN
\ line
AY
50

\
12 4g/cm® \\

B 24 glem™,

40|

T/Ty

M-

4

FIG. 4. Resastivaty of hydrogen.

ly density dependent. It shotld be emphasized
that if our estimates of T, are incorrect, the form
of the curves presented will remain substantiaily
correct. We should also point out that at densities
for which the element carbon is likely to be fully
pressure 1onized, the hard-sphere approximation
to the ion-10n wnteraction may already depart sub-

1
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80 ; 2 3 3 5 _ 6
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FIG. 8 Resistivity of hehum.

stantially from reality.® Moreover, kT,/ep~ 0.05,
and this umplies a significant nondegeneracy.
Figure 7 shows a comparison of our resulis with
those of Hubbard and Lampe.? The quantity com-
pared is the conductive opacity!® as tabulated 1n
Ref. 2, Our-results-are-seen to be systematically
lower, and the greatest difference oceurs at low
temperatures, where the crude approximation for
S(q) used in Ref, 2 18 expected to be least accu-
rate. We cannof, however, eliminate the possi-
bility that the systematic discrepancy results
from a disagreement in the temperature scale.

I EXTENSION TO ALLOYS

The extension to binary alloys 1s straightforward
mn prineiple,! The result equivalent to Eq. (5) can
be written

_P__ —33411 ¥ dy
(r3Z%)y "7 7 Jo 197 +0.166 v, F(»)]?

* [, 9) + 22°2(1 — x)25,,(9)

+{(1=2)S,,(3)] uR em, (12)

where % 1s the fractional number of 1ons of species
2, Z*1s the number of electrons per 1on, and S,
§,,, Sy, are parhial structure factors.’* These
structure factors not only depend on

volume occupied by hard spheres
1= total volume

Resistvity x Density CARBON

(£l cm) (g/cm?)

3
P-G?z fom’
190 g/c

1801
170
160

p=84 g/rcm®
150
140 -

p=25 g/em®

130

1201

L
| 2 3 4 5 & T,

FIG. 6. Resistvity of carbon.
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Conductive Opacity HYDROGEN
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FIG. 7. Conductive opacity of hydrogen at two densi-
fies, A comparison of our results with those of Hubbard
and Lampe (Ref. 2).

but also on
&= 0'1/ Gy 4

where ¢, and 0, are the hard-sphere diameters of
components 1 and 2, respectively.
I @=1, then Eg. (12) becomes 1dentical to Eqg.

Resistivity
{282 cm)4

30
25

20

(9), except, of course, that Z*1s a function of x.
In this special case, the results of Fig. 1 can be
used to find the resistivity of any alloy!? at the
melting point.

Equahon (10) shows that if ¢{s.,}=0 for the mnter-
action between ions of species 1, then ¢(s,)=0for
the 10ns of species 2. This suggests that & 18 near
umty. However, the species with higher ionie
charge is expected to have a “harder” core (for a
given value of 7). A detailed calculation*® suggests
that @ =0.75 for a hydrogen—helium mixture; that
1s, the helom hard-sphere diameter 15 one-third
larger than the hydrogen hard-sphere diameter.

In Fig. 8, we show that this deviation from a =1
does not dramatically change the resistivity, and
accordingly a reasonable approximation sets all
hard-sphere diameters equal.

There 1s, however, no simple extension of our
method for obtaiming d/dT to the alloy problem,
For Z> 2, the temperature dependence of the re-
sistivity 1s sufficiently weak that it may be ignored
m a first approzimation (for T, <7 << Iy). For a
hydrogen—helium alloy, a crude approximation
simply mnterpolates between, the temperature
trends shown n Figs. 4 and 5.

IV SUMMARY AND APPLICATION

In the limited temperature and density range ap-
proprizte to Eq. (5) and the hard-sphere model,
we find somewhat lower resisfivities than those
previously obtained® for fully omzed hiqud metals,
This 1s attributable to the use of a more accurate

FIG. 8. Resistivity of an
H-He alloy at #,=1.0 and
71=0.45, The effect of dif-
erent hard~-sphere diam-
eters is shown.

0 Helium
Concentration

{(number fraction
of 10ns)
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electron-ion interaction and a more appropriate
strueture factor. A disadvantage of the present
method 18 the need independently to estimate the
temperature scale.

Systems for which the present calculations seem
likely to apply inelude the.anteriors of the giant
planets, 1n particular Jupiter. Most recent mod-
els of the Jovian interior postulate a central re-
gion of dense fluid. Iis composifion 1s predomi~
nantly metallic hydrogen, but is augmented by a
small amount of helium (about 10% by number!?- %),
It 15 conceivable that the helium may not be com-~
pletely 1omzed and if not, the electron-heluum m-
teraction may be more appropriate to that expected
of neutral helium atoms.’® We find that although
it 18 possible for the resistivity to be enhanced zf
the helium remains un-iomzed, this enhancement
is mamly a consequence of the small increase in
the value of 7, rather than any substantial change
1n the scattermg cross section from that expected
for fully ionized atoms.

If we choose the central temperature!” of Jupiter
to be about 16 000 K, then we find that the resis-
tivity of the flmid 15 expected to range from
4 pQcm at the center of Jupiter to about 8 pR2em
at the boundary between metallic and molecular
hydrogen. A conductivity characteristic of the
deep mterior of Jupiter 1s therefore

o~2X10" esu ,

a result somewhat larger than most previous esti-
mates.t®

Jupiter 15 observed to have a strong magnetic
field, and m seeking internal mechamsms for its
origin if 15 first of interest to decide whether the
field could be primordial. If it were, then the
guantity of central importance 1s the decay thime
T gwven m seconds by

T ~4no(L/c)? ,

where ¢ 1s the velocity of light and L is a typieal
planetary dimension, which we take here as
5X10° cm. The result

T ~2X10° years

may be seen to hinge not too seriously on the
choice of L, Even if the value chosen 1s viewed
as unreasonably large, the result for Tremains
such that the possibility of primordial origin 1s
difficult to discount. In complete contrast to this,
it 18 mteresting to record that the high value of o
15 hikely to be favorable for a dynamo mechamsm?!®
underlymg the generation of the magnetic field.
Finally, a straightforward application of the
Wiedemann-Franz relation yields thermal conduc-
tivaties for the interior of Jupiter ranging from
(in erg/cmsecK) 9X10° at the center to 1x10°

al the metallic boundary. Now the observed in-
ternal heat flux 15 very high,?? but 1t 15 apparent
that even conductivities of this magnitude are insuf-
ficient to mauitain the measured flux unless we
assume a much larger ceniral temperature 4-15
In-a situation-such-as-this, the-system 1s-unstable
agamnst convection, and the planet would rapidly
cool. It would seem to follow that all but a small
core of Jupiter must be convective. The size of
this convective region 1s-an open question,
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APPENDIX A VALIDITY OF THE
BORN APPROXIMATION

An elementary criterion for the validity of the
Born approximation 18 that?

Zétfep < (K2 omeg)V? .

Here, the left-hand side 1s roughly the distance
from the 1om within which the mteraction energy
exceeds the Ferm: energy. The rght-hand side
15 of the order of the electron wavelength, It fol-
lows that

€x2 2722 /(% /me?)=4Z7 Ry,

whence 7,5 1/Z,
An alternative eriterion s
Opom/ 4TEK 1,

where 4r¢® 18 the “geometric” cross section. For
a single 1o0n

V(R)=3F fsmkrV(y)rdr :

We calculate oy, approximately using Thomas-
Ferm: screening, 1.e,,

V(#)= (2 fr)e™,

50
dg Ze? 4rZe? 1
k = =
V(R =g =3 0.1600, @B 7
where
x=k/2k .
Thus,
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- 1 ( 47z ) L xdx
Bom =3 k%, (kg &y (#*+0 1667,)*

But,

a=1/q,=0.647}2a,
and thus it follows that

Opomnd 4007 2 (02772 Z2) /(1 +0.1667,) .
Finally,

Oporm /4T0%<< 1 1mphies 7, S 1/Z (as before).

However,.the Born cross section per 1on m the
condenged state 18 clearly different from that of
a smgle isolated ion. We can calculate the “ap-
parent” cross section, per 1on, in the hgud by
using the wdenfity

noUET=1,
where T 15 the “collision ime” for an electron

and 715 the 10n number density.
Since p=m/m,e*T, we have, from Eq. (5),

_411'322 1, : )
T, = 7 fn YR()S(y)dy ,

=2 p(p© cm)/21.N(r ,/1.92)a3,

whence
T 10
K} HYDROGEN
i
3
[0 L I 1 1
| 10 10? 10°
£ lg/em®) —
T
{°K) HELIUM
L 10 ] I 1 1 |

1
1 10 T T T T T

plg/sem®) —

FIG. 9. The meliing temperatures of metallic hydro-
gen and helium accordmng to Landemann’s rule.

|

o,/4na?= 0.1Z(p{p R cm)/21.7) ,

where p is calculated from the first Born approx-
imation. (Note that this formula 15 valid for any
smmple liqmd metal.)

For hydrogen at %,=1.6, T=7,, we have ¢,/
4rg®= 0,06, and for helium at%,=1.2, T=T,, we
have o,/4ra®= 0.25.

This suggests {but does not prove) that the Born
approximation may be much better satisfied in the
condensed state than for a single 10n. Thus, our
eriterion 7. = 1/Z may be too stringent. Ii 15 elear
and expected, however, that the Born approxima-
tion 18 increasmgly well satisfied as ¥; becomes
smaller.

APPENDIX B MELTING CRITERION

A commonly used criterion 15 Lindemamn’s rule,
This can be written ag®

y_z E(nkk+z) (B1)

Mn w2 °
Mnmn kaR

where ¥ 18 the mean-square amphtude of the ions
just below the melfing point and is found, almost
umversally, to be about -k . Mis the 1on mass,
R, the mteratomic spacing, w;, a phonon frequen-
cy of wave vector £ and polarization A, and n, 15
the Bose-Einstein occupation factor.

For the high-density systems considered,
Abrikosov?® hag shown that it 15 important to dis-
tinguish between the longitudinal and transverse
modes, smce the former are primarily deter-
mined by the bulk compressibility of the eleciron
gas, whereas the latter are primarily determined
by the Coulomb forces between i1ons.

We make a Debye approximation, but allow for
the longitudinal and transverse “Debye” tempera-
tures to be different Using the method outlined
by Trubitsyn,® we obtan (in K)

2500275 7221 3.86 7,17Z%/3\/2
AR yi T rd TR ’
= BOOD(Z/A T2 ;

The correlation energy of the eleciron gas 13
small and can be ignored. Equation (B1) can then
be written

: 2 B;/.T'
kBO; 144 (i f xdx :l
MS? e,/ Jo -1

24,0, ‘T f&‘:/ﬂ‘ xdx ]N
* MS%[I 4 t) o &1 =047, (B2)

where §;, S, are the appropriate sound velocihies,
We anticipate T, < ©;, ©; and so approxmmate @,/T,
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©, /T by «1n the mtegrals. It 1s easy to show that
this 15 valid provided

(©/T)e <t for ©=0,and ©, ,

0.22

A2Z5/503 1 /r 8) - (3.66 /r3) - (1.172273 /r )| 72y 2

and 18 solved to obtamn 7y (note that for v, <1,
only the fransverse modes are important 1n deter-
minmg Ty ). The results, shown i Fig. 9, give
melting temperatures which differ by as much as

a factor of 2 from those in Fig, 3. Similar re-
sults have been obtaped by Pollack and Hansen,2*
The problem with Lindemann’s rule 1s that an er-
ror m ¥{= f 1t the above calculation) propagates
alarmingly through to the final calculation of Ty,

m the case 7,< ©,,0,, Typcally, a10%errorny
wiligivea 50% error in T,,. Moreover, our estimates
of Oy, ©; areonly approximate. (Ourformula for ©,1s,
however, n excellent agreement with the ©, cal-
culated by Neece, Rogers, and Hoover.?®} Note

which 15 satisfied reasonably well for the cases
studied. Equation (B2) can be written m numeri-
cal form, for low temperatures, as

an® /T \2 0.13 2n® /T 2]~
[1+ 3 ('é";) ]+A1/2ZT/GT;/2|:1+ 3 (6") ~0 47

T

that at sufficiently high densities, the zero-point
motion alone will cause the lathice to melt. Linde-
mann’s rule gives an estimate of the value of #1/2
at which 7, -0. Since density varies as (r1/2)75,
the density at which T, =0 cannot be caleulated

to better than an order of magnitude usmg Linde-
mann’s rule. (The pressure at which 7, -~ 0 may
be mcorrect by almost two orders of magmtude.)
As Abrikosov'® observes, only hydrogen and heli-
um will melt at absolute zero and sufficiently high
densities This is because the densities required
for heavier elements are such that the sizes of
the nuclet become 1mportant.

" *Supportied in part by NASA under Contract No NGR-33-
010-188, and by the National Science Foundation under
Contract No, GH-36457.
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A structural expansion for the static ground-state energy of a simple metal 15 denved Two methods are
presented, one an approach based on single-particle band structure which treats the electron gas as a
nonlinear dielectric, the other a more general many-particle analysis using finite-temperature perfurbation
theory The two methods are compared, and 1t 15 shown 1 detail how band-structure effects, Fermi-surface
distortions, and chemical-potential shifts affect the total energy These are of special interest m corrections
to the total energy beyond third order m the electron-ion mnteraction and hence to systems where differences
in energles for vanous crystal structures are exceptionally small Prehmenary calculations using these

methods for the zero-temperature thermodynamrc functions of atomuc hydrogen are reported

1 INTRODUCTION

Recent work i the theory of metallic phase
stability has met with moderate success in ac-
counting for the most stable crystalline structure,
binding energy, and compressiblity of a sumple
metal. »? The theory depends upon a perturbation
expansion of the ground-state energy (7'=0°K),
usually to second order in the Fourier components
of the pseudopotential evaluated at reciprocal-lai-
fice vectors. In certain cases, however, the en-
ergy-difference between siructures 1s so small
that it 1s essenbal to consider higher-order terms
m a structural expansion for the energy. A case
i pomt is atomic metallic hydrogen for which a
second-order calculation of the ground-state en-
ergy per proton using a random-phase-approxi-
mation (RPA) dielectric function gives (static-lat-
tice) energies of — 1.01532, —1.0159%7, and
— 1,015 37 Ry, respectively, for the se, fce, and
bee structures at a density {(#.=1.86) near the zero-
pressure metastable equilibrium.

The procedures for constructing the perturbation
expansion have been known since 1958 when Hub-
bard® developed a diagrammatic techmeue based
upon solutions of a one-electron Hartree-like equa-
tion, 2 method which ulfimately enabled lum to
express the energy in terms of the solutions to an
integral equatioh. Later, self-consistent methods
were proposed by Cohen? who treated the ground-
state properties of a solid along the lines of the
dielectric formulation of Noziéres and Pines® for
the electron gas. More recently, Brovman ef al.®
have used a modification of Hubbard’s techmgue
to calculate both bhinding energies and phonon spec-
tra for simple metals. Lloyd and Sholl” have also
presented explicat expressions for third-order cor-
rections to the total energy using an analysis sim-
ilar to that of Hohenberg and Kohn, ® and Harrison®
has discussed the interpretation of these contribu-
tions 1n terms of three-body interactions. What
we present here 18 an exphicit structural expan-

| {I=]

s1on which 15 convement for caleulation of ground-
state energy a5 a function of density and which 1s
simply related o the eigenvalues of the one-elec-
tron band Hamiltoman., We shall discuss its re-
lation to a more complete solution given in terms
of the T=0 °K laimit.of fimite-temperature pertur-
bation theory. Finally, we shall discuss certain
differences between the present work and the pre-
vious theories mentioned above and apply these
techmques to a calculation of the ground-state
properties of atomic hydrogen. A comprehensive
Bravaig-lattice survey of the binding energy to
third order mn electron-ion interaction for this
solid has been carried out by Brovman ef al, ¥
The purpose of our calculations 1s rather to study
the magmtudes of hgher-order corrections, in
support of which we shall present numerical values
for se, fce, and bee lattices.

O FORMULATION OF THE PROBLEM

We consider 1n this secfion the problem of com-
puting the total energy of a system of N interact-
ing electrons mn a static periodic one-body poten-
tial. Later!'! we shall relax tms restriction and
consiuder the modifications arising from dynam:c
effects. To begin with we shall restrict our con-
siderations to 7=0 °K and subsequently extend the
analysis to nonzero temperatures,

The Hamiltonian for our system thus restricted
may be written

H=H9e+Hai+Hli ] (1)

where H,, describes the kinetic ahd inferaction en-
ergy of a system of coupled electrons, 1.e.,
2

.1 2, Ayt e .o
TR A e A @

H,, describes the interaction energy of the rigad
lattice of ions of valence Z, 1.e.,

1 [P
Hy=3 Zi W(R,,Ra) ; (3)
[- "

409
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and H,; describes the interaction of electrons with
the lattice, 1.e.,

Hy =23 V(T,) . 4
1

In Eq. (3), W®,, R,) 15 the bare 1on-10n interac-
tion, and 1n Eq. (4), V{T).is.the periodic one-body
potential. We may express H,, 1n terms of second-
guantized operators, i.e.,

1 z i’iz Eka 1
2P o g R e ®
H
i i I e? i -t f
3L TSR 2 o, M@ ckactace o,
; (6)
where
iaes 60 4qe?
SZW(q)=fe CF— = (7
a v q .

is the Fourier transform of the bare Coulomb 1n-
teraction (R bewng the volume of the system'®),
There is the usual problem of handling the g=0
term. To resolve it we carry out the following
seres of manipulations (the thermodynamic Lirut
being taken as the uliimate step). First, we sub-
tract from H,, the term

N\ r 1
1 af =&
Qze (9) J; — &, (8)
that is, the interaction term in H,, 1s replaced by
1 E! ea 32 1 3
= — | =4 9
Zi,f(ir,—r,l 2 _Lfr T)’ ©)

and H,, accordingly becomes

_1._ 2 -
Hee™ Bm ?E #cher
!
+3 _E w(d) ch;c%:-;cg. Co s (10)
£k, %0

which is the familiar electron-gas Hamiltonian,
denoted m what follows by H,,. We now add Eq.
(8) to H,,. Thus,

1l == ==
Hn""z"'zg W{(R,, Rg)
[

[ B e, (11)
2 )y lry -7l :

where pg=Ne/S. The term which has been added
1s the self-energy of a uniform background of neg-
ative (or positive) charge, To Egq. (11) we add the
mtieraction energy of the ions with this negative
background so that H;; becomes

‘

1 > = 1 2
Hy -"Egﬁ;’ W(R,, Rg) +-§ -Is;-'f_lng“ d3’1’1 dS,rz

-5 J; % W(T, R,) dr , (12)
a

which, if we neglect Born-Mayer terms, 1s just
the Madelung energy for the assembly of ions.
Finally, we subtract the same interaction energy
from the last term in H, H,;, obtaming

By~ DVEND [ LwERysr.  3)
i « Ja €

The original Hamiltonian has now been separated
inio three well-defined parts. Taking its average
over the ground state, we have as the expression
for the total energy per electron

E =R (M) +Ho1))+ 1)

where Ej is the Madelung energy, 1.e., the ener-
gy per electron of a lattice of positive 1ons in a
uniform background of negative charge. Note that
the first term m Eq (14) 1s not the energy per
electron of the interacting electron gas since the
ground-state wave function 1s that appropriate to
an electron gas in which a periodic array of ions
1s immersed,

Let us consider the second term in more de-
tail. For even a simple metal, the mteraction po-
tential V(¥)is not known in general from first
prmmciples. From the point of view of band theory,
however, 1t may be well represented by 2 weak
pseudopotential, at least for the valence states.
(We set aside mn tihns discussion questions of core-
level shifts and their effect on the total energy.)

If we make this pseudopotential approximation and
furthermore consider a local approxXimation m
which the_periodic potential is a simple superposi-
tion of bare pseudopotentials at each lattice site,
then Eq. (13) becomes

- Ze
H,=239(F, ~R, +EII——L_, 2 d% , 15
! T ( ) e 0 11"—Ra| ( )

or mn terms of the Fourier transform of v,

4 X
Hy= T o o) P
1581

5[ gy (16)
o 0 ¥
where
Qu(E) = fﬂ (P EF Py 68
and
péi) =z> e-if-ia (18)
[+
In particular, the k=0 term 18 given by
- d®
Lim (N,Nv(k)-z—N,Zepo j —"’) (19)
£-0 a ¥

where N; 15 the number of 1ons, N=ZN,, As an
example, for a potential which is Coulombic beyond
a certan “core” radms ¥,


http:w(q)e.e.cc

(=]

@ 3 re
A, f T dr . (20
e ¥ 0

Hence the long-range parts m (19) cancel and we
are left with

QRlimo(K)=-Ze?
£-0

Hy= 2 p'P o(®) B
Boi k.

e 1, 3,
+N % j o@PreNZep, [ 2L | (21)
0 o ¥

which we rewrite

H, - Xi' pPo(®) e 1 NE, (22)
¥y

where the “core” contribution'* E_ 1s independent
of structurs, and the prime means that k=0 1s ex-
cluded from the summation. Thus, the ground-
state energy (T=0°K) can be written 1 the form

E 1 1 '
TN (H, g N (? P,‘;”ﬂ@ﬂ-i)
+E.+E,, (23)

where pp=3,e"%, For a lattice of bare protons,
we note that Eq. (23) is exact with E,=0 and v(K)
=w(k). However, for the general case 1t 15 ap-
proximate since it 18 not clear that a smgle-par-
facle eguation describing the band structure with
a local ¥(¥) can be derived from H as given 1 Eq.
(23) with the same v(T). Moreover, 1t 1s not strict-
1y correct fo write the lattice potential as a s1m-
ple superposition. With these reservations, we
may address ourselves to the task of computing
the average

1 '
-~ (Heg+ ? pPu() p.s> . (24)

If we treat
r
H, E%} pl(z”v(if) P

as a perturbation, then the unperturbed problem
is the interactmg electron gas. Indeed, the prob-
lem 1s that of a dense distribution of idenfical 1m-
purities m the electron gas except that for a crys-
tal, the impurities are arrayed in a definite order.
Alternatively, one may sumulianeously treat both
electron-electron and electron-ion mteractions as
perturbations and carry out the usual double-per-
turbation expansion. In the followme sections we
present {wo methods for computng the energy
shaft due to H;, one closely related o a single-
particle picture, the other a more general many-
particle method.

I BAND APPROACH

In th1s section we consider the calculation of the
ground-state energy from a smgle-particle point
of iew. The physical picture 1s the following.
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We have a system of electrons whose mteractions
with the statie lathce are described by a pseudo-
potential. The electron gas may be viewed as a
nonlimear dielectrie and the pseudoions as the
source of external potentials which mduce charge
density responses m it. The energy associated
with this induction process 1s given by the well-
known expression’®

§W= [8V(¥) p(¥) & . (25}

This 1s the work which an external contrivance
must do in changing the potentials from some val-
ue Vito V+0V. Interms of Fourier transformed
quantities this becomes

SW=02 6V(-K) p() . (26)
k
The contribution ¢f the electron-ion mteraction
to the total energy 1s then given by
W= J Vew . @n

In general, we may write the averaged number den-
sity p(k) as

pE) =x, (W) + 20 xo(E, ) VE+D V(-
+.,E_ Xa(kb: a!; az) V(E +?1'1 +az)

1292

XV(=G) V(=G +--- , (28)

the first term of which is the usual linear-response
expression. It 1s easy to show that this leads to
an expression for the change in energy given by

N Ereor = %?xl(iw(-ﬁmi)
s %gz,xz(ﬁ, DVE+DV(-DHV(-F)
+3 D xalk, &y WVELG,+E)
kyq1a02
XV(-G) V(-G V(-E}+---, (29)

which we shall refer to as the band-structure en-
ergy'® and which 15 determmned from the induced
charge density through Eqs. (28). Note that V{(0)
18 to be execluded from the summation {a require-
ment of charge neutrality as discussed m Sec. II).
Equaiion (29) thus presents us with a well-defined
method for calculating E, in terms of the charge
density.

From the pomt of view of single-particle band
theory we calculate the charge density from the
Bloch wave function of an electron m a periodic
potential ¥, In terms of plane waves

GIE_E):Q-L'& eui’-ﬁ)-r-, (30)

the wave function 18 written (we assume a Bravais
lattice)
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’¢£)=Zﬁ>cz-§ [E-K)=2ic, |, (31)

where the coefficients ¢, satisfy the equations

(80_E+ﬁ00)00+ﬁ0161+ E T?U‘C£=0 3
1#0,1
Vioco+(8, ~E -f-ff;n)c::1 + 2 Vy.c,=0,
10,1
(32)

V.ot Vi1 +(8, ~E+V, e,
+ 20 V60,
rE0, 1,1

eee
with &, = (#%/2m)(E -K,)? and V,,=(E-K,I V Ik

- K;} An iterative solution of Eqs. (32} yields
a Brillouin-Wigner expansion for the ¢,, namely,

V.V,
c*‘CO(E g, +? (E_é,)(ﬁ:_g,)
V”V V .
R 5 iy )

AR R
"“’I(E Y EeEs %)

A
2 g E S E=E)

+) (33)

where the prime excludes 0, 1. Equation (33) leads

to folded secular equations

(S ~E+Ugleg+ Uy, =0,

’ v, V.,V
*,Zf E-&)E-8)F - (39)

In Eg. (35) the prime excludes I, m from the sum-
mations. Note that although U%,=U,,, U0 Uime
The folding fransformation 15 valid for any I, m
and accordmngly,

(& +Up —E)e; +UrpCn=0,
(38)
Uml Cy +(gm+ Umm —E)Cm= 0.

These equations define a two-band (upper dencted
by superscript™ and lower by*) situation for
which the solution for X,=0 is

w UQ [S ~[1 Y2,
rQ =@IUG 8- St U -URY, (8D
P, 8o+ UL —E
o ) _ [ 00 (=3, .{-)
R i = - 0 ¢
m G+ U B, Uf,_,,f Y
or
U
o fUum’ -1+ 9P 2k . (38)

A similar expression holds for the upper band
with (=)= (+) and {7 —[1+ 5P P2 F~H
+[1+(E 21 /2). We may use these resulis to
calculate a number density, 1.e.,

p(H =22 Lcke, G [FNFn, (39)
[kl 25

(34) where Etga denotes a summation restricted to oc-
Uy co+ (& —E+Uy)e; =0, cupied levels, The Fourier transform of Eq.
(39) gves
with the I’s defined by
T-;_ _.? p;:—'EEC Cia1 (40)
~ I
Uzm=Vzm"'E St im
. E-6; which for a single occupied hand reads
J
2
P =5[Zi}] ? [v, =@ +¥D 2] [yee, - (L 492 )H2)/ (1 + 2][7} -{1 +Tf)”2]2) : (41)

Alternatively, ihis may be rewritten usmg Eg. (37) as

U0 Uk

2 20,
2 z(——m + D
Q@ E\Ei-& -y imy (Bz-

These last two expressions are easily generalized
if two bands are occupied. If more than two bands
are occupled 1t 1s necessary to begin with the
folded secular equation appropriate to that num-
ber. We note again that in Eq (41) the K summa-
tion is only over occupied levels. Thus we are
summing up to the frue Ferm: surface rather than

Upg,i-1)Eg~

Uﬁ))/é ﬁ‘@i@f&;ﬁ) . (42)

[
within a Fermi sphere (the more common sttua-
tion an perturbation theory).

The above expressions, although formally exact
within the one-electron approximation, are dif-
ficult to use in practice. X we knew the analyhe
dependence of the I’s on ¥, we could perform the
integration m Eq. (27) (for example, by associat-
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ing with Va coupling constant over which we ulti-
mately miegrate) and finally carry out the sum on
k. However, only mn the exireme approximation
of retaining a single ¥ 1s this analyfically tracta-
able. We can, on the other hand, expand the ex-
pression for p, 1n powers of V, If we then assumé
that V(E)=V(K)/€(k), where () 1s the statie Tumit
of the eleciron-gas dielectric function, 1t 15 pos-
sible to caleculate the energy shift from Eq. (29).
The results of such an expansion are given in
Appendix B. Tn Sec. IV we shall derive an ex-
pression for the energy shift from a more com-
plete theory and see that the simple theoxy above
must be only slightly modified.

IV FINITE-TEMPERATURE RESULTS

In this section we calculate the total energy of
the system of electrons and ions usmg the tech-
mgues of finite-temperature perturbation theory.
If we choose as the unperturbed-system one having
a spherical Ferma surface (e g., nonmmteracting
ov interactng electron gas), it is, in fact, neces-
sary to use this method, a consequence of the fact
that for interacting elecirons in a periodic poten-
t1al, the adiabatically generated state of the zero-
temperature method 15 not the true ground state,
no matter how weak the lattice potential. The
state generated adiagbatically from a spherical
ground state can never depart from a state with &
spherical Fermi surface and cannot produce the
crossing of levels'™!® yesulting from the 1mposi-
tion of a periodic potential. In the finite-tempera-
fure theory, however, the mean occupatron num-
ber of a g1ven quantum state 1s no longer restricted
to be either 0 or 1. Thus the Fermi surface of
the unperturbed system 15 permatied to distort 1
such a way that the thermodynamic potential is
mmmized subject to the constramt of fixed over-
all density and 1 consequence the frue Ferm:
surface 1s attaned at each stage of the calcula-
tion,

The temperature formalism 1s most simply
stated 1n terms of Green’s functions. We shall
follow the exposition of Martin and Schwinger!® and
define the single-particle Green’s function as

Gas(‘fls ty; -fa, £s)
= (=N (TPo(F, 1)WLEs, B)) (43)

where the angular brackets denote the grand canon-
1cal ensemble average

(0)=Tre # M w¥ /0 /Ty g 8l | (44)

9, ¥t are Heisenberg field operators, «, B are
spm mdices; and 7' 15 the time ordering operator
for real ¢ (and the # ordering operator for imagi-
nary times). We Fourier transform G and write
the result 1fself ag a Fourier series

- 1
Gag(Dy, Pa;ﬂzﬁ' Lds”lds"'s

xe et gy (Fy, To, £),  (45)

- = 1
GagD1, Daj £)= —ip

1 XEe—‘wvi Gqﬁ(ﬁl: 52.! wu) (05'&?53) ]
' (46)
where w,=(n/-28)(2v+ 1) rp, v=0, £1,..,, s0
that

- - =ig) .
Gaﬁ(pla Pz; wv)= fﬂ Go:ﬂ(pls Pa, t)dt . (47)
These results are consequences of the boundary
condition gatigfied by G for imagmary times, The
average value of a one~body operator 1s given mn
terms of the Green’s function by

1 - Y e~ w, 0F
<V>=E EZE;;; V(_ P)QGaa-(k:k-P: wv)e v? -
(48)

In order to compute the ground-state energy we
use the statistical mechamecal theorem?®® which
states that for any parameter i 1w the Hamiltonian,

where = is the thermodynamic potential, the dif-
ferentiation is at fixed T, @, p; and the average
1 that defined in Eq. (44), For the Hamiltoman
we take that given mn Eq. (24). If we assvuciate a
coupling constant A with the bare interaction V,
we then bave, upon infegration,

1
2 =Eow)+ [ 507, (50)

To calculate the ground-state energy we take the
T=0limit of E(p)+ pN, 1.e.,

N b N 1.@_
NE —1;111;(._.0(11.)+HN]+J; S (Mf)a) {51)

which we write
.E‘ = Eu +Eb 3

Ey=

2|

Lim [Eol)+ uN T, (52)

i .
‘Eb= lim "dh—A' (A.V)h .

=0 0

=

The ground-state energy 1s then
E=Ey+E+Eu+E, . (53)

We note that E 18 not the ground-state energy of
the electron gas at density N/Q since the chemical
potential ;i 1s that appropriate to the compiete sys-
tem, namely, elecirons and 1ons. But E, has the
same form as that derived mn Seec. @I, for we may
expand G(E, §, ©,) n a Laurent series:
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v(p)

K,w, '5 K-pw
Ap(K,e,)

-

FIG. 1. First-order correction to the Green’s func-
tion. The solid line represents the electron-gas Green’s
function, the dashed lwne is the bare external potential,
and the trmangle 18 the vertex function of the electron gas.

96, T; w)=Z U ET, w), (54)
n=

50 that, usmg Eq. (48),

(w)a=3 239> V(- it
B 3.2v n=0,
X G™ME& k-3, ol (55)

and the expression for E; now reads®!

1 & 1 2
E,=lim—=2; —— =
® 70N ne0 B+2 B 3o

X G(’"ﬂ (E: E—' 5; wv) ew,,ﬂ" H (56)

which is of the same form as Eq (29) and consti-
tutes a more formal derwation of it.

In order to caleulate E, we need exphicit expres-
sions for the quantities G ™Y, Considering the
lowest-order term we note that G can be cal-
culated in terms of known electron-gas quantities.
We have

GVEE-B, ©,)=6E, 0,)VE)
XA;(E, wy)G (0)(E__ ﬁ: wv) » (57)

whach 15 shown graphically in Fig, 1, Here
G“”(k, w,) 18 the Green s function of the interacting
electron gas and A-(k w,} 15 the zero-frequency
vertex function. * The second-order term i the
band-structure energy 1s then from Eq. (56),

_E‘a’—i 11m—]5 E |V(p)I2A-(k w,)
N 70 B %50

9
w)
e Y]
C
fiad
FIG. 2. Integration contour for Eq. {59).

which, upon transforming to a contour mtfegral,
grves

1 - -

EP== 2 V@) [ 3% )

N »E o

XG (&, )6 V& -, w)dw , (59)
where C 1s the confour of Fig. 2. From the def-
wittion of the zero frequency dielectric funchion
of the electron gas® we therefore have

1
Ef ‘2’— 5= Z} V) |? ( -1 60
Vol e iEew 1) ©

with 2($) defined i Eq. (7)and p being the exact
chemtical potenfial

The hgher-order terms n the expansion of G
are, on the other hand, not well known, and the
analogues of A3k, w) must be approximated.

We 1illustrate our approximation by recalculat-
mg Eq, (58). Usmg the spectral resolution of
GV, w), 1.e.,

- * A,
GO, w)= 5 j dw'-a("’i—a,i , (61)
we have
1 1 dw, dw -
Efs — tm = 2 —L=2 |y(p)|?
i N ‘7.0 B 38, 2 ! )I
% A;(E, wy) A(k: wl) A(k_ B “’a) , (62)

W, - w, @, — Wy

which, explorting a further transformation of the
v sum to a contour integral gives two contributions

XG OUK, ©,)6 V&5, »,) , (58) from the simple poles
|
1 dw, dw Asfl, w Az(f
EP=g 1 f L% lv)Pak, 0 AE-3, wz)(_._i_(__i,z(w )4 _L(..Lz)n(wz))’ (63)

where n{w)= (*@#14 1),
spectral function, 1. e.,

Qur first approximation 1s to make an undamped quasiparticle Ansaiz for the

A(B, w)=218{(w - 8,(B) - 2,0)} , {64)

with Z,() defined to be the real part of the self-energy satisfymng Dyson’s equation §(P)= &§,(t)
+Z,(D, £@)). Then the right-hand side of Eq. (63) becomes
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&)+ 2,(K) - 8ok~ D)~ T

> [v@)|? ( Ak, &)+ 2, () 0 (1 - gn(l:()k——-zjb 1)@)

A3, 8o B)+ 2K~ ) 6(n - 8o~ P) - By E~ p))) (85)
8o(k)+ Z1(E) ~ 8o~ B) - Z,(k- )

QOur second approximation is to neglect vertex corrections and replace A;(k, w} m these expressions by

e"l(" 0, 1).® We then have

> v 2 ( 81 — 8ofE) ~ 2, (K)) - 01 = 8,&~ ) —*21(1?—5))) _ (66)
N X €[, 0 1) [8o(k) = &k — )]+ [Z,(K) - Z,(E - D)] ,
Furthermore, we write the chemical potential as
TESToN. 17 (67)
where .. 1S the chemical potential of an electron pas of density N/, i.e., .
= S+ Zy(br, o) , (68)

with k3 = 31°N/Q and &= (4%/2m)k% so that (66) becomes

-+ Z Ivel* m{e(@w —8F) - [2,(F, 8-

b2 l(kF H] ’-Lex)])

i

- 9(81;. +6 I-Lb - SO(E— .5) - [El(ﬁ_ 'fi: ‘g(ﬁ_ ﬁ))_zl(kf‘: p-eg)]} [30(E) _ go(E-— ﬁ)]+ [El(ﬁ) _ EI(E _ 5)] * (69)

The final approximation 18 to neglect differences n seli-energies.

For an electron gas at metallic densi-

ties thas approximation 1s fairly well satisfied. 2 Thus the final approximate expression is

——Z)I v(5)[?

0(Er + 5180

- 84)) — 08 +51° - 8K -D))

E(p, 0, 1)

For higher-order terms we proceed in the same manner.

Eolk)— 8ok~ D) (70)
Denoting the above approximation to V(B)A; by

a double broken lme and by a double wavy lne the analogous approximation for the electron-electron mter-
action, we mclude the clags of diagrams, given 1n Figs. 3 and 4. If can be shown that these correspond to
a random-phase approximation 1n the sense described by Cohen and Ehrenreich® provided one takes

€(D, 0, 1) to be the Lndhard dielectric function,

We next examwme certain eomplications which appear m fourth and higher orders and which are illustrated
by the fourth-order diagram of Fig. 5. This gives a contribubion to the band-structure energy

2 - -
i - E, V(— k)A-f(ﬁ'Fk: wu)G(m('ﬁs @y
B 4 £3 Tyspv

W(EG)hs,®, w,)60 B+ 1y, ©,)V(E)

X Mg, @+ G1, 0,)60 B+ 6+ G, @)V E- Ty - T)hig 5,0+ G+ G, 0)CVEK @) (71)

I evaluating the v sum, we perform a contour m-
tegration and the possiblity of double poles 1s evi-
dent {see Fig. 6). The double pole contribution
grves rige from differentiation of the factor

(e ™ 1Y to a 6-functron contribution m the
T=01mi, 1e.,

V@ [ |

(k) €(d)
5(8+61° = &,(D))
[‘gu(P) EoD+ 1E)][ &o®) - &B+a)] -

From Eqgs. (A5) and (A8), the origm of this term
1s clear. It arses from an expansion of 8(Ep

— E(k)), where E(K) 1s the exgenvalue of the single-
electron band-structure Hamiltonian, If 1s mm-

2

AE=— 2,

3

-
e

("72)

I
portant to note that this expansion 1s mvalid when
¥ 15 too near a zone plane: in fact, AE of Eq. (72)
diverges quadratically there. Although the behav-
10r of these anomalous®® contributions 1s general,
we can 1gnore them provided the ¢ funciions occur-
ring 1n the other expressions are modified from
8(u® - 8o(K)) to 8(n” - E®)), where p?=8p+6p° =6,
and 1s the chemieal potential one computes 1n a
band-structure calculation from®’r2

N=22,0(E.-E)) . (73)
k

The contributions from '(71) not 1nvolving
§ functions may be shown to give the firat three
terms of Eq. (A8). The first term of thig expres-
sion 15 well defined; however, the second and third
terms, owing to the squared.denominator, are di-
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Order Green funchion Order Egﬂ
ﬁ .
l il I¥:
2
®ay ,’;3‘ : : £
2
H
1
3 bl ==X
30
%
n
4a x:::O:::)(
3b
oK
FIG. 3. Correchions to the Green’s function The ab
double-dashed line and double~wavy line represent the (2)
dieleciric approximation described in the text
£

vergent when the Fermi: sphere 15 near a zone
plane. This divergence 1s an artifact of the asymp-~
totic nature of the expansion (Al). In Appendix B
we show that a resummation of dragrams leads fo

a finite result.

Fmally, we make a remark concerning the elec-
tron-gas term Eg(p). This can be calculated from
approximate expressions for Z(u) (e.g., the Nozm-
&res- Pmes formula), _However, to gain some
physical msight, we expand Eq(p)+ pN about p,
= Leg

- — = 1/ 8=
r'-‘cu(u)+iiN=NEu(#u)+§(“3"g‘) Bp’Pe---, (74)

n
and noting
aN
((AN)Z)=kBT:(—a—) , (75)
L,y

we see that the right-hand side of Eq. (74) be-
comes

NE (o) - (1/2k5T) ((ANBE" )+ -, (76)

50 that the change i electron-gas energy lowers
the total energy and 1s clearly related to the dis-
tortion of the spherical Fermu surface of the elec-
tron gas into the lattice symmetrie Ferm: surface
of the periodic system. We may also cbserve
that if Eq. (50) 1s written

E{n)=Eo(u)+Ey(p) (77

and expanded to fourth order m the external poten~
tial, the following expressions are obtained for
internal energy, chemical poteniial, and pressure-

FIG. 4. Contributions to the band-structure energy.

E=[Eo{po)+Es (o) +E5  (a)

+E;f“(ug)]+ %(1/90)KT(5U-2)2+ oV’ s (78)
B= gt Oflp+ Bpig+ Sp+ OV, (79)
where
7, dEP
aua=(E;2’(no)—T Bl ), (80)
¥, AE®
Oug= (E;S)(#o)-?s' 3,}, (ko) ): (81)
5
'rs dE(‘l)
5u4=(E§4’(#o)~—3-' “%;:M ,
5
1 1/, d3E® dg
— =~ -2
"R Krditag (r“ ars Vs ar, )
—p
Az
X
. - e :: — oy =
P+q, p+q+q,
a4, Xz== z=zx K- Yz
P p+k
i’
-~k

. FIG. 5. Fourth-order contribution to the band-struc~
ture energy given by term 4a of Fig. 4
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+—1K (6o 1+_¢Lﬁ (82)
Q THE 6B, dr, |’
and ’

p=[polg)+p P +p B ep ™)

1 1/, d2%E®
+?f;’f‘-’r5“29(?’s art

_ dEb‘z’)
s dr,

11 afy, 1 % 4Br\, orps
+g grksbe (143 35 277)+00%, (63)
where
{m)
p(m)=__ _1___ d‘Eb (ilo) . (84)

dmy?  dr,

The quantity K= 1/B, 15 the 1sothermal compres-
sibility of the mteracting electron gas and, as be-
fore, M g1s the chemical potential of the mteracting
electron gas, both evaluated at denzity ', (The
bracketed terms are to be expected from zero-
temperature perturbation theory.) We note that
the two methods agree to third order but i fourth
order duffer for the physical reascn outlmned above
(1.e., Fermi-surface distorfion). These duffer-
ences although small are not always neghgible as
will be shown in Sec V.

Recaptitulating to this pomt, we have seen that
the theory presented 1n Sec. I must be modified
i several ways. Tirst, the electron-gas term in
the tofal energy must be corrected to take into ac-
count the shift mn chemical potential due to the
ons. Second, the expregsions of See. I ior y,,
except for the first, must be multiplied by an addi-
tional factor of €"'(k, 0, p). Third, terms such
a3 4b of Fig. 4 must be included 10 a self-consis-
tent calculation., {These are essentially Hub-
bard’s® H diagrams which from his pomt of view
are comnected with double counting.) We now turn
to a discussion of the magnitude of these various
corrections for the particular case of a solid com-
posed of massive protons arrayed on a Bravais
crystal lattice.

GROUND-STATE ENERGIES OF SIMPLE METALS 417

V ATOMIC HYDROGEN

In this section we present the results of calcu-
lations for zero-temperature thermodynamic prop-
erties of three atonmuic hydrogen lattices, simple
cubie {ge¢), face-centered cubic (fce), and body-
centered cuble (bee). This choice was made part-
1y for convemence of computation, but more 1m-
portantly because of the relatively large difference
in Madelung constant between sc and the other
two structures. We shall use expressions (78)—
(83) and proceed order by order.

A Electron gas

We have taken the Noz:dres- Pines interpola-
tion formula for the ground-state energy of the
mteracting electron gas®,

Eolpoy= (a7~ (3/2m)(3m) /20
+(=0.115+0. 031 ). (35)

In a comparison of structures, the magmtude of the
structure-independent contribution plays no role
so that a hetter approximation 1s not necessary.

In any case, the Noziéres-Pines expression com-
pares very well with more recent forms. %

B Madelung energy
The Madelung energy may be written in the form
EJ!'=_AA{/73 2 (86)
where the Madelung constant 4, for the three
structures s given byl se, 1.760122; fcc,
1.791749; and bee, 1 721861,

C Second-order band-structure energy

We take the Lindhard expression for the dielec-
tric function in the calculation of the terms 1n the
band-structure energy :

eln; 1) = 1+ (1/27) (a/0m) 2 g@m) ,

3)
+2 ] .

with 7=%/2k,, Then the second-order band-struc-
ture energy may be written':2

el (87)
-1

2 (1—172
2(l=m,
g(m) 7\ an

1
Ef’(#oﬁ-‘ﬁ—ﬁz

gln)
X N 2@/ om 57 )

(88)
D Third-order band-structure energy

This contribubion is given by Eq, (A7) and corre-
sponds to diagram 3 of Fig, 4. It may be wriften
1 the following form :
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jeo>

TABLE I. Parameters in expansion (91) of third-order band-structure energy.

Lattice (real space} By by by by €4
s 0.08202 0,1195 0,15086 0.1748 ~0.00310
bee 0.06483 0,06591 0,054 67 0.04050 -0,00275
fec 0.06663 0.06945 0.059 33 0.04555 —0.00260

16/ 4 1/3
P ()=~ 2 (1),

nin

x 2 i (- yw (1- Tl B (0, %) ,
1

(89)
where W@ =1/, 1y), M=k, 2kg, and
P

> 74(q) .
H [é'o(q_)— ‘guEQ"'k)] [gu(q.)'"go(Q+k1()] )
90

The complete expression for H¥(#,7,) is given in
Appendix C, The third-order contribution thus de-
pends linearly on #, apart from a weak dependence
contained in the dielectric functions, The function
H® {5, n,) in this approximation is mdependent of
7, and depends purely on the sirueture, It is every-
where fimte buf has discontinuous derivatives for
certain values of 7, 7, as discussed by Lloyd and
Sholl,” We have expandéd E (1) as a power se-
ries in the parameter cv,=—(1/27) (4/97)! », .
which occurs in the Lindhard function. Thus

By (1o)=ar, [by+c7 by + (or, b,
+{erfogaees], ©1)

where a=— (18/9%) (4/9%)'/3, The values of these
structural constants are given 1n Table I,

E Fourth-order band-structure energy

There are several distinet contributions mn this
order. First we consider the most divergent parts
of the last two terms in Eq. (A8), namely,

vy P &[] T-ay ©2)
and
L5 | FE D) 5(E, = &) '
FEEI®)| Go-ar (33}
which we write
E4=,E[E{”(E)+Eé“(ff,)] . (94}

In Fig, 7 we show E{* (n)/ E{(n) and ES )/ E (n)
as functions of 7 fwhere E =3! E{” (3)] along with
the resummed expression given 1 Appendix B,

Note that ES (1) 1s part of the anomalous contribu-

tion as discussed in See, IV and that it must be in-
cluded at fimte order to give the appropriate Iimit-
ing agreement with the resummed diagrams. Fur-
thermore, we note from the positions of the first
reciprocal-lattice vectors that the contribution of
this term will be small, The behavior exhibited in
this term 1s rvepresentative of the nature of any
spurwous divergences introduced by zone planes and
illustrates the mterconnection between band-struc-
ture effects and the methods (finite 7 and T=0) of
perturbation theory.

Second, we consider contributions from diagram
4b of Fig. 4. This term may be written

64 { 4 1
04 (2} — (2
Es _2'?17(% s 1 elmy) G(m) 5

where

! 1 1
C=2 e = TeT =)

X [ZH"” (ﬁi ’ ﬁz) + Hm) (772: ’712 - ﬁl)] (96)

and can be calculated readily since the expressions
for H®' (7}, ,%,) are known, Furthermore, apart
from the weak 7, dependence of ¢ this ferm 1s pro-
portional to #5. Numerical results for two repre-
sentative values of ¥, are given 1n Table II,

Next we consider the correction which arises as
a consequence of the chemical potential shiit,
namely, the last term in Eq. (78)-

Ej(.“)=%(1/90)KT(5!12)2 . {9n)

This is known from the expressions for the com-
pressibility of the electron gas and the second-or-
der value of the chemical potential, Inifact, asa
consequence of the compressibility sum rule, it
may be shown that this term 1s precisely given by
the diagram for E{** in the limit that the momen-
tum transferred by the anternal Coulomb hine ap-
proaches zero.

Finally, we consider contributions due to dia-
grams of the form labeled 4a in Fig, 4. There are
two contributions apart from those already dis-
cussed in the first part of this section and are
given in Eq. (A8). One is an off-diagonal part
9 V(ﬁr )J V(—__I-Ei) V(Ei — %1) V(gy - %t)

? i &) K) <& -K) «&-K)

I
1#0

(95)
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_ TABLEII Contribubions to fourth order 1n electron-ton mterachion to fre energy. Ef?! —Fig. 4(b), E'—Fig. 4(),
Ej—Tig. 8(c). E®'—chemical potential correction—see text of Sec. IV.

7s=1.6 #s=1.36
s8¢ fec hee se fee bee
E, 0,190106 .. . 0 415590 .. .
Ey =1,100076 —1 119843 —1.119913 —1,294207 - 1,317 462 ~1.317545
E, —{0.105351 —0 086230 —0.085 549 - 0,106 694 - 0,086 949 ~ 0, 086 237
Ey —0,03227 -0.02753 -0 02687 —-0,02815 —0.02385 —-0.02327
E‘éb 0.00844 0 00555 0,005 459 0,005 87 0,003832 0.003765
Egb 0.001 08 0,00076 0.000762 0 000696 0 000482 0.000 485
34 = 0,00187 ~0.000454 —0.000385 —-0,00170 -—0.00033% - 0.000287
Es —0.0077 —0.0067 —0.0044 -0.0055 -~ 0.0048 -0 0037
1 11, (K) and
X=22 . (98)
QT (8- 8. M8y~ 8;){8,— 8,;) - -
0 ) 0 F 1] H _é, V(KI)Z V(K)Z
and the other has diagonal paris N 0.1 e(K,) e(I'{'i)
#)
V(&) z\V(i{' )\"‘
a0 Z A ¥}
0 o 1e(E)) e(f,) y 8(Ez— &) (99b)
70 T (8o=8.)(E—8,) "
1 1 . . - .
X 52710@) EN T N Equation {99b) is an anomalous eontribution, which
x 0T TR AT T disappears along with the singularities from the
i 99 double poles if the resummation of Appendix B is
(84— 8,)%(8y— é’,)) 2) used. These terms are awkward to handle i nu-
E_ i
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FIG. 7. Sohd lwe, [Eyn) —ELMI/E® @) icf. Appendix B), dashed line, Ef (n)/E" (); and dotted lme, [E{% )
+ESY)/ER () lef. Eqs. (92) and (93) and Appendix B}. Note the left-hand axis a5 1/n; right-hand axs 15 . Verbical
bars represent shortest reciprocal lattice vectors for the structures indicated.
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FIG 8 Gibbs free-energy difference relative to the
simple cubic lattice for fec and bee metalic hydrogen.

merical work, although 1n principle there 15 no diffi-
culty. [One problem is the time needed to calcu-
late a mine-dimensional sum. Another 1s that the
kernel

e . a1 71y ()
K(m, ,7?3’7?3)=§§(g0— E HEg— E:)(8y— &)
{100)

has, as yet, no analytic representation. We have
been able to reduce it to a two-dimenstonal nte-
gral. It has an asympiotic expansion which gives

K@, %2, 08) "~ 32 o 73 38

X(ﬂl,ﬂa,ﬂskl.ﬁ) . {101)

We calculated these terms [Eqgs. (28) and (99)] by
taking as an approximation for X (ﬁl ’ 7}2 , M), 1ts
large 7 expansion, and by setting 1/e()=1. The
former 1s an underestimate bui note that for the
structures we consider 77 is always >1. The latter
1s an overestimate. The form 1s then

1 4 2/3
(day o __ = [ % 2
E 4(3ny? (QW) Vs

[13

11 )2
x e | =92 102
%n‘?(ng Tf; (ﬂl__qz}z C4 5 ( 0 )

which is proportional to 'ri and is probably an un-
derestimate overall, The values for the factor ¢,
are given in Table 1. ]

In Tables HI-V we _give the thermodynamic func-
twons p, E, G, at T=0°K calculaled to third order
1n the electron-ion inferaciion. In Table II we list

the explicit contributions to fourth order at v,=1,6
and 4= 1,36 corresponding to low pressure and 1,9
Mbar, respectively.®® The contribution E4® 15 an
estimate as noted above, Note the approzimate
cancellation 1n the fourth order, and further that at
high-pressures-the sc lattice is predicted to be un~
stable relative to fcc and bee (see Fig. 8).

VI DISCUSSION AND CONCLUSIONS

We have given a procedure for calculating the
ground-state energy of a sumple metal and have
shown that there are basically four contributions
involved, viz., electron gas, static dielectric en-
ergy, Madelung, and core exclusion. Further-
more, we have seen that the shift in chemical po-
tenfial from that of a umform electron gas must be
taken into account in calculations going beyond sec-
ond order. In particular, we have emphasized that
T'=0 time-dependent perturbation theory does not
give the true ground state when the unperturbed
system 1s taken to have a spherical Fermi surface
{a fact first noted by Kohn and Luttinger') and have
shown the relationship of this to the deformation of
the unperturbed Fermi surface. We have observed
that if one expands the free energy unmformly in
powers of electron-ion interaction, differences be-
tween finite- and zero-temperature perturbation
theory appear only 1n fourth and higher orders, and
furthermore, that certain divergences at Zone
planes can be resolved by resummations.

The preliminary calculations reported here for
atomic hydrogen seem to 1ndicate that a happy can-
cellation may occur in the fourth order, at least
for the sc¢, fee, and bee structures, although more
defailed calculations are required to be certain of

TABLE III. T=0°K equabion of state for atomic hydro-
gen {to third order). Note that these resulis are appro-
priate to a statie lattice and do not, therefore, include
phonon contribufions fo the equation of state, Note also
that one atomic umt of pressure=147 15 Mbar

Pressure
¥ sc fee bee
1.65  —2,03x104 —5,16 x10-% —5.23 X104
1.60 7.89 4.31 4,24
1.55 2.13 x10-° 1.72x10°% 1,71 x10-3
1.50 8,92 3 45 3.44
1,45 6.32 5.78 5.77
1 40 9,54 8.91 8.90
185 1.38 %10 1.31 x10"* 1.31x 10
1.30 1.96 1.88 1 87
1,25 2 74 2 64 2 64
1.20 3.79 3 67 3 67
1.15 5.22 5.08 5.08
110 7.19 7.02 7.02
1.05 9.92 9.71 9.71
100 1.37 x10"! 1.85 %101 1 35 %10~
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X 4K K kK % & TABLE IV. Free energy at T'=0°K for atomic hydro-
9a T8 . £ ¥ F f.‘ + gen vs 7, (to third order}.
T T Bk p otk B
¥ N - Free energy
% R & - £ be
x:‘\n J';x / ¥s SC CcC C
L ekt O + Q + 1.65 —1,04803 ~1.04338 —1.04209
E % g 164  —1.04807 —1.04353 ~1.04224
& L = 1,63 —1.04805 —1.04361 —1 04233
- - 1.62 -1 04796 -1 04363 -1,04236
e & oy X 1.61 —1.04781 -1 04360 —1.04233
g 5 Y 1.60 —1 04759 —1.04345 —1.04222
ix:-:O.:-xE + -+ 1.55 —1.04538 -1.041 88 —1.04062
i 1,50 -1 04104 —1 03818 ~1,03693
L wOE R 1.45 -1 03414 —1,03197 —1 03073
1.40 -1,02414 -1.02272 —1,02149
FIG., ¢ (a) Partial summation of Green’s function. 1,35 —1.01042 —1.00979 —1.00858
() Partial summation for the diagrams of 6a. (c) Par- 1,30 -0,99217 —0.99242 —0,99122
tial summation for the diagrams of 6b. 1.25 —0.96842 —-0,96961 -0 96843
1.20 -0.937 96 —0.94019 —0.,93902
1.15 —0,89928 — 0,902 62 —0,90147
1.10 —-0.85046 — 0,855 02 —0.85388
this, The calculations reported have been done 1.05 —0,799 03 —0.79495 —0.79383
using the Lindhard dielectric function. In third and 1.00 —-0,71188 —0.71929 ~0.71818

higher orders this is a very good approximation
since the dielectrie function occurs as /e, How-
ever, inthe second order, ¢ —1appears, Abetter
choice of € acts to change the magmtude of the second -
order contribution slightly but does not affect the en-
ergy differences between sc andthe two other cubie
structures. The use of the Lindhard function, as
noted in Sec. III, corresponds to a self-consistent
Hartree (RPA) approximation. We remark that the
zero pressure dengity of the structures studied will
be extremely sensitive to the exact fourth order
corrections due to the weakness of the minpmum in
the free energy as seen in Table IV. Also, a third-
oxder caleculation predicts an instabihity of the sc
strueture relative tothe two close packed latticesata
pressureof ~2-3 Mbar (see Fig. 8}, The exactiran-
sitionpressure is again sensitive to the magnitude of
the fourth-order corractions, It 1s clear, however,
that such a transition must appear at some pres-
sure, for the band-structure corrections depend
upon positive powers of +,, whereas the Madelung
term depends inversely upon »,. Thus eventually,
the statie Iattice having the lowest Madelung energy
should be most stable,

Brovman et al. 1° have computed ground-state
energiles for atomme hydrogen at zero pressure by
using the T'=0 expansion to third order in the elec-
tron-ion interaction and found an interesting class
of low-energy amsolropic structures. We regard
the effect of fourth-order corrections to these cal-
culations as an open question, but one that can be
settled using the above expressions. It is also 1im-
portant to point out that whereas including higher-
order band-structure effects 1n y; has neghgible
efteet (see Fig, 7) this may not be so in higher
orders for certain directions in reciprocal space
corresponding to Fermi sphere tangency to Zzone

planes {see Appendix C). Finally, we again em-
phasize that we have treated the lattice as static
and that it will be necessary to consider lattice
zero point energy 1n a complete determnation of
structural stalmlity since the zero point energy 18
of the magrnitude Ef¥, Caleulations of such phonon
effects are in progress,
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APPENDIX A

To derive an expansion of Eq. (41) we write the
band energy as

TABLE V. Gibbs free energy at T=0°K vs pressurs
for atomic hydrogen (to third order).

Gibbs free energy

Pressure 8c fee bee

0.0 —1.0481 ~1.0436 —1,0424
5.0%x10" —1,0300 —1 0349 —1.0336
1,0%10%3 —1.0305 —1.0266 —~1,0253
5.0 — 10,9707 ~10.9883 —0.9670
1,0x10°% ~0.9092 —0.9080 —0.9068
20 -0, 8081 —0,8085 —0 8073
30 —~0 7233 —0.7248 —0 7237
50 —0 5808 —0.5841 —0 5829
1.0x10™! —0.3019 —0.3085 —0.3075
50 —0.970% —0.9683 ~0, 9670
1.0 1.8572 1.8377 1,8387
5.0 5,6614 5.8273 5.6282
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8
- Vo, ¥, where 1y(K) = 6(E, — 8,(k)) and {K) = 8(&, — EK)).
= Sh7i0, ., 2y Lp — Oy F
E®)=&(k)+ };l &-68; * (a1) Clearly, when k 15 near a zone plane, these must
and the occupation number as be viewed as asymptotic. We find the following ex-~
v V pressions for the Fourler components of the den-
() =1q(K) — 5By — &) 'Z‘, —Qi—é—+ , (A2) sity:
i
|
pi ‘—Eﬂuﬁ{’)gv 10 (A3)
(2) s f}n;f}u E T?;, f}ui ) (A4)
Z\mo(k ( 1 (6p-6 )(é’o =& " iz0,1 Go—6;-) (60— 8))
ViV, V..V,
(3) =& ViV Vio +2 E 0.1' i1
Eﬁg(ﬁ)( (80 81)(80 - 85)(80 8 ) i#ﬂ z (80 gi-i)(gu 8:!)(80"'81)
ﬁoz ViV Vas Vi Voo Vs Ve V,o )
2% pIRRAlss S 2 -2 2
T EF 0 B8 o-EF mBe-& &8 1 G-8 )
-2 Ea(EF &(®)z 2V°' 2 g—“*—i— . (A5)
! i#0 ~0
Using Eq. (29) and supplying the extra factor of ¢"1(E) in the third and hugher orders, we find, for the en-
2rey,
2n (E)
(2) _ = 2 sl AB
Ef EIV(K,)I (K)go , (a6)
~-K) V6K, -K) vE) 1
@_2 i v _I_{') il i ol , AR
B =% 2@ (R 8, -K) <) &G 8) (&)
D
92, @ T V(.—.IE‘) V-E) V(.:.K" “_?’) V(__..IE" -k L + IV(.-.IE‘) gucs ";ﬁ’ :
3 0 ;:g,: €(K:) e~ K;) €(K¢ —'K_f) E(Kj —Kx) (go -é’:)(‘gn —8‘)(80 - é}) ;&;0! G(Kz) IE(K; —Kz)
. . 1wy —— ¥
1 5 V&2 |V, 1 _1 IV(K G(EF -8)
_gx)z(gu‘“ zaeo iG(K ) |€(K1 (8- 5) (S -8) N'% 0 E(K: !G(K
’ (48)

APPENDIX B

The diagrams which correspond {o the second and third terms of {A8) are shown in Fig. 6. The two dia~
grams of 6(a) are equal in magnitude when summed over E, § so we need only calculate one and multiply the
result by a factor of 2. We now observe that the series of Fig. 9{a) may be summed, 1.e.,

= o - i
2 - == m_ _
GolB; wi) 2 [ AT GoB +E, w,)Go(B, w,)]™ = Gylp, w,)(1 R TE e 1 E e o) 1) (B1)
Hence the series of Fig. 9(b) can also be summed, and supplying the factor of 2, the resummation gives,
for Fig. 6(a),

A ramel ok [y 1 1
FLITOFTO! [0 o TR B e T ey ¢+

ey
»v

which no longer has double poles and hence is always finite. Similarly, the contribution of Fig. 6(b) is the
first term in the series of Fig. 9(c), which may be summed to give

1 . 1 1 - .
F _Z | 7@ J; d(lz)(Gai(ﬁ, )G B 4T, wy) TR Go®, w, )G +k, wv)) . (B3)

>
. kv



8 GROUND-STATE ENERGIES OF SIMPLE METALS 423

This again has only simple poles, and moreover 18 Seen to be 2 correction to E2 rather than Eg‘”. In fact,
the integrals appearing in Eq. {B3) can be done analytically.
APPENDIX C
Yhe prinmpal—value wtegral for Eq. (90) 15 given by
__....1— ﬂ]_-{-l
H® (1, ﬂa) 64172 a7l S0 e[(Th 7 cos8) ln(ﬂ )'f' (12 — 11, cOS8) ln(ﬂ 1)
+81n[{n% — 1)n% - 1)] — s In[(ninE +4% + 1% — 4, cos + cos28) + 28(n17, — cose)]] s {cn

where

= (n% +n% — 2ny7, cosP — sin®) V2 |

When 8= —28", 1.e., when 7, s, 7y~
this function becomes

ﬁ,_ form a trmangle which can be inseribed in a cirele of diameter <1,

1 M +1 M+l
3 _ - 2 - 1
({1, )= 6411' P 9((711 My cos8)1n — +(ny ~my c0s8)1In m_ll
+ 9 "arg{(nind +n? + 1 — 4nym, cos P + c0s29) — 226" (g, ~ cose)]) , (c2)

with
8" = (5100 = 7 - 7 + 2y coSB) /2

and the argument function is the principal branch
with the branch cut along the positive real axis.
When the Fermn sphere is contained within the first
Brillouin zone {the cases we have considered), it
is sufficient to use the principal-value integral,
However, when this 15 not the case, one must use
the symmetrie form which oecurs in Eq. (29).

Hm (ﬁn ﬁz)" %[ﬁm (ﬁli ﬁz)

—(3}

FIG, 10. Normahzed suscepitbiliies A, Ty and
A, ) vs nfor (Ml =] =nand i f,=5. A®
includes band structure, A§Y does not,

'!'H{a) (ﬁ-l - ﬁa, - 'Ez) +H(3) (ﬁa - ﬁl’ - ﬁl)]
= (1/487%)A8 (11, ) (C3)

where, when H'® 1s as given 1n (C2), the tilde over
the first term means that 27 must be subfracted
from the argument function. 3 (This ensures that
the proper small-n limit obtains,) Moreover, in
the region of 7, 71, space for which §=0, 1if is
necessary to include detailed band structure 1n en-
ergy denomnators to avoird anomalously large val-

4 []
el a3
"?["’?2=|
—(3
i
sl |
o 1 1
(¢] | 2 3
K/

FIG. 11. Normalized susceptibthties A (f;, ) and
By, Hiy) vs g for 1Tyl =Tl =7 and fi fp=1, TP
meludes band structure, A§’ does not.
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ues. For example, in Figs. 10 and 11 we show
AP, , ) for |71 = 17, and two values of fi;+ fi
as a function of 5 compared with A @3, 7,), the

=}

same function modified by band structure 1n the
manmner of Appendix B. In the region about f; - 7,
=1, the reduction can be substantial,

y
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