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I INTRODUCTION

Many eritical engineering components, particularly those in gas turbine engines,
are subjected to complex thermal and mechanieal eyeling during operation. The ability
to prediet the fatigue life under these conditions is necessary for the efficient, safe,
and economical operation of these components,  This is a difficult problem because it
involves interactions between creep and fatigue, which are very complex (1,2).
Considerable research has been conducted in this area in the past two decades and this
has resulted in a number of methods of estimating the fatigue life of engineering
materials under thermal-mechanical steam eyeling (1,3-90).

One of the most promising approaches to the predietion of thermal-mechanical
fatigue life of materials is the method of straimrange partitioning (9-13).  In this
technique, the nelastie strameange in the eyvele s divided nto four basie components
according to whether the steain is tensile or compressive, and time-independent (e,
plastic) or time-dependent (Le., ereep).  These four partitioned inelastic strainranges
are defined as follows:

'\'pp tensile plastie stram reversed by compressive plastie steam.
A li"-‘ tensile plastie straun reversed by compressive ereep strain,
.\l(_p tensile ereep strain reversed by compressive plastie strain,
.-\tﬂ. tensile ereep stramn reversed by compressive ereep strain,

Relationships between eacn of these four basie types of inelastic steamrange and
fatigue life are determined experimentally for the material, temperatures, and
environment under consideration by conducting certain types of low-evele fatigue tests
designed to separate the four basie types of inelastie deformation.  The thermal-
mechanical stram evele under consideration s partitione d nto its four basie inelastie
steainrange components (some of whieh may be zero), and the partitioned elastie
strainrange fractions are ealeulated from the relations,
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where Ae . is the total inelastie stramrange i the thermal-mechanieal -\lt'mn cevele.
Cyehe lwm" N N and N o COF responding to the PP, PC, CP and CC types of

(WA
melastie dvl.*hml\luh. ulapull\t\\. are determined from the four experimentally
obtained partitioned inelastie steammnrange-fatigue life relationships at a strainrange
equal to the total inelastie strameange ( Ac ) in the thermal-mechanieal eyele. The
predicted  thermal-mechameal fatigue life W then caleulated from the interaction
damage rule,
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where Npr is the predicted fatigue life.

The purpose of this program was to evaluate the applicability of the method of
strainrange partitioning to thermal-mechanical fatigue of Rene' 80, a nickel-base
superalloy. The four basie partitioned inelastie strainrange-fatigue life relationships for
this_alloy in_both the uncoated el(j’ld aluminide coated conditions at temperatures of
871°C (1600°F) and 10007C (1832”F) in an ultrahigh vacuum had been determined in a
previous program under NASA Contract NAS-3-17830 (14). Little difference was found
between the life relationships for the uncoated and coated conditions and between the
life relationships obtained at the two temperatures. However, the type of inelastie
deformation strongly affected the life relationships. For a given partitioned inelastie
strainrange, fatigue life decreased in the order PP, CC, CP and PC, with about an order
of magnitude separating the longest (PP) and shortest (PC) eyelie lives. The objective
of the present study was to determine whether the fatigue life of Rene' 80 subjected to
a complex thermal-mechanical eyele ean be predicted from these four basie fatigue life
relationships using the method of strainrange partitioning.
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11 EXPERIMENTAL PROCEDURE

A, Material and Specimens

The material and specimens used in this study were the same as those used to
determine the four basie partitioned inelastie straineange-ftigue life relationships in
the previous program (14). The Rene' 80 material was obtained from TRW master heat
BL-0138, whose chemieal composition is presented in Table 1. Tubular, hourglass
shaped specimens with thre ded ends were individually east as sohid round bars and
machined to the configuration shown in Figure 1, which is NASA Drawing CE-300740,
Only uncoated specimens were emploved in this program.  Prior to finish grinding, the
specimens were heat treated as follows:

21RO (999801Y fap o
T2IR7C (22257F) for 2 hours i vacuum and argon quenched to room temperature.

P - (A Oy & ;
LOO3TC (20007 F) for 4 hours in vacuum and argon quenched to room temperature
a0 aonOn . Ly T
105 J (TO257F) for 4 hours in vacuum, furnace cooled i vacuum to 64897
(12007F) within 1 hour, and air cooled to room temperature (this simulates the
coating evele)

s Ui 73 2 malis- : , ;
8437C (14507 F) for 16 hours in vacuum and furnace cooled to room temperature.

The resulting microstructure had an ASTM grain size of 3.

13, Fat il;uv l'ests

Ihis program involved a total of 12 fatigue tests. Seven of these were thermal
mechanieal fatigue tests with thermal eyveling in-phase (TCIP), These consisted of
programmed thermal-mechanieal steain eveling with temperature inereasing as tensile
axial steam inereased and temperature decreasing as compressive axial straim inereased,
I'he other five were pure thermal eveling with no applied mechanieal straimn or load.

he equipment and procedures used for the vacuum fatigue tests in this program
have been deseribed in detail previously (15,16),  Briefly, the test apparatus was
designed to perform completely reversed push-pull fatigue tests on hourglass-shaped
specimens  using  independently  programmable temperature  and  stram control.
Femperature was programmed using a thyratron-controlled S50-KV-AC transformer for
direct resistance heating of the specimen, while dinmeteal straimn was controlled directly
using  an  LVDTAtype  extensometer  coupled  to a  orogrammable,  closed-loop,
clectrohvdeaulie servosystem.  The temperature of the specimen was measured using
thermocouples spot-welded direetly to the specimen surface.  Load, dinmeter, and
temperature were recorded continuously  and  load-dinmeter hyvsteresis loops were
obtained at periodie intervals during each test.
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Table 1

Chemical Composition of Rene' 80 Material Used for

Thermal-Mechanical Fatigue Tests, Weight Percent
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In the thermal-mechanical fatigue tests, the mechanical strain was eveled linearly
with time, resulting in a triangular strain-time wave shape. The temperature of he
specimen was programmed such that the diametral thermal expansion eyeled linc cly
with time, resulting in a slightly nonlinear variation of temperature with time, as shown
in Figure 2. This was necessary to keep mechanieal strain and temperature in phase,
because the thermal expansion of this alloy was not linear with temperature, the
diametral thermal expansion was much greater than the diametral mechanieal strain in
these tests, and the diametral extensometer controlled the algebraie sum of diametral
thermal expgnsion gnd diametra nwchmbicnl strain.  The temperature was cyeled
between 400°C (752°F) and 1000°C (1832°F). In the pure thor(vml c_\-'gling tests, the
lomp%rnturv was eveled gl the same manner, either lz)otwcon 4007°C (7527F) and 10007 C
(18327F) or between 2437°C (4707F) and 8437C (15507 F). Both the thermal-mechanical
and the pure thermal eyveling tests were conduceted with a 12-minute eyele, resulting in
a eyvelie frequency of 0.0U14 hz. All of the fatigue tests were performed in an ultrahigh
vacuum of 10 ° torr or less to eliminate environmental effects. Fatigue failure was
defined in all cases as complete separation of the specimen into two pieces.

The step-stress method (13,17) of experimentally separating the total inelastie
strainrange into plastic and ¢reep components was utilized in the thermal-mechanieal
fatigue tests. In this technique, the component of steady-state creep for the entire
period of the time interval considered 1s taken as the "ereep" strain for use in the
strainrange partitioning analysis.  All of the remaining inelastie strain, whether
instantaneous or occurring as first stage (primary) ereep, is taken to be "plastie” strain.
The temperature and strain programmers are temporarily halted at a seleeted point on
the stabilized load (stress) - diameter (strain) hysteresis loop, the servocontroller is
switched from strain to load control, and the stress and temperature are held constant
at the stabilized values associated with the selected point while the e¢reep strain is
measured as a function of time. This condition is maintained until a reasonably linear
creep rate is established. This is taken as an approximation to the steady-state creep
condition. The servocontroller is then switehed back to strain control and the strain and
temperature programs are resumed. This procedure is repeated at a series of selected
points around the stabilized hysteresis loop. Before stopping at each step-stress level,
the hysteresis loop 1s restabilized by traversing one or more cyeles until the loop
repeats the path of the previous loops. A plot of the steady-state ereep rate versus
time within the thermal-mechanieal evele corresponding to each selected step-stress
point is then constructed.  The amounts of tensile and compressive cereep strain are
determined by integrating the areas under the resulting curves, with areas above the
horizontal (time) axis representing tensile creep and areas below the horizontal axis
representing compressive ereep.

kT Al g ol SIS 2N
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IlI. RESULTS AND DISCUSSION

The fatigue test results are presented in Table 2. The axial inelastic strainrange
was determined as follows. The width of a representative (approximately half-life)
load-diameter hysteresis loop was measured at the zero-load level and converted to
gross diametral displacement by multiplying by the horizontal scale factor for the X-Y
recorder and the calibration factor for the diametral extensometer. This product was
divided by the outside diameter of the specimen to obtain gross diametral strain. Since
both the diametral thermal expansion and the diametral mechanical strain varied
linearly with time within the thermal-mechanical cyele, thermal expansion was
eliminated from the gross diametral strain by multiplying the latter by the ratio of the
mechanical strain control setting to the gross strain control setting. This product was
the diametral inelastie strainrange, wich was then multiplied by -2 to obtain the axial
inelastie stro nrange. For example, for test number 7:

(1) width of representative load-diameter hysteresis loop at zero load =
W = 0.079 m. (3.1in.)

)
(2)  horizontal scale factor for X-Y recorder =
FX = 394 mv./m. (10.0 mv./in.)
(3)  calibration factor for diametral extensometer =
Fp =147 x 107 m/mv. (38 x 10°% in/mv.)
(4) gross diametral displacement =
D = (W) (I-’x) (FI-'.) ;
= (0.079 m.) (394 mv./in.) (1.47 x 107" m./mv.)
= (3.1 1n) (10 mv./in.) (58 x 10 2 in./mv.)
= 0.0000458 m. (0.00180 in.)
(5) outside diameter of specimen = .
D, = 0.0114 m. (0.449 in.) '
(6) gross diametral strain =
Ac gross - 1?: . "'S.‘:]"l"lt‘r‘if“' = et = 0.004002 |
(7)  mechanical strain control setting = -2.5 mv,
(8)  thermal expansion control setting = 96.0 mv. ‘

s S VP P S PN -— © ar——
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Test

Number

10

Iz

Specimen

Number

REE-231
REE-232
REE-233
REE-234
REE-235
REE-236
REE-23%
REE-239

REE-240

REE-228

REE-230

REE-242

Test
Type
TCIP
TCIP
TCIp
TCIP
TCIP
TCIP
TCIP
Pure
Thermal

Pure
Thermal

Pure
Therma|

Pure
Therma)

Pure
Thermal

Table 2

Thcrmal—.\!echanical F‘atigue Test Results for Rene’ 80 in Ultrahigh Vaeuum

Xial Strainran o

A
Iotal P.lastm lnclm;tm

0.00510

G.00535

0.00596

0.00493

0.00437
0

0.00457

0.00482

0.00511

0.00447

0.0041%
U]

0.00053
0.00053
0.00085
0.0004%
0.00021

]

0

0

Peak
Tensile Stress
MPsg 51
193 28.0
154 22.4
224 32.5
129 18.7
161 23.3
] f
0 ]
0 0
0 ]
/] U]

Peak Compressive

Stress

MPa ksl
—— ——
A1l B8.6
708 102.7
672 97.5
676 98.0
376 83.5

0 0

/] 0

f 0

f ]

0 0

Cyeles to
Failure

Remarks

Strainrange too high
Strainrange too high
Power interrupted
Equipment malfunetioned
Insufficient creep datg
Insufficient ereep data

400 to 1000°%c eyele; power
interrupted after 12 eyeles

400 to 1000°%¢ cyele; suspended
after 1260 cycles

243 to 843°% evele; equipment
malfunetioned after 245 eyeles

243 to 843°% eyele; equipment
malfunetioned on first eyele

243 to 843°% cyele; suspended
after 1007 cyeles




(9) gross strain control setting =
=2.5 mv. + 96.0 mv. = 93.5 mv.
(10! diametral inelastic strainrange =

Ac diam. inel. = i,’-‘s’% ( Ac gross)

Y (0.004002)

= =0,000107
(1) axial inelastic strainrange =
Ac axial inel. = (-2)( Ac diam. inel.)

= (-2) (-0.000107)

= 0.00021
elastie stranrange was caleulated by adding the peak tensile elastic strain and
compressive elastie strain.  The former was obtained by dividing the peak
siress by the modulus of elasticity at the maximum temperature in the cycle,
(s while the latter was oblained by dividing the peak eompr%sive stress

modubus of elasticity at the minimum temperature in the cyele, 400 C (7527F).
example, for test number 7:

§ifd
ik

g
i!

(1) peak temile stross »

e, * W MPa (23,3 ksi)

(1) modulus of elasticity st 1000°C »

Fi000 « 144,000 MPa (20,900 ksi)

)  pesk temnile elastio strain »
9

o * “u. TR B - eoons

1) pesh compressive stross -
* 576 MPs (53,5 ksi)

e




(5)  modulus of elasticity at 100°C =

B = 189,000 MPa (27,400 ksi)

400
(6) peak compressive elastio strain =
Yo 576 MPa 83.5 ksi

€0 Ty THN000 MPa" “TRA00 ke - 00908

(7)  axial elatio strainrange =

Acol: €, ¥ €

0.00111 + 0.00305

0.00416

"

The axial total strainrange was simply the sum of the axial elastie strainrange and the
axial inelastio strainrange.

The fatigue lives for the three completed thermal-mechanieal fatigue tests
(numbers §, 6, and 7) are plotted ax a funetion of axial inelastio strainrange in Figure 3,
along with the four basie partitioned inolns\ic strnmgnngo—ralimlo life relationships
established previously for this alloy at 871°C (1600°F) and 1000°C (1832°F) (14).
According to the method of strainrange partitioning, the highest (PP) and lowest (PC)
lines representing these basie fatigue life relationships provide upper and lower bounds,
respectively, on fatigue life. This means that, for a given inelastie strainrange, the
longest possible fatigue life would result from a strain eyvele in whieh the inelastie
strain consists entirely of the PP type, while the shortest possible fatigue life would
result from a streain eyele in which the inelastio steain consists entively of the PC type.
A complex strain eyele in which the inelastie strain consists of a combination of two or
three of the four basie types of inelastie deformation (both PC and CP types cannot
oceur in a given cyele) would result in a fatigue life somewhere between those
represented by the PP and PC lines. Thus, if the thermal-mechanieal fatigue life of
Rene' 80 ean be predieted from these four basie fatigue life relationships using the
method of strainrange partitioning, the thermal-mechanieal fatigue data should be
bounded by the PP and PC lines. However, the fatigue hives for the three completed
thermal-mechanical fatigue tests were econsiderably shorter than those represented by
the lower bounding PC line at the same levels of inelastie strajnrange.  This suggo:%ls
that the four basie fatigue life relationships for Rene' 80 at 871°C (1600°F) and 1000YC
(18327°F) may not be appropriate for using the method of strainrange partitioning to
prediet the thermal-mechanical fatigue life of this alloy eyeled between 400°C (752°F)
and 10007C (18321), The reason for this anomaly was investigated.
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In order to determine whether the thermal eveling alone was very damaging to
this alloy, pure thermal eveling tests were condueted.  In one of these tests (number 9),
the specimen was thermally eveled over the same temg rature range as tluht employed
in the thermal-mechanieal fatigue tests, 4000C (T527F) to 10007°C (18327F), and no
failure occurred in 1260 eyeles.  Another pure thepmal v.\'%lmg test (l&mnlwr 13) wils
conducted over the temperature range from 243°C (A707F) to B437C (16507F) to
determine whether thermal eveling at  lower tempoeratures, but  with  the sape
temperature variation as that used in the thermal-mechanieal fatigue tests, 6007 ¢
(1110YF), would be damaging to this alloy. In this test, no failure occeurred in 1007
eveles.  Both of these specimens were then tensile tested at room temperature to
determine whether the thermal eyveling had affeeted the mechanieal properties.  These
results are presented in Table 3. In both specimens, the ultimate tensile strength and
the ductility, as indieated by the reduction of area, were much lower than the values
reported previously for Rene' 80 at room temperature (18).  To establish whether the
original tensile properties of this nmlvrial were “’pivul of Rene' 80, tensile tests were
conducted at room temperature and 8997°C (16507F) on specimens which had not been
thermally eveled.  As shown in Table 3, the ultimate tensile strength at room
temperature and the reduction of area at both temperatures were much lower than the
corresponding values reported previously for this alloy (18).  However, the room
temperature tensile properties were about the same as those obtained after thermal
eveling, Thus, the tensile properties of this material were not impaired by the thermal
eveling, but were lower than normal for Rene' 80, This suggests why the thermal
mechanieal fatigue lives were considerably shorter than would be predieted from the
four basie fatigue life relationships,

The low-eyele fatigue resistance of an alloy generally deereases with deereasing
ductility (19), Since the ductility of the Rene' 80 materal deereased with decreasing
temperature, the low-evele fatigue Life of this material at a given inelastie straneange
would be expected to deerense with deereasing temperature.  This would shift the four
basie (atigue life relationships for this material to lower levels of inelastie strainrange
and/or fatigue life at lower temperatures (20), Since the thermal-mechanieal !‘nn'gw
h-sl?‘ in the pr‘\-«‘nt isdy were condueted over the temperature range from 4000 ¢
(TH271) 1o 10007 C (183271, the thermal-mechanieal fatigue Life was probably greatly
affected by the lower temperatures in this range.  The ductility of certam mchel-base
superalloys such as Rene' 80 ean also be reduced by prolonged exposure 1o elevated
temperature because of  time dependent  micerostructural  changes  (21), and  this
degradation could be accelerated by thermal eyeling.  The decrease in duetility with
decreasing temperature sugpests that the prediction of the thermal-mechamenl fatigue
life of Rene' 80 by the method of stramreange partitionig may be .mproved if based on
the four basie fatigue Life relationships determined at a lower temperature i the
thermal-mechanieal steamn evele,
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Table A

Tensile Properties of Rene' 80

Test Yield Strength Ultimate Reduction
Specimen emperature at 0.2% Offset Tensile Strength of Area
Number C i MPa __Esn MPa ___1551 % Notes
Tensile Test Results

REE-240 25 77 - - 820 119 3.4 After 1260 thermal
eyeles, 400-10007¢c

REE-242 25 77 - - 786 114 3.1 After 1007 therénal
cveles, 243-843"C

REE-237 25 77 689 100 731 106 1.2

REE-241 25 77 820 119 869 126 3.1

REE-247 899 1650 - - - - 1.7 Air test at NASA-Lewis

REE-249 899 1650 336 48.8 717 104 2.6 R bl - i

REE-209 1000 1832 266 38.6 425 $1.8  35.2 SN T g a

REE-244 1000 1832 - - 415 .2 2.3 e o iy

Previously Reported Properties

- 21 70 821 119 996 144 6.2 Ref. 18
- 850 1562 538 78.0 583 99.0 29.4 Ref. 18
= 925 1697 359 52.0 509 3.9 33.3 Ref. 18
- 1000 1832 230 33.3 333 48.3 32.7 Ref. 18



IV SUMMARY

A limited study was conducted of the use of strainrange partitioning as a method
of predicting the fatigue life of east nickel-base superalloy Rene' 80 under combined
thermal and mechenieal steain eveling, The four basie partitioned inelastic strninrum;,v-
fn!igtbo life rolmignships f\w this alloy had been established previously at 871°C
(1600°"F) and 1000°C (1832°F) in an ultrahigh vacuum.  Thermal-mechanical fatigue
tests were conducted on Rene' 80 sR('oinwnS in an ultm&n’gh vaeyum using thermal
eveling in-phase (TCIP) between 4007°C (7527F) and 10007C (18327F),  The thermal-
mechaniceal fatigue lives were considerably shorter than those represented by the lower
bound of the four basie fatigue life relationships, suggesting that these particular four
relationships may not be aporopriate for using the method of strainrange partitioning to
prediet the fatigue life of this alloy under thermal-mechanieal eyeling over this
temperature range.  This anomaly was attributed to a decrease in duetility with
decreasing temperature for this allov, sinee low-evele fatigue resistance generally
decreases with deereasing ductility.  The results indieated that the prediction of the
thermal-mechameal fatigue life of Rene' 80 by the method of steainrange partitioning
may be improved if based on the four basie fatigue life relationships determined at o
lower temperature in the thermal-mechanieal strain evele,
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