NUMERICAL METHOD FOR SOLUTION OF SYSTEMS OF NON-STATIONARY SPATIALLY ONE-DIMENSIONAL NONLINEAR DIFFERENTIAL EQUATIONS
S. K. Morozov and O. P. Krasitskiy
(NASA-TM-75557) NUMERICAL METHOD FOR N N9̈-11804 SOLUTION OF SYSTEMS OF NON-STATIONARY SPATIALLY ONE-DIMENSIONAI NONLINEAR DIFFERENTIAL EQUATIONS (National Aeronautics Uncles and Space Administration) 35 p MC A03/ MF G3/64 36859
\rangle
Translation of: "Chislennyy Metod Resheniya Sistem Nestatsionarnykh Prostranstvennowodnomernykh Nelineynykh Differentsial'nykh Uravneni*y", Academy of Sciences USSR, - - Institute of Space Research, Moscow, Report Pr-396, 1978, pp 1-37

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGIION, DC. 20546 November, 1978

77．Key Words（Selectod by Author	1．）Eistribution s Unclassifie	－Unlimited		
19．Secuaty Ciossif，（of this report）． Unclass：̇シed	20．Socurity Clo＝：1f．（oi this poso） Unclass：ニジed	$\begin{gathered} \text { 21. No. of Posut } \\ 33 \end{gathered}$	22.	\because

Numerical Method for Solution of Systems of Non-Stationery Spatially One-Dimensional Nonlinear Differential Equations

S. K. Morozov and O. P. Krasitskiy

We propose a computational scheme and a standard program for solving systems of nonstationary spatially one-dimensional nonlinear differential equations using Newton's method. The proposed scheme is valuable because of its universality and the fact that it reduces to a minimum the work of programming. We give a detailed description and present the bext of the standard program which realizes this computational scheme. The program is written in the FORTRAN language and can be used without change on electronic computers of type YeS and BESM-6. The standard program described permits us to find nonstationary (or stationary) solutions to systems of spatially one-dimensional nonlinear (or linear) partial differential equations. The proposed method may be used to solve a series of geophysical problems which take chemical reactions, diffusion, and heat conductivity into account, to evaluate nonstationary thermal fields in tw-dimensional structures when in one of the geometrical directions it can take a small number of discrete levels, and to solve problems in nonstationary gas dynamics.

INTRODUGTION

In contemporary science and engineering practice, one often encounters situations when a specialist not familiar with the methods of computational mathematics and the fine points of programming must solve on an electronic computer one or another mathematical problem. In this case, he turns to a library of standard programs. For example, standard programs have yielded a great extension of the solution to the Cauchy problem for systems
of ordinary differential equations by methods of Runge-Kutta type. The level of the developments of present-day computational engineering permits us to pose a question about the creation of standard programs for more complex mathematical problems. In this work, we propose a standard program for solving the boundary problem for a system of nonstationary spatially one-dimensional equations. A very wide class of physical problems can be reduced to such a system. For example, many models of geophysical phenomena, in which diffusion (heat conductivity) is the dominant factor, are often formulated mathematically as mixed problems for equations of parabolic type: either initial or boundary conditions are given. As a rule, the unknowns are related to each other in a nonlinear manner, which significantly complicates the solution.

At the basis of the method is the use of the implicit difference scheme. To solve nonlinear difference equations at each time step, we use Newton's iterative method. At each iteration, a linear system of algebraic equations is solved by a modified method of Gauss, taking into account the sparseness of thee matrix, by choosing a pivot element by column and a normalization by row. They behave in an analogous way in problems of mathematical chemistry (see collections $[1,2] \mid$). In gephysics a similar method was used in work [3].

The system of equations under consideration can be very stiff, ii.e. it can contain time constants with essentially different values. For. example, in geophysical and astrophysical problems describing the distribution of atmospheric gaseous components by height (the determining processes are chemical reactions and vertical diffusion), the stiffness depends on the great difference in the rates of chemical decay of the various components, and also on the coefficients of diffusion at various heights. It is known [[4] that, on account of a stiff restriction intrinsic to them at a step of time, it is unreasonable to use explicit difference schemes to solve stiff systems of differential equations, because the utilization of such schemes requires a large outlay of machine time while, in most cases, such systems in practice cannot be solved by explicit methods on present-day electronic computers.

The proposed scheme is especially advantageous when the determination of an exact solution in time is not required, but we are required to find the steady-state behavior. In cases of the lack or the smallness , f of the coefficients of the spatial derivatives, as this often occurs in
problems of mathematical chemistry, the scheme can be shown to be unstable (the scheme is A-stable ${ }^{\text {E }}$). In such cases, we need to watch for negativity of the eigenvalues or, at any rate, for positivity of the solution, and to control the pace of time or to use further iterations, excluding the result of the solution in the negative domain (see, for example, the article of Yu.M. Volin et al. and the article of B.V. Pavlov in collection [1].)
linearization by Newton's method permits us to provide an effective iteration process for solving nonlinear problems, to easily guarantee the conservativity of the difference scheme (a property of the scheme without which it is often impossible to obtain a numerical solution to the original system of differential equations).

It is well-known how mach work and time it takes to write down and debug a program. Therefore, by writing dow the program, we set up the problem, reducing to a minimum the work of programming and ensuring the possibility of an operational introduction of changes in the original model (for example, in geophysical problems the addition of new components and chemical reactions). This problem is solved by the calculation of a Jacobian matrix by means of numerical differentiation. In this way, we decrease the probability of error in the written program, while the user is freed from tiresome work and can concentrate his attention on the physical formulation of the problem and on the numbers of the experiment.

1. THE MATHEMATICAL METHOD

Let there be given the system of equations

$$
\begin{equation*}
\frac{\partial y_{k}(t, x)}{\partial t}=f_{k}\left(t, x, y_{i}, \frac{\partial y_{i}}{\partial x}, \frac{\partial^{2} y_{i}}{\partial x^{2}}\right) \tag{1}
\end{equation*}
$$

where $k, i=1, \ldots, M$ (i.e. into f_{k} enter terms with different $i=1, \ldots, M$), M is the number of equations, y_{k} is an unknown function, t is time, and x is the spatial coordinate.

We are given some initial conditions

芝) The definition of A-stablity can be found, for example, in the aixticle by L.S. Polak et al. in the collection [2].

$$
\begin{equation*}
y_{k}(0, x)=F_{i}(x), \quad K=1, \ldots, M \tag{2}
\end{equation*}
$$

We seek a solution on the interval $a \leq x \leq b$.
The boundary conditions have the form:

$$
\begin{align*}
& \psi_{k}\left(y_{i}(a), \frac{\partial y_{i}(a)}{\partial x}\right)=0, \tag{3}\\
& \varphi_{k}\left(y_{i}(b), \frac{\partial y_{x}(b)}{\partial x}\right)=0, \tag{4}
\end{align*}
$$

where $i, k=1, \ldots, M$.
We pass from continuous variables to discrete ones. For this we choose a uniform mesh in x :

$$
\begin{equation*}
x_{n}=a+(n-1) \cdot \Delta x ; n=1, \ldots, N ; \quad \Delta x=(b-a) /(N-1) ; \tag{5}
\end{equation*}
$$

(if it is necessary to introduce a nonuniform mesh, we can usually make a substitution of x by x^{\prime}, so the mesh in x^{\prime} will be uniform). The time steps will be numbered by means of the index j, while the moments of time corresponding to the steps will be denoted t_{j}. By means of $y_{k, n}^{j}$ we denote approximate values of the continuous variable $y_{k}(t, x)$ at the point $\left(t_{j}, x_{n}\right)$. The derivatives entering into f_{k} are approximated by difference relations of not more than three points x_{n}. For example:

$$
\begin{align*}
& \frac{\partial y_{i}\left(i_{j}, x_{n}\right)}{\partial x} \approx \frac{y_{i, n+1}^{j}-y_{i, n-1}^{j}}{2 \Delta x}, \tag{6}\\
& \frac{\partial^{2} y_{i}\left(t_{j}, x_{n}\right)}{\partial x^{2}} \approx \frac{y_{i, n+1}^{j}-2 y_{i, n}^{j}+y_{i, n+1}^{j}}{\Delta x^{2}},
\end{align*}
$$

while the derivatives entering into $i \varphi_{k}$ and $\overline{\varphi_{k}}$ are approximated by the relations

$$
\begin{equation*}
\frac{\partial y_{i}\left(t_{i}, a\right)}{\partial x /} \approx \frac{y_{i, 2}^{j}-y_{i, 1}^{j}}{\Delta x} \tag{8}
\end{equation*}
$$

4

$$
\begin{equation*}
\frac{\partial y_{i}\left(t_{j,} b\right)}{\partial / x} \approx \frac{y_{i, N}^{\dot{\delta}}-y_{i, N-1}^{j}}{\Delta x} \tag{9}
\end{equation*}
$$

In order to avoid restrictions on the time step Δt connected with instability, we make use of a two -tiered implicit scheme:

$$
\begin{equation*}
\frac{y_{k, n}^{j}-y_{k, n}^{j-1}}{\Delta V_{j}^{j}}=\int_{x, n}^{j}\left(y_{i, n+1}^{j}, y_{i, n}^{j}, y_{i, n+1}^{j}\right)_{m} \tag{10}
\end{equation*}
$$

where $f_{k, n}^{j}$ is an approximate value of f_{k} at the point n at moment of time t_{j}, which is obtained by the substitution of expressions (6) and (7) into f_{k} for $n=2, \ldots, N-1$.

The boundary conditions can be approximated by the expressions

$$
\begin{align*}
& \psi_{k}^{j}\left(y_{i, 1}^{\dot{i}}, y_{i, 2}^{\dot{j}}\right)=0 \tag{11}\\
& y_{k}^{j}\left(y_{i, A-1}^{\dot{j}}, y_{i, N}^{\dot{j}}\right)=0 \tag{12}
\end{align*}
$$

where $\psi_{K}^{\dot{j}}$ and φ_{K}^{j}, are approximate expressions for ψ_{K} and φ_{K}, which are used in the substitution of expressions (8), (9) into (3), (4).

Equation (10) has first-0̈rder accuracy in time. To increase the accuracy in time, we can put the right-hand side in the form

$$
\begin{equation*}
\beta \cdot \mathcal{L}_{k, n}^{j}+(1-\beta) \cdot \mathcal{L}_{k, n}^{j-1}, \quad \text { where } \quad \beta \geqslant 0,5 \tag{13}
\end{equation*}
$$

For $\beta=0.5$, equation (10) approximates the differential equation (1) with double precision in time. For $\beta<0.5$, the difference scheme becomes unstable.

To increase the accuracy of approximating the boundary conditions, the derivatives entering into, \bar{U}_{K} and $\bar{\varphi}_{K}$ can be written in the form:

$$
\begin{equation*}
\frac{\partial y_{i}\left(t_{i,} a\right)}{\partial x} \approx \frac{-3 y_{i, 1}^{j}+4 y_{i, 2}^{j}-y_{i, 3}^{j}}{2 \Delta x} \tag{IL}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial y_{i}\left(t_{i}, 6\right)}{\partial x} / \approx \frac{y_{i, N-2}^{j}-4 y_{i, x-1, t}^{d}+3 y_{i, N}^{j}}{2 \Delta x} \cdots \tag{15}
\end{equation*}
$$

In this case the derivatives mentioned above are approximated with double precision in x.

Equations (10), (11), and (12) form a nonlinear system of algebraic equations, consisting of $N \cdot M$ equations and $N i M$ unknowns. We will solve this system by Newton's method, i.e., at each iteration S we solve the following system of linear algebraic equations:

$$
\begin{align*}
& \sum_{i=1}^{M} \sum_{i=1}^{s} \frac{\partial \varphi_{x}^{i t s}}{\partial y_{i, i v e}^{d i s}} \tag{17}
\end{align*}
$$

For $S=0$, at the zeroth approximation the values begin with the previous time period: $y_{k, n}^{j, 0}=y_{k, n}^{j-1}$. The derivatives of the functions $f_{k, n},-\frac{H}{k}$, and "Y i with respect to the unknowns (of the Jacobi matrix) are found by humerical differentiation.

The numerical differentiation is effected by the formula

For clarity and convenience of our further presentation, we represent the system of equations (16), (17), and (18) in matrix form:

 OF POOR QUALITY

Here A, G, and C are square matrices of size $M \cdot M$, and F and D are M-dimensional vectors. In this form, the matrix has a block-tridiagonal form under the conditin that each of its block elements, in turn, is a square matris. In the upper and lower rows of the matrix equation (19) we write equations (18) and (17), while in the interior rows is equation (16). The vector

Expressions for the elements of the matrices A, B, and C and the components of the vector D have the form:

1) for $n=N$ and $i, k=1, \ldots, M$

$$
\begin{align*}
& a_{k, i}=\frac{\partial \varphi_{k}^{j, s}}{\partial \zeta_{i, N-2}^{j, s}}, \quad b_{k, i}=\frac{\partial \varphi_{k}^{j, s}}{\partial y_{i, N-i}^{j, s^{i}}}, \quad c_{K, i}=\frac{\partial \varphi_{k}^{j, s}}{\partial y_{i, S}^{j, s}}, \tag{9}\\
& \alpha_{K}=\sum_{i=1}^{M} \sum_{l=1}^{3} \frac{\partial \varphi_{k}^{j, S i}}{\partial y_{i, N+\ell-3}^{j, s}} y_{i, N+l-3}^{j, s} \quad \text {, }
\end{align*}
$$

2) for $n=2, \ldots, \mathbb{N}-2$ and $i, k=1, \ldots, M$

$$
\begin{align*}
& d_{k}=\frac{y_{k, n}^{j-1}}{\Delta t_{j}}+\psi_{k, n}^{j, s}-\sum_{i=1}^{M} \sum_{l=1}^{3} \frac{\partial f_{k, i}^{j, s}}{\partial y_{k, s}^{j, s+\ell-2}}
\end{align*}
$$

where $\delta_{k, i}$ is the Kronecher delta symbol;
3) for $n=1$ and $i, k=l, \ldots, M$

$$
\begin{aligned}
& a_{k, i}=\frac{\partial \psi_{k}^{j, s}}{\partial y_{i, 3}^{j, s}}, b_{k, i}=\frac{\partial \psi_{k}^{j, s}}{\partial y_{i, 2}^{j, S}}, \quad C_{K, i}=\frac{\partial \psi_{k}^{j, s}}{\partial \mathcal{S}_{i, 1}^{j, s}}, \\
& d_{k}=\sum_{i=1}^{M} \sum_{l=1}^{3} \frac{\partial \psi_{k}^{j, S}}{\partial y_{i, l}^{j, S}} y_{i, l}^{i, S}
\end{aligned}
$$

The linear system ;(19) at each iteration S is solved by a modification of the method Gauss, which takes into account the tridiagonality of the matrix, with the choice of a pivot element by row and a normalization by column [5]. The basic idea of the elimination method consists of the fact that we use a linear transformation to make the diagonal elements of the
matrix into ones, and the below-diagonal elements zeros. This is done sequentially from top to bottom. To demonstrate the recurrence formula for passing from n to $n-1$, we introduce the rectangular matrix

$$
B Z=\left\lvert\, \begin{array}{ccc}
\tilde{B}_{n} & \tilde{C}_{n} & 0 \\
\widetilde{D}_{n} \\
A_{n-1} & B_{n-1} & C_{n-1} \\
D_{n-1}
\end{array}\right. \|
$$

The meaning of the matrices $\widetilde{B}, \widetilde{C}$ and the vector \tilde{D} will become clear from further presentations.

We take the first column of the matrix $B 2$, find in it the maximal element as a model, and place the row in which it is found in the first position of the matrix BZ. We divide each element of this row by its first element. Now, subtracting the first from the other rows, after multiplying by an appropriate factor, we obtain zeros in the first column of these rows. We find the maximal element in the second column among all rows except the first, and by means of this row we obtain zeros in the second column of all rows except the first. We conduct an analogous transformation, further, with the third column, etc. As a result the matrix $B Z$ is reduced to the form

$$
\|\overline{A Z}=\| \begin{array}{llll}
E & P_{n} & Q_{n} & R_{n} \\
0 & \widetilde{B}_{n-1} & \widetilde{C}_{n-1} & \widetilde{D}_{n-1}
\end{array} \|
$$

where E is the identity matrix.
For $\mathrm{n}=\mathrm{N}$, we have

$$
B Z=\left\lvert\, \begin{array}{llll}
A_{N} & B_{N} & C_{N} & D_{N} \\
A_{N-1} & B_{N-1} & C_{N-1} & D_{i-1}
\end{array}\right. \|
$$

and the passage from N to $\mathrm{N}-1$ is included in the standard scheme of the passage from n to $n-1$.

For $n=1$, before the standard scheme of passage is applied, A_{1} is eliminated by means of the identity matrix obtained for $\mathrm{n}=2$. In other words, the matrix

$$
\left\|A_{1} B_{1} C_{1} D_{1}\right\|
$$

by means of the matrix
reduces to the form

$$
\left\|E P_{3} Q_{3} R_{3}\right\|
$$

$$
\left\|0 \quad B_{1}^{\prime} c_{1}^{\prime} D_{1}\right\|
$$

Then the standard scheme is applied to the matrix

$$
B Z^{\prime}=\left\|\begin{array}{llll}
\widetilde{B}_{2} & \widetilde{C_{2}} & O & D_{2} \\
B_{1}^{\prime} & C_{1}^{\prime} & O & D_{1}^{\prime}
\end{array}\right\|
$$

As a result, we obtain
from which

$$
\widetilde{B Z^{\prime}}=\left\|\begin{array}{llll}
E & P_{z} & 0 & R_{2} \\
0 & \widetilde{C}_{1}^{\prime} & 0 & \widetilde{D_{1}^{\prime}}
\end{array}\right\|
$$

$$
F_{1}=\left(\tilde{E}_{1}^{1}\right)^{-1} \cdot \widetilde{D}_{1}^{\prime}
$$

and then

$$
F_{2}=/ R_{2}-P_{2} \cdot F_{1}
$$

And finally the recurrence formula for finding the solution has the form

$$
F_{n} \equiv R_{n}-P_{n} \cdot F_{n-1}-Q_{n} \cdot F_{n-2}, n=3, \ldots, N
$$

Thus we find an approximate solution to the boundary value problem (1-4) at the moment of time t_{j} in S+I iterations. If the iterations correspond to a given precision, then we can continue iterating equation (1) in time.

2. DESCRIPTION OF THE PROGRAM

The program permits us to find a nonstationary solution $y_{i}(t, x)$ and a steady-state solution $y_{i}(x)$. The nonstationary solution can be found by $L 12$ integrating equation (I) with a constant step in t or with an automatic
choice of step. In the case of an "automatic ehoice of step", the time step is chosen depending on the number of iterations with respect to nonlinearity at the given step. Thus, the controls on precision do not depend on time.

The steady-state solution can be found by the method of settling down, i.e. we integrate in time up to the moment of time exceeding the maximal characteristic time of the problem (better with an automatic choice of step), or by iterations without settling down in time. In the latter case, we can solve directly a system of stationary equations, i.e. equations (I) without time derivatives.

Intöthe standard part of the program, we introduce three subroutines: HOK, OUT, and ISCL.

The subroutine HOK controls the iterations, the choice of step in time, the printing of the result, etc.

The subroutine OUT effects the printing of the result.
In the subroutine ISCL we calculate the coefficients for the unknowns in c linear system of difference equations, and this system is solved by Gauss" method.

The user writes the subroutine FF, where the difference equations are written down, and the basic program, where values are given to the physical constants and from which originates the access to the standard part of the program.

Here N is the number of partition points of the x-interval.
M is the number of equations.
IB. is the number of steps TAU in time, across which the printout of of the solution is produced. When it is necessary to print out the results at fixed moments of time t_{n}, we need to sequentially $L 13$ access the subroutine HOK, giving $T \mathrm{KOH}=t_{n}$ 。
ITAU $=0$ is the signal of a calculation with constant step TAU in time.
ITAU $\neq 0$ is the signal for a calculation with automatic choice of time step. The step is increased by 1.5 times when the number of iter ations at the previous step equals 1 and decreases by 2 times when it is greater than 3. Thus, there is no linear relationship between the choice of step and the accuracy of the solution in time. When we need to obtain a steady-state solution by the method of
settling down, then we should set ITAU $\neq 0$.
ITER is the maximum allowable number of iterations at the step TAU; when the number of iterations IT exceeds ITER, there occurs a decrease in the step tAU by two times.
ITB=I is the signal to print the solution at each iteration.
EPS is the relative accuracy of the convergence of the iterations: The magnitude of the increment $\overline{\Delta y_{i}, n}$ in the numerical differentiation is given by the formula
 When $\Delta y_{i, n}=0$ (for example, when the initial approximation $\mathbf{Y} \varnothing \cdot \equiv 0) \mathrm{y}_{\mathrm{i}, \mathrm{n}}=\operatorname{EPS}\left(\right.$ in a program with double precision $\left.\Delta \mathrm{y}_{\mathrm{i}, \mathrm{n}}\right)$ $\left.=(E P S)^{2}\right)$.
TKOH is the end of the interval of integration in time; when TAU $>$ $T K O H / 10$, the step TAU does not increase; when TAU $<\mathrm{TKOH} / 10^{5}$, the calculation ceases and the statement "THE TAU IS SMALJFR THAN AFIOWED" is printed, and the values of the current moment of time and TAU are given.
TAU is the value of the time step: the initial step or constant step, depending on the value of the parameter ITAU. When TAU $=0$, we seek a steady-state solution of the system directly by iterations $/ 14$ without a settling-down in time. In this case, when the number of iterations IT > ITER, the statement "IT = ITER ITERATTONS DO NOT CONVERGE WITH THE GIVEN ACCURACY EPS" is printed and the values of the next two iterations are given.
$\mathrm{Y} \varnothing$ is the dimensionality file $\mathrm{N} \cdot \mathrm{M}$ of the initial conditions;
for: the output of the subroutine HOK, $Y \varnothing$ is a solution for $t=T K O H$ or in case $T A U=0 \sim$ a steady-state solution.
$\mathrm{X} \phi$ is the left endpoint of the interval of $\mathrm{x}^{\mathrm{t}} \mathrm{s}$.
XI. is the right endpoint of the interval of x^{\prime} s.

The subroutine HOK works with the subroutines ISCI, OUT, FF, and the library subroutine ABS.
ISCL is the subroutine for solving the system of linear algebraic equations. An accidental result of the form "MATRIX IS DEGENERATE................" is possible. Such a result, as a rule, indicates an improper formulation of the problem (an incorrect assignment of initial or boundary conditions) or errors in the subroutine FF (improperly written equations, errors in the coefficients, etc.)

OUT is the subroutine of printing the solution. The value of the current moment of time is printed $\mathrm{BP}=\ldots$; the column of x values and the columns of values of the unknown functions y_{k} are also printed. FF is the subroutine which is written by the user. In it are given the formulas for computing the right-hand side of f_{k} and also of
\mathscr{Y}_{K} and \mathscr{H}_{K}. In this subroutine we must describe the general block HIF:

$$
\begin{aligned}
& \text { COMMON /HF } / B P, H, T A U 1, X H(21), F(10), \\
& Y D(21,10), Y(21,10), Y 1(21,10)
\end{aligned}
$$

where $B P$ is the moment of time $t_{j} ; \mathrm{H}$ is the coordinate step; TAUL is the reciprocal value of the time step TAU; XH: is the file of x_{n} for $n=:=1, \ldots, N$; $v \phi$ is the value of the function at level t_{j-1}; and Y is the value of the function at level t_{j} of the previous iteration.

Access to the subroutine FF originates from the standard part by means of the operator CALL $F F(N, N N)$, where N is the current index of the point x_{n}, NN is the collection of partition points $x_{n} I \leq N \leq N N$. Correspondingly, the first operator of the subroutine FF must have the form: SUBROUTTNE FF (N,NN), where N, NN are formal parameters having the above-mentioned meanings. The connection between the subroutine FF and the basic program can be effected through additional general blocks (also including unmarked ones). •!

On the basis of the data, we calculate the of F of dimension M, the elements of which are given by the file. numerical values of expressions representing themselves or, either. difference approximations of the right-hand sides of the equations at the point x_{n}, or a difference approximation of the boundary conditions.

The variables entering into the general block HIF cannot be used in the subroutine FF as identifiers of other variables.

To economize machine time, it follows that we should avoid in the subroutine FF calculations of expressions not depending on j and n, because to calculate the Jacobian matrix at each iteration at each point x_{n} is the result of $M+1$ accesses to the
subroutine FF, Furthermore, if these expressions enter the subroutine FF, then they also are computed M+1 times.

In the operators of description COMMON and DIMENSION, the files .a
of the variables are written so that we can use the program when $N \leq 21$ and $\mathrm{M} \leq 10$. When it is necessary to increase N or M , it follows that we should insert corresponding changes into these operators. In different programs the operators have the following form:
1)

$$
\begin{gathered}
C O M M O N / H I F / B P, H, T A U 1, X H(N), F(M)_{3} \\
Y D(N, M), Y(N, M), Y I(N, M)
\end{gathered}
$$

in the subroutines HOK, ISCL, FF and OUT;
2) DIMENSION $Y \phi(N, M)$ in the basic program;
3) DINENSION $Y \not \varnothing \phi(N, M)$ in the subroutine HOK;
4) DIMENSION $B Z(2 * M, 3 * M+1), P Z(N-1, M, M)$, $Q E(N-2, M, M) ;(Z /(2), F A(M)$
; in the subroutine ISCL.
Here the variables N and M and expressions containing them need to be replaced by appropriate numbers because the sizes of the dimensions of the files are: given by integer constants without sign.

For example, if $\mathrm{N}=51$ and $M=5$, the the operator DIMENSION in the subroutine ISCL needs to be replaced by the operator
DIMENSION EZ $(10,16), P Z(50,5,5), Q Z(49,5,5), C Z(2), F 1(5) \ldots$
We need to make analogous changes in operators 1-3. After we have made these changes, we can use the program for arbitrary $N \leq 57$ and $\mathrm{M} \leq 5$.

The necessity of changing theioperatorsof description COMMON and DINENSION for increases in N or M creates definite inconveniences in the work and is related to the limitations of the programming language Fortran, in which, in contrast to programming in Algol, we cannot use dynamic flies. To eliminate this deficiëncy and also to increase ' , the economy of the programs. awe should transfer from multidimensional files, to one-dimensional ones, as for example is done in the IBM library of standard programs $\{6\}$. The authors hope to return to this question at some time in the immediate future.

Example
Let there be given a system of linear differential equations of parabolic type:

$$
\begin{align*}
& \frac{\partial y_{1}}{\partial t}=\frac{\partial^{2} y_{1}}{\partial x^{2}}+y_{2} \tag{20}\\
& \frac{\partial y_{2}}{\partial t}=\frac{\partial^{2} y_{2}}{\partial x^{2}}
\end{align*}
$$

where $0.5 \leq x \leq 1, t \geq 0$.
We put on this system of equations the following boundary and initial conditions:

$$
\begin{array}{ll}
\frac{\partial y_{1}(t, 0,5)}{\partial x}=0, & y_{1}(t, 1)=0, \\
\frac{\partial y_{2}(t, 0,5)}{\partial x}=0, & y_{2}(t, t)=0, \tag{21}\\
y_{1}(0, x)=0, & y_{2}(0, x)=\sin (\pi / x)
\end{array}
$$

The analytiensolution to the problem formulated has the form:

$$
\begin{align*}
& y(t, x)=t \cdot e^{-\pi \pi^{2} t} \sin (\pi x), \tag{22}\\
& \beta_{2}(t, x)=e^{-\pi^{2} t} \sin (\pi(x) .
\end{align*}
$$

We choose a uniform grid in x and $t:$

$$
\begin{aligned}
& x_{n}=(n-1) \cdot \Delta x+0,5 ; n=1, \cdots, 21 ; \Delta x=0,025 ; \\
& t_{j}=j \cdot \Delta t ; j=0, \ldots, 100 ; \Delta t=0,001 .
\end{aligned}
$$

The differential equations (20) may be approximated by the difference relations:

The difference expressions for the boundary and initial conditions (21) have the form

$$
\begin{align*}
& \frac{-3 y_{1,1}^{j}+4 y_{1,2}^{j}-y_{1,3}^{j}}{2 \Delta x}=0 \cdots, y_{1, N}^{j}=0 \\
& \frac{-3 y_{2,1}^{j}+4 y_{2,2}^{j}-y_{2,3}^{j}}{2 \Delta x}=0, y_{2, N}^{j}=0 \tag{24}\\
& y_{1, n}^{0}=0
\end{align*}
$$

where $j=0, \ldots, 100, n=1, \ldots, 21$.
When we accessed the standard program HOK, the following actual parameters were - given:
$N=2 T, M=2, I B=50, I T A U=0, I T E R=7, I T B=0$, $E P S=0,00 I, T K O H=0, I, \quad T A U=0,00 I, \quad X \emptyset=0,5, X 1=I .1$

In the subroutine FF, the right-hand sides of equations (23) and the boundary conditions (24) are written down. In the appendix we present the the text of the subroutine FF, where $H=\Delta x, H 2=(\Delta x)^{2}, W(k, N)=y_{\text {K }}^{j}, n$, $Z \phi(K, n)=y_{k, n}^{j-1}, N=n, N=1$ corresponds to $x=x \phi$, and $N=N N$ corresponds to $\mathrm{x}=\mathrm{xl}, \mathrm{I} \leq \mathbb{N} \leq N N$.

The initial conditions are assigned in the basic program (see the text of the basic program in the appendix).

In the table we cite the approximate and exact solutions at the moment of time $t=0.1$.

$\stackrel{\mathrm{x}}{\text { Coordinate }}$	Solution y_{1}		Solution y_{2}	
	Approximate	Exact	Approximate	Exact
0,50000	0,037264	0,03727I	0,37300	0,3727I
0,52500	0,037149	0,057156	0,37186	0,37156
0,55000	. 0,036805	0,0368I2	0,36842	0,368I2
0,57500	0,036235	.0,03624I	0,3627I	0,3624I
0,60000	0,03544I	0,035447	0, 35476	0,3544. 7
0,52500	.0,034428	0,034434	0,34462	0,34434
0,65000	0,033203	0,033209	0,.33236	0,33209
0,67500	0,031773-	0,035779	0, 31805	0,31779
0,7000	0,030148	0,030153	0,30178	0,30153
0,72500	0,028396	0,02834I	9,28365	0,2834I
0,75000	0,026350	0,026355	0,26376	0,26355
0.77500	0,024202	0,024206	0.24226	0,24206
0,80000	0,021904	0,02T.907.	0,21926	0,21907
0,82500	0,01947T	0,019474	0,19490	0,19474
0.85000	0,016918	0,01692.	Q, 16935	0, I692I
0,87500	0,014261	0.014263	Q, I4275	0,14263
0,90000	0,0115I5	0,011517	0, IT527	0, II5I7
0,92500	0,008699	0,008701	0,08708	0,08701
0,95000	0,005829	0,005831	0.05835	.0,05831
0,97500	0,002924	0,002924	0;02927	0,02924
1,00000	.0,0	0,0	:0,0	0,0

Before solving complicated problems by the standard program described here, we recommend to the user that he solve one or more simple problems, the solutions are which are well-known.

CONCLUSTON

The method described here was shown to be effective in solving stiff systems of differential equations for modeling the chemical composition of the atmosphere of Mars.[7]. System (II) of equations of parabolic type was ${ }^{2}$. solved. An implicit conservative difference scheme of second-order accuracy in $\Delta \mathrm{x}$ was used. Steadymstate and nonstationary solutions were found. The characteristic times of chemical decay for different components in this problem varied between the limits 10^{-8} to $10^{12} \mathrm{sec}$. , while the characteristic times for the establishment of diffusion equilibrium varied depending on . height within the limits 10^{2} to $10^{7} \mathrm{sec}$. In calculations with usual accuracy on electronic computers of type YeS and BESM-6, we obtain larger roundoff errors for time steps Δt of 10^{5} to $10^{7} \mathrm{sec}$. These errors can be explained by poor conditioning on the system of equations (19), which is a consequence of the great difference in characteristic times of the problem. It turns out that a steady-state solution is obtained only when calculating to double precision. In this case there are no restrictions on the time step $\left.\Delta t^{(}\right)$; because the corresponding linear problem (19), which is obtrined as a result of linearizing the nonlinear difference equations, is stable. We consider the steady-state solution to be obtiained when $\mathrm{t} \sim 10^{16}$ sec. (the maximal characteristic time of the problem $\sim 10^{12}$ sec.).

Using the given method to solve the described system of equations permits' us to obtain a series of new results on the chemical composition of the atmosphere of Mars.
$\*) For an abrupt change in the solution at a given time Δt, the emergence of negative concentrations and instablity is possible. In this case, the iterations do not converge, and the program automatically changes the time step until the concentrations become positive.

The proposed method is adaptable to the solution of problems of nonstationary gas dynamics. For example, to solve two-dimensional problems of the atmospheric heat circulation of planets [$8,9,10]$, an implicit scheme was used in which the angular derivatives were taken with preceding iterations. However, to solve the one-dimensional boundary problems obtained from it along vertical lines, a variant of the proposed method in which the Jacobian matrix was calculated analytically was used. This method is also adaptable to the calculation of thermal fields in two-dimensional structures and other problems.

In conclusion, we enumerate the basic merits and defects of the proposed method, and we give recommendations about its use. Regarding the merits of the method, we can list

1. The possiblity of using the program for solving a'wide variety of physical problems, among which are those having a large range of characteristic tumes.
2. Rapid convergence of the iterations for nonlinearity, owing to the use of Newton's method.
3. The possibility of easily constructing a conservative difference scheme.
4. The automatic linearization of nonlinear difference equations by means of numerical differentiation, which significantly reduces the work of programming.

It follows that we should consider as an essential defect of the method the fact that the calculational time (the number of arithmetic operations) in solving a system of M equations is proportional to M^{3}. It follows that we should stress that this defect is related to the use of Gauss' method, i.e. it turns out to be closely interrelated with the merits of our method.

Owing to, on the one hand, the stability and rapidity of convergence of the iterations, and on the other hand the reduction to a minimum of the programming work of the described method, it can find wide application in scientific and engineering computations. We note that more economical methods, in which the calculational time is proportional to M^{2}, for example, often possess slower rates of convergence of the iterations and, as a result, can prove less economical.

Recommendations for Use

1. Linear equations.
a. Stationary equations.

To solve such problems, it is necessary to solve only once a corresponding systemsof difference equations, i.e. we need one iteration. For that one iteration to be made, it follows that we should set $I T E R=1$. However, by convention, it is useful to set ITER > 1 (for example, ITER $=5$) and ITB $=1$. Then when there are no exrors one superfiuous iteration will be made. If, however, there is an error, then with a significant probability, the iterations will not converge. The result of each iteration will be presented in print.
b. Nonstationary equations.

Because there is in the program no control over the time precision, then in order to guarantee it, it follows that we should solve the problem several times with different constant time steps Δt and should equalize the results obtained.
2. Nonlinear equations.
a. Stationary equations.

If the equations are strongly nonlinear and the form of the solution is unknown beforehand, then it is necessary to solve the problem by the method of bisection. In other words, it is necessary to give an arbitrary initial approximation and time step Δt_{i}, which must be smaller than the minimal characterisitic time of the problem. We need to undertake the calculă. ation with an automatic choice of step up to a moment of time larger than the maximal characteristic time of the problem. b. Nonstationary equa tions....

Here the same remarks as those in item "b" for linear equations are valid.

We can use the method to solve multidimensional problems, by methods of coordinate-wise decomposition.

In the case of solving systems of equations having a large difference in characteristic times for different functions, i.e. stiff systems, we erecommend the use of a program with double precision, the text of which can be found in the appendix. It follows, in view of this, that such a program will occupy twice as much space in the machine's memory. On an electronic computer of type Yes, the calculation time for such a program cannot be
practically increased, but on a BESM-6, the space is increased five-fold. On the BESM-6, a number with ordinary precision has 12 decimal places, but on a computer of type YeS only 7. Therefore, for calculations on a computer of type YeS, we always recommend the use of double precision, because, on account of the restricted number of spaces, round-off errors which are too large can occur in numerical differentiation and in solving a system of algebraic equations.

To solve systems of differential equations with derivatives no higher than first order as part of the boundary conditions, we can use difference equations written on one of the boundaries. In this case, the difference analogue of the time derivative is written down in a corresponding expression for ψ or
Y. (see formulas (11), (12)).

If an equation not containing a time derivative enters the system, then it follows that we should multiply this equation by a sufficiently small number.

We recall that the choice of a difference scheme belongs to the user. We have only the following requirements for it:
a) a scheme of ordered parixs $\left(t_{j-1}, t_{j}\right)$ in time,
b) in the coordinate x, we establish at each partition point x_{n} not more than three values of each of the unknown functions $y_{k, n-1}^{j}, y_{k, n}^{j}, y_{k, n+1}^{j}$.

Programs with ordinary and double precision were prepared for electronic computers of type YeS and BESM-6 and can be used on them without any changes.

ORIGINAL PAGE IS

OF POOR QUAUJTY

REFHRENCEG

I. Proceedings of the All-Union Symposium "Mathematical Problems in Chemistry," (Trydy vsesoyuznogo simpoziuma "matematicheskiye problemy khimii), Compu-

1. tational Center of the Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk, 1973.
2. Proceedings of the All-Union Symposium "Mathematical Problems in Chemistry," (Trudy vsesoyuznogo simpoziuma "matematicheskiye problemy khimii), Compu-
i. tational Center of the Siberian Branch of the Academy. of. Sciences of the USSR, Novosibirsk, 1975.
3. J. T. Hasting and R. G. Roble. Planetary and Space Science, 1977, 25, 209.
4. R. D. Richtmyer and K. W. Morton: Difference Methods for Initial Value Problems, Mir Press, 1972. (In Russian translation)
5. G. E. Forsythe and C. Moler. Computer Solution of Linear Algebraic Systems, Mir Press, 1969. (In Russian translation)
6. isboñik Nauchnykh Program Na Fortrane. CoInection of Scientific Programs in Fortran, No. 2, Moscow, Statistika
7. M. N. Izakov and O. P. Kisasitskiy. Kosmicheskiye Issledovaniya, 1977 , 15, 455.
8. M. N. Izakov, S. K. Morozov, and E. E. Shnol'. Preprint of the Institute of Cosmic Research of the Academy of Sciences of the USSR, 1972, Pr.-115.
9. M. N. Izadov and S. K. Monozov: Kosmicheskiye Issledovaniya, 1975, 13, 404.
10. M. N. Izakov and S. K. Morozov. Kosmicheskiye Issledovaniya, 1976, I4, 476.

Program with Ordinary Accuracy

Basic Program

```
DIMENS:ON YO<29.10〉
```



```
TAU=.
TKOM: 0
\(8,5=0.001\)
```



```
M,
\(\mathrm{H}=24\)
0
```



```
    - 5 LOAT\{I-1)
    11 YOR 1,5\()=T X O H * Y O(1,4)\)
        - FORMAT (32H comparison of the obtained and exactl
            20 H solutions for \(\mathrm{BP}=\) TKOH)!
        - FORMASSL
```



```
        ERDMAY (4ETS.5)
```

Subroutine FF


```
42=%*4
H2F(#NENEN) GOTO,
```

c : Boundary conditions on the right end FiJjEYSNN:

```
G0070}
```

6. Boundary conditions on the ieft end

ξ Right-hand sides of equations *

3 CONTINUE
RETURN

Subroutine HOK


```
            COMENSTON YOO (29,10)
```



```
            FORMAT:/,
```



```
        3 FORMAY'SH EQS=,E\{Z,4, OH TKOHE,E12.4.5H TAU=1ETZ.4,
```



```
            PRINTS, EPS,TXOH, YAU, XXO, X̌
            PRINT,
            \(\mathrm{J}=0\)
\(\mathrm{~B}=0\)
```



```
                            人○
                            \(X H(I)=X H(I T I) \neq H\)
YF \(\{T A U . N E, O) I A U I=1,1 T A U\)
                            IF FTAU, EQ.O) TAU \(1=0\).
23 yo(I, J)=you(I, J
29 y (I, j) =yo (I, j)
    CALL OUT (MNS
    30
    IT=~1
```



```
    31 I 3 IT
    CALCHSCLIM, MESPS/4.5
6
    32 IF (IT.EQ.IIERS GOTO 50
    DO 28 I \(=1, N\)
    28 y(I! j) =y\{ \{ (I, 小)
    GF\{TYB.EQ.1) GOTO 55
    GOTO Comparing the convergence of iterations
```



```
    2? CONTINUE
    \(\begin{array}{lll}00 & 2 \\ 0 & 5=1, ~ & j=9 \\ 0 & j & j\end{array}\)
```



```
    25 J \(8=\sqrt{2} \mathrm{~B}\)
```



```
. 6
C 43 IF(!B.NE.JPJGOTO 30
    72 GAUETROH
    \(B P=T K O H-B ? 母 Y A U\)
    TAUT = 1 , /TAU
```



```
    GOTO \(4 \frac{1}{3}\)
```



```
    TAUTニタ.1TAU
    SFSTAUMKON/900000.) 44:43143
44 PRZNT
\& FORMAI (34H Step TAU is smaller than the permitted time =,
    STOP
50 \&F(TAUNEQ,O) GOYO 52
```



```
    st FORMAT (39H IT = ITER Iterations do not converge with accuracy EPS)
```



```
    pRINY 5 ORTER
    CALCOUTIMENS
    PRINT SE, 5
    \(0023 \mathrm{j}=\mathrm{a}\) M
```



```
    SORMAT (IOH Iteration \(=, \quad\) ) ! ORIGINAL PAGA is
```



```
    QOTA \({ }^{31} 50.85\)
    SE CONIINUE
    CKLG OUT (HSN)
```



```
    RETURA
    .
```

Subroutine ISCI

NEDATVA

NoNZ-4
cycte in N^{-2}

919 82(

c. - Search for the pivot Element

6 4 Pivot element is olose to zero
a Rearrangement of the rows and elimination

9\{4 C 新: 2 NE


```
        Lin \(4+1\) (
    D0 11
    115
6
```



```
    Formation of the matrices \(P, Q, R\)
```



```
    2F6H:CO, -i Goto ito
    等 (H4.
    117
```



```
    110
```



```
    120
```



```
c End of the cycle in N
C Recespt of the solution
    \(1060072{ }^{2} \mathrm{~J}=1\), T2
```



```
        \(00123 \mathrm{~K}=2, \mathrm{t} \boldsymbol{2}\)
```



```
\(\therefore\) Block for calculating coefficients at interior point of \(N\)
    105 ¢ath ff (lirn, NN)
    59
    DO FE 5: \(1, \mathrm{~Hz}\)
```



```
            IF(DY.EG. 6 ) OY=EPS
```



```
            IF (Dy.EO, O) Dyanp
```



```
            Y(Ny
```



```
        55
```



```
        \(\left.00{ }^{5} 6, K=M Z 1\right\}, 4220\)
```



```
                6070.58
```



```
    58
    CORCZGYE,EQ;O,2 GOTO 100
```


©
Goro sîack for calculating coefficients at the right end
103. CALI TTTENNTNN
DO 3, : K D 1, MZ
31

IFSDY EG OP DYEEPS
CALK FF EHNNN

00033
33

$34^{4} 00^{\circ} 5-K=1$ M2

$y\left(N N \sim(I)=y^{*}(N N-2=5)+D y\right.$.
CAL亡 FF (NNYNN)

6

$3^{3} 8^{3}$
CO 6

c Goro Block for calculatiog coefficients at the left end

IF (OY.EQ.O. DY EPS
y(3ivixy (3, I) woy

IFSDY:EQ. A° DYEEPS,

"

IF (DY, EO O O DEAES

$c 26$
$y \leqslant 3!$
-

chitiff(tinn)


```
    0045 K=M211,MZ20
        00{45,K=N211{MZ2O
```



```
C Elimination of A(0)
    eliminalion ol al(D)
        00 6O J=M211,M22O
        SF(SZ(J,K);EQ,0)-GOTO 6.0.
        00% %{%=1,Mz
        61
    6 0
        CONTINUEF,M2
        00 62, J=N{们
        8Z(u,I)=82{,N,\+Mz}
c
    62 B2(J, & +MZ)=BZ{\J,I+M220.)
        QQ T T = =0. MZTT,MZ2O
        qZ(I)=0.i,M,Mz20
        OE{ABS(BZ(I:J)).LT.ABS(CZ(1))) GOTO 40
    č{T)=02({ij)
    4 cONTINUE
        IF<CZ(J), EQ #OG) GOTO.100
    BZ(T, j)=82(1,j)/cz(1)
    60T0 F0,圭lure in delivery
c
    OOPRINTHTNKLEN
```



```
    2 FORMA{10E{2.4%%,4m*C= 
        SNO%
```

 Subroutine OUT
 SURROUTINE QUT (M,N

FORMA: 1%

$0090 \quad I=1, N$
10

ERIN?
RETURN
END

Program with Double Precision

Basic Program

c Calculation of exact solution of control example at moment TKOH

8 FORMAT (32Ff Comparison of obtained and exact
$20 H$ solutions at $B P=T K O H$)

EORMAT (GOTS.5s

Subroutine FF

$\mathrm{H}_{2}=\mathrm{H} * \mathrm{H}$
c Boundary conditions on the right end

c Boumdary conditions on the left end

σ° Right-hand side of the equation
2 conilnue
$F(1)=(\{Y(N+1,1)-2, * y(N, 1)+y(N-1,1\}) / H 2+Y(N, 2))$

RGOURN
'SUBROUTYNE DHOK (N,M, YB,ITAU, TEER,ITB, EPS,TKOH, TAU, YOO, XO, KIT DOUELE PRECISION YOO,EPS,TXOH,TAU,XO, KI
OLMENSION YOO (21,10)
COMMON /GHF/ 8O,H,TAUT,

```

```

pRINT/?
2, FORMAN 3 H N $=33,3 \mathrm{H}$ ME, $33,4 \mathrm{H}$ 18=, 3316 H ITAUF, 13,

```

```

PRINTZ:N, MIIB,ITAU,ITERIGTB

```


```

PRKNB, EPS゙, IKOH, TAUIXO, X
$J=0$
$B=0$

```

```

00 z $4=1=N$

```

```

IF (IAUPE, $A U Q=1 . / T A U$
IF (IAU/EQ, US TAUY $=0$.
DO $29 / I=1$, N.
yo ($5 / J)=y 00(I, J)$
Y(I
CA $K=y O(I, J)$
OOUT (M, N)
$3017=-1$
$8 P=B P+T A$
31/IT=IT:1
I C (OSCL (MGNAEPS/4.)
IF (I Or com wory iteration
$\begin{array}{lll}00 & 28 \\ 00 & 2 Q^{2} & =1\end{array}$
28 y(I, J) $=y$ Ý (I, J) .
IF
GOTO, ERA. 17 GUTO $55-$
33002 Compar
DO2n $\begin{gathered}2=1, ~ M\end{gathered}$
1F (DABS $\left.(Y(I, J))-1 E: T: D^{-1} 20\right)$ GOTO. 27
IF(DABS ($(Y(I, J)-Y,(I, J)) / Y(I, J)) \omega E P S) 27,27132$
27
c
oro 2^{1} Prepar
0026 j=1, M
yo (d,
$y(1, j)=y 1(1, j)$
25
$\mathfrak{J} B=\downharpoonleft B$

```

```

c
In orease in the step by TAU
c
c
43 IF (IB NE JB) GOT0 $\frac{N}{\text { Delivery of the result with period IB }}$
$J 8=0$

CALL DOUT
GOTU
O
O

72
TAU = TKOH-B? OTAUM 3
$\therefore \cdots B P=1 \times 0 H^{-} / T A U$
GOTO 3
41 TAU* $1.5 * T$ AU

```

GOTD=9. TTAD
\(\measuredangle^{2}\) TAUETAU/Z

44 FORMAT (34H Step TAU is smaller than the permitted time \(=\),
PRINT 8;BPGFAU
50 IFQPAU,EQ,O) GOTO 52


GOTO 42
FORMAT (39H IT = ITER Iterations do not converge with precision EPS)
PRINTESTITER
CALLDOUT (M,N)

CALL DOUT \(\{M, N\rangle\)
STOP
\({ }_{56}^{55}\) DRINTASG (IOH iteration \(=\); 13)
GOTO 3 亿 (rovs
GRINT \({ }^{31} 56 . I T\)
57
58
5
CALL DOUT (M,N)
DO 50 I \(=5, N\)
DO 50 N
YON
59

END

Subroutine DSCL

    902 IF (x) \(910,904,905\)

    10100 iq2 \(6=1, M Z\)
C Search for a pivot element


    c 11. Pivot element is close to zero
    IFSVABSICZTIJL, WE.1.D=50 GOTO 100


    Cz(Z) = BZ (K!d)

    \(1\{4\) CONT\{JUE


                                    ORIGINAL PAGE 空

                                    OF POOR QUALTTY
    c iz Fontinus Fon of the matrices \(P, Q, R\)

    DO if7 \(J=9\), MZ
    \(P Z\left(N+1, I_{1} J\right)=8 Z(I, J\) MZ \()\)
    QF (N, EQ, O) GOTO Y1?
    117 EONTINUE
    118 CONTINUE
    IF (NNQ:-1) GOTO 906

    \(121 \mathrm{BZ}(1, j) \approx 82\left(\frac{1}{2}+M 2, J \psi M Z\right)\)
    DO 120 J=M22q, M2 30
    \(120 \mathrm{BZ}\left\langle\mathrm{N}_{\mathrm{N}=\mathrm{S}}^{2} \mathrm{~J}=0\right.\)
c NENEi. End of the cycle in \(N\)
c Receipt of the solution




C 105 BALock for calculating coefficients at intexior point of N




        I'F \(\langle D Y\) EQ. O \(O Y=E P S=2\)
        \(Y(N+2, f)=Y(N+2, I) \neq D Y\)
\(C A L L T(N G N\)

        \(Y(N+2, I)=y(N+2, I)=D Y ~\)


        IF(DY.EQ.D) DYEEPS**2
        Y (N+M,I):OY(N+GEDS**
        CALL FF (N:TN N N



    Y (N,Ij=Y(N, P) \& D
    CALC FF\{N⿱中⿰㇀丶冂土





```

 - DO 5% K
    ```

```

 N
 DO/58 JE1,Mz30
 IF(DABS(B2SM,j)).LT,DABS(CZ(1j)) GOTO-58
 CONTYAUESl/aJ)
 5% CONTSANE
 IF(GZ<{),EQ,0.) 0070 100
    ```

```

 Block for calculating coefficients at the right end
 90כ"CALUF{(NNTNN\
 31 每(K S)=F(K,YZ
    ```


```

 Y(NN,, D):=Y(NN,I) +DY
 CALG fF(AN+NN)
 Y(NN,I)=Y(NN,I)CDY
 3\ BZ{K,&)={Fi(K)-F(K)J/DY....
 DY={D&GS{ySNN-1,I)}$DAES {Y<NN,I}}%
 +DABS{Y(NN-2,I)) +DAES(YO{NN-9,I))%UEOS
 BF(DY,EQ;O)
 C\deltaLG&F(NN,NN\
 Y(NRNG1I)=Y(
    ```

```

 DY=(DABS(Y(NN-2,I))*DNES (Y(NN-1,I)) +
 +DABS(Y(NN-3,,)), OABS(YO<NN=2,I)JS*EPS
 IF(DY.EQ,O) DY =EPS&*2
 y(NN-\dot{z};{)=Y(NN-2,z)+0y
 CALL FF(NNANN)
 Y(NN-2,I)=Y(NN-2,%)=0V.
 32
    ```

```

 D0 SS K=1:M2
    ```


```

: . Normalization of the row.
DO 57-% TM,T\G
C2(1)=0

```

```

 CZ(1)=82(%,j)
 38 conTGNUE,geg.o.) ooT0 100
 3? 6Z(5,N)=8Z(I,N)/CZ(1)
 * Gol0 Block for calculating coefficients on the left end
904 (ALb FF({1,NG)
BO(G{)
Og=44

```

```

 QDABS(Y(4, S}) &DABS{YO{3,IZj)*EPS
 IF(DY,EQ,O) DY=EPS*&2.
 y<3, z;=\(3, I) कOY
 CELL,E({NNN
    ```

```

 43 BZ (K,Y)={位(K-MZ:-F(K-MZ)) (DY
 *)
    ```





\section*{Subroutine DOUT}
```

