LABORATORY DEMONSTRATION OF ARCRAFT ESTIMATION USING LOW-COST SENSORS

LABORATORY DEMONSTRATION OF AIRCRAFT STATE ESTIMATION USING LOW-COST SENSORS

John A. Sorensen
Control Technology Associates
Cupertino, CA 95014

SUMMARY

Four nonlinear state estimator's were devised which provide techniques for obtaining the angular orientation (attitude) of the aircraft. These technıques are alternatives to direct measurement by use of vertical and directional gyros. These estimators have the potential of being of low cost and of high reliabilıty by implementation using solıd state instruments and the microcomputer.

An extensive FORTRAN computer program was developed to demonstrate and evaluate the estimators by using recorded flight test data. This program simulates the estimator operation, and it compares the state estimates with actual state measurements.

The above program was used to evaluate the state estimators with data recorded on the NASA Ames CV-990 and Cessna 402B aircraft From these evaluations, the preferred state estimator configuration was chosen. It was concluded that It is possible to estimate the alrcraft attitude to the same degree of accuracy as is avallable by dırect measurement.

A preliminary assessment was made of the memory, word length, and timing requirements for implementing the selected state estımator on a typical microcomputer.

PAGE
I INTRODUCTION 1
II STATE ESTIMATOR SOFTWARE DESIGN 3
Previous Estimator Equations 3
Complementary filter approach 3
Vector approach 5
Kınematic filter approach 7
Development of Composite Nonlinear Estimators 10
Method 1 10
Method 2 13
Method 3 16
Method 4 16
Digitization and Auxiliary Software 18
Instrumentation corrections and computa- tions 18
Digitization 21
Gain selection 22
III STATE ESTIMATOR PERFORMANCE EVALUATION 25
Evaluation Procedure 25
CV-990 Performance Results 27
Cessna 402B Performance Results 35
Conclusion 40
IV SOFTWARE MECHANIZATION REQUIREMENTS 41
V SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 43
Summary 43
Conclusions 43
Recommendations 44
APPENDIX A PROGRAM USER'S GUIDE 47
APPENDIX B METHOD NO. 2 STATE ESTIMATOR SOFTWARE 75
REFERENCES 83

INTRODUCTION

Limıted analytıcal studies have been made of using state estimation technlques coupled with low-cost sensors to replace the vertical and directional gyroscopes typically used on general aviation alrcraft for flıght control. These studies include previous work at Stanford University [1,2], an NRC Fellowship [3], and work at NASA Ames Research Center [4,5].

The objectives of thas investigation were to
(1) Combine the previous efforts to define estimator configurations which: (a) have the best overall features of the previous work, and (b) provide the basis for further analysis, design, and flight testing.
(2) Specify the flight test data to be collected using the NASA Ames Cessna 402B aircraft. The data were to be used to test the estimator designs in the laboratory.
(3) Code the candidate estimator designs on the IBM 360 computer. Use the collected flight data to demonstrate the estamator performance under a variety of flight conditions and wind disturbances. Choose the estimator design yielding the best, performance.
(4) Make recommendations regarding future system design and fllght test efforts.

This report is organized as follows.
(1) Chapter II first presents details of previous estimator concepts which are suitable for determining the arrcraft attitude wathout direct measurement. From these concepts, four nonlinear estimator configurations are designed. The method of implementing these equations digitally is explained.
(2) Chapter III presents results of evaluating the candidate estimators with both Convair CV-990 and Cessna 402B data. From this evaluation, the best. estimator design is selected.
(3) Chapter IV presents preliminary requirements for implementing the selected estimator software on a typical microcomputer.
(4) Chapter V summarizes the work, lists distinct conclusions that have been made during the study, and makes recommendations for further research, testing, and development.
(.5.) Appendix A. presents the details of the -computer program developed for processing the flight data. It serves as a user's guide for additional flight data processing.
(6) Appendix B presents software details of the selected state estimator.

This report was prepared under Contract No. NAS2-9382 for NASA Ames Research Center. The author wishes to acknowledge the ideas and technical exchanges provided during this study by Dr. Dallas G. Denery (who was technical monitor) and R.C. Wingrove of NASA Ames Research Center. The author also wishes to express his appreciation to G.P. Callas, of NASA Ames, and W. Jolitz for their study support and personal interest.

STATE ESTIMATOR SOFTWARE DESIGN

When investigating ways in which an aircraft's angular orientation could be determined without direct measurement, it rapidly became apparent that the estimator could be based on a wide choice of equation formulations. There have been several suggestions made [1-6] regarding how state estimators could be configured to obtain the aircraft attitude, and these are documented here. Then, composite methods which were chosen for implementation and testing with flight data are explained. Auxillary software details are also presented.

The equations used to design the state estimators are based on well known aircraft equations of motion [7] and on a knowledge of the combinations of state variables measured by different instruments other than attıtude gyros. The measurements that may be used include linear acceleration, angular acceleration, magnetic field, altitude, airspeed, and control surface deflection. Altıtude and airspeed can be computed from measurements of static and dynamic pressure, while rate gyros may be substituted for angular accelerometers. The estimators basically combine rapid measurements of angular acceleration (or rate) with independent (although noisy) computations of the attitude angles (based on measurements of magnetıc field data and other variables).

Previous Estimator Equations

Prior to beginning this effort, there were three alternate suggestions [2,3,5] for the configuration of the state estimator equations. These configurations were analyzed, and they served as the starting point for the composite estimation methods mechanized in this study. They are documented here for later reference.

Complementary filter approach [5]. Wingrove suggested a method which makes use of the following aircraft kinematic equations [7],

$$
\begin{aligned}
& \ddot{\mathrm{h}}_{\mathrm{c}}=f_{\mathrm{xm}} \sin \theta-f_{y m} \cos \theta \sin \varphi-f_{\mathrm{zm}} \cos \varphi \cos \theta-g, \\
& \dot{\varphi}=p+(q \sin \varphi+r \cos \varphi) \tan \theta \\
& \dot{\alpha}=q-p \beta+\left(g \cos \theta \cos \varphi+f_{z m}\right) / V_{a m}
\end{aligned}
$$

$$
\begin{align*}
& \dot{\beta}=-r+p \alpha+\left(g \cos \theta \sin \varphi+f_{y m}\right) / V_{a m}, \\
& \dot{\psi}_{\mathrm{WInd}}=-f_{\mathrm{zm}} \sin \varphi / V_{\mathrm{am}} . \tag{1}
\end{align*}
$$

These equations use the assumptions that α and β are small angles. In these and subsequent equations, the standard aircraft dynamics equation notation is used [7]. That is,

φ, θ, ψ	- roll, pitch, yaw angles,
$\mathrm{p}, \mathrm{q}, \mathrm{r}$	- roll, pitch, yaw angular rates,
α, β	- angles of attack and sideslıp,
$\mathrm{f}_{\mathrm{xm}}, \mathrm{f}_{\mathrm{ym}}, \mathrm{f}_{z m}$	- body-flxed linear accelerometer readings,
V_{am}	- measured true alrspeed, and
$\Psi_{\text {wind }}$	- yaw (or heading) angle of velocity vector with respect to the airmass (wind).

Other equations used which transform from wind to body axes anclude•

$$
\begin{align*}
& \theta=\gamma_{\text {wind }}+\alpha \cos \varphi+\beta \sin \varphi, \\
& \gamma_{\text {wind }}=\sin ^{-1}\left(\dot{\mathrm{~h}} / \nabla_{\mathrm{am}}\right), \\
& \psi_{m}=\psi_{\mathrm{w} \text { nd }}-\beta \cos \varphi+\alpha \sin \varphi . \tag{2}
\end{align*}
$$

Here, additıonal notation used $1 s:$
$\gamma_{\text {wind }}-\underset{\text { flight }}{ }$ mass, path angle with respect to the alr-
$\dot{\mathrm{h}}$ - altıtude rate,
Ψ_{m} - yaw (or heading) angle of the longitudinal
In addition, the aerodynamic equations which represent measured angle-of-attack $\left(\alpha_{c}\right)$ and sideslip $\left(\beta_{c}\right)$ are

$$
\begin{align*}
\alpha_{c} & =\alpha_{o}+m f_{z m} /\left(C_{z \alpha} Q_{m} S\right) \\
& =k_{\alpha 1}+k_{\alpha 2} \delta F_{m}+m f_{z m} /\left(C_{z \alpha} Q_{m} S\right), \\
\beta_{c} & =m f_{y m} /\left(C_{y \beta} Q_{m} S\right) . \tag{3}
\end{align*}
$$

Here, $k_{\alpha 1}$ and $k_{\alpha 2}$ are constants, δF_{m} is the flap angle, $C_{z \alpha}$ and $C_{y \beta}$ are aerodynamic coefficients, Q_{m} is the measured dynamic pressure, m is the aircraft mass, and S is the reference wing area. Use of Eqs. (3) assumes that stall conditions are not approached.

It is assumed that measurements of baro-altitude $h_{\text {baro }}$, true airspeed $V_{a m}$, magnetic heading (or yaw) Ψ_{m}, linear acceleration components ($f_{x m}, f_{y m}, f_{z m}$), angular acceleration components $\left(\dot{p}_{m}, \dot{q}_{m}, \dot{q}_{m}\right)$, flap angle $\delta \mathrm{F}_{\mathrm{m}}$, and dynamic pressure Q_{m} are avallable. Then, Eqs. (1)-(3) are combined into the four coupled nonlinear, fixed-gain complementary filters [8] shown in Fig. 1. In this figure, the hats (^) on variables indicate that they are estimated. Also, the notations s and c are used to represent sine and cosine, respectively.

Note in Fig. 1 that an additional integrator is added to the front end of each channel. This is to remove the effect of possible biases which may exist in the linear and angular celerometer measurements.

Vector approach [2]. DeBra suggested that the attitude angles could be determined by measurement of the gravity and magnetic field vectors g and B. The differential equations to obtain these smoothed vectors are

$$
\begin{align*}
& \dot{\hat{B}}=-\hat{\omega} \times \hat{B}+K_{B}\left(B_{m}-\hat{B}\right) \\
& \dot{\hat{g}}=-\hat{\omega} \times \hat{g}+K_{g}\left(-f_{m}-\hat{g}\right) \tag{4}
\end{align*}
$$

where B_{m} is the three-component measurement from a threeaxis magnetometer, and f_{m} is the measured vector from a three-axis linear accelerometer package. The vector $\hat{\omega}$ is the estimated attıtude rate of the alrcraft it could come from either integrating angular accelerometer outputs or direct (smoothed) rate gyro measurement. The quantıties K_{B} and K_{g} are appropriate galn vectors.

$$
h_{c}=-f_{z m} c \hat{\varphi} c \hat{\theta}+f_{x m} s \hat{\theta}-f_{y m} c \hat{\theta} s \hat{\varphi}-g \quad n_{4}=\hat{p} \hat{\alpha}+\hat{g} c \hat{\theta} s \hat{\varphi}+f_{y m}
$$

$n_{1}=(\hat{\mathrm{q}} \mathrm{s} \hat{\varphi}+\hat{\mathrm{r}} \mathrm{c} \hat{\varphi}) \tan \hat{\theta}$
$\hat{\theta}=\sin ^{-1}\left(\dot{\hat{h}} / V_{\mathrm{am}}\right)+\hat{\alpha} c \hat{\varphi}+\hat{\beta} s \hat{\varphi}$
$n_{2}=\hat{\beta} c \hat{\varphi}-\hat{\alpha} s \hat{\varphi}$

- $\hat{\psi}=\hat{\Psi}_{\text {wind }}-\hat{\beta} c \hat{\varphi}+\hat{\alpha} S \hat{\varphi}$
$n_{3}=-\hat{p} \hat{\beta}+\left(\hat{g} c \hat{\theta} c \hat{\varphi}+f_{z m}\right) / V_{a m}$

With gravity and magnetic field vector estimates known, the direction cosine matrix which transfers from locally level to aurcraft body axes is

$$
c_{b / 2}=\left[\begin{array}{l:l:l}
\frac{(\hat{\mathrm{g}} \times \hat{B}) \times \hat{g}}{\mathrm{~g}^{2} \mathrm{~B}_{\mathrm{xo}} \mid} & \frac{\hat{\mathrm{g}}_{\mathrm{g}} \hat{\mathrm{~B}}}{\mid \mathrm{gB} \mathrm{~B}_{\mathrm{xo}}} & \frac{\hat{\mathrm{~g}}}{\mathrm{~g} \mid} \tag{5}
\end{array}\right]
$$

Here, $B_{x o}$ is the north component of B_{m}.
From this matrix, the roll, pitch, and yaw angles can be determined. Only the magnetic field dip angle has to be occasionally updated when using this method so that the north component of the field $B_{x o}$ is kept current. The chief constraints of this method are that. (a) linear accelerometer readings are only valid (for their use in Eq. (4)) during unaccelerated flight, and (b) the accuracy of the attitude rate estimate $\hat{\omega}$ must allow adequate tracking of the gravity vector for prolonged maneuvers and periods of accelerated flight.

Kinematic filter approach [2,3]. Sorensen and Tashker devised linearized, decoupled longitudinal and lateral filters whlch were based on estamating the perturbations of the aircraft state variables from their nominal values. They were termed "kinematic filters" because they took advantage of the kinematic equations which represent the measurements of linear and angular accelerometers.

The matrix equation which represents the longitudinal kinematic filter is

$$
\begin{align*}
{\left[\begin{array}{c}
\Delta \dot{\dot{q}} \\
\Delta \dot{\hat{w}} \\
\Delta \dot{\hat{\theta}} \\
\Delta \dot{\hat{u}} \\
\Delta \dot{\hat{h}}
\end{array}\right]=} & {\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
U_{0} & 0 & -g s \theta_{0} & 0 \\
1 & 0 & 0 & 0 \\
-W_{0} & 0 & -g c \theta_{0} & 0 \\
0 & -c \theta_{0} & U_{0} c \theta_{o}+W_{o} s \theta_{o} & s \theta_{o}
\end{array}\right]\left[\begin{array}{c}
\Delta q \\
\Delta w \\
\Delta \theta \\
\Delta u \\
\Delta h
\end{array}\right] } \\
& +\left[\begin{array}{c}
\Delta \dot{q}_{m} \\
\Delta f_{z m} \\
0 \\
\Delta f_{x m} \\
0
\end{array}\right]+\left[\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2} \\
k_{3} & 0 \\
k_{4} & 0 \\
0 & k_{5}
\end{array}\right]\left[\begin{array}{l}
\Delta u_{m}-\Delta \hat{u} \\
\Delta h_{m}-\Delta \hat{h}
\end{array}\right] \tag{6}
\end{align*}
$$

Here, the quantities U_{O} and W_{O} are the nominal values of longitudinal and normal airspeed. Also, θ_{0} is the nominal pitch angle.

The lateral kinematic filter is represented by

$$
\begin{align*}
& {\left[\begin{array}{c}
\Delta \dot{\hat{p}} \\
\dot{\hat{r}} \\
\dot{\hat{\varphi}} \\
\dot{\hat{\psi}}
\end{array}\right]=} {\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & \tan \theta_{0} & 0 & 0 \\
0 & \sec \theta_{0} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{p} \\
\Delta \hat{r} \\
\Delta \hat{\varphi} \\
\Delta \hat{\psi}
\end{array}\right]+\left[\begin{array}{c}
\Delta \dot{p}_{m} \\
\Delta \dot{r}_{m} \\
0 \\
0
\end{array}\right] } \\
&+\left[\begin{array}{cc}
k_{6} & 0 \\
0 & k_{7} \\
k_{8} & 0 \\
0 & k_{9}
\end{array}\right]\left[\begin{array}{c}
\Delta \varphi_{m}-\Delta \hat{\varphi} \\
\Delta \psi_{m}-\Delta \hat{\psi}
\end{array}\right] . \tag{7}
\end{align*}
$$

In Eqs. (6) and (7), the " Δ " notation represents perturbations from the nominal. The subscript " m " on input variables (\dot{p}_{m}, $\dot{q}_{m}, \dot{r}_{m}, f_{x m}, f_{z m}, u_{m}, h_{m}, \varphi_{m}, \psi_{m}$) Indicates that these variables are independently measured or computed.

These equations must be expanded to include cross coupling terms, and they do not have to be restricted to small perturbations. Also, it was recognized that if an independent measurement of pitch angle θ_{m} were available, this could be used to replace the residual in airspeed ($u_{m}-\hat{u}$) for the longitudinal equations. Thus, the resulting nonlinear kinematic filter is represented by the schematic diagrams in Fig. 2., In this representation, it is assumed that the pitch angle $\hat{\theta}$ remains small.

Note that the kinematic filter in Fig. 2 has the same complementary form as the filter suggested by Wingrove in Fig. 1 Also, note that the altitude $\hat{\mathrm{h}}$ channel uses the longıtudinal component of aırspeed U as a separate input.

FIGURE 2.- COUPLED NONLINEAR KINEMATIC FILTER FORM OF STATE ESTIMATOR [2,3]

Development of Composite Nonlinear Estimators
For flight test investigation of the estimator concept, it is desirable to reduce the number of forms of estimators to one which has the best overall features. This is not possible without laboratory testing several configurations with actual data, this provided the motivation for this study.

In examining the estimator concepts just discussed, some important points were developed:
(1) It seemed advisable to retain the complementary filter form found in Figs. 1 and 2. This would enable combining the fast response angular accelerometer data (which would tend to drift) with stable, although nolsy, independent measurements of the three attitude angles.
(2) Because roll and heading angles could both be determined from magnetometer data, it seemed reasonable to have separate channels for these quantities (as in Fig. 2 rather than Fig. 1).
(3) To simplify the estimator, the sidesinp angle β (as in Fig. 1) was assumed to be zero. This feature could be added later, if required.
(4) Two methods existed for computing independent measurements of the attitude angles ($\varphi_{m}, \theta_{m}, \psi_{m}$)--the vector approach discussed on page 5, and a method which computes roll and heading given pitch, which-is discussed later. It was not clear which of these methods was preferable. Thus, two forms of the composite estimators were first posed.

As the study proceeded, two additional forms of the state estimators developed. These four methods are now explayned.

Method 1. The basic form of the nonlinear estimator used In method 1 is shown in Fig. 3. This assumes inputs (\dot{p}_{m}, \dot{q}_{m}, \dot{r}_{m}) from three body-fixed orthogonal, angular accelerometers. The three attitude estimates are $(\hat{\varphi}, \hat{\theta}, \hat{\psi})$. The three independent computations of roll, pitch, and heading are denoted as $\left(\varphi_{c}, \theta_{c}, \psi_{c}\right)$.

The form of Fig. 3 was derived by combining and extending the design of Figs. 1 and 2 . Note that if rate measurements (p_{m}, q_{m}, r_{m}) were directly available, only three integrations, rather than six, would be requared to implement this form. The

FIGURE 3,- BASIC FORM OF THE NONLINEAR ESTIMATOR TO COMPUTE (φ, θ, ψ)
decision of whether to use rate measurement devices or angular accelerometers must be based on reliability and cost considerations which were not a part of this study.

Note in Fig. 3 that the nonlinear terms in the feed-forward paths of each channel come from the dynamic equations which relate the alrcraft body rates (p, q,-r) to the Euler angle rates $(\dot{\varphi}, \dot{\theta}, \dot{\psi}$) $[7]$. The nonlinear terms in the feedback paths for the pitch (θ) and heading (ψ) channels relate the orientation of these Euler axes to the body axes representing pitch rate (q) and yaw rate (r).

If the angular accelerometer measurements are subject to bias; the bias effects are removed (since they are observable) by expanding each complementary filter to third order, as is illustrated in Fig. 4 for the roll channel.

To compute altitude rate $\dot{\hat{h}}$, and an estimate of flight path angle $\hat{\gamma}$, a fourth complementary filter is added. This is depicted in Fig. 5, and it is the same as the altitude

FIGURE 4.- MODIFICATION OF ROLI ESTIMATOR TO COMPENSATE FOR ANGULAR ACCELEROMETER BIAS

FIGURE 5.- COMPLEMENTARY FILTER TO OBTAIN SMOOTHED ALTITUDE
channel in Fig 1. This filter complements barometric altitude $h_{\text {baro }}$ with a computation of vertical acceleration \dot{h}_{c} which is given in Eqs. (1). The estimated flight path angle and angle-of-attack are then computed as

$$
\begin{align*}
& \hat{\gamma}=\sin ^{-1}\left(\dot{\hat{h}} / V_{a m}\right) \\
& \hat{\alpha}=(\hat{\theta}-\hat{\gamma}) / \cos \hat{\varphi} \tag{8}
\end{align*}
$$

where $V_{\text {am }}$ Is the measured airspeed.
In this method, the vector approach, discussed earlier, is used to compute independent measurements of ($\varphi_{c}, \theta_{c}, \psi_{c}$). The earth's magnetic field measurements are used directly. Estimates of the earth's gravity vector are obtalned from the second of Eqs. (5). For this approach to work, digital logic must be used to cut out the accelerometer inputs to this equation when at is sensed that the aircraft is turning or accelerating

Assume that the aircraft rotates, in order, through Euler angles (ψ, θ, φ) from the north-oriented locally-level reference frame to the aircraft fixed body frame. If $c_{1 J}$ (with $i, J=1,2,3$) are components of $C_{b / \ell}$ given by Eq. (5), then one can compute

$$
\begin{align*}
& \sin \theta_{c}=-c_{13}, \\
& \sin \varphi_{c}=c_{23} / \cos \theta_{c}, \\
& \sin \psi_{c}=c_{12} / \cos \theta_{c}, \\
& \cos \psi_{c}=c_{11} / \cos \theta_{c} \tag{9}
\end{align*}
$$

Equations (9) are then solved for the independent measurements of $\left(\varphi_{c}, \theta_{c}, \psi_{c}\right)$.

Method 2. In this method, the second channel in Fig. 3 is changed to estimate angle-of-attack $\hat{\alpha}$ rather than pitch angle $\hat{\theta}$. The channel is replaced by the one shown in Fig 6, which also compensates for the pitch accelerometer bias. This is essentially the same as the third channel of the complementary filter depicted in Fig. 1.

The complementary measurement of the angle-of-attack comes from the first of Eqs. (3). In this method, flap angle δF_{m} and dynamic pressure Q_{m} measurements are required as well as knowledge of alrcraft characteristics $m, S, C_{Z_{\alpha}}$, and α_{o} as a function of flap angle.

FIGURE 6.- MODIFICATION OF FILTER TO COMPUTE
ANGLE-OF-ATTACK

From the smoothed angle-of-attack, the estimated pitch angle is computed to be

$$
\begin{equation*}
\theta_{c}=\hat{\alpha} \cos \hat{\varphi}+\sin ^{-1}\left(\dot{\hat{\mathrm{~h}}} / \mathrm{V}_{\mathrm{am}}\right) \tag{10}
\end{equation*}
$$

With the pitch angle θ_{c} determined, the roll and heading angles φ_{c} and ψ_{c} can be computed directly from the magnetic field measurements B_{m}. This has the advantage that the gravity vector estimate \hat{g} is not required, as in Method 1.

The relationship between the aircraft-fixed components of B_{m} and the North-oriented, locally-level reference components ($\mathrm{B}_{\mathrm{X}_{\mathrm{O}}}, \mathrm{O}, \mathrm{B}_{\mathrm{Z}_{\mathrm{O}}}$) are

$$
\left[\begin{array}{l}
\mathrm{B}_{\mathrm{x}_{\mathrm{m}}} \tag{11}\\
\mathrm{~B}_{\mathrm{y}_{\mathrm{m}}} \\
\mathrm{~B}_{\mathrm{z}_{\mathrm{m}}}
\end{array}\right]=\left[\begin{array}{ccc}
c \theta c \psi & c \theta \mathrm{~s} \psi & -\mathrm{s} \theta \\
\mathrm{~s} \varphi s \theta c \psi-c \varphi s \psi & \mathrm{~s} \varphi s \theta s \psi+c \varphi c \psi & \mathrm{~s} \varphi c \theta \\
c \varphi s \theta c \psi+s \varphi s \psi & c \varphi s \theta s \psi-s \varphi c \psi & c \varphi c \theta
\end{array}\right]\left[\begin{array}{c}
\mathrm{B}_{\mathrm{x}_{0}} \\
0 \\
\mathrm{~B}_{\mathrm{z}_{0}}
\end{array}\right]
$$

Here, the notations s and c are used to represent sine and cosine, respectively.

From Eqs. (11), the cosine of the heading angle is found to be

$$
\begin{equation*}
\cos \psi_{c}=\left(B_{x_{m}}+B_{z_{0}} \sin \theta_{c}\right) / B_{x_{0}} \cos \theta_{c} \tag{12}
\end{equation*}
$$

Here, it is assumed that the local values of $\mathrm{B}_{\mathrm{X}_{\mathrm{O}}}$ and $\mathrm{B}_{\mathrm{z}_{\mathrm{O}}}$ are known and stored, or are computed by other means, as is discussed later.

Also from Eq. (11), a quadratic expression can be found for the cosine of the roll angle

$$
\begin{gather*}
{\left[\left(B_{z_{m}}^{2}+B_{y_{m}}^{2}\right) c^{2} \theta_{c}\right] c^{2} \varphi_{c}-2\left[\left(B_{z_{0}}+B_{x_{m}} s \theta_{c}\right) B_{z_{m}} c \theta_{c}\right] c \varphi_{c}} \\
+\left[\left(B_{z_{0}}+B_{x_{m}} s \theta_{c}\right)^{2}-B_{y_{m}}^{2} c^{2} \theta_{c}\right]=0 \tag{13}
\end{gather*}
$$

Wath the two solutions $\left(\cos \varphi_{c_{1}}, \cos \varphi_{c_{2}}\right)$ for Eq. (13), the following expression is used to solve for two corresponding solutions of the sine of the roll angle

$$
\begin{gather*}
\sin \varphi_{c_{1}}=B_{Y_{m}}\left(c^{2} \varphi_{c_{1}}-1\right) /\left(B_{Z_{m}} c \varphi_{c_{1}}-B_{Z_{0}} c \theta_{c^{\prime}}-B_{x_{0}} s \theta_{c} c \psi_{c}\right), \\
1=1,2 \tag{14}
\end{gather*}
$$

Then

$$
\begin{equation*}
\tan \varphi_{C_{i}}=\sin \varphi_{C_{i}} / \cos \varphi_{C_{1}}, \quad i=1,2 \tag{15}
\end{equation*}
$$

Two ways are used to resolve the ambigurty in the solution for φ_{c}. In one case, a trial value φ_{t} is computed that is based on the previously computed values, φ_{c-1}.

$$
\begin{equation*}
\varphi_{t}=\varphi_{c-1}+\hat{p} \Delta t \tag{16}
\end{equation*}
$$

Here, \hat{p} is the estimate of the roll rate, and Δt is the sample period. Then, the solution to Eq. (15) is picked which is closer to Eq. (16).

The other way to resolve the ambiguity is to assume that the aircraft usually makes coordinated turns. Then, the trial solution of roll angle is found from the coordinated turn relationshıp,

$$
\begin{align*}
\tan \varphi_{\mathrm{t}} & =\mathrm{V}_{\mathrm{a}} \dot{\psi} / \mathrm{g} \\
& =V_{\mathrm{am}}(\hat{\mathrm{q}} \sin \hat{\varphi}+\hat{\mathrm{r}} \cos \hat{\varphi}) / \mathrm{g} \cos \theta_{\mathrm{c}} \tag{17}
\end{align*}
$$

Here, $\quad V_{a m}$ is the measured airspeed, and \hat{q}, \hat{r}, and $\hat{\varphi}$ are estimated values of pitch rate, yaw rate, and roll angle obtained from the estimator. Again, with this trial solution, the closer value of Eq. (15) is selected.

Finally, the equation

$$
\begin{equation*}
\sin \psi_{c}=\left(s \varphi_{c}-B_{y_{m}} c \varphi_{c} / B_{z_{m}}\right)\left(B_{z_{m}} / B_{x_{0}}\right) \tag{18}
\end{equation*}
$$

Is used to solve for ψ_{c}.
A potential problem exists with this method in that the solutions to Eq. (13) converge as ψ gets close to 0° or 180°. This is partially solved by use of Eqs. (16) or (17). However, Eq. (17) contains $\hat{\varphi}$ which could also be in error. Also, noise in \hat{p} or φ_{c-1} in Eq. (16) could cause the wrong value to be selected.

Method 3. Although the techniques used to resolve the ambiguity problem for Method 2 worked for the data examined in this study, it was felt that certain data inputs could still produce incorrect solutions to the computed roll and heading Eqs. (12)-(18). Thus, for Method 3, Eq. (17) was used directly to compute φ_{c}. Equation (10) was still used to compute θ_{c}. Then, Eqs. (12) and (18) were used to compute Ψ_{c}.

One shortcoming of this method is that it relies on the coordinated turn assumption. The information contained in the magnetic data is not fully used. Also, as can be seen from Eq. (17), the computed roll angle φ_{C} is not independent of the estimate $\hat{\varphi}$. Flight tests under sideslip conditions are required to determine if this seriously degrades the performance of the estimator.

Method 4. Recall that the prime motivation for this research is to provide a low-cost alternative to direct measurement of the aircraft attitude angles. Thus, it is desirable to keep the estimators as simple as possible.

The estimators developed in the previous three methods use a three-axis angular accelerometer package (or alternately, three rate gyros) to provide fast response attitude change measurements. But it is well known to pilots [9] that altitude, airspeed, yaw rate, and lateral acceleration measurements provide adequate information to fly straight-and-level. To these, heading angle measurements (from a compass) allow keeping a correct course. Thus, there was reason to believe
that a simpler configuration than that of the previously described three methods could be developed.

A method, suggested by Denery [6], makes use of a single yaw rate gyro measurement r_{m}. The equation for lateral acceleration is

$$
\begin{equation*}
\dot{V}+r U-p W=a_{y}+g \cos \theta \sin \varphi . \tag{19}
\end{equation*}
$$

Here, a_{y} is the lateral acceleration due to aerodynamics, and (U, V, W) are body-fixed components of V_{a}. If \dot{V} and $p W$ are assumed to be negligible, Eq. (19) can be rewritten as

$$
\begin{equation*}
\sin \varphi_{c}=\left(r_{m} V_{a m} \cos \alpha_{c}-f_{y_{m}}\right) / g \cos \theta_{c}, \tag{20}
\end{equation*}
$$

where f_{m} is the measured lateral acceleration and $V_{a_{m}}$ is the measured total airspeed V_{a}. The pitch angle θ_{c} again comes from Eq. (10). The angle-of-attack α_{c} is from Eqs. (3). Equation (2) is solved for roll angle φ_{c}.

The equation for normal acceleration is

$$
\begin{equation*}
\dot{W}+p V-q U=a_{z}+g \cos \theta \cos \varphi . \tag{21}
\end{equation*}
$$

If \dot{W} and $p V$ are assumed to be negligible, Eq. (21) has the following solution for pitch rate:

$$
\begin{equation*}
q_{c}=-\left(f_{Z_{m}}+g \cos \theta_{c} \cos \varphi_{c}\right) / V_{a m} \cos \alpha_{c} \tag{22}
\end{equation*}
$$

Here, φ_{c} comes from Eq. (20). Then, the heading rate $\dot{\Psi}_{c}$ Is computed to be

$$
\begin{equation*}
\dot{\psi}_{c}=\left(q_{c} \sin \varphi_{c}+r_{m} \cos \varphi_{c}\right) / \cos \theta_{c} \tag{23}
\end{equation*}
$$

This equation is smoothed using the first-order complementary filter

$$
\begin{equation*}
\dot{\hat{\psi}}=\dot{\psi}_{c}+k_{\psi}\left(\psi_{m}-\hat{\psi}\right) \tag{24}
\end{equation*}
$$

where ψ_{m} comes from the magnetic field measurements and Eqs. (12) and (18).

In this method, most of the complementary filter structure is removed. Only four integrators (three to compute $\dot{\hat{\mathrm{h}}}$ as in Fig. 5 and one for Eq. (24)) are required instead of twelve. The shortcomings of Method 4 are the assumptions used to obtain Eqs. (20) and (22).

Digitization and Auxiliary Software

To mechanize the state estimators in digital form for flıght testing, some addıtional software was required. Also, modificatıons of the contınuous filter differential equations described previously to discrete form were required. These addıtions and modifications are explalned here.

Instrumentation corrections and computations.- Corrections and modifications must be made to the sampled signals used as inputs to the state estimators to remove known error effects. The Innear accelerometers are subject to masalignment with respect to the aircraft reference body axis. Center-of-gravity (c.g.) offsets are also present which may require compensation. If $\left(f_{x_{m}}, f_{y_{m}}, f_{z_{m}}\right.$) are the sampled accelerometer readings, and $\left(\varphi_{a_{m}}, \theta_{a_{m}}, \psi_{a_{m}}\right)$ represent the small misalignment angles, then the corrected readings are

$$
\left[\begin{array}{c}
f_{X_{m}}^{\prime} \tag{25}\\
f_{\overline{y m}_{m}}^{\prime} \\
f_{Z_{m}}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \psi_{a_{m}} & -\theta_{a_{m}} \\
-\psi_{a_{m}} & 1 & \varphi_{a_{m}} \\
\theta_{a_{m}} & -\varphi_{a_{m}} & 1
\end{array}\right]\left[\begin{array}{l}
f_{x_{m}} \\
f_{y_{m}} \\
f_{Z_{m}}
\end{array}\right]
$$

Also, if ($\mathrm{X}_{\mathrm{a}_{\mathrm{m}}}, \mathrm{y}_{\mathrm{a}_{\mathrm{m}}}, \mathrm{z}_{\mathrm{a}_{\mathrm{m}}}$) are the position coordinates of the accelerometer package with respect to the average aircraft c.g., then these accelerometer readings are further modified to

$$
\begin{align*}
& f_{x_{m}}^{\prime}=f_{x_{m}}^{\prime}-\dot{q}_{m} z_{a_{m}}+\dot{r}_{m} y a_{m}+\left(\hat{q}^{2}+\hat{r}^{2}\right) x_{a_{m}}-\hat{p}\left(\hat{q} y_{a_{m}}+\hat{r} z_{a_{m}}\right), \\
& f_{y_{m}}^{\prime} y_{m}^{\prime}=f_{y_{m}}^{\prime}-\dot{x}_{m} x_{a_{m}}+\dot{p}_{m} z_{a_{m}}+\left(\hat{p}^{2}+\hat{r}^{2}\right) y_{a_{m}}-\hat{q}\left(\hat{p} x_{a_{m}}+\hat{r} z_{a_{m}}\right), \\
& f_{z_{m}}^{\prime}=f_{z_{m}}^{\prime}-\dot{p}_{m} y_{a_{m}}+\dot{q}_{m} x_{a_{m}}+\left(\hat{p}^{2}+\hat{q}^{2}\right) z_{a_{m}}-\hat{r}\left(p x_{a_{m}}+\hat{q} y_{a_{m}}\right) \tag{26}
\end{align*}
$$

In Eq. (26), the acceleration terms ($\dot{p}_{m}, \dot{q}_{m}, \dot{r}_{m}$) come from the angular accelerometers, the rate terms ($\hat{\mathrm{p}}, \hat{\mathrm{q}}, \hat{\mathrm{r}}$) come from the estimator.

In addition, the accelerometers are subject to biases ($b_{a x c}, b_{a y c}, b_{a z c}$) and scale factor errors ($\varepsilon_{a x c}, \varepsilon_{a y c}, \varepsilon_{a z c}$). If these terms are known, the readings are further corrected by the equations

$$
\begin{align*}
& f_{\mathrm{xm}}=\left(1+\varepsilon_{a x c}\right) f_{\mathrm{xm}}^{\prime}+b_{a x c}, \\
& f_{y m}=\left(1+\varepsilon_{a y c}\right) f_{y m}^{\prime \prime}+b_{a y c}, \\
& f_{z m}=\left(1+\varepsilon_{a z c}\right) f_{z m}+b_{a z c} . \tag{27}
\end{align*}
$$

The angular accelerometer and magnetometer are also subject to misalignments, biases, and scale factor errors. If these errors are known, the sampled readings are also corrected by equations similar to Eqs. (25) and (27).

If airspeed is derived from a pitot tube, the reading represents a component along the pitot tube axes. This reading ∇_{m} must first be converted from indicated airspeed to true airspeed V_{m}, by the equation

$$
\begin{equation*}
v_{m}=v_{m} \sqrt{\rho_{\mathrm{o}} / \rho}=V_{m} / \sqrt{\sigma} \tag{28}
\end{equation*}
$$

Here, σ is the density ratio which is a function of altitude. Computation of σ is done from a table as a function of altitude by interpolation. Such a procedure is explained in Appendix A.

The airspeed measurement is then filtered by the equation

$$
\begin{equation*}
\hat{U}_{n+1}=\hat{U}_{n}+k_{u} \Delta t\left(v_{m}^{\prime}-\hat{U}_{n}\right) \tag{29}
\end{equation*}
$$

Here,

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{u}}=\text { airspeed filter gain } \\
& \hat{\mathrm{U}}_{\mathrm{n}}=\text { smoothed value of } \mathrm{V}_{\mathrm{m}}, \text { and } \\
& \Delta t=\text { sample period. }
\end{aligned}
$$

The subscripts n and $n+1$ indicated current and predicted values (one sample period later). Then, if θ_{V} is the rotation of the patot tube up from the alrcraft longitudinal axis, the components of the alrcraft velocity are

$$
\begin{align*}
& \hat{\mathrm{U}}=\left(-\hat{\mathrm{U}}_{\mathrm{n}}^{-} \cos \hat{\theta}+\dot{\hat{\mathrm{h}}} \sin \tilde{\theta}_{\mathrm{V}}\right) /\left(\sin \theta_{\mathrm{V}} \sin \hat{\theta}-\cos \theta_{\mathrm{V}} \overline{\cos \hat{\theta}}\right), \\
& \hat{\mathrm{W}}=\left(-\hat{\mathrm{U}}_{\mathrm{n}} \sin \hat{\theta}+\dot{\hat{h}} \cos \theta_{\mathrm{V}}\right) /\left(\sin \theta_{\mathrm{V}} \sin \hat{\theta}-\cos \theta_{\mathrm{V}} \cos \hat{\theta}\right), \\
& \hat{\mathrm{V}}_{\mathrm{am}}=\hat{\mathrm{U}} \cos \hat{\alpha}+\hat{\mathrm{W}} \sin \hat{\alpha} . \tag{30}
\end{align*}
$$

In Eqs. (30), the terms $\hat{\theta}, \dot{\hat{h}}$, and $\hat{\alpha}$ come from the estimator.

If the J-Tek Airspeed Sensor is used, total true airspeed $V_{a m}$ is sensed directly. Then, this is smoothed by the equation

$$
\begin{equation*}
\hat{\mathrm{v}}_{a m_{n+1}}=\hat{v}_{a m_{n}}+k_{u} \Delta t\left(v_{a m}-\hat{v}_{a m_{n}}\right) \tag{31}
\end{equation*}
$$

If dynamic pressure Q is not measured, it can be derived from the true alrspeed by the equation

$$
\begin{equation*}
\hat{\mathrm{Q}}_{\mathrm{n}}=0.5 \rho \hat{\mathrm{~V}}_{\mathrm{am}}^{2}=0.001189 \sigma \hat{\mathrm{~V}}_{\mathrm{am}}^{2} \tag{32}
\end{equation*}
$$

Again, the density ratio σ is computed as a function of altıtude \hat{h}.

One further computation is required to determine the magnetic vector dip angle δ_{2}. This is used to compute the north and down components $B_{x o}$ and $B_{z o}$ found in Eqs. (11). If the magnetic field has unity magnitude, then these components have the values

$$
\begin{align*}
& B_{x O}=\cos \delta_{2}, \\
& B_{z O}=\sin \delta_{2} \tag{33}
\end{align*}
$$

For a typical flight, the dip angle will be slowly varying as a function of alrcraft geographical position. Thus, the dot product between the magnetic field vector B and the gravity
vector, g would also vary slowly. This fact can be used to update ' δ_{2} by the equation

$$
\begin{equation*}
\delta_{2 n+1}=\delta_{2 n}+k_{\delta}\left[\sin ^{-1}\left(\frac{B_{m} \cdot f_{m}}{\mid B_{m} \| f_{m} T}\right)-\delta_{2 n}\right] \Delta t \tag{34}
\end{equation*}
$$

Here, k_{δ} is a slow gain, and B_{m} and f_{m} are magnetometer and linear accelerometer measurements of B and g.

Digitization. - Note that the nonlinear estimators depicted in Figs. 1-6 are in continuous (analog) form. To mechanize these iflter equations on a digital computer required making some assumptions about the nature of the cross-coupling terms and feedback quantities. The assumptions for the roll estimator shown in Fig. 4 were:
(1) The sample period is very small.
(2) All trigonometric functions $(\sin \varphi, \cos \varphi, \tan \theta$) are constant over the sample period.
(3) The feedback correction term $\left(\varphi_{C}-\hat{\varphi}\right)$ is constant over the sample period.

The same type of assumptions were made for the altitude, yaw, and pitch (or angle-of-attack) filters.

With these assumptions, the followang expressions represent examples of the discrete update equations used for the roll estimator:

Roll accelerometer bias, $\hat{b}_{\dot{p}}$

$$
\begin{align*}
& r_{\varphi}=\varphi_{c_{n}}-\hat{\varphi}_{\mathrm{n}} \\
& \mathrm{c}_{\mathrm{b}_{\mathrm{p}}}=\mathrm{k}_{\mathrm{o}_{\varphi}} r_{\varphi} \\
& \hat{\mathrm{b}}_{\dot{p}_{\mathrm{n}+1}}=\hat{b}_{\dot{p}_{\mathrm{n}}}+c_{\mathrm{b}_{\mathrm{p}}} \Delta t \tag{35}
\end{align*}
$$

RoIl rate, $\hat{\mathrm{p}}$

$$
\begin{align*}
& c_{3}=\dot{p}_{m_{n}}+k_{1 \varphi} r_{\varphi}+\hat{b}_{p_{n}} \\
& \hat{p}_{n+1}=\hat{p}_{n}+c_{3} \Delta t+c_{b_{p}} \Delta t^{2} / 2 \tag{36}
\end{align*}
$$

Roll angle, $\hat{\varphi}$

$$
\begin{align*}
c_{4}= & k_{2 \varphi} r_{\varphi}, \\
\hat{\varphi}_{n+1}= & \hat{\varphi}_{n}+\left[\hat{p}_{n}+\left(\hat{q}_{n} \sin \hat{\varphi}_{n}+\hat{r}_{n} \cos \hat{\varphi}_{n}\right) \tan \hat{\theta}_{n}+c_{4}\right] \Delta t \\
& +\left[c_{3}+\left(c_{5} \sin \hat{\varphi}_{n}+c_{7} \cos \hat{\varphi}_{n}\right) \tan \hat{\theta}_{n}\right] \Delta t^{2} / 2 \\
& +\left[c_{b_{p}}+\left(c_{b_{q}} \sin \hat{\varphi}_{n}+c_{b_{r}} \cos \hat{\varphi}_{n}\right) \tan \hat{\theta}_{n}\right] \Delta t^{3} / 6 \tag{37}
\end{align*}
$$

In Eqs. (35)-(37), the subscript $n+1$ again indicates the updated value projected one sample period Δt into the future. The subscript n represents the current estimated values. Also, in Eq. (37), the quantities c_{5} and c_{7} represent terms simılar to c_{3} (Eq. (36)) from the pitch and roll channels, respectively. The terms c_{q} and $\mathrm{c}_{\mathrm{b}_{r}}$ represent terms similar to cb_{p} (Eq. (35)), also from the pitch and roll channels.
Further detalls of these expressions and for the other channels are found in Appendices A and B.

With fast sampling rates (five or more samples per second), the direct integration implied by the Eqs. (35)-(37) produces adequate accuracy. If the sample rate were to decrease, modrfications would be necessary to account for these effects. Such methods for amplementation of sampled data systems such as Tustin's method and the hold equivalence [10] have been developed to provide discrete transfer functions wath the same characteristics as the continuous system. Investigation of these procedures was beyond the scope of this effort.

Gain selection.- The gains for the filters shown in Fig. 3 are found by assuming that the coupling terms between the roll, pitch, and heading equations are zero, this decouples them into three linear second-order filters. They have characteristic equations

$$
\begin{equation*}
s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=0 \tag{38}
\end{equation*}
$$

For these filters, the error characteristics of the accelerometer inputs ($\dot{\dot{p}}_{m}, \dot{\dot{q}}_{m}, \dot{\dot{r}}_{\mathrm{m}}$) and the angles computed from magnetometer data $\left(\varphi_{m}, \theta_{m}, \psi_{m}\right)$ were unknown. To obtain some
appropriate gains wath which to begin to test the estimators with flight data, it was assumed that the input errors could be modeled as white noise with Gaussian distribution. Then, Kalman filter theory [11] was used to compute the gains.

With thas assumption, the galns for the roll filter of Fig. 3, for example, are

$$
\begin{align*}
& \mathrm{k}_{1}=\omega_{\mathrm{n}}^{2}=\sigma_{\mathrm{p}} / \sigma_{\varphi_{\mathrm{m}}} \\
& \mathrm{k}_{2}=2 \zeta \omega_{\mathrm{n}}=1.414 \sqrt{\mathrm{k}_{1}} \tag{39}
\end{align*}
$$

Here, σ_{p} is the assumed standard deviation of the roll accelerometer measurement nolse. Also, $\sigma_{\varphi_{m}}$ is the assumed standard deviation of the $1 n d e p e n d e n t$ roll angle computation noise. Simalar methods are used to compute galns $\mathrm{k}_{3}-\mathrm{k}_{6}$.

If bias terms are added to the estimator (such as in Fig. 4), the filter equations are observable but not disturbable [12]. Thus, the Kalman filter theory cannot be used directly. To make this adjustment, the filters' characteristic equations were expanded to the assumed form

$$
\begin{equation*}
\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)\left(s+\omega_{n}\right)=0 \tag{40}
\end{equation*}
$$

Then, the resulting gains become

$$
\begin{align*}
& \mathrm{k}_{\mathrm{o}}=\omega_{\mathrm{n}}^{3}, \\
& \mathrm{k}_{1}=(1+2 \zeta) \omega_{\mathrm{n}}^{2}, \\
& \mathrm{k}_{2}=(1+2 \zeta) \omega_{\mathrm{n}} . \tag{41}
\end{align*}
$$

Again, ω_{n}^{2} was taken to be $\sigma_{p} / \sigma_{\varphi_{m}}$, and the damping term ζ was $\sqrt{2} / 2$. Similar methods were used for gain selection in the pitch (or angle-of-attack), yaw, and altıtude filters.

STATE ESTIMATOR PERFORMANCE EVALUATION

Abstract

After developing the candidate state estimator configurations, the next step was to analyze them using recorded flight test data. The purposes of this step were to: (1) Demonstrate that the estimators actually worked as predicted using real (rather than simulated) input data. This is a step closer to actual flight test. (2) Compare the performance of the estimation methods so that a final configuration could be chosen. (3) Note the limitations of the estimators in severe wind conditions, unusual aircraft attitudes, and the presence of typical instrument errors.

The details of the evaluation are now discussed.

Evaluation Procedure

To enable evaluating the estimator methods, a FORTRAN digital computer program was developed for the NASA Ames IBM 360/67 which simulated operation of the digital estimator methods described in Chapter II. A complete description of this program, its inputs, its output, and its various capabilıties are documented in the form of a user's guide in Appendix A.

The program is set up to read in sequentially recorded, sampled, digital flight data. These data act as the driver for the program. The program makes necessary pre-estimation computations and then simulates the operation of the digital software as it operates in a sequentıal fashion. After the data are read in, the steps executed are•
(1) All sensor data not actually present are artificially generated. For example, rate gyro data are smoothed and then differentiated to produce artıficial angular accelerometer data.
(2) Artificial errors are optionally added to the data to allow determining the resulting effect on estimate accuracies. By varying the error magnitudes, the program user can obtain performance sensitıvity data These sensitivity data are useful for specifying sensor accuracy requirements.
(3) The data are filtered and modified with correction terms to remove known sensor errors. For example, obvious biases are removed from the linear accelerometer readings. This is the first step in the simulated estimator software.
(4) The independent calculations of roll, pitch, and heading $\left(\varphi_{c}, \theta_{c}, \Psi_{c}\right)$ angles are made. An option flag determınes which computation method described in Chapter II is used.
(5) The primary filter equations are executed to produce estimates of attitude angles and rates ($\hat{\varphi}, \hat{\theta}, \hat{\psi}, \hat{p}$, $\hat{q}, \hat{r})$, angle-of-attack $\hat{\alpha}$, and flight path angle $\hat{\gamma}$. Also, smoothed values of altitude \hat{h} and true airspeed $\hat{\mathrm{V}}_{\mathrm{a}}$ are generated.
(6) The results are compared to directly-measured values of the state variables. For example, the estimated attitude angles are compared to angles measured by an LTN-51 inertıal navigation system. Comparison consists of computing the means and standard deviations between the estimated (or smoothed) and directly measured data.
(7) The results are recorded enther in numerical or plot form.

When the program coding and deburging was completed, anticipated data from the Cessna 402 aircraft were not yet available. Therefore, data from a Convair CV-990 flight were used to check out the program. These data dud not contain magnetometer measurements, so these quantitıes were artıficially qenerated from the INS measurements.

The CV-990 data were divided into three segments that tested the estimator configurations under longitudinal motion, lateral motion, and both modes together. Details of these data are descrıbed later.

The four estimator methods described in Chapter II were each tested with the three segments of CV-990 data. From these runs, It was shown that each of the methods works to varying degrees of accuracy with actual data. Thus, it was further concluded that the concept of estimating attitude angles, rather than direct measurement, is valid.

Towards the end of this study, a small amount of data (80 sec) taken from the Cessna 402 aırcraft became available. This provided additional information because the data included actual magnetometer measurements. The estimators were tested with this data, and further conclusions were made.

Test results from using the CV-990 and C-402 data are now discussed.

CV-990 Performance Results

The Ames CV-990 instrumentation and associated measurements included:

Inertial navigation system	$-\varphi, \theta(\psi$ not available)
Directional gyro	$-\psi$
Three-axis Inear accelerometer $-f_{x}, f_{y}, f_{z}$	
Three-axis rate gyros	$-p, q, r$
Baro-altimeter	$-h_{b a r o}$
Air data system	$-V_{a}$

Simulated angular accelerometer data were obtained by differentiating the rate gyro data. Simulated magnetometer data were obtained using the equations

Here, the values of $\mathrm{B}_{\mathrm{x}_{\mathrm{O}}}$ and $\mathrm{B}_{\mathrm{Z}_{\mathrm{O}}}$ were taken to be those typical of the San Francisco Bay area (dip angle of 62°). The angles (φ, θ, ψ) were taken from the INS and directional gyro measurements.

The recorded data at each sample point (approximately 1.018 sec apart) consisted of an average of the 20 previous samples taken approximately every 0.05 sec . Thus, the data had some built-in smoothing and some inherent lag. No attempt was made to smooth the data further. Misalignments between the instrument axes, acceleration measurement effects due to displacement from the alrcraft c.g., and other instrument errors were unknown. It was found that to obtain acceptable results, the bias and scale factor corrections which appear in Table 1 had to be made to the linear accelerometer measurements.

TABLE 1.- CORRECTIONS TO CV-990 LINEAR ACCELEROMETER MEASUREMENTS

ACCELEROMETER	BIAS - FT/SEC ${ }^{2}$	SCALE FACTOR	ERROR
${ }^{f} \times$	- $\quad 2.39$	-0.4098	
f^{\prime}	0.21	--	
f_{z}	-3.65	--	

The three CV-990 flight sequences used to test the estimators were.
(1) 400 sec of level flight, simulated approach (down to 90 ft altitude), and clımbout, primarıly longitudinal motion.
(2) 150 sec of level coordinated turn of 180°; primarily lateral motion.
(3) 250 sec of level flight, turn of 30°, simulated approach, and climbout, combined longitudinal and lateral motion.

Methods 1 and 2 were first tested using the above data sequences. The performance was assessed, as mentioned before, by examining the statistical dufferences between the estimated attitude angles and those directly measured. There are obvious discrepancies in these data besides the normal electronic noise. There would exist some misallgnment between the measured attıtude axes (X and Y of the LTN 51), the directional gyro (Z axis), the rate gyro axes, and the linear accelerometer axes. The accelerometer would sense all rate terms by not being located on the aircraft center-of-gravity. The gyros would have acceleration dependent terms and as mentioned above, the accelerometers had large bias and scale factor errors.

To make the comparisons, Methods 1 and 2 were run using the first two data sequences. For gain selection, it was assumed that the input measurement noise had the following standard deviations.

Angular accelerometers $-\sigma_{\dot{p}}, \sigma_{\dot{q}}, \sigma_{\dot{r}}-0.002 \mathrm{rad} / \mathrm{sec}^{2}$
Independent angle computations $-\sigma_{\varphi_{m}}, \sigma_{\theta_{m}}, \sigma_{\Psi_{m}}-0.02 \mathrm{rad}$.

Linear accelerometers - $\sigma_{f_{x}}, \sigma_{f_{y}}, \sigma_{f_{z}}-0.03 \mathrm{ft} / \mathrm{sec}^{2}$
Altimeter - $\sigma_{h}-10 \mathrm{ft}$.
With these values, the gains were computed using Eqs. (41). They appear in Table 2. In addition, for Method 2, the following constants were used in the process of computing the angle-of-attack α_{m} [5] (see Eq. (3)):

$$
\begin{aligned}
\mathrm{m} & =5652.2 \mathrm{slugs} \\
\mathrm{c}_{z_{\alpha}} & =5.15662- \\
\mathrm{s} & =2250 \mathrm{ft}^{2} \\
\mathrm{k}_{\alpha 1} & =0.09 \mathrm{rad} \\
\mathrm{k}_{\alpha 2} & =-0.13674-
\end{aligned}
$$

TABLE 2. FILTER GAINS FOR INITIAL TESTS OF METHODS 1 AND 2

	BIAS GAIN K_{B}	RATE GAIN k_{1}	POSITION GAIN k_{2}
Altitude filter (\hat{f}, \hat{h})	0.03	0.2330	0.7493
Attitude filters $(\hat{p}, \hat{\varphi}, \hat{q}, \hat{\theta}, \hat{r}, \hat{\psi})$	0.03162	0.2414	0.7634

For each run, the mean and standard deviation between the estimated attitude angles and those measured by the INS and directional gyro were computed. A comparison of these statistreal quantities appears in Table 3.

For Sequence No. 1, the performance of both methods is acceptable, although the standard deviations in (φ, θ, ψ) are $30 \%-60 \%$ better with Method 2. The performances of both methods could be improved with gain adjustment.

For Sequence No. 2, Method No. 2 is substantially better than Method 1. The estimation algorithm in Method 1 is set so that whenever the angular rate magnitude becomes greater than

TABLE 3.- COMPARISON OF METHODS 1 AND 2 FOR THE FIRST TWO CV-990 DATA SEQUENCES

SEQUENCE	ANGLE, DEG	METHOD 1		METHOD 2	
		m	σ	m	σ
1	φ	-0.52	1.38	-0.21	0.54
	θ	-0.86	1.66	0.42	0.98
	ψ	-1.13	2.75	0.82	2.03
2	φ	0.63	4.15	0.24	2.14
	θ	4.22	2.20	-0.93	0.54
	ψ	-7.24	3.72	0.56	3.98

a fixed limit, the pitch and roll angles are updated open-loop by use of simulated (integrated) angular accelerometer information. For the gyro data which was used to generate this information, the nolse and drift rates were probably too great (i.e., the measured angular rates didn't match the measured changes in INS angles) to allow good angular tracking, even for only a two-minute span. Thus, Method 1, in its present form, was judged not adequate for lateral translent tracking wath the given quality of rate information available on the CV-990 flight.

There are probably modifications to Method 1 which would mprove performance. For example, the acceleration vector used to track gravity could be modified to account for expected reorientation caused by a turn. The estimator performance could be improved with a better knowledge of the instrumentation errors. It also would be desirable to obtain more data sequences and work with the raw data at each sample point rather than data averaged over 20 samples.

At this point in the study, Methods 3 and 4 (discussed in Chapter II) were introduced. Again, the motivation for Method 3 was to remove the ambiguity of the equations for determining roll angle which exists in Method 2. The motivation for Method 4 was to test the overall estimation concept using a simpler set of instruments.

The two new estimator concepts were tested with the same data sequences described previously. Comparisons of the resulting means and standard deviations of the difference between the measured and estimated roll, pitch, and beading angles for Methods 2, 3, and 4 are presented in Table 4.

TABLE 4.- MEANS (m) AND STANDARD DEVIATIONS (σ) OF ESTIMATOR STATE ERRORS FOR THREE MECHANIZATIONS DURING THREE FLIGHT SEQUENCES

SEQUENCE	ANGLE, DEG	METHOD					
		2		3		4	
		m	σ	m	σ	m	σ
1	φ	-0.21	0.54	-0.40	1.31	-0.51	1.23
	θ	0.42	0.98	0.42	0.95	0.40	0.98
	ψ	0.82	2.03	0.94	1.48	0.97	1.51
2	φ	0.24	2.14	0.70	2.09	0.45	1.87
	θ	-0.93	0.54	-0.91	0.74	-0.91	0.32
	Ψ	0.56	3.98	-0.07	2.29	0.57	1.98
3	φ	0.19	0.96	0.31	5.14	0.18	2.16
	θ	-0.84	2.24	-0.82	2.21	-0.88	2.05
	ψ	-1.48	4.94	-1.19	3.82	-1.49	3.37

The values shown in Table 4 only relate relative performance for the given set of filter gains and instrument calibration factors chosen for the particular runs. General improvements can be made by parameter adjustment as is discussed next. The Table 4 data show that not relying on the (simulated) magnetic field for computing the angle_ φ (Methods 3 and 4) resulted in an improvement in the standard deviation of the heading angle difference $\tilde{\psi}$. The patch angle was generally unaffected by the estimator method used except during Sequence 2. Here, removing the simulated pitch angular accelerometer data (in Method 4) lowered the standard deviation of the pitch angle difference $\tilde{\theta}$. The mean and standard deviations of the roll angle difference $\tilde{\varphi}$ generally increased due to the assumptions of Methods 3 and 4, as would be expected.

A limıted study was made to determane what improvements could be made to the performance by changing the model parameters used to compute α_{o} as a function of flap angle and the complementary filter gains. Recall that Methods 2-4 use the computed angle-of-attack of Eq. (3). In this expression, $f_{z_{m}}$ is the adjusted aircraft-fixed, downward component of measured acceleration equal to

$$
\begin{equation*}
f_{z_{m}}=\left(1+\varepsilon_{a_{z c}}\right) f_{z_{m}}+b_{a_{z c}} \tag{43}
\end{equation*}
$$

Here, $\varepsilon_{\text {azc }}$ and $b_{a z c}$ are the scale factor and bias calibration terms. Thus, Eq. (3) has the parameters $k_{\alpha 1}, k_{\alpha 2}$, $\varepsilon_{a z c}, b_{\text {azc }}$ and ($m / C_{Z_{\alpha}} s$) which can all be adjusted to affect the computed $\alpha_{\bar{c}}$, and $\theta_{\bar{c}}$. For the data l-sted previously, the values of $k_{\alpha 1}$ and $k_{\alpha 2}$ were 0.09 and -0113674 , respectively. A test was made using data input Sequence 1 with Method 2 and the values $\left(k_{\alpha 1}=-0.9 ; k_{\alpha 2}=-0.095\right)$. This produced the results:

ANGLE, DEG
φ
θ
ψ

0.11
0.64
-0.22
0.60
-0.39
1.28

By comparing these data with the results in Table 4, it can be seen that the mean errors were cut in half, and general improvement was realized in the standard deviations of $\tilde{\theta}$ and Ψ. This indicates the importance of having a good knowledge of the aircraft model for α_{0} in Eq. (3). It is expected that additional improvement could be made by adjustment of the other instrument calibration quantities.

The previous data were produced based on the assumptions that the angular accelerometer measurements had nolse with standard deviations of $0.002 \mathrm{rad} / \mathrm{sec}^{2}$. It was also assumed that the angles measured from the magnetometers and by use of Eq. (3) had noise with standard deviations of 0.02 rad . The resulting Kalman gains produced filters with natural frequency of $0.3162 \mathrm{rad} / \mathrm{sec}$. Another test was made in which this frequency was changed to $0.2 \mathrm{rad} / \mathrm{sec}$ by gain adjustment. The results were (again with Method 2 and Sequence 1)•

ANGLE, DEG	m	σ
	0.10 θ	0.44
ψ	-0.22	0.57
	-0.39	1.09

Here, it is seen that each standard deviation is decreased somewhat compared to the previous data. Again, further improvement can be made by further gain adjustment.

For further comparison, the changes in $\mathrm{k}_{\alpha 1}, \mathrm{k}_{\alpha 2}$, and the filter gains were used also to regenerate results for Sequence 1 using Methods 3 and 4 . The results are compared in Table 5 with those of Table 4. As can be seen in Table 5, these changes almost uniformly lowered all the mean differences and the associated standard deviations.

TABLE 5.- COMPARISON OF MEANS (m) AND STANDARD DEVIATIONS
(σ) OF ESTIMATOR STATE ERRORS FOR SEQUENCE 1 WITH ORIGINAL AND MODIFIED FILTER PARAMETERS AND CONSTANTS $\mathrm{k}_{\alpha 1}$ AND $\mathrm{k}_{\alpha 2}$ (FLAP ANGLE EFFECT)

PARAMETERS	$\begin{gathered} \text { ANGLE, } \\ \text { DEG } \end{gathered}$	METHOD					
		2		3		4	
		m	σ	m	σ	m	σ
Original	φ	-0.21	0.54	-0.40	1.31	-0.51	1.23
	θ	0.42	0.98	0.42	0.95	0.40	0.98
	ψ	0.82	2.03	0.94	1.48	0.97	1.51
Modified	φ	0.10	0.44	-0.36	2.06	-0.55	1.06
	θ	-0.22	0.57	-0.21	0.57	-0.23	0.66
	ψ	-0.39	1.09	0	1.07	-0.03	0.93

From Tables 4 and 5, the following conclusions can also be made:
(1) The pitch angle accuracy is essentially independent of the estimator method used. Thus, for this data, no value is ganned from use of the pitch angular accelerometer, as in Methods 2 and 3
(2) The roll angle estimates $\hat{\varphi}$ are generally more accurate in Method 2 in which the magnetic field is used to smooth both $\hat{\varphi}$ and $\hat{\psi}$. This is expected because the alrcraft does not always obey the coordinated turn assumption which is inherent in Methods 3 and 4.
(3) The heading angle estimates $\hat{\psi}$ are closer to the directional gyro measured values when the roll angle estimate $\hat{\varphi}$ is assumed to be a function of $\dot{\hat{\psi}}$
(Methods 3 and 4). This is presumed to be due to an inherent disagreement between the INS and the directıonal gyro measurements.
(4) Method 4 produces essentially equivalent accuracy to Method 3. Thus, Method 4 is preferred to Method 3 for this data because one addıtıonal rate sensor (the roll angular accelerometer) can be omitted.

Plots comparing the estimated and measured roll, pitch, and heading angles using Method 2 on data Sequence No. 1 are shown in Fig 7. The agreement as good despite the relatively "nolsy" aircraft trajectory. It can be concluded that the nonlınear estimators work well using actual flight data Based on the limıted data trials, $1 t$ appears that they provide angle estımates that are adequate for flight control.

FIGURE 7.- METHOD 2 ESTIMATED ORIENTATION ANGLES FOR DATA SEQUENCE NO 1

Towards the end of this study, a small amount of data (80 sec period) became available which had been collected on the Ames Cessna 402B aircraft. These data were collected during the final approach and landing portion of a May 1977 flight at Crows Landing, California. This portion of the filight was reported to be subject to high lateral winds such that noticeable sidesifp conditions prevailed. However, the INS measurements of wind magnitude and direction were not functional for this filght. Furthermore, the collected data had a high content of spikes and data dropouts. These anomalies were removed by interpolation and other manual techniques to make the data usable.

It was highly desirable to use these data for further estimator investigation because actual magnetometer data were recorded. Furthermore, all three attitude angles were measured and available from the INS system. (Recall that for the CV-990 data, heading angle was taken from a directional gyro, and magnetometer measurements were artificially generated.) Thus, these new data could produce new insights.

A serious problem with the 402 data was the high error content of the baro-altimeter recording. The baro-altimeter is a key instrument for computing pitch angle in Methods 2-4. Thus, it was decided to modify the program so that pitch angle wasn't estimated, but instead it was read directly from the INS. Thus, in the subsequent tests, only the roll and heading angles were estimated. However, this was still significant because it represented using actual magnetometer data to determine both roll and heading angles.

The instrumentation that is available on the Ames 402B is listed in Table 6. Also listed is the output range of the instruments, the number of digats recorded, and the equivalent accuracy. Details of this flight data system and its calibration can be found in Ref. 13. Again, as with the CV-990 system, the relative alignments of the three-axis instrument packages were unknown. Also, the locations of the linear accelerometers with respect to the alrcraft center of gravity were unknown.

For the 402B flight, the sample period was 0.0702249 sec which represented a rate of about 14 samples per second. Initially, no instrument correction terms were included in the data processing. Gains were held the same as those used for generating Table 5.

TABLE 6.- INSTRUMENTATION CHARACTERISTICS OF AMES CESSNA 402B [13]

INSTRUMENT	UNITS	FULL SCALE READING	BITS	$\underline{\underline{\text { EQUIVALENT GRANUEARITY }}}$
Rate gyros (p, q, r)	$\mathrm{deg} / \mathrm{sec}$	± 15	10	$0.029^{\circ} / \mathrm{sec}$
INS angles (φ, θ, ψ)	deg	± 180	14	0.022°
Linear Accelerometers (f_{x}, f_{y}, f_{z})	g	$\pm 0.5\left(f_{x}, f_{y}\right)$ $\pm 3.0\left(f_{z}\right)$	10	$\begin{aligned} & 0.0040 \mathrm{~g}=0.03 \mathrm{ft} / \mathrm{sec} \\ & 0.0059 \mathrm{~g}=0.19 \mathrm{ft} / \mathrm{sec} \end{aligned}$
Magnetometers $\left(B_{x}, B_{y}, B_{z}\right)$	Gauss	± 600	10	1.17 Gauss
Altimeter ($h_{\text {baro }}$)	ft	$\begin{aligned} & -1000 \\ & +9000 \end{aligned}$	10	9.78 ft
Airspeed (V_{a})	kts	250	10	$0.244 \mathrm{kt}=0.41 \mathrm{ft} / \mathrm{sec}$
Control Surfaces (8 F, etc.)	deg	Full surface deflection ($0^{\circ}-45^{\circ}$)	10	0.044°

Figure 8 shows the initially estamated and INS measured roll and yaw angles for the 80 sec segment of the 402 B flight using Method 2. As can be seen for this run, the estimated angles follow the same trends as the INS measured angles. However, there is a large bias in the estimated roll angle. Also, the estimated heading angle increasingly deviates from the measured value as the angle becomes closer to 0°. For this initial test, the mean differences and associated standard deviatıons between estimated and measured roll and heading angles were•

ANGLE, DEG		m
		$\frac{\sigma}{1.39}$
ψ		3.54
		8.43

FIGURE 8.- INITIAL ESTIMATED AND MEASURED ROLL AND HEADING ANGLES FROM CESSNA 402B DATA

It was concluded that signals of the three-axis magnetometer (which is mounted in the vertical stabilizer of the 402B) were being distorted by the aircraft structure, and that corrections should be made.

The magnetometer data were examined at discrete points along the trajectory and compared to the corresponding INS measurements. It was determined that the characteristics of the distortions were such that the signals were subject to both misalignment and scale factor errors. Some calibration calculations were made using discrete points of the data, and the resultıng prelıminary error magnitudes were determaned to be:

Misalıgnment $\left(\psi_{B}, \theta_{B}, \varphi_{B}\right)=1.9^{\circ}, 1.2^{\circ}, 6.6^{\circ}$,
Scale factor error $\left(\varepsilon_{\mathrm{cbx}}, \varepsilon_{\mathrm{cby}}, \varepsilon_{\mathrm{cbz}}\right)=-0.15,0,-0.05$.

Corresponding correction terms were placed in the estimator software to remove these errors. The data were reprocessed (again using Method 2) and the results are shown in Fig. 9. The resulting means and standard deviations were

ANGLE, DEG	m	$\frac{\sigma}{-7}$
φ	0.005	1.58
ψ	-0.336	1.38

As can be seen, this is a substantial improvement. A closer match could be made between the estimated and INS measured angles by further adjustment of gains and error correction terms. It again can be concluded that this method of estimating attitude angles potentially works extremely well. The

FIGURE 9.- ESTIMATED AND MEASURED ROLL AND HEADING ANGLES WITH MAGNETOMETER DATA CORRECTIONS
method is tolerant to typical instrument misalignment errors. A reservation is that these results were obtained by assuming that pitch angle was known exactly.

The same data sequence was processed using estimator Methods 3 and 4. A comparison of the statistical results appears in Table 7. As can be seen from these results, Method 2 performs significantly better than Method 3. In turn, Method 3 performs significantiy better than Method 4 . The performance obtained from Method 4 is unacceptable. Thus, it is concluded that:
(1) In this flight sequence, where frequent attitude transients and sideslip conditions prevail, the coordinated turn assumption is continually violated. Thus, inherent errors are present in Methods 3 and 4. Significant information is obtained from the magnetometer data in Method 2 for directly computing the roll angle.
(2) In the presence of consistent attitude transients, the estimated roll rate (\hat{p}) information (Methods 2 and 3) becomes more important. The equations used to derive Method 4 include the assumption that p is negligible, (A possible fix would be to rotate the single rate gyro so that components of both roll rate and yaw rate are measured.)

It is certainly possible that the performance achleved from Methods 3 and 4 could be improved by gain changes and software modifications. However, such efforts should await more extensive flight data to work with.

TABLE 7.- COMPARISON OF ESTIMATOR METHODS USING THE 402 B DATA

$\begin{gathered} \text { ANGLE, } \\ \text { DEG } \end{gathered}$	METHOD					
	2		3		4	
	m	σ	m	σ	m	σ
φ	0	1.58	-0.20	4.56	0.23	10.55
ψ	-0.034	1.38	0.12	4.30	-1.81	25.03

Based on the results of processing the CV-990 and Cessna 402B data, $1 t$ is concluded that Method 2 is the preferred estimator structure. Modification can be made to this method so that the complementary filter software which determines pitch angle can be eliminated. That is, pitch angle can be computed directly by using Eqs. (3) and (10). This also eliminates need of the pitch accelerometer.

Also based on these results, it can be concluded that one can potentially estimate the three orientation angles of the alrcraft to a high degree of accuracy. The estimated roll and heading angle trajectories obtained using the Cessna 402B data resembled very closely the angles directly measured using the INS This is very encouraging. The possible problems which may arise due to the ambiguity in solution for roll angle in Method 2 will have to be discovered or dismissed by much more extensive flight testing.

SOFTWARE MECHANIZATION REQUIREMENTS

An essential requirement for mechanizing the state estımator concepts is that their software can be successfully coded in a typical microcomputer with the associated constraints on memory, computation accuracy, and cycle time. To make an assessment of to what degree this requirement can be met, the following study was made using a DEC PDP 11/70 computer.

First, the FORTRAN software required to mechanize the Method NO. 2 state estimator was extracted from the ESTEST program described in Appendix A. (The ESTEST program was developed to test all estimator configurations using flight data.) The Method 2 estimator configuration is the longest but most accurate of the configurations studied. The Method 2 FORTRAN code is presented and explained in Appendix B.

Next, the portion of the software which represents computations made every cycle of the mechanized estimator were recoded on the PDP 11/70. Phases of these computations include:
(1) modification of sensor readings to remove known errors;
(2) computation of independent measures of the attitude angles (φ, θ, ψ) from magnetometer and other readings; and
(3) primary state estimator (filter) computations.

Also, there would be a small amount of additional software for input and output conversion. The program was coded using the C language of the UNIX system (developed by D.M. Ritchie, Bell Laboratorıes) which provides efficıent, compact PDP 11 code. A listing of the C source deck is also presented in Appendix B.

The C source deck was complled and assembled into PDP 11 machine language using the floating point instruction set The associated memory requirements for this program were 202410 suxteen bit words. This requirement could be reduced about 25% using fixed point arıthmetic. However, fixed point arithmetic would require addition of some scalung operations.

Some additional software would be required to make the initial computations at the beginning of use of the estimator.

These computations are presented in Appendix B. Also, executive logic would be required to sample and scale the A / D buffer inputs, to interface with pilot inputs, to prepare the estimate outputs for display or digital control, and to control program cycling. A conservative estimate is that this would add 50% to the memory requirements. Thus., it is seenthat the read only memory (ROM) requirements for mechanization are much less than 4096 (4K) sixteen-bit words. With efficient coding, this could be reduced to 2 K words.

The variable storage requirements (RAM) for mechanization is 132_{10} sixteen-bit words. Thus, a 256×16-bit RAM unit is adequate.

The tests made using the Cessna 402 discussed in the previous chapter used data with ten-bit accuracy. The estimate results were quite adequate in comparison to INS measurements. Thus, it can be concluded that a microcomputer with twelve or sixteen-bıt words is adequate for mechanizing the state estimator. Further tests would be required to evaluate the adequacy of an elght-bit processor.

To obtain an estimate of computation time, a single pass through the PDP 11 computations was timed. The result was less than 167 msec . (The minimum measurable time increment is $1 / 60 \mathrm{sec}$.$) Norden Corporation personnel estimated that the$ time increase would be a factor of five (to less than 83.5 msec) for running on the LSIIIM microcomputer which uses the PDP 11 code. The LSSIIM is a ruggedized microcomputer suitable for airborne application.

For processing the flight test data, sample rates of once per second (CV-990 data) and fourteen times per second (C-402 data) were used. The Method 2 estimator worked well in both cases. Thus, a sample rate of five times/sec appears to be adequate.

If the cycle tume were set at 200 msec so that the sensors were sampled five times/sec, it is seen that the basic computations of the state estimator would require only 41% of real time for the LSIIIM Again, to be conservative, this value could be increased 50% to account for addıtıonal executive computations. There appears to be plenty of margin for running time.

The above study is a first approximation to the microcomputer mechanızation requirements. From these, it can be concluded that the state estimator concept can easily be mechanized in existing microcomputers. To obtain more precise timing and memory requirements requires actual mechanization on a microcomputer with addıtional software added for driving A / D converters, displays, and the program control logic.

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary
This study has accomplished the following:
(1) Four nonlinear state estimators (Methods 1, 2, 3, and 4) were devised which provide techniques for obtaining the angular orientation of the aircraft. These techniques are alternatives to direct measurement by use of vertical and directional gyros. These estimators have the potential of being of low cost and of high reliability by implementation using solid state instruments (pressure sensors, accelerometers, magnetometers) and the microcomputer.
(2) An extensive FORTRAN computer program was developed to demonstrate and evaluate the estimators by processing recorded flight test data. This program simulates the estimator operation and it compares the state estimates with actual state measurements. Full details and capabilities of this program are presented in Appendix A.
(3) The above program was used to evaluate the four state estimator configurations wath limited data recorded on the NASA Ames CV-990 and Cessna 402B aircraft. Three of the configurations worked reasonably well with the CV-990 data and Method 2 worked well with the 402 B data. From these evaluations, the preferred state estimator configuration was chosen.
(4) A preliminary assessment was made of the requirements for 1 mplementing the selected state estimator on a typical microcomputer.

Conclusions

Based on limıted finght data analysis, it is concluded that the estimator concept of determining attitude angles without direct measurement has definite potential to provide low-cost flight control The measurements requared to estimate roll, pitch, and yaw angles include the three components of magnetic field (B_{x}, B_{y}, B_{z}), three components of linear acceleration (f_{x}, f_{y}, f_{z}), two components of angular acceleration (\dot{p}, \dot{r}), true airspeed $\left(V_{a}\right)$, baro-altitude (h), and
possibly flap angle (δF). Angular acceleration could be replaced by angular rate (p, r) measurements. Altitude and true alrspeed measurements can be obtalned by processing static and dynamic pressure data.

It is furthermore concluded that the above set of measurements, which are smoothed by nonlinear filtering in the estimator, can provide attıtude angle estimates to a high degree of accuracy. For example, during an 80 sec run using Cessna 402B data, the roll angle excursions of the aircraft exceeded 45° and the yaw angle excursions exceeded 120°. During this time, the estimated roll angle matched the INS measured roll angle to a mean of 0° and a standard deviation of 1.6°. The estimated yaw angle matched the INS measured yaw angle to a mean of -0.3° and a standard deviation of 1.4°. This accuracy is more than adequate for flaght control purposes.

The selected state estimator configuration (Method 2) has a potential ambiguaty problem in determining roll angle when the aircraft is flylng at a magnetic heading of nearly North or South. This problem was not encountered with the limited data processed in this study. The solutions to this problem (encompassed in Methods 3 and 4) degrade the estimator performance in the presence of aircraft transient attitude motion. The degree of degradation is dependent upon the instrumentation errors and the amount of disturbances causing transient motion of the aircraft.

The computation mechanization requirements for implementing the Method 2 state estimator are easily met with today's microcomputers. Preliminary conservative estimates are that to code this estimator on a ruggedized microcomputer requires less than $4 \mathrm{~K} \times 16$-bit ROM memory and less than $256 \times 16-b i t$ RAM memory. Twelve-bit memory is also sufficient. A preliminary timing assessment indicated that less than 0.1 sec is required to cycle the estimator equations on the ruggedized microcomputer. This allows a sample rate of five/sec with plenty of time to spare for either driving displays or automatic control actuation.

Recommendations

The results of this study were based on limited flight data. The data collected did not represent all the flight regimes in which the estimators would potentially have to operate. In particular, flight data in which several turns, intentional lateral and longitudinal perturbations, known wind shears, stalls, and engine-out conditions were not tested. It

Is recommended that such data be collected on the Cessna 402B aircraft and that a more thorough investigation be made.

It is also recommended that the following steps be taken
(1) Estimator Methods 2, 3, and 4 are based on computing pitch angle from measurements of vertical acceleration, dynamic pressure, and flap angle and estimates of aircraft mass and lift coefficient. Study should be directed to find a more direct procedure to compute pitch so that at least flap angle measurements could be eliminated.
(2) Estimator Method 2 gave the best results in the studies made. However, it has a potential ambigurty problem in computing roll angle when the alrcraft is flying wath a magnetic heading of near 0° or 180°. This potential problem must be thoroughly investigated with flight test data, and further corrective logic may be required.
(3) Intentional instrumentation errors should be artificially introduced into the program used to process the flight data and to evaluate the estimators. The sensitivity of the state estimator outputs to instrument error magnitude can then be determined. This procedure is suitable for specifying required instrument accuracy. These results would complement laboratory studies of existing low-cost solıd state sensors.
(4) A typical microcomputer should be selected along with appropriate sensor interface equipment, recording equipment, and operating peripherals. Additional software should then be developed to sample the sensor input, provide program control, and drive outputs for data recording (or display). The entıre software code of the selected estimator configuration should then be loaded into the microcomputer, and subsequent tests should be made to obtain more definıtive requirements for computer mechanization.

Further concept study of low-cost state estimation for flight control should produce
(1) A precise definition of the desired state estimator configuration and any limitations it has.
(2) The computer, sensor, and display mechanization requirements to realize this concept. These include accuracy requirements of both the computer and sensors

\%

APPENDIX A

PROGRAM USER'S GUIDE

As part of this study effort, a FORTRAN digital computer program (ESTEST) was developed for the Ames IBM 360 to process the filght data. The purpose of this program is to simulate operation of the state estimators used for flight control purposes. The filght data serves as input to drive this samulation. The state estimates are compared to actual state variables obtained by direct measurement to assess the estimator performance.

The ESTEST program allows the user to make the following studies:
(1) Digital implementation of the state estimator can be checked.
(2) Difierent estimator formulations can be tested and compared.
(3) Performance of the estimator can be measured for different flight conditions and sensor accuracies.
(4) Gains and other program variables can be adjusted.
(5) Airborne computer requirements for mechanization can be partially assessed.

This appendix serves as a user's guide for ESTEST. It is organızed as follows.
(1) The input variables are defined, and a sample input deck is listed.
(2) The program output is explained, and sample outputs are presented.
(3) The general capabilities and organization of the program are explanned.

Input Varıables
Five input formats are used to read in the initial data and program control varlables. These formats are.
(1) FØRMAT (2X,5I3),
(2) FøRMAT (20A4),
(3) FøRMAT ($2 \mathrm{X}, 6 I 3$),
(4) FøRMAT(6I6), and
(5) FØRMAT (2X,6E12.5).

Twenty-eight input data cards are read using these formats to inatialize operation of the program. They are presented in Table A. 1 as they are arranged in the data card set; the above formats are referenced. The definitions of these variables are presented in Table A.2. Figure A.1 shows a listing of a typical input deck, with the approprate Ames IBM 360 control cards.

After the initialization data and control variables have been read in, ESTEST immediately prints this data. This is discussed in the next section. Then, certain initialization computations are made such as conversion from degrees to radians. Then, the time data set is read sequentially using the following FORTRAN statements.

```
50 CONTINUE
    READ (8) K,(CVDAT(J),J=1,17)
    IF (K.LT.NST) G\emptyset T\emptyset 50.
```

This is explained as follows:
(1) The number of time points of data in the data set (NTIME) is first read.
(2) Each sequential data time point record is then read until the index K is equal to the input quantity NST which is the start point desıred.

The quantities in each data time record represented by the array CVDAT are defined in Table A.3. The program is set by the logic variable NF1 so that either data collected on the CV-990 aircraft or the Cessna 402B aurcraft can be used. The differences beween the CV-990 and C-402 data arrays are indicated in Table A. 3.

Program Output

The first thing the program does after reading in the run initialization data is to print it. A sample of this printout is shown in Fig. A.2. Each of the variables is defined by the preceding acronym which is defined in Table A.2.

TABLE A. 1 - SEQUENCE OF INITIAL DATA AND PROGRAM CONTROL
VARIABLES READ TO INITIALIZE ESTEST OPERATION

CARD	FORMAT	FORTRAN ACRONYMS
1	1	$(\operatorname{IDATE}(1), I=1,3)$, NR, NAC
2	2	(ALPHA (I) , I=1,20)
3	3	NF1, NF2, NF3, NF4, NF5, NF6
4	3	NF7, NF8, NF9, NF10, NF11
5	4	NS, NST, NRU, IX
6	5	BMAG, DL1, DL2
7	5	FIB, THB, SIB, SIBY, THBZ, FIBZ
8	5	$B B X, B B Y$, $B B Z, ~ E P B X, ~ E P B Y, ~ E P B Z ~$
9	5	SGBX, SGBY, SGBZ
10	5	DT, TSTØP, TI, DTP, DTPL, DTST
11	5	FIPD, THPD, SIPD, EPPD, EPQD, EPRD
12	5	BPD, BQD, BRD, SGPD, SGQD, SGRD
13	5	BV, EPV, SGV
14	5	FIA, THA, SIA, XA, YA, ZA
15	5	BAX, BAY, BAZ, EPAX, EPAY, EPAZ
16	5	SGAX, SGAY, SGAZ
17	5	BH, EPH, SGH
18	5	FIAM, THAM, SIAM, XAM, YAM, ZAM
19	5	THV, RKU, RKSB, RKB, DFBI, DFSF
20	5	FIAL, THAL, SIAL, RKA1, RKA2
21	5	RL, RKGX, RKGY, RKGZ, RKB1
22	5	FGL, G
23	5	SICBX, THCBX, SICBY, FICBY, THCBZ, FICBZ
24	5	RM, CZAL, SW, ALZRØ, ALZR1, HØ
25	5	RK1, RK2, RK3, RK4, RK5, RK6
26	5	RK7, RK8, RKBH, RKBP, RKBQ, RKBR
27	5	BAXC, BAYC, BAZC, EAXC, EAYC, EAZC
28	5	BCBX, BCBY, BCBZ, ECBX, ECBY, ECBZ

TABLE A.2.- DEFINITION INPUT DATA CARD VARIABLES LISTED IN TABLE A. 1

CARD	ACRONYM	SYMBOL	DEFINITION
1	IDATE (I)		Dāte in month/day/year that data were taken
	NR		Estimator (or run) trial number
	NAC		Type of aircraft (т.e., 990, 402).
2	ALPHA(I)		120 characters used to identify a particular run
3	NFI		$\text { Data source: } \begin{aligned} & 1-\text { CV-990 } \\ & 2-C-402 B \end{aligned}$
	NF2		Magnetic data used: 1 - Computed from INS angles 2 - Actual magnetometer
	NF3		Simulated sensor errors introduced: 0 - None 1 - Deterministic 2 - Deterministic + random
	NF4		Sensor corrections used: 0 - None 1 - Corrections
	NF5		Airspeed measurement source: 1 - Pitot tube 2 - J-Tek sensor
	NF6		Method of computing φ, θ, and ψ : 1 - Method 1 2 - Method 2 3 - Method 3 4 - Method 4
4	NF7		Computer printout: 0 - None 1 - Major 2 - Major + secondary
	NF8		```Computer plot: O - No plot 1 - Plot```

TABLE A. 2 (Continued)

CARD	ACRONYM	SYMBOL	definition
4	NF9		Ames Zeta plot: 0 - No plot data 1 - Plot data saved
	NF10		Statistical measures: 0-Not computed 1 - Computed
	NF11		φ, ψ computations only: 0-Option off 1 - Option on
5	NS		Number of samples to skip between use
	NST		Data set index number used to indicate start of data of interest
	NRU		Number of cases to be run from data set.
	IX		Initial add number for random number generator.
6	BMAG	$\mathrm{B}_{\text {mag }}$	Assumed or actual magnitude of the local magnetic field (milligauss)
	DL 1	$\delta_{\text {LI }}$	Deviation of magnetic north from true north (deg)
	DL2	$\delta_{\text {L2 }}$	Magnetic field dip angle ($\overline{\mathrm{deg}}$)
7	$\begin{aligned} & \text { FIB } \\ & \text { THB } \\ & \text { SIB } \end{aligned}$	$\varphi_{B}, \theta_{B} \psi_{B}$	Simulated magnetometer misalignment angles (deg)
	$\begin{aligned} & \text { SIBY } \\ & \text { THBZ } \\ & \text { FIBZ } \end{aligned}$	$\begin{aligned} & \Psi_{\mathrm{By}}, \theta_{\mathrm{Bz}}, \\ & \varphi_{\mathrm{Bz}} \end{aligned}$	Simulated magnetometer skew angles; B_{y} with respect to B_{x} and B_{z} with respect to $B_{x}-B_{y}$ plane (deg)
8	$\begin{aligned} & \mathrm{BBX} \\ & \mathrm{BY} \\ & \mathrm{BB7} \end{aligned}$	$\begin{aligned} & b_{B x}, b_{B y}, \\ & b_{B z} \end{aligned}$	Simulated biases of magnetometer readings (milligauss)
	EPBX EPBY EPBZ	$\begin{aligned} & \varepsilon_{B x}, \varepsilon_{B y}, \\ & \varepsilon_{B z} \end{aligned}$	Simulated magnetometer scale factor errors; ($1+\varepsilon$) multiplies the simulated signal

TABLE A. 2 (Continued)

CARD	ACRONYM	SYMBOL	DEFINITION
9	$\begin{aligned} & \text { SGBX } \\ & \text { SGBY } \\ & \text { SGBZ } \end{aligned}$	$\begin{aligned} & -{ }_{-B x}, \sigma_{B y}, \\ & \sigma_{B z} \end{aligned}$	Standard deviations used by random number subroutine for simulated magnetometer noise (milligauss)
10	DT	Δt	time between samples (sec)
	TSTOP	$\mathrm{t}_{\text {stop }}$	Length of time duration of data sequence used in the run (sec)
	TI	t_{I}	Time from beginning of data record to point where run begins; corresponds to NST (sec)
	DTP	Δt_{p}	Print interval (sec)
	DTPL	$\Delta t_{p \ell}$	Plot interval (sec)
	DTST	$\Delta t_{s t}$	Interval for computing estimate deviation means and variances (sec)
11	$\begin{aligned} & \text { FIPD } \\ & \text { THPD } \\ & \text { SIPD } \end{aligned}$	$\begin{aligned} & \varphi_{\dot{p}}^{*}, \theta_{\dot{p}}, \\ & \psi_{\dot{p}} \end{aligned}$	Simulated angular accelerometer misalignment angles (deg)
	$\begin{aligned} & \text { EPPD } \\ & \text { EPQD } \\ & \text { EPRD } \end{aligned}$	$\begin{aligned} & \varepsilon_{\dot{p}}, \varepsilon_{\dot{q}}, \\ & \varepsilon_{\dot{r}}^{0} \end{aligned}$	Simulated angular accelerometer scale factor errors
12	$\begin{aligned} & \text { BPD } \\ & \text { BQD } \\ & \text { BRD } \end{aligned}$	$\begin{aligned} & b_{\dot{p}}, b_{\dot{q}}, \\ & b_{\dot{r}}, \end{aligned}$	Simulated angular accelerometer biases ($\mathrm{rad} / \mathrm{sec}^{2}$)
	$\begin{aligned} & \text { SGPD } \\ & \text { SGQD } \\ & \text { SGRD } \end{aligned}$	$\begin{aligned} & \sigma_{\dot{p}}, \sigma_{\dot{q}}, \\ & \sigma_{\dot{r}} \end{aligned}$	Standard deviations used by random number subroutine for simulated angular accelerometer noise (rad/sec ${ }^{2}$)
13	BV	b_{v}	Simulated airspeed measurement bias ($\mathrm{ft} / \mathrm{sec}$)
	EPV	ε_{v}	Simulated airspeed measurement scale factor error
	SGV	σ_{v}	Standard deviation used by random number subroutine for simulated airspeed measurement noise ($\mathrm{ft} / \mathrm{sec}$)

TABLE A. 2 (Continued)

CARD	ACRONYM	SYMBOL	DEFINITION
14	$\begin{aligned} & \text { FIA } \\ & \text { THA } \\ & \text { SIA } \end{aligned}$	$\begin{aligned} & \varphi_{a}, \theta_{a}, \\ & \psi_{a} \end{aligned}$	Simulated linear accelerometer misallgnment angles (deg)
	$\begin{aligned} & X A \\ & Y A \\ & Z A \end{aligned}$	$\begin{aligned} & x_{z}, y_{a} \\ & z_{a} \end{aligned}$	Simulated position of 1 inear accelerometers with respect to the aircraft c.g.
15	$\begin{aligned} & B A X \\ & B A Y \\ & B A Z \end{aligned}$	$\begin{aligned} & b_{a x}, b_{a y}, \\ & b_{a z} \end{aligned}$	Simulated linear accelerometer biases $\left(f t / \sec ^{2}\right)$
	$\begin{aligned} & \text { EPAX } \\ & \text { EPAY } \\ & \text { EPAZ } \end{aligned}$	$\begin{aligned} & \varepsilon_{a x}, \varepsilon_{a y}, \\ & \varepsilon_{a z} \end{aligned}$	Simulated linear accelerometer scale factor errors
16	$\begin{aligned} & \text { SGAX } \\ & \text { SGAY } \\ & \text { SGAZ } \end{aligned}$	$\begin{aligned} & \sigma_{a x}, \sigma_{a y}, \\ & \sigma_{a z} \end{aligned}$	Standard deviations used by random number subroutine for simulated linear accelerometer measurement noise ($\mathrm{ft} / \mathrm{sec}^{2}$)
17	BH	b_{h}	Simulated altimeter bias (ft) ,
	EPH	ε_{h}	Simulated altimeter scale factor error
	SGH	σ_{h}	Standard deviation used by random number subroutine for simulated altimeter measurement notse (ft)
18	FIAM THAM SIAM	$\begin{aligned} & \varphi_{\mathrm{am}}, \theta_{\mathrm{am}}, \\ & \psi_{\mathrm{am}} \end{aligned}$	Linear accelerometer misalignment correction angles (deg)
	$\begin{aligned} & \text { XAM } \\ & \text { YAM } \\ & \text { ZAM } \end{aligned}$	$\begin{aligned} & x_{a m}, y_{a m}, \\ & z_{a m} \end{aligned}$	Linear accelerometer position correction terms with respect to the c.g. (ft)
19	THV	θ_{V}	Pitot tube misalignment correction angle (deg)
	RKU	K_{u}	Gain for airspeed filtering
	RKSB	$K_{S B}$	Gain for filtering $\hat{g} \times \hat{B}$ terms in Method I

TABLE A. 2 (Continued)

CARD	ACRONYM	SYMBOL	DEFINITION
19	TKB	K_{B}	Gain for fiftering \hat{B} in Method-2
	DFBI	$\mathrm{b}_{\delta F}$	Flap angle bras (deg)
	DFSF	$\varepsilon_{\delta F}$	Flap angle scale factor error.
20	FIAL THAL SIAL	$\begin{aligned} & \varphi_{\alpha}, \theta_{\alpha}, \\ & \Psi_{\alpha} \end{aligned}$	Angular accelerometer misalignment correction angles (deg)
	$\begin{aligned} & \text { RKA1 } \\ & \text { RKA2 } \end{aligned}$	$K_{a 1}, K_{a 2}$	Extra gains
21	RL	r_{L}	Turn rate limit for update of \hat{g} in Method I (rad/sec)
	$\begin{aligned} & \text { RKGX } \\ & \text { RKGY } \\ & \text { RKGZ } \end{aligned}$	$\begin{aligned} & K_{g x}, K_{g y}, \\ & K_{g z} \end{aligned}$	Gains for updating \hat{g} from Innear accelerometer readings in Method 1
	RKB1	$K_{b 1}$	Gain used by digital lag network to smooth rate gyro data
22	FGL.	$f_{g \ell}$	Threshold limit on accelerometer readings used to compute g in Method $1\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$
	G	g	Normal gravity value ($\mathrm{ft} / \mathrm{sec}^{2}$)
23	$\begin{aligned} & \text { SICBX } \\ & \text { THCBX } \\ & \text { SICBY } \\ & \text { FICBY } \\ & \text { THCBZ } \\ & \text { FICBZ } \end{aligned}$	$\begin{aligned} & \psi_{B x}, \theta_{B x} \\ & \psi_{B y}, \varphi_{B y}, \\ & \theta_{B z}, \varphi_{B z} \end{aligned}$	Magnetometer axis misalignment correction angles (deg)
24	RM	m	Aircraft mass (slugs)
	CZAL	$C_{Z \alpha}$	Aircraft lift coefficient as a function of angle-of-attack
	SW	S	Aircraft wing reference area ($f t^{2}$)

TABLE A. 2 (Continued)

CARD	ACRONYM	SYMBOL	DEFINITION
24	$\begin{aligned} & \text { ALZRO } \\ & \text { ALZR1 } \end{aligned}$	α_{0}, α_{1}	Terms used to compute zero lift angle-of-attack as a function of flap angle (rad, rad/rad)
	H0	h_{0}	Barometric altimeter correction (ft)
25	RK1-RK6	$K_{1}-K_{6}$	Primary filter gains for estimating altitude, roll, and pitch (or angle-ofattack)
26	RK7, RK8	K_{7}, K_{8}	Primary filter gains for estimating yaw
	$\begin{aligned} & \text { RKBH } \\ & \text { RKBP } \\ & \text { RKBQ } \\ & \text { RKBR } \end{aligned}$	$\begin{aligned} & K_{b h}, K_{b \dot{p}}, \\ & K_{b \dot{q}}, K_{b \dot{r}} \end{aligned}$	Primary filter gains for estimating biases in altitude, roll acceleration, pitch acceleration, and yaw acceleration
27	$\begin{aligned} & \text { BAXC } \\ & \text { BAYC } \\ & \text { BAZC } \end{aligned}$	$\begin{aligned} & b_{a x c}, b_{a y c} \\ & b_{a z c} \end{aligned}$	Linear accelerometer bias correction terms ($\mathrm{ft} / \mathrm{sec}^{2}$)
	EAXC EAYC EAZC	$\begin{aligned} & \varepsilon_{a x c}, \varepsilon_{a y c}, \\ & \varepsilon_{\mathrm{azc}} \end{aligned}$	Linear accelerometer scale factor correction terms
28	$\begin{aligned} & \text { BCBX } \\ & \text { BCBY } \\ & \text { BCBZ } \end{aligned}$	$\begin{aligned} & b_{c b x}, b_{c b y}, \\ & b_{c b z} \end{aligned}$	Bias corrections to magnetometer signals (milliguass)
	$\begin{aligned} & \text { ECBX } \\ & \text { ECBY } \\ & \text { ECBZ } \end{aligned}$	$\begin{aligned} & \varepsilon_{c b x}, \varepsilon_{c b y}, \\ & \varepsilon_{c b z} \end{aligned}$	Magnetometer scale factor error corrections


```
ANES HKYSLIt.
CAL Estsifa
```



```
        \(\begin{array}{llllll}2 & 2 & 0 & 1 & ? & 2 \\ i & 1 & 0 & 1 & 1\end{array}\)
        1. \(1 \begin{array}{lrrr}19 . & 333 & 65 \%\end{array}\)
        0,
0.
        0.
```



```
        0.
        0.
        0.
        "。
        C .
        \(\begin{array}{llllll}0.5 & 0.5 & 0.5 & 79.0 & 0.5\end{array}\)
    \(3 . \quad 37.172\)
        \(192.714 \quad 1 . \quad 105.72\)
        \(\begin{array}{llllll}192.714 & 1.7093 & 105.72 & & \\ 0.233 & 0.7493 & 0.09657 & 0.08284 & 0.09557 & 0.48284 \\ 0.09697 & 1.40281 & 0.03 & 0.008 & 0.008 & 0.008\end{array}\)
        0.
0.
\(\% 60\)
    LOGOFF
```

FIGURE A. 1.- LISTING OF TYPICAL ESTEST INITIAL DATA INPUT DECK

TABLE A.3.- QUANTITIES IN THE DATA INPUT ARRAY CVDAT

NO.	SYMBOL	DEFINITION (CV-990)	ALTERNATE DEFINITION (C-402)
1	t	Time (sec)	
2	φ	INS roll angle (deg)	
3	θ	INS pitch angle (deg)	
4	ψ	Dir. gyro yaw angle (deg)	Ψ - INS yaw angle (deg)
5	p	Roll rate (deg/sec)	
6	q	Pitch rate (deg/sec)	
7	r	Yaw rate (deg/sec)	
8	h	Altitude (ft)	
9	V_{a}	J-Tek true airspeed (kts)	
10	γ	Flight path angle (deg)	B_{x} - Longitudinal magnetometer reading (miliigauss)
11	${ }^{\prime} x$	Longitudinal acceleration ($\mathrm{ft} / \mathrm{sec}^{2}$)	
12	f^{\prime}	Side acceleration ($\mathrm{ft} / \mathrm{sec}^{2}$)	
13	f_{z}	Vertical acceleration ($\mathrm{ft} / \mathrm{sec}^{2}$)	
14.	$W_{\text {ind }}$	Wind magnitude (kts)	B_{y} - Lateral magnetometer
15	$\alpha_{\text {w }}$	Wind angle (deg)	B_{z} - Vertical magnetometer reading (milligauss)
16	8F	Flap angle (deg)	$8 F_{L}$ - Left flap angle (deg)
17	ST	Throttle setting (\%)	$\delta F_{R}-\underset{(\text { deg })}{\text { Right flap angle }}$

```
SNJAS,HUNE, to
ISS 0.0 DTF401
BSHE9154 LOGON AP 14:It ON 07/01/77
SVSTEM SPLIT 1730 7/L. SNUTDOWN 2300. AVAILABLE 7/2 0000 TO 1800. DONN SUN HOLJOAY MON 7/4, AVAYLABLE AFTER 2ZOOE
ETYENS #UPOATE
DEF FTMBFAOI,.DAYA.CF4Oz,M&2MO
mES |SYSL!a
Ll ESTSY's
```



```
EgTJMATOR TRIAL NIJMER I BASEO ON RECORDED DATA PAKEN ON S／5／TYFRON THE GOR AIRCRAFT．
```

data input

AF1t	2	NF2：	2	MF3：	0 NFas	1	NF5：	2	NF6：	2
NF7：	0	NFA：	1	HF91	0 NFIOJ	1	NFI！ 1	i		
NS 1	0	NRLS	1	［x］	313 N		675			

BHAGI Fl	1．00000E 00	OL110	． 00000501	D． 21	0.50000801						
F18：	0 \％ 00000	THP！	0.00000	1181	0.00000	36Y：	0.00000	782t	0,00000	Faz：	0.00000
日RX：	0,00010	RRy：	0.00000	882：	0.00000	EPBXI	0.00000	EPGY：	0.00000	EPAZI	0.00000
SGRXI	0.00000	3GBY：	0.00000	SGBZI	0.00000						． 000
OT：	Y．02248E＝02	TSTP）	6． 50000 E O8	TIf	4.733000^{01}	D7P！	7．022495002	DTPL	$4.91570 E 01$		22
FIPD：	0，00000	thant	0．00000	SIFO：	0，00000	EPPD	0．00000	ERQDi	． 0.00000	EPRD：	0，00000
PFOI	0.00000	RRD：	0.00000	BRDi	0.00000	SGPD：	0.00000	SGODt	0.00000	36RDE	$0.0,0000$
PVI	0.00090	EPV：	0.00000	SGV：	0.00000						－． 100
Ftat	0,00000	7H4	0.00000	Stas	0,00000	$x \times 1$	0.00000	YAI	0.00000	2 ± 1	0,00000
eaxt	0,00000	asyi	0.00000	pat	0,00000	EPaxi	0.00000	epayt	0.00000	grazi	$0.0,0000$
SGAX	0,00000	SGayt	0.00000	B64yt	0.00000						
RH：	0.00000	EDHI	0,00000	SGH！	0.00000						
FiAmi	0，00000	THAMI	0.00000	gtam：	0.00000	XAMS	0.00000	YAMI	0.00000	2AH：	0.00000
THVI	O，00000	PKHT	5,0000 CE＝0	RKSE	5.00000 EmO	RKEI	5，000000．01	DFEI 1	7．90000E Ot	DFSFI	$5.00000^{\prime} \mathrm{Emot}$
FIali	0.00000	THALI	0.00000	8tAL：	0.00000	RKA1t	0.00000	RKA2：	． 0.00000		
RL！	1.00000	OKGXI	0,00000	RKGY：	0,00000	RKG2t	0.00000	RKA1；	4.00000 E 00		
FGLI	0.00000		3.217208 of				0.0000	1	4.000002		
SCBXI	1，90000E 00	TC8Y：	1．20000E 00	gCavi	1：90000t 00	FCBY：	6，60000E 00	PCBZ：	1．20000E 00	FCBIt	6．60000E 00
RH：	1．92714E 02	C24，	1.00000 E 00	3W：	1．95720E 02	ARRO	，0．00000	AZRII	0.00000	H01	， 0.00000
RKit	$2,33000 E=A!~$ $0,65700 E 02$	QK2：	9．49300EmS	pK3：	9．657002－02	RK4t	4， $88840 E-01$	RKS ${ }^{\text {P }}$	9，65700E－02	RK61	4.82840 （2）${ }^{\circ}$
BAxC：	－．h570nE002	Qk¢！	A．82840E001	RKRH：	3．00600E002	RKBP：	8．00000E003	RKAQI	8.00000 ENO 3	RK8R1	$8.00000 \mathrm{E}=03$
－axci	n．0noin	nayti	0.00000	BAZC：	0.00000	を入xCt	0.00000	EAYC：	0.00000	EATCI	0.00000
BCax	0.00000	ACBYI	0.00000	BCE2	0.00000	ECBXI	$1.500008=01$	ECBYt	0.00000	ECStt	5，00000E002

The program has the option (using the NF7 flag) of printIng out no data, major data, or major plus secondary data every DTP seconds. The data heading and a sample of the printout data are shown in Fig. A.3. The major data are the first two ines at each time point. The secondary data are the next three innes. The acronyms shown in the data header define what the quantities in each data set are. These header acronyms are deifned in Table A. 4. The estimated quantities $(\hat{\varphi}, \hat{\theta}$, $\hat{\psi}, \hat{p}, \hat{a}, \hat{r})$ in the second line of the printout appear directiy below the measured quantities of the first line.

Another option which the program has (using the NFIO flag) is computation of statistical characteristics of the estimated variables $\left(\hat{\varphi}, \hat{\theta}, \hat{\psi}, \hat{p}, \hat{q}, \hat{r}, \hat{h}, \hat{\hat{V}}_{a}\right)$ as compared to the directly measured variables. An example output of these measures is shown in Fig. A.4. The mean difference, the variance about this mean, and the resultant standard deviation are computed for the entire length of the run. The first three variables are the roll, pitch, and yaw estimates compared to the INS measurements. The second three variables (nos. 4, 5, and 6) are the roll, pitch, and yaw rate estimates compared to the rate gyro measurements. The seventh line compares the smoothed altitude to the barometric altimeter measurements. The eighth IIne compares the smoothed airspeed to the J-Tek true airspeed measurement.

A third option of the program (using Option Flag NF8) is to produce computer generated plots of the estimated and measured attitude angles and rates. An example plot of the roll angle is shown in Fig. A.5. In this plot, the asterisk (*) represents the INS measurement of roll angle φ. The 0 is the estimated roll angle $\hat{\varphi}$. The plus sign (+) is the difference which is used to compute the statistical measures. These plots are automatically scaled so that the width of the entire page is used.

A fourth option of the program (using Option Flag NF9) is to produce plots from the Ames Zeta plotter. This option writes a data set, and the plot is produced by use of a different program. An example of this type of plot is shown in Fig. A. 6 .

Program Explanation

Overview.- An overview of the ESTEST program is represented by the block diagram in Fig. A.7. After the initialızation calculations have been made and the data set has been advanced to the desired starting point, the program enters an ateratıve loop It remains in this loop untıl the last desired

TABLE A.4.- DEFINITION OF ACRONYMS IN DATA HEADER OF FIGURE A. 3

LINE	ACRONYM	EXPLANATION
1	T	Time from beginning of run (sec)
	FI	Roll angle from INS (deg)
	THET	Pitch angle from INS (deg)
	SI	Heading (or yaw) angle from INS (or directional gyro) (deg)
	p	Rate gyro measured roll rate (deg/sec)
	Q	Rate gyro measured pitch rate ($\mathrm{deg} / \mathrm{sec}$)
	R	Rate gyro measured yaw rate ($\mathrm{deg} / \mathrm{sec}$)
	FX	Longitudinal acceleration ($\mathrm{ft} / \mathrm{sec}^{2}$ or $\mathrm{g}^{\prime} \mathrm{s}$)
	FY	Lateral acceleration ($\mathrm{ft} / \mathrm{sec}^{2}$ or g 's)
	FZ	Vertical acceleration ($f t / \mathrm{sec}^{2}$ or g's)
	VI	J-Tek measured true airspeed ($\mathrm{ft} / \mathrm{sec}$)
2	FiH	Estimated roll angle (deg)
	THTH	Estimated pitch angle (deg)
	SIH	Estimated yaw angle (deg)
	PH	Estimated roll rate (deg/sec)
	QH	Estimated pitch rate (deg/sec)
	RH	Estimated yaw rate ($\mathrm{deg} / \mathrm{sec}$)
	H	Barometric altitude (ft)
	HH	Smoothed altitude (ft)
	ALH	Estimated angle-of-attack (deg)
	VAH	Smoothed true airspeed ($\mathrm{ft} / \mathrm{sec}$)

LINE	ACRONYM	EXPLANATION
3	FIM	Roli-angle determined from magnetometer data (deg)-
	THIM	Pitch angle determined from magnetometer or accelerometer and dynamic pressure data (deg)
	SIM	Yaw angle determined from magnetometer data (deg)
	PDM	Derived roll acceleration (deg/sec ${ }^{2}$)
	QDM	Derived pitch acceleration (deg/sec ${ }^{2}$)
	RDM	Derived yaw acceleration (deg/sec ${ }^{2}$)
	$B X$	Measured or derived longrtudinal component of magnetic field
	BY	Measured or derived lateral component of magnetic field
	$B Z$	Measured or derived vertical component of magnetic field
	HHD	Estimated altitude rate ($\mathrm{ft} / \mathrm{sec}$)
4	GXH	Estımated longitudinal component of gravity ($f t / \mathrm{sec}^{2}$)
	GYH	Estimated lateral component of gravity ($\mathrm{ft} / \mathrm{sec}^{2}$)
	GZH	Estimated vertical component of gravity ($\mathrm{ft} / \mathrm{sec}^{2}$)
	GAM	Flight path angle (deg)
	QH	Derived dynamic pressure ($1 \mathrm{~b} / \mathrm{ft}^{2}$)
	AMN	Measured angle-of-attack as function of dynamic pressure, vertical acceleration, and flap angle (deg)
	BXH	Smoothed longitudinal component of magnetic field
	BYH	Smoothed lateral component of magnetic field
	BZH	Smoothed vertical component of magnetic field

TABLE A. 4 (Continued)

LINE	ACRONYM	EXPLANATION
4	FL	Flap angle (deg)
5	8HH	Estimated acceleration bias in altitude filter ($\mathrm{ft} / \mathrm{sec}^{2}$)
	BHP	Estimated acceleration bias in roll filter (deg/sec ${ }^{2}$)
	BHQ	Estimated acceleration bias in pitch filter ($\mathrm{deg} / \mathrm{sec}^{2}$)
	BHR	Estimated acceleration bias in yaw filter ($\mathrm{deg} / \mathrm{sec}^{2}$)

STATISTICAL PERFORMANCF MEASURES

N	;	1	MEAN: 5.55333 ECOL	VARIANCF:	1.95178E-01	STO	DEV	4.41780E=01
NO	8	L	MEAN: 0.00000	VARIANCE:	1.00000	STO	OEV:	0000
NO	:	3	MYAN: $=9.9856$? $=01$	VARIANCE:	2.29264E OO	STM	DEV:	1.48413E 00
N(1)	-	1	NEDI: 1,S104NE=01	VARIANCE:	6. 40981 FWOL	ST0	DEV:	6.00613Em01
NO	-	5	MtAN: -6.23727E=02	VARITACE:	6.03ABGE-02	STO	DEV:	
N0	:	6	MEAN: - 1.39423E=01	VARIANCE:	$4.013115=01$	STO	DEV:	1
NO	-	7	MEAN: 1.12500Em02	VADIANCF:	$3.04831 E 01$	STH	DEV:	SE 00
NO	-	8	MEAH: $0.21155 \% 00$	VARIANCE:	7.16098E O1	STO	DEV:	$8.46226 E 00$

FIGURE A.4.- EXAMPLE PROGRAM STATISTICAL PERFORMANCE MEASURES

FIGURE A.5.- EXAMPLE OF THE COMPUTER GENERATED ESTIMATE PLOT

FIGURE A.6.- EXAMPLE OF ZETA PLOTTER OUTPUT

FIGURE A.7.- PROGRAM FLOW CHART
data point has been processed, Reading the data is similar to taking sampled measurements from the on board sensors.

Following the reading of the data, the option is available to add artificial errors to these data. This allows the user to investigate, for any data sequence, the effect of the errors on the estimation accuracy. In this way, the sensor accuracy can be specified.

In addition to adding artificial errors, artificial sensor signals may also be generated. For example, for the CV-990 data, artificial magnetometer readings were generated as a function of the INS and directional gyro mreasurements of (φ, θ, ψ).

After the sampled measurement signals are prepared, the program enters a block which represents a replica of the digital state estimator which would be implemented on board the aircraft. This has five steps, as indicated in Fig. A.7. The signal adjustment, attitude angle, and pramary filter computations are discussed in detail in Chapter II. Outputting the state estimates is analogous to using the estimates for cockpit display or to drive a flight director or autopilot.

When the final data point has been processed, the statistical measures presented in Fig. A. 4 are computed. Also, the resulting plots, such as shown in Figs. A.5 and A.6, are prepared.

Artificial signal generation.- There are four sets of measurements which may be required to be generated artificially from other sensor readings. These include the magnetic field, the angular acceleration, the true airspeed, and the dynamic pressure.

Generation of the three components of the magnetic field requires knowledge of the vector magnitude $B_{\text {mag }}$ and the dip angle δ_{2}. Then the magnetic north and downard components of the field are, respectively,

$$
\begin{align*}
& B_{x o}=B_{\operatorname{mag}} \cos \delta_{2} \\
& B_{z o}=B_{\operatorname{mag}} \sin \delta_{2} \tag{A.1}
\end{align*}
$$

From the INS (and possibly the directional gyro), the roll, pitch, and yaw angles (φ, θ, ψ) of the aircraft are read. From these, the three body-fixed components of the magnetic field are computed to be

$$
\begin{align*}
\mathrm{B}_{\mathrm{x}}= & \mathrm{B}_{\mathrm{xo}} \cos \theta \cos \psi-\mathrm{B}_{\mathrm{zo}} \sin \theta, \\
\mathrm{~B}_{\mathrm{y}}= & \mathrm{B}_{\mathrm{xo}}(\sin \varphi \sin \theta \cos \psi-\cos \varphi \sin \psi) \\
& +\mathrm{B}_{\mathrm{Zo}} \sin \varphi \cos \theta, \\
\mathrm{~B}_{\mathrm{z}}= & \mathrm{B}_{\mathrm{xo}}(\cos \varphi \sin \theta \cos \psi+\sin \varphi \sin \psi) \\
& +\mathrm{B}_{\mathrm{zo}} \cos \varphi \cos \theta . \tag{A.2}
\end{align*}
$$

The rate gyro measurements ($\mathrm{p}, \mathrm{q}, \mathrm{r}$) are used to generate artificial angular accelerometer data. For the Cessna 402B data where unsmoothed gyro samples were taken approximately every 0.07 sec , the samples were first smoothed using a simple lag filter, e.g.,

$$
\begin{equation*}
\dot{p}_{f}=k_{B 1}\left(p-p_{f}\right) \tag{A.3}
\end{equation*}
$$

Here, p_{f} is the smoothed value of the measured roll rate p, and $k_{B 1}$ is the inverse time constant of the filter. This is implemented digitally as

$$
\begin{equation*}
p_{f+1}=k_{B 1} \Delta t\left(p_{n+1}-p_{f}\right)+p_{f} \tag{A.4}
\end{equation*}
$$

Here, p_{n+1} is the measured rate at the $n+1$ time point.
Also, p_{f} and p_{f+1} indicate the filtered rates at the time points n and $n+1$. Then, the artificial angular acceleration is computed as a simple difference; e.g.,

$$
\begin{equation*}
\dot{p}=\left(p_{f+1}-p_{f}\right) / \Delta t \tag{A.5}
\end{equation*}
$$

In Eqs. (A.4) and (A.5), Δt is the sample time. For the CV-990 data, where 20 samples were added and averaged to produce data points approximately 1 sec apart, Eq. (A.5) was used directly without first filtering.

If pitot tube measurements are used, conversion is necessary from indicated $\left(V_{m}\right)$ to true airspeed (V_{a}). Incompressible flow is assumed, so that

$$
\begin{equation*}
V_{a}=V_{m} \sqrt{\rho_{o} / \rho} \triangleq V_{m} s \tag{A.6}
\end{equation*}
$$

The quantity $S\left(=1 / \sqrt{\sigma}=\sqrt{\rho_{0} / \rho}\right)$ is computed using linear intexpolation from a table with quantities as a function of smoothed altitude h . The interpolation equation is

$$
\begin{align*}
s & =s_{L}+\frac{\left(S_{H}-S_{L}\right)}{\left(h_{H}-h_{L}\right)}\left(\hat{h}-h_{L}\right) \\
& \Delta s_{L}+s_{o h}\left(\hat{h}-h_{L}\right) \tag{A.7}
\end{align*}
$$

The quantities $S_{L}, S_{o h}$ and h_{L} are presented in Table 5.
If dynamic pressure (Q) measurements are required, they are generated from the smoothed true airspeed using the equation

$$
\begin{equation*}
\hat{Q}=0.001189 \sigma \hat{\mathrm{~V}}_{\mathrm{a}}^{2} \tag{A.8}
\end{equation*}
$$

Here, the quantity 0 again comes from linear interpolation as a function of altitude:

$$
\begin{equation*}
\sigma=\sigma_{L}+\sigma_{o h}\left(\hat{h}-h_{L}\right) \tag{A.9}
\end{equation*}
$$

The quantities σ_{I} and $\sigma_{o h}$ also appear in Table A.5. This table and Eqs. (A.6)-(A.9) appear in subroutines CONV and CONV1.

TABLE A.5.- TABLE LOOKUP QUANTITIES USED TO COMPUTE TRUE AIRSPEED AND DYNAMIC PRESSURE

ALTITUDE h_{L}, FT	$\begin{aligned} & \text { DENSITY } \\ & \text { RATIO } \mathrm{S}_{\mathrm{L}} \end{aligned}$	$\begin{gathered} \mathrm{S}_{\text {oh' }} \\ 1 / \mathrm{FT} \times 10^{5} \end{gathered}$	$\begin{aligned} & \text { DENSITY } \\ & \text { RATIO } \sigma_{L} \end{aligned}$	$\begin{gathered} \sigma_{\text {oh }}, \\ 1 / \mathrm{FT} \times 10^{4} \end{gathered}$
0	1.0		1.0	
2000	1.02991	1.4955	0.94277	-0.28615
5000	1.07728	1.5790	0.86167	-0.27033
10000	1.16367	1.7278	0.73848	-0.24638

Artificial error generation - The option flag NF3 is used to indicate whether artificial errors are added to the signal measurements.

For the magnetometer readings, the signals (B_{x}, B_{y}, B_{Z}) are subject to sensor misalignment angles ($\bar{\varphi}_{B}, \theta_{B}, \Psi_{B}$), triad skew angles ($\psi_{\mathrm{B}_{\mathrm{y}}}, \theta_{\mathrm{B}_{\mathrm{Z}}}, \varphi_{\mathrm{B}_{\mathrm{z}}}$), biases ($\mathrm{b}_{\mathrm{B}_{\mathrm{x}}}, \mathrm{b}_{\mathrm{B}_{\mathrm{y}}}, \mathrm{b}_{\mathrm{B}_{\mathrm{Z}}}$), scale factor errors ($\varepsilon_{\mathrm{B}_{\mathrm{X}}}, \varepsilon_{\mathrm{B}_{\mathrm{y}}}, \varepsilon_{\mathrm{B}_{\mathrm{z}}}$), and noise terms ($\eta_{\mathrm{B}_{\mathrm{X}}}, \eta_{\mathrm{B}_{\mathrm{y}}}, \eta_{\mathrm{B}_{\mathrm{z}}}$). The equations which introduce these errors are:

$$
\begin{align*}
& B_{x m}^{\prime}=B_{x}+\psi_{B} B_{y}-\theta_{B} B_{z} \\
& B_{y m}^{\prime}=-\Psi_{B_{x}} B_{x}+B_{y}+\varphi_{B_{z}} B_{z} \\
& B_{z m}^{\prime}=\theta_{B_{x}} B_{x}-\varphi_{B_{y}} B_{y}+B_{z} \\
& B_{x m}^{\prime}=B_{x m}^{\prime} \\
& B_{y m}^{\prime}=-\psi_{B_{y}}^{B_{x m}^{\prime}}+B_{y m}^{\prime} \\
& B_{z m}^{\prime}=\theta_{B_{z}} B_{x m}^{\prime}-\varphi_{B_{z}}^{B_{y m}^{\prime}}+B_{z m}^{\prime} \\
& B_{x m}=\left(1+\varepsilon_{B_{x}}\right) B_{x m}^{\prime}+b_{B_{x}}+\eta_{B_{x}} \\
& B_{y m}=\left(1+\varepsilon_{B_{y}}\right) B_{y m}^{\prime-}+b_{B_{y}}+\eta_{B_{y}} \\
& B_{z m}=\left(1+\varepsilon_{B_{z}}\right) B_{z m}^{\prime}+b_{B_{z}}+\eta_{B_{z}} \tag{A.10}
\end{align*}
$$

The noise terms $\left(\eta_{B_{x}}, \eta_{B_{y}}, \eta_{B_{z}}\right)$ are generated each sample point by using a random number generator with assumed Gaussian statistics and standard deviations ($\sigma_{B_{X}}, \sigma_{B_{y}}, \sigma_{B_{z}}$). Other noise terms subsequently mentioned are generated in a similar manner.

The angular accelerometer signals $\left(\dot{p}_{n}, \dot{q}_{n}, \dot{r}_{n}\right)$ are subject to misalignment angles ($\varphi_{\dot{p}}, \theta_{\dot{p}}, \Psi_{\dot{p}}$), scale factor errors ($\varepsilon_{\dot{p}}$, $\varepsilon_{\dot{q}}, \varepsilon_{\dot{r}}$), biases ($\mathrm{b}_{\dot{p}}, \mathrm{~b}_{\dot{q}}, b_{\dot{r}}$), and noise terms $\left(\varepsilon_{\dot{p}}, \varepsilon_{\dot{q}}, \varepsilon_{\dot{r}}\right)$. These are introduced as

$$
\begin{align*}
& \dot{p}_{m}=\left(1+\varepsilon \dot{p}_{\dot{p}}\right)\left(\dot{p}_{n}+\psi_{\dot{p}} \dot{q}_{n}-\theta_{\dot{p}} \dot{r}_{n}\right)+b_{\dot{p}}+\eta_{\dot{p}} \\
& \dot{q}_{m}=\left(1+\varepsilon \dot{q}_{\dot{q}}\right)\left(-\psi_{\dot{p}} \dot{p}_{n}+\dot{q}_{n}+\varphi_{\dot{p}} \dot{\dot{r}}_{n}\right)+b_{\dot{q}}+\eta_{\dot{q}} \\
& \dot{r}_{m}=\left(1+\varepsilon \dot{q}_{\dot{p}}\right)\left(\theta_{\dot{p}} \dot{p}_{n}-\varphi_{\dot{p}} \dot{q}_{n}+\dot{r}_{n}\right)+b_{\dot{r}}+\eta_{\dot{q}} \tag{A.11}
\end{align*}
$$

The innear accelerometer signals (f_{x}, f_{y}, f_{z}) are subject to position errors with respect to the aircraft center of gravity (x_{a}, y_{a}, z_{a}), misalignment angles ($\varphi_{a}, \theta_{a}, \psi_{a}$), scale factor errors ($\varepsilon_{a x}, \varepsilon_{a y}, \varepsilon_{a z}$), biases ($b_{a x}, b_{a y}, b_{a z}$), and noise terms $\left(\eta_{a x}, \eta_{a y}, \eta_{a z}\right)$. The error equations are

$$
\begin{align*}
& f_{x}^{\prime}=\dot{q}_{n} z_{a}-\dot{r}_{n} y_{a}-\left(q_{n}^{2}+r_{n}^{2}\right) x_{a}+p_{n}\left(q_{n} y_{a}+r_{n} z_{a}\right)+f_{x}, \\
& f_{y}^{\prime}=\dot{r}_{n} x_{a}-\dot{p}_{n} z_{a}-\left(p_{n}^{2}+r_{n}^{2}\right) y_{a}+q_{n}\left(p_{n} x_{a}+r_{n} z_{a}\right)+f_{y}, \\
& f_{z}^{\prime}=\dot{p}_{n} y_{a}-\dot{q}_{n} x_{a}-\left(p_{n}^{2}+q_{n}^{2}\right) z_{a}+r_{n}\left(p_{n} x_{a}+q_{n} y_{a}\right)+f_{z}, \\
& f_{x m}=\left(1+\varepsilon_{a x}\right)\left(f_{x}^{\prime}+\psi_{a} f_{y}^{\prime}-\theta_{a} f_{z}^{\prime}\right)+b_{a x}+\eta_{a x}, \\
& f_{y m}=\left(1+\varepsilon_{a y}\right)\left(-\psi_{a}^{f_{x}^{\prime}}+f_{y}^{\prime}+\varphi_{a}^{f_{z}^{\prime}}\right)+b_{a y}+\eta_{a y}, \\
& f_{z m}=\left(1+\varepsilon_{a z}\right)\left(\theta_{a} f_{x}^{\prime}-\varphi_{a}^{f} f_{y}^{\prime}+f_{z}^{\prime}\right)+b_{a z}+\eta_{a z}, \tag{A.12}
\end{align*}
$$

The airspeed measurement V_{a} is subject to scale factor error ε_{v}, blas b_{v}, and noise η_{v}, as

$$
\begin{equation*}
\mathrm{V}_{\mathrm{am}}=\left(1+\varepsilon_{\mathrm{v}}\right) \mathrm{v}_{\mathrm{a}}+\mathrm{b}_{\mathrm{v}}+\eta_{\mathrm{v}} \tag{A.13}
\end{equation*}
$$

The barometric altımeter measurement is simılarly affected by scale factor error ε_{h}, bias b_{h}, and noise η_{h}

$$
\begin{equation*}
h_{m}=\left(1+\varepsilon_{h}\right) h_{b}+b_{h}+\eta_{h} \tag{A.14}
\end{equation*}
$$

Estimate mean and standard deviation.- Let $\Delta \varphi_{n}$ be the difference between the estimated roll angle $\hat{\varphi}$ and the measured roll angle φ at the nth sample point of a sequence of m points Then, the mean difference in $\hat{\varphi}$ is

$$
\begin{equation*}
\overline{\Delta \varphi} \triangleq E\{\Delta \varphi\}=\frac{1}{m} \sum_{n=1}^{m} \Delta \varphi_{n} \tag{A.15}
\end{equation*}
$$

The sample variance about the mean is

$$
\begin{equation*}
\sigma_{\Delta \varphi}^{2} \triangleq E\left\{\Delta \varphi^{2}\right\}=\frac{1}{m-1} \sum_{n=1}^{m}\left(\Delta \varphi_{n}-\overline{\Delta \varphi}\right)^{2} \tag{A.16}
\end{equation*}
$$

This is computed by storing the residuals $\Delta \varphi_{n}$ as $\overline{\Delta \varphi}$ is computed in Eq. (A.15). Then, Eq. (A.16) is computed on a second pass through the data.
\hat{r}, \hat{V}_{a} Similar means and variances are computed for $\hat{\hat{h}}$. These do not represent absolute errors in the \hat{p}, \hat{q}, estimates. Rather, they represent the statıstical differences between the estimated and directly measured quantıties. The INS and rate gyro measurements are also subject to errors, and these errors are included in the statistics. However, because the INS and rate gyro measurements are considered to be of extremely high quality with regard to flight control applications, they serve as a reasonable standard with which to assess the estimators.

APPENDIX B

METHOD NO. 2 STATE ESTIMATOR SOFTWARE

Chapter IV presents preliminary estimates of the requirements to mechanize the Method No. 2 state estrmator on a typical microcomputer in terms of memory and run times. To make these estimates required definition of specific estimator software and coding on a PDP 11 computer. This appendix presents the Method 2 estimator code in FORTRAN form. Input variables, program constants, and initial computations are also given. Then, a listing of the main estimator cycle computations in C language (UNIX system) for the PDP 11 is presented.

Definıtion of constants and program variables.-
Constants used throughout program.

Constants used throughout program (Cont'd)•
SALR,TALR,FALR - Correction terms for angular accelerometer
OCBX, OCBY, OCBZ
BCBX, BCBY, BCBZ
SCXR-, TEXR, SCYR , FGYR, TCZR , FCZR $\}$ for magnetometer
ALR $\varnothing, A L R 1, A C N-(A C N$ function of aircraft mass)
BXИ, BZØ - (Function of local magnetic field)
$\mathrm{DT}, \mathrm{DTT}, \mathrm{DTQ}-\Delta \mathrm{t}, \Delta \mathrm{t}^{2} / 2, \Delta \mathrm{t}^{3} / 6$
TPI,TPФT,PดT - $2 \pi, 3 \pi / 2, \pi / 2$
$\mathrm{H} \emptyset, \mathrm{G}-$ ($\mathrm{H} \varnothing$ function of local barometric pressure)
RKBH, RK1, RK2
RKBP, RK3, RK4
RKBQ, RK5, RK6
RKBR, RK7, RK8
Primary filter gains

Variables $n n \neq t a l i z e d ~ t o ~ z e r o ~ o r ~ k n o w n ~ v a l u e s: ~$

BHHN , HHD	as and rate
BHPN, PHN, FIHN	Roll accelerometer bias, rol rate, and angle
BHQN , QHN , ALHN	Pitch accelerometer bias and pitch rate, and angle-of-attack
BHRN, RHN	Yaw accelerometer bias and yaw rate
AH	True airsp

Variables initialized by direct reading or input•

$\mathrm{HHN}=\mathrm{HM}$	- Altıtude
$\mathrm{DL2}$	- Local magnetic fleld dip angle
RM	- Alrcraft average mass
T	- Time

Varıables inıtialızed by computation:

$B X \varnothing=C \emptyset S(D L 2)$	Local North and down components
$\mathrm{BZ} \emptyset=\mathrm{SIN}(\mathrm{DL2})$	of magnetic field
ACN $=$ RM / (CZAL*	W) - (CZAL: stored lift coefficient, SW: reference wing area)

Measured (sampled) input varıables:
FXM, FYM, FZM - Innear accelerometer
VM - true alrspeed
PDM, QDM, RDM - angular accelerometer
BXM, BYM, BZM - magnetic field
HM - barometric altıtude
FLPR - flap angle

Initial computation to obtain initial yaw angle (on ground),-
(1) Measure BXM,BYM from magnetometer
(2) Use equations (given later) to remove magnetometer errors and normalize $B X M, B Y M$ to $B U X, B U Y$.
(3) Compute:
$B M B=1$. $/ S Q R T$ ($B U X * B U X+B U Y * B U Y$) CSI=BUX*BMB SSI $=-$ BUY*BMB SIHN=ARC \varnothing S(CSI) IF (SSI.LT.O.)SIHN=TPI-SIHN.

Computations of main estimator equations (cyclic).-
(1) Read sampled input variables from buffers.
(2) Modification of sensor readings.

Remove Iinear accelerometer scale factor error, bias, and misalignment:
$F X M=\varnothing P X C * F X M+B A X C$ $F Y M=\varnothing P Y C * F Y M+B A Y C$ FZM $=\varnothing$ PZC $* F A M+B A Z C$ $F X N=F X M+S A M R * F Y M-T A M R * F Z M$ $F Y N=-S A M R * F X M+F Y M+F A M R * F Z M$ FZN=TAMR*FXM-FAMR*FYM+FZM

Smooth true airspeed and compute \hat{Q}
VAH-VAH + RKUT $*$ (VM-VAH) $\mathrm{I}=1$
IF (HNN, GT.HL(2))I=2 IF (HHN. GT.HL(3))I=3 $S I G=S L(I)+S \emptyset H(I) *(H H N-H L(I))$ QH=C \varnothing NI*SIG*VAH*VAH

Remove angular accelerometer misalignment:
PDN=PDM + SALR*QDM-TALR*RDM QDN $=-S A L R * P D M+Q D M+F A L R * R D M$ RDN=TALR*PDM-FALR*QDM+RDM

Remove magnetometer scale factor error, blas, and mısalıgnment. Normalize.

```
\(B X M=\varnothing C B X * B X M+B C B X\)
\(B Y M=\varnothing C B Y * B Y M+B C B Y\)
\(B Z M=\varnothing C B Z * B Z M+B C B Z\)
\(B X N=B X M+S C X R * B Y M+T C X R * B Z M\)
\(-B Y N=B Y M+S C Y R * B X M+F C Y R * B Z M\)
\(B Z N=B Z M+T C Z R * B X M+F C Z R * B Y M\)
\(\emptyset B M A G=1 . / S Q R T(B X N * B X N+B Y N * B Y N+B Z N * B Z N)\)
\(B U X=B X N * \emptyset B M A G\)
\(B U Y=B Y N * \emptyset B M A G\)
\(B U Z=B Z N * \emptyset B M A G\)
```

(3) Compute independent angles.

Angle-of-attack, flight path angle, and pitch angle•
$A L Z R=A L R \varnothing+A L R 1 * F L P R$
AMN=ALZR-ACN*FZN/QH
SGAM $=\mathrm{HHD} / \mathrm{VAH}$
GAMP=ARSIN (SGAM)
THHN=GAMP+ALHN*C \varnothing S (FIHN)
Roll and yaw angles.
STHH=SIN(THHN)
CTHH $=$ C \emptyset S (THHN)
CSIM=(BUX+BZ $\varphi * S T H H) /(B X \varnothing * C T H H)$
TA $=(\mathrm{BUZ} * \mathrm{BUZ}+\mathrm{BUY} * \mathrm{BUY}) * \mathrm{CTHH} * \mathrm{CTHH}$
$\mathrm{TB}=-2 . *(\mathrm{BZ} \emptyset+\mathrm{BUX} * \mathrm{STHH}) * \mathrm{BUZ} * \mathrm{CTHH}$
$\mathrm{TC} 1=(\mathrm{BZ} \emptyset+\mathrm{BUX} * \mathrm{STHH}) *(\mathrm{BZ} \emptyset+\mathrm{BUX} * \mathrm{STHH})$
TC=TC1-BUY*BUY*CTHH*CTHH
DIS=TB*TB-4.*TA*TC
DISR=SQRT (DIS)
CFMI $=0.5 *(-T B+D I S R) / T A$
CFM2 $=0.5 *(-T B-D I S R) / T A$
SFM1 = BUY* (CFM1*CFM1-1.) /(BUZ*CFM1-BZ $\varnothing+$ CTHH -BX \varnothing *STHH*CSIM)
SFM2=BUY*(CFM2*CFM2-1.)/(BUZ*CFM2-BZด*CTHH $-\mathrm{BX} \varphi *$ STHH*CSIM)
FMPLS $=\mathrm{FIM}+\mathrm{PHN} * \mathrm{DT}$
SNM $=$ =SIN (FMPLS)
DSF1=ABS (SFM1-SNM \varnothing)
DSF2=ABS (SFM2-SNM $)$
IF (DSF2 LT.DSF1) G T П 10
CFM=CFM1
$S F M=S F M 1$
$G \emptyset T \varnothing 20$
10 CONTINUE
CFM $=$ CFM2
SFM $=$ SFM2

```
Roll and yaw angles (Cont'd):
20 CONTINUE
    FIM=ARSIN(SFM)
    SSIM=(SFM-BUY*CFM/BUZ)*BUZ/BX }
    SIM=ARCQS(CSIM)
    IF(SSIM.LT.O.)SIM=TPI-SIM
(4) Primary filter.
Preliminary computations:
    IF((SIM.GT.TP\emptysetT).AND.(SIHN.LT.P\emptysetT))SIHN=SIHN+TPI
```



```
    RSI=SIM-SIHN
    RFI=FIM-FIHN
    RAL=AMN-ALHN
    RH=HM+H\emptyset-HHN
    SFIH=SIN(FIHN)
    CFIH=CQS(FIHN)
    TTHH=STHH/CTHH
    CO=RKBH*RH
    C1=FXN*STHH-FYN*SFIH*CTHH-FZN*CFIH*CTHH-G
        +RKI*RH+BHHN
    C2=RK2*RH
    CBP=RKBP*RFI
    C3=PDN+RK3*RFI+BHPN
    C4=RK4*RFI
    CCP=RKBQ*RAL
    C5=QDN+RK5*RAL+BHQN
    C6=RK6*RAL+(FZN+G*CFIH*CTHH)/VAH
    CDP=RKBR*CFIH*CTHH*RSI
    C7=RDN+RK7*CFIH*CTHH*RSI+BHRN
    C8=RK8*RSI
Altıtude filter
BHHP=BHHN+CO*DT
HHDP=HHD+CI*DT+CO*DTT
HHP}=\textrm{HHN}+(HHD+C2)*DT+C1*DTT+CO*DTQ
Roll filter.
\(\mathrm{BHPP}=\mathrm{BHPN}+\mathrm{CBP} * \mathrm{DT}\)
PHNP=PHN+C3*DT+CBP*DTT
FIHP=FIHN+(PHN+(QHN*SFIH+RHN*CFIH)*TTHH+CR)*DT
    +(C3+(C5*SFIH+C7*CFIH)*TTHH)*DTT
    +(CBP+(CCP*SFIH+CDP*CFIH)*TTHH)DTQ
```

Angle-of-attack filter:
BHQP=BHQN+CCP*DT
QHNP=QHN+C5*DT+CCP*DTT
$\mathrm{ALHP}=\mathrm{ALHN}+(\mathrm{QHN}+\mathrm{C} 6) * \mathrm{DT}+\mathrm{C} 5 * \mathrm{DTT}+\mathrm{CCP} * \mathrm{DTQ}$
. Yaw filter.
BHRP=BHRN+CDP*DT
RHNP $=\mathrm{RHN}+\mathrm{C} 7 * \mathrm{DT}+\mathrm{CDP} * \mathrm{DTT}$
$S I H P=S I H N+C 8 * D T+((R H N * C F I H+Q H N * S F I H) * D T$
$+(\mathrm{C} 7 * \mathrm{CFIH}+\mathrm{C} 5 * \mathrm{SFIH}) * \mathrm{DTT}) / \mathrm{CTHH}$ $+(\mathrm{CDP} * \mathrm{CFIH}+\mathrm{CCP} * S F I H) * D T Q / \mathrm{CTHH}$

Time update:
$\mathrm{T}=\mathrm{T}+\mathrm{DT}$
$\mathrm{BHHN}=\mathrm{BHHP}$
$\mathrm{HHD}=\mathrm{HHDP}$
$\mathrm{HHN}=\mathrm{HHP}$
$\mathrm{BHPN}=\mathrm{BHPP}$
$\mathrm{BHQN}=\mathrm{BHQP}$
BHRN=BHRP
PHN=PHNP
QHN=QHNP
RHN $=$ RHNP
FIHN=FIHP
ALHN=ALHP
$S I H N=S I H P$
(5) Output estimates (display and/or control computations).
(6) Cycle back to read new samples.

Main Estimator Code in UNIX C Language

```
main(){
float fxT,fym,fzm,opxc,opyc,ouzc,oaxc,bayc,bazc,rkbh,
fxn,fyn,fzn,samr,tamr,tamr,van,rkut,vm,hhn,
h1[3],sl[3],soh[3],sia,gh,conl,pdn,qdn,rdn,
pdm,qdm,rim,salr,talr,falr,bxm,pym,bzm,
ocbx,ocbv,ocoz,ncby,rcby,ncbz,bxn,byn,bzn,
scxr,scyr,tcxr,tczr,fcur,fczr,obmag,
bux,buy,buz,aizr,alro,alri,flpr,amn,acn,
saam,htid,qamp,thnn,alhn,finn,stnh,cthh,
bxo,bzo,csim,ta,tn,tc,ils,disr,cfm1,cfm2,
sfm1,sfr2,tmols,onr,ot,snmo,dsf1,dsf2,
cfm,sim,fif,ssin,si7,tpi,tpot,pot,sinn,rsi,
rfi,ral,rh,om,ho,nnn,stin,ctin,tthn,co,ci,g,
rki,bnhn,c2,rkz,cbo,rkkp,c3,rk3,onen,
c4,rk4,cco,rkba,c5,rk5,bhan,có,rk6,cdp,
rkbr,c7,rk7,ohr`,c&,r<k,bnno,hhdp,dtt,
hnp,atq,onop,phne,fihp,ahri,rnn,hhgo,ghno,
alhp,onrp,rnnp,sinp,t;
int i;
```

```
reaत:
```



```
Eym= ODYC*E& m + ravVC;
fzm= 人ozr*tzrr + जaこc;
```



```
fyn=-5anr*t\"tyym + famr*fZM;
```



```
van = van 4 rkwt"(vN * van);
1= 外
1f(n|n> nL{1)) 1 = i;
1f (nnत > nl(2)) 1 = 2;
```



```
ali=cof1*514*(00*(van,7));'
```



```
garl =-salr*pdm+ пNA + tu&r*ram;
ran=talr*nia - Lalr*amm + ram;
bx:= ncDx*txM + ncax;
bys= ocमy%vy, + orwN;
bza=ocoz*bzn + Mcnzi
bxn= wxi + SCxr*以vir + tcxr*bzm;
byn= by% + scyr*oxm + fcyr*bzm;
bzn = bza + tczr*o{T + fczr*bv゙n;
obinam = 1/s,Irt(n\lambdar*bxr + byn*nyn + bzn * bzn);
bux = rxinolvmag;
buy= =yn*nnrizy:
buz = bzn*obfac:
a\zr=alro+alr1*finr;
amn = alzr - acn*&7n/am;
saam = b)|/ven;
gamo = Arsin(satw):
thnn=gam"+ dinn*cos(finn);
stha = sin(trmn);
ctnh = cos(tmnn);
csim=(bus + bzaテstrh)/(oxo*cthb);
ta = (buz * buz + cuy * buy ) * (cthn * cthn);
tb = - 2.*(bzo + wux*stmn)*buz*cthn;
tc = pow(bzo + oux * sthn,2) mpoy(ruy * cthn ,2);
dis = th*tn - 4*tन*tc;
disr = sqrt(ais);
cfm1 = 0.5*(-th + dISF)/ta;
cfm2 = 0.5*(-ts - d15r)/ta;
sfr1 = buy*(cfm1 * cim1 * 1.)/(buz*ctm1 = bzo*ctnh - bxo*sthn*csim);
sfm2 = buy*(cfm`*cfm2 - J.)/(buz*cfm2 - bzo*cthn - bxo*sthh*csim);
fmpls = fin + chn*gt;
snno=sin(ftpls);
dSf1 = abs(sfm1 - snmo);
dsf2 = abs(sfm2 - snno);
1f(dsf2< ,7st1) roto tem;
Cfm=Cfmi;
sfm= sfol;
gotn twnty?
ten: cim = cfrr?;
sfm=sfm2;
```

```
tunty: tim= arsin(sfm);
ssim=(sfT = 子u\dddot{incfm/buz)*buz/bxo;}
sim = arcos(csin);
if(ssim<n) Sin= tpi - sim;
if ((sip>tpot) &d {sinn < pot)} sinn = sinri + tDi:
1f ((sim<pot)&d tsinn> tpot)) sinn = sinn - tpi;
rsi = sim - sinn;
rfi= fim= finn; -
ral = amn - alin;
rh= hT + 70-nf";
sfih=sin(finn);
ctin = cos(t1nn);
tthn = sthr/ctn!;
c0 = rkbh*rn;
cl=fxn*stnt, - fyn*sfin*cthn - fzn*cfin*cthn - q
    + rkl*rn + onnn;
c2 = rk2*rh;
cop = rkop*rfi;
c3=pdn+rk3*rin + onpn;
c4 = rk4*rej;
ccp=rKbq*ral;
c5 = adn + rk5*re1 + ongn;
c6 = rk&*ral + (&zn + q*cifh*cthn)/vah;
cdp=rkur*cfin*ctnn*rsi;
c7 = rdn + rk7*cfin*ernh*rsi + bhrn;
c8=rk8*rsl;
bhhp = knhn + co**t;
hnap = nnd + c1*dt + co*att;
nnp = nnn + (nrs + c2)*dt + cl*dtt + co*dtg;
bhpp = bhon + cor.*dt;
phnp = phn + c3*qt + cbp*att;
find = finn + (nhn + (ahn*sfin + rnn*cfin)*tthn + c4)*dt
    + (c3 + (c5*sf1n + c7*cfin)*tthn)*att
    +(cop + (cc)*sifln + cop*cifin)*ttnn)*atcf;
bnip = bnan + cor*at;
ghnp = arn + c5#st + cos*dtt;
alnp = aln\eta + (Grn +c6)*at + c5*att + ccp*dtq;
bhrp = bnrn + cro*dt:
rnnp = rnn + cl*at + cap*dtt;
sinp = sinn + c8*at + ((rnn*cijh + ghn*sfin)*dt
    + (c7*cfin + c5*sfin)*dtt)/cthn
    +(cdD*ceqr + ccn*sfın)*dtq/cthn;
t = t + Jt;
onhn = onto;
nna = nhap;
nnn = nnp;
bhpn = onpp;
bhan = bhgp;
bhrn = onr);
phn = phno:
qhn = qhop;
rhn = rnno:
finn = finf:
alnn = alno:
sihn = sinp;
goto read;

\section*{REFERENCES}
1. DeBra, D.B., and Bryson, A E.. Mınımum Cost Autopılots for Light Aırcraft. Sixth IFAC Symposium on Automatic Control in Space. Tsakhkadzor, Armenıan S.S.R., U.S S.R, August 1974.
2. DeBra, D.B., et al. On the Applicability of Integrated Carcuit Technology to General Aviation Orientation Estimatıon NASA CR-151952, December 1976
3. Sorensen, J.A Application of State Estimation Techniques for Development of Low-Cost Flight Control Systems, NASA TMX, September 1976
4. Wingrove, R.C • Accident Investigation--Analysis of Aırcraft Motions from ATC Radar Recordings. NASA Aırcraft Safety and Operating Problems Conference. Hampton, Virgınıa, October 1976.
5. Wingrove, R.C NASA Ames Research Center (Private Communication) October 1976.

6 Denery, D.C. NASA Ames Research Center (Prıvate Communication) January 1977.
7. Etkin, B. Dynamıcs of Flıght. Wıley. New York, N.Y., 1959.
8. Higgins, W.T. A Comparison of Complementary and Kalman Filtering. IEEE Transactions on Aerospace and Electronic Systems May 1975, pp. 321-325.
9. Anon Instrument Flyıng Handbook. AC 61-27B. U.S. Department of Transportation 1971.
10. Franklin, G.F., and Powell, J D. Digital Control. Stanford University Course Notes. 1976. (to be publıshed as textbook - 1978).
11. Bryson, A.E., and Ho, Y C.. Applıed Optimal Control. Blaisdell Waltham, Massachusetts, 1969
12. Breza, M.J., and Bryson, A.E. Minımum Varıance Steady State Filters with Eigenvalue Constraints. Stanford University, Stanford, Calif, 1975.

13 Berkstresser, B.K., et al. Cessna 402B Data Acquisition System, NASA TMX, August 1977.```

