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EXPERIMENTAL INVESTIGATION OF 

LAUNCH VEHICLE TRANSIENT INPUT 

SIMULATION IN PAYLOAD TESTS 

Paul Rader and Robert Berry 

Martin Marietta Corporation 

Denver Division 

SUMMARY 

The purpose of this study was to investigate the technique 
of electronically simulating the structural dynamics of a launch 
vehicle in transient tests of payloads using multiple vibration 
excitation systems. 

The study consisted of three tasks: 

1. Development of computer programs to determine the trans­
fer functions, synthesize the shaker forcing functions, and con­
trol vibration exciters in a two-input system; 

2. Conduct of a demonstration test on a truss-type physical 
structure; 

3. Evaluation of the potential for applying this technique 
to large Shuttle payloads. 

Results indicate that the simulation of flight transients in 
tests of payloads is technically and economically feasible. 



INTRODUCTION 

The design of primary structure for space vehicles includes 
the consideration of maximum loads induced by vehicle transients 
such as staging even t s, engine ignition and shutdown, gust load­
ing, and landing shock . Analytical techniques are used to cal­
culate the dynamic behavior and associated loads in structural 
members . To date, test verification of the structural integrity 
has been accomplished using sine sweep techniques requiring com­
plex fixtures , and e x tensive control and abort instrumentation 
to ensure protection fo r the payload from unrealistic test - pe­
culiar failures . 

This study was conducted to investigate the feasibility of 
providing realistic s imulation of vehicle transients at multiple 
locations on a complex structure to account for the dynamic 
charac t eristics of the l aunch vehicle and vibration exciters. 
The information presented in this report includes a description 
of the softwar e genera ted to provide the necessary control of t he 
vibration exciter sys tems, a description of the demonstration 
test and r esults obtained, and a discussion of the feasibility 
a nd costs of apply ing the technique to large payloads . 
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TYP typical 

VMAX maximum output voltage 

VREF reference voltage 

I XA/ jw I XB \ 
complex acceleration inputs at points A and B 

XRA(t) required time domain waveform at point A 

XRB (t) required time domain waveform at point B 

I YAl 
1 YBI . 

JW 

complex acceleration response at points A and B 

YDA(t) specified time domain waveform at point A 

YDB (t) specified time domain waveform at point B 

l; damping ratio 

W frequency, rad/s 
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TRANSIENT CONTROL SYSTEM 

Software Development 

The program's objective was to produce two independent tran­
sient waveforms to be applied simultaneously to two shaker sys­
tems , des ignated A and B. The implementation of multiple shaker 
control to specified transient waveforms required the develop­
ment of unique software written in Time Series Language (TSL) for 
operation on a digital Fourier-Analyzer- type test control system. 

Initially, each shaker is used individually to input a cali­
bration transient into the structure to obtain transfer functions 
to response points A and B. The calibration transient is a rapid 
sine sweep from w to w where w is the upper frequency of in-

o c c 
terest. It has the mathematical form: 

A sin w(t)t 

wet) = w + I:!. wt 
o 

(1) 

The calibration transient is output to the structure a number 
of times and the resultant transfer functions are calculated to 
response points A and B using the Fourier Analyzer. In the fre­
quency domain, the procedure is expressed as 

{ ~~ } . = GFAA TFA~ {~} . (2) 
TFBA TFBB . 

J W J W J W 
(response) (input) 

where, 

TFAA transfer funct i on, response at point A due to shaker A input 

TFAB transfer func tion, response at point A due to shaker B input 

TFBA transfer function, response at point B due to shaker A input 

TFBB transfer func tion, response at point B due to shaker B input. 

Equation (2) is three dimensional with frequency (jw) as t he third 
dimension. 

Nex t, the desired response transients, YDA(t) and YDB(t), at 
points A and B are s peci f ied and transferred to the frequency do­
main via a Fourier transformation. Equation (2) is then solved for 
the frequency domain shaker inputs, XRA(w) and XRB(w) , by the pro­
cedure, 
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Figure 1. - Pr ogram SHOCK flow diagram. 
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\XRAl 
/XRB\ . [

TFAA 
= TFBA 

TFABJ - 1 
TFBB . 

\YDAl 
/YDBI. 

(3) 

JW JW J W 
(input) (response) 

The inverse Fourier transform of XRA(j w) and XRB(j w) results in 
the simultaneous shaker inputs required to obtain the desired 
response at points A and B. 

\XRA(t) I = 1FT 
/XRB(t) \ 

\ XRA(jw) 1 
I XRB (jw) I 

(4) 

The computer program was coded in a modular form . Figure I 
is a flow diagram of the major modules. Each module is briefly 
discussed below. 

SHOCK. - SHOCK is the main executive program that calls the 
main subroutines and controls the flow of the program. 

SETUP . - This subroutine allows user selection of A/D and D/A 
parameters. The inputs are as follows: 

N = time domain frame size, power of 2 

FS = A/D - D/A sample frequency, samples/s 

ATTN Analog/digital (A/D) attenuator code, ±V 

FILTER = A/D antialiasing filter cutoff frequency, Hz 

VMAX = MAX output voltage for D/A (calibration transient 
only), V 

VREF D/A reference voltage (max output capability of DAC) , 
10 V 

FMAX = maximum frequency of interest, Hz 

Ns = number of samples used to calculate the trans fe r func­
tions 

The maximum frequency analyzed is FS/2. The r e sulting f r e quency 
resolution is FS/N, Hz. 

CALTRN . - CALTRN generates the calibration transient. 

VMAX sin w(t)t , V (5) 
w = w + Llw t 

o 
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TRANG . - TRANG outputs calibration trans i ents, in sequence, 
to shakers A and B and calculates the transfe r f unct ions . 

[
TFAA 
TFBA 

TFABJ . 
TFBB . ' unlts/V 

J W 
(6) 

TRIANI . - This subroutine inverts the complex transfer func­
tion via the following algori thm. 

[TF(jW)] -1 = [a + j (3J j~ = [ex + j S] jW ' V/unit (7) 

where, 

a = [a + ~A - 1 SJ -1 

(3 = - a - 1 Sa 
DWAVE. - DWAVEI or DWAVEG . 

~ DWAVEI. - Input through AID converters desir ed transients 
YDA(t) , YDB(t) (units versus time) and compute Fourier trans ­
forms 

DWAVEG. - Allows analytical generation of desired trans ients 
YDA(t), YDB(t) of the form, 

m 

YD( t) sin w. 
1. ) 

- I;;. w. t 
1 1. 

t e t 3 , (units versus time) (8) 

where, 

m = number of frequency components 

C. magnitude of .th component 1 
1 

frequency of 
.th component w. 1 

1 

d · . f' t h I;;i = amplng ratlo 0 1 component 

REQOUT. - Calculates required output s for shakers A and B to 
give desired transients in the frequency domain. 

\ XRA / = [TFJ- 1 /XRA\. 
J W 

\YDAl 
(YDB \ . ' V 

J W 

WAVOUT. - Converts XRAU w) and XRB (j w) to time domain via 
inverse Fourier transform resulting in, 

8 

(9) 



\XRA(t) I 
!XRB(t) I , V versus time (10) 

GSHOCK . - Outputs XRA (t) and XRB(t); acquires the response, 
YA( t) and YB (t); compares to the desired response, YDA( t) and 
YDB(t); and calculates time domain error functions. 

Demonstration Test 

A test program was conducted to demonstrate the applicability 
of the technique in the laboratory . A Titan instrumentation truss 
simulating a complex payload structure, was used as the test ar­
ticle. (See Figure 2.) Two electrodynamic exciters were attached 
to the truss mounting poin t s , and accelerometers were attached to 
the truss near each of the shaker mounting poin ts. Figure 3 is a 
block diagram of the control and instrumentation system . Three 
test condi tions were investigated. 

1 . The same transient input was applied at different loca­
tions in one direction . 

2. Differen t transient inpu ts were applied at different lo­
cations in one direction. 

3. Multidirectional inputs of different transients we r e 
applied. 

Figure 2. - Demon~tration test installation. 
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Charge 
amp. B 

Accele r ome t er B Accelerometer A 

Dac B Dac A 

Output 

Digital 

control system 

Input 

Channel B Channel A 

Figure 3 . - Control and instrumentation system. 

Charge 
amp. A 

Test condition 1 . - The desired transient to be generated at 
points A and B was defined as a decaying IS-Hz sinusoid with a 
damping ratio of 0 . 2. The specified time history and measured 
responses at points A and B are shown in Figures 4, Sand 6 . 
Figures 7 and 8 show a direct comparison of t he specified and 
measured response transients. 
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Test condition 2. For this case, different transient inputs 
were applied at the two shaker locations. At location A, the am­
plitude of the desired waveform was approximately twice the ampli­
tude specified for shaker location B. Comparisons of the measured 
and specified waveforms at locations A and B are shown in Figures 
9 and 10, respectively. For this case, the amplitude of the meas­
ured waveform was lower than that specified at location A, whereas 
the response at B was significantly greater than desired. In fact, 
the difference between the two is much less than the specified 
factor of two. However, the wave shapes appear to be satisfactory. 

Test condition 3. - For this final test case, shaker B was 
rotated 90° such that the input was in the truss lateral axis. 
The desired waveforms were 30 Hz decaying sinusoids with a damp­
ing ratio of 0 . 2. The amplitude at location B was approximately 
twice that at location A. The specified waveforms are shown in 
Figures 11 and 12. Comparisons of the specified and measured 
time histories are presen ted in Figures 13 and 14. For this case, 
the amplitudes of the measured transients were significantly 
lower than those specified. However, the frequency contents of 
the transients were essentially the same as those specified as 
shown by the comparison of typical Fourier transforms presented 
in Figure 15. 
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Figure 9. - Comparison of measured and specified waveform at 
location A--test condition 2. 
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Discussion of results. - The test series demonstrated that 
the technique of controlling multiple shakers to specified tran­
sients is feasible. The accuracy of control, particularly with 
respect to amplitude, was not as good as desired; however, the 
results were encouraging when the limitations of the control sys­
tem are considered. 

The control system computer has only 24 000 words of memory. 
This limited the resolution to 128 lines over the 50-Hz band­
width, equivalent to approximately 0.4 Hz. The effect is evident 
in a number of the transients, where peaks appear to be truncated . 

The quality of the results is dependent upon the accuracy of 
the calculated transfer f unctions . In this study, an iteration 
scheme was devised to converge the actual response to the desired 
response. However, the limited core storage prohibited its imple-
mentation. The desired response can be characterized as follows 

\YDA) \YA) + \EA) (11) 
!YDB! . !YB! . !EB \. 

JW JW JW 

Desired Actual Error 
Response Response Term 

To compensate for the error in response, the input to the struc­
ture (XRA, XRB) must be adjusted as follows 

_1 

{ ~ i. { ~: I . [ TF ] . { :~ \. (12 ) 
JW J W J W JW 

New Old 

It is believed that this technique can be applied iteratively to 
achieve a high degree of accuracy. 

Application to Large Payloads 

The Space Shuttle System (STS) will accommodate a large var­
iety of payload configurations. To evaluate the feasibility of 
applying this technique to large payloads, particularly with re­
gard to costs, it is necessary to establish some ground rules and 
assumptions . The technique will be applied to a t ypical cradle­
mounted payload (Figure 16) requiring nine channels of shaker sys­
tems and control. Two shakers at each of four orbiter attachment 
points will provide vertical and longitudinal excitation; a single 
shaker at the keel fitting is required to produce side loads. 
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Vertical and 

y 

z 

z loads 
only 

Fi gure l6.-Sketch of typical cradle-mounted payload . 

The computer choice and software development will require pro­
vision for establishing and inverting a 9x9 transfer function ma­
trix to calculate the required output waveforms. 

The control system hardware requirements have been based on 
modifications to current systems employing minicomputers to con­
trol vibration exciters in the laboratory. The system requires 
a minimum of two input channels and nine output channels, and both 
disk and digital magnetic tape for storage of data required for 
transfer function calculations and synthesis of forcing functions. 

Facility requirements include the vibration exciters, power 
amplifiers, and fixture/suspension system. Under the ground 
rules and assumption stated, either electrodynamic or hydraulic 
shakers could be used. The cost estimate is based on the use of 
electrodynamic exciter systems. 

The major cost elements of developing and implementing the 
technique on large payloads are shown on the next page. 
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Development and checkout of software 
Control system hardware 
Design and fabrication of fixture and 

suspension system 
Electrodynamic shakers and power 

amplifiers (nine at approximately 
$100 000 each) 

$30 000 
$150 000 

$20 000 

$900 000 
$1 100 000 

The major cost item is the shaker systems. The cost could 
be: (1) significantly reduced by using electrohydraulic sys­
tems, or (2) eliminated by a laboratory already equipped with 
adequate shaker systems . 

CONCLUSIONS 

A computer program has been developed that provides the capa­
bility to control multiple vibration exciters to specified wave­
forms simulating mission -events . A series of tests was also 
conducted to demonstrate the technique on a complex truss struc­
ture. It should be recognized that the response of a structure 
to a given transient event is a function of ~he dynamic character­
istics of the structure; therefore, not every analytically gen­
erated desired response is necessarily attainable. The results 
of this study indicate that "physically realizable" transients 
can be achieved with the methods presented here. 

The technique can be applied to large payloads provided the 
control syst em includes sufficient computer memory and data 
storage capability to handle the large matrix inversion routines 
and provide sufficient resolution to accurately define the trans­
fer functions and synthesized waveforms. An iterative technique 
has been described that could provide a significant improvement 
in accuracy compared to the results of the demonstration tests 
presented. Currently available control systems, which include 
disc and magnetic tape data storage capability, provide the capa­
bility to implement the technique for large payloads. 

Martin Marietta Corporation 
Denver Division 

Denver, Colorado 80201 
May 31, 1978 
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