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TASK 1: 	 OBSERVATIONS AND ANALYSES OF ASTEROIDS, TROJANS
 

AND COMETARY NUCLEI
 

Task 1.1: 	 Spectrophotometric Observations and Analysis of
 

Asteroids and Cometary Nuclei
 

Principal Investigator: Clark R. Chapman
 

Co-Investigator: William K. Hartmann
 

Spectrophotometric Observations of Asteroids.
 

Successful observations were obtained in one autumn
 

observing run and in one spring observing run. They have been
 

described in earlier quarterly reports. The reduced data are
 

discussed below.
 

Spectrophotometry of the Nucleus of Comet P/Arend-Rigaux.
 

Successful observations were obtained during the autumn
 

1977 observing 	run, as described in an earlier quarterly
 

report. Unfortunately, visual inspection revealed that the
 

comet was active and not simply a stellar nucleus as had been
 

hoped. The data have now been reduced in preliminary form
 

and the resulting spectral reflectance curve is exhibited as
 

Figure 1. There is evidence of emission in some appropriate
 

bands; the reflected sunlight dominates the spectrum, but it
 

has not yet been interpreted.
 

.Interpretive Analyses of Asteroid Spectrophotometry
 

Figures 2 and 3 represent the first attempt at synthesizing
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the 150 new asteroid spectra. Figure 2 shows the spectra plotted
 

as a function of semi-major axis and eccentricity, revealing
 

important variations - especially with a - in the traits of the
 

spectra. Trojans and other asteroids at great solar distances
 

show a variety of spectra, many of them quite red despite the
 

low measured albedoes for many of these asteroids. Figure 3
 

illustrates many of the asteroid spectra grouped according to
 

diameter and taxonomic class, as reported in Bowell-et al. (1978).
 

The latter paper, written during the present contract year, is
 

also a major interpretive effort and is here included as
 

Appendix I.
 

Preliminary Reduction of Past Data
 

Besides the 98 spectra published previously by Chapman,
 

McCord, and their associates., new data have been obtained
 

for nearly 200 additional asteroids. To date, data have been
 

reduced for approximately 150 of the new asteroids, plus
 

supplementary data on some of the asteroids previously published.
 

Best available average spectra for all 250 asteroids are here
 

included as Appendix II.
 

The availability of these spectra marks a major advance
 

in available asteroid data, based on observations spanning
 

four years. The remaining fifty asteroids will be reduced by
 

the end of the year and will be make available in the TRIAD
 

data file. Major interpretive efforts based on this data base
 

will be done for presentation at the Tucson Asteroid Conference
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being organized by T. Gehrels for March 1979.
 

-Continued Study of Hektor and the Trojan Asteroids
 

The publication resulting from our Hektor observations
 

-and analyses, "The Nature of Trojan Asteroid Hektor," will
 

be in the journal, Icarus. The galleys arrived in early
 

November (see Appendix III). Shortly after the closing
 

of the contract period, Dr. Hartmann gave a verbal presentation
 

of the results at the annual DPS meeting (Division of
 

Planetary Science of the American Astronomical Society),
 

-November 3, 1978.
 

Dr. Hartmann and Dr. Cruikshank are planning future
 

observations of Hektor in Spring, 1979, to test further the
 

model developed from the workaccomplished during this contract
 

period.
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Task 1.2: 	 Search for Further Asteroid Close Encounters
 
Suitable for Mass Determination
 

Principal Investigator: Donald k. Davis-


The objective of this task is to search for close
 

-encounters between one of the ten largest asteroids and
 

another of the numbered asteroids that would produce observable
 

perturbations in the smaller asteroid's orbit. Analysis of
 

observation would determine whether or not it would be feasible
 

to measure the mass-of the perturbing asteroid. Observations
 

of perturbations in asteroid orbits resulting from close
 

-encounters or near-commensurabilities in the orbital motion
 

.have led to mass estimates for three asteroids, namely Ceres,
 

Pallas and Vesta (Hertz, H.G., 1968, Science 160, 299; Schubart,
 

J., 1975, Astron. & Astrophys. 39, 147). However, many other
 

asteroids are now known to be much larger and presumably much
 

more massive than previously believed, and consequently-the
 

orbital perturbation technique due to close encounters might
 

be applicable -to additional objects.
 

Table I'lists the largest asteroids which were the
 

target bodies in the search for close encounters with another
 

numbered asteroid. The search program uses the given target
 

asteroid orbit and searches a file containing the orbits of
 

all numbered 	asteroids to determine whether close encounters
 

are-possible 	between the two orbits. If not, the search continues
 

with the next asteroid; if encounters are possible, the program
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TABLE I 

10 LARGEST ASTEROIDS
 

1973* 1975** 1977"t**
 

Diam. Diam. Diam.
 

Asteroid (km) Asteroid (km) Asteroid (km)
 

1 Ceres 770 1 Ceres 960 1 Ceres 1003
 

2 Pallas 480 2 Pallas 540 2 Pallas 608
 

-4 Vesta 480 4 Vesta 500 4 Vesta 538
 

15 Eunomia 220 10 Hygiea 410 10 Hygiea 450
 

3 Juno 190 704 Interamnia 320 704 Interamnia 350
 

10 Hygiea 190 65 Cybele 295 31 Euphrosyne 334
 

6 Hebe 185 52 Europa 280 511 Davida 323
 

7 Iris 175 511 Davida 280 65 Cybele 309
 

16 Psyche 170 15 Eunomia 255 52 Europa 289
 

511 Davida 155 31 Euphrosyne 250? 451 Patientia) 276
 
15 Eunomia 
S 272
 

* Pilcher, F., and J. Meeus, "Table of Minor Planets". 

** Chapman, C.R., "Asteroids" in McGraw-Hill Encyclopedia of
 
Science and Technology, 4th Ed. (in press).
 

** Zellner, B., and E. Bowell (1977), Asteroid Compositional Types and
 
Their Distributions, in The Interrelated Origin of Comets,
 
Asteroids, and Meteorites, A. H. Delsemme, Editor, Univ. of
 
Toledo Publications (in press).
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-computes the time history of the orbits to see if the closest
 

approach distance is less than the desired criteria. If so, the
 

relevant parameters of the encounter such as encounter speed,
 

-closest distance, date, etc., are stored. In this manner, all
 

possible close encounters within a certain period of time are
 

found. The initial search was based upon orbits listed in the
 

Minor Planet Ephemeris, augmented by improved orbits for a few
 

asteroids from the Minor Planet Center. A maximum separation
 

of 0.1 AU was used for the closest approach distance and the
 

-searchwas for close encounters between 1970 and 1990. This
 

search produced a number of close encounters which were potential
 

candidates for mass determination. However, during the process
 

of validating the close encounter orbits, it was discovered
 

that some encounters could have been missed during the search.
 

This resulted from the fact that orbits listed in the Minor Planet
 

Ephemeris frequently have epochs as long as 20, 30, or even
 

40 years before the closest approach date, hence the effect of
 

planetary perturbations was neglected during the interval from
 

orbit epoch to closest approach since the search program used
 

only two-body trajectories. The effect of planetary perturba­

tions is illustrated by Table II, which lists the best closest
 

encounters from the conic search along with the improved closest
 

approach distance found by numerically integrating both orbits to
 

the encounter date. Typically, only the closest approach distance
 

changes significantly with the relative enounter speed showing
 

only small differences. Some of the encounters show large
 

changes in the closest approach distance, e.g., 52 Europa-76 Freia
 



TABLE II
 

ENCOUNTERS FROM 1970-1990 RESULTING IN
 

LARGEST DEFLECTIONS OF THE ENCOUNTERING BODY
 

Target 

Asteroid 


1 Ceres 


1 Ceres 


4 Vesta 


4 Vesta 


4 Veata 


4 Vesta 


10 Hygiea 


10 Hygiea 


15 Eunomia 


52 Europa 


65 Cybele 


Encountering 

Asteroid 


534 Nassovia 


1801 1963UR=52SP 


197 Arete 


146 Velleda 


1044 Teutonia 


1601 Patry 


64 Angelina 


1363 Herberta 


1313 Berna 


76 Freia 


609 Fulvia 


Date 


12/75 


11/84 


1/76 


7/82 


1/79 


4/88 


1/90 


6/82 


3/69 


12/82 


3/70 


Osculating 

Closest 

Approach 


(AU) 


.023 


.03 


.035 


.01 


.05 


.05 


.06 


.10 


.06 


.01 


.01 


Integrated
 
Closest
 

Approach
 
(AU)
 

0.022
 

0.184
 

0.035
 

0.040
 

0.119
 

0.059
 

0.216
 

0.167
 

0.056
 

0.354
 

0.088
 



indicated a closest approach distance of.only 0.01 AU when the
 

ephemeris orbits were used but upon full integration, the
 

closest approach distance is actually 0.35 AU - a value so
 

large,that it should not have been considered under the original
 

criteria. However, the change in closest approach distance
 

could be negative as well as positive, and the large change
 

between osculating and integrated results indicates that some
 

encounters could have been missed since the osculating closest
 

approach could be larger than the minimum criterion, whereas
 

the integrated distance would be well within our limit.
 

In order to have a high probability of finding all 

dynamically interesting close encounters, the conic search 

was redone with a maximum closest approach distance of 0.35 AU. 

This search generated several thousand close encounters between 

1970 and 1990 involving one of the largest asteroids and 

another numbered asteroid. This candidate list was winnowed 

by eliminating all encounters which resulted in a deflection of 

< 0'05 during the closest approach. The deflection angle,O, 

was adopted as a measure of the perturbation, where 

-I
0 = w - 2 tan (1 + rv2/),
 

with r = minimum encounter distance, v = relative speed of
 

encounter and V, the gravitational parameter of target asteroid
 

G M, is calculated assuming a density of 3 gm/cm33 . e is
 

essentially the angle through which the asymptote of the
 

hyperbolic approach trajectory is rotated during the close
 

encounter.
 

The best encounters from the final'search are listed in
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Table III, divided into two parts: (A) for the first priority
 

objects for further study and (B) for lower priority objects.
 

Selected integrations have been done and the integrated values
 

are indicated in parentheses. It should be noted'that the
 

computer file containingthe asteroid orbits was substantially
 

improved over the past year by D. Bender of Jet Propulsion
 

Laboratory. He added fully integrated orbits for over 100
 

asteroids to a 1978 epoch, along with integrated elements
 

at every 70 days, and improved numerous other orbits using data
 

obtained from the Minor Planet Center at Cincinnati (prior to
 

its relocation to Cambridge). Hence, for many cases, there
 

should be little change between the osculating and integrated
 

results.
 

The search uncovered potentially interesting encounters
 

including several very low approach velocity encounters,
 

particularly the 16 Psyche-1725 Crao encounter at 0.26 km/sec
 

which is by far the lowest encounter speed yet found, lower
 

by a factor of 20 than the mean encounter speed in the asteroid
 

belt. It is interesting to speculate that the mechanism
 

proposed by Hartmann and Cruikshank to explain the irregular
 

shape of Hektor, namely a very low velocity collision between
 

two nearly equal size objects that results in coalescence rather
 

than fragmentation, also operates in the mainbelt and could
 

produce objects such as 15 Eunomia or 45 Eugenia, which are large,
 

irregular-shaped objects.
 

Encounters listed in Table III are being evaluated for
 

mass information and are being considered for an astrometric
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TABLE III - Best Encounters from Second Conic Search
 

A) First Priority 
Closest Relative Deflection 

-Encountering Approach Speed Angle 
Asteroid Date (AU) (km/s) ") 

Target Asteroid: 4 Vesta 

_486 Cremona 11/6/72 .210 1.69 .245 

It It 4/30/80 .083 1.92 .146 

1393 Sofala 3/16/81 .045 1.79 .311 

1914-70EV 11/15/78 .163 (.142) 1.50 (1.54) .123 

206 Hersilia 6/9/80 .153 (.208) 2.28 (2.45) .056 

1449 Virtanen 7/14/81 .248 1.77 .058 

1634-1935QP 5/19/84 .112 (.113) 1.19 (1.20) .284 

2009 7/19/80 .165 1.92 .074 

Target Asteroid: 10 Hygiea 

111 Ate 4/29/78 .102 1.90 .071 

1200 Imperatrix 8/22/79 .179 1.65 .054 

1482 Sebastiana 6/8/78 .062 (.053) 2.31 (2.31) .081 

Target Asteroid: 15 Eunomia 

1284 Latvia 6/13/77- .024 1.53 .104 

" 10/2/81 .039 1.42 .074 

Target Asteroid: 16 Psyche 

.1542 Schalen 5/30/82 .245 0.52 .068 

1725 Crao 9/16/84 .166 0.26 .403 

Target Asteroid: 65 Cybele 

1778 Alfven 1/31/72 .110 1.06 .069 

Target Asteroid: 704 Interamnia 

881 Athene 9/6/86 .036 (.046) 1.79 (1.81) .107 
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-TABLE III - Best Encounters from Second Conic Search
 

B) Second Priority 

Closest Relative Deflection 
Encountering Approach Speed Angle 

Asteroid Date (AU) (km/s) (") 

Target Asteroid: 4 Vesta 

126 Velleda 7/9/82 .012 3:87 .245 

460 Scandia 12/16/72 .013 3.63 .261 

873 Mechthild 7/2/85 .107 1.93 .113 

1549 Mikko 8/29/70 .156 2.20 ',059 

1966 3/6/73 .133 2,23 ,Q68 

1516 Henry 2/23/85 .088 2.02 .125 

1601 Patry 3/19/88 .066 1,26 .414 

1831 Nicholson 5/30/82 .211 1.60 .083 

1904 Massevitch 1/20/84 .253 1.,79 .055 

1914 7/4/83 .112 2.41 .069 

Target Asteroid: 10 HygieA 

382 Dodona 8/13/73 .131 1.68 .071 

1273 Helma 12/22/71 .170 1,70 ,054 

1135 Cochlis 2/2/89 .061 2.70 .059 

Target Asteroid: 15 Eunomia 

1313 Berna 3/22/70 .039 0,91 .178 

Target Asteroid; 16 Psyche 

1122-Neith 1/25/75 .023 1.94 .Q52 / 
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program to be carried out in collaboration with E. Bowell of
 

Lowell Observatory. The most useful objects for near term
 

observations are those which have periodic close encounters,
 

an encounter that happened several years ago so that pertur
 

bations have had a chance to manifest themselves, or those
 

for which a good encounter is coming up shortly so that a
 

high quality pre-encounter orbit can be obtained.
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TASK 2: 	 OUTER PLANET INVESTIGATIONS
 

Principal Investigator: Michael J. Price
 

2.1 Probing the Outer Plahets with the Raman Effect
 

Introduction. In principle, the Raman effect provides a
 

powerful astrophysical tool for determining the physical structure
 

of planetary atmospheres in general. But, in practice, the
 

Rayleigh and Raman scattering-cross-sections of the predominant
 

gas must essentially be of the same order of magnitude for
 

the Ramnan effect to be readily detectable. Moreover, the atmos­

phere must be opticaily deep, aerosol particle scattering
 

being relatively insignificant. Fortuitously, H2 is- one of the
 

only gases for which the former condition is met. Development
 

of the Raman probe technique is therefore directly relevant to
 

the four outer planets. Both Uranus and Neptune are prime
 

candidates, since the consensus of present evidence indicates
 

that their atmospheres are deep and essentially clear above the
 

clouds and are composed of neatly pure H2 Their optical
. 


scattering properties at wavelengths less than about 600OR
 

appear to be determined almost completely by Rayleigh and Raman
 

scattering.
 

The Raman effect has two important features which together
 

make it effective'in probing H2 planetary atmospheres. First,
 

the efficiency of both Rayleigh and Raman scattering increases
 

essentially as the inverse fourth power of the incident wave­

length. Because the optical-depth (at A Z 6000R) is directly
 

-proportional to the effective Rayleigh/Raman scattering cross­

section, the mean physical depth to which photons penetrate
 

before reflection (i.e., the integrated number of H2 molecules
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in the line of sight) varies essentially as the fourth power
 

of the wavelength. Therefore, the Ramancontribution function
 

will move progressively deeper into the atmosphere with increasing
 

wavelength. Second, the intensities of the Stokes and anti-


Stokes lines in the optically thin case are proportional to the
 

-populatiohs of their corresponding initial states; the intensity
 

ratio is proportional to the population ratio in terms of the
 

Boltzmann distribution. More generally, the intensity ratio is a
 

function of the population ratio which is related to temperature.
 

During the NASA Planetary Astronomy contract NASW-2843,
 

Price (1977) successfully demonstrated the feasibility of using
 

the H2 rotational Raman spectrum to investigate the physical
 

structures of the outer planet atmospheres. By selecting dis­

tinct wavebands spaced throughout the visible spectrum for
 

observation, a wide range in physical depth can be probed. On
 

the basis of a semi-infinite homogeneous pure H2 atmospheric
 

model, computations of the strengths of the S(0) and S(1) lines
 

were made for a wide range of physical conditions. For each
 

characteristic wavelength the ratio,of the S(O)/S(l)line strength
 

is independent of the presence of aerosol particles. It provides
 

a useful estimate of Boltzmann temperature. In contrast, the
 

absolute strengths of the S(0) and S(1) lines are extremely
 

sensitive to haze. Very small quantities of aerosol particles
 

can be detected even at high altitudes. Initial applications of
 

the Raman probe technique to Jupiter and Uranus were reported.
 

For Jupiter, a weak aerosol haze appears to exist at an H2 column
 

density of Z 17 km.- amagat. For Uranus, aerosol particles appear
 

to be present at an H2 column density of Z 104 km. amagat. In
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addition, a significant temperature inversion may be present in
 

the same region of the atmosphere.
 

In the initial PSI feasibility study, Price (1978) adopted
 

three major simplifications in his treatment of the radiative
 

transfer problem. First, multiple Raman shifts were not included
 

in the computation of the so-called continuum background level
 

in the spectrum. Second, the aerosol particles were assumed
 

to conservatively scatter radiation. Third, the S(0) and S(l)
 

.linestrengths' predictions were restricted to an integration
 

over the entire visible hemisphere of the planet. Further
 

development of the Raman probe technique, in which these simpli­

fications were eliminated, is described in this report.
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TABLE IV. VARIATION WITH TEMPERATURE OF THE ROTATIONAL
 

DISTRIBUTION OF H2 MOLECULES
 

Rotational State Population*
Temperature 

0OK) J=0 J=l J=2 
 J=3 J>3
 

0 1 0 0 0 0 

50 0.77 0.23 <<0.01 <<0.01 <<0.01
 

100 0.37 0.61 0.01 <0.01 <<0.01
 

150 0.24 0.71 0.04 0.01 <<0.01
 

*These are fractions of the total rotational state population
 

(v = 0).
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TABLE V. H2 RAMAN SHIFTS
 

- I)

WAVENUMBER (cm
- TRANSITION 


v=O, J=O + v=O, J=2 354.39 

v=0, J=l + v=O, J=3 587.07 

v=O, J=0 - v=1, J=0 4162.06 

v=o, J=l + v=1, J=l 4156.15 

v=0, J=0 + v=l, J=2 4498.75 

v=0, J=l + v=l, J=3 4713.83 
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where Ii(o,p) is the specific intensity of radiation emerging
 

from the atmosphere which has suffered only Rayleigh or aerosol
 

particle scattering; Ii+ 1 is the corresponding intensity of
 

-radiationwhich has suffered i Raman shifts. The parameter p
 

is the cosine of the angle of emergence with respect to the
 

outward normal. Adopting zero phase angle, we can set the angles
 

of incidence and emergence to be equal. Physically, the para­

meter l is the probability that if a photon collides with a
 

gas molecule or aerosol particle, it will be scattered with no
 

change in energy. The parameter qi is the corresponding
 

probability that a photon will experience a change in energy
 

relevant to a selected Raman transition.
 

More specific definitions of the relevant parameters are 

W= i/(ai + k + Ai) (2) 

and 

q= A/(Gl + kl + Ai) (3) 

The parameter a1 is the effective Rayleigh/aerosol particle
 

scattering cross-section. Specifically
 

a1 = a9 (1 + n) (4)
 

where a is the effective Rayleigh scattering cross-section.
g
 

The parameter is given by
 

X a'
 
- g g9 (5) 

E g 

where a is the effective Rayleigh scattering cross-section g
 

at 5500R, Ag is the mean free path in H2 at 5500R, and Ac is the
 

mean free path in the aerosol particles. For convenience, we
 

assume that the cross-section of the aerosol particles does
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.not depend on wavelength. For homogeneous atmospheres, XIA c 

is constant with optical depth. 

The parameter %iis given by 

= (1 + pH) ag (6) 

where p is the single scattering-albedo for an individual
 

aerosol particle. The parameter X1 is the cross-section.for
 

Raman scaattering from wavelength 1 to wavelength 2, weighted
 

according to the fraction of H2 molecules in the initial state;
 

the caoss-section is taken to be relevant either to the S(O)
 

or S(l) transition. The parameter kI1 is the effective cross­

section for Raman scattering from wavelength 1 to wavelengths
 

other than wavelength 2. It includes all suitably weighted
 

Raman transitions shown in Table V except that covered by A1.
 

Although a1 and l are dependent on the aerosol content of the
 

atmosphere, A1 and k are not.
 

Photons suffering more than two Raman shifts were not
 

included in our treatment of the Raman scattering problem.
 

Results published by Wallace (1972) show that neglecting
 

high-order Raman scatterings does not lead to serious error in
 

the determination of. the continuum level of the spectrum of the
 

atmosphere. The maximum uncertainty is less than %2 percent.
 

McElroy (1971) has obtained a relevant analytical solution of
 

the basic transfer equation for a semi-infinite homogeneous
 

isotropically scattering planetary atmosphere. His solution,
 

which utilizes the two-stream approximation to describe the
 

radiation field, is eminently suitable for the computation
 

of II, 12, and 13. It is well known that the two-stream approxi­

mation leads to uncertainties of 10-15 percent in predictions
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of -absolute intensity. But, since we are interested only
 

in the detectability of the Raman "ghost" images against the
 

background continuum, systematic errors in the corresponding
 

predicted intensities largely cancel. This point has been
 

-discussed more fully by Price (1977).
 

Results. Theoretical computations of the spectral
 

-detectability of both the S(O) and S(l) rotational Raman
 

lines were made for both clear and hazy atmospheres. In the
 

present context, spectral detectability means the strength
 

of the Raman "ghost" feature as a fraction of the background
 

continuum level. Our initial computations focussed on the
 

effect of multiple Raman shifts on predictions of spectral
 

detectability.
 

Figure 4 shows the spectral detectability of the S(0) H 2
 

rotational Raman line as functions of both wavelength and
 

population of the initial state. Our predictions refer-to the
 

center of the planetary disk (w=l). A clear, semi-infinite,
 

H 2 atmosphere was assumed, with all H2 molecules residing in
 

the lowest vibrational level (v=O). The parameter f indicates
 

the fraction of H2 molecules in the J=0 rotational state; (1-f)
 

is the corresponding fraction in the J=1 state. Figure.5 shows
 

the corresponding predictions for the S(l) line.
 

For both the S(O) and S(l) Raman lines, our calculations
 

show that the spectral detectability is insensitive to wavelength,
 

but nearly linearly dependent on the population of the initial
 

state. This implies that the S(0)/S(1) line strengths' ratio
 

should be a sensitive indicator of kinetic temperature. Our
 

results confirm the earlier work by Price (1977). Not surprisingly,
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FIG'4: S(0) RAMAN LINE STRENGTHS: VARIATION WITH WAVELENGTH 
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-we find that spectral detectability is reduced by 25 percent
 

by inclusion of multiple Raman shifts in the calculation of
 

the continuum background. This reduction was expected to occur
 

:(Price, 1977), and it confirms the earlier investigation of
 

Wallace (1972).
 

Spectral detectability of the S(0) Raman line as a
 

function of the aerosol content of the atmosphere is shown in
 

Figure 6' The aerosol particles are considered to be either
 

totally absorbent (p=O) or to conservatively scatter radiation
 

(p=l). The computations refer to the cehter of the planetary
 

disk. All H2 molecules were assumed to reside initially in
 

the J=O rotational state. A wavelength of 4000i was selected.
 

Evidently, the Raman line strength is especially sensitive
 

to the cloud particle albedo for very tenuous hazes. Similar
 

results were obtained for the S(1) Raman line. In that case,
 

of course, all H2 molecules were assumed to reside initially
 

in the J=1 initial state. The S(1) line results are shown in
 

Figure 7. Figures 8 and 9 compare the spectral detectabilities
 

of the S(0) and S(1) lines as a function of the aerosol content
 

for each choice of the cloud particle albedo. Evidently, what­

ever the cloud partiqle albedo, the S(0)/S(l) ratio of line
 

strengths is insensitive to the aerosol content of the atmosphere.
 

This is a.major conclusion. It means that the S(0)/S(l) line
 

strengths' ratio can be used as a reliable indicator of kinetic
 

temperature,. This.result confirms the earlier investigation
 

of Price (1977).
 

For both the S(0) and S(1) Raman lines, Figure 10 illustrates
 

the variation of their spectral detectabilities across a planetary
 

disk observed at- zero phase angle. The absissa, p, is the
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cosine of the angle of emergence with respect to the outward
 

-normal. The atmosphere was taken to be entirely clear of
 

aerosol particles, and a wavelength of 4000i was selected. To
 

compute the S(0) curve, all H2 molecules were assumed to reside
 

initially in the JO state. For the S(1) curve, all molecules
 

-were placed in the J=l state. Our results show that both
 

Raman lines decrease in strength towards the limb, but that
 

the rati6 of their strengths is insensitive to position on
 

the disk. These are major conclusions. They mean that the
 

degree of lateral homogeneity of the atmosphere can be investi­

-gated by the Raman probe technique. Moreover, the kinetic
 

temperature can be studied as a function of position on the
 

disk.
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2.2 Uranus: Disk Structure
 

During the contract, our joint P.S.I./Lowell Observatory
 

investigation of structure on the Uranus disk continued. Once
 

again-, the Franz area scanner was used, but this time the
 

detector was a red-sensitive RCA type C31034B photomultiplier.
 

By comparison with the 1976 Uranus observations, the signal­

to-noise~ratio was improved by a factor "u5 throughout the wave­

length range 6000 - 9000 . On July 10, 1977, an excellent
 

set of one-dimensional slit scans of both Uranus and the point
 

spread function was obtained during very good seeing conditions.
 

Data were obtained for the continuum wavebands at 60002, 6400R,
 

and 75002, and for the CH4 bands at 6200R, 73002, 8000R, and
 

8500R. Scans were made in both north-south and east-west
 

directions. Throughout the observations, the slit width was
 

held constant at 0U645 arc.
 

The 1977 July 10 observations have been analyzed to
 

determine the true radial intensity distribution in each wave­

band. To-expedite the analysis, the observed intensity distri­

butions for Uranus and the point spread function were taken to
 

be circularly symmetric. Fourier-Bessel inversion techniques
 

were used to remove the slit- and point-spread functions from
 

the Uranus data. For each waveband, the true Uranus disk
 

profile was derived with a spatial resolution %0Q5 arc. The
 

nominal angular diameter of Uranus is %4" arc.
 

Results obtained from the 1977 Uranus observations con­

firmed earlier work. But, more important, we discovered
 

that not all CH4 bands exhibit limb-brightening. Significant
 

limb-darkening was found to occur in the two CH4 bands at
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800OR and 85oo, most probably because the deep-dense NH3
 

cloud layer becomes faintly visible in these wavebands. In
 

the CH 4 bands at 7300R and 89oo, limb-brightening occurs
 

because the integrated line-of-sight absorption is sufficiently
 

large that the deep NH3 cloud layer cannot be seen. Interpreting.
 

our results in terms of elementary radiative transfer models,
 

we conclude that the mean CH4/H2 mixing ratio in the Uranus
 

atmosphere, above the NH3 cloud layer, is no greater than
 

about three times the solar value. Such a conclusion is in
 

direct conflict with recent theoretical models for Uranus which
 

require a much larger CH4/H2 mixing ratio in the visible atmos­

phere. A complete discussion of our results is contained in
 

a paper entitled, "Uranus: Narrow-Waveband Disk Profiles in
 

the Spectral-Region 6000 - 8500 Angstroms," recently submitted
 

for publication in Icarus. A preprint was included in the Third
 

Quarterly Report.
 

Further numerical work on the restoration of the Uranus
 

image has been carried out. Special attention was given to the
 

deep CH4 band at 7300 angstroms in which the presence of a polar
 

cap and significant limb-brightening is-suggested even in the
 

absence of restoration. Significant polar--and limb-brightening
 

were confirmed to be present on the Uranus disk. A complete
 

discussion of our results is contained in a paper entitled,
 

"Uranus: The Disk Profile in the 7300 Angstrom Methane Band."
 

A copy of the manuscript is given in Appendix TV.
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ktaxonomic system was introduced by C. R Chapman, D. Morrison, and B. Zellner [Icarus 
S, 104-130 (1975), in which minor planets are classified according to a few readily observable 

optical properties, independent of specific mineralogical interpretations. That taxonomy is 
here augmented to five classes, now precisely defined in terms of seven parameters obtained from 
polarimetry, spectrophotometry, radiometry, and UBV photometry of 523 objects. We classify 
190 asteroids as type C, 141 as type S, 13 as type M, 3as type E, and 3as type R; 55 objects 
are shown to fall outside these five classes and are designated U (unclassifiable). For the re­
maining I1S, the data exclude two or more types but are insufficient for unambiguous classifica­
tion. Reliable diameters, from radiometry or polarimetry or else from albedes adopted As 
typical of the types, are listed for 396 objects. We also compare our taxonomy Mth other ones 
and discuss how classification efforts are related to the interpretation of asteroid mineralogies. 

I. INTRODUOTION observable optical parameters from four 

Physical observations of the surfaces of observational techniques, that provides a 
:asteroids indicate a wide variety of cor- useful structure within which to fit a large 

positional types. For instance, the distribu- number of individual observations. The 

tion of objects with respect to both broad- classification scheme is entirely empirical 

band color (e.g., B-V) and albedo are and divorced from mineralogical interpre­

strongly bimodal (Zellner et al., 1974; ations. Our system uses a few broad 

Morrison, 	 1974, 1977a,b; Hansen, 1976). groups, chiefly those rather naturally de­
one orSpectrophotoraetry with 24 filters distin- fined by bimodalities or hiatuses in 

guishes about 34 distinct spectra (MeCord more parameters, rather than a large 

and Chapman, 1975a,b), while a recent number of subsets which could be distin­

'classification by Gaffey and McCord guished from the same data for the better 

(1977a,b), contains 13 groups that empha- observed asteroids. The breadth of our 

-size interpretabion in terms of mineralogical clahses has the advantage of permitting 
assemblages. The large body of observa- about a quarter of the numbered asteroids 

tions being accumulated clearly requires to be classified, but the disadvantage of not 

-some ordering as an aid to discussion and resolving potentially important differences 

improved understanding of the physical within the broad classes. We hope and 

properties of asteroids. expect that the several classes we define 
In this paper we discuss in detail a here will prove useful for elucidating the 

taxonomic system, based on seven directly nature of the asteroids. The philosophy and 
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history of asteroid taxonomy and the 
relationship to- interpretation of asteroid 
mineralogy are discussed in Section V. 

The clear separation of many of the larger 
asteroids into two albedo-color groups 
suggested the first major classification, the 
classes called C and S. The C objects are 
dark and neutral in color, apparently .due 
to the presence of opaque compounds of 

- carbon, and appear to be mineralogically 
similar to the carbonaceous ehondrite 
meteorites (Johnson and Fanale, 1973), 
while the S objects appear to contain such 

.silicates .as pyroxene and olivine and per- 
haps are related to the stony-iron meteorites 
(McCord and Gaffey, 1974). Although the 
C and S terminology suggests an identifi-
cation with meteorite types, the classes 
have been defined purely in terms of ob-
served clumping of observational parame-
-ters.As presented by Chapman, Morrison, 
and Zellner (1975; hereafter CMZ), the 
definition was in terms of five observable 
quantities. These authors suggested that 
about 90% of the mainbelt asteroids fall 
into one or the other of these two broad 
classes, 

CMZ recognized at least two additional 
types: one consists of the unique object 4 
•Vesta with its surface of pigeonitis basalt 
--(-McCord et al., 1970; Larson -and Fink, 

1975), and the other contains the three 
objects 16 Psyche, 21 Lutetia, and 22 
Kalliope, of intermediate albedo and with 
straight, reddish spectra probably due to 
metal, as in enstatite chondrites or nickel-
iron meteorites (Chapman and Salisbury, 
1973). Zellner and Gradie (1976). subse-
quently designated this second group the 
MVI class. In addition, Zetner (1975) noted 

the unique high albedo and neutral color 


of 44 Nysa'and suggested that it has an 
enstatite achondritic composition, and 
Zellner et al. (1977a) subsequently identified 
two more objects with similar optical 
properties. While it remains true that the 
great majority of asteroids are. either C or 

S, new observations have continued to 
reveal additional types. 

As more and more physical observations 
of asteroids have been made, the data base 
upon which a taxonomy of asteroid optical 
properties can be established has rapidly 
expanded. Over the past year we and 
others have created a computer file of these 
data called TRIAD (Tucson Revised Index 
of Asteroid Data; Bender et al., 1978). One 
of the first projects to be undertaken with 
this file has been the definition of a useful 
taxonomy based on several parameters. 
Further, we hope to establish the correla­
tions among the various observational 
parameters in order to evaluate with what 
confidence reconnaissance data (such as 
UBV colors) can be used to classify an 
asteroid.
 

For those asteroids observed in sufficient 
detail, many different surface types may 
be distinguished and, indeed, each asteroid 
may ultimately be recognized as unique. 
In the taxonomic system discussed here, it. 
should be understood that each class con­
tains a substantial spread of mineralogical 

"assemblages; for instance, there is a factor 
of 3 variation in the albedos of C asteroids, 
and the S asteroids encompass a wide range 
of pyroxene and olivine contents as indi­
cated by the depth and positibn- of the 
absorption band near 0.95 Jm. The primary 
advantages of the classification system 
discussed here are: (1) it can be widely 
applied, since it depends upon only a fiw 
readily observed parameters; (2) it clearly 
distinguishes the major albedo classes, thus 
permitting diameters to be estimated and 
enabling sampling corrections to be applied 
for determining the unbiased distributional 
properties of asteroids; (3) it permits the 
ready identification of unusual objects from 
reconnaissance data; (4) it probably dis­
tinguishes objects that are geochemically 

- differentiated from those with more primi­
tive surface compositions (see Section V); 
and (5) the system requires no revision 
when mineralogical interpretations are 
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modified or improved, since it is based 
strictly upon observational parameters. 

II. THE DATA BASE 

The observations of more than 500 aster-
oids that now constitute the TRIAD data 
file have generally been made recently and 
are not yet all published. The number of 
objects that can be classified is approxi-
mately five times the number considered 
by CMZ three years ago. Furthermore, new 
data permit firm classifications of many 
asteroids that were classified only tenta-
tively in CMZ. 

Data from four observational techniques 
are incorporated into the classification 
scheme: UBV photometry; 0.3 to 1.1 pm 
speetrophotometry; photoelectric polar-
imetry; and infrared radiometry. Each of 
the seven observational parameters is 
assigned a weight or quality code ranging 
from 1 for data in need of confirmation to 
3 for the most securely determined values. 

The UBV photometry has been carried 
out primarily at the Lowell Observatory 
and at the University of Arizona. The 
principal published sources are Taylor 
(1971), Zellner et al. (1975, 1977b), and 
Degewij et al. (1978). However, the ma-
jority of the data are unpublished observa-
tions made between 1975 and 1977 by 
E. Bowell at Lowell. Bowell has produced 
the combined TRIAD UBV list from a 
synthesis of all these observations. We use 
the parameters B-V and'U-B for classi-
fication. 

Spectrophotometry with about two dozen 
filters has been reported for 98 asteroids by 
MeCord and Chapman (1975a,b) and 
Pieters et al. (1976). Three parameters used 
in the classification are R/B, the ratio of 
spectral reflectance at 0.70 pm to that at 
0.40 gm;BEND, a measure of the curvature 
of the visible part of the reflectance spec-
trum, and -DEPTH, a measure of the 
strength of the olivine-pyroxene absorption 
feature near 0.95 pm. The parameters are 

defined precisely by McCord and Chapman 
(1975a). Chapman has assembled these 
data for the TRIAD file. 

Linear polarization of reflected light as 
a function of phase angle constitf'es the 
third set of classification data. The observa­
tions are all from Zellner et al. (1974) and 
Zellner and Gradie (1976 and unpublished), 
The parameter Pmij, the maximum depth 
of the negative polarization branch, is listed 
in TRIAD for 98 objects and is sensitive to 
grain opacity and hence roughly to albedo. 
The polarimetry also yields geometric 
albedos jv more directly, from the slope of 
the ascending polarization branch and a 
recently recalibrated slope-albedo law 
(Zellner et al., 1977c,d). For albedos >0.07, 
the polarimetric results are now in quite 
satisfactory agreement with albedos and 
diameters from thermal radiometry. It is 
now recognized, however, that previously 
published polarimetric albedos <0.07 are 
inaccurate due to saturation of the slope­
albedo law, and furthermore that reliable 
visual albedos pv cannot always be inferred 
from polarimetric data in blue light. 
Whereas polarimetric albedos were listed 
for as many as 52 objects by ZeIlner and 
Gradie (1976), the number in TRIAD is 
now reduced to 24. The TRIAD polar­
imetry file is maintained'by Zellner. 

The final input to the classification is a 
geometric' visual albedo derived from 10 
and 20 pm. radiometry, carried out pri­
marily by D. Morrison and his collaborators 
at the University of Hawaii and at Kitt 
Peak and by 0. Hansen at Cerrb Tololo. 
The individual observations have been 
published primarily by Cruikshank and 
Morrison (1973), Morrison (1974, 1977a), 
Hansen (1976), and Morrison and Chapman 
(1976); all are summarized in a review by 
Morrison (1977b). All of the observations 
have been reduced uniformly with the 
model described by Jones and Morrison 
(1974) and Morrison (1977b). The alterna­
tive model by Hansen (1977) also yields 
consistent albedos and diameters from 
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Fin. 1. Geometric albedo pv versus U-V color index for'140 minor planets with orbital semi­
major axs<3.6 AU. Domains indicate-allowable parameters for asteroids of types C, S, M, E, 
and R; objects outside these domains are unclassifiable, designated U. Albedo limits for the 
classes are determined from this figure, but limits in U-V from Fig. 7 below. Unusual objects
2 Pallas, 4 Vesta, 44 Nysa, 349 Dembowska, 354 Eleonora, 785 Zwetana, and 863 Benkoela are 
indicated by number. Pallas is excluded from type ANI, and Vesta-from type S, by other param­
eters not shown in this plot. Data are from the TRIAD file. The ellipse represents typical albedos 
and colors for objects in the Eos Hirayama family (see text). 

radiometric data. Morrison maintains the III. DEFINITIONS OF tAXONOMIC
 
TRIAD radiometry file. CLASSES
 

To summarize, the-observational param- The taxonomy described in this paper is
 
eters we ,employ are B-V and U-B color based on directly observed optical parame­
indices from the broadband photometry, ters and, compared with other classifica­
the color ratio RIB and the parameters tions, it is' independent of asteroid miner-

BEND and DEPTH from the spectropho- alogy. We have attempted to locate discrete
 

- tometry; the polarimetric parameter Pmin, clusters in a series of two-parameter plots 
-and the geometric albedo py. The albedo is (see Figs. 1-6). Natural divisions clearly 
taken as the weighted average of radio- separate well-populated clusters. Of course, 
metric and-polarimetric values where both the boundaries between classes are not 
are available. evident for each observational parameter 
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FIG. 2. Geometric albedo versus' R/B color index 
for 65 asteroids. R/B is the ratio of the spectral
reflectance at 0.7 pm to that at 0.4 pm. The unusual 
objects 1 Ceres, 2 Pallas, 4 Vesta, and 349 Dem-
bowska are identified. 

considered individually, but our classes are 
distinct from each other in several different 
ways. Several two-parameter plots that we 

have used to assign class boundaries, 
Figs. 1-6, may enable the reader to be 
convinced of the natural existence of most 
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branch versus U-V color index for 93 asteroids, 
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4 Vesta and 92 Undina. Limits in U-V are defined 
in Fig. 7. 
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the reflection spectrum, as defined by McCord and 
Chapman (1975a). Unusual objects identified are 

2 Pallas, 4 Vesta, 51 Nemausa, 80 Sappho, and 
887 Alinda. 
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FIG. 5. Geometric albedo versus the spectropho­
tometric parameter DEPTH for minor planets. 
DEPTH'is the ratio of the-spectral refleatance at 
the bottom of the 0.95gtm absorption band (if
pretent) to the highest ieflectance at shorter wave­
length. DEPTH cannot exceed unity by definition, 
and smaller values indicate a strong absorption 
feature. Unusual asteroids identified are 4 Vesta, 
85 Io, and 849 Dembowska. 
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Pic. 6. B-V and U-B colors for 465 minorplanets with orbital seraimajoraxis :53 6 ATJ Symbol$ 
-indicate geometric albedos from polarimetry or thermal radiometry, where available: (0,) p -­

<0.065, as for C types; (0) 0.005 <Np 0.23, as for S and Al types; (03) p1 > 0.23, as for types 
E and R%;and (X) no albedo information available. The R object 863 Benkoela (p =0.245) is off 
Scale at; B-V = 1.06, U-B - 0,56, and 1658 Innes is off scale at B-V = 0.95, U-B =0.61. Solar 
colors, representing neutral spectral reflectance, are at B-V = 063, U-B = 0.10. The unusual 
objects 2 Pallas, 4 Vesta, 349 Dembowska, and 785 Zwetana are indicated by number. 

-of our classes. The plotted data are all these asteroids were not used for defining 
taken from the TIAD file. -the classes, we later provide the results of 

Since recent, specially targeted observa- attempting to apply the maini-belt tax­
tions of the distant TroIan and HCilda- onomy to them. 

group asteroids (McCord and Chapman, Five classes are defined below. Following 
1975b; Degewij. et al., 1978) suggest that previous usage, the first four of these are 
these objects constitute a different popula- called 0, S, MV,and E. In addition to our 
tion not entirely typical of any main-belt more precise definitions of previously dis­
class, we do not include in the plots any cussed classes, we adopt a new designa­
asteroids with semnimajor ares greater than tich-class I -for the objects with reddest 
3.6 AU, beyond the main belt. Although UBV colors, with high-spectral-contrast 
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visible and near-infrared spectra, and with 
.moderately high albedos. 1 Finally, we 
employ a designation U (for "unclassifi-
able") for those objects that are not in 
classes C, S, M, E, or R. We emphasize 
that U does not simply indicate lack of 

information or noisy data, but refers to 

objects that are known to be intrinsically 
outside the domains of the other five 
classes. They are either unique, or else 

belong to types yet to be described. 
In assigning boundaries between classes 

for each parameter, we have been guided 
by the desire to minimize the number of 
misclassifications. That is, where there is 
serious doubt as to correct classification of 
an individual asteroid, we prefer to carry 
.several possibilities rather than to make an 

uncertain unique classification. Note that 
this philosophy is to be contrasted with one 
like that of Zellner and Bowell (1977), who 
attempted to assign the most likely class 

to each asteroid. 
The C, S, M, E, and R classes are broad 

ones, with significant spread in the range of 
each parameter within each class. In addi-
tion, there is a further spread introduced 
into parameter plots by associated

noise a e 
with the observational data on each aster­
oid. Application of our philosophy of mini-
mizing . the number of misclassifications 
leads us to define the boundaries between 
-classes in parameter space generously-
including cases in which the domains in 
some parameters can have considerable 
overlap. Thus, while there can be no 
ambiguity in classifications when all seven 
parameters have been measured, there fre-
quently are ambiguities when only one or 
two are known. This . is particularly a 
concern for UBV colors, since for nearly 
half the asteroids considered here only 
UBV data are available. We will discuss 

'this problem in more detail when we address 
the UBV two-color plot below. 

'lass R is similar bub not identical to a provi-
sional class designated "0" by Zellner and Bowell 
(1977). 
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FIG. 7. Adopted domains of types C, S, M," E, 
and R in UBV colors, from Fig. 6. In cases where 
the only diagnostic parameters available are the 
UBV colors, type U is generated outside the shaded 
areas for C and S (resulting in classifications CU 
or SU) ; when U- r > 1.47 (resulting classification 
RU); and when U-B _ 0.28 (classifications MU, 
EU, CEU, INIEU, or CMEU) Numerical coefficients 
representing the type boundaries are given in 
Table I. Objects 2, 4, 349, and 785 are identified as 
In Fig. 6 Corners of the domains, representing
limit in U-V, are projected in Figs. 1 and 3above.-

Figures 1 and 2 display the albedo pv as 
a function of U-V and RIB color indices. 
Both plots clearly distinguish the C, S, M, 
and E groups; we can almost invariably 
make unambiguous type classifications 
when both color and albedo data are avail­
able. We use Figs. 1.and 2 to establish the 
albedo boundaries in subsequent figures. 
(Note that the dotted line limits in U-V 
are not definitions of class boundaries; the 
boundaries in the UBV plane are complex, 
as shown in Figs. 6 and 7, and cannot be 
described by the single parameter U-V. In 
each figure, solid lines represent parameter 
limits defined in that figure.) Figure 3 
illustrates the albedo-sensitive parameter 

Pm, as a function of U-V color index. 
Pmin separates the various classes- better 
than any other single parameter, but still 
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TABLE I 
- DrIxNrrrON OF CLASSES 

Parameter C S M - E R 

Albedo pv :<0.065 0.065-0.23 0.065-0.23 >0.23 >0.16 
P. (%) 1.20-2.15 0.58 -0.96 0.86--1.35 <0.40 <0.70 
R/B 1.00-1.40 1.34 -2.07 1.06 -1.34 0.9 -1.70' >1.70 
BEND 0.05-0.26 0.05 -0.25 <0.11 <0.15 >0.25 
DEPTH 0.95-1.00 0.80 -1.00 0.90 -1.00 0.90-1.00- <0.90 
B-V >0.64b - 0.67 -0.77 0.60-0.79 _d 

-B 0.23-0.46 >0. 3-V 0.17 -0.28 0.22-0.28 _d 

No examples have been measured. 
Additionally 4.60 (B-V) - 3.17 :< (U-B) :_ (B-V) - 0.27. Type U allowed 0.T02 inside limits when 

onfy UBV photometry is available. 
Additionally B-V > (U-B)/7.0 + 0.74; 1.70 (B-V) - 1.12 - (U-B) < (B-V) - 0.33; (U-V)-<1.47. 

Type U allowed 0T02 inside limits, except for the last, when only UBV photometry is available. 
4 (U-V) > 1.47. 
- Type U always allowed for U-B 5 0.28, when only UBV photometry is available. 

allows slight overlap of the M class with 
the S and C classes, 

Figures 4 and 5 display the spectropho-
tometric parameters BEn D and DEPTH 
versus alb~do. Generally these parameters 
are more useful for mineralogical interpre-
tations, and for the identification of excep-

.tional objects as discussed below, than for 
direct type classification of the general 
population. DEPTH, for example, may be 
used to distinguish between pyroxene-rich 
and pyroxene-poor objects of type S. 

UBV colors for 464 objects-are illustrated 
in "Fig.6.-Objects classifiable on the basis' 
of albedo-sensitive data- are denoted by 
special symbols, and their colors are used 
to establish the class boundaries illustrated 
in Fig. 7. The corners of these boundaries 
are projected-as' limits of U-V in Figs. 1 
and 3. 

Classification, by UBV photometry alone 
clearly has limitations. S types may gener-
ally be classified unambiguously, except 
near the somewhat artificial boundary with 
the poorly defined R.type (the boundary is 
also. poorly defined in albedo, and may not 
represent any physical discontinuity). For 
small color indices the domains of types 
C, 1M, and E are degenerate. This region 
also contains some of the Trojans (not 
plotted.here) and may contain other, un-

recognized types; neutral colors can be 
produced by any transition-metal-free sill­
cate, or by any material with sufficient 
opaque content to suppress spectral fea-. 
tures. Thus we always allow-the description 
U when classification is based on UBV data 
alone and U-B < 0.28. 

Due to noise in the data for the fainter 
objects in Fig. 6, the C and S domains are 
drawn considerably broader than initially 
defined by Zelner et al. (1975, 1977b), and 
may contain unusual objects. For example, 
we have quite a few asteroids near B-V 
= 0.77, U-B = 0.33, none of which are 
independently classifiable from other data 
at present." Hence, when only UBV" data 
are available, we generate the designations 
CU or SU when the colors fall within 0'.02 
ofthe outer type boundaries, and allow the 
unambiguous types C or S only within the 
shaded areas in Fig. 7. 

The INI-and especially the E domains are 
still poorly defined in color, and no spectro­
photometry has been published for any 
proven E object: Thus, we always generate 
the designation EU for putative E objects 
in the absence of albedo or P.,.. In Fig. 7 
we extend the E domain to 'B-V = 0.60 to 
include several small objects in the Nysa 
dynamical family in the expectation that 
they are also of type E. Domains of type E 

http:U-V)-<1.47
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in Figs.. 2, 4, and 5 are drawn on the 
expectation of a flat, featureless spectrum, 
Such a spectrum, not yet included in 
TRIAD, has been observed by Chapman 
and coworkers for 750 Oskar in the Nysa 
family, 

IV. 	ADOPTED TYPES AND DIAMETERS 

Table II lists computer-generated type 
classifications for 521 objects. The second 
column lists the type(s) allowed according 
to Table I. The four digits in the final 
column indicate the total observational 

of unambiguous C,M, or S classifications 
with assumed visual albedos of 0.037, 0.12, 
or 0.14, which are typical of those respective 
classes, or on the basis of the classifications 
CU, SU, and SM which are sufficiently 
unambiguous so that assigned albedos of 
0.037 for CU and 0.14 for SU and SMI are 
probably close to their true values: Such 
diameters are probably more reliable than 
a single noisy radiometric or polarimetric 
determination, and are -quite adequate for 
statistical purposes (Zellner and Bowell, 
1977). Diameters followed by a question 

weights of radiometric, polarimetric, UBV, mark are based on the following albedo 
and spectrophotometric data; code zero 
indicates no data. (Weights can total as 
much as 6 or 9 for UBV and spectral data 
because there are multiple parameters for 
those categories.) Assigned types should be 
considered provisional unless both albedo-
sensitive data (first two digits) and spectral 
data of- some kind (last two digits) are 
available. For less completely observed 
asteroids, more than one type may be 

.allowed. The designation "CMEU," for 
instance, means the asteroid could be of 
type C, I, or E, and the "U'! indicates its 
UBV colors fall in an ambiguous portion 
of the UBV plane, as described in Section 
IIL When multiple types are allowed, they 
are listed in the order CSMERU (roughly, 
common to uncommon types). 

The third column of Table II lists diame-
ters derived from 

2 log D = 6.244 

- 0.4[B(1, 0) - (B - V)] - log pv, 

wheie D is 'the diameter in kilometers 
(Zellner et al., 1974). B(1, 0) is taken from 
the TRIAD magnitude file (maintained by 
T. Gehrels) and B-V from the TRIAD color 
file or else assumed from the type in the 

-relatiVely 	few cases for which the color is 
unknown. Diameters listed without quali-
fication are generated from measured polari­
metric or radiometric albedos, or the 
weighted average of the two, if the total 
weight is 2 or higher. Values followed by 
an asterisk (*) are generated on the basis 

assumptions, which give only a very rough 
indication of size. Multiple classifications 
that begin with "C" are assigned p, = 0.037 
as the most probable albedo; those that 
begin with "Al", p, = 0.12; those that 
begin with "S," p, = 0.14. Classifications 
EU and RU are assigned p, 0.14 and 
classification U, pr = 0.1. Diameters listed 
with question marks are unlikely to be in 
error by more than a factor of three, but 
they should be treated as only crude 
guesses. 

In the fourth column of Table II, we list 
orbital element zones similar to those of 
Kresak (1977) and defined in Table III. 
Note that, while the Hildas and Trojans 
were not used to define our classes, they are 
nevertheless classified in Table II. Well­
observed Trojans are usually rejected from 
the main-belt compositional classes and 

hence designated'U. If observed by only one 
or two techniques, they may be listed as C,
MEU, CMEU, etc. The available evidence 

(Cruikshank, 1976; Degewij el al., 1978) 
argues for a rather high degree of homoge­
neity among the Trojans. 

V. APPLICATION OF TAXONOMKY
 
EXAMPLES AND DISCUSSIONS
 

Examples 

Several examples serve to illustrate the 
application of our classification procedure. 
We begin with a typical, thoroughly ob­
served C asteroid, 19 Fortuna; the observa­
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'TABLE II 

AsTERom CLASSIFICATIONS AND DLumTERsa 

AsTERoin" TYrE Dix ATER "ZONif Dx.tA 'AsTERom TYPE D1AIETER ZONE DATA 

1 U 1020 II 3367 53 C 97* II 0056 
2 U 630 Z 3257 54 C 177 II 2340 
3 S 248 II 2659 55 CMEU 172 ? 11 . 0040 
4 U. 549 I 3549 56 0 143 II 2240 
5 S 122 II '259 57 S 109 * 1II 0120 
6 S 195 I 2359 58 0 97 * I 0147 
7 S 210 I 3647 50 CIEU 166 ? 11 0020 
8 S 153 I 2549 60 S" 51 I 2046 
9 

10 
-S 
-0 

-153 
450 

I 
1 

3457 
3256 

61-
62 

S 
0 

87 
104 

* JII 
III 

0060 
0040. 

'11 S 152 I 2547 63 S 89 I 3469 
12 S 135 I 2267 64 E 57 II. 2550 
13 a 241 II '3267 65 C 308 IV 2250 

-14 S 154 I- 3469 66 C 76 * 11 1040 
15 S 246 II 2149 67 S '62 * I 4040 
16 M 252 III 3267 08 S 125 II 3157' 
17 S 97 I 2247 69 U 134? III 0127 
18 S 152 I 2647 70 C 154 'HII 2240 
19 C 221 I 3253 71 S 115 * .11 0130 
20 S 137 I 2450 72 C .92 I 1050 
21 NI 112 I 3367 .75 CMEU 94 ? II 0040 
22 M 178 III 2367 76 CMEU 143 ? IV 0060 
23 S 115 II 2156 77 Al 62 - H 1040 
24 C 210 1I1 0157 78 C' 140 II 0060 
25 S 65 I 2069 79 S 75 I 2069 
26- S . 91 H :0020 80 U-' 86 I 2147 
27 S 116 I 2169 81 C' 112 * III 0040 
28 S 122* II 1107 82 S 65 II 2067 
29 S 104 11 2359 83 C :106* I 0120 
30 S 91 I -2447 84 C 82 I 2236 
31 CM 333 7 I1 0100 85 U -146 II 2149 
32 S 93 II 0266 86 C 108 * -III 0040 

- 33 S 56 * II 0020 87 CMEU 225 ? IV 0040 
34 0 114 * II 1050 88 C 207 II 2157 
36 C 103 * 11 1020 89 S 169 II 2229 
37 S 93 II 2150 -90 C 124 * III 0040 

-39 S 164 II 1349 91 C 105- II 2060 
40 S 121 I 2449 92 U 151 ? I1 0240 
41 C 177 11 2160- 93 C 168 I 2206 
42 S 97 I 2460 94 .C 190 III 2040 
43 S 77 I 1040 95 C" 166* 1I 1140 
44 E 72 I 2360 97 M 94 II 2056 

. .45 C 228 II 2060 100 SU /80 * -II 0020 
46 C 134 II 3160 101 S 67 * II 0050 
47 C 135 * I 1000 102 C . 84 * IH 0020 
48 U 148 ? HI 0047 103- S 90* II 1060 
49 -C 179* 111 0040 104 C 122 HI 0040 
51 U 158 1 2247 105 C 124* I 1000 
52 C 290 III 2057 106 C 169 * II1 1030 

-Asteroid diameters listed with question marks (?) could be in error by-a factor bf 3. They are crude 

guesses and should be treated as such (see text). 
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TABLE II-Cntinued 

ASTERoID TYPE DI.A2ETER ZONE DATA ASTEROID TYPE DIAMETER ZONE DATA 

107 c 210 * IV 1040 172 S 67 I 2050 
[08 S 60 * ITI 0046 173 c 163 * II 0040 
109 0 75 II 2000 175 0 113 * IT 0040 
110 0 170 * II 0060 176 U 72 ? Inl 0007 
111 0 143 * II 0060 177 0 67 * II 0020 
113 S 47 I 2040 178 S 89 * .1 0040 
114 c 122 * -II '0120 179 S 72 * I1 0040 
115 S .93 I 2247 181 S 79 III 0037 
116 SR s0 II 2100 182 S 49 * I 1240 
117 CIEU - 139 ? I1 0040 183 S -33 * IT" 0040 
119 S 57 * II 0057 184 U '72 ? 111 -0020 
120 0 175 I1 2040 185 c 168 * - II 0040 
121 0 197 * IV 0130 186 u 46 I "2020 
122 cU 140 * 11 0020 187 c 117 * IT 0020 
123 S 49 * II 1040 189 8 42 I 2020 
124 S 68 II 2040 192 S 94 I 3569 
125 I 64 ? II 0020 194 0 193 II 2047 
126 S 40 I 0040 195 c 92 * 111 .0040 
129 M 115 Ill 2260 196 S 160 Ill .2067 
130 U 121 ? I1 1047 197 S 36 * II 0020 
131 SM 35 I 2000 198 S 66 * I 0030 
133 S 79 * I1 .0040 200 CME 121' ? II 0006 
134 C 118 * II 0040 201 OCMEU 133 ? IT 0020 
135 M 79 I 2140 202 S 79 * 11 0020 
136 CMEU 65 ? I 0020 203 0 92 * II / 0030 
137 C 143 ITT 1040 204 S 51 * II 1020 
139 c 140 * II 1207 205 c 97 * II 0020 
140 0 102. II 3027 206 0 101 * fl 0040 

'141 C 115 * II 0307 207 C 58 * I 0040 
144 0 133 II 2040 208 S 43 I1 2020 
145 c 175 * II 0207 209 CMEU 121 ? 1I -0040 

146 0' 131 II 1040 210 c 77* IT 0006 
147 CMEU 102 ? III 0020 211 c 167 III 2060 
148 S 106 * II 0040 213 EU 46 ? IT 0007 
140 U 25 ? I 0040 214 MU 44 ? II 0040 
150 GAELY 129 ? III 0020 216 CMEU 219 ? II 0050 
151 S 41 * II 0030 218 -S 53 * II 0020 
152. S 64 III 0030 219 ST 38 * I 1000 
153 U 100 ? m1 0120 221 U 97 ? I1 0049 
155 CMEU 30 ? II 0030 224 M 59 * II 1060 
156 0 103 * II 0050 230 S 114 I 3559 
158 S 36 * III 0040 233 SU '62 * IT. 0020 
159 0 134 111 2040 234 S 44 * I 0020 
160 c 90 * II 0030 235 S 59 * II 0040 
161 CIMEU . 79 ? I 0040 236 S 65 * IT 0040 
162 c 97 * III 0040 - 238 0 153 ITl 2020 
163 0 66 * 1 0047 240 0 90 * II 0040 
164 0 102 * 11 0060 241 0 179 * III 1060 
165 0 203 * I1 0030 245 S 72 * IllI 0040 
166 U 38 ? II 0047 246 ,RU 51 ? II 0020 
168 0 134 * IV 0040 247 c 143 II 3040 
170 U 41 ? II 0007- 250 CiMEU 192 ? Ili 0060 
171 c 123 * ITT 0040 253 S 66 * II 0040 
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TABLE I1-Continued 

ASTEROID TYPE DIAMETER ZONE DiTA AzTEROID TYPE DIAMETER ZoNx DATA 

259 C0MEV 152 ? IT 0020 374 S 51 * II 0120 
260 c 81 * IV 0020 375 c 183 * III 0040 
262 U 15 ? II 0020 376 S 39 * 1 0040 
264 S 64 11 2040 377 CMEU 95 ? 11 0040 
268 c 106 * 111 0020 378 S 30 * 11 0020 
270 S 50 I 2100 381 c 127 III 2020 
271 C- 59 * II 0030 383 c 61 * III 0020 
275 C 94 * 11 0040 384 S 3 * 11 0040 
276 CAIEU 107 ? - III 0050 386 0 174 III 2020 
279 MEU 60 ? Z 0030 387 S 113 11 2050 
281 U 15 ? I 0040 388 CMEU 120 III 0040 
284 C 53 * 1 0050 389 S 70 II 0140 
286 C 85 * 111 0020 90 U 30. ? II 0020 
293 c 59 * III 0050 393 c 121 II 2050 
295 S 27 * If 0040 395 C 49 * II 0040' 
302 CMEU 38 ? I 0040 397 S 50 II 2050 
305 S 46 III 0040 402 s 46 * fl 0026 
306 S 53 I 0140 404 0 '94 * IX 1040 
308 U 137 II 2060 405 0 102 * II 0040 
312 SU 47 * JI 0020 407 0 83 * II- 0040 
313 c 92 * I 1040 409 c 208 * 11 0047 
324 C , 251 II 3256 410 c 124 * II 1240 
325 CMEU 105 III 0020 413 CEU 52 ? II 0020 
326 0 82' I 1046 415 0 - 74 If 1120 
329 c 66 * I 0020 416 S 76 * II 0150 
333 C 77 III 0020 418 CMEU 61 ? II 0040 
334 C 180 HI 0220 419 ElU 62 ? II 0020­
335 EU -'49 I 0057 422 C0MEU 41 ? I 0040 
336 MEU 34 ? I 0020 423 C 174 * III 0140 
337 CS 100 ? I 0007 426 0 104 * III 0020 
338 M 58 * III 0100 432 S 45 I1* 0040 
342 C 53 * II 0040 433 S 16 A 3669 
344 c 146 * 11 0040 434 R 11 HU 2150 
345 C 90 * I 0240 435 CMEU 52 ? I 0050 
346 S 87 * I 0040 439 0'MEU 65 ? II 0020 
349 R 145 III 2249 '441 m 61 II 2050 
350 c 122 * III 0040 444 0 143 * II 1050 
351 S 45 * i 0040 446 t 48 * If 0007 

-352 S 26 I 0040 447 U 47? III -0020 
354 U 169 II 2247 451 0 327 III 3150 
356 0 150 II 2166 454 0 84 * II 0030 
357 - 105 * II 0040 455 0 101 * 11 1000 
359 0 75 * 11 0020 462 13 41 ? II 0037 
360 c 130 III 2020 471 8 149 III 2260 
361 -CU 112 * HI 0020 472 S 45 * II 0040 
362 - C 90 * Il 0040 476 -O 103 * IT 1000 
363 c 95 * II 0040 478 s 75 * III 0040 
364 SMR 32 ? I 1000 480 s 52 * II 0040 
365 0 100 II 2060 481 c 101 * II 0007 
367 S 20 I 0100 487 s 68 * II 0020 
369 CMEUV 114 ? II 0040 489 C - 119 * III 0030 
370 C 43 I 0020 490 c 127 * II 0030 
373 CU 83 * III 0020 497 mvi 38 * III 1020 
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TABLE Hz-Continued 

ASmnom TYPE DiIAmTER 'ZONE DATA ASTEROID TYPE DImirETER ZoNE DATA 

498 C 73 II 2040 679 S 43 II 2020 
605 ME 50 ? II 0009 680 CMEU 69 ? III 0040 
506 c 109 - III 0020' 686 S 35 * II 0020 
508 0 126 * "III 0040 689 c 21 * I 0020 
509 S 60 * III 0060 690 CEU 160 ? III 0040 

510 OMEU 62 ? 1I 0040 691 -0 73 * III 0020 
511 0 "341 III 3347 692 S 46 * IV 0040 
516 vi 64 I1 2060 694 C 90 * II 1000 
517 0 79 * 111 0050 697 0 -65 * fix 0020 
521 C 104 * II 0020 702 0 205 * III 0050 
522 CEU 92 ? IV 0020 704 C 339 III 2167 
524 0 61 * II 0040 705 CMEU 117 ? III 0040 
525 , RU 8.4? I 0026 712 C 133 * II 0060 

530 CMEU 81 ? III 0030 714 S 46 * 11 0046 
532 S 230 II 3349 716 U 23 ? II 0030 
533 S 34 * III 0030 727 U 35 ? II 0020 
535 0 72 * 1I 0030 729 U 45 ? I 0020 
537 0 98 * HI 1000 731, C 73 * III 0040 
540 S -19 * I 0020 733 CMEU 87 ? IV 0020 

- 545 C 108 * III 0030 735 0 68 * II 0040 

546 CU 63 * II 0040 737 8 54 * 11 1200 
550 S 41 * II 1020 739 U 64 ? II 0057 
554 0 103 * I 1037 744 U 33, ? III 0020 
558 SM 66 Ill 2000 747 0 205 III 2240 
563 S 53 * II 1156 750 EU 12 ? I 0020 
566 CMEU 140 ? IV 0040 751 C 105 * II 0030 
569 C 54 * 11 0030 754 C 81 * 11 0040 

570 CU 90 * IV 0030 755 MEU 37 ? IIl 0040 
572 C 41 * I 0040 760 SU 61 III 0030 
584 S 55 I 2446 762 CEU 109 ? III 0030 
588 MEU 61 ? r 0050 764 C 71 * III 0040 
589 C 95 * III 0040 770 SU 21 I 0040 
591 MU 23 ? II 0040 776 c 174 11I 0050 
596 U 134 III 2020 778 EU 36- ? II 0040 
602 c 138 III 2160 782 SM 15 * 1 1000 
613 U 35 ? III 0020 785 U 45 -11 2050 
616 S 23 * " II 0030 790 0 177 IV 2040 
617 U 89 ? ,r 1030 795 0 88 * II 0020 
618 C 126 * III 0040 804 C 162 * III 1060 
623 -o 35 * I 0030 824 s 29 * II 0020 
624 U 111 ? r 1146 825 S 13 * I 0050 
626 C 84 * II 0020 830 S 41 * III 0020 
628 U 49 7 II 0020 847 S 26 * II 0020 
631 S 49 * 11 0040 849 Al 73 * I1 0140 

635 CU 81 * I1 0020 853 C 29 * I 0030 
642 SU 29 * III 0030 857 U 19 ? I 0020 
643 CU 64 * IV .0040 860 SM 36 * II 1000 
645 S 33 * III 0030 86,3 R 50 * I1 1030 
647 CMEU 28 ? 1 0040 83 S 8.5* I 0020 
654 "U 72 ?- I 0137 884 MU 52 ? r 0020 
658 - SU 24 * III 0020 887 U 5.2 A 2327 

660 SM 40 * II 1000 888 S 36 * II' 0060 

674 S 97 * III 1147 899 CEU 54 ? III 0040 

ORIGIN AL pAGE IS 

M pOOR- QUALIif 
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TABLE I--Continued 

"AsTEROID Ti DIAMETER ZONE DAT.k ASTEROID TYPE DLxIETER ZONE DATA 

911 U 94 ? r 0066 1326 U 22 ? II 0020 
924 0 77 * I1 0020 1329 SU 19 * II 0030 
925 S 61 * II 0030 1330 MU 28 ? In 0020 
927 C 78 * 11T 0020 1341 CITEU 42 ? II 0040 
'932 c 56 * I 0040 1359 c 43 M1 0020 
944 CMEU 39 ? Z 0020 1362 -c 31 * IV 0040 
946 C 46* 111 0060 1390 ?vlU 47? IV 0040 
963 S 9.2" I -0030 1391 RU 9.8? . 11 - 0030 
966 S" - 30 * f 0020 - 192 MEU .4 ? II 0020 
969 EU - 9.1? I 0040 1401 S 10* I 0040 
976 CMEU 75 ? III 0020 1437 COMEU 126 ? r 0040 
977 c 67 * 111 0020 1453 RU 8.4? HlU 0040 
978 CO.EU 67 ? 11 0030 1456 C 36 * III 0020 
980 S 77 * *II 0030 1461 MEU 35 ? III 0020 
991 C 39 * 111 0020 1467 0 116 IV 0040 

1001 AEU 38 ? III 0040 1474 EU 8.2? A 0040 
1004 U 40 ? IV 0020 1493 EU -16 ? I 00270 
1011 S 7.2 J 2040 1500 S 6.8* - I 0020 
1013 CU 60 * II 0020 1504 S 13 * 1 0020 
0115 0 90 * I1 0040 1512 U 45 ? In 0020 
1019 U 9.6? R-U 0040 1529 MTU 30 ? HI 0020 
1023 U 38 ? I1 0040 1547 U 24 ? 11 0040 
1031 0 70 * 111- 0040 1566 U 1.7? A 0120 
1036 S 39 * A .060 1567 0 76 111 2020 
1043 S 34 * III 0020 1580 c 6.5* A 0240 
1048 0 70 * n 0060 1583 MEU 61 ? r *0030 
1052 S 12 * 1 0120 1595 U 14 ? II 0020 
1058 SR 13 7 I 0100 1602 RU 8.8U I 0020 
1079 SU - 20* III 0030 1620 s 2.4* A 0140 
1088 .RU 16 I 0030 1621 S 14 * I 0020 
1093 0 95 * 111 0020 1627 S 7.0* A 0040 
1102 0 77 111 0020 1639 C 37' II 0040 
1127 0 37 II 0030 1658 RU 14 ? II 0030 
1140 S 2G* H1 0040 1669 CU " 36 111 '0020 
1143 EU 62 7 r 0030 1681 S 14 * 11 0030 
1162 SU 40 * HI 0020 1685 U 7.6? A 0049 
-1171 CIvEU 65 M-UT 0040 1693 U 22 ? II 0030 
1172 c 128' r 1000 1694 0 17 * I 0040 
1173 0 87 * r 1000 1702 vIU 19 ? II 0020 
1178 0 24 II 1000 1707 SU 3.7* I 0020 
1212 OMEIU 239 ? HI O0&O 1755 S 20 * III 0020 
1224 SU 14 * I 0020 1765 COIEU 58 ? III 0020 
1235 CU 15 * HU 0020 1792 C 22 * II - 0020 
1241 CU 74 * In 0020' 1830 S 8.9' 1 0020 

1245 U 36 ? III 0020 1864 U 3.3? A 0040 
1251 U 26 ? H1 0020 1867 MCIIEU 117 ? r 0020 
1252 SU, 18 ' Z 0020 1916 S- 2.9* A 0020 
1263. C 42 i 0020 1931 C 12 * II 0020 
1260 C 78 ITV 0020- 1952 0 49 * III 0020 
1268 CMEU. 92? HI 0020 2000 S 15 * I 0040 
1275 - c 40 * II 0020 2061 CU 9.5* A 0020 
1306 S 36 * 111 0020 2062 U - 0.9 A 2020 
1314 S - 8.5* I 0020 1977RA -SU 2.4* A 0040 
1317 0 58 * Il 0020 -.. 
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tional parameters are given in Table IV. 
The UBV colors fall within the C domain 
of Fig. 6, and the albedo of 0.030 and the 
P~j. of 1.72 also clearly place Fortuna in 
the low-albedo C class. Of the spectre-
photometric parameters, REND allows 
either C or S, RIB allows 0, TW, or F, and 
the absence of the pyroxene absorption 
band '(DEPTH = 1.00) serves only to 
exclude membership in class R. Thus the 
classification would be ambiguous if only 
the spectrophotometric parameters were 
available, but is clearly tied down by both 
UBV colors and the albedo-sensitive 
observations. 

As an example of an S object, Table IV 
also lists the parameters for 5 Astraea. This 
classification could be made unambiguously 
from UBV colors alone or from R/B alone. 
The other parameters are consistent with 
the S classification, but none c6sidered 
alone is sufficient; the albedo allows types 
S or M, P.i. and DEPTH allow S or R, 
and BEND any type except R. For the S 
asteroids, UBV colors are particularly 
diagnostic. 

Asteroid 44 Nysa in Table IV is a proto-
type E object. The high albedo and small 
Pmn suggest E but by themselves are also 
consistent with our limits for class 1.. The 
UBV colors fall within the ambiguous 

domain allowing C, M, E, or U but not S 
or R. Thus both color and albedo data are 
required to place an object uniquely in 
class E, and the only proven E objects are 
44 Nysa, 64 Angelina, and 434 Hungaria. 

Perhaps the most prominent example of 
an unclassifiable asteroid is 4 Vesta. In 
Table IV the relatively high albedo allows 
classes R. or (just barely) S or M, but the 
very unusual Pmin of 0.55 excludes types 
S and M. The spectrophotometric parame­
ters BEND and R/B exclude type R, how­
ever, and the UBV colors fall outside the 
domains of any of the recognized classes. 
Thus Vesta can be classified only as U. 

Summary of Results 

In Table II we identify 190 C objects, 
141 of the S type, 13 of type I, 3 of type E, 
and 3 of type R. The classification U is 
obtained for 55 objects or 11% of the 
sample, while 118, or 23%, receive ambig­
uous classifications. The latter are princi­
pally of three types: designations CMEU, 
CEU, MEU, EU, MU, or RU for 80 objects, 
from UBV data or incomplete spectro­
photometry alone; SU or CU from UBV 
results on the fringes of the S and C domains 
(26 objects) and SM or SMR from albedo 
data without accompanying colors or spec-

TABLE III 
ORBITAL ELEMENT ZONES 

Zone Description Criteria Number in Number 
TRIAD classified 

A Apollo-Amor q a(1 - e) < 1. 6 5 48 13 
HIU flungarias 1.82 < a< 2 .00 e < 0.15 i > 16' 16 4 
I Mainbelt 2.06 a<2.50 e<0.35 i<830 532 105 
II Mainbelt 2 .50<a< 2 .82 e<0.35 i<30' 572 200 

° 
III Main belt 2.82 5 a < 3.27 e:<0.35 i< 30 769 159
 
IV Main belt 3. 2 7<a<3.65 e<0.35 i<30' 46 19 
HI Hildas 3.80<a<4.20 e<0.35 i<30' 27 8 
T Trojans 5.06 < a < 5.30 no test no test 21 11 
Z Exceptional -None of the above- 16 4 

Tests are made for zone membership in the order indicated, using the osculating elements seminajor 
axis a, eccentricity e, and inclination i. Divisions in the main belt correspond to Kirkwood gaps at the J, 
*. and I resonances with respect to the motion of Jupiter. 

http:3.80<a<4.20
http:27<a<3.65
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TABLE IV 
FOuR EXALPLES OF CLAS IMCATION 

Asteroid Type 

B-V U-B 

19 Fortuna C 0.75 0.38 
" . S 

M 
E . 

5 Astraea C 
S 0.83 0.38 
M 
E 

R 


44 Nysa C 0.71 0.26 
S 
M 0.71 0.26 
E L 0.71 0.26 
" -0.467 


.0.144Vesta C 
S 
Mi 
E 
R 

(U) 0.78 0.48 


trophotometry (7 objects). In each case 
future observations by a complementary 
technique will usually suffice to permit an 
unambiguous classification, 

The soundness of our classification ap-
proach is demonstrated by the fact that, 
of 163 asteroids obserVed by both albedo-
sensitive and spectrally sensitive tech-
niques, no ambiguous, classifications are 
returned, and only 21 objects are classified 
U. However, we should note that we are 
subject to d limitation common to any 
classification scheme applied to inhomoge-
neous data: Objects are likely to be assigned 
to familiar types (C, S; M) when relatively 
few parameters are available, but subse­
quently recognized as 'unusual after more 

complete study. Foi example, the U objects 
.51 Nemausa, 85 Io,and 654 Zelinda would 
be allowed as C types, and So Sappho, 
887 Alinda, and 1685 Toro as S objects, 

Parameters
 

BEND RIB DEPTH pr Ptn Type 

0.21 
0.21 

1.09 

1.09 
1.09 

1.00 
1.00 
1.00 
1.00 

0.03 "4.72 V 

0.10 
0.10 1.63 0.84 0.144 0.70 -V 
0.10 0.144 
0.10 

0.84. 0.70 

0.467 0.31 V 
0.31"
 

1.33 
0.14 0.225 

1.33 0.226 
0.14 1.33 

0.74 0.226 0.55
 
__ ­

except for the spectrophotometric parame­
ter BEYD. Since BEND is available for 
only 20% of the asteroids classified here, 
there are certain to be additional such 
examples among the apparently secure 
classifications. 

In the above statistics the C objects are 
much underrepresented, of course, because 
of their low albedos and generally larger 
semimajor axes. The E and R types, how­
ever, must be genuinely quite rare. Zellner 
and Bowell (1977) have noted that in the 
whole main belt there appear, to be only 
two E objects with diameters >50 km. 
Additional candidates in Table II are 

asteroids 59,-87, 216, 250, 259, and 690, all 

observed by UBV photometry alone. Most 
of them are probably of types C or M, but 
all should be prime candidates for future 
polarimetry or thermal radiometry. 
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Unusual Asteroids 

Several unusual objects deserve special 
comment. Objects 4 Vesta, 349 Dembow-
ska, 69 Hesperia, 785 Zwetana, and 803 
Benkoela are truly exceptional, and recog-
nizable as such by almost any technique. 
For _the latter three, the mineralogy re-
mains to be inferred, and they may ulti-
mately serve as prototypes for new classes. 
In our sample, asteroids 149 Medusa, 
1023 Thomana, and 1326 Losaka may 
possibly be of the Vesta type, in which case 
all three would have diameters <25 km; 
the tiny Apollo object 1566 Icarus, not 
observed since 1968 (Gehrels el al., 1970), 
also shows some similarities to Vesta. 

Pallas is C-like in some respects and M-
like in others, but clearly unclassifiable, 
Asteroid 1 Ceres is loosely describable as 
a C-type, but has a rather high albedo 
(0.054, versus 0.03-0.04 for typical 0 
objects) and an unusual spectrum with un-
commonly reddish U-B and uncommonly 
neutral RIB colors. Thus Ceres is now 
formally designated as a U object, and 
should not in any case be thought of as a 
prototype for the C class. Among the six 
largest asteroids (Morrison, 1977b), Ceres, 
Pallas, and Vesta are unclassifiable, 704 
Interamnia has unique polarimetric prop-
erties not reflected in our classification 
parameters (Zellner and Gradie, 1976), 
and 31 Euphrosyne has been observed only 
in P.in, with Pallas-like results. Thus the 
true C-dominated a'steroid population may 
be regarded as involving asteroids of about 
300 kmn and smaller. 

An extensive survey of faint asteroids in 
the Hirayama familie 2 (Eos) and 3 
(Koronis) by UBV and radiometric tech-
niques is in progress (Gradie and Zellner, 
1977; Gradi et al., 1977). The data are for 
the most part not yet in TRIAD, hence not 
included in our figures and tables.2 The 

2Several Eos and Xcronis objects omitted in this 
paper are included in Table I of Zellner and Bowell 
(1977). They also listed data for asteroids 154, 372, 

OF ASTEROIDS 

Koronis objects seem to belong mostly, if 
not exclusively, to a subset of the S type.
The Eos asteroids are more problematical, 

"and form a distinct population for which 
our taxonomic system seems' poorly de­
signed. In albedo and color theyange from 
the C to the S domains, though generally 
outside 'the main body of either, as shown 
by the ellipse in Fig. 1. The spectrum of 
221 Eos itself observed by MeCord and 
Chapman (1975b) is unusual and leads to 
a U or "unclassifiable" designation. 

V. COMPARISON OF ASTEROID
 
CLASSIFICATION SYSTEMS
 

Taxonomy-or classification based upon 
observational criteria-is an important 
phase of many young sciences. Classifica­
tion schemes aid our understanding of the 
physical processes that give rise to observed 
differences. As in any taxonomy, the num­
her of classes and subclasses into which the 
entire sample is divided is largely arbitrary.' 
Biologists still debate the widely used 
biological taxonomy. Sometimes, when' 
there is partial understanding of the nature 
and origin of different classes, it is difficult 
to keep taxonomy from being influenced 
by physical hypotheses; while an "intelli­
gent" taxonomy based upon the best avail­
able models can be particularly helpful for 
elucidating those models, it can also be 
misleading if the models are incorrect. In 
this section we discuss relations to otlier 
classification systems and some of the 
problems related to interpretation of aster­
oid mineralogical assemblages. 

It has been recognized for some years 
(e.g., Hapke, 1971) that there are several 
clumps in plots for asteroids of U-B versus 
B-V. The first extensive asteroid taxonomy 
was based on narrowband spectropho­
tometry by Chapman (1971) and Chapman 
et al._(1973). That work not only preceded 

560, 579, 675, 779, 801, and 1636, which are still in 
a preliminary stage of reduction and are not yet in -

TRIAD or this paper. 

http:0.03-0.04
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any substantial progress in understanding 
-the mineralogical implications of the spec-
tra, but also preceded recognition of the 
common occurrence of the dark asteroids 
now called "C-types." Three broad groups 
were defined, primarily in terms of overall 
color such as the R/B parameter used in 
the present paper. The H-class asteroids 
(R for "reddish," not related to our present, 
,much redder R type) were divided into 
four groups, two of which were further sub-
divided into five subgroups; all asteroids 
formerly designated. "R" fall into the 
present broad S class. Two other classes 
(M for medium or intermediate color and 
F for flat or neutral-colored spectrum) were 
each subdivided into four groups; into 
these sparsely populated groups were placed 
the several known examples of what we 
now call C and M asteroids, and a couple 
of anomalous objects such as Vesta. This 
system has not been used subsequently and 
is now of purely historical interest, 

In subsequent papers, McCord and 
Chapman (1975a,b) attempted.to recognize 
all "significantly different" spectral types 
among the 93 good quality spectra from 
their sample of 98 asteroids. Within the 
observational errors, 34 different spectra 
were recognized. Some of the differences are 
quite minor and bould be due to slightly 
different proportions of the same suite of 
major minerals (e.g., iron, pyroxene, and 
olivine): 

More recently, there have been two 
attempts to classify asteroid spectra by 
considering the mineralogically significant 
elements of the spectra, that is, by explicitly 
incorporating the compositional interpreta-
tions. Chapman (1976) grouped the 34 
distinct spectral types distinguished by 
Mcord and Chapman (1975a,b) into 13 
broader groups, most of which have a high 
degree of interpreted mineralogical com-
monality. For instance, two of the McCord-
Chapman spectral types are interpreted as 
being due chiefly to the signatures of 
nickel-iron plus olivine while another two 

were-grouped.as-both-suggesting-G2 -(CM) 
carbonaceous chondritic composition. 
Several of the 13 groups could not be readily 
interpreted by Chapman, so they were 
described with other descriptive terms, such 
as "Trojans," "intermediate," or "lunar­
soil-like" (the latter, shown in Table V 
merely by "?," does not necessarily indicate 
a compositional similarity with the Moon). 

Even more recently, Gaffey and McCord 
(1977a,b) have developed a separate classi­
fication for 62 of the McCord-Chapman 
spectra, emphasizing interpretations of 
mineralogical assemblages. Fifteen groups 
were defined, mostly consisting of sub­
divisions of several broader groups sym­
bolized by R (for moderately reddish 
spectra, both with and without prominent 
1.0-pm absorption features), T (for transi­
tion), and F (for flat). 

We will now compare the Chapman and 
Gaffey-McCord classification schemes with 
each other and with the CSM taxonomy 

of the present paper. Thereby we may gain 
an appreciation for the present state of the 
art of asteroid mineralogical interpretation 
and for the strengths and weaknesses of 
the CSM taxonomy. Reference is made to 
Table V, which is arranged, very roughly, 
from neutral spectra to very red spectra. -

The first column lists type asteroids for 
each of the 34 McCord-Chapman spectral 
types (those sampled early in the observing 
program were first classified by Chapman 
et al., 1973, by the letters shown in quotes 
to the left). The brackets group the 34 
spectral types into the 13 mineralogical 
groupings of Chapman (1976) (column 2). 
Correspondihg groups of Gaffey and 
McCord (1977a,b) are shown in paren­
theses. Column 3 illustrates the corre­
spondence between the groupings of column 
2 and the CSM taxonomy of the present 
paper. The final columns give the mean 
RIB, B-V, and geometri6 albedos for each 
of the 34 types represented in the TRIAD 
file by at least two asteroids or, if in 
Darentheses, by one asteroid. 

http:attempted.to
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TABLE V 

COMPARISON or TAXONOMIS 

Type Mineralogical class This N Average parameters 
Example paper 

RIB B-V pr 

213 1 (1.04) - ­

2 2 1.01 0.64 (0.08) 
10 * 3 1.09 0.67 0.04 

"F" 88 (F+'TB) 1 (1.14) (0.67) (0.045) 
511 1.19 (0.71) 0.03 

-1 JC 2 1.03 0.74 0.04 
rM2" C2 16 1.13 0.04824 0.71 

51 (TA + TO) 6 1.25 0.75 (0.05) 

11,l" -16 
 i1 (1.21) (0.70) (0.09) 
21 Metal or enstatite chon. (RR) .x4 3 1.10 0.71 0.11 
22 2 1.27 0.71 0.09 

48 It) 1 (1.20) (073) ­
,166 Interediate (various T 3 1.41 0.74 (0.03) 

64 Ahondte (oucrite) (U) 1 (1.33) (0.78) (0:23) 
69 1 (1.31) (0.69) ­

624 1 Trojan 2 1.45 0.77 0,.04 

9 } Metal-rich fplus silicate?] 8 1.57 0.85 0.13 
"'Rl" 12 (RF) 4 0.871,63 Q.13 

"l 7 .Metal + olivine (RA-I) 3 1.58 0.83 0.15 
39 .12 1.82 0.92 0.15 

-"tRBG" 29 1 (1.41) (0.84) (0.14) 

""R3A, B" 6 Metal plus pyroxene mostly 3 1.47 0.83 (0.10) 
3 (RA-2 + TE) 8 10 1.62 0.85 0.14 

230 1 (1.51) (0.87) (0.10) 
25 2 1.79 0.91 0.15 

89 1 3 1.51 0.85 0.12 
5 L Pyroxene-rie plus metal 1 (1.63) (0.83) (0.14) 

63 (RA-) 1 (2.07) (0.91) (0.13)
446 1 (2.64) - ­

8 Metal-poor, opaque-poor 1 (1.79) (0.88) (0.14) 
165 M(various) U) .1 (1.70) (0.88) ­

349 -,1 "(1.72) (0.97) (0.26) 

:170 7? 1 (1.70) - ­

80 earb. ?]chon. 3 (TD) (U) 2 1.84 0.90 0.10 
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In general there is an excellent agree-
ment betweem the Chapman antl Gaffey-
McCord groupings. Usually the rather 
minor differences are due to somewhat noisy 
data or to spectra falling near the bound-
aries of the defined groups. Several of the 
classifications require discussion, however. 
First, Gaffey and McCord have placed four 
of thasteroids in Chapman's 3 Juno group 
in a "TE" group, whereas the remainder 
are called "RA." Chapman can perceive 
little detectable differences between the 
"TE" and "HA" asteroids and interprets 
all to be metkl plus pyroxene assemblages. 
Gaffey agrees that the "RA" group con-
sists of metal plus pyroxene (with perhaps 
minor olivine), but'has a radically different 
interpretation for the "TE" group: type 3 
carbonaceous chondrites. The distinction, 
if valid, would be especially important 
cosmochemically inasmuch as the metal-
pyroxene assemblages imply geochemical 
differentiation whereas the C3 meteorites 

- are deemed to be unaltered primitive 
condensates. We are doubtful about the 

validity of the "TE" designation for- two 

reasons: first, there appears to be no 

distinction among other measured parame-

ters (e.g., albedo) for the four "TE" 

-asteroids and other S-type asteoids, in our 

taxonomy. Second, several "TE" asteroids 

are known to have polarimetric properties 

quite different from C3 chondrites (Zeiner 

et al., 1977c). This example provides a 

general warning about the subtleties of 

interpreting asteroid spectra in terms of 

mineralogy and about the insensitivity of 

even reasonably precise classification 

schemes, not to mention broader schemes 

-such as our own, to the possibility 

.of distinctions of major geochemical 
importance. . 

Another potential "problem concerns 
Asteroids of possible metallic composition.-

- Our 1M-type is interpreted by both Chap-
man and by Gaffey-McCord as being either 
metal or metal, plus neutral silicate (e.g., 
enstatite chondrites). For both interprets-

tions, nickel-iron is the spectrally dominant 
component, but there is a great geochemical 
difference between the two. Nickel-iron 
asteroids almost certainly result from ther­
mal processes and extensive geochemical 
separation, whereas enstatite chondrites 
arb unaltered nebular condensates. A cdim­
plicating factor is that Gaffey interprets 
another group of asteroids (those typified 
by 9 Metis in Chapman's classification, and 
included as S objects herein) as of iron or 
enstatite-chondritie composition. The spec­
tra of these asteroids are clearly dominated 
by the signature of nickel-iron, but there 
is fa pronounced flattening in the infrared. 
Chapman interprets the flattening as being 
caused by a broad, weak absorption feature 
due to either olivine or olivine-plus­
pyroxene. Gaffey and McCord prefer inter­
pretations avoiding olivine or pyroxene. If 
Gaffey and McCord are right, then aster­
oids of nickel-iron or ebstatite-chondrite 
composition are distributed among both 
our M and S types, in spite of a wide gap 
in UBV colors between M and S objects. 

A final question concerns the composition 
of the several distinct types of C asteroids. 
Among the asteroids classified C in this 
paper, Gaffey--IAcCord distinguish four 
types and Chapman distinguishes two 
(Chapman's C2-typc comprises Gaffey-
McCord's types TA and TC while Chap­
man's C-type comprises Gaffey-McCord's 
types F and TB). Gaffey and McCord 
interpret their three types TA, TB, and TC 
as being analogous to C2 (CM) carbon­
aceous chondritic meteorites, among the 
most primitive of meteorites. But the 
F-type (most of Chapman's C*-type) is 
interpreted as a thermally evolved mineral 
assemblage-either a carbonaceous chon­
dritc of high metamorphic grade (C4, like 
the meteorite Karoonda) or even as an 
opaque-rich basalt. Interpretation of C*­
type spectra in terms of thermal evolution 
has been dealt a blow by Lebofsky (1977) 
who has measured a substantial absorption 
band near 3pm.due to water of hydration 
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in the spectrum of- Ceres; this seems in- Some of the discussions by Chapman (1976). 
consistent with both C4 meteorites and and most of those by Gaffey and McCord 
basalts. It remains an open question what (1977a,b) involve raw data, auncorrected 
is-responsible for the significant spectral for observational selection. Through its 
differences between the C*- and C2-type strict accounting of albedos,, the CSM 
spectra. taxonomy permits a reasonable correction 

The foregoing discussion- indicates the for bias to be applied to the available 
potential difficulties with using the CSM statistics, such as accomplished by CMZ 
taxonomy carelessly. It remains possible (1975), Morrison (1977b), and Zellner and. 
that the straightforward interpretation of Bowell (1977). Through use of the albedos ­
C-types as carbonaceous chondrites, M- tabulated in Table V, it would be possible 
types as metallic objects, and S-types as to apply such corrections to any of the 
stony-irons is basically correct. But in the mineralogical classes of McCord and Chap­
worst possible case, it may turn out that man, Chapman, or Gaffey and McCord. 
there is substantial heterogeneity in the Observational data on asteroids are con­
cosmochcmically important characteristics tinuing to accumulate. iioreover spectre­
within the broad 0, S, and AI groups and photometric measurements made during 
that the mnemonics associated with the several previous years are being reduced, 
letters C, S, and M may be misleading. which will remove much of the present 

The CSM taxonomy has certain strengths, imbalance in the number of asteroids for 
however, which might be incorporated into 
subsequent attempts to classify asteroids 

is available compared with other parameters.ineralogieally. The CSMI taxonomy 

strongly constrained by albedo, a parame- In about a year, sufficient data should be 

ter given great weight neither by Chapman available to warrant a major analysis using 

nor by Gaffey and MeCord. The albedos the full power of multivariate, cluster 
tabulated in the right-hand column of analysis techniques, the utility of which 
Table V indicate the consistency of the has already been demonstrated for a subset 
CSM taxonomy. Individual albedos among of the CMZ asteroid sample by Pike (1978). 
asteroids belonging to each one of the 34 
groups distinguished by McCord and Chap- AO-CKNOWLEDGMENTS 
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We report new visual and 20-gin photometry obtained when U~ektor was seen nearly along 
its rotation axis. The visual amplitude was near its minimum, only 0.06 mag, confirming the 
Dunlip-Gehrels (199) rotation model. The new observations confirm and refine the large 
size and low albedo assigned by Cruikshank (1977) from observations of the opposite rotation 
pole. The albedo of this pole is found to be pv = 0.022 = 0.003, overlapping the uncertainty 
of Cruikshank's 0.03 value for the opposite pole. The low albedo makes lektor roughly three 
times bigger than estimates of a few years ago. The light variations are interoreted as due to 
elongated shape. If this is correct, Hektor is both the largest'and most elongated known Trojan, 
as well as being the most elongated known asteroid of its size. From considerations of Trojans' 
peculiar properties, we propose that Hektor is.a somewhat dumbbell-shaped object roughly 
150 X 300 km in size, resulting from partial coalescence of two primitive spheroidal plane-

Stesimals during a relatively lowLspeed collision in the Trojan Lagrangian clotid, with energy­
too low for complete disruption. Calculations supporting this model indicate that Trojans may 
be less altered by collisions than belt asteroids. Observations in 1979 and 1980 can help test this 
model. A note added on July 17, 1978 relates our result to recent evidence of possible binary 
asteroid pairs, which may also arise from early low-velocity asteroid-asteroid interactions. 

INTRODUCTION 	 model with this extreme shape and un-

Study of'the visual photometry of Trojan 	 expected orientation was derived to fit the 
photometric lightcurves obtained by Dun­asteroid 624 Hektor by Dunlap and Gehrels 

(1969) led to a geometric model of this body lap and Gehrels at a number of aspect 

characterized by a uniform-albedo circular' angles, including pole-on and equator-on 
-A.linder with hemispherical caps on the aspects. Seen equator-on, the visual bright­

ends, rotating about an axis perpendicular ness varies during the asteroid's rotation by 

,to the long axis of the cylinder with a rota- a factor of 3.1 (1.23 mag), while the varia­

tion seen when viewing along rotation axistion period of 6h5521s115, and with the 
txotational axis only 10 ° =1= 2' off the 	 is 0.1 mag or less (Dunlap and Gehrels, 

Eqs. 11 and 12). By assuming the albedoecliptic plane. The total length of Hektor 
to fit the to be 0.28, Dunlap and Gehrels estimated,derived by Dunlap and Gehrels 

alighteurve is 5.3 R, where R is the radius of R1= 21 km, and deduced shape 42 km 

the cylinder and the hemispherical caps. A thick and 111 km long. 
At Hektor's opposition in 1072, Cruik­

- Guest Observer, Mauna Ken Observatory shank (1977) obtained 10- and 20-pm 

0019-1035/78/0363- 11 1802.00/0 
Copyright @ 1978 by Academic Press, Inc. 

-AII rights of reprduction in any form reserved. 
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radiometry which was combined with succeed in a true test-of albedo patchiness, 
-earlier visual photometry from other although we did obtain nearly simultaneous 
sources (Herget, private cormnunication) -visual and ir-data;. Thus, the test in iteth 
-to-derive the albedo of Hektor, along with four will have to await the larger amplitud6 
albedos of three other Trojans. All four four will have to await the larger amplitudes 
albedos turned out to be much lower than predicted for 1979 or 1980. 
the belt-asteroid values that had been 
assumed, thus increasing the estimate of OBSERVATIONS A2ND REDUCTIONS 
Hektor's size. Cruikshank (1977) rederived 
Hektor's dimensions using the Dunlap- The infrared and visible region photom-
Gehre1s model, giving R = 63 kin, implying etry was obtained with the 2 24-cm telescope 
an object about 126 km thick and 334 km at Manna Iea Observatory, the former on 
long (these values being slightly corrected 11 and 12 February, -and the latter on 13 
following further reduction by DPC in and 14 February 1977. The infrared mea­
1978). surements were made in the way described 

Four factors made us desire new observa- by Cruikshank (1977) using a broadband
 
tions. First, the thermal flux detected in filter with effective wavelength of 20 pm.
 
1972 was only at the limit of measurement. The star a Boo was taken as the primary
 
Second, near-simultaneous visual and flux standard for which m20 = 3.32 (Simon
 
thermal infrared measures of one side of et al., 1972). Both nights when Hektor was
 
Hektor were desirable to allow the first measured in the infrared were of good
 
albedo determination actually derived for quality, with 20-pm extinction -0.3 mag/
 

Sa -singlepolarface of Hektor. Third, during air mass. 
the 1972 observations, Cruikshank visually The visible region photometry was ob­
monitored Hektor, which was predicted to tained with an area-scanning phdtometer 
show only an 0.l-rag variation due to its on loan from Dr. K. Rakos of Vienna Ob­
predicted pole-on aspect, and suspected a servatory. We used a standard broadband 
larger variation by as .much as 0.5 mag V filter with the GaAs phototube and a 
raising a possible question about- the circular aperture of diameter 9.5 arcsec. 
Dunlap-Gehrels model of Hektor's rotation The photometer aperture scans in a linear 
and pole orientation. Fourth, we hoped to pattern from the sky across the object and 
make an unambiguous test of whether the on to the sky the output being divided into 
light variations of Hektor are due to 100 channels which are coadded and stored 
irregular shape, in which case the two in a multichannel analyzer. A typical ob­
lighteurves would be correlated, or albedo servation consisted of 120 coadded scans. 
-variation yielding anticorrelated light- Of the 100 channels, about 30 on the sky 
curves. - and 50 on the asteroid (or comparison star) 

Regarding items one and two, we im- were averaged to give the signal. In the 
proved on the thermal flux measurement absence of convenient faint standard stars, 
and achieved our goal of deriving a con- we used stars of m, = 5.6 to 6.6 (HR 5165,' 
sistent albedo for one face of Hektor. Re- 5214, and 5343) observed with a calibrated ­

garding item three, our new observations neutral 'density filter (corresponding to 
confirm Dunlap and Gehrels' rotation 7.13 mag) as primary standards. A faint 
model and their prediction of a 1977 view field star of brightness about three times ­

along the rotation -axis. Consequently, that of Hektor was used as a local standard 
regarding item four, the amplitude was too for removal of air-mass and system drift 
small to allow accurate detection of the effects, both of which were small. We did 
infrared light variations. We thus did fiot not compute transformation coefficients 
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Thi'. 1. Comparison of visual (m) and thermal infrared 2,) photometry of Trojan asteroid(mn
624 Hektor, reduced to the same epoch. Because the object was seen nearly pole-on, the amplitude 
was reduced to 0.06 mag, too small to be measured in the infrared. For infrared data, 11 February 
is represented by squares and 12 February is represented by circles. 

for the V filter. Since we used comparison the procedure and assumptions made by 
stars for which UBV photometry is accu- Cruikshank (1977); a detailed explanation 
rately known, the system differences are is found in Jones and -Morrison (1974) and 
expected to be negligible. Morrison (1976). Unit emissivity was 

Figure 1 is a comparison of Rektor's assumed, and the phase integral, q, was 
visual and infrared lightcurves, reduced to taken as 0.6, a value appropriate for dark 
the same epoch. The visible lightcurve is bodies without atmospheres. In keeping 
based on the 14 February data only, clearly with the earlier reductions, we -assumed 
defining the two maxima. The solid line that the ratio of the bolometric geometric 
through these data points was drawn by albedo to the visual geometric albedo, 
hand on the assumption that the Dunlap- p/pv = 1.0. Spectral observations [such 
Gehrels period of 6h55 - is correct. Because as those of 3fcCord and Chapman (1975)] 
Rektor was viewed nearly pole-on, the may allow future refinement of the last 
amplitude is only about 0.06 mag. The estimate. 
vertical bar represents one sigma uncer- Hektor was very near opposition (7 
tinty, about 0.02 mag. From the epoch February 1977) and the solar phase angle 
established by the photometry of 14 at the time of the photometry/radiometrt 
TFebruary and the Dunlap-Gehrels period, was.2.6 to 3.10; no correction to M2 0 or mV 
the infrared data were corrected for rotation was made for phase angle. The distance of 
-phase and plotted accordingly Each 20-pm Hektor to the Sun was 5-13 AU and to the 
point corresponds to 40 rin of integration, Earth was 4.07 AU. 
except for two points which represent 30 The geometric albedo of Hektor corn­
rin each. The error in the infrared, points puted from my and M20 is pv = 0.022 
is typically 4-0.1 mag or less. - ±- 0.003. We used the mean values my 

In computing the radius and 'geometric = 14.63 :- 0.03 and tnso - 0.48 ±- 0.16, 
albedo of Hektor from the infrared and calculated from the range of values for both 
visible region photometry, we have followed quantities shown in Fig. 1. The uncertainty 
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-inpv does not include uncertainties in the------------- .-­

-dsual magnitude of tb-e Sun, which was
 
taken as -26.77, but does include the range
 
of uncertainties in my and m 0. The radius a
 
of a sphere having the same surface area as -

Hektor is thus ? = 108 := 10 km. In the 0­

Dunlap-Gehrels model R = 61 km and 
*oo0­the total length of Hektor is about 325 km. 

The sensitivity of the computed albedo % ­

and equivalent radius to the assumed or 
measured values of the various parameters a A 
entering into the 'calculation has been 
discussed by -Morrison (1976). The 

hotometric/radiometric radius given here 
--is not highly sensitive to the assumed values -­

-of q and p/pv because the geometric albedo 
is very low. The computation does assume 

° * a spherical body with the surface tempera-


ture distribution corresponding to a spher-


ical geometry in instantaneous thermal o 0 

"equilibrium with the solar insolation, and a ­

while thermal equilibrium is virtually 0 o - : ­

aissured by the near polar view obtained in 0 C 

1977, the assumption of sphericity is clearly * 


invalid. We retain the result of this first- - .
 

order calculation, however, because of the
 
probable greater significance of the effect g S
 
of the uncertainty of the emissivity phase 
 -0 

function. 0.0a Q 

DISCUSSION OF THE OBSERVATIONS S ­

- A feasible alternative to the Dunlap- a 
-Geb]rels model of Hektor's highly irregular t 
shaie is a model in which the large variation • " 
in visible brightness at some aspects results ­

from a strongly asymmetric albedo distri-
bution across the surface of a relatively 0
 
spherical body. A precedent for this pro-

posal exists-Iapetus, an outer satellite of 0. 

Saturn, is a roughly spherical body having * *• 


a bright trailing hemisphere and a. dark * 8.
 
leading hemisphere with a distinct bound-

ary between (Murphy e al., 1972; Morrison _ 

et al., 1975). The disparity in albedo of the 0 

hemispheres [0.35 and 0.07 (Morrison et al., 2 2 
"1975)]and the syncbronism of the rotation _ _ 

-and revolution periods of Iapetus lead to - - .-.-
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H) . XARTMANN AND 

TABLE I 

LARGE TROJAN ASTEROIDS IN ORDER 
OF ESTIMATED SIZE 

Name - Radius ( Width of 

angular 
Mes- Est.- excursion 
sued- [max. 

- distance 
fromJupiter 

distance] 

" (Ohebotarev 
. al., 1974) 

624 Hektor 105 (81) 34 
911 Agamemnon 74 32 ­

1437 Diomedes 64 53 
-617 Patroclus 60 (64) 0 
1172 Aneas B.0 (59) 18 
588 Achilles 59 11 

1143 Odysseus 59 18 
669 Nestor 51 18 

1208 Troilus .49 21 
1583 Antilochus 49 47 
884 Priam 47' 19 

1173 Anchises 40 (45) 46 
1404 Ajax 39 .35 
1749 Telemon 25 24 
1647 Menelaus 22 13 

Preseat work and Cruikshank (1977). 
"Calculated from g magnitudes listed in 1977 

Ephemerides of Minor planets, scaled to four 
measured Trojan asteroids, with scaling coefficient 
weighted toward three smaller "normal" Trojans. 
Thus, low albedos of about 0.02 are assumed for 
all Trojans. 

variations in mv of some 2.1 mag (Iorrison 
et al., 1975). 

Mklurphy et al. (1972) and Morrison e al. 
(1975) showed that infrared and visible 
fluxes of Iapetus are anticorrelated, thus 
precluding an irregular shape as the cause 
of the large variation in Inv. 

-In 'the case of Hektor, simultaneous 
visual and thermal infrared lightcurves 
have not been obtained for similar analysis, 
to discriminate shape from albedo as the 
major factor in the brightness vhriations. 
As shown in Fig. 1, our own 1977 view was 
so nearly along the rotation axis that the 
thermal or infrared variation was below the 

- 0106 
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observational .precision which was about 
±1:0.1 mag. Thus, further near-simultaneous 
infrared and visible observations should be 

made during the 1979 or 1980 apparitions 

of Hektor, when the amplitudes will be 
closer to their 1.2-mag extreme. 

In spite of the absence of definitive pro6f 
of shape as the main factor in Hektor's light 
variations, several facts argue in this 
direction. First, our new pole-on measure­

ments occurred at the pole opposita to the­
one measured by Cruikshank in 1972, but 
gave essentially the same values of sv andR. Second, Gehrels' lightcurves taken 

nearly perpendicular to the polar axis show 
strong symmetry in the shape of the two 
lightcurve lobes. Both these observations 
preclude strong patclhiness. Albedo varia­
tions sufficient to explain the light variation 

would have to be'both extreme and sur­
prisingly regular, one hemisphere having 
several times the albedo of the other with a 
rather sharp boundary along a longitudinal 
meridian. Furthermore, tie mechanisms 
s 

suggested to explain the Iapetus case, which 
rely on Iapetus's synchronous tidal lock 
with Saturn (Soter, Cornell Satellite Con­
ference, verbal' presentation, 1974), are 
totally inadequate for Hektor. No likely 

mechanism is known that would make two 
hemispheres of a spherical Hektor markedly 
different in albedo, while leaving the polar­

view albedos nearly the same. The main 
cause of Hektor's light variation is thus 
probably an elongated shape. 

Nonetheless, slight albedo variations or 
surface irregularities on Hektor are not 
precluded, as shown in Fig. 2. Here, both 
nights of visual photometry are combined 
and repeated in 1.5 rotational cycles, so 
that (after appropriate reduction to the 
same epoch) a complete lightcurve is built 
up from data on both nights. Both this 
curve.and the single-night data in.Fig. 1 
suggest that one maximum is 'slightly 
brighter than the other by not more than 
0.02 mag. Although this is about the size of 
the one-sigma error, it is plausible that the 
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-lightcurve-of the elongated 6bject is modu- r = 85, 40 kin, measured by Cruiksliank, 
lated by albedo patchiness or variations in 1977). It is also much more elongated than 
surface topography (such as hilly or inclined other measured Trojans; Dunlap and 
flat areas) that might cause variations in Gehrels report lightcurve amplitude fac­
reflected light. Similarly, Dunlap and tors of only 1.2 to 1.4 for 911 Agamemnon 
Gehrels (1969) find slight color differences and 1437 Diomedes. Degewij (private­
in views of different sides of Hektor, but communication and 1973) reports that five 
note that their smallness argues against still smaller Trojans exhibit similarly small 
major albedo variation as an explanation amplitudes, generally with amplitude fag'­
of the lighteurve. tors <1.2. Hektor is also much more 

In summary, the new observations re- irregular than any other belt asteroids of 
affirm that 620 Hektor is a highly unusual its size; of the first 25 numbered belt 
object. Its light variations can be as great asteroids, Degewij (1977) finds none with 
as a factor of 3.1 (Dunlap and Gehrels, amplitudes above about 1.5, and about 
1969), probably because of an extraordinary 96% with amplitudes < 1.3. Other asteroids 
elongated shape. The amplitude of observed known for irregular shape are generally 
variations can change from the factor of much smaller and in eccentric orbits [e.g., 
3.1 to a factor of only 1.06 because the pole Earth-crossers 433 Eros, -13 X 15 X 36 
of rotation lies close to the p plane of the kin; and 1620 Geographos, 1.5 X 4.0 km 
ecliptic. With its equivalent mean radius f (Zellner, -1976; Dunlap, 1971, 1974; 
of about 108 km, Hektor is -considerably Degewij, 1977)]. Hektor's properties are 
larger than the next largest known Trojans, so unusual that their proper ihterpretation 
such as 911 Agamemnon, 1437 Diomedes, should tell us interesting facts about the 
-617 Patroclus, or 1172 Aneas (radii r = 74, nature of planetary bodies. 
'64, 60, and 60 km, respectively). Further 
size comparisons are given in Table I. WORKING HYPOTHESIS ON NATURE 

Hektor is also substantially bigger than the AND ORIGIN OF HEKTOR 

neighboring bodies of similar low albedo, Irregularly-shaped asteroids in the main 
Jupiter's outer satellites J6 and J7 (radii belt are often assumed to be fragments of 

-. TABLE II 

COMPARISON oF SHUAEs: Rocs FRAGIENTS AND 624 HESTOR 

Bodies COollision" Lighteurve amplitudes Reference 

velocity (ratio b/a) 

- -. 
Aver-age "-

Percentile 
"___ _ __ 

- 10th 1st 

719-cm-scale igneous 2.6, 3.7 km/sec 0.73 -0.52 ,-0.37 Fujiwara etal. (1977) 
-rock fragments 

46-cm-scale igneous 26 to 50 rn/se 0.71 0.54 <0.33 Hartmann (1977, un­

rock fragments 	 published experi­
mental data), 
Fig: 3 

Hektor 0.32 Dunlap and Gehrels 
- solution for view in 

equatorial plane 
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5]. M e .nd. i 6Me.n 7 explanation of Hektor's lightcurve, Cook
(1971) suggested it might be a coorbiting 

*. .binary pair of asteroids or a contact binary" 
" (Fig. 4), arguing that rotational stresses are 

ttoo great to permit stable rotation in 
< Hektor's period of m with a Dunlap­6 h5 5 6f ker _F Gehrels body of meteoritic composition. 
Z HHowever, Hartmann (1971) pointed out 

that Cook had represented meteoritic ma­

r terial by unusually weak meteorites. It now 

j 2 .3 .4 .5 .6 7 8 9 1.0 appears that Cook's argumcnts alone 
EXTREME LIGHT RATIO (B/AI neither rule out nor necessitate a binary 

Fro. 3. Histogram of lighteurve amplitudes for pair or contact binary. Also, Cook's binary 
stably spinning igneous rock fragments generated models, with aspect ratio of only 2.0, fail 
by collisional fragmentation (ratio of axes b/a). to match the 3.1 aspect ratio required by 
Data from experiments on centimeter-cale rocks 
fragmented at velocities 26 to 50 m/sec. Distribution Dunlap and Gehrels observations. 
agrees with results by Fujiwara et al. (1977), and On different grounds-a mixture of 
suggests that shape inferred for tHektor would be cosmogonic, observational, and dynamical 
extreme for a rocky particle produced by collisional considerations-we now suggest a new 
fragmentation (see text and Table I1). working model resembling Cook's contact 

larger bodies, but Hektor is so much larger binary. We suggest that f-ektor could be 
and more irregular than its Trojan corn- a partially coalesced pair of Trojan aster­
panons that it is difficult to picture as one oids which collided with energy too low to 
among many fragments of a still larger cause complete fragmentation, forming a 
parent Trojan. Even if Trojans are frag- dumbbell-shaped object (Fig. 4, bottom). 
ments of some shattered parent, Hektor This niddel pictures the two pre-Hektor 
would be anomalous: a cigar-shaped frag­
ment among a swarm of smaller spheroidal Dunlap and Gehrels model 
fragments. This statement is supported by , k In olbedo) 

" .. Aspect ratio 3 1two experimental studies of shapes of frag-

ments of igneous rock targets broken by binarybntact 
impacts, which show that only of the order (uniform litedo) 
of 1% of the fragments have lightcurve Aspecl ratio 2.0 
amplitudes (defined by b/a axis ratio- for 
stable spin around c axis) as large as . cootesced 
Hektor's. As seen in Table I and Fig. 3, model with 
the two studies show good agreement and albedo vwriatton 
indicate that Hektor (to the extent that Brightness ratio 3.1 
can be judged from lab-scale experiments) 0 f-Phobo 
would make a very unusual fragment. From 00 1o ­

theoretical models of the accretionary Fio. 4. Thies models for Hektor discussed in the 
process, one might expect the largest body literature.Topisgeometri modelderived by Dunlap 
in a swarm to be the most stable against and Oehrels to fit lighteurve. Middle is contact 

collisions with other members and perhaps binary asteroid discussed by Cook (1971) on dy­
namical grounds, but not fitting lighteurve. Bottomrather spherical, as with Ceres, rather than 
is model proposed here of partially colliionally

being -a singularly irregular fragment. A coalesced pair of asteroids, with Phobos shown for 
fragmental origin of Hektor thus seems scale. Albedo brightening in crushed zone allows 
unlikely. To attempt a purely geometric observed brightness ratio. 
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-bodies as being.neighboringirelatively large -and-heating. Forimpacts at 5 to 30 kn/see, 
'primitive objects in the Trojan cloud. In O'Keefe and Ahrens find that typically 
fact, we argue that a swarm of Goldreich- more than 90% of the projectile kinetic 
Ward-like. (1973) initial planetesimals, at energy is lost to heating and plastic work, 
perhaps 40 to 80-km radii caught in- with less than 10% surviving as kinetic 
Lagrangian clouds, might very likely pro- energy of debris. Details of the fracture 
duce asteroids with the properties of process during the collision are difficult to 
Trojans, including a dumbbell-shaped ob- evaluate theoretically or experimentally, 
ject like Hektor. - though much energy is known to be con-

We next examine in more detail the sumed in. widespread fracturing beyond 
-plausibility of certain aspects of this model (underneath) the impact site. NIost crush­
and certain observations that are consistent ing occurs near the impact site; but spalling 
with it. or fracturing may be pronounced at the 
. 1. Plausibil'tyof partialcoalescence of two antiimpact site (as on Phobos?); and.other 

- Trojans. Unlike bodies circulating in the fractures may permeate the otherwise 
belt, where average approach velocities are intact body. The energy losses during 
around 5 km/sec, giving about 10 times collision may thus be sufficient to crush 
the minimum, energy per gram needed to rock locally and at the same time prevent 
fragment igneous rock (Hartmann, 197S), either rebound or complete fracturing of 
Trojans circulate around a Lagrangian the two colliding bodies. 
point which has zero velocity relative to We note that escape velocity of a 70-km 
thecenter of the swarm. This fact, coupled planetesimal is of the order 70 m/sec 
with the lower orbital velocity of the (p - 1.9 g/cm3). It thus appears plausible 
Trojans, increases the probability that a to us that in a certain range of impact 
pair of neighboring Trojans might occasion- speeds just above -escape velocity, two 
ally move with nearly zero relative velocity, 70-km-scale primitive planetesimals could 
thus enabling them to fall together and collide expending energy to crush material 
collide with speed only barely exceeding around the impact site, but without enough 
escape velocity. In this case, any significant energy to disrupt the two bodies into a 
energy loss would prevent rebound and re- cloud of debris. Because insufficient energy 
escape of the masses from each other, re- would remain to separate the two bodies, 
gardless of whether they fragmented or not. the result would be a dumbbell-shaped 
In experiments with rocks and 'rock object with a crushed contact zone, as 
powders, Harlmann (197S) showed that at illustrated in the lowest part of Fig. 4. 
low collision speeds typical of rock rebound 2. Rotational stability. For two spheres 
(less than about 30 m/see) about 14% of in contact, assuming zero bonding strength, 

the collision energy is typically lost (with the minimum stable rotation period (the 
no fracturing occurring) when nonrotating 'period equal to circular coorbital period) is 
clean igneous rock spheres collide with flat p =
 
surfaces;'and that larger fractions (typi­
cally up to 70%) may be lost in spinning = 6.6!/ If2 hr,
 

up slow-rotating irregular colliders. Still where p is the density of the material. This 
more energy is lost if crushable materials gives: 
(such as deep regolith layers or aggregate .o Minimum table P 
structures) are involved. At higher collision 0.91 6 92 (obsered)
velocities, averb.ge energy per gram is 1 6 6
 
sufficient to fracture large amounts of rock, 2 47
 
with still more energy lost to fracturing. 3 jb8
 

http:averb.ge
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Thus, even if two spheroidal Trojans had 
lodged together with negligible bonding 
strength, the observed period would give a 
stable object for any density greater than 
p c 0.9. Spectral observations of Hektor 
(MoCord and Chapman, 1975) are con-
sistent with a stony material, resembling 
many other asteroids in its reflectivity turn-
down in the ultraviolet; the low albedo of 
Hektor (Cruikshank, 1977; this paper) are 
also consistent with stony material. A 
density exceeding unity is reasonable on 
these grounds. If the objects had bonded 
after contact, perhaps by resolidification 
of melted materials (such as minor ices in 
a stony matrix?) stability of the object 
would be even further enhanced. We thus 
conclude that Hektor is rotationally stable 
against disruption [thus answering the 
question raised by Cook (1971)]. 

S. Lightcurve and aspect ratio. The top 
drawing in Fig. 4 shows the shape derived 
by Dunlap and Gehrels from purely geo-
metric considerations, with the length ad-
justed arbitrarily to match the observed 
lightcurve, giving aspect ratio of 3.1 for a 
view in the equatorial plane. The Dunlap-
Gehrels object was assumed to have a 
uniform albedo. The middle drawing in 
Fig. 4 shows the Cook contact binary 
model, which, with uniform albedo, would 
have aspect ratio only 2.0. The lower model 
illustrates our suggestion, applying the 
common circumstance that crushed rock 
impact ejecta is lighter than the impact 
material, as in lunar rays (or alternatively 
that the interior exposed material is 
brighter than the very dark surface). For 
example, the lightcurve amplitude of 3.1 
and the average polar albedo of 0.025 
would be given by covering the middle 40% 
of the polar "side view" with material of 
albedo about 0.041 (still very dark) and 
the outer two hemispheres with material 
of albedo 0.015. This feature of the model 
could be tested by further infrared corn-
parisons of the "side view" and "end view" 
during the next few apparitions, since it 

predicts that the side view should have 
lower temperature and higher mean albedo 
than the end views. 

4. Plausibility of inter-Trojan collisions. 
Van Houten et al. (1970), counted faint 
Trojans and established a size distribution 
down to Trojans of radius r about 7 km 
(corrected for now-known lioN albedos). 
Their published size distribution corre­
sponds to a cumulative frequency propor­
tional to about r2 , similar to that in the 
main belt, thought to have been established 
by collisions. Lab studies and field observa­
tions (Hartmann, 1969) show similar rela­
tions for colisionally fragmented rocks, 
such as an r relationship for rocks after a 

3few collisions and r for rocks after much 
grinding or high energy imput. These results 
suggest that the smaller Trojans owe their 
numbers to collisional evolution, but do not 
establish whether many collisions have 
occurred, or whether the power-law tail- of 
small fragments is the product of only a 
few major collisions. For example, frag­
mentation of a few large objects in an initial 
Gaussian-like size distribution (as might 
result from Goldreich-Ward formation of 
planetesimals) suffices to convert most of 
the size distribution to the power-law form 
(Hartmann, 1968). 

Thus, we now ask whether it is dynami­
cally plausible that at least-a few collisions 
occurred among initial Trojans. To make 
a Hektor-sized object, bodies of r - 74 km 
would be needed- From the Van Houten 
(1970) statistics, we estimate enough mate­
rial in a Trojan cloud to make a number of 
these objects of the order N = 30. From 
particle-in-a-box considerations for equal 
sized objects, the number of collisions per 
second suffered by one of these objects 
would be 

where S = gravitational cross section, 
v- = effective sweeping velocity, and 
V = volume of cloud. To estimate the 
volume of the cloud, we note that 80% of 
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a sample of 15 Trojans with cataloged 
orbits have inclination less than 220 and 
eccentricity less than 0.12, with a mean 
semimajor axis of 5.19 AU. According to 
Chebotarev et al. (1974), who present 
numerical integrations of Trojan orbits, 
80% of a sample of twelve librate over a 
total angular width of 30' in Jupiter's orbit, 
or 2.7 AUT. From these data, we derive cloud 
dimensions of 1.25 AU width radial to the 
Sun, 3.9 AU perpendicular to the solar 
system plane, and 2.7 AU in length (the 
"box"i of the particle-in-a-box calculation), 
with volume approximately 3 X 1040 cm2 . 
The effective relative encounter velocity is 
difficult to calculate because of the concept 
of a Lagrangian cloud. The conventional 
approximation for objects in near-circular 
orbits (Safronov, 1972, p. 69) isv, = elro, 
giving about 1.1 km/see, using the mean 
eccentricity of 0.87. However, since the 
objects are bound in the cloud and circulate 
around its center, they may spend some 
time with much slower motions relative to 
the center of mass of the system. Szebehely 
(1967, p. 516) reports that the typical 
cycling time from one end of a cloud to the 
other for most Trojans is roughly 75 to 85 

years, giving a mean motion of about 0.3 
km/sec relative to the cloud center. We 
assume a relative encounter velocity of 
v= = 1 km/see. Because this is high relative 
to the escape velocity of the planetesimals 
(V.030 - 70 m/sec), S C R = 74 kmn. From 
these values, we derive a value for the two 
clouds together of the order 0.2 collisions in 
solar system history. This says that there 
is a very reasonable chance that one, but 
not many Hektor-like objects would have 
been created, taking into account the 
uncertainties involved in asteroid number, 
relative motions in the cloud, etc. 

A closer examination reveals an interest­

ing property of collisional mechanics in the 
Trojan cloud, as shown in Fig. 5. The 
gravitational cross section, S, is given by 

S' = R2(1 + 2vt' 3 2/v.2), 

where v. is still the relative encounter 
velocity at very great separation. As noted 
above, the proper value of v. is uncertain. 
If it is very large, the collision probability 
increases as shown in Fig. 5, because the 
cloud is swept rapidly by the Trojans. If it 
is very small for a particular comoving 
Trojan pair, the collision probability also 

POSSIBLE 7 *' 

PRODLI"TS 91­
4 

2 2 --

C;
 
z0 
 -

X4 

1 2 4" 8 16 32 64 128 256 52 1M4204840968192 

x= APPROACH vELOCrTY v (M/S) 

Fie. 5. Estimated nmbers of colisions among 60 initial 74-km-d&iareter planetesimals dis­
tributed among two Lagrangian clouds as described in text, plotted as a function of circulationl 
velocity in the clouds. Increases in the numbers of known Trojans per unit volume could shift the 
v-shaped curve upwyard. Division of high-probability collilons into fast and slow classes may 

account for Trojan properties (see text). To show magnitude of uncertainties, stippled band 

-showsrange in each direction of a factor 2. 
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DOLAP ANO MIN MAX MIH M 
GDPELS TERMS. " increase the collision numbers; detailed 

analysis of the complex circulatory motions, 
8-v of Trojans in a cloud would clarify matters: 

AoF - Furthermore, once one fragmentation oc­
.7 - curs among the postulated 74-km. bodies, 
.7 2 the number of small bodies increases 
.74 - dramatically. Bodies with radii as low as 

20 km or perhaps less would have potential
j.3 . for breaking the 74-km bodies. As Chapman

and Davis (1974) have pointed out for the 
.2 main asteroid belt, backward tracing of the 
.20 collision history reveals that more materialOL _ _ _may 	 have been originally present than is 

.15 now seen, with the extra mass removed by 
PPAKE(?) Q C3 0 co Poynting-Robertson and radiation forces 

PFo. 6. Comparisons of colors observed on different as the bodies grind themselves to smaller 
.sides of 624 Hektor, reported by Dunlap and pieces. Thus, past collisions may have been 
Gehrels (1969). Colors of one end, "Min I," appear more frequent than calculated from present 

.	 significantly different from colors of other faces, conditions. In summary, we conclude that 
possibly supporting the hypothesis that Hektor at least a few major collisions among large 
consists of two distinct planetesimals partially 
coalesced. Trojans have probhbly occurred. 

5. Spectrophotometric tegsi. If a collision 
increases, because S increases and objects of two primitive objects produced Hektor, 
tend to fall together. Thus, collision proba and if the Trojans have a certain distribu­
bility for a specified number of particles- tion of different spectrophotometric types, 
and a specified sweeping velocity passes then a possibility (but not a necessity) 
through a v-shaped minimum shown in arises that the two end-on views (showing 
Fig. 5. If v- is widely distributed through two originally different bodies) might have 
many values, or if it evolves through different spectrophotometric properties. 
different values, there are likely to be two The side views would be an average of 
kinds of collision: fast and slow. This effect the two spectrophotometric signatures, or­
could contribute to two possible destinies possibly a different signature involving 
for primeval large Trojans: coalescence crushed or exposed internal material. This 
into Hektor-like objects at low speed, or is sketched in the cartoon views in the 
fragmentation at high speed. Because of bottom of Fig. 6. The body of Fig. 6 shows 
the uncertainty in numbers and velocities, the limited data available on this point. 
the v-shaped curve has a vertical uncer- Dunlap and Gehrels (1969) published UBV 
tainty, and the outcome probabilities can- colors observed when the line of sight was 
not be definitively evaluated. A Trojan nearly perpendicular to the rotation axis 
cloud beginning as a number of 74-km in 1968. Their results show a difference be­
spheres might thus consist of a number of - tween the two end views, but not quite like 
primeval cores, a few coalesced pairs, and that predicted above. One end view (called 
a large number of fragments, similar to the Minimum I by Dunlap and Gehrels) is 

-clouds actually observed, more than one sigma (error as estimated 
These results are far from a complete by Dunlap and Gehrels) from all other 

model of Trojan evolution. Increased dis- views, with the other three views having 
coveries of Trojans or a reduced estimate nearly overlapping error bars. Dunlap and 
o' the effective circulation volume could Cehrels call the color differences "small, if 
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.2. Visual and thermal infrared photom-
etry should indicate a higher albedo on the 
side faces than end to tsks the lighterve 
amplitude consistent with two partially. 
coalesced spheroidal bodies. ­

3. Spectrophotometry may possibly, but 
not necessarily, show differences between 
the two and-on views if Hektor is composed
the two end-oviels i y dbinary
of two planetesimls slightly different in 
composition. . 

4. Further dynamical understanding of 
motiors in the Trojan clouds is necessary
to test whether the necessary low-velocity 

collision is likely. Strongest support would 
come from a result showing that the re-
quired low-speed collision is not highly 
probable among many objects, but has a 
marginal probability such that one coal-
esced body, but not many, might be 
produced. 

Asteroid 624 Hektor holds forth the 
likelihood that the Trojans are relatively 
primitive objects, perhaps less altered by 
collision than belt asteroids, and that 624 
Hektor may be a unique product of, andt 

evidence for, collisional evolution, 

Note added duly 17, 173: Recent reports of dual 
dips in lighteurves during occultations of stars by 
asteroids have created a growing suspicion of binary 
pairs among asteroids- Pluto is also recently reported 
to be a small binary planet. If these remarkable 
findings are correct, they might seela to support 
Cook's (1971) original suggestion 6f Hektor as a 
binary. But we have argued that the 3.1 amplitude
factor is very.diffleult to explain by this assumption, 
which would predict a- factor 2.0 for equal-sized 
uniform objects, or less if the objects had different 
size. Instead, we argue that Hektor is a result of 
partial coalescence and that our model of asteroid-
asteroid encounters may shed light on other possible 
associated asteroid pairs. .Most asteroid collision 
histories have assumed that collisions produce either 

- a single, cratered target or a complete fragmented 
swarm with fragments escaping at greater than 
escape velocity. However, tffere are little-studied 
intermediate cases where small objects have impact 
velocity low enough simply to rebound (Hartmann, 
1978) or where larger comparable-size objects have 
energy too low for blowing all fragments away at 
escape velocity. For example, our model assumes 

approach at near-zero velocity, collision near escape 
velocity with the two bodies fractured, but .not 
fragmented, and sufficient energy less that the 
bodies cannot subsequently escape from each other. 
Other cases might lead to binary pairs or asteroids 
with slowly collapsing debris swarms. A low velocity 
collision could lead to a rebound of two main bodies 
with a swarm of small fragments, the interaction of 
which might lead to a short-lived or long-lived 

pair. A higher-velocity collision could leave 
the larger (target) body surrounded by a debris 
cloud with insufficient energy to dissipate, or could 
totally disrupt both bodies into a rotating debris 
cloud with insufficient energy to dissipate, but 
enough angular momentum to cause recollapse into 
a binary pair. Further calculations, are needed to 
evaluate the lifetimes of such configurations. Hektor 

may thus serve as a clue leading us toward a variety 
of asteroid-asteroid encounters that could produce 
products more varied and interesting than hitherto 

iagined. 
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ABSTRACT
 

Photoelectric slit-scan photometry of Uranus has been used to determine
 

the radia~intensity profile of-thelplanet within the X7300A methane band.
 

Measurements of the point spread function have been used to partially remove
 

the effects ofWatmospheric seeing. Numerical restoration of the Uranus image,
 

for an entirely arbitrary radial intensity distribution, has been carried out.
 
Significant polar and limb brightening are confirmed to be present on the
 

Uranus disk.
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1.'INTRODUCTION
 

Limb and polar brightening-oh Uranus hare been detectdd withih several
 

deep
P 
CH44 

bands. Brief studies of the e phehomena have been carried-out by
0 

Westphal (1972), Sinton (1972) hnd-Smith(1977) at 89OA,.by Franz and Price 
.
 

(1977) at 7300R, and by Avis et al. (1977) at,6190A. These studies haVe indi­

cated the presence of aerosol particles in theupper regions of the atmosphere. 

More extensive investigations have been carried out by Price and
 

Franz (1976, 1978). Their observations were c6ncentrated on the two strong.

0. 

CH4 bands at 6190R and 7300A. Coarse estimates of the shape of each diskipro­

file-were obtained from ditect predictions for arbitrary theoretical models
 
0 

smeared by known atmospheric and instrumental effects. For the 6190A band, the
 

planet was found to exhibit-a disk-of nearby uniform intensity. For the 7300
 

band, moderate limbbrighteni.ng was apparent. Specifically, the true inten­

sities at the center and limb of the planetary disk were approximately in­

the proportion 1:2. Extreme limb-brightening, with a corresponding intensity
 

ratio greater than 1:4, was not permitted. The results for-the 7300X band
 

were used by Price (1978) to derive a lower limit to the CH4/H2 mixing ratio
 

in the atmosphere below the aerosol haze.- Compared with the solar value,
 

methane appeared to be over'abundant by a factor of three or greater. -The
 

optical thickness of the aerosol region was estimated to lie in the range 0.1
 

to 0.3.
 
0 

Improved narrow-band (100A) photoelectric slit scan photometer of
 
0 

Uranus, in the spectral region 6000 - 8500A, was carried out by Price and
 

Franz (1979). In each waveband of interest, the disk profile was obtained
 

directly from the photometric data by an image restoration technique. Measure­

ments of the point spread function were used to partially remove the effects
 

of atmospheric seeing by means of analytical Fourier-Bessel inversionL Both
 
" 0 

limb and polar brightening were confirmed tobe present within the 7300A
 

CH4 band. In addition, weak polar brightening may be present at 6190X.
 

Surprisingly, however, not all strong CH4 bands were found to exhibit
 

4
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limb-brighteni.ng. Specifically,.theCR4 bands at 8000& and 8500' showed
 

-pronounced apparent limb-darkening. Polar brightening may be responsible
 

for the effect. If so, an aerosol haze with a local optical thickness 'L.5
 

or greater would be ,required., Visibility of a dense cloud layer located deep
 

in the atmosphere might also cause apparent limb-darkening. If so, the-max­

imum permitted-CH4/H2 mixing ratio in the visible atmosphere would.correspond
 

to v3 times the solar value. Whih explanation is correct remaips.an open
 

question.
 

A major limitation of the Ptice and Franz (1979) -restoration technique
 

was the assumption that-the-Uranus image could.be accurately described by the
 

summation of two Gaussian curves. In'this paper, our basic restoration theory
 

is modified to handle entirely arbitrary radial distributions of intensity
 

across the Uranus disk. Itis then applied to part of the observational data
 

obtained by Price and Franz (1979). Significant polar and limb brightening
 
- 0. 

are confirmed to be presenton'the Uranus disk within the A7300A CH4 band.
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2. NUMERICAL'RESTORATION
 

Our numerical restoration of the Uranus image, though partial removal
 

of both atmospheric and instrumental smear, is based on an extension to the
 

Fourier transform inversion technique developed by Price and Franz (1979). In
 

polar co-ordinate notation, let us define the true intensity distribution over
 

the Uranus disk,.g(r,B), the point spread function, f(r,6), and the observed
 

intensity distribution within the Uranus image, h(r,6). Current observational
 

limitations necessitate the adoption of a point spread.function which.is
 

invariant both in space and in time. Using the notation of Goodman (1968),'we
 

can write the Fourier transform convolution theorem in-the form 

H(p,*) F(p,p> G (p,) ,1) 

where capitalization of the functions indicates their Fourier transforms, and
 

the variables p,4 are polat co-ordinates in the spatial frequency domain.
 

By adopting circular symmetry both for the Uranus dihk and for the 

point spread function, we canwrite
 

G(p) = H(p)/F(p) (2)
 

where the two-dimensional Fourier transforms reduce to zeroth order Hankel 

transforms. In principle, the original distribution, g(r), can be recovered 

by taking the relevant inverse Hankel transform. Explicitly, we have 

g(r) -2 P H(p) (3) 
g~~r) P F-SJo(2rrp)dp= 


0 

where
 

H(p) = 21f rh(r) J.(2.urp)dr (4) 
0 
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and
 

2.- r 2ip r (5)
p) = 2wJ rf(r] Jo2rp)d. ORIGIiNAL PAGE IS 

- ... ,6 -" POR QUAL.3 

where Jo(2*rp) is the-zeroth order Bessel function.
 

Naive application of the Fourier transform inversion technique to
 

the Uranus problem gives poor results. Steep gradients in the distribution
 

of intensity over the disk, caused either by high contrast detail or by the
 

limb of the planet itself, are especially difficult to recover. Noise in
 
the photometry, which has a particularly adverse effect on the high spatial
 

frequencies in the image, isat the root of the difficulty. Definition of the
 

amplitudes of the higher frequencies is necessarily quite uncertain. More­
over, the uncertainty is amplified during the process of restoration. Indeed,
 

attempting to restore the very highest spatial frequencies leads to nonsensical
 

results. Due to the ill-conditioned nature of restoration, complete removal
 

of atmospheric and instrumental smear is not feasible. But partial removal,
 

representing a major improvement inspatial resolution of the Uranus disk,
 

can be achieved. Two significant modifications of the basic Fourier trans­

form inversion technique are required. - " --

First; oscillations'produced during restoration by the discontinuity
 

at the edge of the planet can be eliminated if the true intensity distribu­
tion ,g(r), is treated as a perturbation on-a uniform disk. Both Uranus
 

and the flat disk are assumed to be of equal angular extent, and to be
 
smeared by identical point spread functions. Using the Fourier transform
 

linearity theorem, together with an obvious subscript notation, we can
 

rewrite equation (3)in the form
 

gu(r) (r) + 21fp 'Jo (2 P)dp (6) 

0 
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where 

Kr) ohr) (7)hr)il.Jo(2nrp)dr 

and for < r. 

--gF~r) ="(8) 

( forr > R-U
"*. . . ." 

where Ru is the angular radius of'Uranus at'thetime of-observation; Both
 

hu(r) and hF(r) mustbe normalizedso that­

2 frh(r)dr 2 frhF(r)dr. 7R2u (9)
 

0 0 " 

Smearing of the flat disk is conveniently described by the mathematical
 

statement N 

hF(r)-= gF(r) ** f(r) (10) 

4here the double asterisk denotes two-dimensional convolution in signal space.
 

Second, filtering in the spatial frequency domain is required to
 

optimizethe restoration process. By application of a suitable weighting
 

function, the amplitude must be progressively reduced-from unity at zero
 

frequency to zero at infinite frequency. But, multiplication in frequency
 

space is equivalent to convolution in signal space. Consequently,o the
 

restored image must necessarily contain a residual, smear. Suppose we denote
 

the weighting function 'S(p), and its Hankel transform s(r). Making use .of
 

the Fourier transform linearity theorem, we can write equation (6)in the
 

form.
 

u ((r)r)
Ff 

+ 2 4 p S) rm K(p)J (27irp)dp0 (II) 

0 
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where
 

Fr= F(r) **s(r) (12)
 
ORIGIAL. RGE IS. 

and - . ­

(13)=gr)*s(r)
gy~s 


so that
 

2if-r gF(r)dr.= TR2u (14) 

)- 0 ­

by appropriate normalization of the weighting function S(p). Equation '(11)
 

will serve as the basis of our restoration technique.
 

Practical restoration,isconcerned with the numerical evaluation of
 

the ensemble of functions in equation (11). Making use of the Fourier
 

transform convolutiontheorem, we can write 

.F(r). = 27f p D(p) S(p) Jo(2wrp)dp (15) 

0 

where the Hankel transform of the uniform disk, D(p), is given by
 

Ru
 
DIp) - JI(2wpR (16)
 

where Jl(2ipRU) is the first order Bessel function. Substituting-equation
 

(15) into equation (11), we obtain
 

gu(r) = 24f pS(p) W(p) Jb(2rrp) dp (17) 

0 
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--

where (18) 

W(p) = D() + _FpY) 

To evaluate the optical transfer function, we adopt the analytical expression
 

for the point spread function given by.
 

B e(r)xrr+ 
 B exp r/ (19)

* IP p2p] e
 

where the parameters, obtained by Price and Franz (1979), are A 1, B 

0.125, a1 p = 0".763 arc, and 02 = 1".569 arc. The point spread function is 

illustrated in Figure 1. The corresponding optical transfer function, F(p), 

takes the analytical form 

F(p) B {Aip exp 2 2]1 A f 2 
BA 2 2 11 P 

Bc2 exp [;f2CF2p2](0
2p
 

FoP simplicity, we adopt "Top-Hot" filtering in frequency space "such that
 

1 for p<f 

(21)
SMp) 

(for p <i 

where we introduce the "cut-off" frequency f2. If we adopt an arbitrar& 

maximum restoration factor, M, we may obtain 12 by solving the.equation 

-
[F(n) --M (22)
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Based on equation (21), the residual smear function takes the form
 
- r. . ..- ," -. " ; . 

.. s(r)- RICINAL PAGE IS 23) 
•" x., QUALITY
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To evaluate K(p), ie rewrite equation (7) in the form
 

K(p) -HU(P) .... (24)
HF(P) 


where H (p)"and Ht(P) are the respective Hankel transforms of the radial
 

distributions of intensity for the Uranus image and for the correspondingly
 

smeared flat disk. -Making use of the Fourier transform projection-slice­

theorem, in the manner discussed by Oppenheim, Frisk, and Martinez (1978),
 

-we may-rewrite equation (24) in the form
 

Kp) =f Pu(X) exp [2ixj dx -jPF(x) exp 2ipdx(25) 

or
 

K~) ~PuX) exp [-iPX dx- (26)
.PX) 


where pu(x) and PF(x) are the respective one-dimensional projections of the
 

Uranus disk and of the correspondingly smeared flat disk.
 
0 

The Uranus slit scan at 7300A, published by Price and Franz (1979),
 

was used to derive pu(i). An ite-ive Bayesian estimation technique
 

developed by Lucy (1974), was used to simultaneously remove slit broadening
 

and high frequency noise. A maximium of three iterations provided the-optimum
 

Bayesian solution. *The resultant Uranus projection, Pu(x).,-is shown in
 

Figure"2. The flat disk projection, PF(x), was calculated by the technique
 

developed by Price and Franz (1978). Both one-diniensional projections were
 

sampled at an interval of O.032"arc, giving 30 points per second-of arc.
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Written in the form of a discrete Fourier transform, equation (26)
 

can be readily evaluated by the Cooley-Tukey,(1965) algorithm; We used a
 
512 point Fast Fourier Transform (FFT). Numerical evaluation of the integral
 

in.equation--(11-) required informationc6ncerning the behavior of K(p) between
 

the FFT values computed for discrete spatial .frequencies. -Interpolation was
 

carried out by means of the sampling theorem, for a band limited function,
 

given by
 

J[2tT(O-
K) ,n fli/2T)
Zs p n/2T .(27)
 
:]_-n= .-w..
 

where 2T is the band width in signal space. The summation was carried out
 

over all discrete values of the FFT..
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4. RESULTS 3 .OQUALIT 

Four restorations of the Uranus image are illustrated in Figure 3. 

Each example corresponds to a selected maximum restoration.factor in the range 

25 < N < 100. Restoration factors greater than 100 lead to unstable solutions 

due to the enhancement of residual photometric noise ("l percent) {inthe Uranus
 
line projection. Residual smear functions, corresponding to each restoration,
 

are shown in Figure 4. For comparison purposes, uniform disks convolved with
 

each residual smear function are also shown in Figure 3.
 

Although extraneous ripple in the restored profiles, beyond the edge
 

of the planet, suggests that the .solution is becoming unstable-for maximum
 

restoration factors greater-than 75, there is no doubt that significant polar­

and limb-brightening are present on the Uranus disk at 7300A. Ifpolar
 

brightening were absent, the center-to-limb intensity ratio.might reach 1:4,
 

the maximum values discussed by Price and Franz (1978). Evidently, more
 

detailed study of the Uranus profile in this waveband requires the separation
 

of the polar and limb brightening phenomena.
 

Spatial resolution within the restored profiles can be defined in a
 

manner analogous to the Rayleigh limit in optical systems. Specifically, the
 

resolution can be taken equal to the radius of the first zero of the residual
 

smear function. .Ifwe adopt a maximum restoration factor of 75, the corres­

ponding spatial resolution is 0." 72 arc. Since the point spread function
 

has a half l/e-width 'uO".8, we have obtained an improvement in resolution of
 

at least a factor of two.
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FIGURE.CAPTIONS
 

Figure 1. 	The Point.Spread Function'. Radial intensity ls.plotted s a
 
..functionof angular distance from'thecenter of.taimaem 
Intenslties are normalized at.the'center fith&imap& 

*R. ive 
intensities,'in arbitrary unitsyara.plotted asa function -of 
angular distance from the'center of theirmage. " " 

Figure 2.: 	The'Uranus image line-projection" pubjat 7300 e 


Figure 3.' 	 Restorations of theUranus image.' ithdn each.panal, thetsolid 
curve illustrates theradial *intensity distribution of theUranus 
disk for a selectedmaximum.restoration'factor M. The broken 
curve illustratesthe'adial distributionof'intensity for a flat 
disk subjected to the'correspondi.ng residual'smear function, 

Figure 4. 	Residual smear functions appropriate for selectedmaximnum restoratior
factors,-M.
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