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SUMMARY 

This investigation examined the feasibility of combining 
elements of linear theory and impact theory to provide improved 
aerodynamic predictions for the analysis and design of high 
speed configurations in the Mach 4 to 8 range. Specifically, 
the aerodynamic influence coefficients calculated using an exist- 
ing linear theory program were used to modify the pressures cal- 
culated using impact theory. This combined approach was used to 
calculate local pressures and loadings over several wing-alone 
configurations. Comparisons with experimental pressure data show 
that the combined approach gives improved predictions over either 
linear theory alone or impact theory alone. The results of the 
study show that the combination of linear theory and impact 
theory not only removes most of the shortcomings of the indivi- 
dual methods as applied in the Mach 4 to 8 range, but also pro- 
vides the basis for an inverse design procedure applicable to 
high speed configurations. 

INTRODUCTION 

Impact theory and linear theory have provided the basic 
aerodynamic analysis tools used by the vehicle designer in the 
supersonic and hypersonic speed ranges. The linear theory 
methods, e.g., References 1 to 3, apply in the supersonic range, 
while impact theory methods, Reference 4, are used in the hyper- 
sonic range, Strictly speaking, neither method is appropriate 
in the Mach 4 to 8 range, and both methods may exhibit anomalous, 
and often severe, failures when applied in that speed range. The 
following sections identify the specific nature of these fail- 
ures, and show how linear theory and impact theory can be com- 
bined to provide improved aerodynamic predictions in the Mach 4 
to 8 range. Comparisons with experimental pressure data are 
presented to show that the combined linear theory/impact theory 
approach gives significantly improved results over either theory 
applied by itself. 

In Reference 5, linear theory was applied in the inverse 
design mode to investigate the potential gains due to wing 
camber at high Mach numbers. The results indicated l.ittle or 
no payoff above Mach 5. The present analysis indicates that 
unmodified linear theory applied in the inverse design mode 
will underpredict the effectiveness of wing camber in reducing 
drag-due-to-lift in the Mach 4 to 8 range. In this investiga- 
tion, the optimization equations are rederived to properly account 
for the coupling of the thickness and lifting terms, which is 
excluded from the linear theory analysis. In addition, a pro- 
cedure for the application of the combined linear theory/impact 
theory approach in the inverse design mode is illustrated. 



In this study, the original Ames version of the Woodward 
program, Reference 1, and the Hypersonic Arbitrary Body Program 
or Gentry program, Reference 4, were modified and used for all 
basic calculations. The Woodward program provides the linear 
theory influence coefficients, which are used to 'correct' the 
two-dimensional, non-interference impact pressure distributions 
calculated using the Gentry program. The modified pressure dis- 
tributions are then integrated over the Gentry geometry model 
for aerodynamic forces and moments. 

ANALYSIS 

Shortcomings of Linear Theory and Impact Theory 
in Mach 4 to 8 Range 

Linear Theory - Supersonic linear theory is developed from 
small perturbation considerations. Several of the key assump- 
tions leading to the linearized potential flow equation effec- 
tively limit the Mach range and vehicle geometry for which the 
theory applies. These assumptions are: (1) that the thickness 
and camber slopes are small, (2) that the products of the pertur- 
bation velocities are negligible compared to linear terms in the 
perturbation quantities, and (3) that the flow is irrotational 
or isentropic. Assumption (1) places limitations on the vehicle 
geometry. Supersonically, it means that no slope on the vehicle 
can be larger than the Mach angle. This restriction makes it 
very difficult to model real configurations at hypersonic Mach 
numbers. The second assumption is necessary to linearize the 
equations, but it also places an upper limit on the Mach range, 
since the neglected terms are all multiplied by M2. The third 
assumption, that the flow is isentropic, implies that shock 
waves can be approximated by Mach waves. Since the‘Mach angle 

in general, 
;:;d. 

less than the shock angle, the effect is two- 
The strength of the wave is incorrectly computed, and the 

region of influence, i.e., within the Mach cone, is underpredic- 
ted. The relative error in the region of influence increases 
rapidly with Mach number, as shown for a loo cone in Figure 1. 
Since the effectiveness of wing camber in reducing drag-due-to- 
lift depends on the region influenced by each element, this is 
one of the reasons why unmodified linear theory applied in the 
inverse design mode shows little or no payoff above Mach 5. 

The supersonic linear theory formulations of References 1 
to 3, as applied to wings, rely on solutions which uncouple the 
camber and thickness terms. These solutions neglect the contri- 
butions of the thickness slopes to the local lifting pressures. 
The present study shows that these terms are not negligible 
above Mach 4, and that they must be included, along with non- 
linear camber terms, for appropriate aero predictions in the 
Mach 4 to 8 range. 
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FIGURE 1 
COMPARISON OF REGION OF INFLUENCE AS DEFINED BY MACH 

(LINEAR THEORY) AND SHOCK ANGLE ON loo CONE 
ANGLE 

The result is that linear theory methods strictly apply 
below about Mach 3 for configurations that may be characterized 
as sharp, thin, with small camber, and at low angle of attack. 

In addition, various practical problems arise in the trans- 
lation of the theory into operational computer programs, even in 
the applicable Mach range. These problems relate to the trans- 
lation of the geometry of a complex, 3D vehicle into an appro- 
priate linear theory analog for the computer program. 

Impact Theory - Newtonian impact theory is based on the 
assumption that the Mach number is so high (M+m) that the shock 
is nearly coincident with the surface, and that the pressure on 
the surface is, therefore, only a function of the local surface 
slope. The implicit assumption is that the Mach angle, and 
therefore the region of influence from a point, is zero. The 
result is that impact theory is really two-dimensional. Given a 
surface element, no account is taken of the effect of adjacent 
elements, or of the element geometry (sweep, aspect ratio, taper 
ratio, or tip effects). Thus, the three dimensionality of the 
vehicle planform and the interference effects are not properly 
assessed unless the free stream Mach number is very high. 



Attempts have been made to extend impact theory to lower 
Mach numbers by introducing a Mach number -dependence, as 
well as surface slope, into the pressure coefficient relation. 
The result is that there are now some 27 different pressure 
options to choose from in the Gentry program. While the careful 
choice of the pressure options applied to complex configurations 
in the Mach 4 to 8 range generally gives good force and moment 
predictions, as a rule, the local pressure distributions are not 
well predicted. For this reason, attempts to optimize high 
speed configurations using impact theory methods have not been 
very successful. 

Combined Impact Theory/Linear Theory Approach 

Impact theory is conceptually and computationally simple, 
and permits a geometric representation of considerable detail. 
The method correctly accounts for the nonlinear aerodynamics 
which characterize the higher Mach range. However, the approach 
lacks the mechanism for properly assessing both the effect of 
the local element geometry and the influence of one surface ele- 
ment on another. This mechanism exists in the aerodynamic 
influence coefficient (AIC) matrix of a number of finite element, 
linear theory analyses. 

The aero influence coefficients, obtained from the solutions 
to the linearized differential equations governing the supersonic 
flow field, give the effect of a disturbance on the i-th element 
and on all other elements of the configuration. Using a chord 
plane distribution of vortex elements, as in the analysis of 
Reference 1, the basic linear theory equation can be written 

In the above matrix equation, a.. is the coefficient for the 
influence of panel i on panel j:'AC . is the pressure difference 
(vortex strength) across the j-th p%el, and ai is the linearized 

boundary condition on panel i. In this case, ai is the sum of 
the angle of attack, the local camber slope, and the interference 
onset flow from all other sources, i.e., 

a.=ci-a 
1 C. 

+ ni (2) 
1 

Solving equation (1) for the lifting pressures, which requires 
inverting the AIC matrix, 

(AC 
pj 

1 = [a-' ijl hi1 

or (3) 
-1 AC = C a.. ct. 

Pj i '7 i 



Now, the lifting pressure on a 2-D flat plate is given 

AC* = 4 
pi F "i (4) 

where B is 47 -1 and the asterisk denotes the 2-D non-interference 
pressure. Substituting ai from equation (4) into (31, we see 
that the role of the influence coefficients is to correct the 
2-D non-interference pressures for three dimensionality and in- 
terference effects, i.e., 

-1 AC = t C a,. AC* 
'j i 1-J pi 

(5) 

Equation (5) is the basic equation for the combination of 
linear theory and impact theory. Using appropriate impact pres- 
sure options, the Gentry program is used to calculate the 2-D, 
noninterference pressures over the configuration. The aero- 
dynamic influence coefficients from the Woodward program are 
then used to modify the upper and lower surface impact pressures 
using equation (5). The modified pressures are then integrated 
over the Gentry geometry model for the forces and moments. 

The appropriate impact pressure options to be used in this 
analysis are those which give the correct local compression and 
expansion pressures on an inclined 2-D flat plate. These are 
the oblique shock (or tangent wedge) relation for compression 
pressures, and the Prandtl-Meyer relation for expansion pres- 
sures. For blunted configurations, a pressure option which ex- 
hibits Newtonian flow characteristics at deflection angles near 
9o", and which fairs smoothly into the oblique shock solution 
at low angles is needed. The following pressure relation exhibits 
the desired characteristics, 

where 

c =2 sine sin& 
P cos (0-6) 

(6) 
e=p+ls - u sin 6 

and 6 is the local flow deflection angle and p is the freestream 
Mach angle. 

VALIDATION OF COMBINED IMPACT THEORY/LINEAR THEORY METHOD 

7o" Swept Flat Plate at Mach 6.0 

The combined Gentry/Woodward analysis was used to calculate 
the pressures on a 70° swept flat plate at Mach 6 and 8O angle 
of attack for comparison with unpublished NASA data. The results 
of the straightforward application of the approach are compared 
with the data in Figure 2. Also shown in Figure 2 are the 

5 



Woodward-alone (pure linear theory) results, and the Gentry-alone 
(pure impact theory) results. The comparisons show that the 
spanwise pressure distribution calculated using the combined 
Gentry/Woodward approach is significantly better than either the 
basic linear or impact theories. 
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FIGURE 2 
PRESSURE COMPARISONS ON 70° SWEPT FLAT PLATE 

Mach 6.0 (~-8~ 

Although the straightforward application of the combined 
approach gives the proper trend and approximately the correct 
pressure level on the flat plate, the spanwise pressure distribu- 
tion is shifted too far inboard. This is because the influence 
coefficients calculated in the Woodward program are based, in 
part, on the assumption that the region of influence for a given 
element is contained within a Mach cone corresponding to the 
freestream Mach number of 6.0. Actually, the average local Mach 
number, corresponding to the average local pressure on the flat 
plate, is close to 5.0, and the region of influence based on the 
average local Mach number is about 20 percent greater than given 
by the freestream Mach cone. The influence coefficients for 
this case were recomputed where a spanwise scale factor of 1.2 
was used to decrease the span for the linear theory calculation. 
This spanwise scale factor effectively increases the region of 
influence to correspond to the average local Mach number on the 
planform. Figure 3 shows that the use of a spanwise scale fac- 
tor to correct the region of influence gives improved results. 
These results support the previous assertion that unmodified 
linear theory applied at high Mach numbers will tend to under- 
predict the benefits due to wing camber because the region of 
influence is underpredicted. 
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76O Swept Wing Comparisons 

Experimental pressure data is given in Reference 6 on a 76" 
swept wing with thickness and camber (CL design = 0.0) for several 
Mach numbers up to 4.6. The combined Gentry/Woodward program was 
used to calculate the pressures on this wing at Mach 2.3, 3.5, 
and 4.6. The results at Mach 4.6 are compared with the data for 
three angles of attack at six different spanwise stations in 
Figures 4(a) through 4(f). Also shown are the pressure distribu- 
tions calculated using both Gentry-alone and Woodward-alone. The 
Woodward-alone results include the use of a vacuum pressure 
limit calculation. 

At the centerline, Figure 4(a), the pressures calculated 
with the combined Gentry/Woodward analysis give excellent compari- 
sons with the data, on both the upper and lower surfaces. As 
might be expected, the comparisons are best for the low angle of 
attack (5.5O), but even at the highest angle of attack (20.5'1, 
which is nearly twice the freestream Mach angle, the results are 
very good. As one moves outboard, Figures 4(b) to 4(f), the 
combined theory begins to over-predict the pressures at the 
leading edge, and this over-prediction grows progressively worse 
toward the tip. At the same time, the Gentry-alone pressures 
compare better and better with the data as one moves outboard. 
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The over-predictions in the region of the leading edge re- 
sult from the linear theory influence coefficients. Comparisons 
with the closed form linear theory solutions for triangular flat 
plates, given in Reference 7, show that the influence coefficients 
from the Woodward program are correctly calculated. The indi- 
cation is that the linear theory solution is inappropriate in 
the region of the leading edge when the planform has thickness 
and the leading edge is swept near or aft of the Mach cone. It 
is believed that this problem arises from the linearization of 
the basic supersonic flow equation. This problem can be expec- 
ted to persist until an improved method of calculating the in- 
fluence coefficients becomes available. 

Inspection of the Gentry/Woodward and Gentry-alone compari- 
sons in Figure 4 gives rise to the following empirical rule for 
correcting the leading edge over-predictions: In the region 
where the Gentry/Woodward compression pressure is greater than 
the Gentry-alone pressure, use the Gentry solution, otherwise 
use the Gentry/Woodward solution. Comparison with the data 
shows that application of this rule gives reasonably good re- 
sults at all wing stations. Figure 5 shows that, even though 
the local pressures are not uniformly well predicted at all 
points, the method gives excellent predictions of the pressure 
differences at all wing stations. In addition, this simple rule 
has the advantages of being locally determined and easily pro- 
grammed. 

1.6 

1.4 

i.a 
acp 
4cY 0.8 - 
P 

0.6 

0.4 

0.2 

a 

y/b/2 = 0.0 y/b/2 = 0.2 y/b/2 = 0.4 

Leg&d : 

0 Data (NASA TN D8247) 

0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 
X/C X/C x/c 

FIGURE 5 (a) 
PRESSURE DIFFERENCES ON 76O SWEPT WING USING CURRENT METHOD 

Mach 4.6 a = 5.56O 

11 



1.6 

1.0 

4 
4a 0.8 
P 

0.6 

y/b/2 = 0.6 y/b/2 = 0.6 y/b/2 = 0.95 

GENTRY/ 
-GENTRY-,WOODWARD- 

I 

I d-r-T-1 

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 
X/C X/C x/c 

-GENTRY - 

FIGURE 5 (b) 
PRESSURE DIFFERENCES ON 76O SWEPT WING USING CURRENT METHOD 

Mach 4.6 a = 5.56O 

Application of the above rule also provides a method for 
correcting the uninverted aero influence coefficient matrix ele- 
ments, which are used in the inverse design method. Using 
equation (51, the Gentry/Woodward pressure on the j-th element 
is computed from 

C = c a,1 ' C* 
Pj i ‘3 ' Pi (7) 

* 
where C -1 

the inf i?ience coefficient which gives the contribution of tk2 T 
. is the impact pressure on the i-th element, and a.. is 

i-th element on the j-th panel. If the Gentry/Woodward pressure 
on the j-th*element is greater than the Gentry-alone pressure, 
i.e., Cp.>Cp., we assume that we can scale the influence coeffi- 
cients a?feczing the j-th panel so that 

C = c* -1 = C (a. .) 8 c* 
'j pj i ij SCALED 4 pi (8) 

Assuming that the same scale factor is applied to each coeffi- 
cient affecting the j-th panel, this means that the j-th row 
in the inverted matrix is multiplied by a constant, and there- 
fore, the j-th column in the original uninverted matrix is 
divided by that constant. Note that only the influence coeffi- 
cients affecting the j-th panel are modified. 
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Additional Comparisons on the 76' Swept Wing 

The combined Gentry/Woodward analysis was also used to cal- 
culate the pressure distributions on the 76O swept wing at Mach 
2.3 and 3.5. The comparisons with the data at Mach 3.5 are given 
in Figure 6, and the Mach 2.3 results are giveninFigure 7. In 
general, the comparisons are similartothe Mach 4.6 results, but 
the quality of the local pressure predictions decreases with de- 
creasing Mach number. Since the combined solutionatthe lower Mach 
number (2.3) is very close to the pure linear theory solution, as 
shown in Figure 8, the poorer pressure comparisons are attributed 
to the linear theory formulation for subsonic leading edges. Never- 
theless, the use of the linear theory influence coefficients 
to correct the impact theory pressures allows the Gentry program 
to be used to calculate the forces and moments at these low 
supersonic Mach numbers, as illustrated in Figure 9. 
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FIGURE 9 
LIFT AND MOMENT ON 76O SWEPT WING AT MACH 2.3 

Ames All-Body Models 

The combined impact theory/linear analysis was applied to 
the NASA Ames All-Body models illustrated in Figure 10. The 
Gentry/Woodward program was used to calculate the lift and moment 
on the elliptical cone model (B5) at Mach numbers 2.0 and 5.37. 
The predictions are compared with the data from Reference 8 in 
Figures 11 and 12 and show that the combined analysis can be 
applied across the Mach range to obtain results equal to, or 
better than, either linear theory or impact theory used alone. 
The lift comparisons at both Mach numbers indicate that there is 
a thickness contribution to the lift which is not predicted by 
linear theory. The importance of these thickness contributions, 
particularly as they relate to an inverse design method in the 
Mach 4 to 8 range, are discussed below. 
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BODY B1 - ELLIPTICAL FOREBODYKLOSED AFTERBODY 
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FIGURE 10 
NASA AMES ALL-BODY MODELS BJ AND B5 
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LIFT AND MOMENT PREDICTIONS ON AMES ALL-BODY MODEL B5 

Mach 5.37 

Closed Form Solutions for Lift, Drag, and Moment 

Starting with the basic relation for combining linear theory 
and impact theory, the impact pressure differences obtained from 

the small angle expansions of the oblique shock and Prandtl-Meyer 
relations were substituted into Equation (5). The equation was 
then expanded further to give the lifting pressure in terms of 
the influence coefficients, the slope of the camber line measured 
from the freestream, and the local thickness slope. The result- 
ing expression for the lifting pressure was then summed over the 
planform for the lift, moment, and drag-due-to-lift. With the 
exception of higher order terms in local camber slope, the re- 
sulting summations could be identified as the linear theory con- 
tributions to the lift, drag, and moment, or in the case of the 
thickness terms, using fairly general approximations, could be 
replaced by integrable expressions. From these expansions, then, \- 
closed form expressions were derived for the lift, drag, and 
moment for uncambered bodies. These closed form expressions, 
given in Figure 13, require only the lift and moment curve slopes 
as calculated from linear theory, the angle of attack, and the 
base area and volume of the configuration. 
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LIFT COEFFICIENT 

CZL = (CLJL T 
. . 

~(1+~u2)+*.4a(CLu,L.T.(~) fy 

MOMENT COEFFICIENT 

EM = (CMa)LT . . 
a(l+~a2)+2.4n~CLa~L~T~ (gf{XRE;-XTE AF +g} 

DRAG COEFFICIENT 

(CD-CD~~,~~) = ~La+l.Z(CLa)LT % fa2!$% 
. . 0 

WHERE: (Y = ANGLE OF ATTACK 

(cL,)L ,- 
= LINEAR THEORY (FLAT PLATE) LIFT CURVE SLOPE 

. . 

P =JS7 

f = PLAN AREA/(l/S WETTED AREA) 

S = PLAN AREA 

ABASE = BASE AREA 

v = VOLUME OF CONFIGURATION 

FIGURE 13 
CLOSED FORM EXPRESSIONS FOR LIFT, MOMENT AND DRAG-DUE-TO-LIFT 

FOR UNCAMBERED CONFIGURATIONS 

The closed form expressions were used to calculate the char- 
acteristics at Mach 5.37 and 7.38 on the Ames All-Body models 
illustrated. in Figure 10. The results are compared with the 
data in Figures 14 and 15. These results show that if the con- 
figuration has a base area, then there is a thickness contribu- 
tion to lift curve slope which is proportional to the base area. 
Further, even if the configuration is closed at the base (zero 
base area), there is a thickness contribution to the moment curve 
slope (CM ) which is proportional to the volume. These results 
demonstrate that, in general, the thickness terms must be in- 
cluded in the inverse design procedure to ensure that the opti- 
mum camber distributions correspond to the actual lift and moment 
constraints. 
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INVERSE DESIGN PROCEDURE 

The use of linear theory influence coefficients to correct 
the impact pressure distributions provides the basis for the 
use of the method in the inverse design mode. Three things must 
be taken into account for application in the Mach 4 to 8 range: 
1) the influence coefficients in the region of the leading edge 
must be corrected to prevent the large leading edge overpredictions 
in the lifting pressures. 2) The thickness contributions to the 
lifting pressures must be included in the analysis. And, 3) the 
region of influence must be corrected for large values of B cot A, 
where A is the leading edge sweep. 

The method for scaling the influence coefficients in the 
region of the leading edge by comparing the linear theory pres- 
sure to the impact pressures was previously discussed. Also, 
the use of a spanwise scale factor to correct the linear theory 
region of influence was demonstrated for the 70° swept flat 
plate at Mach 6.0. The remaining task is to show that the thick- 
ness contributions to the lifting pressures at high Mach numbers 
can be introduced into the linear theory inverse design procedure. 

The small angle expansions of the oblique shock and 
Prandtl-Meyer relations can be used to give an expression for 
the impact theory lifting pressure in terms of camber line slope, 
thickness slope, and Mach number. This expression is 

4 AC* = B ai 
pi 

(1 + 1.2~~ + .6n3'2 ci2) + .8B1'2 y3 (9) 

where c1 i is the slope of the camber line measured from the free- 
stream, E' is the local thickness slope as calculated from the 
Gentry p&gram for oi = 0, and B is Jbl2-1. Substituting equa- 
tion (9) into the basic equation, equation (5), and neglecting 
the cubic term in ai, the lifting pressure is 

AC -1 = C a.. aibi 
Pj i '3 

(10) 

where bi is the thickness term in equation (9). With this ex- 
pression, the optimization equations derived by Woodward in 
Reference (1) for minimum drag can be rederived, to include the 
thickness terms. The resulting set of linear equations, for 
the optimum loadings is given, in matrix form, in Figure 16. 
Solving this set of equations for the (ACpj)OPTIMUM, the corres- 
ponding optimum camber distributions are calculated from 

1 a, = -- 
1 bi i' aij (Acpj)OPT (11) 

Note that for zero thickness, bi + 1, and the optimization equa- 
tions reduce to the same set derived by Woodward. 
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OPTIMIZATION MATRIX - Solution gives loadings for minimum drag 
corresponding to lift and-moment constraints 
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OPTIMUM CAMBER - calculated from optimum loadings 

1 a. = - 1 b. ! aij (ACPj)OPT 
= 3 

where S. = area of element i 1 
a 

ij 
= influence coefficient (element i on element j) 

bi = 1 + 1.24 + .6/33'2~ i2 
* ,. 

(thickness factor from 

Gentry Program) 

ACP = pressure difference on element i 
i 

X-X i = distance from moment ref. to centroid of element i 

A VA2 = langrangian multipliers 

E, M = design lift and moment constraints 

I;=c 
LS M=cMSc 

FIGURE 16 
OPTIMIZATION MATRIX FOR DESIGN PROCEDURE 
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For large values of camber slope, and/or for very high Mach 
numbers, the cubic term in camber slope may not be negligible. 
For this case, an iterative procedure may have to be applied to 
obtain the actual camber slope. If iteration is necessary, the 
initial values of the bi factor would be adjusted using the pre- 
viously calculated camber slope, so that 

(bi)iteration = (bi)o + .‘83’2 !“i2)previous 

where (bi)o is the thickness term neglecting the higher order 
camber term. 

The procedure for applying the combined impact theory/linear 
theory approach is outlined in Figure 17. 

I WOOOWARO PROGRAM I 
. CALCULATE BASIC INFLUENCE 

COEFFICIENT MATRIX 
. CALCULATE INVERTED MATRIX 

------------_ 
l CORRECT INFLUENCE 

COEFFICIENTS 
. FORM OPTIMIZATION 

MATRIX 
. CALCULATE OPTIMUM CAMBER 

SLOPES 

INFLUENCE 
COEFFICIENTS 

THICKNESS AND 
SCALE FACTORS 

. CAMBER 
DISTRIBUTION 

GENTRY PROGRAM 

. UNCAMBERED SOLUTION 
AT MODERATE a 

. CALCULATE THICKNESS/ 
MACH TERMS 

. CALCULATE SCALE FACTORS 
FOR INFLUENCE COEFFICIENTS 

_---------__, 
. CALCULATE CHARACTERISTICS 

ON CAMBERED CONFIGURATION 

FIGURE 17 
STEPS IN DESIGN PROCEDURE 
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CONCLUDING REMARKS 

The results of this study demonstrate that the combination 
of linear theory and impact theory is a feasible and attractive 
approach for improved calculations of the aerodynamic character- 
istics of configurations at high speeds. The application of the 
combined approach to several wing alone cases shows that the 
method not only gives improved predictions for local pressures 
and loadings, but that it also allows the basic Gentry program to 
be used at low supersonic Mach numbers to predict forces and 
moments. Additional benefits of the combined approach are 1) it 
reduces the number of impact pressure coefficient options required 
to just three basic options, 2) it provides a method for correc- 
ting the linear theory influence coefficients to remove the over- 
predictions in lifting pressures near the leading edge when the 
planform is swept near the Mach cone, and 3) it provides the basis 
for an inverse design procedure applicable in the Mach 4 to 8 
range. 

In the course of the study, the basic relations for the com- 
bination of linear theory and impact theory were used to derive 
closed form expressions for the lift, moment, and drag-due-to- 
lift of uncambered bodies in terms of the linear theory slopes, 
the angle of attack, and the base area and volume of the configur- 
ation. These expressions should be useful for the preliminary 
estimation of aerodynamic characteristics, including thickness 
and non-linear lifting effects, across the Mach range. 

Although the procedure has not been applied to wing-body con- 
figurations, the results obtained in the present study on several 
highly swept wings (up to 76O) indicate that extension to wing- 
bodies is feasible. Two linear theory methods are available for 
calculating the influence coefficients for the body and body flow 
field contributions. These are the use of chord plane vortex 
panels to represent the body, in the manner similar to that 
described in reference 2, or the use of surface singularities as 
was done in reference 3. 

28 



APPENDIX 

CLOSED FORM SOLUTIONS FOR LIFT, DRAG, AND MOMENT 
FOR UNCAMBERED CONFIGURATIONS 

Basic Equation - The basic equation for the combination of 
linear theory and impact theory is 

-l B AC = C a.. z AC* 
Pj i '3 pi 

(Al) 

where ACpj -J is the lifting pressure on element j, aiJ is the in- 
fluence coefficient for panel i on element j, ACci is the 2-D, 
noninterference lifting pressure on element i, and B = @?. 

Impact Pressures - The 2-D, noninterference pressures are ob- 
tained from small angle expansions of the oblique shock and 
Prandtl-Meyer relations. 

c* -I 
pi 

g Q 
2 3 + 1.2 Q + .4 JB Q 

in the above expression Ai is the local surface slope, and 

(Gi)LOWER = Ei + cli 

(Gi)UppER = E' - " 1 1 

where Ei is the upper surface thickness slope measured from 
camber line, and ai is the slope of the camber line measured 
from the freestream. If clci is the slope of the camber line 
(dzc/dx) measured from the reference chord plane, then 

a. = cl - CY 1 C. 
1 

(A21 

(A31 

the 

(A41 

With the above expressions, the 2-D, noninterference lifting 
pressures, and the thickness pressures are, respectively 

AC* = 4c; 1 4 2 

pi i UPPER = B cli + 4.8cyi + .8JB (3~ + a& 

and (A51 

+ (c* 
P) 

4 2 2 
i UPPER = B Ei + 2.4 (ai + E;) + .8dB (ci + 3& 
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Substituting the impact pressure relations (A5) into the basic 
equation (Al), the combined approaches gives 

AC -1 = C a.. ai + .2f3 312 C a-l 3 -1 . . 
Pj i ‘7 i II 

ai + 1.2B C a.. ~~~~ 
i 17 

+ .6f3 312 c a-1 ,y 
i ij 1 "i 

and 

(Cp 1 + (C P) 
-1 -1 2 

i LOWER i UPPER = f aij Ei + l 6B t ai-j Ei 

(A6 1 

+ .2B 3/2 c a-l E! + 66 c a-l ~12 + 6f33’2 C a-l 2 E. a. 
i ij 1 * i ij 1 . i ij 11 

Lift, Drag, and Moment - The lift, drag, and moment coefficients 
are obtained by summing the pressures over the planform areas. 
Thus 

CL s = C S. AC - c s. 
j 7 Pj j IJ 

[(C 
‘j 

IUPPER + (C 
‘j 

1 LOWER lE.CX J j 

cD S = C S. AC + c s. 
j 7 Pj "j j 3 ' (C 

‘j 
)UPPER + (Cp ) LOWER] Ej (A’) 

j 

CM S -d = C S. AC 
j 3 Pj 

G - xj) 

where S is the planform area, Sj is the area of panel j, c is 
the reference chord, and (X - Xj) is the distance from the 
moment reference center to the centroid of panel j. 

Substituting the pressure relations from (A6) into the force 
and moment relations (A7) we have 



cL s 
-1 = C S. C a.. ~1. + .28 

j Ii 'I 1 
3'2 C S. C a.. -l a3 

j Ii '1 1 

-1 + 1.2~ c s. c a.. cli~i + .6B 
j Ii *I 

3’2 c s C a-1 IZ? 
j ‘ji 

. . a. 
l] 11 

-1 HIGHER 
- C S. E. a. C a.. 

j 11 Ii II 
&i + (ORDER ) 

TERMS 
-1 

CD S = C S. ~1. E a.. ~1. + .2B 3'2 C S. a. C a.. ~1. -1 3 
j 1 Ii ‘1 ’ j I Ii '1 ' 

+ .6~ -1 3'2 C S. E. C a.. E~CX~ -1 
j 1 Ii 'I 

+ 1.2B C S. a. C a.. clip, 
j 1 Ii II 

+ . -1 2 
68 C Sj Ej c aij Eli + .6~~‘~ c S. a. c a.. E. a. 

-1 2 

j i j 1 Ii '3 " 

I 

(A8 1 

+ c s. -1 -1 2 
E. C a.. E. + .6f3 C S. E. C a.. E. 

j 1 Ii II 1 j 1 Ii 11 ' 

+ .2f3 3’2 C S. E. C a.. E. -1 3 
j 1 Ii II 1 

C,SC=CS. (X-xj)EaT1a.+.2B 312 -1 3 

j ' i 11 1 
c sj (X 
j 

- xj)E a.. 
i IJ cli 

-1 + 1.26 C S. (X - xj) C a.. ai~i 
j ' i 11 

+ .6~ 3’2 c s. (X -1 
j ' 

- xj) C a.. 
2 

i 11 ai 'i 

Identification of Terms - The first summation in each of the 
above equations is the linear theory contribution for a cambered 
flat plate. Thus 

(LIFT) -1 C S. C a.. ~1. = (CL)L T S 
j Ii '1 1 . . 

(DRAG) 
-1 C S. ct. C a.. a. = (CD)L T S 

j 1 Ii 'I ' . . (A91 

(MOMENT) E Sj (X - Xj) C ai; cli = (CM)L T S 
j i . . 
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If the plate is uncambered, then ai = c1 and these terms become 

(LIFT) C Sj C a:; CX~ -t c1 C Sj C aI; = a(CL )LT 
j i j i a 

S 
(A101 

UNCAMBERED 

(DRAG) c sj aj C a:; ai -+ a2 c Sj c a-1 = c12 
j i j i ij ('L )LT ' a 

(MOMENT) -1 C Sj(Z-xj) C a.. + ct c s. -1 C a.. = a(C 
j i 1’ "i 

j 1 ( 
X-xj) 

i =I M )LT SF a 

The second term in each of the expressions in (A8) represent 
the non-linear contributions of angle of attack and camber slope. 
For an uncambered configuration, where oli = ~1, these terms be- 
come 

(LIFT) .283'2 C Sj C a:; ai -f .2~,~'~ CX~ c Sj c a;: 
j i j i 

= . 2B3/2 3 ci ('L )LT ' a 

(DRAG) .2B3’2 C Sj aj c a:; ai -+ .243/2 a4 I Sj c a;; 
j i j i 

= . 283/2 4 
(All) 

cl (CL 1 c1 LT ' UNCAMBERED 

(MOMENT) .2f33/2 c sj (X-xj) c a;; a2 + 
j i 

283'2 3 c s. -1 
. a 

j ' 
(X-xj) C a.. 

i 11 

= . 283/2 3 c1 (CM lLT s c 
cl 

In the drag expression (A8), the last three terms give the 
drag due to thickness (or wave drag). F7e will simply replace 
these terms by CDTHICK S. 

Uncambered Expressions (ai = ~1) - Using the above expressions, 
the equations (A8) are rewritten 
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CL s = (CL )LT s a(1 + .2B3’2 a2) + 1.2B a C S. C a.. E. -1 
a j Ii 11 1 

+ . 6B3’2 -1 2 -1 a C S. C a.. E. - c1 C S. E. C a.. E. 
j Ii 'I ' j 1 Ii iI 1 

&-CD IS = (CLa)LT s a 2 (1 + .2B3’2 a2) 
THICK 

+ 1.2B a 2 C S. C a.. E. + -1 .683’2 2 [C S. C a-1 E? a 
j Ii iI i 

. . 
j Ii iI i 

-1 
+ C S. E. C a.. si] + .6B cx 2 

j 1 Ii 'I 

(A12 1 

CM s c = (CM )LT s c a(1 + .2B 312 a2l 
a 

-1 + 1.28 a C S. (X-xj) C a.. 
j ' i 1’ 'i 

+ .6/3 312 a c s. -1 2 

j ' 
(X-xj) c a.. E. 

j iI 1 

Thickness Terms - The summations in equation (A12) which are 
linear in thickness slope can be evaluated under certain condi- 
tions. For instance, if the thickness slope is constant over 
the configuration: 

-1 -1 C S. C a.. E. = E C S. Z a.. = ENS 
Ii 11 i Oj Ii 'I 

(C 
j La)L'T. = AB;sE (CL lLT 

a 

At very high Mach numbers (M + m), there is no influence 
of one element on another. For this case, the influence coeffi- 
cients are 

a-1 ij = 0 for i # j, and a:; = $ for i = j 

Then -1 4 C a.. E. =-E 

i J-J = 6 j 

and 
-1 C S. C a.. E. = 

j Ii 11 ' 
& dx dy 

4 ABASE =- 
8 2 = (CL )LT AB;sE 

a 
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where the linear theory lift curve slope approaches 4/B at hyper- 
sonic Mach numbers. 

The same result is obtained for an unswept wing at all su- 
personic Mach numbers. 

From the above considerations, we will approximate the in- 
fluence coefficients in the summations involving thickness by 

a-1 ij = 0 for i # j, and a:1 = (CL )LT 
iI 

for i = j 
a 

Then the double summations in equation (A12) can be approximated 
by single summations. 

CLS = (CL JLT S a(1 + .2B 312 
a 

a2) + 1.2B CX(CL JL T c Sj 'j 
a "j 

+ (-6B3’2 - 1) a(cL jLT c s. E.~ 
a j 11 

(CD-CD 
THICK 

) S = (CL )LT S a2(1 + .2f33'2 a2) 
a 

(Al3) 

+ 1.2B a2(CL )L T C S. E. + . 
a "j 11 

6B a2 (CL )LT C Sj Ej 
a j 

+ l.2B3'2 a2(CL jLT C sj Ej2 

a j 

CZMS -d = (CM jLT S C a(1 + .283'2 
a 

a2) + 1.26 a(CL lLT C S. (ii-xj) E. 
a j ' 1 

+ .6B 312 a(C 1 La LT 5 S 2 
j (GXj) E . 

1 

Taking the thickness slope to be (dz/dx) and replacing Sj by 
dxdy r we write 

b/2 'TE b/2 
CS.E.-+ / / 

ABASE 
j 11 -b/2 0 

(g, dxdy = / ZTE dy = 2 
-b/2 

Similarly 

c s. (x-xjl E. = F; c s. E. - c s. x. &. = x 
ABASE _ c s x 

2 . a&. 
j ' 1 jll jJJJ j 11 1 
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The summation C S. X. E. is replaced 
11 1 

by parts, where EJ is replaced by f' 
the upper surface. Thus 

b/2 'TE b/2 
c s. x. E. -f / 
j 11 1 

/ f'dxdy = / 
-b/2 'LE -b/2 

b/2 
= 1 

-b/2 
'TE fTE dy - ; 

by an integral and integrated 
and f is the equation for 

b/2 'TE 
'TE fTE dY - -b;2 xr fdxdY 

LE 

where f LE is assumed to be zero and V is the volume. 

The remaining integral is xTE ABASE/2 where xTE is the dis- 
tance to the centroid of the base area. Thus 

c s. 
1 ( 

x-Xj) E. = ABASE + V_ 
I 

(X-X TE) 2 2 

We have assumed that Ej is the thickness slope in the x-z 
plane. Actually, E-j should be the flow tangency angle. For 
instance, for a cone of semi-vertex angle Oc, 

c s. E. = ec c s. = ec s = t 
A 

j 17 
( ABASE 

j ' 
F)=F( 2 ) 

Similar considerations for other simple shapes indicate the 
deviation from our basic 2-D assumption can be corrected by in- 
troducing a factor F which is 

F = S/t; Swet) 

where S is the planform area, and Swet is the wetted area of 
the configuration. 

With the above considerations, the lift, moment, and drag 
equations are 

= (CL )LT a(1 + .2L33'2 ABASE 
cL a2) + . 6B "(CL ILT F s 

+ 7.6~~'~ 

a (A141 

- 1) a(C L lLT 21 
a 
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(C -c 
D DT$lICK) = CLa + .3B a 2 ABASE 

(CL)LTF S a 

+ (.6B3'* + 1) a2 (CL jLT (71 
a -- 

5 = (CM )LT a(1 + .283'2 a2) + . 6f3a(CL) 
X-XTE 

a LT 
F( - ABASE + V 

S SE) 
a C 

312 
c s 

+ .6~ a (C LolILT 

j (X-X.) Ej2 

SC 

and c s. 2 
1 'j 

(3 =j s 

Comparisons of the terms against the other terms in- 
dicate that for most configurations these terms can be neglected. 
However, given the details of a configuration, the contribu- 
tions of these terms can be estimated. 
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