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HYDROGEN ABSORPTION IN SOLID ALUMINUM DURING


HIGH-TEMPERATRE STEAM OXIDATION
 


L.A. Andreev, B.G. Gel'man, A.A. Zhukovitskiy


(Moscow Institute of Steel and Alloys)I



During vacuum heating.after.high-temperature.steam treatment, /90*



samples of aluminum release.significant amounts of hydrogen.



The greater part of this emitted hydrogen-consists of the so­


called "surface" hydrogen. The-process of emission of "surface"



hydrogen during' vacuum heating is still little studied. In



particular., theIej i a lack of data characterizing the kinetic



development of this process, which among other things is extremely



important to the study of the oxidation of metals in aqneous steam.



The process of.metal oxidation.and the growth of a protective



oxide layer is not limited to the external "oxide-gas" boundary.



It also proceeds, although to a much smaller extent, at the


"metal-oxide" boundary. When.metal is oxidized in steam, this



process, can'cause the hydrogenation--of the metal.since the



hydrogen..releasedby the oxidation beneathan oxide layer a:t



the "oxide-metal" interface.may dissolve into themetal.



This paper studies the absorption and emission of different



fractions of.hydrogen after steam.treatment of hydrogen. It



considers the.dependence of these processes on the properties



of the oxide layer and external conditions.



Method of. Investigation



The experiment used cylindrical aluminum samples.of equiva­


lent volume, 0.8 and 0.2 mm in diameter and 200 and.3200 mm long,



Numbers.inthe margin indicatepagination in the foreign text.
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respectively, of type ABOO0. The samples were cleaned and then



soaked for 3 minutes in a 10% NaOH solution, followed by 3 min­


utes in a 10% HN0 3 solution.. After three hours of preliminary



heating at 600'C in a vacuum, the quartz tube containing the



samples.was cut off from the vacuumpumps, and the samples were



subjected to isothermal steam heating. At the end of the steam



heating, the system was pumped out again, during which tine the



samples were placed in an oven. In this .way the condensation of



the steam onto the oxide layer was avoided. Finally, the samples



were drawn from the oven and allowed to cool.



The decomposition of the- steam at the cathode of the omega­


tron gauge led to the formation of -hydrogen. To eliminate this



side effect which introduced an uncontrollable error into the



analysis of the samples, we mounted two liquid nitrogen traps



in front of the RMO-45 gauge. These completely absorbed the



steam, even at-momeentryfemissi6hsloo times greater than



occurred during the annealing of the samples.



During analysis the samples.were inserted,in turn into the



oven and heated to the temperature necessary to extract the gas.



Any water vapor was caught by the traps, while the emitted



hydrogen was continuously pumped through the omegatron gauge.



The total amount of emitted.hydrogen was the area under the



curve drawn by the automatically recording pen [1].



Interaction.of Steam.and Aluminum



We determined the amount of hydrogen emitted by samples,of /91



aluminum wire during vacuum heating after their exposure to



steam at ,200, 400, 500, and 6000C for different periods of time.



In all cases when the duration of steam exposure was increased



above 30 minutes, the amount of hydrogen reached a certain lim­


iting value and was subsequently unchanged. Table 1 presents



these characteristic limiting values for a.steam partial pressure
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TABLE 1. of 18 mm Hg. It follows 

HYDROGEN CONTENT, IN CM3/100 G, from the table that the


EMITTED BY ALUMINUM SAMPLES DURING VACUUM amount of hydrogen emitted



HEATING AFTER 30 MINUTES' EXPOSURE


TO STEAM AT 18 NM HG after exposure to steam at 

200 and 400 0 C is perhaps 

Surface 
area, cm 

Steam temperature, OC 
200 I 400 500 I600 

1.5 times greater from the 
samples of wire with the 

5 0.08 0.07 0.09 0.05 smaller area (when dia. = 
20 0.05 0.05 0.09 0.05 0..8 mm, a = 5 cm 2 ) than 

from the samples of larger 

surface area (when dia. = 0.2 mm,. = 20 cm2 ). On the other hand, 

the amount of hydrogen emitted after exposure to steam at 500 and



60,0°C is the same for samples of different surface area.



This circumstance prompts the hypbqthesis of different types



of hydrogen retention by aluminum interacting with water vapor.



It also points out the essential-difference in the characteristic



parameters of the emission of hydrogen from samples after steam



treatment at these two ranges of temperature. Since the diffu­


sion coefficient of hydrogen in aluminum in the range 200-4000 C



is extremely small, it is natural to assume that the accumulation



of hydrogen during interaction withwater proceeds mainly as a



result of a process of adsorption (,which is possible in the form
 


of an OH- group). At higher temperatures, the actual absorption



of hydrogenby the metallic samples becomes possible. Thus, the



mechanism of its emission during the subsequent heating in a



vacuum will be.different.



The. characteristic parameters of the kinetics of hydrogen



emission during vacuum heating were determined from the curves



of gas emission recorded by the automatic pen. The curve measur­


ing the partial pressure of hydrogen gas during the heating



typically contains a maximm;, it represents the result of two



processes, the emission of gas at the rate I and the pumping out
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of gas at the speed S. Thus-,



VdP=Idt- SPdt, 

where P is the .partial pressure of hydrogen in the system;



V is the volume of the system.



After integrating (1) and assuming that I declines exponen­


tially with time, we use the .linear relation between the signal



of the omegatron gauge, h, and the.partial.pressure of hydrogen,



P = mh, to obtain:



;h-
 Cok [exp (-t) - exp (-At)], (2)

ml'(A-k) 

where Co is the initial concentration of hydrogen in the sample;



k is the gas emission constant;



A E S/V is. the pumping constant.



The experimental curves were treated in accordance with /9-2



equation (2). The values of the constants k and A,were obtained



from the straight line formed by the experimental curve h = h(t)



in the co-ordinates 
h- [exp (-ki)- exp (--At)].. 

The calibration,value of the pumping constant A was deter­


minedby a preliminary experiment .[l]. The error in,k determined



by this method does not exceed 20%. The values.of the.constant



obtainedin this manner are incorporated in Table 2.



Table 2 indicates that the coefficient k of.samples subjected



to steam treatment at 200-400C depends,neither on the geometric



surface area of the sample nor on the. duration of the steam treat­


ment (at least,, in the interval l-30.0.minutes-). The energy of



activation of hydrogen emission, which is .obtained from the



temperature dependence of k, is.about 21,000 cal/mole after



30 minutes' exposureto 4000,C steam at 18 mm Hg. On the other
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hand, in the temperature range 500-600°C, the rate of hydrogen


emission during subsequent vacuum heating,depends substantially



on the sample surface area and the length of exposure to the



steam. The ratio of the coefficients of gas emission for samples



of different surface area, ka=o0/k,= , is 3 to 3.5.



TABLE' 2. The hyrogen absorption 
DEPENDENCE OF THE RATE CONSTANT k(ain)' during steam treatment 
OF HYDROGEN-EMISSION: ON THE,TEMPERATURE



AND DURATION OF STEAM TREATMENT AT depends on the means used 
18 NM HG (-VACUUM HEATING AT 6000C) to prepare the sample. In 

Steam Sur- Exposure time, minutes particular, with a complete 
Steam face - surface treatment (etchingtemp., area, 2 [ISO1 300 ±42vacuum heating),
 

0- ­


oc aea 30 + absorbed 

hydrogen is observed in
200 5 - 0,8 0.8 - - ­
20 - 0.8 0.8 both temperature ranges 

400 5 - 0,8 0,70 - 0.70 ­
20 - 0:8 0.80 - o80 - only in thin wire samples 

500 5 0,37 - o30 0.20 - 0,10 (dia. of 0.2 and 0.8 mm),
20 1:20 - 1.00 0,70 - 0,35 

600 5 0,35 - 0,-5 0)10 0,10 0.10 while thicker (4 mm dia.)'20 1.00 - 0.50 0A35 0,35 0,352samples, 
 
also cold drawn,



do not display this effect.



Obviously, the crystallographic nature of the oxide layer on



aluminum does not depend on the diameter of the wire; conse­

quently, the observed effect is related to a certain type of



inhomogeneity in the structure of the surface. In the contrary



case, that is, assuming samples with homogeneous surfaces, we



would expect an effect to be observed in every trial.



The three types.of aluminum samples, naturally, differ-in



the extent of preliminary baking and structural peculiarities.


The thin samples were obtained by means of prolonged baking,



and they were characterized by a "bamboo" structure. The thick



samples (4 mm in dia.) were polycrystalline in structure. It



is quite natural to relate the observed phenomenon of hydrogen
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absorption by aluminum with the special structural feature of



the surface, the edges of the bamboo sections, which during



the prolonged.baking .cause the recrystallization of the material



in the stage of cold deformation. On these sections, which are /93



distinguished by an elevated corrosion activity, it is possible



for the corrosion products to accumulate, creating a surface
 


for development and an adsorption capacity. On the other hand,



the oxide layer is essentially disturbed near these section
 


edges, which reduces their resistance to further oxidation, and



this is probably the fundamental source of the volume hydrogena­


tion of the metal. This process can be expressed as the total



reaction



2AI +3/2HO=A1 20 3+3 [H]. 

As the dependence of the.coefficient k on the sample surface
 


area indicates, however, the entire surface takes part in the



emission of hydrogen during vacuum heating. The process possibly



involves a limited amount of penetration by hydrogen across the



oxide layer to the metal.



As a result of special surface treatment (in this case,



steam treatment at 600 0C and 10 mm Hg for one hour), the thick



cylindrical,samples also acquired an absorption capacity for



hydrogen during high-temperature steam oxidation. We obtained



the effect, to be specific, as a result of boiling the samples



in distilled water for 4 hours and heating them in a vacuum for



3 hours at 60O0 C. The experimental results were as follows:



Sample weight, g: ... ..... 	 0,250 0420 0,480 0,800 1,480


0,062 0,061 0,063 0,062 0,057
Hydrogen, cm 3/100 g: 
 .......
 

The proportional increase in the amount of hydrogen emitted,



during vacuum-heating at increasing sample weights,, is evidence



of volume absorption of the hydrogen by the mass of aluminum.
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Just as in the case of the samples of thin wire, we observe



local sections on the surface of the massive samples boiled



in water which, upon,subsequent high-temperature steam treatment,



developed intensive oxidation of the metal and simultaneous



volume hydrogenation.



The generation of "surface" hydrogen upon the .vacuumheating



of samples after preliminary steam treatment at comparatively



low (400 0C) temperatures is probably caused by OH- groups which



are strongly absorbed on the aluminum oxide in local sections



of the surface of the samples. The treatment of the oxidized



samples withsteam creates a layer of absorbed,ions, thus:



1.3H2 + 3 (e/A) -+ 3(OHAac+ 3/H 2 . 
During the subsequent vacuum heating, the following reactions


take place:

Z11 	 kzno- I-j-6 (~e/Al1); 

-3. 3(e/AI)-42 (AIg)). 1-3 (OH-a c+ A!203+5 /2H41, 

where 	 (e/Al) are electrons in the conducting band of the metal;



(Al03+) are cations between TattiCe o8:es (internodal).



We must realize that the slowest stage of the oxidation of



Al is reaction 2, the process of dissolving cations into the



internodal layers of oxide 12]. This process must be assisted



by an electrostatic polarity, created as a result of the adsorp­


tion of negatively-charged particles on the exterior surface at



the "oxide-gas" interface. If E is the electric field strength,



no the number of ions per cm2 of the surface of the metal, D the



diffusion coefficient of the ions, then the cation current



across the.oxide layer,, according to [2], is equal to:



I=D~n0, 	 (3) 

Since in this case the oxidation proceeds due to an adsorbed



layer, to that extent, the process of depositing OH- groups on /94
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the surface.will slow down. Consequently, at E­


(where is the thickness,of the oxide layer;
, 

nOH_ is. the concentration-of hydroxide ions on the surface;



is the dielectric constant of the oxide)-,


then



tidt14x 2D.n 0 nH-I / 

The final .expression,for j, after the integration of (4), is



(5)



In this case, the gas emission constant, k, is essentially



independent of the sample surface area. There is an approximate



correspondence of the activation energy of the process (21,000



cal/mole) with that calculated earlier from the data on the



kinetics of oxidation [2]. This ,supports the.assumptions made



concerning the limited extent-of emission of hydrogen during



vacuum heating.
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