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SUMMARY

Two methods of active pogo suppression (stabilization) for the space shuttle vehicle
were studied analytically. The basis for both approaches was the linear quadratic reg-
ulator, state space technique. The first approach minimized root-mean-square pump
inlet pressure by using either full-state feedback, partial-state feedback, or output
feedback with a Kalman filter. The second approach increased the modal damping
associated with the critical structural modes by using either full-state feedback or
reconstructed-state feedback.

A number of implementable controls were found by both approaches. The designs
were analyzed with respect to sensitivity, complexity, and controller energy require-
ments, as well as controller performance. Practical controllers resulting from the
two design approaches tended to use pressure and flow as feedback variables for the
minimum-rms method and structural accelerations or velocities for the modal control
method. Both approaches are suitable for the design of active pogo-suppression con-
trollers .

INTRODUCTION

The problem of coupled feed-system - structural instabilities of booster vehicles
(known as pogo) has persisted from early boosters to present vehicles. The classical
approach to solving the problem has been to place accumulators on the suction side of -
the feed pumps. These accumulators, in general, have been tuned to be most absor-
bent at the offending feed-system - structural frequency. Efforts have been made to
expand the effective frequency range of such accumulators. As a generality, unless
these devices are purely compliant (usually adding to existing pump inlet compliance),
they introduce additional resonant modes to the feed system. These added modes can
in turn couple with the structure to create new instabilities.

In recent years, an attempt has been made to stabilize pogo by adding an active
suppressor or controller to the feed system (ref. 1). By such an approach the sup-
pressor response could be tailored to the required response over the bandwidth of the
servo, and system flexibility could be improved. Farrell and Fenwick (ref. 1) began
this approach by demonstrating an active suppression system experimentally on a test-
stand, liquid-oxygen system. Then Lock and Rubin (ref. 2) considered the application



of various suppression system designs to the space shuttle vehicle system. Seidel,
Lorenzo, and Lehtinen (ref. 3) used the Lock-Rubin shuttle pogo model to study the
problem of control-system design by using frequency-domain optimization techniques.

In this report, time-domain optimization techniques and, again, the Lock-Rubin
shuttle pogo model are used to design an active pogo suppressor. Two approaches
are examined, both based on linear quadratic regulator theory: The first is called
the minimum-rms design approach, and the second is called the modal control design
approach. The objective in the minimum-rms design approach is to minimize the
root-mean-square value of the high-pressure-oxidizer-pump (HPOP) suction pressure
variations in response to a flow-rate disturbance at the HPOP inlet. Two variations
of this approach were studied: (1) feedback of HPOP suction pressure through a
Kalman filter and (2) partial-state feedback of selected variables (including HPOP suc-
tion pressure) resulting in a suboptimal design. In the modal control design approach,
the objective is to maximize the eigenvalue damping associated with critical structural
pogo modes by feedback of reconstructed modal state information. The sensors re-
quired for this purpose are a few selected vehicle accelerometers.

The body of the report comprises three major sections. In the first, the develop-
ment of a suitable system model and the controller design philosophy are discussed.
A short review of linear quadratic regulator theory is presented next, followed by the
second main section, which discusses the minimum-rms design approach. And finally,
the modal control design approach is presented. An appendix describes the formulation
of the space shuttle, state-variable pogo model, upon which the designs discussed in
the report are based.

POGO SYSTEM MODEL

The space shuttle system configuration that was used for analysis and design of
the active pogo suppressor is shown in figure 1. As in previous studies (ref. 4), only
the liquid-oxygen side of the feed system is considered in the analysis.

Overall Model Structure

The liquid-oxygen tank is located forward in the main vehicle (fig. l(a)) and is
connected to the engines through a 31.1-meter-long duct running alongside the main
tank. This duct is represented in figure l(b) by the portion between stations 1 and 2.
(A more detailed schematic is shown in fig. 26.) The duct is followed by an elbow con-
nected to an 8.47-meter-long crossover duct (stations 2 to 3) that feeds the low-
pressure oxidizer pump (LPOP). The LPOP in turn feeds the HPOP through a short -



interpump duct (between stations 5 and 7). It is at the inlet to the HPOP that the sup-
pressor's piston actuator is assumed to be located. The HPOP exhausts the liquid
oxygen through a short discharge duct into the engine thrust chamber. This simplified
liquid-oxygen-system configuration is the same as the configuration used in references
2 to 4. For instance, one major simplification is that the three shuttle main engines
and their associated discharge ducts are modeled as a single engine of equivalent
thrust. A more detailed development of this model is contained in appendix B. (Sym-
bols are defined in appendix A.)

As in reference 3, the model used for this study contains seven liquid-oxygen-
system structural elements that can move independently of one another. These ele-
ments are the liquid-oxygen tank, the two feedline segments, the two elbows, the
LPOP, and the interpump duct - HPOP - discharge line - thrust chamber combination.
The propulsion system dynamics are characterized by flow rates and pressures
throughout the system.

Controls and Measurements

Pogo oscillation is to be suppressed by means of an electrohydraulic piston actu-
ator, at the HPOP inlet, that can insert or extract flow from the interpump duct so as
to have an overall stabilizing effect on the system. This study assumes that measure-
ments available to be fed back to the actuator are flows and pressures within the liquid-
oxygen system and the accelerations of any of the aforementioned seven system struc-
tural elements.

State-Variable System Model

Because a state-variable model of the pogo system had to be used in applying lin-
ear quadratic regulator techniques, some modifications had to be made to the model
discussed in reference 4. As shown in appendix B, the main modification was to for-
mulate the line dynamics as a lumped- instead of a distributed-parameter model.
Once this was done, the remainder of the task was simply to reformulate the set of
ordinary differential equations into the standard state-variable form

x = Ax + Bu + Dw (1)

y = Hx (2)

The details of this manipulation are given in appendix B.



Figure 2 shows schematically how the state-variable model is structured. Three
main portions make up the overall model. Each portion has state variables associated
with it. These state variables then comprise the overall system state vector x.

The propulsion-system-dynamics block in figure 2 contains flow and pressure
relationships for the tank, pumps, lines, and engine. Coupled to it is the suppressor
actuator, which is assumed to have first-order dynamics. Actuator input voltage u03.

will induce a change in actuator piston velocity and thereby produce a change in the in-
jected flow rate Q&. The vector x shown in the figure is the propulsion system
state vector and consists of the following 29 states:

Xp = (q1,p1,q2,p2,q3,p3,q4,p4,q5,p5,q6,p6,07>p7>

q8,P8,Q1,P1,Q2,P10,q11,P11,Q4,P4,Q5,P7,Qtc,Qa)

The capital Q1 s and P1 s are flows and pressures at stations indicated in figure 26 .
The lower-case q's and p's correspond to flows and pressures at discretely spaced
points (lumps) along the first and second feedlines and reflect the lumped-parameter
modeling process. This notation was chosen to be consistent with references 2 to 4.
The variable Q0 is the flow supplied by the actuator.

cl

The structural-dynamics block in figure 2 contains the modal structural dynamic
relationships . A six-mode structural model was selected for this study . Although
other studies (ref . 4) used one-mode-at-a-time analyses, we felt that it would be more
advantageous to include the six predominant structural modes simultaneously in the
model. In this way, control designs based on this model automatically take into ac-
count any possible modal interactions. The state variables most convenient for analy^
sis were chosen. They are the generalized modal displacements q and velocities q.
Thus, the 12th-order vector of structural states is defined as

Because the vector x (unlike x ) is immeasurable, it is important that the model in-
clude structural variables that are measurable for use as feedback variables. The fol-
lowing 12 measurable structural variables are defined as the structural output vector

ys
:

ys = (J5H'xl'x3'x4':i7'^tb'Z£2'zl'z3'z4'^7'Ptb)

Here, subscripts £.1 and S.2 refer to the first and second feedlines. For convenience,
tank pressure p , is considered as a structural output.



In judging the effectiveness of an active suppression system, and in designing con-
trols that use reasonable amounts of control power, it is important to determine a suit-
able model for external system disturbances. For this study, the main disturbance
considered was a random noise signal that resulted in a flow-rate disturbance Qd? at
the HPOP inlet. This disturbance is denoted by the signal w„ in figure 2 and is

Cxi
modeled by passing white noise through a 100-hertz, second-order filter with 0.707
damping. (See appendix B for details.) This modeling introduces two additional noise
states, or xcn

 A (xcnl,xcn2), where xcnl
Awcn-

Thus, the overall 43rd-order state vector x is

where the propulsion states x as well as the structural outputs y are measurable.
The elements in matrices A, B, D, and H are computed by subroutine POGMAT (ap-
pendix C).

Worst-Case-Model Parameter Selection

Because the data (ref. 4) defining the model are preliminary and some model pa-
rameters vary considerably over a flight, some method of handling parameter uncer-
tainty had to be included in the control design process. We decided to select critical
parameters so as to achieve a worst-case model. Worst case was defined as the model
that was least stable in the open loop. The propulsion system parameters that most
depend on flight condition are pump inlet bubble compliances C, , and C. « and pump
gains m, + 1 and m^ + 1. Ranges for these variables are shown in table I. Struc-
tural system parameters that are required to define the model are mainly modal vector
data, modal frequencies, masses, and damping ratios. These quantities are given in
table II (also see ref. 4) for the two flight conditions of interest (least stable) - end
burn and after solid-rocket separation.

From preliminary stability (eigenvalue) calculations on the system A matrix, the
sixth structural mode (27.2 Hz) was the least stable mode for end burn in the frequency
range of primary interest (<30 Hz) for the overall coupled system. The 2.30-hertz
mode was least stable for the after-separation condition. Therefore, the end-burn
structural mode at 2.81 hertz (El in table II) was replaced by the 2.30-hertz mode
from the after-separation condition. The frequency of the sixth end-burn mode was
lowered to 24 hertz, a condition that made for an unstable overall system mode at
23.8 hertz. Also, the pump gains were set to their maximum values and the bubble
compliances were set to their minimum values (table I).



System Eigenvalues

The eigenvalues of the A matrix for this worst-case model are shown in figure 3.
The six modes primarily associated with the six structural modes of the uncoupled
structural system are denoted by the solid symbols. The frequencies of these modes
have not shifted appreciably from the original structural modal frequencies. However,
the damping ratios for these modes have almost all decreased from their original value
of 0.01. In fact, the mode at 23.8 hertz is unstable. Throughout this study, primary
interest is focused on the 13 modes that occur at frequencies less than 30 hertz. There
are seven somewhat lightly damped modes between 30 and 50 hertz that are associated
with line dynamics. However, they are not affected by control or parameter variations
and are included in the model mainly to provide better model accuracy at low frequen-
cies. Three real poles are present: one for the actuator, one associated with the in-
terpump duct, and one very high-frequency pole associated with the thrust chamber.
Also present is the 100-hertz noise-coloring mode.

System Frequency Responses

To fully characterize the worst-case system model in the frequency domain would
require a number of frequency-response plots equal to the number of system outputs,
which could be as high as 41. However, the stability characteristics can be observed
by examining the plot of a key measurement variable, namely, HPOP inlet pressure
Prj • Figure 4 is a frequency-response plot of P? to disturbance flow QJ? at the
HPOP inlet. In this and all subsequent plots, pressures and flow rates are normalized
and phase angles are usually principal values. The plotting resolution is 0.1 hertz.
Pressures are normalized to the nominal average value of thrust chamber pressure -
taken as 2.07x10 pascals (3000 psi). Flows are normalized to the nominal average

c o o

value of total liquid-oxygen flow rate - taken as 3.52x10 cm /sec (21 500 in /sec).
There are six main resonant peaks, all less than 25 hertz. The highest resonance oc-
curs near the 2. 3-hertz, lightly damped, after-separation mode; and the second high-
est occurs near the unstable, 23. 8-hertz mode. The presence of the unstable mode is
evident in the phase angle plot, where there is a large phase lead near 24 hertz.

Active-Pogo-Suppressor-Control Design Philosophy

Figures 3 and 4 illustrate the pogo instability problem from two viewpoints - the
modal viewpoint and the system-response viewpoint. In the modal viewpoint, demon-
strated in figure 3, the primary means of evaluating stability is to examine modal



damping ratios. It has been found desirable in the past to have predominant system
modal damping ratios all greater than 0.01 in order to have acceptable overall system
performance. This is not the case here. Five modes in the less-than-30-hertz region
have damping ratios less than 0.01, and of course one mode is unstable. The control
design philosophy stemming from the modal viewpoint is this: Design a controller that
will cause the damping ratios of all predominant modes to be greater than 0.01 with the
restriction that the frequency of modes associated with actuator motion be less than
some prescribed value. This restriction indirectly assures that the design be imple-
mentable with an actuator that consumes a reasonable amount of power.

In the system-response viewpoint, on the other hand, the primary concern is to
minimize, in some sense, the response of critical system variables to outside distur-
bances and at the same time to minimize the amount of actuator power required for
control. Of course in minimizing system response, the control must, at least, stabil-
ize the system. For the pogo problem, figure 4 illustrates a key system variable re-
sponse to the main disturbance of interest, Q ,„ • The objective of a pogo suppressor
designed from the system-response viewpoint is to reduce the resonant peaks of this
response and to "quiet" the HPOP inlet pressure and, by doing so, to stabilize the
overall system. This design approach requires that the actuator output response in
the closed loop be computed to assess whether an excessive amount of control power
is required.

Both design viewpoints are discussed in the report. Although each has its advan-
tages and disadvantages, either approach can be used to obtain a suitable suppressor
design. . . .

LINEAR QUADRATIC REGULATOR THEORY

Both approaches to suppressor design discussed in the previous section are imple-
mented by using linear quadratic regulator (LQR) techniques. This section summarizes
the main aspects of LQR and Kalman filter theory used in these design approaches.

The linear, time-invariant plant to be controlled can be described by the state
equations

x = Ax + Bu + Dw (3)

y = Hx + v (4)

where w and v are white Gaussian plant and measurement noise vectors. The cor-
relations for these noises are

E{w(t)w(t + r)T} = ^ 6 ( r ) (5)



E{v(t)v(t + T)T} =^V6(T) (6)

where ^w and $y are power spectral density (PSD) matrices.
The problem is to find a control u that minimizes a quadratic performance index

J =E|x R j X + u RgUJ (7)

where R* and Rg are, respectively, positive semidefinite and positive definite sym-
metric weighting matrices. The solution to this problem is the so-called linear quad-
ratic regulator (LQR). If the state vector x is measurable, the resulting control law
is

u = -Kcx (8)

where the control gain matrix KC is

Kc = R2 B S (9)

and S is the solution to the Riccati equation

SA + ATS - SBR^1BTS + R-j^ = 0 (10)

Figure 5 shows the structure for the LQR solution with full-state feedback. The
Riccati solution for obtaining feedback gains KC can be obtained with existing com-
puter programs (ref. 5).

If only the measurement y is available but not the complete state vector x, an
optimal estimate x of the state is required. This estimate can be obtained by using a
Kalman filter, described by

x - Ax + Bu + Ke(y - Hx) (11)

where the Kalman gain matrix is given as

Ke = PH1-^"1 (12)

and where P, the covariance of the estimation error e = x - x, is the solution to the
Riccati equation

AP + PAT - PHT#~ HP + D$i DT = 0 (13)



Figure 6 shows the structure for the LQR solution when a Kalman filter is used in the
feedback loop. Note that control gains K^ multiply x, instead of x as in full-statec
feedback.

Information on control system performance can be obtained by computing X, the
state covariance matrix, a matrix whose diagonal elements are the mean-square values
of the system states. When a Kalman filter is used, the covariance matrix X can be
obtained by solving the Lyapunov equation

(A-BKC)X+X(A-BKC)T + (BKC)P + P(BKC)T+D^WDT-0 (14)

This equation can also be used with full-state feedback. For this case, P = 0 and the
equation again can be solved for the covariance matrix X.

Information on closed-loop system stability with full-state feedback can be obtained
by getting the eigenvalues of A - BK . When the Kalman filter is used, stability is de-

C
scribed by the eigenvalues of A - BIC, plus the eigenvalues of A-K H. These eigen-

C C
values are automatically calculated if a Riccati program of the type appearing in refer-
ence 5 is used in computing the linear quadratic regulator and Kalman filter gains.

MINIMUM ROOT-MEAN-SQUARE (rms) DESIGN

The first of the LQR-based suppressor design methods to be discussed is desig-
nated the "minimum- rms design" approach. As the name indicates, the stated objec-
tive of this method is to minimize the rms value of the HPOP suction pressure .?„ to
disturbance Qj- (flow-rate perturbation at the HPOP inlet). This objective can be
achieved by minimizing mean-square values. Mathematically, the objective is repre-
sented as

Minimize JR = E P + ru (15)

Here, a penalty has been placed on commanded suppressor flow u& so as to limit the
amount of control flow used by the suppressor. Standard performance-index weighting
matrices R^ and Rg can then be written as

Rt = diag(0, 0, . . . , 1; 0, . . . , 0) (16)
26

R = r2 (17)



Full-State Feedback

So that baseline suppressor designs could be determined, a series of LQR solu-
tions were run on the assumption that the full 43rd-order state vector was available
for feedback. A number of runs were made with various values of r«. The computer
program of reference 5 was used to solve the Riccati equation. For large values of
r2, control gains KC and system eigenvalue damping ratios were small. For all
values of r^ the closed-loop system was stable, as predicted by theory.

The open- and closed-loop behavior of one particular design case is shown in fig-
ure 7(a). Here the open- and closed-loop frequency-response magnitudes for P?

responding to disturbance Q ,„ are compared. In addition to stabilizing the system,
state feedback has greatly attenuated the frequency-response magnitude peaks in the
frequency range 0 to 30 hertz. Nowhere does the closed-loop response exceed the
open-loop response.

f*s *"**•'
The response of commanded suppressor flow u to disturbance Qj- is shown in

figure 7(b). Much of the control effort is, as would be expected, concentrated at the
locations of the resonant peaks in the Pa/Q^ response. The response amplitude is

I Ui ^

smallest at the points where minimums occur in the P« response. Thus, in mini-
mizing performance index J^, no real benefit is obtained by further reducing low-f*j ^
amplitude portions of the P? response. The maximum in figure 7(b) occurs near the
24-hertz peak in the P7/Q<j7 response, not near the 2.3-hertz peak. The reason is
that the 24-hertz peak corresponds to an unstable open-loop mode but the 2.3-hertz
peak corresponds to a very lightly damped but stable mode. Thus, the control works
hardest in mode stabilization.

It is more informative to examine, for full-state feedback designs, the trade-off
between control effort and resultant rms values of P?. For this evaluation, the mean-
square system response was calculated for a number of designs. Each design corre-
sponded to a different control weighting r«. All designs are optimal for any rms level

f*j "
of disturbance Q ,„ . In figure 8, results are presented for an assumed rms value for

QJO (OQ 1 of 10 percent. For larger allowable rms suppressor flows, the rms value

of HPOP suction pressure decreases. Although not shown in the figure, ow goes to
*7

infinity as rms suppressor flow is decreased to zero because the system is open-loop
unstable. Hence without a stabilizing control, the rms value of ?„ would be infinite.

Another point to be noted in figure 8 is that the curve is asymptotic to a normal-
ized suppressor flow of 10 percent, which is equal to the rms value of the disturbance.
Thus, if a suppressor is available with a capacity approaching the rms disturbance
flow, large attenuations in HPOP suction pressure can be achieved. This is, however,
generally not the case. For example, a reasonably sized actuator may have a 15.2-

10



centimeter- (6-in.-) diameter piston with a maximum slewing rate of 254 cm/sec
(100 in/sec), for a maximum flow rate of 46 900 cm3/sec (2860 in3/sec). If this is the

o q
3<r limit, the allowable rms suppressor flow would be 15 700 cm /sec (956 in /sec),
or (normalized) 4.5 percent of the nominal liquid-oxygen flow. From figure 8 the re-
sultant normalized rms suction pressure would be about 1.9 percent.

Figure 8 represents an idealized situation, that is, full-state feedback and no
measurement noise. Such designs are obviously impractical to implement without
some simplification. One approach is to eliminate those feedback gains that least af-
fect performance. This approach is not always possible; but, as in the section Partial-
State-Feedback Minimum-rms Control Designs, reasonably simple state feedback de-
signs can be achieved for the problem considered here. A second approach is to use
only a few measurements of the most easily sensed variables and to estimate the im-
measurable state variables by using a Kalman filter. This approach is discussed next.

Kalman Filter Feedback

Numerous measurement configurations can be used with a Kalman filter. Many
considerations are involved in the choice of measurements - for example, sensor cost,
accuracy, reliability, and noise levels. For the pogo problem, we decided to consider
the simplest possible case, namely, a single sensor. The sensed variable chosen was
p?, a variable that has been shown in other investigations (refs. 3 and 4) to be a key
feedback variable.

A number of Kalman filters were designed that used P? as a single noisy mea-
surement. Each design corresponded to a different assumed level of measurement
noise. The loop was closed around the filter by using the same sets of optimal control
gains discussed in the previous section. The overall control loop is depicted in fig-
ure 6. The results are plotted at discrete points and are connected by straight lines.
The set of resultant design trade-offs can be displayed in an rms value plot, as shown
in figure 9. This figure, as does figure 8, shows normalized rms HPOP suction pres-
sure as a function of normalized rms suppressor flow for a normalized rms disturbance
flow of 10 percent. The rms values were obtained by solving the Lyapunov equation (14).
The curve from figure 8 is replotted in figure 9 and is now labeled "full-state feedback
cases. " This curve serves as a lower bound to all the other cases, where a Kalman
filter is> used in the feedback loop. Three curves are shown, each for a different ratio
of disturbance to measurement noise. These curves are also lines of constant Kalman
filter gain. In all cases the normalized disturbance level is kept at 10 percent. The
parameter for these curves is $„/$ , the ratio of normalized disturbance to measure-

~ r^> W V

ment noise. As ^w/^ increases (less measurement noise), the curves approach the

11



full-state feedback curve. The dashed lines indicate loci of constant control gains;
each locus is labeled with the control weighting r^ used for the control design. For
any fixed set of control gains, performance is sacrificed when a Kalman filter is intro-

f\j r**t r*j

duced into the loop: ov, increases along a constant-control-gain locus as ib /ib in-
±7 w v

creases.
One important difference between full-state and Kalman filter feedback can be

noted by comparing the respective curves as ox gets large. For full-state feedback,

oL gets very small; but for Kalman filter feedback, the curves asymptotically ap-
7

proach constant values of cr,-, . The reason is that the best a control with a Kalman
7

filter in the loop can do is to drive the estimate of P_ to zero. The irreducible error
remaining is simply the error incurred in estimating P_. Shown in figure 9 are the
asymptotic values of ov, for the three Kalman-filter-gain curves and one correspond-

ing to a tjLj/fi of 1950 (curve not shown). These asymptotic values, which are ele-
ments of the error covariance matrix P, are obtained automatically when solving the
Kalman-filter Riccati equation.

Figure 9 thus summarizes the rms performance of a large number of pogo con-
troller designs; each employs P,, measurement and a Kalman filter in the feedback
loop. Kalman filter feedback is more complicated than full-state feedback because the
measurement noise level must be determined. For example, suppose that the maxi-
mum allowable value of ox is 4.5 percent, the value used in the previous section on

a ~ ~
full-state feedback design. Suppose also that sensor noise is such that ^w /fy- is 19.5.

And assume that the sensor noise is colored in the same way that the Q^ disturbance
is colored. Then the rms value of sensor noise can be computed as 0.52 percent.
Figure 9 shows that, for this design, normalized rms HPOP suction pressure would be
about 3 percent, rather than the 1.7 percent for full-state feedback. For this case,
the closed-loop signal-to-noise ratio on the P,, sensor was 17 percent.

Although acceptable performance can be achieved with Kalman filter feedback, the
problem of complexity remains. As formulated, any of the Kalman designs requires a
43rd-order system to be implemented. To determine whether simplifications are pos-
sible, we are led to view the Kalman filter - feedback gain combination as a single-
input, single-output compensator.

Frequency-Domain Interpretation of Kalman Filter Feedback

It is instructive to view the combination of a Kalman filter plus state-estimate
feedback as a frequency-domain compensator (controller). The primary motive is to

12



see whether significant simplifications can be made in the controller. The following
equations describe the controller:

x = Ax + Bu + Ke(y - Hx) (18)

u = -Kcx (19)

where equation (18) is the Kalman filter equation (eq. (11)), repeated here for conve-
nience, and equation (19) defines state-estimate feedback. Taking the Laplace trans-
form of equation (18) for zero initial conditions and combining with equation (19) results
in the transfer function matrix of the controller

u(s) = -Kc [si - (A - BKC - KeH)]~1Key(s) (20)

The overall system, configured to show the feedback compensator, is shown in fig-
ure 10. Here, u(s) = u (s) and y(s) = Pam(s) are scalars. Hence equation (20) can be
expressed as

u a (s)=G c (s)P 7 m (s) (21)

to define the controller transfer function G (s).
\s

The main variable parameters that define the characteristics of G (s) are the con-
\s

trol gain K and the Kalman filter gains K . These gains in turn are functions of r0C c £.1
and ^ /4> , respectively. To examine the structure of G (s), various controller
transfer functions were calculated for various pairs of Y^ an^i ^w/^ • Figure 11
compares three feedback-compensator transfer functions in terms of normalized
frequency-response magnitude and phase. Commanded flow rate u (s) and measured
HPOP pressure P7TT1(s) were normalized as was done previously. The comparison is

' ^ r*** i*~t

presented for controllers having the same set of Kalman filter gains (# /$ - 1.95) but
for three control weightings r^. All controllers are stable, as was determined by cal-
culating the eigenvalues of A - BK - K H. This is a convenient result but is not al-

C G
ways the case with such Kalman filter - LQR-designed controllers. This fact was
pointed out by Kwatny and Fink (ref . 6), who designed controllers based on a Kalman
filter and found that the overall closed- loop system response was stable but that in
some cases the controller by itself was unstable .

The magnitude plot of figure ll(a) shows major peaks in the controller response
near 2.3 and 23.8 hertz. This would be expected since this is where the least-stable
system modes occur. The main trend shown is that, as control weighting rg was de-
creased, controller gain increased - at all frequencies. Although not shown, similar

13



results were obtained when the $w/# ratio was varied. In particular, when ip /ip
was increased, controller gain increased.

The phase angle plot (fig. ll(b)) shows that the controllers all exhibit large
amounts of phase lag. However, for smaller values of r2 (higher gain controllers),
phase lag is less. Controller poles and zeroes were calculated to determine why the
controllers have such large amounts of phase lag. Each of the three controllers in
figure 11 had right-half-plane zeros in its transfer function, which caused the addi-
tional phase lag. Using a controller with right-half-plane zeroes is contrary to com-
mon practice with classical frequency-domain techniques. However, Shaw (ref . 7)
gives a root-locus example wherein right-half-plane zeroes are required to achieve a
desired set of closed-loop poles. Thus, the existence of right-half-plane zeroes in the
present results is unexpected but plausible. In particular, controllers designed for
r2 of 2x10" and 2xlO~ both have 41 zeroes, 17 of which are in the right half-plane.
The controller for an r^ of 2x10 has 41 zeroes, 13 in the right half-plane. The
phase angles for these cases differ because the four additional right-haif-plane zeroes
for r^ of 2 xlO~ and
lags there (fig. ll(b)).
for r^ of 2 xlO~ and 2 xlO~ occur near 24 and 40 hertz, causing additional 180° phase

Non-Minimum-Phase Controllers

For a better understanding of the presence of right-half-plane zeroes, transfer
function zeroes were calculated for various controller designs. Results for selected
designs are given in table III, which lists the number of right-half-plane controller

r**f f**i

zeroes for various combinations of r2 and ip /ip . The conclusion that is suggested
by the table is that, in general, the higher the controller gain, the fewer the number of
right-half-plane zeroes. Higher gain means either higher optimal control gains or
higher filter gains. Further down the table and to the right, the number of right-half-
plane zeroes decreases. In fact, the highest gain controller (^w/# = 195, r2= 4XLO~^)
has no right-half-plane zeroes at all. From these results, we concluded that a low-
control-effort stabilizing pogo controller will tend to have right-half-plane zeroes.
This somewhat counterintuitive conclusion was also reached by Widnall (ref. 8) in a
sampled-data optimal control design of the Apollo autopilot. There are similarities
between his problem and the pogo stabilization problem in that both systems to be con-
trolled are unstable and contain a number of lightly damped modes. Thus low-control-
effort optimal control of unstable plants appears to lead to non-minimum-phase con-
trollers.

The remaining problem was to simplify the controller designs to a transfer func-
tion of reasonable order (10th to 15th order). A method developed by Hutton and
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Friedland (ref. 9) was used on a representative transfer function for an r2 of 2x10

~ /**
and a ^w/^ of 1.95. The technique produces a series of reduced-order transfer
function approximations, beginning with 43rd order and extending down to any arbitrary
lower order approximation. For reduced transfer function orders of less than about 30
the transfer function fits were poor, probably because the non-minimum-phase charac-
ter of the transfer function made simplifying difficult-- Thus, we decided not to pursue
the Kalman filter approach further but instead to look into simplifying the full-state
feedback designs by eliminating certain of the feedback variables.

Partial-State-Feedback Minimum-rms Control Designs

Sophisticated output-feedback techniques for simplifying LQR designs were dis-
carded in favor of a much simpler, intuitive approach. Gain simplification was per-
formed as follows: The feedback variables consist of four types - flow rates, pres-
sures, structural velocities, and structural displacements. Thus, gains were grouped
into four classes, and plots were made of each class for various LQR designs. In all
plots, gain values were normalized. Velocity gains were normalized by the acoustic
velocity in liquid oxygen (51 800 cm/sec; 20 400 in/sec), and displacement gains were
normalized by the line lump length (345 cm; 136 in.). Gain (absolute) magnitudes were
compared within each group. Then-only the gains with the largest magnitudes were re-
tained for use in the simplified gain control. It is difficult to rationally compare gains
from one class with those from another. As discussed later in this section, other
rationale were used to eliminate complete classes of gains.

Figure 12 summarizes the results. Figure 12(a) shows the flow-rate gains as a
function of the inverse of the control weighting parameter rg. Here, gains for states
25 (LPOP exit flow rate), 27 (thrust chamber flow rate), and 29 (suppressor output
flow rate) are obviously predominant. Thus, we decided to discard the rest of the
flow-rate gains and keep these three. Figure 12(b) shows normalized pressure gains
as a function of r« . Most gains increase with decreasing r^, but the most notable
result is that gains for states 24 (LPOP suction pressure) and 26 (HPOP suction pres-
sure) are dominant. This result is not unexpected because HPOP suction pressure was
weighted in the performance index. Figure 12(c) shows the gains for the generalized
displacements. The dominant gains correspond to the displacements of the last two
modes. From figure 12(d), it is not apparent that any of the normalized, generalized
velocity gains are dominant. For this reason and so that measuring (or reconstruct-
ing) all the structural velocity states could be avoided, we decided to eliminate all
structural variables from the feedback loops. There remain two gains unaccounted
for: those associated with the noise-coloring states. These states are immeasurable
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and to include them would have meant implementing an observer to reconstruct them;
thus they too were dropped.

The gains left then were those for LPOP inlet flow and pressure, HPOP inlet
pressure and outlet flow, and suppressor outlet flow. The performances of these
simplified-gain, minimum-rms control designs are compared with those of the full-
state feedback designs in figure 13. The rms performances of four simplified gain
designs are compared with the performances of the full-state feedback designs upon
which they were based. The base r0 values chosen were 2 XLO , 2X10 , 2x10 ,

—fiand 2xlO~ . All simplified gain designs were stable, a fact not guaranteed by the gain
elimination process. For any fixed value of ox , the simplified gain control is infe-

^a
rior to the corresponding full-state feedback control. Controls compare least favor-
ably at the higher values of rms suppressor flow. However, for the lower values, for
instance for a ox of 4, the simplified design is not much worse than the full-state

a ~ ~
feedback design. It is in this region of ox that the practical upper limit on ox

^a ^a
would probably lie. Thus, it appears that simplified gain designs are a reasonable
solution to the suppressor design problem as long as the lower values of ox are
used. a

As a check on the results shown in figure 13, a closed-loop frequency response
was run for the lowest-gain simplified gain control shown in figure 13 (based on the

_Q

full-state feedback control designed for an r^ of 2x10 ), whose normalized rms sup-
pressor flow requirement is about 4. Figure 14 compares this response to the open-
loop frequency response. Closed-loop performance is quite acceptable because the
disturbance is everywhere attenuated to values below open loop, as was the case for
full-state feedback. Comparing figures 14 and 7(a) shows that, except for the region
near 25 hertz, the simplified feedback design is very close in performance to the full-
state feedback design, and both designs use essentially the same amount of suppressor
flow.

A major concern with any control system, optimal or otherwise, is how sensitive
the closed-loop response is to changes in system parameters that may be imprecisely
known. Therefore, we decided to check the sensitivity of the closed-loop response of
the simplified gain design shown in figure 14 to changes in key system parameters.
Experience has shown that two parameters that have major effects on system stability
are the frequencies of the first and sixth structural modes. Thus, the frequencies of
these modes were varied, and the frequency responses were calculated for the system
that uses the simplified gain controller. Figure 15 shows a check case where the
frequency of the sixth structural mode (23.8 Hz) was increased by 10 percent. There
was no serious performance degradation. Similar results were observed when the
first structural modal frequency was varied.
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In summary then, it has been demonstrated that a partial-state feedback control
for pogo suppression can be designed. The gain elimination procedure used was effec-
tive in eliminating less important feedback variables. For higher performance con-
trols, those that require large amounts of control effort, the simplified controls suf-
fered appreciable performance degradation. However, for lower performance con-
trols, simplified gain control was nearly as good as full-state feedback. Sensitivity
of the simplified controls does not appear to be a significant problem.

MODAL CONTROL APPROACH TO SUPPRESSOR CONTROL DESIGN

The second approach taken in designing a control to suppress pogo oscillations is
designated the "modal control design" approach. As already mentioned, the aim in the
modal control approach is to increase the damping on the least stable or most sensi-
tive system modes while not unreasonably increasing the modal frequencies associated
with the actuator. The focus in this design method is primarily on the degree of .sta-
bility, with secondary focus on minimizing system response to disturbances.

The LQR and Kalman filter techniques lend themselves directly to this approach.
The key difference between the modal control approach and the minimum-rms approach
is in the selection of the quadratic performance index to be minimized. The difference
in the character of the index then leads to differences in the resulting control systems.

Performance Index Formulation

The first step in the modal control approach is to obtain the modal form of the
system state-variable model. For the system state-variable equation

x-Ax + Bu (22)

a modal state vector rj can be defined as

t] = T'-'-x (23)

where the matrix T~ effects the transformation from the original system coordinates
into modal coordinates. The modal state equations can be obtained by substituting for
x in equation (22) from equation (23): •

77 = AT) + T'- (24)

where A = T AT.
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One convenient form of modal state equation can be obtained if the matrix A is
the block-diagonal form of A, whose structure is

A =

A2

A,,

(25)

An element A- is either (1) a scalar equal to a real eigenvalue a. of A or (2) a two-
by-two matrix of the form

(26)

where a- and £. are real and imaginary parts of a complex eigenvalue pair of A.

With A being block diagonal, the matrix T becomes the modified eigenvector matrix

(ref. 5). The block-diagonal, modified eigenvector matrix form of the eigenvalue-
eigenvector problem is used here for computational convenience because no complex

arithmetic is required.
The quadratic performance index that allows the designer to obtain a control that

tends to increase the damping on certain selected system modes is set up as follows:

First, the eigenvalues of the matrix A are obtained. From the eigenvalues, a block-
diagonal matrix A is formed. Next, the mode whose damping is to be increased is

selected. There are then two modal states TJ. and T]J+,, corresponding to this mode,

that are to be altered. Penalizing these states in the performance index will cause

their amplitudes to be attenuated. As it turns out (especially for lightly damped modes)
an attenuation in TJ« and TJ. ,, will lead to an increase in damping of the associated

mode. Thus, the "modal" performance index JM can be written as

(27)

where the integral form is used for JM since random disturbances are not considered

explicitly in the modal approach. Now the remaining step is to express TJ£ and
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in terms of the original state vector x. It is assumed that matrix T~ has been cal-
culated. Define

n

(28)

where t^ are row vectors. Then TJ. = t.x and 7]j?+1 = t£+1x, from equation (23).
Now if Tip and 77. ., are substituted into equation (27), the standard form

(29)

is obtained for Jiyr, where the elements of R-. are

j J

(30)

To control the damping on other modes in addition to these, simply identify the indices
of the associated modal states (m, m + 1, p, p + 1, etc.) so that the elements of R..
become

(31)

where k takes on the values of the first indices of penalized modal state pairs.
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Full-State Feedback

As already discussed, the two least stable modes of primary interest in the liquid-
oxygen-system model were those at 2.3 and 23.8 hertz. These modes are referred to
as "critical modes" (fig. 3). Other modes, which although lightly damped were not
considered, were those at 4.72, 22.5, and 8.38 hertz. These modes are very insensi-
tive to control and system parameter variations and never become unstable. Thus, all
effort was concentrated on increasing damping on the 2.3- and 23.8-hertz modes.
Full-state feedback designs were calculated for the case where both critical modes
were equally weighted. The primary criterion for judging effectiveness is the increase
in modal damping on these two modes.

Table IV shows the results obtained for two different control weightings r2- For
a weighting of 0.1, damping on both modes was in excess of 10 percent, which is gen-
erally considered an acceptable target design value. All other modes were essentially
unchanged. For both cases, the 50-hertz actuator pole was not moved appreciably.
This shows that the two modal designs quite efficiently concentrate available control
energy on only the two selected modes (2. 3 and 23.8 Hz).

Eigenvectors associated with these designs were plotted so that insight could be
gained into the behavior of the modal designs. The propulsion system portions of the
eigenvectors (corresponding to the states that are either pressures or flow rates) were
plotted as either pressure mode (figs. 16(a) and (b)) or flow mode (figs. 16(c) and (d))
shapes. The mode shapes are simply the normalized magnitudes of the (pressure or
flow rate) eigenvector components plotted as a function of the spatial location of the
corresponding pressure or flow-rate variable. Figures 16(a) and (b) present the pres-
sure mode shapes for both the 23. 8- and 2.3-hertz modes. One open-loop and two
closed-loop, full-state feedback cases are shown. A propulsion system schematic is
included along the abscissa to aid in locating the spatial coordinates of the various
pressures throughout the system. Five maximums occur for the 23.8-hertz mode
shape (fig. 16(a)); all have about the same magnitude in the open-loop case. For full-
state feedback, as control weighting is decreased, the pressure maximums along the
feedlines decrease relative to the highest maximum, which now occurs at the HPOP
inlet location. Because each case is normalized with respect to its highest maximum,
no comparisons can be made between cases. But we can conclude that the control
changes the way in which pressure perturbations affect the pressure distribution within
the system. An increase in the amount of control decreases the effect of a perturba-
tion on HPOP inlet pressure, as discussed in the section Frequency-Domain Behavior
of Modal Control Designs.

The 2.3-hertz mode shape (fig. 16(b)) was less sensitive to control than was the
23. 8-hertz mode. However, the modal damping ratio for an r2 of 0.1 was almost
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1000 times greater than the open-loop ratio.
The flow mode shapes in figures 16(c) and (d) are like those in figures 16(a) and

(b). Generally, flow is 90° out of phase with pressure, as would be expected. Again,
increased control tends to alter the mode shape away from the open-loop, organ-pipe-
like pattern. No clear pattern exists for the modal amplitude of control flow (state 29)
as control weighting is decreased. This is true for both the 23.8- and 2.3-hertz
modes.

Sensitivity of Full-State Feedback Designs

The modal design approach has been shown to be a very selective method. In it,
the control is required to modify the system frequency response only in regions about
the (two) selected modes. Because of this selectivity, the resulting designs could be
overly sensitive to parametric variations and large increases in modal damping might
not be achieved if system parameters changed. Thus, eigenvalue calculations were
performed for off-nominal cases, where the most critical system parameters were
varied.

For the pogo model of this study, there are a number of parameters whose values
are imprecisely known. But the most critical ones, it is generally believed, are the
structural modal frequencies. Thus, off-nominal runs were made in which the 2. 3-
and 23.8-hertz modal frequencies were varied to see how they influenced the closed-
loop modal damping ratios. Gains for the lower gain modal design (for r, = 1.0) were
used throughout. Figures 17(a) and (b) show how the damping ratios for all modes less
than 30 hertz varied as structural modal frequencies were varied ±10 percent from
nominal. Modes greater than 30 hertz were influenced very minimally. In figure 17(a),
the 2. 3-hertz mode was varied. The only closed-loop mode whose damping ratio varied
appreciably was the (nominally) 2.89-hertz mode. However, its damping is well above
16 percent over the range of variation.

In figure 17(b) the 23.8-hertz modal frequency was varied ±10 percent. As a re-
sult a number of damping ratios changed, the most troublesome being the 26. 3-hertz
mode. However, its lowest damping ratio is about 1 percent, which is still an accept-
able value. The 23.8-hertz modal frequency appears to be a much more influential
parameter than the 2.3-hertz mode. Thus, for any final design, it would be advisable
to more thoroughly investigate the sensitivity of any designs to the 23. 8-hertz modal
frequency.
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Partial-State Feedback

Although the results and modal designs just discussed are useful as baseline in-

formation, such designs would be impractical to implement in full-state feedback form.

Implementing a Kalman filter would be one solution to the problem. But, because of

the rather selective nature of the performance index, we believe an adequate job could

be done more simply by using partial-state feedback. To see what gains might be

eliminated, control gains for designs with r2 of 1 and 0.1 were tabulated (table V).

In scanning the table, it is obvious that the largest gains occur for states 30, 31, 40,

and 41. This is not surprising, as these states are associated with the 2. 3- and 23. 8-

hertz modes; that is, they are the modal displacements and velocities for both modes.

These two modes were the only ones weighted in the modal performance index. Thus,

the partial-state feedback designs considered for further analysis used only states 30,

31, 40, and 41.

Generation of Unmeasurable Modal State Variables

Partial-state feedback involving only states 30, 31, 40, and 41 still cannot be im-

plemented because these states are generalized structural displacements and velocities

and are thus not directly measurable. The way to get around this problem is to look at

the equation relating structural outputs (which are physical quantities and can be mea-

sured) to the structural states. This equation is given in appendix B and is repeated

here for convenience.

^s = Csxs + Vs <32>

Matrix C_ accounts for the liquid-oxygen-tank outflow effects. Its only nonzeros
elements are ^-(tb), i = 1, . . . , 6 , for the six-structural-mode model. However,

_ 0

for the model considered, all ^(tb) are zero except for ^(tb), which is -2.16x10 .

System frequency responses and eigenvalues were calculated by assuming that #. (tb)

is zero, that is, by neglecting all tank outflow effects. Very little difference was noted
with and without ^,(tb); therefore it was assumed that

y s = C s x (33)

Now, from the C matrix (table VI), it is evident that not all structural outputs are
S

independent. In fact, only six independent structural outputs can be defined. This

six-element output vector, denoted as y , can be defined as
o
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xl ~ X3

\ "\ -\ I\ Z 4- Z 7 /

(34)

By using C as defined in appendix B and the modal data given in table II, the output

vector y can be related to the six generalized structural velocities as follows:s

X

I

-1.267

-0.8

-2.38

-0.137

-0.316

_ -2 . 68

-0.198

-0.245

0.239

-0.334

-0.352

0.50

0.054

-0.0787

-0.556

-0.259

0.431

-1.95

0.022

-0.752

-1.71

-7.74

-0.372

-0.12

0.022

0.370

-2.13

4.44

0.017

0.99

0.022 "

0.0134

2.63

5.34

-0.09

-1.56_

(35)

,%

or, more compactly,

where

(36)

(36)

Next, so that velocities x can be reconstructed, C must have an inverse, which it

does. In fact, it was calculated to be

^-

"-0.7248

0.09167

1.6650

1.119

0.8755

0.9128

1.852

-13.70
-7.951

1.707

-0.6522

1.821

-0.06638
0.3960

0.1027

-0.2015

-0.2674

-0.04165

-0.09701
0.7353

0.4207

-0.1130

0.1380

-0.02731

-1.347

9.771

6.506

-2.621

-0.2871

-2.668

-0.3606

2.505

1.179

-0.5447

0.04502

-0.6223

(37)
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Thus,

<38>

Finally, the two generalized velocities (x^, = q, and x. , = cu), which need to be re-
constructed, can be obtained as

6

*1 =

(39)

Therefore to generate or reconstruct each generalized velocity requires the sens-
ing of six structural velocities and the weighted summing of these velocities where
the appropriate row elements of matrix C are the weights. The two generalized dis-
placements can be generated by integrating the respective generalized velocities. In
an actual application, the only available structural measurements would be from ac-
celerometers. These accelerometer outputs would need to be high-pass filtered to re-
move any low-frequency component, linearly combined according to equation (39), and
then bandpass filtered at the associated modal frequencies to determine the recon-
structed modal velocities. This process would eliminate concern over the effect of
any modes present but not considered in the pogo model, except for those that might
occur'in a filter pas sb and. If an extraneous mode does occur in a passband, additional
information would be required to separate out its effects.

Other methods of generating the generalized velocities from the direct use of par-
allel bandpass-filtered data from one or more structural accelerometers can be con-
ceived of. The important aspect is that the information required about the generalized
modes that can destabilize through pogo coupling be supplied to the controller. Then
with this information, the control energy can be concentrated at the offending modal
frequency.

At this point, the partial-feedback modal designs could have been further simpli-
fied. However, because it was not obvious which elements of the C^ matrix could be
dropped, this aspect was not pursued. In the following sections, modal designs are
further evaluated on the basis of eigenvalue-damping-sensitivity mode shapes and are
finally compared with minimum-rms designs.
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Mode-Shape Analysis of Partial-State Feedback Design-

The partial-state feedback design that was evaluated used reconstructed estimates
of states 30, 31, 40, and 41 (q,, q^ qg, and c^). The full-state feedback modal de-
sign obtained for a control weighting ^ of 1 was used as the basis from which the
modal partial'state feedback design was obtained.

In the partial-state design, damping may be decreased because fewer states are
fed back than in the full-state design. For instance, the damping on the 23.8-hertz
mode decreased from 3. 67 percent to 2.42 percent in going to partial-state feedback.
However, damping on the 2.3-hertz mode increased slightly, from 4.49 percent to
4.87 percent. At any rate, it can be concluded here that for the four states chosen for
feedback, the dampings on the two modes of primary interest remain well above the
allowed minimum of 1 percent.

Flow and pressure mode shape plots like those in figure 16 are presented in fig-
ure 18 to clarify what happens when a full-state feedback design is simplified. Here,
full- and partial-state feedback mode shapes are compared for the 23.8- and 2.3-hertz
modes. First, the 2. 3-hertz mode shapes for both flow and pressure are almost iden-
tical for full- and partial-state feedback. From this and the eigenvalue damping num-
bers, it can be concluded that little performance was lost in eliminating most of the
gains insofar as the 2.3-hertz mode is concerned.

Differences in shapes do occur, however, for the 23.8-hertz mode. In figures
18(a) and (b), for instance, the partial-state feedback mode shape looks like one for a
lower gain design; that is, it is more like an open-loop shape. This agrees with the
fact that the damping ratio is less for the partial-state case (again, more like an open-
loop ratio). The flow mode shapes for the 23.8-hertz mode show the most pronounced
differences. Mode shapes in the vertical and horizontal feedlines are similar, with
partial-state feedback giving a mode shape more like open loop. The main differences
occur in the interpump duct for interpump duct flow Qg and suppressor flow Qa. The
interpump duct flows have a lower modal amplitude with partial-state feedback, and
again this control looks more like an open-loop control in this region. This fact can be
observed by comparing the open-loop mode shape values for Q5 from figures 16(c)
and (d) with the value shown in figure 18.

Sensitivity of Partial-State Feedback Designs

One of the drawbacks to partial-state feedback is increased sensitivity to paramet-
ric variations. This is obvious if the modal damping sensitivity in figure 19(a) is com-
pared with that of the full-state feedback case (fig. 17(a)) upon which the partial-state
design is based. At nominal conditions, some damping ratios are less for the partial-
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state feedback case, notably for the 2.89- and 23.3-hertz modes. But these modes are
quite heavily damped and the rest of the damping ratios are almost identical for full-
and partial-state feedback. The main deficiency in the partial-state case is that there
is an appreciable decrease in damping of the 2.3-hertz mode (off nominal). For full-
state feedback, this modal damping is insensitive. However, at its worst, the damping
ratio is still an acceptable 1.5 percent.

The sensitivity of partial-state feedback to changes in the 23.8-hertz mode is
shown in figure 19(b). Comparing it with figure 17(b) shows that except for the 8.6-,
23. 3-, and 2.89-hertz modes, damping ratios and sensitivities are approximately the
same with the full- and partial-state feedback. Fortunately, the damping ratios for
these three modes are all above 2 percent in the ±10-percent range of parametric vari-
ation. Thus, partial-state feedback affords quite adequate closed-loop stability.

Comparison of Modal Control and Minimum-rms Designs

The main thrust of the modal control design approach has been, naturally, to judge
all designs according to the positions of their eigenvalues without regard to input and
output behavior. This contrasts with the minimum-rms approach where input and out-
put behavior is of main concern. Both approaches are valid; but it is instructive to
examine modal control designs in terms of their rms behavior. This was done for the
full- and partial-state feedback modal designs: The rms response values were calcu-
lated by using the same colored-noise disturbance that was used to evaluate minimum-
rms designs. The results are shown in figure 20, where normalized rms values of ?„
are plotted as a function of normalized suppressor flow rate. For comparison, the
minimum-rms, full-state feedback designs are shown by the solid line. The modal
full- and partial-state design results are shown as the circles and squares, respec-
tively .

A number of points can be noted in figure 20. First, the modal designs used rela-
tively small amounts of suppressor flow. This correlates with the fact that actuator
poles for these designs are moved very little from the open-loop locations. Second,
these modal designs can be characterized as low-gain, stabilizing controls. Third,
the rms performances of full- and partial-state modal designs are not radically differ-
ent, especially for the lower gain designs. However, none of the modal designs are
close in rms performance to the minimum-rms, full-state feedback designs. This is
to be expected since the design criteria for modal control designs differ from those for
minimum-rms designs.
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Frequency-Domain Behavior of Modal Control Designs

For further insight into the modal control designs, a frequency-domain analysis
was made. Thus, modal designs can be compared with previously discussed minimum-
rms designs based on transfer function representations. Figure 21 shows open- and
closed-loop frequency responses (magnitude only) for a modal design with full-state

fx>

feedback. The main result is that disturbance Q,- is suppressed only in frequency
bands near the two critical modal frequencies. Contrasting this to the minimum-rms
response shown in figure 7(a), where disturbance suppression occurs throughout the
range of frequencies shown, again emphasizes the selectivity that is achieved with the
modal design. This frequency selectivity is also apparent in figure 22, where the
closed-loop response of the control to disturbance is shown. Only two peaks occur in
this plot - near 2.3 and 23. 8 hertz, a result that is in sharp contrast to the many-
peaked curve in figure 7(b) for a minimum-rms design.

Going from full- to partial-state feedback causes little change in the frequency
response of P7 to disturbance QJ?- The response for partial-state feedback (fig. 23)
is similar to the response of the original full-state feedback design (fig. 21), a fact
that suggests the rms performances would also be similar. This, too, is the case, as
shown in figure 20, where the leftmost circle and square are the points for the cases
in question. Figure 20 also shows that normalized suppressor flow is less for the
partial-state feedback simplification than for full-state feedback. (Compare figs. 22
and 24 and the areas under the frequency responses for commanded suppressor flow
rate.) The plot for the partial-state feedback case (fig. 24) encloses less area than
does the plot for the full-state feedback case. In addition, a number of peaks occur in
figure 24 that do not occur in figure 22. Thus, for partial-state feedback, the control
attempts to attenuate disturbances at frequencies other than those near the two critical
modes. This type of behavior was not expected based on the performance index used.
However, such undesired control activity is not of significant magnitude to be a prob-
lem.

Use of Kalman Filter with Modal Control Designs

As a final variation on designs that could be implemented based on the modal con-
trol concept, a Kalman-filter-based controller was investigated. For this study, it
was assumed that only HPOP suction could be measured, as was done for the minimum-
rms design evaluations. Modal control gains for an TO of 1 were combined with Kal-
man filter gains for a ^w/^ of 195 to form a feedback compensator such as that
shown schematically in figure 10. The frequency response for this compensator is
shown in figure 25.
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One significant feature of this compensator's magnitude response (fig. 25(a)) is
that only two major peaks exist. However, responses for minimum-rms designs (fig.
ll(a)) have many peaks in addition to those near 2.3 and 23.8 hertz. The fact that the
response had many peaks probably caused difficulties when low-order transfer function
fits were attempted. Because of the relatively simpler shape of the modal-control
compensator's frequency response, low-order fits should be more feasible. The com-
pensator's phase angle (fig. 25(b)) shows much less overall phase lag than do any of the
phase angles in figure ll(b). This fact also makes it easier to obtain satisfactory low-
order transfer function fits.

A study to obtain such reduced-order models was not attempted here. These re-
sults do suggest, though, that a viable control design solution might be a single P™
measurement fed through a doubly resonant low-order compensator.

CONCLUSIONS

The feasibility of applying linear, quadratic regulator techniques and Kalman filter-
ing to the design of an active-pogo-suppression control system was studied. Two lin-
ear quadratic, optimal control approaches were taken: One minimized the root-mean-
square response of high-pressure-oxidizer-pump suction pressure to a random distur-
bance. The other increased the damping on two system oscillatory modes that were
deemed most critical to pogo oscillation. Ideal, full-state feedback designs were com-
puted and then used as baseline cases. Physical reasoning was used to find practical,
partial-state feedback designs. A number of potentially implementable, simplified
controls were found:

1. Partial-state feedback, minimum-rms designs: These designs require sensing
of two flow rates and two pressures. They increase stability of most system modes
and reduce the overall system response to disturbances. Also, sensor requirements
are not severe except those for a liquid-oxygen flow sensor, which may be a problem.
These control designs were less able to increase damping on the critical system modes
than were the modal control designs.

2. Partial-state feedback, modal control designs: Each design requires that a
sufficient number of structural accelerations be measured and appropriately filtered
in order to reconstruct desired modal state information. Implementation is thus some-
what more complex than for the designs described by Seidel in NASA TM X-3368. Con-
trol energy is concentrated in fairly narrow frequency bands, and large increases in
damping are achieved for the two critical system modes. Parameter sensitivity is not
a severe problem.

3. Reduced-order-feedback compensator based on modal control design using a
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Kalman filter: This design uses only a single pressure measurement and a doubly
resonant feedback compensator. The feasibility of obtaining a suitable low-order com-
pensator looks promising.

In general, the linear quadratic regulator approach appears to be well suited to the
design of active-pogo-suppression controllers. Further, it provides means by which
the issue of control energy can be effectively dealt with.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, July 18, 1978,
505-05.
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APPENDIX A

SYMBOLS

A pogo system matrix, 43x43

A colored-noise matrix, 2x2
CfZl

A propulsion system matrix, 29x29

A partition of A matrix, 29x29

Ag structural system matrix, 12x12

Ag partition of A matrix, 12x12
oAl' A2 cross-sectional area, cm

a acoustic velocity, m/sec

B system input matrix, 43x1

B propulsion system input matrix, 29x1

B partition of A matrix, 29x12

B partition of A matrix, 12x29
o

compliance, cm /N

low-pressure-oxidizer-pump compliance, cm /N

Ci 2 high-pressure-oxidizer-pump compliance, cm /N

Cs structural output matrix, 12x12

C_ structural derivative output matrix, 12x12
O

C^ structural velocity matrix

Of discharge coefficient, dimensionless

D disturbance matrix, 43x1

D colored-noise disturbance matrix, 2x1
en

D propulsion system disturbance matrix, 29x1
Dr,o coupling matrix, 29x12

Pb

Do« coupling matrix, 6x29
top

E_, structural mass matrix, 12x6s
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F force, N

F tank-pressure coefficient matrix, 6x12

F0 generalized force matrix, 6x12s
3? • generalized force, N

f mean mass flow of liquid oxygen, g/sec

f element of F matrix

g gravitational constant, N/g

H output matrix, 12 x43

Hcn noise-coloring output matrix, 1x2

H partition of H matrix, 12x29

H,, partition of H matrix, 12x12
S

i component of vector

Jjyr modal performance index

JR mean-square performance index

j component of vector

K control gain matrixc

K0 Kalman filter gain matrix
C

o c

L inertance, N- sec /cm

£ line length, cm

M generalized mass, g

m,+l low-pressure-oxidizer-pump dynamic gain, dimensionless

m2+l high-pressure-oxidizer-pump dynamic gain, dimensionless

, 2
P pressure, N/cm

• 2P7 high-pressure-oxidizer-pump suction pressure variation, N/cm

P7 measured value of P7

2 Q
p modal pressure coefficient, N-sec /cm

o
p pressure in feedline lump, N/cm

q
Q volumetric flow rate, cm /sec

q generalized displacement, cm
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_ o
q volumetric flow rate in feedline lump, cm /sec

g
R resistance, N-sec/cm

R, weighting matrix on states

R2 weighting matrix on controls

?2 element of R matrix (scalar)

T modal transformation matrix

U intermediate matrix, 6x6

u control vector
o

u commanded suppressor flow rate, cm /sec
ai

V intermediate matrix, 12x12

v white-measurement noise vector

W-, intermediate matrix, 12x12

W2 intermediate matrix, 12x29

w white-noise disturbance vector

w colored-noise disturbance vector
CsXl

x overall system state vector, 43x1

x colored-noise state vector, 2x1

x propulsion system state vector, 29x1

x structural system state vector, 12x1s
x vector of generalized structural velocities, 6x1

y output vector, 12x1

y structural system output vector, 12x1s
z structural displacement along horizontal axis, cm

y weighting on modal state variable

£ damping ratio

TJ modal state vector

A block-diagonal matrix
o

p liquid-oxygen density, g/cm

cr. rms value of ( )
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T time constant, secc
<$ mode shape vector, dimensionless

<(> modal displacement coefficient, dimensionless

$ power spectral density of v

$n/ power spectral density of w
vV

u structural pole natural frequency, rad/sec

Subscripts:

a actuator

bl bubble for low-pressure oxidizer pump

b2 bubble for high-pressure oxidizer pump

D7 disturbance at station 7

d discharge line

I inner pump duct

i index

J injector

j index

k index

LI first (vertical) feedline

L2 second (horizontal) feedline

i lump

n structural mode

PI low-pressure oxidizer pump

P2 high-pressure oxidizer pump

tb tank base

tc thrust chamber and discharge line

Superscripts:

x x-direction

z z-direction

~ normalized value

derivative with respect to time

(*•) element of inverse matrix
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APPENDIX B

STATE-VARIABLE SPACE SHUTTLE POGO MODEL

This appendix describes the dynamic model of the space shuttle oxidizer (liquid
oxygen) system used for this pogo controller design study. Although the model is
basically the one described in references 2 and 4, it has been modified to meet the
needs of this study as well as other studies (e.g., ref. 3) conducted at Lewis. The
model can be divided into a structural portion and a propulsion system portion. The
structural model, which is a six-mode approximation describing the liquid-oxygen-
feedline motion, is based on one developed by the Aerospace Corp. and uses the struc-
tural mode shape data presented in references 2 and 4. The propulsion system portion,
which was also developed by Aerospace Corp. but modified at Lewis, is a linear,
lumped-parameter model of the liquid-oxygen feedlines, pumps, and thrust chamber
dynamics. The two portions of the model are joined through drag and momentum force
coupling terms.

System Geometry

For dynamic modeling purposes a simplified liquid-oxygen feedline-pump-chamber
geometry, developed by the Aerospace Corp., was used (fig. 26). The system consists
of the liquid-oxygen tank connected to a 31.1-meter- (102-ft-) long, 0.25-meter-
(0.82-ft-) diameter vertical feedline; an elbow; and then an 8.47-meter- (27.8-ft-)
long, 0.25-meter- (0.82-ft-) diameter horizontal feedline connected to the low-
pressure oxidizer pump (LPOP). A short interpump duct connects the LPOP with the
high-pressure oxidizer pump (HPOP), which pumps the liquid oxygen through a dis-
charge duct into the thrust chamber. The suppressor is located at the inlet to the
HPOP.

The Aerospace Corp. structural model defines seven liquid-oxygen-system struc-
tural elements that can move independently of one another: the tank, the two feedline
segments, the two elbows, the LPOP, and the interpump duct - HPOP - discharge
line - thrust chamber combination. As shown by the velocity coordinates in figure 26,
the tank and the two feedlines can each move in only their axial directions (Xj-u> x,,
and z2), but the elbows and pump assemblies are free to move both horizontally and
vertically. Propulsion system dynamics are characterized by volumetric flow rates
Q- and pressures P- throughout the system. The subscripts i correspond to station
locations: tb, tank base; 1, first elbow; 2, entrance to horizontal feedline; 3, second
elbow; 4, LPOP inlet; 5, LPOP exit; 7, HPOP inlet; and tc, thrust chamber. These
station definitions are the same as those used in references 2 and 4.
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Propulsion System Dynamic Equations

The propulsion system portion is modeled as a lumped-parameter system. The
vertical feedline is divided into nine lumps and the horizontal feedline into three lumps.
Figure 27 shows a typical lump, or control volume, used in obtaining the feedline equa
tions. Shown is the i lump, which occurs in the horizontal (second) feedline. The
vertical feedline equations, which consider conservation of mass and momentum for
each lump, can be written as

- Rf - pl Ptb R£A1 •
n - i. n ±_ + t~ _ * •*• v
1 ~ — 1 £ 1h h h h

- Rfl Pi Pi_l RCA1 .
n _ L 7: i. 4. i •*• _ * •*- y i - p o Qq^ q^ 1 A^ -^ i - ^, o, . . ., »

h h h h

Similarly, the horizontal feedline equations can be written as

— A • ^B —qio = Q2=-^ioLt
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PII =

The cross- sectional areas of the two lines are assumed to be equal (A., = A« = A);
thus the compliance per lump is

pa2

where g is the gravitational constant, p is the liquid-oxygen density, a is the speed
of sound in liquid oxygen, L. (=p£ /Ag) is the inertance per lump, R. is the resistance
per lump, and P^ is the tank-base pressure.

The equation for the pressure at the inlet to the LPOP can be written by consider-
ing the cavitation bubble compliance and the motions of the elbow and LPOP (station
locations 3 and 4 in fig. 26) as they affect the fluid system. The result is

• 2 /• • \ *} • 2 •2 /• • \ *} •
— (X4 - x3J+:r- Z4 -
° ^ ' °

where C.^ is the cavitation bubble compliance and A« is the LPOP exit area, which
equals the interpump duct area. The equations for the interpump duct were written for
the duct as one lump with resistance K,, inertance Lj, and cavitation compliance C. 2
at the HPOP inlet. The resulting equations are

Q5 = — j— ^ + 1)P4 - P7 - (Rj + Rp^Qg + RplA3z4 +

i P1

P5 = (mj + 1)P4 - RplQ5 - LplQ5

^7 =7T- [Q5 -«tc +Qa + Qd7 + <A4 '
cbl

where L j^ is the LPOP inertance, m, + 1 is the LPOP gain, R , is the LPOP re-
sistance, Qa is the suppressor flow rate (at the HPOP inlet), Q •,„ is the flow distur-
bance at the HPOP inlet, and A. is the HPOP suction area. All parameters associ-
ated with the pumps and the interpump duct were obtained from references 2 and 4 .
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The equations for the discharge line and thrust chamber pressure P+n and flowic ,
, which complete the propulsion system model, can be written as

JjJ <" J-lTd J
[P7 - Ptc - <Rd + RJ + Rp2)Qtc
L-

and

where the following parameters were also obtained from references 2 and 4: L^, the

discharge line inertance; Lj, the injector inertance; L 2»
 tne HPOP inertance; R^,

the discharge line resistance; Rj, the injector resistance; R. 2,
 tne HPOP resistance;

R. , the thrust chamber resistance; and T. , the thrust chamber time constant.

Structural Dynamic Equations

In the model, seven structural elements characterize the liquid-oxygen system.
The primary structural output quantities of interest are the horizontal z and vertical
x velocities of each element. The structural elements and their associated indexes
are tb, tank base; II, vertical feedline; 1, first elbow; 12, horizontal feedline; 3,
second elbow; 4, LPOP; and 7, the interpump duct - HPOP - discharge line - thrust
chamber combination.

The structural model was developed as in references 2 and 4 except for the treat-
ment of feedline drag forces. The modal equations can be written as

: ^n n = 1, 2, . . . . 6

where, for the n mode, M is the generalized mass, q is the generalized dis-
placement, £ is the damping ratio, a? is the natural frequency, and &_ is the
generalized force.

The model in references 2 and 4 has six modes, which are assumed to adequately
describe the system at a particular flight condition. In this model the structural ve-
locities x, and zi can be related to the six generalized velocities c^ by
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n=l

5

i=n,l,3,4,7,tb

i=*2,1,3,4,7
n=l

where <f>^'(i) and <p'( i) are components of the mode shape vectors. For example,
4-l» ^* "

the n mode shape vector $ is written as

where the ordering of structural velocities is arbitrary. The remaining structural
output (tank pressure) can be related to the generalized accelerations, as shown in

references 2 and 4, as

where coefficients ^(tb) are given.
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The generalized force on the n mode was shown in references 3 and 5 to be

n

\J

- +A V^1 1 L-J

£

k"l
Z F1X)^X) w+Z

where

i=£ l , l , 3 ,4 ,7 , tb

j =£2,1,3, 4,7 ,-

n '= l , 2 , . . ., 6

The first term, accounts for forces generated by liquid-oxygen-tank outflow and the sec-
ond accounts for forces generated by tank pressure variation. The terms F>x' and
F'Z' are the actual forces on the structure due to flow rate, pressure, and structural
velocities at the seven defined locations. These forces are made up of (1) drag forces
on the feedlines, the interpump duct, and the discharge line; (2) momentum forces at
the two feedline corners, the LPOP, and the HPOP; and (3) forces on the thrust cham-
ber .

In a manner like that used in references 2 and 4, these forces can be expressed in
terms of flows, pressures, and structural velocities previously defined:

(1) Vertical and horizontal feedlines: The modeling here differs from that in ref-
erences 2 and 4 since the feedline models are lumped instead of distributed. The drag
forces are

(2) First elbow:
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(3) Second elbow:

- / Q 4

A2

(4) LPOP:

(5) Interpump duct - HPOP - discharge line - thrust chamber:

F<z > = A^ - A3z7) + A^^ - A4z?) + P?A3 - P^ + 2f & -
\A3 "4

Here, f is the mean mass flow of the liquid oxygen, A. is the thrust chamber area,
and cf is the discharge coefficient.

Suppressor Dynamics

The suppressor piston actuator is modeled as a first-order lag process with the
transfer function

Qa(8) = ~^- Ua(S)

where u (s) is the commanded flow input that produces the desired output suppressor
flow rate Q_(s).

OL
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Expressing Model in State -Variable Form

The linear quadratic regulator approach to pogo suppressor design requires that a
state-variable model of the standard form

x = Ax + Bu + Dw

y = Hx

be obtained for the liquid-oxygen system . To do this, first a 12th-order structural
system state vector x is defined as made up of modal displacements and velocities.

sx = q« *1» q2'

Then a 29th-order propulsion system state vector x is defined as

rPrq2'p2'^3'P3' VP4'%'P5' VP6' VP7'

Note here that suppressor flow rate Q. is included as part of the propulsion systema
state vector.

For convenience in forming a state-variable model, the following vectors are de-
fined:

T A
Vg = (^, ^, • • ., ^g) 6th-order vector of generalized forces

ys = (^l'xl'x3'X4>:V^b'z£2'zl'z3'Z4' V^tb)

12th-order vector of structural- system outputs

Also, the system disturbance w is selected as flow-rate disturbance Q^- . (Tank
pressure Pt^ is considered to be a structural output.) With these definitions, state-
variable equations can be written for the structural system as

xs = Vs + Esvs

vs - F
SyS

 + Dspxp + Fqxs
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by using the equations appearing on pages 35 to 40. Matrices A , E , C , C , F ,s s s s s
D_^, and F., are given in table VI.sp q

For the propulsion system, state equations can be written as

where matrices A , B , D , and D _ are given in table VII.p p p ps
Because of the x0 terms on the right sides of the structural state equations, the

D

equations are not yet in "standard" state-variable form. However, by a straightfor-
ward but lengthy substitution process, the state-variable equations

can be obtained, where the following matrices are defined:

Xs = As + EsU<FsWl +

X = A + DW

2 + Dsp)

HS = V{CS + C*[l + ESFq<1 + ESUFq>] As}

and the following intermediate matrices are defined:

42



Wl = V[Cs.+ Cs<J + EsFq + EsFqEsUFq>As]

W2 = FqEsU)Dsp

Colored-Noise Disturbance

A second-order, colored-noise process, with natural frequency co and damping
ClJ.

£„, was chosen to model the disturbance w. The state equations for this coloring cancm
be written as

x.cnr 1

-2£™o
w

or

wcn =

^cn = Acnxcn + Dcnw

wcn ~ Hcnxcn

Here, w is considered to be a white-noise disturbance.

Overall State Equations

Finally, by defining a 43rd-order overall state vector and a 12th-order output
vector as

= ys;

the desired overall state equation becomes
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x = Ax + Bu + Dw

where

BP ! Von
1

1
0 1

1

B^

As

0

P

0

0

0

Acn

D =

Den

Parameter Values

The nominal parameters that characterize the propulsion system are given in
table I. Except for line inertance and compliance and actuator frequency, all were ob-
tained from references 2 and 4.

Bubble compliances C, ,. and CV ,̂ an(^ P1™1? gains m, + 1 and m2 + 1 are es-
pecially dependent on flight condition. The values shown in table I define the expected
parameter ranges. Structural parameters required are mainly the modal vector data
plus modal frequencies, masses, and damping ratios. Table II presents these data,
which are adapted from data in references 2 and 4, for the two flight conditions of
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interest - end burn and after solid-rocket separation. These two conditions were
chosen because preliminary analysis showed their pogo instabilities to be most pro-
nounced.

Nominal Worst-Case Model

A nominal worst-case model was developed to reflect the dynamics of the two most
critical flight conditions - end burn and after solid-rocket separation - and to achieve
an open-loop model of the more unstable condition. The worst-case model is basically
the reference 2 model at end burn except that the end-burn structural mode at 2.81
hertz (El) was replaced by a less stable mode (Al) from the after-separation condition
(table II). The frequency of the fifth end-burn mode was shifted from 26.8 hertz to
23.8 hertz, making the system open-loop unstable. Also, the LPOP and HPOP gains
were set to the maximum values shown in table I, and the pump inlet bubble compli-
ances were set to the minimum values shown in table I.
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. . APPENDIX C .

LISTING OF SUBROUTINE POGMAT

Subroutine POGMAT is written in FORTRAN and performs the necessary matrix
manipulations to calculate matrices A, B, D, and H given, as data, the parameters
listed in table I and the structural information contained in tables VI and VII.

0300100
0000200
0000300
0003UOO
0000500
0000500.
0000700
0000300
0000900
0301000
0001100
0001200
0001300
OOOHlOC
0001530
0001600
0001700
0301330
0001900
0301920
C002000
0002100
0002200
0002UOO
0302500
0002600
0002700
0002300
0002900
0303000
0003100
0303200
0003220
030321*0
0003260
0003300
0003UOO
0003500
0003600
0003700
0003800
0003900
OOOUOOO
OOOU100
OOOU200
000«300
0001*1*00
0331*500
OOOU600
bOO»700
0001*800
0001*900
0005000
0005100
0005200
0005300
0005-400
0005500
0005600

SUBROUTINE POGSAT(IDE03)
: THIS SUBROUTINE CALCULATES THE A,B,C,HH,AND D MATRICES FOR THE '41 =
2 POGO PROBLEM. ALS3,DIMSNSIONS N,NM,NC,ND,NO,AND NO ARE INPUT PROS
C . TO THE MAIN PROGRAM.

IMPLICIT REAL*3 (A-H,0-5,0-7)
.- RSAL*8 T, TAUC, TiOCR, TAUP, TEHPB, TEMP3, TS, TSPTR, TST, TT
REAL*9 L, ICOSST, LL, NN, KC, LLB, LI, LP1, LD, LJ, LP2, LILPR,

1 KE, LDJP2, LPA - • . .
COMMON /ABETC/ A(5),53), B(50,5), C (50,50), 0(50,15), HH(5,50),

1 QC(50,50), NN(50,5), P3INV(5,5), 00(50,50), SRINV(5,5)
COMMON /COM1/ ADBLE(2530), EX1(50,50), EX2(53,50), EX3(50,50),

1 EX«(50), EXT (100,100), KC(2,50), AMBKC(50,53| , ASR(50|, ANI(50|,
2 EIGR(50), EIGI(SO), X(100,100), EIGCLR(SO), EI3:LI(50), 132(133),
3 AR(IOO), AI(100), XR(133,100), TT(100,100), AAA(100,100),
I* CR(IOO), CI(100), 5(53,50), SS(50,50), SSS(53,50|, FREQ(5CO),
5 A M P ( 5 0 0 ) , P H A S E ( 5 0 0 ) , A M P 1 (500) , P H A 1 (500) , i .1P2(500), P H A 2 J 5 0 3 ) ,
6 A M P S T P ( 1 0 3 0 ) , P H A 5 T F ( 1 D 3 3 ) , A I N V ( 5 0 , 5 0 ) , A M B I N V (50, 5 0 ) ,
7 A B K R I N ( 5 0 , 5 0 ) , A B S C E H f 5 0 , 5 0 ) , I B L ( 1 0 0 ) , I A ( 1 3 0 ) , I B ( 1 3 0 ) ,
8 L E X ( I O O ) , «EX (103| , K E ( 5 3 , 5 ) ,PP(53 ,50) , X T T 1 E ( 1 0 0 0 ) ,U (1000) , -
9 E X 5 ( 5 0 , 2 ) , E X 6 (5,50)

C O M M O N / C O M 2 / A P ( 3 3 , 3 0 ) , B P ( 3 0 , 2 ) , D P S ( 3 0 , 2 0 ) , C P ( 3 0 , 3 0 ) ,
1 A S ( 2 0 , 2 0 ) , E S ( 2 0 , 1 0 ) , 0 3 ( 2 3 , 1 5 ) , C S ( 2 0 , 2 0 ) , FS(10 ,20 | , F P ( 1 0 , 2 | , •
2 D S P ( 1 0 , 3 0 ) , F E ( 1 3 t , D P ( 3 0 , 1 5 ) , 7 E ( 1 0 )

C O M M O N / C O M 3 / C U S t S ( 2 , 5 ) ) , C U U { 2 , 5 0 ) , 8 0 ( 5 0 , 5 3 ) , A 0 ( 5 0 , 5 0 ) ,
1 C T O T ( 1 0 0 , 1 0 0 ) , D T 3 T ( 1 3 0 , 1 5 ) , X O L D ( I O O ) , X S 5 i ( 1 0 0 | , T E K P C ( 2 , 5 0 ) ,
2 T E N P B ( 5 0 , 5 0 ) , A T O P ( 1 0 0 , 1 0 0 )

C O M M O N / D I M S / N , N M , N C , N O , N O , N O , N 2
C O M M O N /STRUCT/ N S , N P
N A M E L I S T / P A R I N / RP1 , CB1 , CB2, B S T A R , A R E A , A B E A 1 , A R E A 2 , A R E A 3 , •

1 A R E A < » , L, R H 3 , G, RL, RI, RD, RC, RJ, RP2 , LI, LP1 , LD, LJ, LP2, •
2 PM1, PB2, R3, Rl», TAUC, PBAR, ATCF, N, NM, SO, NS, NS3, NSP, NP3,-
3 NC, NO, CS, FE, ZE, E3, WA, SPDSND,I ACT,AP7,IAS

-ft*************** DATA *»>»**********»

IAS = 0
W R I T E (2 ,2025 )
R E A D (2,1*568) I A S
H R I T E (2,1*583)
R E A D (2,1*568) T A C T

1*568 F O H M A T ( H )
55 C O N T I N U E

RP1 = . 0 2 1 U 2 U D O
CB1 = .2500
CB2 = .1000
A R E A = 75.7DO
A R E A 1 = 75.700
A R E A 2 = 75.700
L = 136.000
RHO = .03813DO
G = 386.IJDO
BSTAR = 2 . U 3 U D - 5
RL = 9.85D-5
HA = 3 1 U . 1 6 D O
RC = . 103DO
RI = .001*53200
Rn = . 0 2 C 1 R P . D O
RJ = . 1 U 6 6 7 2 D O
RP2 = .108768DO

F O R D E R
P 3 3 « A T
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C005700
0005300
0005900
0006000
0006100
0005200
0006300
0006400
0006500
0005500
0006700
0005300
0006900
0007000
0007100
0037200
0007300 H500
0007*00
0007500
0007600
0007700
OCP7800
0007900
0003000
0008100
0003200
0008300
0003400
0008500
0003600
0008700
0008300
0008900
0009000
0009100
0009200
0009300
0009400
0009500
0009600
0009700
0009SOO
0009900 !I502
0010000
0010100
0010200 2001
0010300
0313400
0010500 2002

0013600
C013700
0010800 2003
0010900
0011000
0311100 2304
0011200
0011300
0011400 2005
0011500
0011600
0011700 2006
0011800
0011900
0012000 2007
0012100
0012200
0312300 2008
00121(00
0012500
0012600 2009
0012700
0012800
0012900 2021
0013000

LI = .5356D-3
LP1 = .4120-4
LD = .618D-3
LJ = .206D-3
LP2 = .103D-3
PH1 = .306DO
PM2 = .4200
TAUC = .450-3
ESALL = 1.0DO / 2J2.3D3
R4 = .02018800
R3 = .00453200
IF (IAS .NE. 1) GD T3 4500
PM1 = .8000
PM2 = .5400
CB1 = 1.000
CB2 = .11000
CONTINUE
N = 41
NM = 1
NS = 12
NSO = 12
NSF = 6
NP = 29
NPO = 29
NC = 1
NO = 1
NMAX = 50
NHMAX = 5
NPMAX = 30
NPOMAX = 30
NSSAX = 20
NSOMAX = 20
NSFMAX = 10
NCMAX = 5
NDMAX = 15
NOMAX = 50
N2MAX = 100
N2 = N + N
NO=NSO+NPO
NTOT=N*NU
DO 4502 J = 1 ,N
DO 4502 I = 1,NM
HH (I, J) = 0.300
DO 2001 J = 1,NS
DO 2001 I = 1,NSO
CS(I,J) = O.ODO
DO 2002 J = 1 ,NSO
DO 2002 I = 1,NP
DPS (I,J) = O.ODO
DO 2003 J = 1,NSF
DO 2003 I = 1,NS
ES(I,J) = O.ODO
DO 2004 J = 1,NPD
DO 2004 I = 1 ,HSF
DSP(I,J) = O.ODO
DO 2005 J = 1 ,NP
DO 2005 I = 1,NPO
CP(I,J) = 0.000
DO 2C06 J = 1,NS
DO 2006 I = 1,NS
AS (I, J) = O.ODO
DO 2007 J = 1 ,NSO
DO 2007 I = 1,NSF
FS(I,J) = O.ODO
DO 2008 J = 1,NP
DO 2008 I = 1 ,NP
AP(I,J) = O.ODO
DO 2009 J = 1 ,NC
DO 2009 I = 1,HSF
FP(I,J) = O.ODO
DO 2021 J = 1,HC
DO 2021 I = 1 ,NP
EP(I,J) = O.ODO
DO 2022 J = 1 ,ND
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0013100
0013200 2022
0013300
0013400
0013500 2023
0013600
0013700
0013800
0313900
0014000
0014100
0014200
0014300
0014400
0014500
0014600
0014700
0014800
0014900
0015000
0015100
0015200
0015300
0015400
0015500
0015600
0015700
0015800
0015900
0016000 2026
0015100
0016200
0016300
0016400
0016500
0016600
0016700
0016800
0015900
0017000
0017100
0017200
0017300
0017400
0017500
0017600
0017700
0017800
0017900
0018000
0013100
0018200
0013300
0018400
0013500
0018600
0013700
0018800
0013900
0019000
0019100
0019200
0019300
0019400
0019500
0019600
0019700
0019800
0019900
0020000
0020100
0020200
0023300
0020400

DO 2022
DP(I,J)
DO 2023
DO 2023
DS(I,J)
CS(1,2)
CS(2,2)
CS(3,2)
CS(4,2)
CS(5,2)
CS(6.2)
CS(7,2)
CS(8,2)
CS(9,2)
CS<10,2)
CS(11,2)
IF (IAS
CS(1,2)
CS(2.2)
CS(3,2)
CS(4,2)
CS(5,2)
CS<6.2)
CS(7,2)
CS(8,2)
CS(9,2)
CS(10,2)
CS(11,2)
CS(12,2)

I = 1,NP
= O.ODO
J = 1,ND
I = 1 ,NS
= O.ODO
= - .15603
= - .3300
= - .3300
= .255DO
= .25500
= - .20900
= .036700
= .036700
= .035700
= .84600
= .84600
.HE. 1) G3 T3 2026
= .52900
= .20800
= .20900
= 1.28DO
= 1.2800
= .257DO
= .09400
= .09400
= .09400
= 1.68DO
= 1.6800
= - 2. 16D-3

CONTINUE
CS(1,4)
CS(2.4)
CS(3,4)
CS(<*,4)
CS(5,4)
CS(6,4)
CS(7.4)
CS(8,4)
CS(9,4)
CS(10,4)
CS(11,1»)
CS(1,6)
CS(2,6)
CS(3,6)
CS(4,6)
CS<5,6)
CS(6,6)
CS(7,6)
CS{8,6)
CS(9,6)
CS(10,6)
CS<11,6)
CS(1,8)
CS(2,8)
CS(3,8)
CS(B,8)
CS(5,8)
CS(6,8)
CS(7,8)
CS(8,8)
CS(9,8)
CS(10,8)
CS(11,8)
CS(1,10)
CS(2, 10)
CS<3,10)
CS(4,10)
CS(5,10)
CS(6, 10)
CS(7,10)
CS(8, 10)
CS(9,10)

= - . 19800
= - .24503
= - .24503
= .23900
= .23900
= - .33403
= - .35200
= - .35203
= - .352DO
= .5000
= .5000
= .05400
= - .078700
= - .078703
= - .55600
= - .55603
= - .25900
= .43100
= .43100
= .43100
= - 1.9500
= - 1.9503

= .02200
= - .75203
= - .752DO
= - 1.7103
= - 1.7100
= - 7.7403
= - .37200
= - .37203
= - .37200
= - .1203
= - . 12DO
= .222DO
= .3700
= .37DO
= - 2. 1300
= - 2.1303
= 4.44300
= .01700
= .01700
= .01700

CS(10,10) = .9900
CS(11,10jI = .9900
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0023500
0020600
0020700
0020800
0020900
0021000
0021100
0021200
0021300
0021UOO
0021500
0021600
0021700
0021900
0021900
0022000
0022100
0022200
0022300
0022UOO
OC22500
0022600
0022700
0022800
0022900
0023000
0023100
0023200
0023300
0023000
0023500
0023600
0023700
OD23720
00237UO
0023760
0023800
0023900
002UOOO
0028100
0021*200
0021*300
0021*1*00
002*500
0021*600
002H700
0021*800
002U900
0025000
0025100
0025200
0025300
00251*00
0025500
0025600
0025700
0025800
0025900
0026000
0026100
0026200
0025300
0026HOO
0026500
0026600
0026700
0025800
0026900
0027000
0027100
0027200
0027300
0027400
0027500

CS(1 ,12 )
C S ( 2 , 1 2 )
C S ( 3 , 1 2 )
C S ( K , 1 2 )
C S ( 5 , 1 2 )
C S ( 6 , 1 2 )
CS(7. 12)
C S ( 8 , 1 2 )
CS(9,12)

= 5

. 0 2 2 D O

.0131*0}

.0131*00
2 . 6 3 D O
2.63DO

336D3
.0900
.0903
.0900

!»589

CS(10,12) = - 1.5600
CS(11,12) = - 1.5500
FS(1) = 2.8100
F E ( 2 ) = U . 7 3 D O
F E ( 3 ) = 8.1*900
FE (1) = 22.500
FE(5) = 26.800
F E ( 6 ) = 2 U . C D O
Z E ( 1 ) = .0100
7,E (2) = .0100
Z E ( 3 ) = .0100
Z E ( U ) = .0100
2E(5) = .0100
Z E ( 6 ) = .0100
FBAR = 2.2900
ATCF = 158.000
A R E A 3 = 31.200
A R E A * = 12.6DO
A R E A P = A R E A 3
AP7 = - .11*80-2
C O N T I N U E
IF ( I A S .HE. 1) GO TO 5 ) 0 0
FE(1) = 2.300
C O N T I N U E5000

C

:***********************************************************»*********»********c • .
CL = BSTAR * A R E A * L ,
LL = RHO * L / G / A R E A
ROL = RL / LL
CLR = 1.000 / CL
LLR = 1.000 / LL - •
RAL = RL * A R E A / LL
CB1R = 1.0DO / CB1
CB2R = 1.000 / CB2 ' .
LILPR = 1.000 / (LI + LP1)
LDJP2 = LD * LJ + LP2
TAUCR = 1.0DO / TAQC
A6 = (RD + RJ *• RP2) / LDJP2
ARH1 = AP.EA1 * RL
ARH2 = AREA2 * RL
AR3 = AREA3 * R3

AR3 * AREA3

AREA2
2.000
2.000
2.000
2. ODD

R L
* A R E & 2 * RL
* F B U R / H R E A 1
* P B & R / & 8 E A . 2
* F B A R / A R E A 3

/ &REAU
PHI) * LI * LILPP * AREA3

LI) * LILPR * AREA3

A32R
A12R = AREA1 * AREA1 *
A22R
FBA1
FBA2
FBA3
FBAU
PML1B = (1.0DO
RLMRL = (RI * LP1 - RP1 *
RLHRL = - RLMRL
LPA = LP1 * LILPR * HREn

AREA* * (PM2 » 1..3D3)
RP1 * A R E A 3 * S P . E A 3 * LI * L I L P R
RI * LP1 * A R E A 3 * H R E A 3 * L I L P R
A P M 2 * (LJ / L D J P 2 - 1.000
A 8 E A U * ( -LP2 * \6 » RP2 *
A R E A K * ( -LP2 / L D J P 2
FBAR - R A 3 L
A R E A U » AREA!* * (LJ *

101

A P M 2
R A 3 L
R L A 3
A 2 6 B
A27B
A28B
F10B
F 1 1 B
DO 1 J = 1 , N
DO 101 1=1 ,NC
B ( J , I ) = 0.000
DO 102 I = 1 ,ND

LP2 / L D J P 2 ) » A R E A 3
«• RJ - LJ * 16 <• RU)

1.000 - LJ / L D J P 2 )
- FB.\H

A6 - PJ + LP2 * A6 - RO - P P 2 ) - !l323
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0027600 102
0027700
0027800
0027900
0023000
0028100 1
0028200
0028300
0028400
0028500 8
0028600
0028700
0328800
0028900
0029000
.0029100
0029200 4
0029300
0329400
OC29500
0029600
0029700
0329800
0029900
0030000
0030100
0330200
0030300
0030400
0030500
0030600
0030700
0030300 C
0030900
0031000 '
0031100 5
0331200
0031300 6
0331400
0031500 7
0031600 C
0031700
0031300
C031900 2010
0032000
0032100
0032200 2110
0032300
0032400
0032500 3001
0032600
0032700
0032800
0032900
0033000
0033100
0033200
0033300
0033400
0033500
0033600
0033700
0033800
0333900
0034000
0034100
0034200
0034300
0034400
0034500
0334600 3002
0034700 3003
0034800
0034900

D(J,I) = O.ODO
DO 1 I = 1 ,N
A(I,J) = O.ODO
C(I,J) = O.ODO
IF (I .EQ. J) C(I,J) = 1.0DO
CONTINUE
BP(29,1) = HA
IF (IACT .ME. 2) 30 TO 3
BP(25,1) = - Wft * IT * LILP3
CONTINUE
D(28, i) = PC / TAD:
DO 4 1=1,21,2
AP(I+1,I) = CLR
AP(I*2,I+1) = LLR
AP(I,I+1) = - LLP
AP(I+1,I*2) = - CLR
AP(I,I) = - ROL
AP(23,23) = - ROL
AP(23,24) = - LLR
AP(24,23) = CB1R
AP(24,25) = - CB1R
AP(25,24) = LILPR * (PM1 » 1.0DO)
AP(25,25) = - (RI » RP1) * LILPR
AP(25,26) = - LILPR
AP(26,25) = CB2P
AP(26,27) == - CB2B
AP(27,26) = (PM2 * 1.0DO) / LDJP2
AP(27,27) = - (RD «• RJ i- RP2) / LDJP2
AP(27,28) = - 1.0DO / LDJP2
AP(28,27) = RC * TAUCR
AP(28,28) = - TAU3R
AP(29,29) = - WA

IF (IACT .HE. 1) 30 TO 5
AP(24,29) = CB1R
IF (IACT .NE. 2) 30 TO 5
AP(25,29) = - LILPR * (91 - WA * LI)
IF (IACT .NE. 2 .AND. IACf .NE. 3) GO TD 7
AP(26,29) = CB2H
CONTINUE

DO 2010 J = 1,NP
DO 2010 I = 1,NP
A(I,J) = AP(I.J)
DO 2110 J = 1.NC
DO 2110 I = 1.NP
B (I,J) = BP(I,J)
AP(29,26) = - 1.0D-8
DO 3001 I = 1,17,2
DPS (I, 1) = - RAL
DPS (18,2)
DPS (24,3)
DPS(24,4)
DPS (19,7)
DPS (21, 7)

AREA * CLR
- AREA * CB1S
- DPS(24,3|

= RAL
= RAL

D P S ( 2 3 , 7 ) = RAL
DPS(18 ,8 ) = DPS(13 ,2 )
D P S ( 2 4 , 9 ) = DPS(2» ,3)
DPS(24 ,10) = A R E A 3 * ;31P.
DPS(25.10) = RP1 * A R E A 3 * L I L P H
DPS (25,11) = RI * A R E A 3 * LILPR
D P S ( 2 6 , 1 1 ) = ( A R E & 4 - H 3 E A 3 ) * C32R
D P S f 2 7 , 1 1 ) = A R E A * * A5
DPS(28,11) = - RC * A R E H 4 * T&UCR
D P S ( 1 , 1 2 ) = LLH
DO 3003 J = 1.NS
33 = NP + J
DO 3003 I = 1 , N P
sun = O .ODO
DO 3002 K = 1 , N S O
son = sun + D P S U . K ) * : s (K , j )
A ( i , j j ) = sun
DO 3000 I = 2 , N S , 2
J = I / 2
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0035000
C035100
0035200
00353CO
0035400
0035500
0035600
0035700
0035900
0035900
0036300
0036100
0036200
0036300
0336400
0036500
0036600
0036700
0036800
0036900
0037000
0037100
0037200
0037300
0037400
0337500
0037600
0037700
0037800
0037900
0038000
0033100
0038200
0038300
0038400
0033500
0033600
0038700
0033300
0038900
0039000
0039100
003920C
0039300
0039400
0039500
OC39600
0039700
0039800
0039900
0343000
0040100
0040200
0040300
0043400
0040500
0340600
0040700
0340800
0040900
0341000
0041100
0341200
0041300
0041400
0041500
0041600
0041700
0341800
0041900
0042000
0042100
0042200
0042300

2.0DO * FBAR * CS(9,K)

3004 ES(I,J) = ESALL
ES(12,6) = 2.2DO / 292.3D3
IF (IAS .NE. 1) GD TD 3100
ES(2,1) = 1.0DO/1232.0D3

3100 CONTINUE
DO 3005 I = 1,NSP
K = 2 * I

3005 D S P ( I , 1 ) = - A R H 1 * C S ( 1 , K )
DO 3006 J = 3, 17,2
DO 3006 I = 1 .NSF

3006 DSP(I,J) = DSP(I,1)
DO 3007 I = 1,NSF
K = 2 * I
DSP(I,1) = DSP(I,1) * 33(12,K)
DSP(I,17) = DSP(I,17) - FBA1 * CS(2,K)
DSP(I,18) = - AREA1 * 33 (2,K) - AREA2 * C5(8,K)
FS (I, 1) = - A12R * 3S (1.K)
FS (1,2) = - FBAR * CS(2,K)
FS (1,3) = PRAR * 33 (3,K) +
FS(I,4) = - FBAR > 3S(4,K)
FS (1,6) = AREA1 * 35 (12, K|
FS (1,7) = - A22P * 35 (7,K)
FS(I,8) = PBAR * 35 (8,K)
FS (1,9) = PBAR * 33 (9,K)
FS (1,10) = F10B * 35 (13,K)
FS(I,11) = RLA3 * 3S(10,K) * F11B * CS(11,K)

3307 PS(I,12) = AREA1 * CS(5,K)
DO 3009 J = 19,23,2
DO 3009 I = 1,NSF
K = 2 * I

3009 DSP(I,J) = ARH2 * C5(7,K)
DO 3010 I = 1,NSF
K = 2 * I
DSP(I,19) = DSP(I,19) - ?BA2 * 3S(8,K)
EX4(I) = CS(3,K) - CSO.K) » CS(9,K)
DSP (I,23)'= DSP (I, 23) » PBA2 * EX4(I)
DSP(I,2«) = AREA2 * EK»(I) - PML1B * CS(10,K)
DSP(I,25) = CS(10,K) * (RLHRL - FBA3) * CS(11,K| * (AR3 t FBA3)
DSP(I,26) = - CS(10,K| * LPA * CS(11,K) * A25B
DSP(I,27) = CS(11,K) * A27B

3010 D S P ( I , 2 8 ) = C S ( 1 1 , K ) * A 2 3 B «• 3 S ( 5 , K ) * A T 3 F
IF ( I A C T .NE . 2) 3D TO 3050
DO 3040 I = 1 , N S F
K = I * 2
DO 3035 J = 1 ,NC

3035 F P ( I , J ) = - I.P1 * LI » WA * LTI .PR * A R E A 3 * 3 5 ( 1 0 , K )
3040 D S P ( I , 2 9 ) = ( F B A 3 •• A R 3 ) * C S ( 1 1 , K ) - LP1 * L I L P R » .(RI - Vft * I t } -

1 * A R E A 3 * CS ( 1 0 , K )
3050 C O N T I N U E

DO 3011 J = 1 , N P
DO 3011 I = 1 , N P O
CP (I, J) = O . O D O
IF (I .EQ. J) C P ( I , J ) = 1 . 0 D O

3011 CONTINUE
DO 3013 J = 1,NP
DO 3013 I = 1,NS
II = NP * I
sun = O.ODO
DO 3012 K = 1,NPO
DO 3012 IL = 1,NSF

3012 SUM = SUB * ES(I,IL) * DSP(IL,K) * CP(K,J)
3013 A (it,J) = sun

DO 3014 I = 2,SS,2
K = I / 2
AS(I,I-1) = - 39.476DO * FE(K) * FE(K)
AS(I-1,T) = 1.0DO

3314 AS(I,I) = - 12.56600 * ZE<K) * FE(K)
DO 3016 J = 1,NS
JJ = NP + J
DO 3016 I = 1,NS

.II = HP + I
sun = O.ODO
DO 3015 K = 1,NSO
DO 3015 IL = 1,NSF
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0342400 3015
0042500 3016
00*2500 C
0042700 :
0042800 C
0342900
001*3000
0343100 3022
0043200 3025
OOH3300
0043400
0043500
0043600
0043700
001*3800 3017
001*3900 3018
OOUHOOO
001*1*100
001*1*200 2025
00 '44300 3019
0044400 H580
001*1*500 501
OOl*H60C 502
001*1)700 503
0041*800 504
0044900 505
0045000 506
0345100 507
OOK5200 508
0045300 509
0045400 510
0045500 511
0045600 512
0045700 C
0045800 C
0045900 r
0046000 C
0046100 C
0046200 618
0046300
0046400
0046500
0046600
0046700
0046800
.0046900
0047000 '
0047100
0047200
OOK7300
0047400
001*7500 379
0347520 C
0047540 :
0347550 C
0047600
0047700 38
0047800
0047900
0043000
0043100
0343200
0048300
0043400
0043500
0048500
0048700
0043800
0048900
0049000
0049100
0049200
0049300 39
004?400
0049500

SUM = SUM » ES(I,IL) * FS(IL.K) * :S(K,J)
A(II,JJ) = AS(I,J| + 5JM

ADD EFFECT OP PRESSURE ON ACTUATOR POSITION P38 CONTROL AT 3

IF (IACT .NE. 3) 33 T3 3025
DO 3022 1=25, N, 2
A(29,I)= A(29,I) » 1P7 * &22AP * A(26,I)
CONTINUE :"
DO 3018 J = 1,NC
DO 3018 I = 1,NS
II = HP * I
SON = O.ODO
DO 3017 K = 1,NSP
SUH = SUB «• BS(I,K) * FP(K,J)
B(II,J) = SDH
HH (1,26) = 1.0DO . '
WHITE (6,PARIN)
FORMAT (1X, 'FOR AFTER SEPARATION BODE, TTPE 1')
FORMAT (1X, 'A = ')
FOEBAT (1X, 'ENTER ACTUATOR LOCATION ..10R20R3')
FORMAT (1X, "DSP = •)
FORMAT (1X, «FS = ')
FORBAT (1X, «ES = •)
FORBAT (1X, 'DPS = •)
FORBAT (1X, "B = •)
FORMAT (1X, «D =-•)
FORBAT (1X, 'AS = ')
FORBAT (1X, 'FP = ')
FORMAT (1X, >CS = •)
PORBAT (1X, 'CP = •)
PORBAT (1X,'C = •)
FORBAT(1X,'HH = •) . - '

PRINT OUT THE A MATRIX
.

FORBAT (12)
WRITE (6,3019)
CALL MATPRT (A, N, N, N.1AX)
WRITE (6,505)
CALL MATPPT (B, N, NC, HSAX)
WRITE (6,506) .
CALL MATPPT (D, N, ND, SBAX)
WRITE (6, 511) . . . ..
CALL nATPRT(C,NO,!),NOaAX) " ' " " ' ''
WRITE(6,512)
CALL BATPRT(HH,NB,M,NB!1AX)
IF (IAMAT .EQ. 0) 30 T3 379
WRITS (3) ((A(I.J). J = 1,1), I = 1,N)
CONTINUE

IP IDBUG .3T. 0 ,P030 SiJBMATRICES ARE PRINTED DOT

IF (IDBOG) 39,39,39
WRITE (6,501)
CALL HATPRT (DSP, NSF, NPO, NSFMAX)
WRITE (6,502)
CALL MATPRT (FS, HSF, HS3, NSFMAX)
WHITE (6,503)
CALL MATPRT ("5S, !JS, NSF, SSMiiX)
WRITE (6,504)
CALL KATPBT (DPS, NP, NSO, NP.1AX)
WRITE (6,507)
CALL MATPSI (AS, SS, NS, SS.1AX)
WRITE (f,508)
CALL 1ATPRT (PP, SSF, SC, NSFMAX)
WRITE (6,509)
CALL NATPRT (CS, SS3, NS, NSOMAX)
WRITE (6,510)
CALL MATPP.T (CP, SPD, S?, NP01AX)
CONTINUE
RETURN ' :

END
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TABLE I. - PROPULSION SYSTEM PARAMETERS

2 . 2First feedline cross-sectional area, A^, cm ; in

Second feedline cross-sectional area,

487; 75.5

2 2, cm ; in .............. 487; 75.5

LPOP exit area, Ag, cm2; in2 . . . . ..... .................. 201; 31.2
2 2HPOP suction area, A., cm ; in ....... ................. 83.3; 12.6

2 2Effective thrust chamber area, A, c,, cm (in ) ................ 1020; 158

Acoustic velocity, a, na/sec; in/ sec ..................... 5.183; 20400

Lump compliance, C. , cm5/N; in /Ibf .................... 5.94; 0.250

HPOP compliance, C,̂ , cm5/N; in5 /Ibf ............. 5.94-23.8; 0.25 - 1

LPOP compliance, C, cm5/N; in5/M .. . . . . . . . . . . 2 .38-2 .98 ; 0.1-0.125

Mean flow of liquid oxygen, f, N- sec/cm; Ibf -sec/in ............. 4.01; 2.29
2 9

Gravitational constant, g, cm/sec ; in/sec ....... • . . ' . . • ..... 981.5; 386.4
Line lump length, i, cm; in ........................... 345; 136

Lump inertance, L , N-sec2 /cm5; Ibf • sec2/in5 ......... 7.46xlO~6; 1.77xlO~4

"Inner-pump duct inertance, Lj, N-sec /cm ; Ibf-sec /in . . . . 2.25x10 ; 5.36x10

LPOP inertance, L r N-sec2/cm5; Ibf-sec2/in5

HPOP inertance, L 2, N-sec2/cm5; Ibf -sec2 /in5 • 4.33xlO~6; l.OSxlO"4

1.73xlO"6; 4.12xlO"5

~5

Discharge line inertance, Ld, N-sec /cm°; Ibf• sec^/inD . . . . 2.60x10 °; 6.18x10"4

rt g- n e

Injector inertance, LT, N-sec /cm ; Ibf• sec /in 8.67xlO"6; 2.'06xlO~4

LPOP gain, + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.31-2.20
HPOP gain, m2 + 1 ............................... 1.42 - 1.54

-6Lump resistance, R., N-sec/cm ; Ibf-sec/in 4.14x10 ; 9.85x10

Inner-pump duct resistance, R,, N-sec/cm ; Ibf-sec/in 1.91x10 4; 4.53x10 3

HPOP resistance, R 2, N-sec/cm5; Ibf-sec/in5 4.58xlO~3; 0.109

Discharge line resistance, R,; N-sec/cm5; Ibf-sec/in5 8.49xlO~4; 2.029x10"
C . ' C - . O

Injector resistance, RT, N- sec/cm ; Ibf-sec/in0 6.17x10" ; 0.147
j

Thrust chamber resistance, R^; N-sec/cm5; Ibf-sec/in5 . . ' 4.33xlO"3; 0.103
C

Liquid-oxygen density, p, g/cm ; Ib/in 1.055; 3.813x10
-4Thrust chamber time constant, ? , sec 4.5x10

Actuator pole frequency, u>n, rad/sec lOOir
ci
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TABLE II. - STRUCTURAL MODE DATA FOR END-BURN AND

AFTER-SOLID-ROCKET-SEPARATION CONDITIONS

Parameter

Modal displacement:

<p[x)(«l)

<PJX)(1)

<?|X)(3)

<p|%)

VfV)

<PJX)(tb)

<piz\l.2)

?iZ)(l)

<?}Z)<3)

<?|Z)<4)

<?1Z)(7)

Modal pressure coefficient,
^(tb), N-sec2/cm3

Generalized mass, M^
Damping, £^
Structural pole natural

frequency, o^/27T, Hz

End burn After
separation

Mode

1 2 3 4 5 6 1

Aerospace Corp. designation

El

-0.156

-0.330

-0.330

0.255

0.255

-0.209

0 . 0367

0.0367

0.0367

0.846

0.846

0

292

0.01
2.81

E2

-0.198

-0.245

-0.245

0.239

0.239

-0.334

-0.352

-0.352

-0,352

0.50

0.50

0

292

0.01
4.73

E7

0.054.

-0.0787

-0.0787

-0.556

-0.556

-0.259

0.431

0.431

0.431

-1.95

-1.95

0

292

0.01
8.99

E30

0.022

-0.752

-0.752

-1.71

-1.71

-7.74

-0.372

-0.372

-0.372

-0.12

-0.12

0

292

0.01
22.5

E34

0.222

0.370

0.370

-2.13

-2.13

4.443

0.017

0.017

0.017

0.99

0.99

0

292

0.01
26.8

E35

0.022

0.0134

0.0134

2.63

2.63

5.336

-0.09

-0.09

-0.09

-1.56

-1.56

0

292

0.01
27.2

Al

0.529

0.208

0.208

1.28

1.28

0.257

0.094

0.094

0.094

1.68

1.68

-2.16xlO~3

1282
0.01
2.30

TABLE III. - NUMBER OF RIGHT-HALF-PLANE ZEROS

Control
weighting,

r2

2xlO~3

2xlO~4

2xlO~5

-fi
4x10 °

Ratio of normalized disturbance to measurement
noise, ty /ip

1.95 19.5 195

Number of right-half-plane zeros

17

17

13

11

19

19

—
6

17

15

2

0
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TABLE IV. - MODAL DAMPING RATIOS FOR MODAL CONTROL DESIGNS

[Weighting on modal state variable,
feedback.]

(a) Open loop

Natural
frequency,

Hz

100.00
.̂312
2.889
4.716
8.381
8.603

14.08
19.42
23.31
22.51

^3. 83
26.32
28.10
32.11
35.88
39.31
42.26
44.63
46.36
47.41
50.11
61.40

333.1

Damping
ratio

0.7071
.3836 xlO"2

.1651

.9858xlO~2

.4765xlO"2

.6648xlO~1

.4492xlO~1

.4127X10'1

.1223

.8965xlO~2

.1493xlO"2

. 1886 xlO"1

.ISOSxlO'1

. 1990X10'1

. 1274x10" -1

.7499xlO~2

.4410xlO~2

.2615xlO~2

.1618xlO~2

. 1099xlO~2

1.000
1.000

. 1.000

1 for both critical modes; full-state

(b) Closed loop

Control weighting, r«

1.0

Natural
frequency,

Hz

^.315
2.889
4.716
8.381
8.603

14.08
^3.84
22.51
19.42
23.31
26.32
28.10
32.11
35.88
39.31
42.26
44.63
46.36
47.41
50.11
61.40

100.00
333.1

Damping
ratio

0.4485X10"1

.1651

.9858xlO"2

.4765xlO~2

.6648X10"1

.4492X10"1

.3673X10"1

.8965xlO~2

.4127X10"1

.1223

. 1886 xlO'1

.ISOSxlO'1

.1990X10"1

. 1274xlO~1

.7499xlO~2

.4410xlO~2

.2615xlO~2

.1618xlO~2

. 1099xlO~2

1.000
1.000

.7071
1.000

0.1

Natural
frequency,

Hz

a2.335
2.889
4.716
8.381
8.608

14.08
a23.99
19.42
22.51
23.31
26.32
28.10
32.11
35.89
39.31
42.26
44.53
46.36
47.41
50.11
61.40

100.00
333.1

Damping
ratio .

0.1386
.1651
.9858 xlO"2

.4765X10"2

.6648X10"1

.4492X10"1

.1152

.4127xlO~1

.8965xlO~2

.1223

. 1886x10" 1

.1863X10"1

. 1990 xlO"1

.1274X10"1

.7499X10"2

.4410xlO~2

.2615xlO~2

.1618xlO~2

.1099xlO~2

1.000
1.000

.7071
1.000

Critical mode.
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TABLE V. - CONTROL GAINS FOR MODAL

CONTROL DESIGNS

State

Flow rate

Pressure

Displacement

Velocity

State
number

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29

2
4
6
8

10
12
14
16
18
20
22
24
26
28

30
32
34
36

38
40

31
33
35
37
39
41

Control weighting, r2

1.0 0.1

Control gain

0.0318
0.00152
-0.0289
-0.0299

-0.000572
0.0303
0.0323

0.00333
-0.0281
-0.0306

-0.00215
0.0298
0.0603
0.0168
0.0406

2.14 .
2.16

0.0758
-2.02
-2.00
0.134
2.27
2.30

0.202
-1. 87
-1.87
0.235

1.29
0.0448

1540
-33.6
89.3
246

1070
-14 600

216
-1.27
4.09
1.24
3.04
23.5

0.0871
0.00412
-0.0793
-0.0825

-0.00224
0.0826
0.0886

0.00978
-0.0767
-0.0844

-0.00681
-0.0813

0.174
0.0612
0.125

6.76
6.85

0.248
-6.37
-6.33
0.414
7.18
7.28

0.685
-5.91
-5.91
0.729
4.07

0.157

5200
-108
292
801

3410
-44200

677
-3.75
12.1

3.57
8.47
89.0
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TABLE VI. - MATRICES Ag, ES> Cg, Cg, Fg, AND Dgp

0 1

\2

A =

12x12

Es =

N| 0

1/M6

12x6

Cs =
*1 I *2 I I *6

0 I 0 I 0

12x6

Cs =

o I o I o I o
I I I

I I

I I I I I I
-°— \-°— 1—-L—4

12x12
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(F ) i = l, 2, . . ., 6:
V S/6xl2

TABLE VI. - Continued.

(Fs)

(Fs) = (F ) = 0V s/.)5 V s/i>6

(Fs) = °v s'i,12

K), 1 = 1, 2, . . . . 6:

(Dsp). = ° j = 4, 6, 8, 10, 12, 14, 16, 20, and 22

( n \ =-Aniw
V sP'itj

 1 * •

(DsP\.-A& = 3. 5. 7, 9, 11, 13, and 15
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TABLE VI. - Concluded.

(°sp)i)23

Nx)<3>L Lpl

.+ A - A (m2 + 1)

,R _

,28

where

'6x12

(fq). . =
!»3

,6

,6

- i— -
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TABLE TO. - MATRICES A. B . D , AND D
P P p* pi

17 18 19

1

h

1

Cl
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TABLE VII. - Concluded.

(

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

29x1

29x1

1

-R.A/I,

.0

-R.A/L,

0

-B,A/4

0

-R,AA,
0

-I^A/L,

0

-RjA/L,

0.

-R,A/L,

0

-RjA/L,

.0

-B.A/L,

2

A/C(

3

-

-A/C,^

4

A/Cbl

5 6 7

R,A/L,

R.A/L,

R^/L,

8

A/C(

9

-A/CM

10

A3/°bl

RplA3a5

11

*i*3*!>

(A4-A3)/Cb2

A4a6

-RcVTc

12

L/L,
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Thrust chamber

High-pressure oxidizer
pump(HPOP)

Station 1

Pogo suppressor location

..--Interpump duct

x .,.,-Low-pressureoxidizer
~~-—^ pump 1LPOP)

7

, ̂ Second feedline

r Station 2

Structural motion

la) Overall geometry. (b) Schematic of liquid-oxygen system.

Figure 1. - Space shuttle system for pogo analysis.

White noise, ^ [" Nojse

I coloring
u_ _ J

Control
Colored- input, u
noise i
disturbance, |
w,

r Propulsion states, x.

System outputs, y

Figure 2. - State-variable model for pogo analysis.
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-K,

Plant

Control

Figure 5. - Linear quadratic regulator solution for full-state feedback.

Control \

r "1+ State J+ 1

. B *ra. /dt vectcr-x. H *f&• Vv y^y L. ,xx *-* \ Plant
* Measurement 1

A 9 vector, y
j

ector, u I

r ^o^ -ii - vy* \ \
• - k'nlmnn filtor 1
ke gain matrix ' y

1* Irai
u , „ +A frft Stateestimatevector.x .H. \ \ ™ f

1 ' 'CXJ s •

• ! + , _ _ ,I 1
li
i

-K
*

Optimal control
gain matrix

Figure 6. - Linear quadratic regulator solution with Kalman filter in feedback loop.
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r Lines of constant ratio o£ normalized disturbance
I to measurement noise, (j?w/i?v

IE
VI

1_

"S

_ Full-state feedback cases __
(no measurement noise, 3.. • 0)

1
1
1
1
1
1
1
1
1

1 /

l~
1
1
1
1
1
1
1
1
1

Lines of constant
control weighting,

Asymptotes

*• ---- 1.95

----- 19.5

195

1950

2 4 6 8 10 12
Normalized rms suppressor flow, OQ , percent

14

Figure 9. - Normalized root-mean-square high-pressure-oxidizer-pump suction pressure
as function of normalized rms suppressor flow - Kalman filter on measurement P7m.
Minimum-rms design; rms value of disturbance Qgj, 10 percent.

Disturbance flow
Measurement noise

ua ±"1 System

r and optimal con

n i K?m
M?

L- Feedback compensator, Gc(s)

Figure 10. - System configuration showing Kalman filter and optimal
control gains as feedback compensator.
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(a) Magnitude.
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-1080
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(b) Phase angle.
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Rgure 11. -Frequency response of feedback-compensator transfer func-
tion for different control gain sets. Caiman filter gains for ratio of
disturbance to measurement noise $ of 1.95.
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50 500 5000 500
-1

5000 5xl(P5x1? SxlO5 50

Inverse of control weighting parameter.

(c) Generalized displacement feedback gains. (d) Generalized velocity feedback gains.

Figure 12. - Linear quadratic regulator feedback gains as function of inverse control weighting. Minimum-
rms control designs.
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Q.
oa.

Partial-state feedback

.1
.08

.06 —

.05

2x10'° (value
on which de-
signs are based)

J _A
4 6 8 10 12

Normalized rms suppressor flow, OQ , percent
14

figure 13. - Normalized root-mean-square high-pressure-oxidizer-pump
suction pressure as function of normalized rms suppressor flow -
partial-state feedback designs compared with full-state feedback designs.
Minimum-rms design; no measurement noise-, rms value of disturb-
ance Q ,̂ 10 percent.
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Open loop
Closed loop

0 10 20 30
Frequency. Hz

40 50

Figure 14. - Normalized frequency-response amplitude ratio of output
P7 to disturbance Qq - minimum-rms. partial-state feedback de-
sign where control weighting r2 is 2xlO"3.

3.5 r—

Open loop

10 20 30
Frequency, Hz

Figure 15. -Normalized frequency-response amplitude ratio of output P;
to disturbance Q^ - where 23.8-hertz modal frequency has been in-
creased by 10 percent. Minimum-rms, partial-state feedback design
based on full-state feedback design where control weighting rp is
2x10-3.
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10 12 14 16 18 20 22 24
(a) Pressure-mode shapes for 23.8-hertz mode.

26 28

.6

.4

.2

0
2

?tb

Tank

Open loop
1.0 1 Control
0.1/weighting, r2

10 12 14 16 18 20 22 24
State number

Elbow

(b) Pressure-mode shapes for 2.3-hertz mode.

26 28

LPOP Thrust
chamber

I-
i °

I LO

7 9 11 13 15 17 19 21
(c) Flow-mode shapes for 23.8-hertz mode.

23 27 29

J I J I I I I I I
1 3 5

b

I

1
nk

7 9 11 13 15 17 19
State number

Q! Q2

Elbow

21 23 25 27 29

LPOP ff] HPOP Thrust
1 chamber

(d) Flow-mode shapes for 2.3-hertz mode.

Figure 16. - Open- and closed-loop mode shapes for full-state feedback - modal control design.
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(a) Critical structural mode, 2.3 hertz. (b) Critical structural mode, 23.8 hertz.

Figure 17. - Sensitivity of closed-loop modal damping ratios to critical structural mode frequency -
full-state feedback. Gains used from design for control weighting ^ of 1.0.
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Partial-state feedback
Full-state feedback
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10 12 14 16 18 20 22
(a) Pressure-mode shapes for 23.8-hertz mode.
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(b) Pressure-mode shapes for 2.3-hertz mode.
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(c) Flow-mode shapes for 23.8-hertz mode.
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Tank

(d) Flow-mode shapes for 2. 3-nertz mode.
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Figure 18. - Mode shapes for full- and partial-state feedback - modal control designs based on control
weighting r2 of LO.
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Open loop
Closed loop

20 30
Frequency, Hz

Figure 21. - Normalized frequency-response amplitude ratio of output Py
to disturbance Q<j7 - modal control, full-state feedback design. Control
weighting, r^ 1.0.

3
"S.

1.2

.8

.4

10 20 30
Frequency. Hz

50

Figure 22. -Normalized, closed-loop frequency-response amplitude
ratio of control input ua to disturbance Cf^ - modal control,
full-state feedback design. Control weighting, r^ 1.0.
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Figure 23. - Normalized frequency-response amplitude ratio of output P?
'to disturbance Qd7 - modal control, partial-state feedback design based
on full-state feedback design for control weighting r2 of 1.0.
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1.2

ra

"S

10 20 30
Frequency, Hz

40 50

Figure 24. - Normalized, closed-loop frequency-response amplitude ratio
of control input tia to disturbance Q^ - modal control, partial-state
feedback design based on full-state feedback design for control weighting
r2 of 1.0.
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Figure 25. - Feedback compensator frequency response for modal control.
Control weighting, r^ 1.0; ratio of disturbance to measurement noise,

1- ?5 (low measurement noise). '.
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- Oxidizer tank

xtb

r- First (vertical) feedline segment

Second (horizontal) feedline segment

r Interpump duct

A 4T

LX
r Discharge line

— Pj, Q5 P7, Qj — —. Q(C, P(C) chamber

/ \

Thrust

\
\

Low-pressure oxidizer pump (LPOPH ^s
\

High-pressure oxidizer pump (HPOP)A

Figure 26. - Schematic of liquid-oxygen-system model.

-A2

Figure 27. - Feedline control volume. Lump length,!;
pressure in ith lump (second_feedline), p;; flow entering
it(1 lump (second feedline), q;; horizontal feedline

velocity, i[2; cross-sectional area (second feedline),
A2.
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