
JSC-14557

"Made available under NASA sponsorship in the interest of early and wide dissemination of Earth Resources Survey Program information and without liability" for any use made thereon."

BRIEFING MATERIALS FOR TECHNICAL PRESENTATIONS

VOLUME B

THE LACIE SYMPOSIUM

OCTOBER 1978 (E79-10031) BRIEFING MATERIALS FOR N79-14480 TECHNICAL PRESENTATIONS, VOLUME B: THE THRU LACIE SYMPOSIUM (NASA) 251 p HC A12/MF A01 N79-14498 CSCL 02C Unclas G3/43 00031 Original photography may be purchased from: EROS Data Center

Sioux Falls, SD 57198

Lyndon B. Johnson Space Center Houston Texas 77058

N79-1448

EXPERIMENT RESULTS SESSION

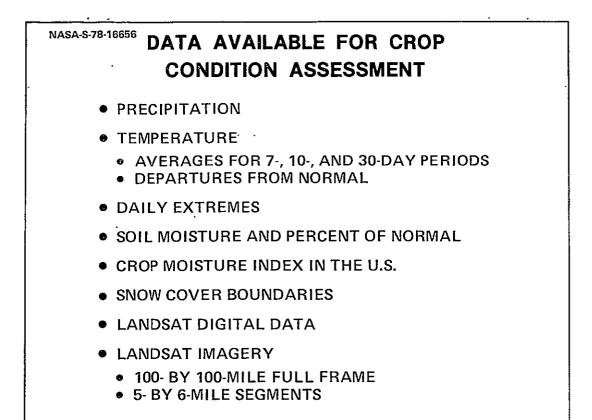
LACIE CROP YEARS – AN ASSESSMENT OF CROP CONDITIONS J. Hill, NOAA

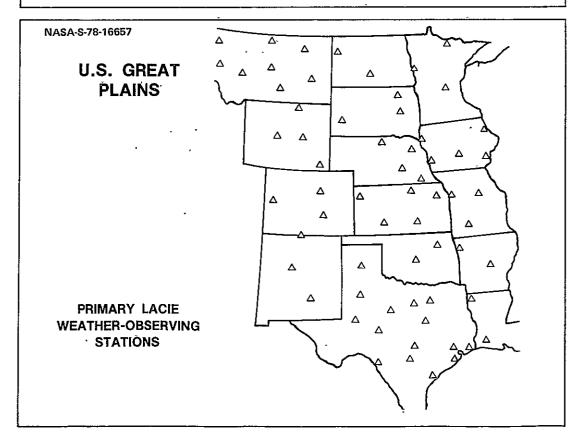
Original photography-may be gurchased from: EROS Data Center

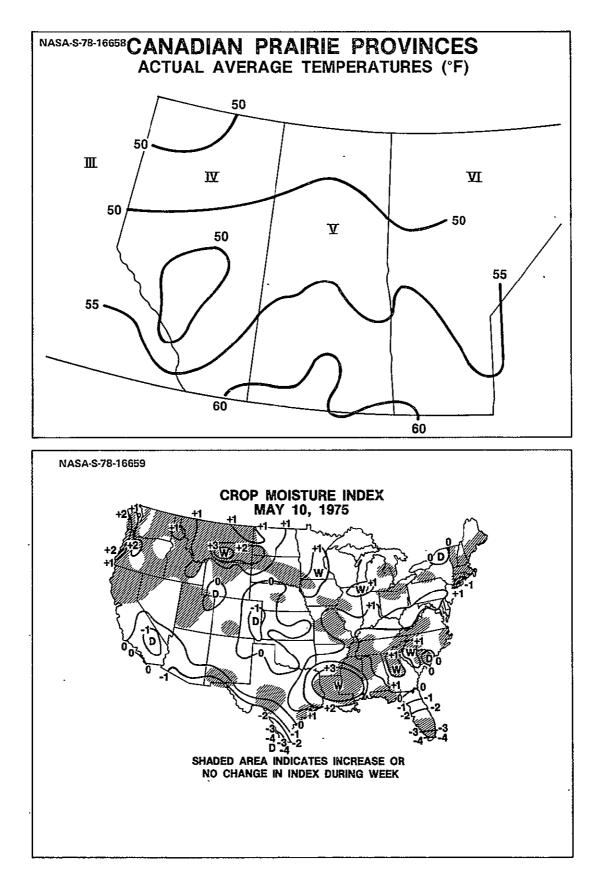
Sioux Falls, SD 57198

THE LACIE CROP YEARS 1974-77

AN ASSESSMENT OF CROP CONDITIONS IN 3 YEARS OF LACIE

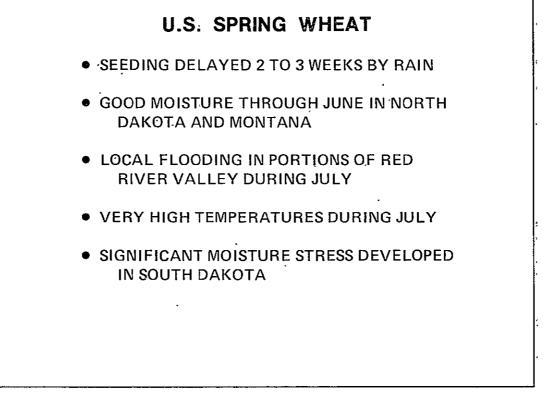

NASA-S-78-16655


PURPOSE:


- DESCRIBE CONDITIONS UNDER WHICH PROJECT RESULTS WERE OBTAINED
- DEMONSTRATE THAT CONSIDERABLE INSIGHT INTO RELA-TIVE CROP CONDITION CAN BE DRAWN FROM METEORO-LOGICAL AND LANDSAT DATA
- ILLUSTRATE THAT A WIDE VARIETY OF CROP GROWING CONDITIONS WERE ENCOUNTERED IN THE LACIE EXPERIENCE

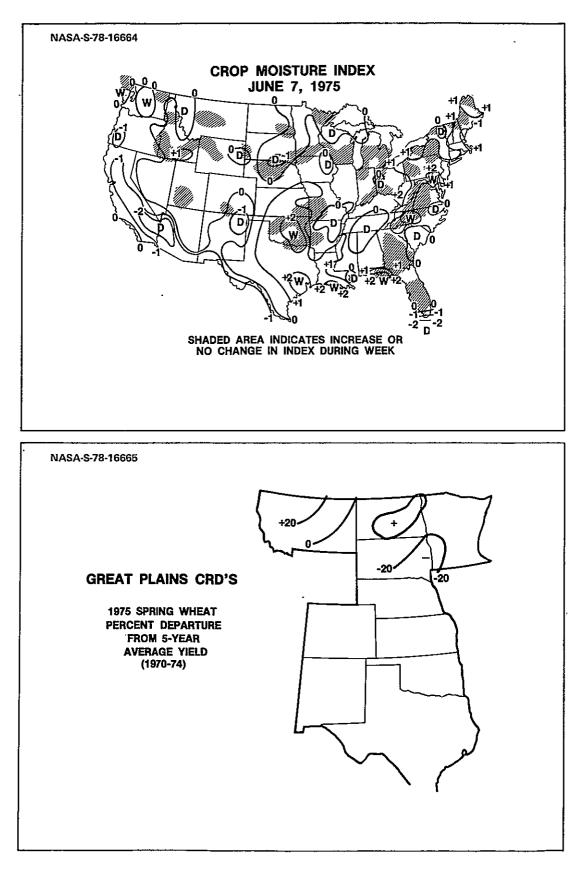
SCOPE OF LACIE

- PHASE I U.S. GREAT PLAINS
- PHASE II = U.S., CANADA, U.S.S.R. INDICATOR REGIONS
- PHASE III U.S., U.S.S.R.

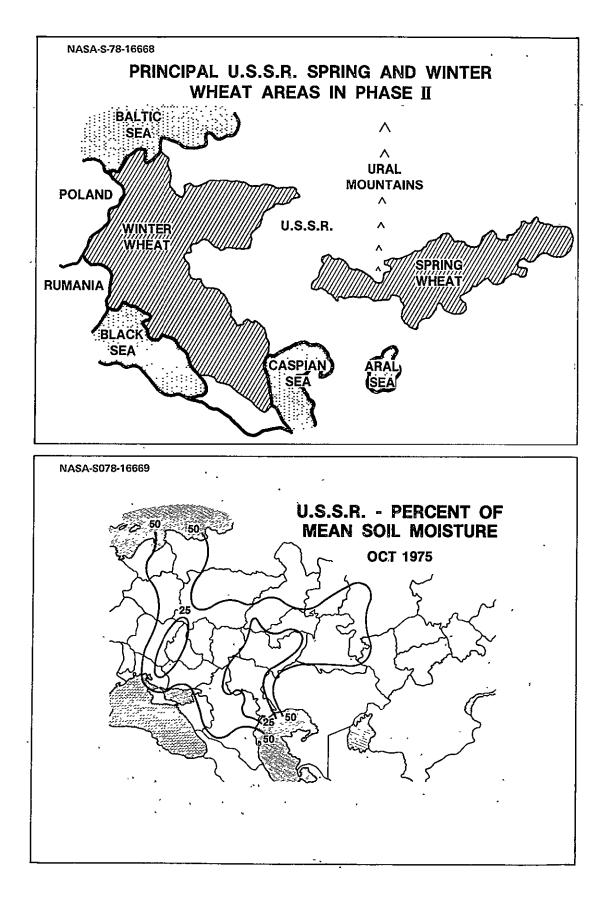

NASA-S-78-16661

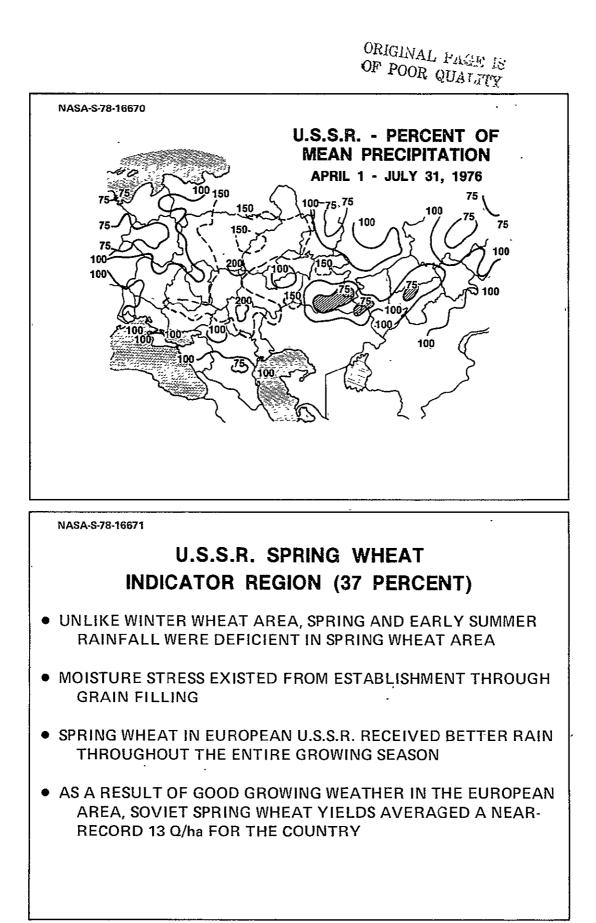
LACIE PHASE I 1974-75 U.S. GREAT PLAINS

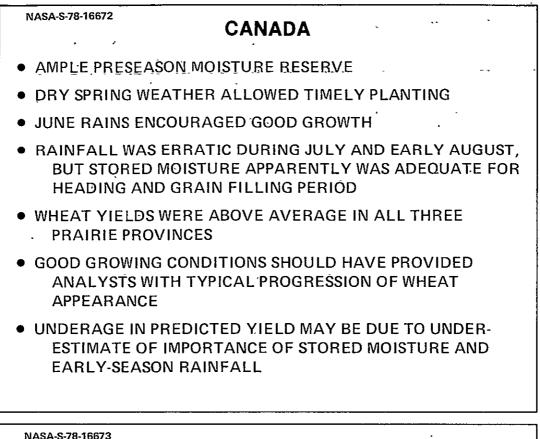
U.S. WINTER WHEAT

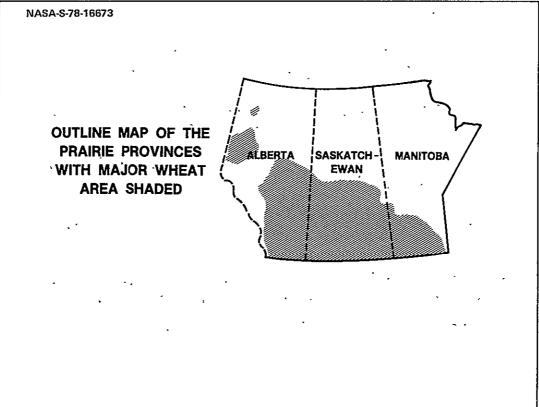

- GOOD MOISTURE FOR ESTABLISHMENT
- WINTER TEMPERATURES NEAR NORMAL
- COOL SPRING LIMITED REGROWTH AFTER DORMANCY
- SPRING DRYNESS DEVELOPED FROM NEBRASKA TO THE TEXAS PANHANDLE
- HEAVY JUNE RAINFALL PRODUCED LOCAL FLOODING IN OKLAHOMA WHILE HAIL CAUSED ABOVE NORMAL LODGING IN TEXAS, KANSAS, AND OKLAHOMA
- DRYNESS MAY HAVE CAUSED UNUSUAL CROP PROGRES-SION WHICH CHANGED ITS APPEARANCE FROM ANTIC-IPATED AND CONFUSED ANALYSTS. YIELD MODELS MAY ALSO HAVE BEEN CONFOUNDED

.



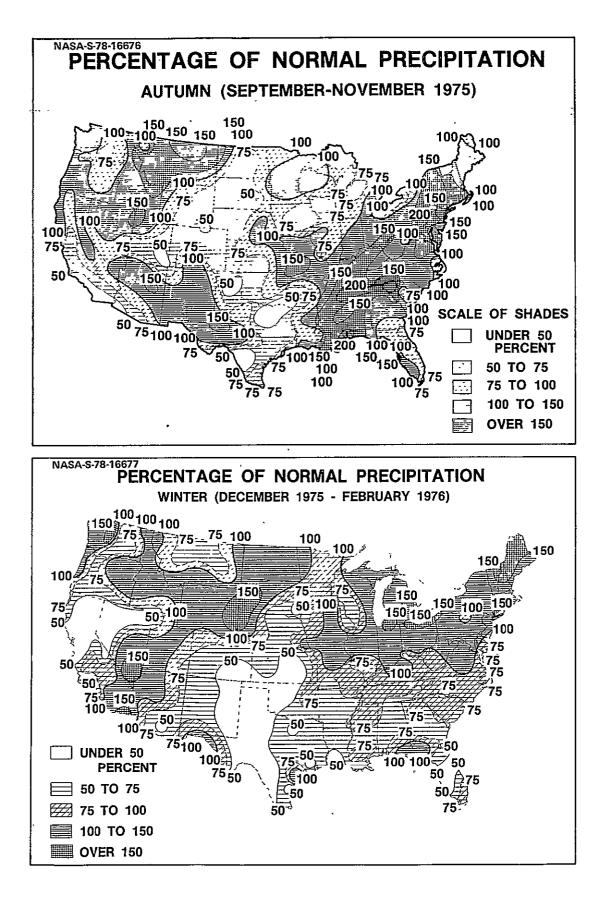

LACIE PHASE II


1975-76

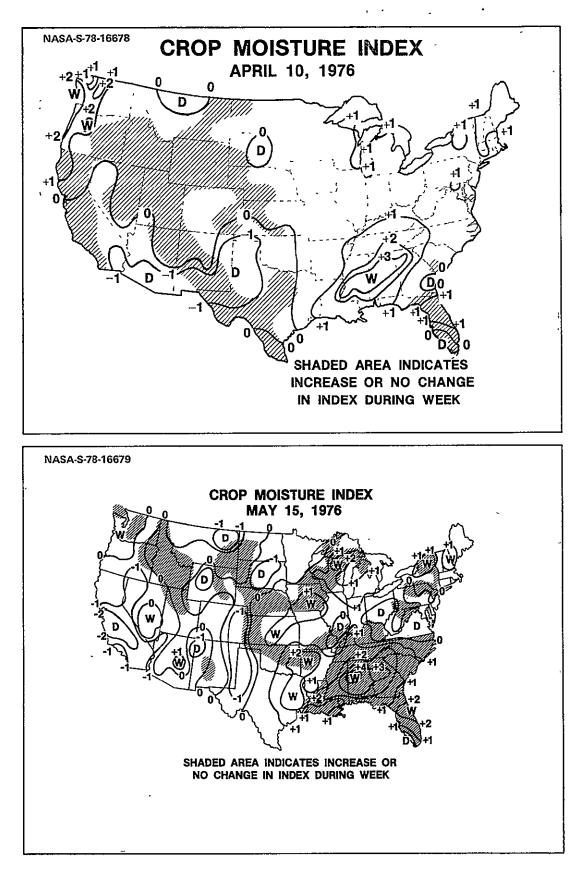

U.S.S.R. WINTER WHEAT INDICATOR REGION (83 PERCENT)

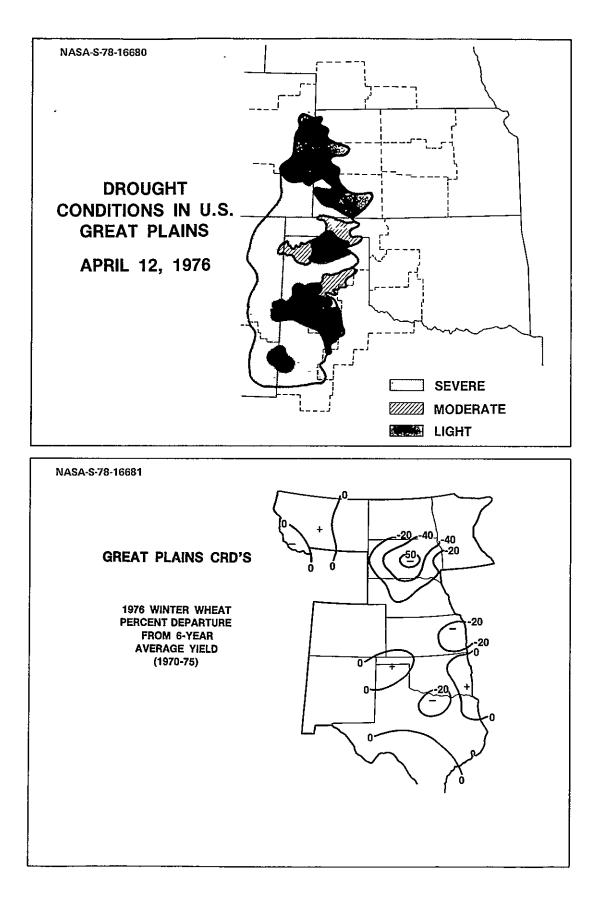
- DRY FALL WEATHER PRODUCED LIMITED MOISTURE AT ESTABLISHMENT
- IMPORTANT UKRAINE REGION HAD LESS THAN 25 PERCENT OF NORMAL SOIL MOISTURE IN OCTOBER
- WINTER PRECIPITATION WAS NEAR NORMAL; HOWEVER, SNOW COVER WAS MORE EXTENSIVE THAN USUAL
- WINTERKILL FROM COLD INJURY WAS LESS EXTENSIVE THÂN USUAL
- GOOD SPRING RAINFALL OVERCAME SOIL MOISTURE DEFICITS AND PRODUCED NEAR-RECORD WHEAT YIELDS
- ANALYSTS MAY HAVE HAD DIFFICULTY IDENTIFYING WHEAT DURING THE FALL; HOWEVER, AFTER DORMANCY, THE APPEARANCE SHOULD HAVE BEEN VERY TYPICAL

OFFICIAL 1976 CANADIAN YIELDS WITH COMPARISONS


PROVINCE	FINAL 1976, BU/ACRE	1975, BU/ACRE	AVERAGE 1965-74, BU/ACRE	LACIE YIELDS*, BU/ACRE
MANITOBA	27.2	25.2	25.3	23.2
SASKATCHEWAN	31.3	25.6	23.2	29.3
ALBERTA	32.7	29.9	26.1	25.1
	52.7	20.9	20.1	20.1

*DERIVED FROM OFFICIAL CANADIAN ACREAGE REPORTS

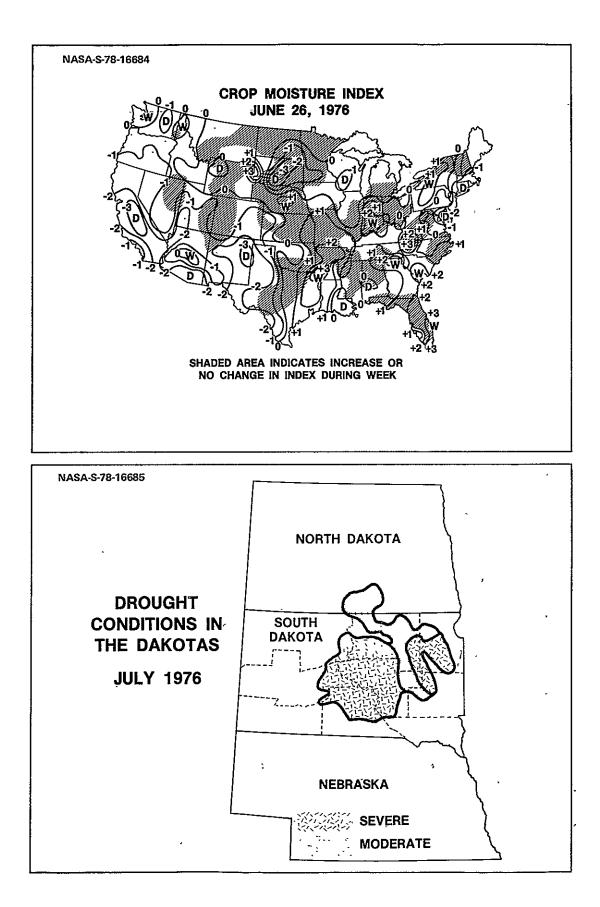

NASA-S-78-16675

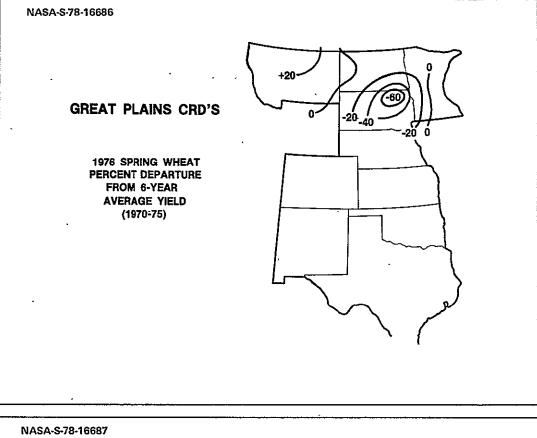

U.S. GREAT PLAINS WINTER WHEAT

- VERY DRY DURING ESTABLISHMENT
- DRY WINTER WITH LITTLE SNOW COVER ENCOURAGED WIND EROSION
- ABOVE-NORMAL WINTER TEMPERATURES AGGREVATED DRYNESS AND ENCOURAGED INSECT ACTIVITY
- WARM SPRING FORCED CROP DEVELOPMENT UNDER CONSIDERABLE MOISTURE STRESS
- APRIL RAINS BENEFITTED WHEAT IN OKLAHOMA, KANSAS, AND NORTHERN GREAT PLAINS
- LANDSAT IMAGERY VERIFIED DROUGHT IN PANHANDLE, KANSAS, AND COLORADO
- DRYNESS AND SUBSEQUENT RECOVERY OF WHEAT IN SOME AREAS PRODUCED UNCHARACTERISTIC APPEAR-ANCE OF THE CROP

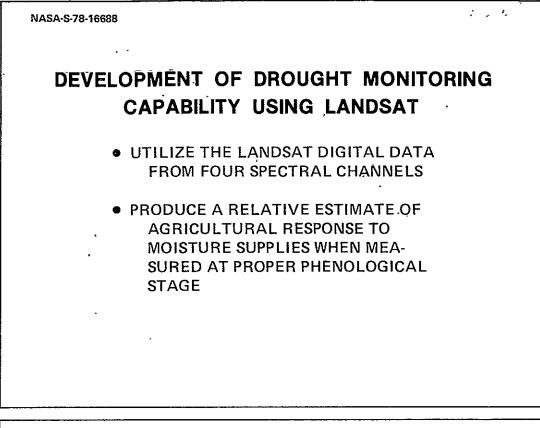


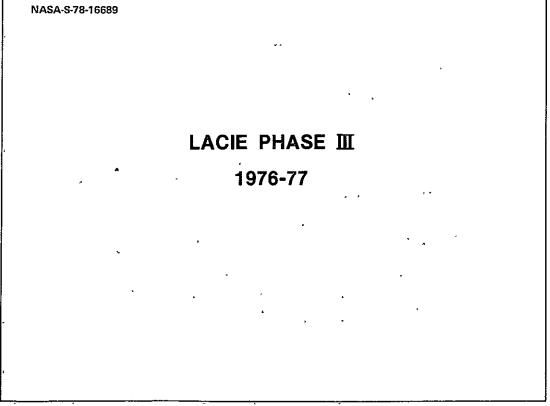
ORIGINAL PAGE & OF POOR QUALITY

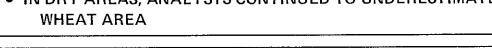


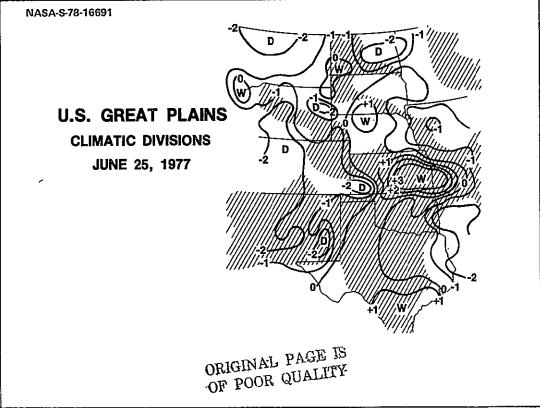


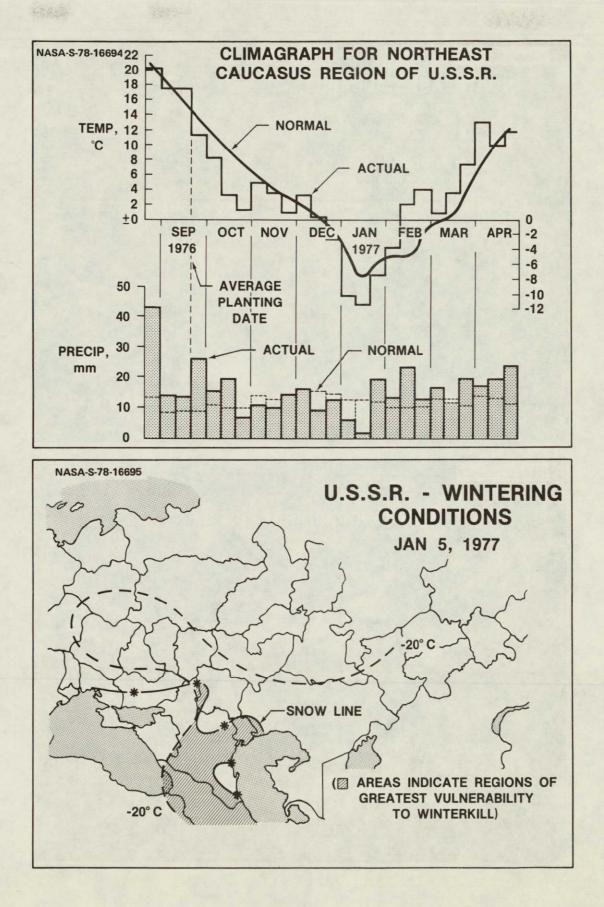
ORIGINAL FAGE IS OF POOR QUALITY




- DRY WEATHER DURING PLANTING PERSISTED THROUGH ESTABLISHMENT
- RAINS IN MID-JUNE ALLEVIATED DRYNESS IN ALL AREAS EXCEPT EASTERN SOUTH DAKOTA AND SOUTHWESTERN MINNESOTA
- EXTREMELY SEVERE DROUGHT IN SOUTH DAKOTA CAUSED EXTENSIVE ABANDONMENT OF WHEAT AND 60 PERCENT REDUCTION IN YIELD
- LANDSAT IMAGERY CONFIRMED AND REFINED AREAL EXTENT OF SEVERE DROUGHT
- ANOMALIES IN CROP PROGRESSION AND APPEARANCE APPARENTLY CONFOUNDED ANALYSTS IN SOUTH DAKOTA






NASA-S-78-16693

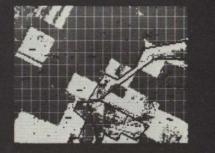

U.S. GREAT PLAINS SPRING WHEAT

- ADEQUATE PRESEASON RAINFALL IMPROVED THE STORED MOISTURE FROM PREVIOUS SEASON'S LEVEL
- AFTER PLANTING, RAINFALL DEFICITS CAUSED SOIL MOISTURE TO BECOME SHORT IN MONTANA AND NORTH DAKOTA
- ANALYSIS OF LANDSAT DIGITAL DATA INDICATED DROUGHT STRESS PRESENT IN MONTANA

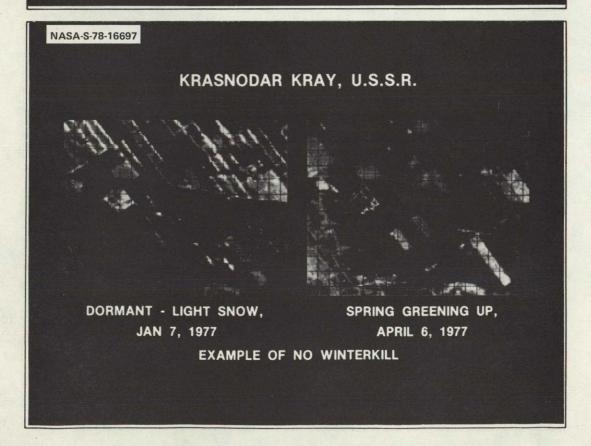
U.S.S.R. WINTER WHEAT

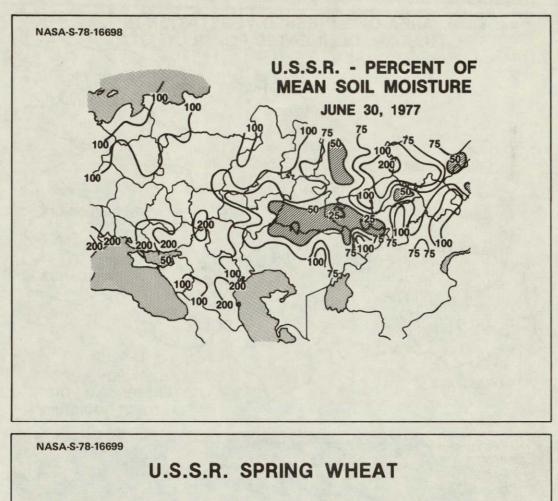
- FALL SEASON CHARACTERIZED BY AMPLE MOISTURE AND EARLY COLD
- POOR SNOW COVER AND COLD TEMPERATURES IN EARLY JANUARY WERE FAVORABLE FOR WINTERKILL IN SOUTHERN PORTIONS OF REGION
- EARLY WARM WEATHER AND ADEQUATE MOISTURE ENCOUR-AGED GOOD SPRING GROWTH
- NEAR-RECORD YIELDS IN RESPONSE TO IDEAL WEATHER AFTER DORMANCY
- OVERLY ADEQUATE RAINFALL PERSISTED INTO HARVEST PROMOTING DISEASE, LODGING, AND GENERALLY REDUCING GRAIN QUALITY

NORTHEAST CAUCASUS, U.S.S.R.

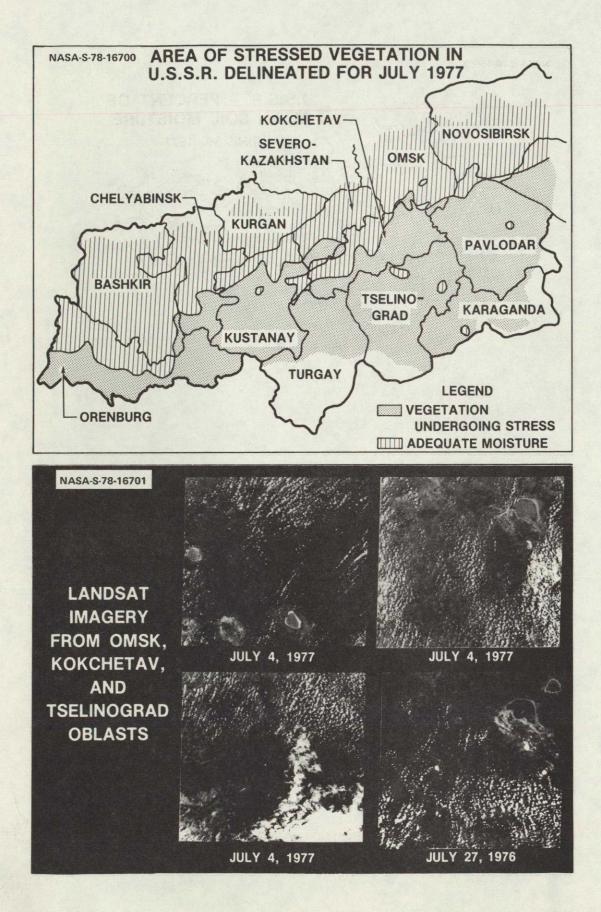

(LIGHT COLOR = WHEAT, BORDERED AREA = CITY)

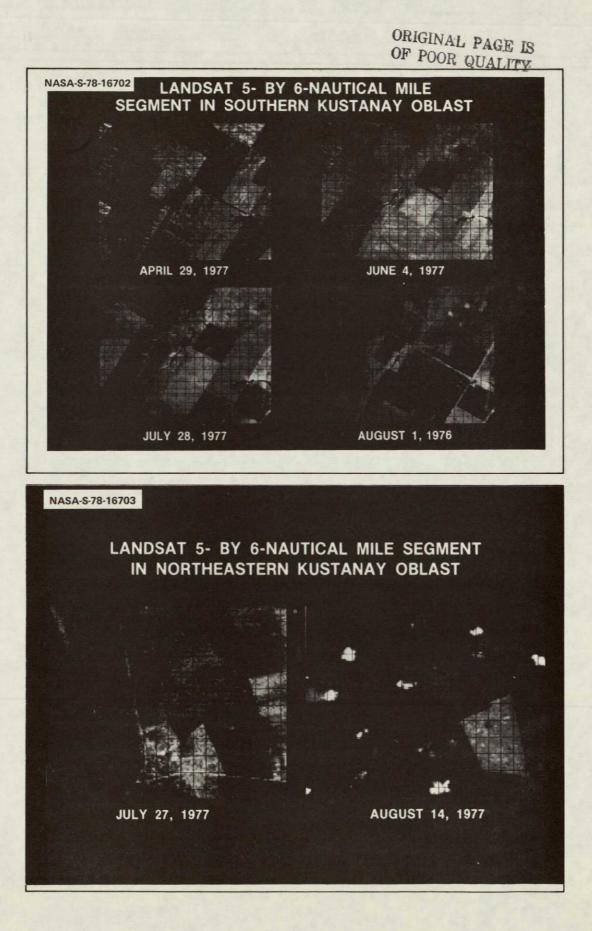
EXAMPLE OF POSSIBLE WINTERKILL

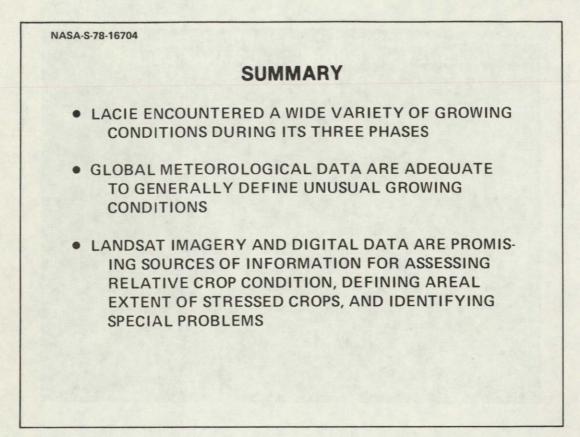



SPRING GREENING UP, APRIL 4, 1977

PARTIAL FALL EMERGENCE, OCT 7, 1976




MACHINE CLASSIFICATION MAP, APRIL 4, 1977



- LIMITED RAINFALL PRODUCED LESS THAN NORMAL SOIL MOISTURE FROM THE MIDDLE VOLGA ACROSS THE SOUTHERN HALF OF THE SPRING WHEAT AREA
- LANDSAT DATA CONFIRMED CROPS WERE STRESSED BY SOIL MOISTURE SHORTAGE
- STRESSED WHEAT FAILED TO SHOW CHARACTERISTIC DEVELOPMENT AND MAY HAVE CAUSED ANALYSTS TO MISS MANY FIELDS
- AUGUST RAINFALL EXCEEDED NORMAL BUT WAS NOT TIMELY ENOUGH TO BENEFIT WHEAT. IT MAY ALSO HAVE PRODUCED PROBLEMS WITH QUALITY OF WHEAT

Material not available at presstime

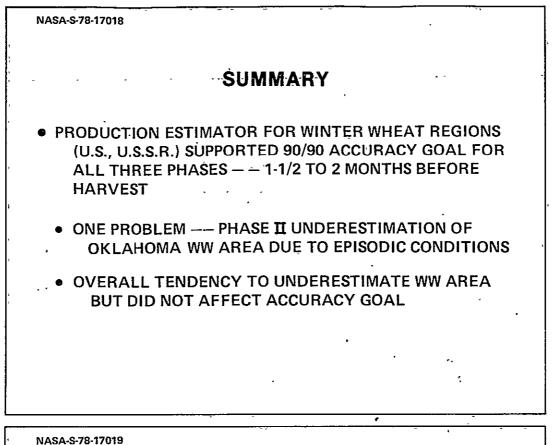
N79-14482

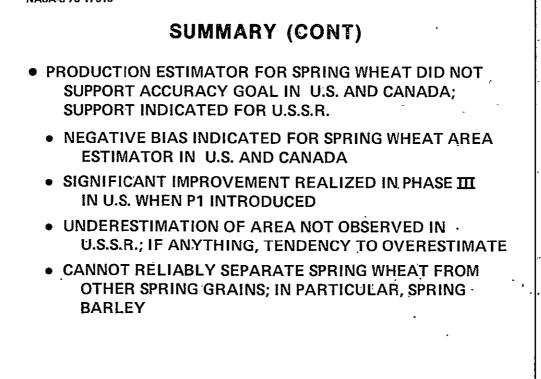
EXPERIMENT RESULTS SESSION

ACCURACY AND PERFORMANCE OF LACIE ESTIMATES G. Houston, JSC

Original photography may be purchased from EROS Data Center

293


Sioux Falls, SD 57198


ACCURACY AND PERFORMANCE CHARACTERISTICS OF LACIE AREA ESTIMATES

-

OUTLINE
SUMMARY
BY PHASE
• SCOPE
90/90 EVALUATION
RELATIVE CONTRIBUTION OF AREA AND YIELD ERRORS
AREA ERROR SOURCE ANALYSES
 LACIE EST VS SRS (ESCS) EST AT STATE AND REGIONA LEVELS
 LACIE EST VS GROUND OBSERVED EST AT SEGMENT LEVEL

.

SUMMARY (CONC)

 TEN-YEAR TESTS OF YIELD MODELS INDICATED ACCURACY GOAL SUPPORTED EXCEPT IN YEARS WHEN AGRICULTURAL AND METEOROLOGICAL CONDITIONS DIFFERED SIGNIFICANTLY FROM HISTORICAL DATA BASE

NASA-S-78-17021

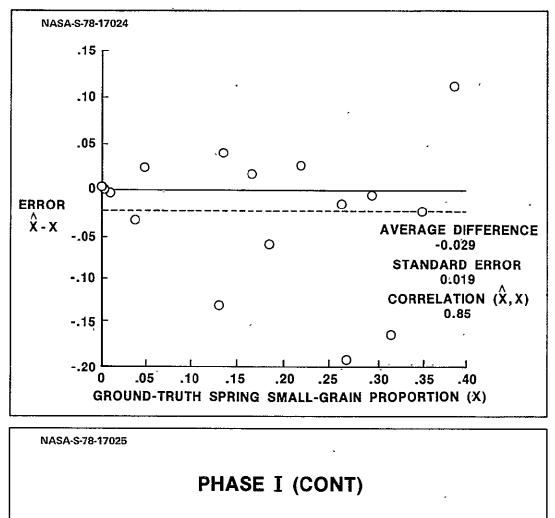
PHASE I

- SCOPE
 - WHEAT AREA ESTIMATION IN USGP YARDSTICK REGION
 - YIELD AND PRODUCTION FEASIBILITY STUDIES
- 90/90 EVALUATION -- AREA ESTIMATOR EVALUATED AT NATIONAL LEVEL
 - USSGP WINTER WHEAT SUPPORTED ACCURACY GOAL
 - USNGP TOTAL WHEAT DID NOT SUPPORT 90/90
 ESTIMATED RELATIVE BIAS OF -30.2 PERCENT
 - USGP TOTAL WHEAT DID NOT SUPPORT 90/90
 - ESTIMATED RELATIVE BIAS OF -10.7 PERCENT

NASA-S-78-17022	
-----------------	--

PHASE I (CONT)

- AREA ERROR SOURCE ANALYSIS
 - COMPARISONS-WITH-USDA/SRS-ESTIMATES-(RELEASED DEC 1975)

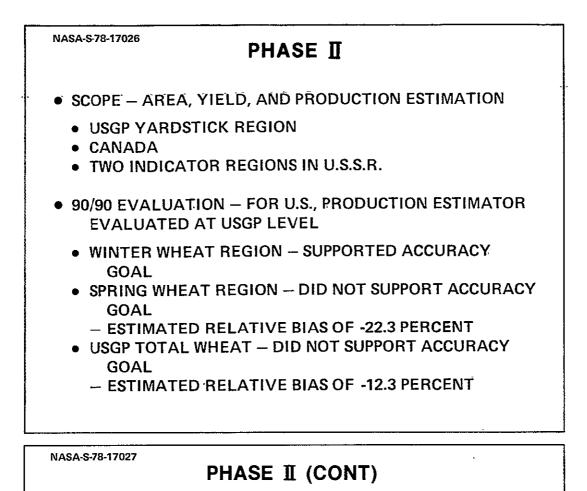

	AREA, ACRES		DEVIATION, PERCENT		TEST STAT-
	USDA/SRS	LACIE	<u>CV</u>	<u>RD</u>	ISTIC
SOUTHERN GREAT					
PLAINS	29 830 x 10 ³	29 779 x 10 ³	7.0	-0.2	-0.03
NORTHERN GREAT					
PLAINS	21 035	16 156	9.7	-30.2	-3.11*
U.S. GREAT					
PLAINS	50 865	45 935	5.7	-10.7	1.88*
*INDICATES	ESTIMATES AF	RE SIGNIFICAN	TLY DIF	FERENT	
- NEGATIVE BIAS INDICATED FOR NORTHERN GREAT PLAINS					

- NEGATIVE BIAS INDICATED FOR NORTHERN GREAT PLAINS DUE MAINLY TO UNDERESTIMATION IN NORTH DAKOTA (RD = -74.5 PERCENT)

NASA-S-78-17023

PHASE I (CONT)

- AREA ERROR SOURCE ANALYSES (CONT)
 - LACIE SEGMENT ESTIMATES VS GROUND OBSERVED ESTIMATES
 - 20 BLIND SITES IN NORTH DAKOTA 16 WORKED BY CAMS
 - SPRING SMALL-GRAIN PROPORTION COMPARISONS INDICATED TENDENCY TO UNDERESTIMATE BUT NOT SIGNIFICANT
 - COMPARISON OF GROUND OBSERVED PROPORTIONS WITH CORRESPONDING SRS COUNTY PROPORTIONS INDICATED SAMPLING TO BE THE MAJOR PROBLEM – GROUND OBSERVED PROPORTIONS WERE 38 PER-CENT BELOW CORRESPONDING SRS COUNTY PROPORTIONS



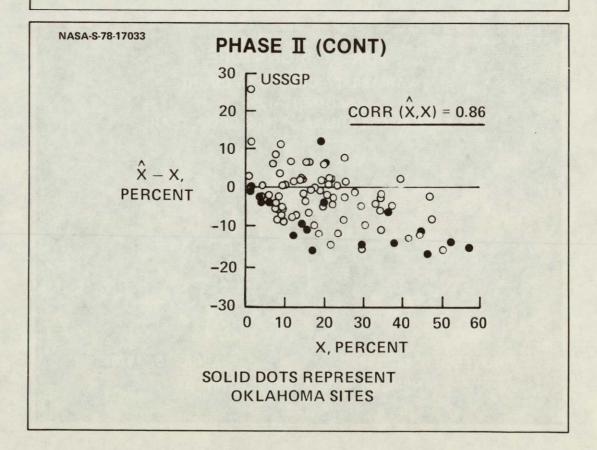
SUMMARY

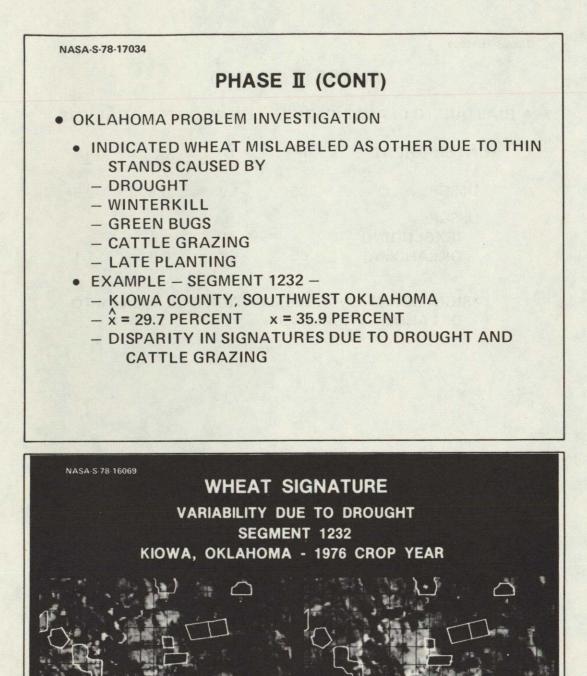
- ADDED 20 SEGMENTS TO NORTH DAKOTA TO ALLEVIATE SAMPLING PROBLEM
- MOVED SEGMENTS IN NON-AG AREAS TO AG AREAS
- INCREASED NO. OF BLIND SITES FOR PHASE II TO FURTHER UNDERSTAND CLASSIFICATION PROBLEMS

\$

• CONTINUED TO USE HISTORIC WHEAT-TO-SMALL GRAINS RATIOS FOR WHEAT AREA ESTIMATION

 RELATIVE CONTRIBUTIONS OF AREA AND YIELD ERRORS TO BIAS OF PRODUCTION ESTIMATE

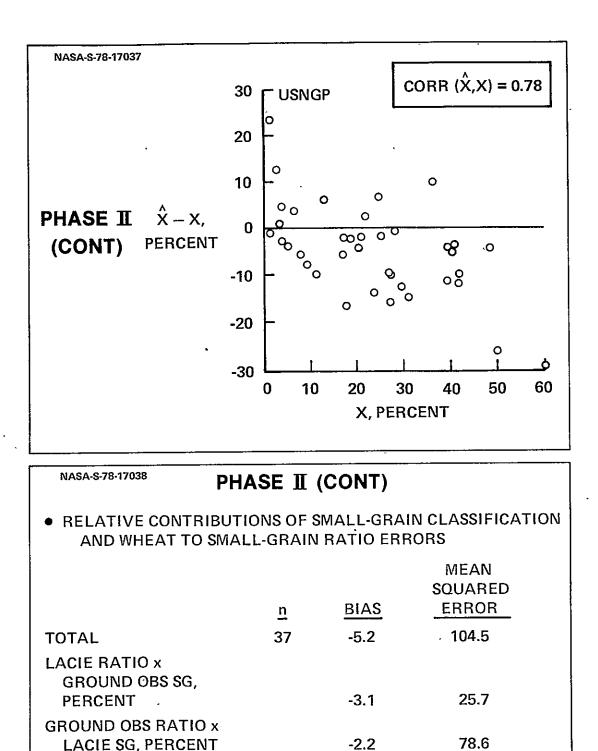

		RD (PERCENT)		
•	TOTAL	LACIE ACREAGES	LACIE YIELDS	
REGION	RD, <u>PERCENT</u>	x <u>SRS YIELDS</u>	x SRS ACREAGES	
WINTER WHEAT	-7.2	-7,6	-1.1	
SPRING WHEAT	-22.3	-29.1	+6.3	
TOTAL WHEAT	-12.3	-14.9	+1.5	
		N UNDERESTIMATIC DERESTIMATION	ON DUE PRI-	


NASA-S-78-170	D28 PHA	ASE II (CON	NT)		
AREA ERRC	OR SOURCE AN	ALYSES	,	, .	
• COMPARI	SONS WITH USE	DA/SRS			
WINTER	R WHEAT AREA	L .			
	<u>AREA,</u> USDA/SRS	ACRES LACIE	PER	TION, CENT <u>RD</u>	TEST STAT- <u>ISTIC</u>
SOUTHERN GREAT PLAINS	27 450 x 10 ³	25 833 x 10 ³	5	-6.3	-1.26
U.S. GREAT			• •	-	-1.20
PLAINS	31,500	29 364	. 5	-7.3	-1.46
SIG	CATES TENDEN SNIFICANT	CY TO UNDERE	STIMAT	E BUT N	-
i		DN IN OKLAHON			RCENT)
NASA-S-78-170	²⁹ PH	ASE II (CON	NT)		
		•	NT)		
• COMPARI	SONS WITH USE	•	NT)		
• COMPARI		•	-		
• COMPARI	SONS WITH USE WHEAT AREA	DA/SRS (CONT)	DEVIA	•	
• COMPARI	SONS WITH USE WHEAT AREA AREA,	DA/SRS (CONT)		CENT	STAT-
COMPARI SPRING	SONS WITH USE WHEAT AREA	DA/SRS (CONT)	DEVIA	CENT	
 COMPARI SPRING SPRING WHEAT STATES 	SONS WITH USE WHEAT AREA AREA, USDA/SRS	DA/SRS (CONT)	DEVIA PER(CV [_]	<u>RD</u>	STAT- ISTIC
 COMPARI SPRING WHEAT STATES MIXED 	SONS WITH USE WHEAT AREA AREA, USDA/SRS	DA/SRS (CONT) <u>ACRES</u> <u>LACIE</u>	DEVIA PER(CV [_]	<u>RD</u>	STAT- ISTIC
 COMPARI SPRING WHEAT STATES MIXED WHEAT 	SONS WITH USE WHEAT AREA <u>AREA,</u> <u>USDA/SRS</u> 15 413 x 10 ³	DA/SRS (CONT) <u>ACRES</u> <u>LACIE</u> 12 054 x 10 ³	DEVIA <u>PER(</u> <u>CV</u> 7	<u>RD</u> -27.9	STAT- <u>ISTIC</u> -3.99*
 COMPARI SPRING WHEAT STATES MIXED WHEAT STATES 	SONS WITH USE WHEAT AREA <u>AREA,</u> <u>USDA/SRS</u> 15 413 x 10 ³ 4 355	DA/SRS (CONT) <u>ACRES</u> <u>LACIE</u> 12 054 × 10 ³ 3 595	DEVIA _ <u>PER(</u> _ <u>CV</u> ~ 7	<u>-27.9</u>	STAT- <u>ISTIC</u> -3.99* -1.76*
 COMPARI SPRING SPRING WHEAT STATES MIXED WHEAT STATES USNGP 	SONS WITH USE WHEAT AREA <u>AREA,</u> <u>USDA/SRS</u> 15 413 x 10 ³ 4 355 19 768	DA/SRS (CONT) <u>ACRES</u> <u>LACIE</u> 12 054 x 10 ³ 3 595 15 649	DEVIA <u>PER(</u> <u>CV</u> 7 12 6	<u>-27.9</u> -21.1 -26.3	STAT- <u>ISTIC</u> -3.99* -1.76* -4.38*
 COMPARI SPRING SPRING WHEAT STATES MIXED WHEAT STATES USNGP *INDICATES 	SONS WITH USE WHEAT AREA <u>AREA,</u> <u>USDA/SRS</u> 15 413 x 10 ³ 4 355 19 768 ESTIMATES AR	DA/SRS (CONT) <u>ACRES</u> <u>LACIE</u> 12 054 × 10 ³ 3 595	DEVIA <u>PER(</u> <u>CV</u> 7 12 6 TLY DIF	<u>ENT</u> <u>RD</u> -27.9 -21.1 -26.3 FERENT	STAT- <u>ISTIC</u> -3.99* -1.76* -4.38*
 COMPARI SPRING SPRING WHEAT STATES MIXED WHEAT STATES USNGP *INDICATES — SIGNI WH 	SONS WITH USE WHEAT AREA <u>AREA,</u> <u>USDA/SRS</u> 15 413 × 10 ³ 4 355 19 768 ESTIMATES AN IFICANT UNDEN EAT REGION	DA/SRS (CONT) <u>ACRES</u> <u>LACIE</u> 12 054 x 10 ³ 3 595 15 649 RE SIGNIFICAN	DEVIA <u>PER(</u> <u>CV</u> 7 12 6 TLY DIF NDICAT	-27.9 -21.1 -26.3 FERENT ED FOR S	STAT- <u>ISTIC</u> -3.99* -1.76* -4.38* SPRING

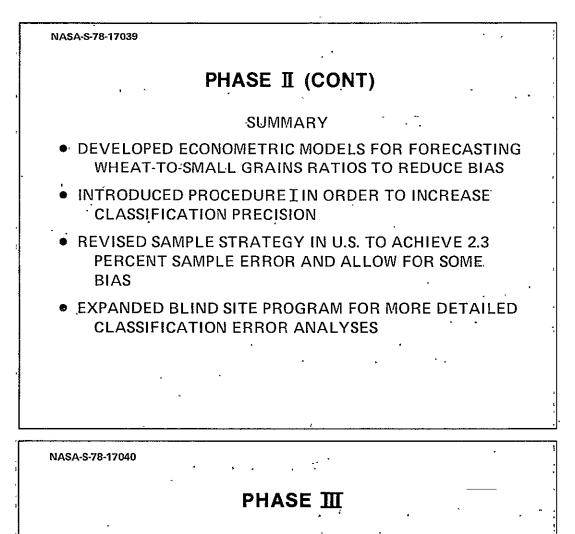
NASA-S-78-17030 PHASE II (CONT)									
• COMPARISONS WITH USDA/SRS (CONT)									
• TOTAL	WHEAT AREA								
	AREA, USDA/SRS	ACRES LACIE		TION, CENT RD	TEST STAT- ISTIC				
USSGP WINTER	27 450 x 10 ³	25 833 x 10 ³	5	-6.3	-1.26				
USNGP TOTAL	23 818	19 180	5	-24.2	-4.84*				
USGP	51 268	45 013	4	-13.9	-3.48*				
*INDICAT	*INDICATES ESTIMATES ARE SIGNIFICANTLY DIFFERENT								
MA	IFICANT UNDER AINLY TO SIGNI IEAT AREA								

NASA-S-78-17031						
	PHAS	SEII(CON	IT)			
LACIE SEGMENT ESTIMATES	ESTIMATE	S VS GROUNE	O OBSERVED S	SEGMENT		
BIAS DUE TO	CLASSIFICA	TION WEI	GHTED ANAL	YSIS		
WINTER WHEAT	<u>.</u> <u>n/N</u>	RB, <u>PERCENT</u>	CV, <u>PERCENT</u>	TEST <u>STATISTIC</u>		
USSGP USSGP (EXCLUDING	103/233	-15.0	5.1	-2.94*		
OKLAHOMA)	83/193	-6.0	5.4	-1.11		
OKLAHOMA) 83/193 -6.0 5.4 -1.11 *INDICATES SIGNIFICANT UNDERESTIMATION DUE TO CLASSIF- ICATION MAINLY DUE TO PROBLEMS IN OKLAHOMA						

NASA-S-78-17032 PHASE II (CONT) BIAS DUE TO CLASSIFICATION -- UNWEIGHTED ANALYSIS D WINTER WHEAT <u>S</u>D− n <u>t</u> USSGP 105 0.8 -1.9 -2.5* USSGP (EXCLUDING OKLAHOMA) 85 -.8 0.8 -1.1 ***SIGNIFICANT UNDERESTIMATION DUE MAINLY TO OKLAHOMA PROBLEMS**



ORIGINAL PAGE IS OF POOR QUALITY


APRIL 16, 1976

NUMBER INDICATES BIO-WINDOW

NOVEMBER 24, 1975

- INDICATES VARIABILITY PRIMARILY DUE TO ERRORS
 IN CLASSIFICATION OF SPRING SMALL GRAINS
- WHEAT TO SMALL-GRAIN RATIO ERRORS INTRODUCED MORE BIAS THAN SMALL-GRAIN CLASSIFICATION ERRORS

- USGP YARDSTICK REGION
- U.S.S.R.

90/90 EVALUATION

- WINTER WHEAT REGION SUPPORTED ACCURACY GOAL
- SPRING WHEAT REGION DID NOT SUPPORT ACCURACY GOAL
 - -- ESTIMATED RELATIVE BIAS OF -25.7 PERCENT

• USGP TOTAL WHEAT – SUPPORTED ACCURACY GOAL – ESTIMATED RELATIVE BIAS OF -10.0 PERCENT

- LOTIMATED RELATIVE BIAS OF -10.0 PERCENT

PHASE III (CONT)

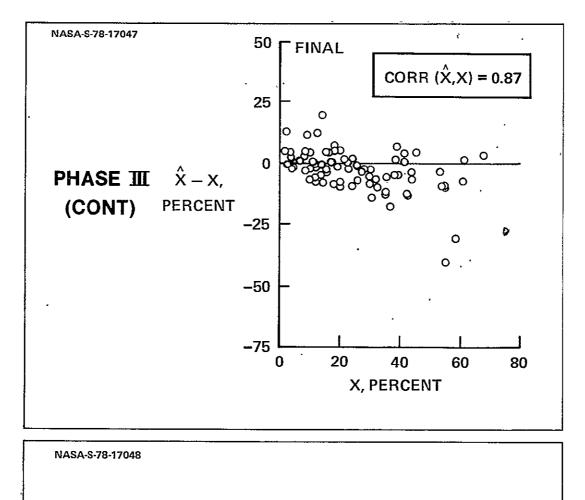
•

• RELATIVE CONTRIBUTION OF AREA AND YIELD ERRORS

• TO BIAS OF PRODUCTION ESTIMATE

,	RD (PERCENT)				
	TOTAL	LACIE ACREAGES	LACIE YIELDS		
	RD,	x	. X		
	PERCENT	SRS YIELDS	SRS ACREAGES		
			•		
WINTER WHEAT	-3.4	+4.9	-8.9		
SPRING WHEAT	-25.7	-12.3	-15.5		
TOTAL WHEAT	-10.0	2	-10.9		

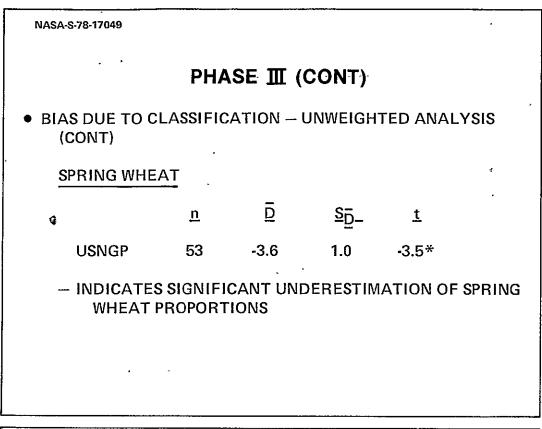
- INDICATES PRODUCTION UNDERESTIMATION DUE PRIMARILY TO YIELD UNDERESTIMATION

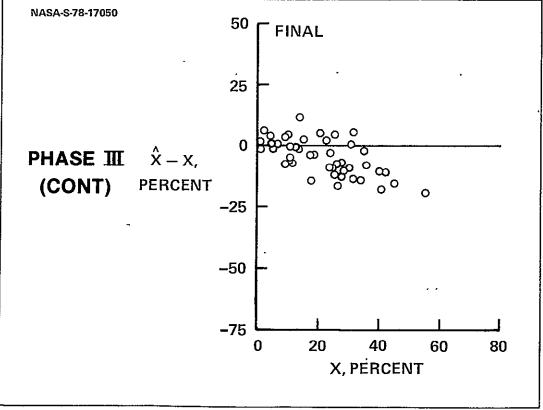

NASA-S-78-170	PHA	SE III (CON	T)				
• COMPA	ROR SOURCE A RISONS WITH U ER WHEAT REG	SDA/SRS					
	<u>AREA,</u> USDA/SRS	ACRES LACIE	PERC <u>CV</u>	CENT <u>RD</u>	TEST STAT- <u>ISTIC</u>		
SOUTHERN GREAT PLAINS	28 800 × 10 ³	29 537 x 10 ³	3.4	2.5	0.74		
U.S. GREAT PLAINS 32 280 33 820 3.2 4.6 1.44 INDICATES TENDENCY TO OVERESTIMATE BUT NOT							
	NIFICANT			Dorno	•		

NASA-S-78-17043	РНА	SE III (CON	T)		•
 COMPA 	ROR SOURCE AN RISONS WITH US	SDA/SRS	•		
	<u>AREA,</u> USDA/SRS	ACRES LACIE	PERC <u>CV</u>	CENT <u>RD</u>	TEST STAT- <u>ISTIC</u>
SPRING WHEAT STATES	12 372 x 10 ³	11 527 x 10 ³	4.0	-7.3	-1.8*
MIXED WHEAT STATES	4 596	4 110	7.0	-11.8	-1.7*
USNGP	16 968	15 637	3.5	-8.5	-2.4*
AREA — SIGN		T UNDERESTIM			

NASA-S-78-170	044			•				
PHASE III (CONT)								
• COMPARI	SONS WITH USD	A/SRS (CONT)						
TOTAL	WHEAT							
					TEST			
	<u>AREA,</u>	ACRES	PER	CENT	STAT-			
	USDA/SRS	LACIE	<u>_CV</u>	<u>RD</u>	ISTIC			
USSGP	-	-						
WINTER	28 800 x 10 ³	29 537 x 10 ³	3.4	2.5	0.7			
USNGP				•				
TOTAL	20 448	19 921	7.6	-2.6	3			
USGP	49 248	49 458	2.4	.4	.2			
			N NITTI N/					
	AL WHEAT AREA	SNOT SIGNIFICA		DIFFER				
1014		4						

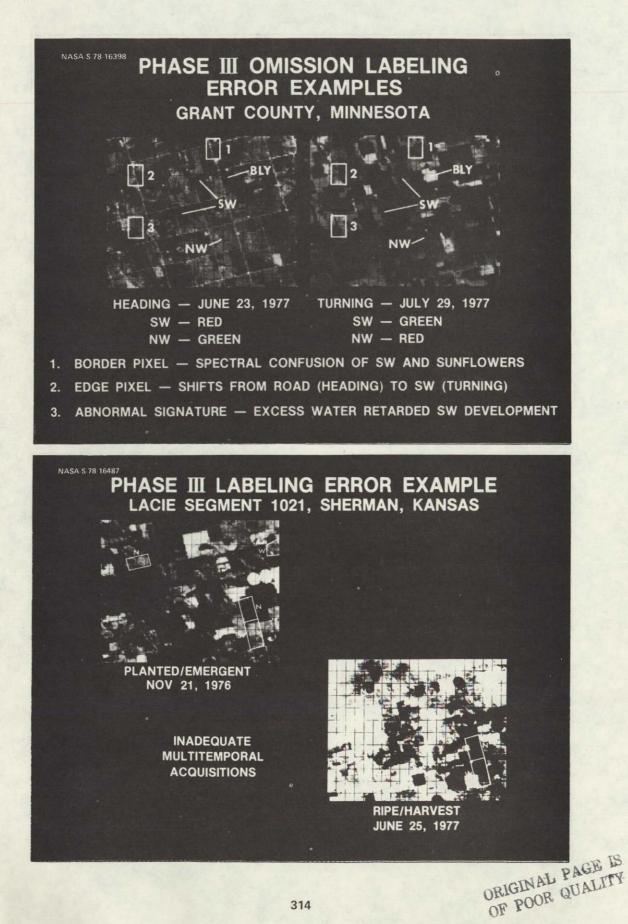
NASA-S-78-17045							
PHASE III (CONT)							
 LACIE SEGMENT ESTIMATES VS GROUND OBSERVED SEGMENT ESTIMATES 							
BIAS DUE TO	CLASSIFIC	CATION - WEIGH	ITED ANALYS	IS			
WINTER WHEAT	n/N	RB, <u>PERCENT</u>	CV, PERCENT	TEST STATISTIC			
USSGP	75/240	-10.3	4.5	-2.3*			
USGP	92/298	-9.5	4.2	-2.3*			
*INDICATES NI WHEAT	EGATIVE BI	AS DUE TO CLA	SSIFICATION	OF WINTER			

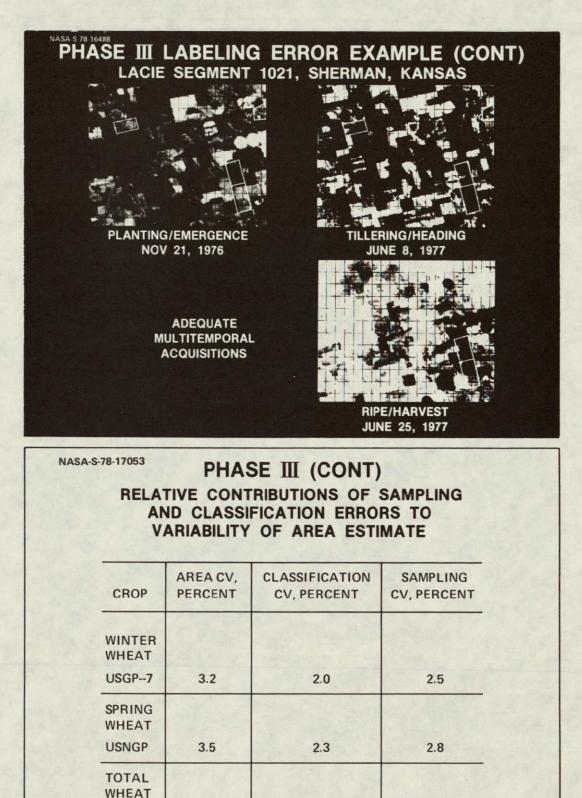

	PHAS	SE III (C	ONT)	
BIAS DUE TO C	CLASSIFIC	CATION	UNWEIGH	ITED ANALYSIS
WINTER WH	EAT	,		
	<u>n</u>	ם	<u>s</u> <u>ī</u> _	<u>t</u>
USSGP	75	-2.9	1.0	-2.8*
USGP	92	-2.4	.8	- 2.8*
*INDICAT	ES NEGA	TIVĘ BIAS		



PHASE III (CONT)

- LACIE SEGMENT ESTIMATES VS GROUND OBSERVED SEGMENT ESTIMATES
 - BIAS DUE TO CLASSIFICATION WEIGHTED ANALYSIS

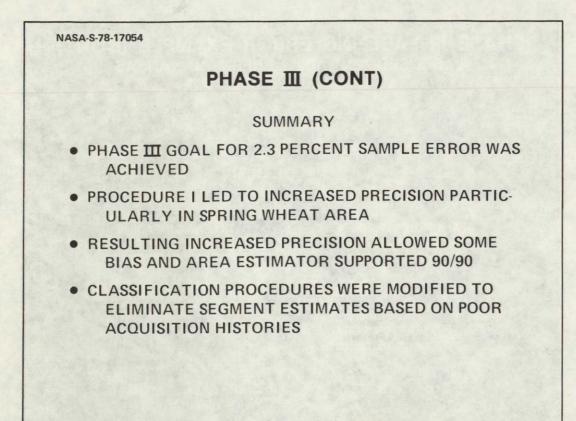

SPRING WHEAT	n/N	RB, PERCENT	CV, PERCENT	TEST STATISTIC
USNGP	53/178	-22.9	6.9	-3.3*
*INDICATES NEC SPRING WHEA		S DUE TO CLA	SSIFICATION	OF



NASA-S-78-17051 PHASE III (CONT) RELATIVE CONTRIBUTIONS OF CLASSIFICATION AND WHEAT TO SMALL-GRAIN RATIO ERRORS SPRING WHEAT REGION OF NORTH DAKOTA AND MINNESOTA SPRING WHEAT PROPORTIONS D SD n t 1.1 SPRING WHEAT STATES 33 -3.8 -3.5* ***INDICATES SIGNIFICANT UNDERESTIMATION** CONTRIBUTIONS OF CLASSIFICATION AND RATIOING ERRORS

		PEI	RCEN	IT OF	гота	LPIXE	LSL	ABELE	D	
CAUSE OF ERROR		ID 8)	M (1	IN 6)		IT 10)		:O 6)	-	ок 11)
	OM	COM	OM	COM	OM	COM	OM	COM	MO	COM
 ABNORMAL SIGNATURES BOUNDARIES 	4.4	0.5	2.6	0.3	1.4	0.9	2.8 2.3	- 0.8	3.3 2.2	1.4
LACK OF ACQUISITION	1.5	1.0	-	-	.5	-	-	-	3.0	-
TOTAL ERRORS ERRORS OF OMISSION	11.2	_	9.1		4.8	-	6.0	-	9.9	-
TOTAL ERRORS OF COMMISSION	-	3.0	_	2.6	-	2.1	-	.8	_	5.5

ORIGINAL PAGE IS OF POOR QUALITY


315

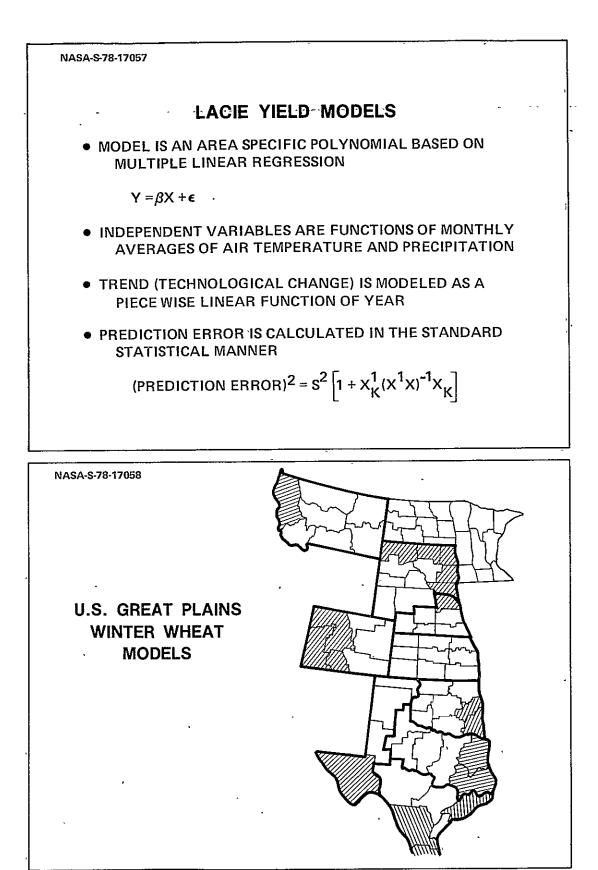
1.5

1.9

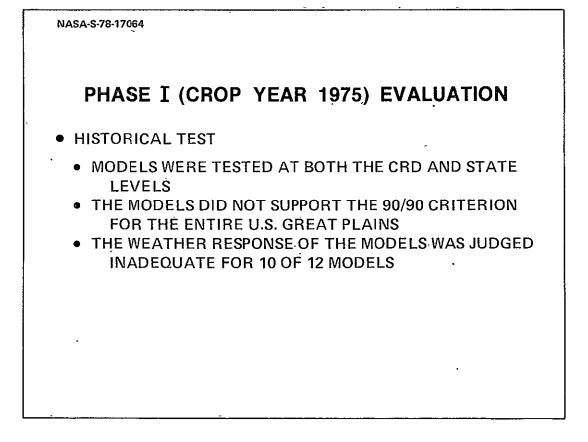
USGP

2.4

ACCURACY AND PERFORMANCE CHARACTERISTICS OF LACIE YIELD MODELS


NASA-S-78-17056

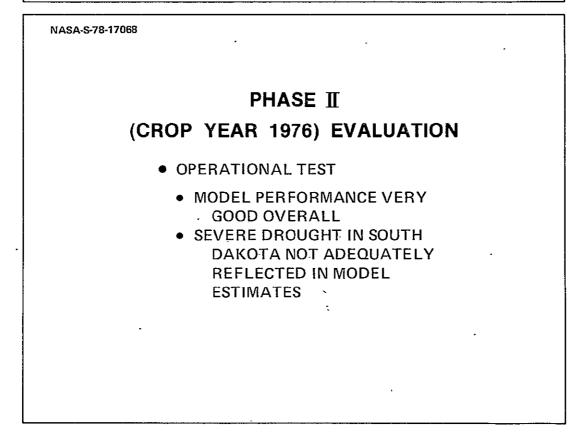
EVALUATION OF YIELD MODELS


- OBJECTIVE
 - MINIMIZE CONTRIBUTIONS FROM YIELD TO ERRORS IN THE LACIE PRODUCTION ESTIMATES THROUGH AN ORDERLY DEVELOPMENT OF YIELD TECHNOLOGY
- APPROACH
 - IDENTIFY AND EVALUATE THE ERROR SOURCES IN OPERATIONAL YIELD MODELS FOR PURPOSES OF MODEL IMPROVEMENT
 - MODIFY EXISTING MODELS
 - IMPLEMENT ALTERNATIVE MODEL FORMS
- REQUIREMENTS
 - EVALUATE ABILITY OF MODELS TO PROVIDE YIELD ESTIMATES THAT SUPPORT THE 90/90 CRITERION

319

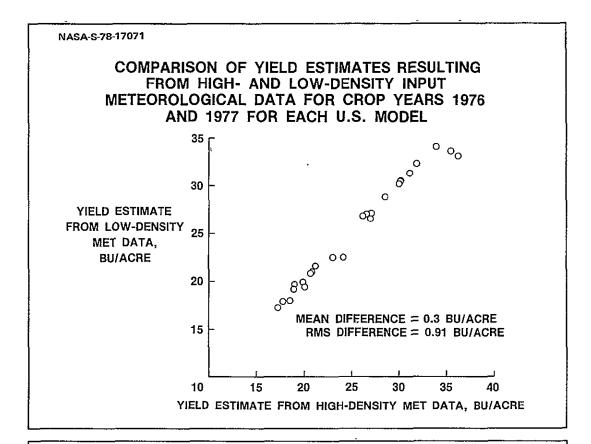
 DETERMINE MODEL SENSITIVITY TO CONDITIONS CAUSING IMPORTANT DEPARTURES FROM EXPECTED YIELDS

NASA-S-78-17063			<u> </u>					
YIELD MODELS DEVELOPED AND TESTED								
COUNTRY	NO. OF MODELS	TYPE OF TEST	SÚPPORT 90/90					
ARGENTINA	A 5	HISTORICAL	· NO ′					
AUSTRALIA	5	HISTORICAL	YES					
BRAZIL	1	HISTORICAL	· NO					
CANADA	16	HISTORICAL/ OPERATIONS	YES					
INDIA	1	HISTORICAL ·	YES					
. U .S.S .R.	44 (21 WW/23 SW)	HISTORICAL/ OPERATIONS	YES					
U.S.	15 (10 WW/5 SW)	HISTORICAL/ OPERATIONS	YES					
		. <u>.</u> .	•					

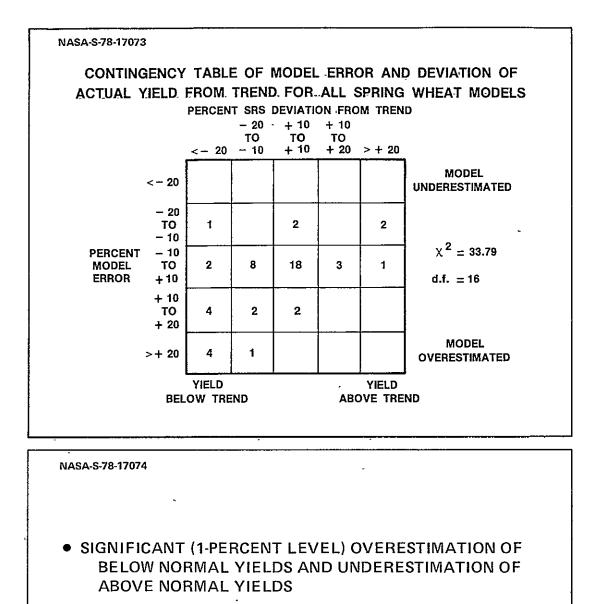


TEN-YEAR BOOTSTRAP TEST (1965-74) FOR U.S. PHASE I BY MODEL REGION						
MODEL	CROP	MEAN ERROR, BU/ACRE	RMSE, BU/ACRE	SUPPORT 90/90		
MONTANA	SW	-0.4	2.40	. YES		
NORTH DAKOTA	SW	+2.3	4.55	NO		
RED RIVER	SW	+2.6	4.69	YES		
SOUTH DAKOTA	SW	-0.0	2.24	YES		
MONTANA	ww	-0.7	3.71	YES		
BADLANDS	ww	-1.9	5.30	YES		
NEBRASKA	ww	-2.2	4.42	YES		
COLORADO	ww	-0.3	4.33	YES		
KANSAS	ww	+2.1	7.19	NO		
OKLAHOMA	ww	+1.7	3.41	YES		
PANHANDLE	·ww	+0.4	3.29	YES		
TEXAS LOW-PLAINS	ww	-1.4	3.08	YES		
TOTAL	SW	+2.0	3.51			
TOTAL	ww	+0.5	3.51			
TOTAL	w	+1.0	2.77			

NASA-S-78-1	7066
	PHASE II
	(CROP YEAR 1976) EVALUATION
	OPERATIONAL TEST
	 MODEL PERFORMANCE VERY GOOD OVERALL SEVERE DROUGHT IN SOUTH DAKOTA NOT ADEQUATELY REFLECTED IN MODEL ESTIMATES


ELEVEN-YEAR BOOTSTRAP TEST (1965-75) FOR U.S. PHASE II BY MODEL REGION

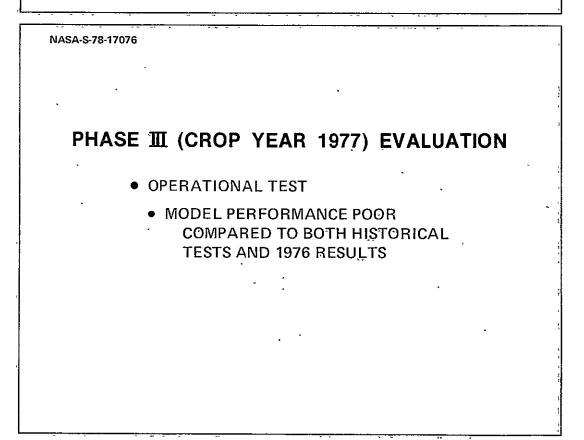
MODEL	CROP	MEAN ERROR, BU/ACRE	RMSE, BU/ACRE	SUPPORT 90/90
MONTANA	SW	-0.7	2.16	YES
NORTH DAKOTA	SW	+2.5*	3.42	YES
RED RIVER	SW	+2.0	3.96	YES
SOUTH DAKOTA	SW	+0.3	2.45	YES
MONTANA	ww	-1.0	3.37	YES
BADLANDS	ww	-1.6	5.00	YES
NEBRASKA	ww	-2.7*	4.23	YES
COLORADO	WW	+.5	4.55	YES
KANSAS	ww	+.3	3.72	YES
OKLAHOMA	ww	- 1.6*	3.00	YES
PANHANDLE	ww	-1.1	3.23	YES
TEXAS LOW PLAINS	ww	2	2.59	YES
TOTAL	SW	+1.6	2.70	
TOTAL	ww	-0.7	1.80	
TOTAL	W	+0.1	1.68 .	


c T		SRS.		L'ACIE	ERROR,	BEL DIF
AREA	CROP	BU/ACRE			BU/ACRE	
MONTANA	SW	29.4	25	27.1	-2.3	-8.5
N. DAKOTA	SW	24.7	-14	27.0	+2 3	8:5
MINNESOTA	SW	32.4	-9	30.3	-2.1	-6.9
S. DAKOTA	SW	10.9	-55	17.2	+6.3	36.6
MONTANA	ww	32 0	5	29.9	-2.1	-7.0
S. DAKOTA	ww	18.0	-44	31.6	+13.6	43.0
NEBRASKA	ww	32.0	-7	32.7	-0.7	· 2.1
COLORADO	ww	21.5	-16	19.6		
KANSAS	ww	30.0	-6	31.0		3.2
OKLAHOMA	ww	24 0	0	22.6		-6.2
TEXAS	ww	22.0	9	18.7		
USGP	SW	25.3		26.2		
USGP	ww	27.0		27.0		
USGP	ŢW	26.4		26.7	+0.3	1.1
a RELATIVI	E DIFFE	RENCE = $\frac{S}{2}$	RS - TRENI TREND	2 x 100 PE	RCENT	

	PHASE III (CROP YEAR 1977) EVALUATION
• 1	
-	MODELS WERE REVISED TO REMOTE BIAS DUE TO OVERL OF MODELED REGIONS
•	MODELS WERE IMPLEMENTED FOR MINNESOTA AND SOU CENTRAL TEXAS
• }	HISTORICAL TEST
•	 REVISION OF EVALUATION METHODOLOGY TO REMOVE EFFECTS OF HINDSIGHT KNOWLEDGE OF TREND EVALUATION OF THE EFFECTS OF OPERATION ESTIMATION OF METEOROLOGICAL INPUTS ON MODEL PERFORMANTION MODELS SUPPORTED THE 90/90 CRITERION
•	WEATHER RESPONSE LESS THAN DESIRED
	• TENDENCY TO OVERESTIMATE TREND (SPRING WHEAT) • PREHARVEST ESTIMATES SHOW PREDICTIVE ABILITY

NASA-S-78-	17072					
PH			TSTRAP S WITH	_		
	TOTAL	WHEAT	SPRING W	/HEAT	WINTER V	VHEAT
	SRS	MODEL	SRS	MODEL	SRS	MODEL
YEAR	BU/ACRE	ERROR	BU/ACRE	ERROR	BU/ACRE	ERROR
1007	21.0		22.9	10.2	21.0	+1.1
1967	21.6	+0.9		+0.3		
1968	26.0	-1.4	26.1	-1.9	25.9	-1.2

1967	21.6	+0.9	22.9	+0.3	21.0	+1.1	
1968	26.0	-1.4	26.1	-1.9	25.9	-1.2	
1969	28.4	+1.0	28.4	+2.2	28.4	+.5	
1970	28.2	-1.6	23.5	-1:0	30.4	-1.9	
1971	30.8	-2.9	30.6	-1.7	30.9	-3.7	
1972	29.3	2	28.5	+2.2	29.7	-1.5	
1973	30.8	2	27.7	+.2	32.4	3	
1974	23.8	+4.6	20.8	+6.6	25.5	+3.4	
1975	26.8	+.5	25.7	+.8	27.4	+.3	
1976	26.4	+.7	25.3	+2.0	27.1	۰.1	
MEAN	ERROR	+0.1 BU/ACI	RE +1.0 E	BU/ACRE	-0.4 BU/A0	CRE	
RMSE		1.90 BU/ACI		-	1.84 BU/A		


- MODELED TREND APPEARS TO BE AN OVERESTIMATE OF THE ACTUAL TREND
- TENDENCY TOWARD A POSITIVE BIAS FOR THE AGGRE-GATED SPRING WHEAT REGION DUE IN PART TO TREND ERRORS

.

RESULTS OF 10 YEAR BOOTSTRAP TEST FOR PHASE III KANSAS WINTER WHEAT YIELD MODEL BY TRUNCATION

CCEA TRUNCATION

		UULA	THONOA	11010		
<u>YEAR</u>	<u>SRS</u>	TREND	<u>FEB</u>	MAR	MAY	JUNE
1967	20.0	23.4	22.4	20 8	22.4	20.6
1968	26.0	24.5	23.3	22.3	24.0	24.4
1969	31.0	25.1	26.8	30.1 [,]	30 7	31.7
1970	33 0	26.9	26.9	29.1	29.3	30.0
1971	34.5	28.8	28.7	27.7	28.6	28.9
1972	33.5	30.7	29 9	28.6	29.6	29.6
1973	37.0	31.2	3 <u>2</u> .7	35.0	34.6	35.9
1974	27.5	32.1	33.4	33.6	32.2	32.8
1975	29.0	31.5	31 3	32.0	32.3	31.9
1976	30.0	31.2	29.0	29.2	30.2	30.3
MĘAN I	ERROR	-1.4	-1.7	-1.3	8	5
RMSE		4.54	4.17	3.89	3.35	3.11

PHASE III (1977 CROP YEAR) RESULTS FROM OPERATIONAL MODELS

AREA	CROP	SRS, BU/ACRE	REL DIF (a)	LACIE, BU/ACRE	ERROR, BU/ACRE	REL DIF (b)
	<u> </u>					
MONTANA	SW	2 2.0	-6	18.0	-4.0	-22.2
N. DAKOTA	SW	24.9	-14	23.1	-1.8	-7.8
MINNESOTA	SW	39. 9	12	32.0	-7.9	-24.7
S. DAKOTA	SW	23.5	-2	20.8	-2.7	-13.0
MONTANA	ww	29.0	-5	26.5	-2.5	-9.4
S. DAKOTA	ww	25.0	-22	27.1	+2.1	7.7
NEBRASKA	ww	35.0	1	32.0	-3.0	-9.4
COLORADO	ww	22.0	-14	22.5	+0.5	2.2
KANSAS	ww	28.5	-11	28.8	+0.3	.1
OKLAHOMA,	ww	27.0	13	20.0	-7.0	-35.0
TEXAS	ww	25.0	24	20.3	-4.7	-23.2
				-		

NASA-S-78-17078

PHASE III (1977 CROP YEAR) RESULTS FROM OPERATIONAL MODELS (CONT)

AREA	CROP	SRS, BU/ACRE	REL DIF (a)	LACIE, BU/ACRE	ERROR, BU/ACRE	REL DIF
USGP	SW	27.1		23.4	-3.7 -2.1	-15.8
USGP USGP	WW TW ·	27.7 27.5		25.6 24.9	-2.1 -2.6	-8.2 -10.4
a RELAT	IVE DIF	FERENCE =	SRS - TRI TREN	X 11/01	PERCENT	
b RELAT	IVE DIF	FERENCE =	LACIE - S	— X IUU	PERCENT	

PHASE III (1977 CROP YEAR) COMPARISON OF LACIE AND FAS/U.S.S.R. YIELD ESTIMATES

	, SPRING WHEAT					
MONTH OF ESTIMATE	FAS/U.S.S.R. ESTIMATE, ql/ha	LACIE ESTIMATE, ql/ha	REL DIF, PERCENT			
APR			•			
MAY						
JUNE			.'			
JULY						
AUG	11.0	9.0	-22.2			
SEPT	9.7	9.0	-7.8			
ост	9.7	8.8	-10.2			
FINAL	9.7	8.8	-10.2			

NASA-S-78-17080

PHASE III (1977 CROP YEAR) COMPARISON OF LACIE AND FAS/U.S.S.R. YIELD ESTIMATES

MONTH OF ESTIMATE	WINTER WHEAT					
	FAS/U.S.S.R. ESTIMATE, ql/ha	LACIE ESTIMATE, ql/ha	REL DIF, PERCENT			
APR		24.3				
MAY		24.1				
JUNE		25.6	, ,			
JULY		25.9	٤			
AUG	27.0	` 25.5	• • - 5.9*			
SEPT	.28.8	25.6	-5.5			
OCT	28.8	25.6	-5.5			
FINAL	28.8	25.6	-5.5			

NASA	-S-78	-170	81

PHASE III (1977 CROP YEAR) COMPARISON OF LACIE AND FAS/U.S.S.R. YIELD ESTIMATES

MONITI	TOTAL WHEAT		
MONTH OF ESTIMATE	FAS/U.S.S.R. ESTIMATE, ql/ha	LACIE ESTIMATE, ql/ha	REL DIF, PERCENT
APR			
MAY			
JUNE			
JULY			
AUG	16.0	15.2	-5.3
SEPT	16.1	14.7	-9.5
ост	16.1	14.5	-11.0
FINAL	16 . 1 '	14.5	-11.0

NASA-S-78-17082

LACIE YIELD MODELS

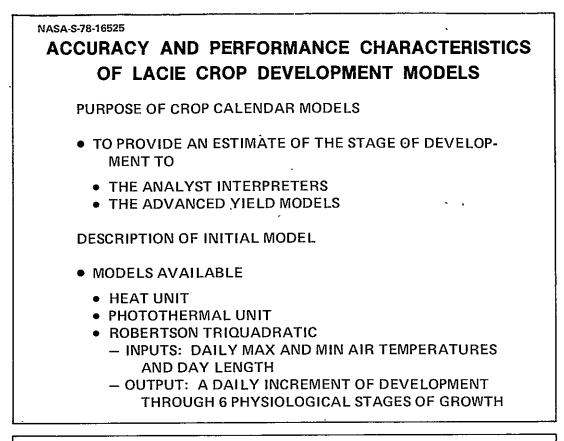
SUMMARY

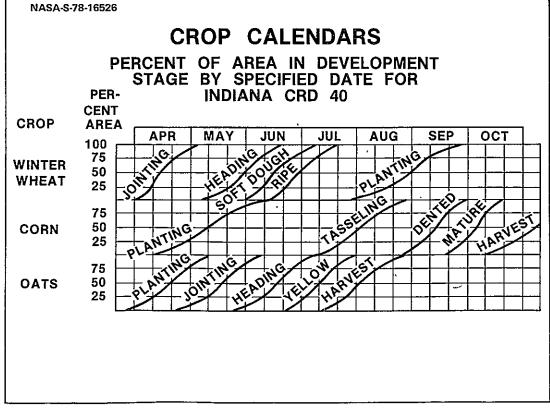
- LACIE YIELD ESTIMATES HAVE SHOWN SIGNIFICANT SKILL BOTH AT HARVEST AND PRIOR TO THE END OF SEASON
- WITH EXPERIENCE, THE QUALITY OF ESTIMATES OBTAINED FROM LARGE-AREA REGRESSION MODELS WAS STEADILY IMPROVED
- POTENTIAL WEAKNESSES IN THE LACIE YIELD MODELS WERE IDENTIFIED AS POINTS OF DEPARTURE FOR FUTURE RESEARCH
 - SPECIFICATION OF TREND
 - SIZE OF AREA MODELED
 - SPATIAL DENSITY OF INPUT METEOROLOGICAL
 DATA
 - UTILIZATION OF CROP CALENDARS

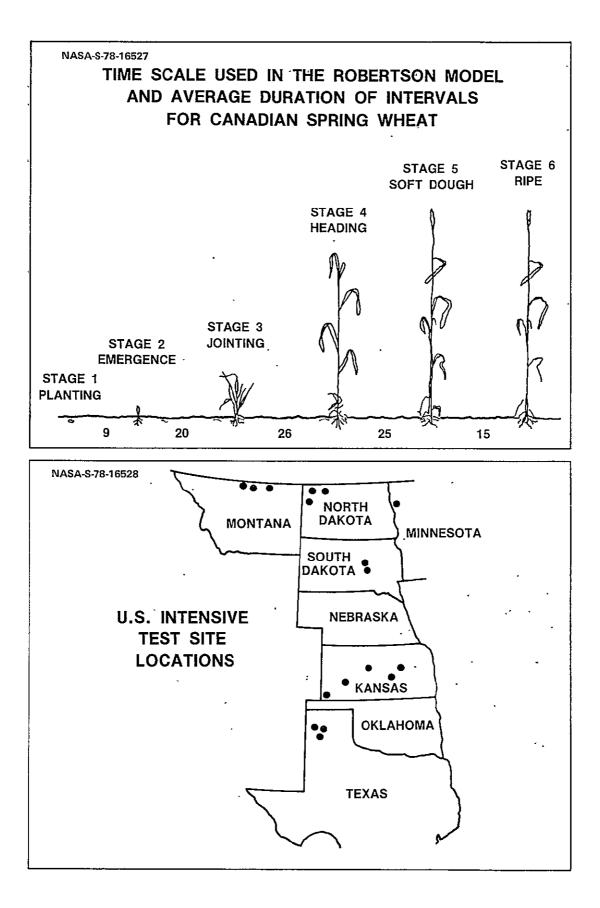
N79-14484

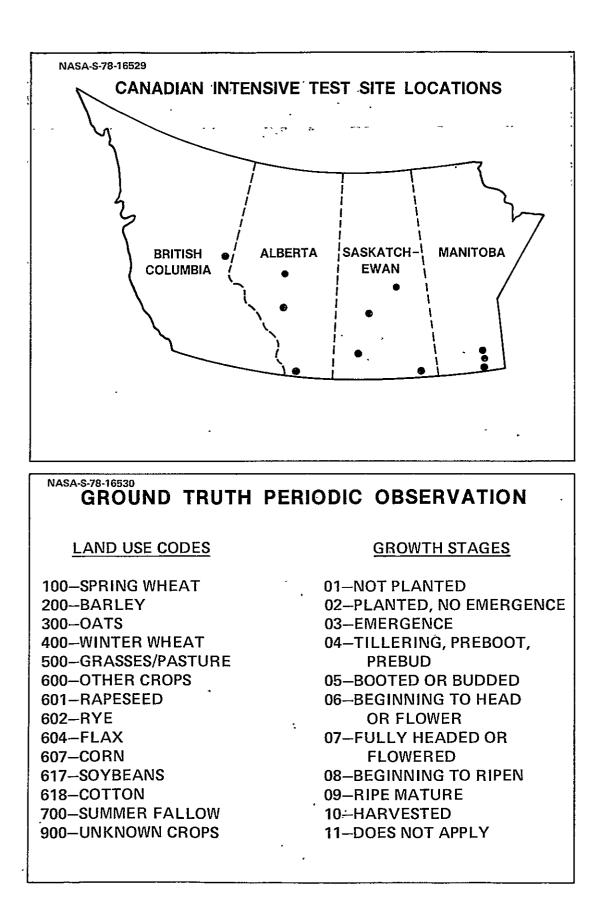
EXPERIMENT RESULTS SESSION

ACCURACY AND PERFORMANCE OF LACIE CROP DEVELOPMENT MODELS S. Woolley, Lockheed/JSC

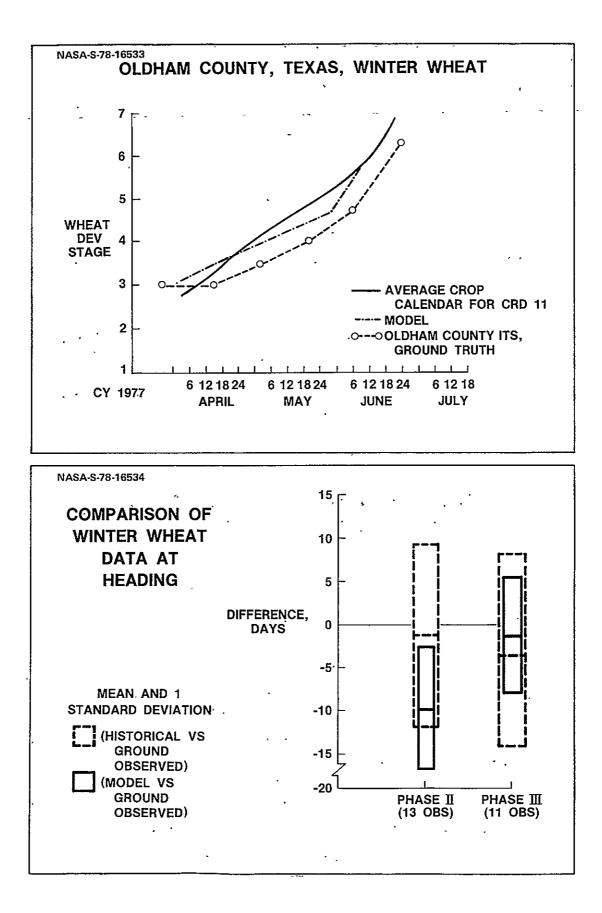

ACCURACY AND PERFORMANCE CHARACTERISTICS OF LACIE CROP DEVELOPMENT MODELS

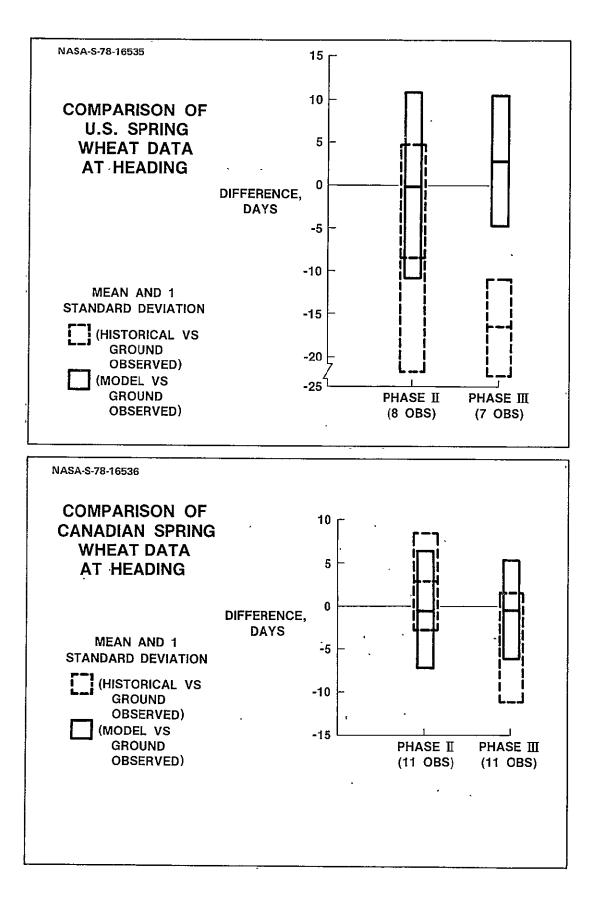

. .

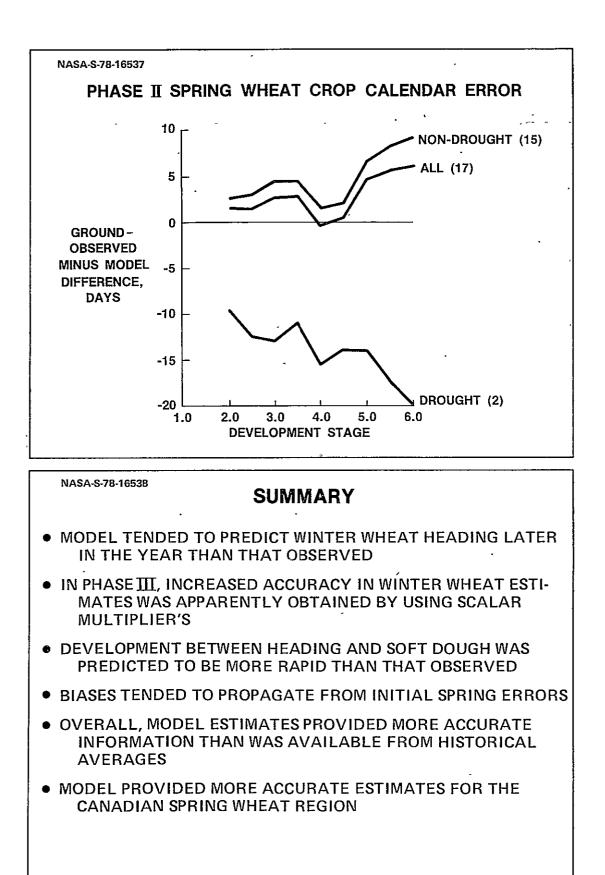

NASA-S-78-16524


ACCURACY OF LACIE CROP DEVELOPMENT MODELS

- PURPOSE AND DESCRIPTION OF CROP CALENDAR MODEL
- ASSESSMENT PROCEDURES
- RESULTS
- AREAS IDENTIFIED FOR MODEL IMPROVEMENT



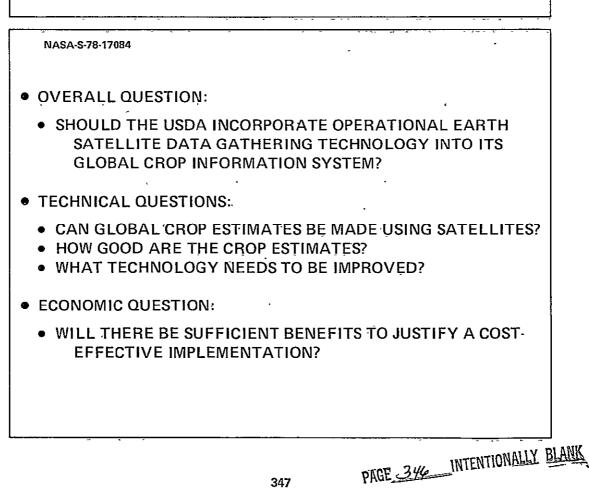


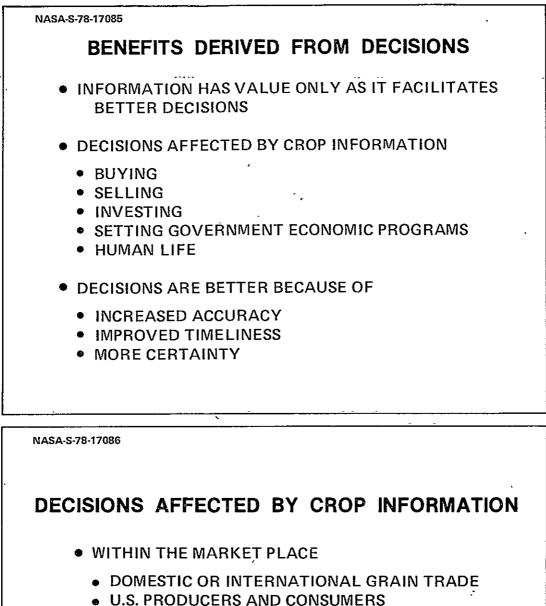


NASA-S-78-16531		
NASA-3-76-10551		GROWTH
FIELD	LAND USE	STAGE
NO.	CODE	(CIRCLE
		ONE)
		01 02 03 04
107	<u>404</u>	05 06 07 08
		09 10 11
		00 10 11
		01 02 03 04
129	<u>700</u>	05 06 07 08
	<u></u>	09 10 (11)
		01 02 03 04
104 ·	<u>404</u>	05 06 07 08
		09 10 11
		01 02 03 04
124	<u>404</u>	05 06 07 08
		09 10 11

NASA-S-78-16532 ROBERTSON BMTS AND OBSERVED ITS WHEAT PHENOLOGICAL STAGES						
ROBERTSON						
STAGE	BMTS	<u>ITS</u>	DESCRIPTION			
PLANTED	1.0	01	PLANTED			
		02	PLANTED, NO EMERGENCE			
EMERGENGE	2.0	03	EMERGENCE			
JOINTING	3.0	04	TILLERING, PREBOOTING, * PREBUDDING			
	3.5	05	BOOTED OR BUDDED			
HEADING	4.0	06	BEGINNING TO HEAD OR FLOWER			
	4.5	07	FULLY HEADED OR FLOWERED			
SOFT DOUGH	5.0	08	BEGINNING TO RIPEN			
RIPENING	6.0	09	RIPE TO MATURE			

AREAS IN NEED OF FURTHER IMPROVEMENT OR DEVELOPMENT

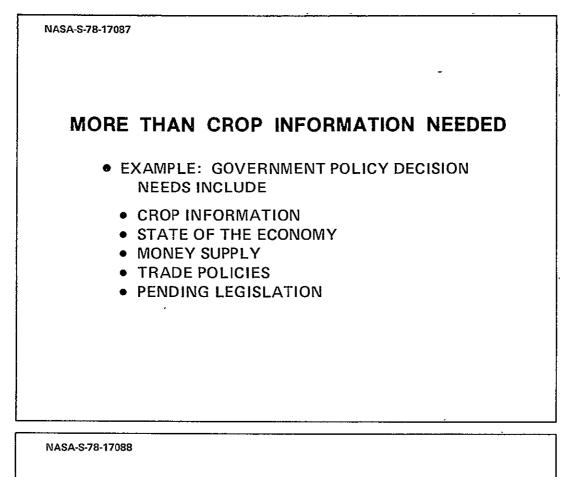

- DEFINITION OF USER ACCURACY REQUIREMENTS
- EVALUATION METHODOLOGY
- REFINEMENTS OF MODELS
 - ACCOUNTING FOR DROUGHT EFFECTS
 - VARIETY EFFECTS
 - STARTER MODELS
 - DORMANCY
- OBJECTIVE METHODS FOR INCLUSION OF LANDSAT
 DATA

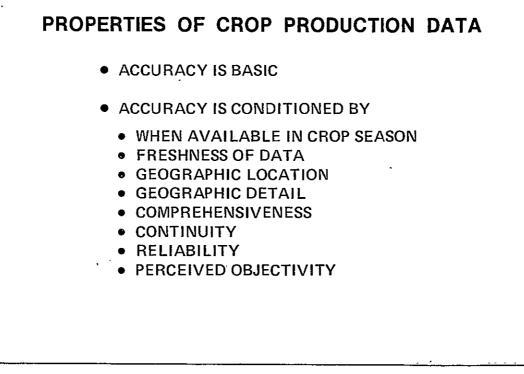

N79-14485

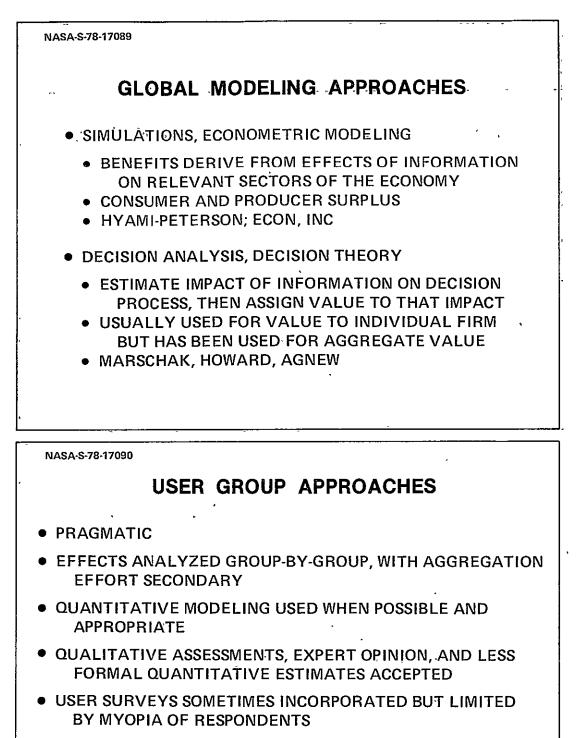
EXPERIMENT RESULTS SESSION

ECONOMIC EVALUATION: CONCEPTS, SELECTED STUDIES, SYSTEM COST, AND A PROPOSED PROGRAM F. Osterhoudt, USDA

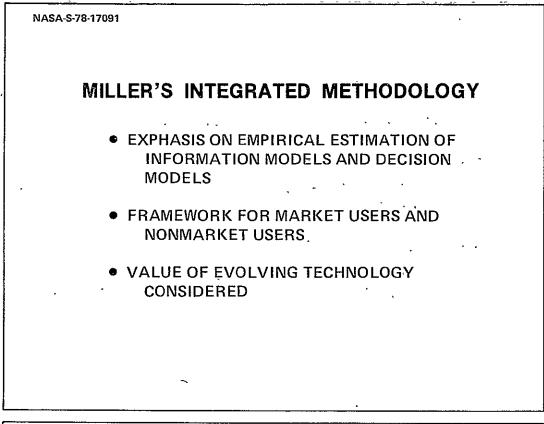
ECONOMIC EVALUATION: CONCEPTS, SELECTED STUDIES, SYSTEM COSTS, AND A PROPOSED PROGRAM

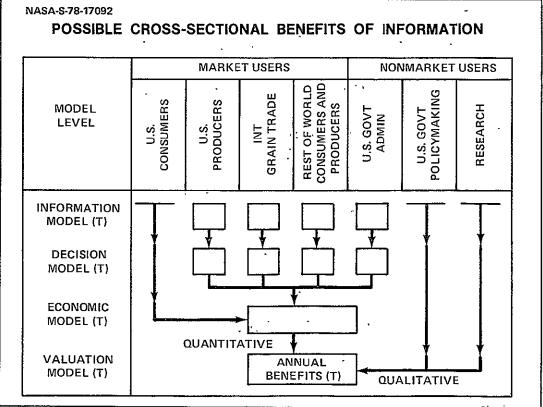


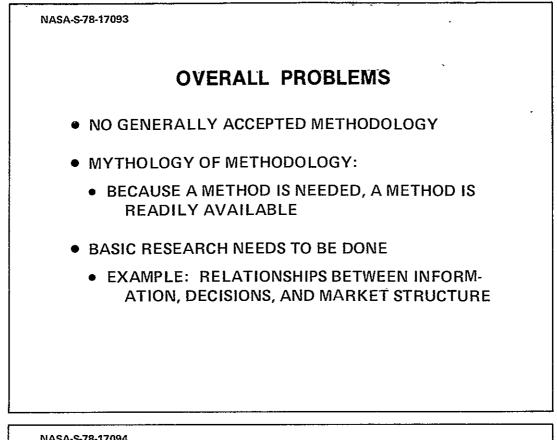


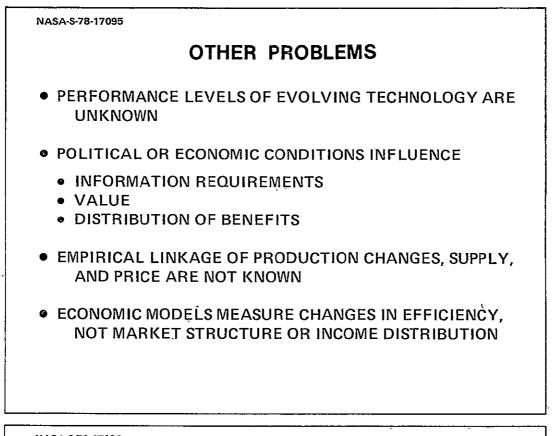

- FOREIGN PRODUCERS AND CONSUMERS
- OUTSIDE THE MARKET PLACE
 - MAKING GOVERNMENT POLICY
 - ADMINISTERING GOVERNMENT PROGRAMS

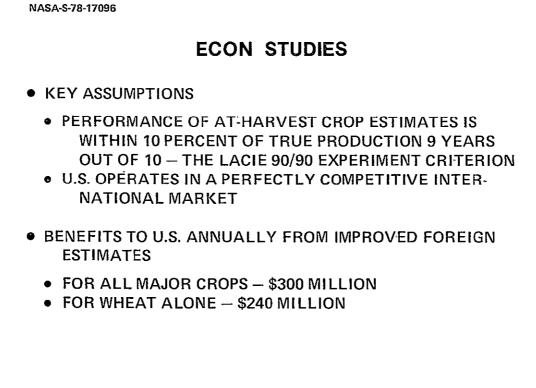
. . .

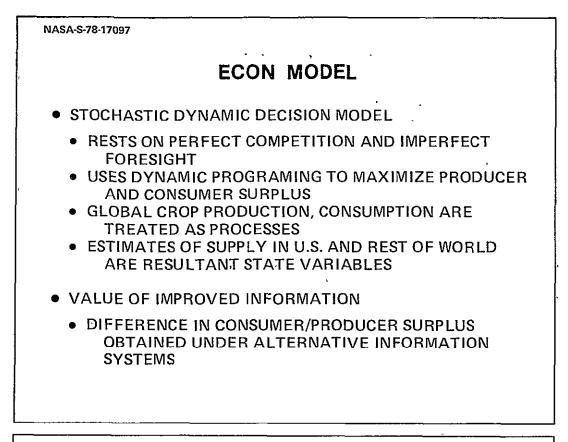

AGREEMENTS WITH OTHER NATIONS

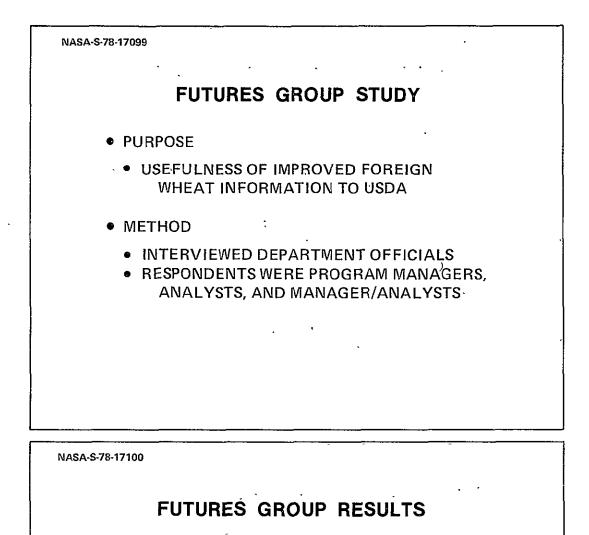





- PANEL ON METHODOLOGY FOR STATISTICAL PRIORITIES
- HOOS, DUNCAN, SHARP





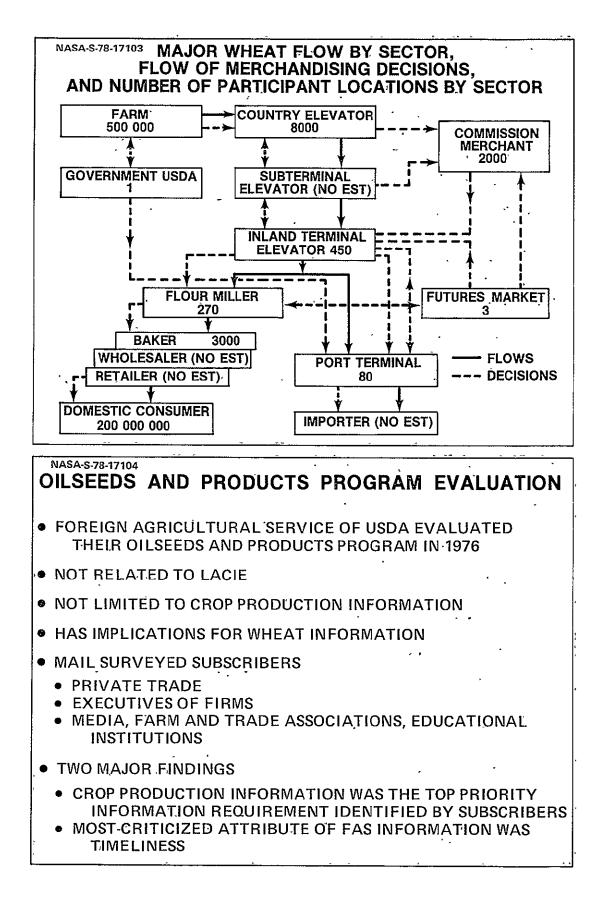

NA5A-5-7	8-17094
	MEASURING INFORMATION QUALITY
	• QUALITIES OF INFORMATION
	 OBJECTIVITY ACCURACY RELIABILITY CONTINUITY COMPREHENSIVENESS GEOGRAPHIC DETAIL TIMELINESS ADEQUACY RELEVANCE BELIEVABILITY
	QUANTIFICATION IS DIFFICULT
	• IMPROVEMENTS ARE REAL

NASA-S-78-17098 **ECON RESULTS** PRINCIPAL BENEFIT TO U.S. IS FROM SELLING LARGER QUAN-TITIES TO REST OF WORLD IN MONTHS OF HIGHER PRICES ACTIVITY IS INVENTORY ADJUSTMENT, LIKE HYAMI-PETERSON INVENTORIES IN U.S. INCREASE, INVENTORIES IN REST OF WORLD DECREASE, TOTAL INVENTORIES DECREASE TOTAL ANNUAL U.S. EXPORTS REMAIN THE SAME TOTAL EXPORT REVENUES INCREASE TRADE BENEFITS TRICKLE DOWN EVENTUALLY TO PRODUC-ERS AND CONSUMERS ADDITIONAL BENEFITS TO U.S. FROM ADJUSTMENT IN PRODUCTION (SMALL) TO REST OF WORLD FROM DECREASED INVENTORY COSTS (10-PERCENT U.S. BENEFITS)

- MANAGEMENT OF EXPORT PROGRAMS
- BILATERAL AGREEMENTS
- INTERNATIONAL WHEAT RESERVES OR EMBARGOES
- MARKET DISRUPTIONS INCREASE NEED FOR GOOD CROP INFORMATION
- IF NO PROGRAMS, NO INFORMATION NEEDED FOR ADMINIS-TRATIVE PURPOSES
- ANTICIPATED NEED FOR MORE ACCURATE AND TIMELY
 INFORMATION

FUTURES GROUP RESULTS (CONT)

- IMPROVED GOVERNMENT DECISIONS COME FROM IMPROVED INFORMATION ON
 - CROPS
 - PRODUCTION, FOREIGN AND DOMESTIC
 PRICES
 - GRAIN CARRYOVER
 - LIVESTOCK NUMBERS AND FEED USE
 - GOVERNMENT FACTORS
 - STATE OF THE ECONOMY
 - TRADE POLICIES
 - PENDING LEGISLATION
 - OTHER
 - AVAILABILITY OF FOREIGN EXCHANGE


٢

- FOREIGN ATTITUDES AND ACTIONS
- TRANSPORTATION PROBLEMS

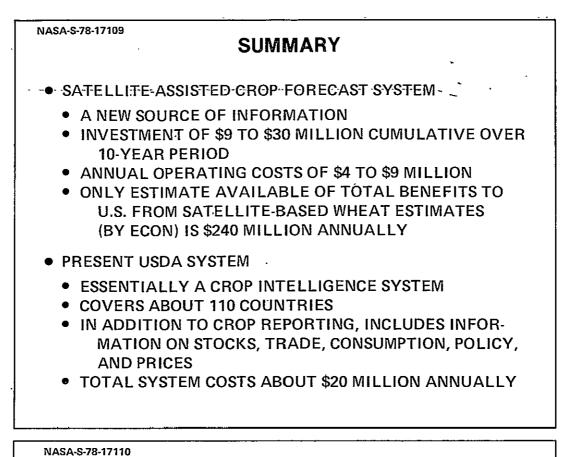
NASA-S-78-17102

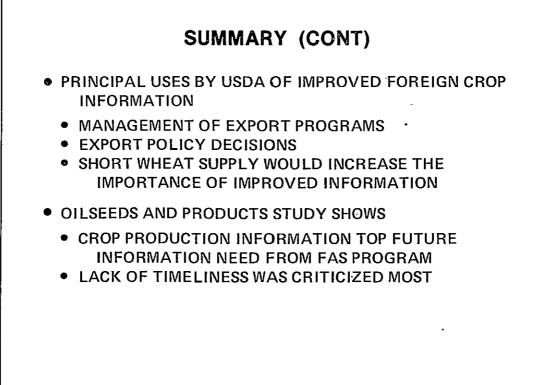
OVERVIEW OF U.S. WHEAT INDUSTRY

- CONDUCTED BY ECONOMICS, STATISTICS, AND COOPERATIVES SERVICE OF USDA
- PROVIDES BACKGROUND REGARDING USE OF CROP INFORMATION
- TRACES PHYSICAL FLOWS AND DECISION FLOWS
- TWO KEY LOCATIONS FOR WHEAT PRICE INFORMATION
 - LARGE INTEGRATED EXPORT FIRMS
 - TERMINAL MARKETS
- AVAILABILITY AND TIMELINESS OF WHEAT INFORMATION IS CRITICAL

COST PERSPECTIVE

- KEY QUESTION: WILL THE BENEFITS OF A CROP INFOR-MATION SYSTEM RESTING ON LACIE-DEVELOPED TECH-NOLOGY OUTWEIGH THE COST SUFFICIENTLY TO WARRANT FURTHER INVESTIGATION?
- TWO SETS OF COSTS ESTIMATED
- PRESENT SYSTEM ASSEMBLES, WEIGHS, DISSEMINATES INFORMATION DEVELOPED AND PAID FOR BY OTHERS
- PROPOSED SYSTEM WOULD BE A NEW SOURCE OF INFORMA-TION
- COST ESTIMATES ARE NOT DIRECTLY COMPARABLE
- SIMULTANEOUS COMPARISON OF PRODUCT QUALITY AND ASSOCIATED BENEFITS MUST BE MADE
- COMPLETE ANALYSIS OF USES AND BENEFITS HAS NOT BEEN MADE

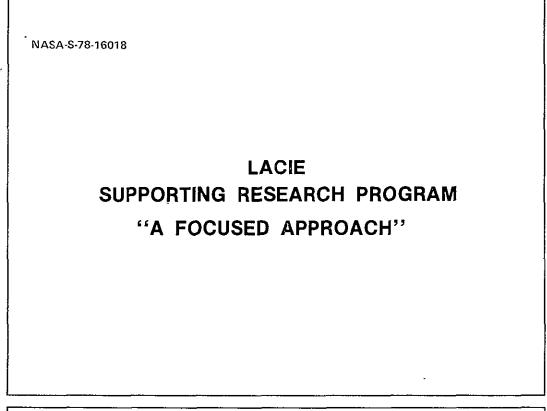

NASA-S-78-17106 COST OF SATELLITE-BASED SYSTEMS	
 PROJECTED SYSTEMS PRODUCE REPETITIVE AREA, YIELD, ANI PRODUCTION FORECASTS THROUGHOUT THE SEASON 	D
 COST PROJECTIONS ARE FOR SINGLE-CROP SYSTEM OR ALTER NATIVE MULTICROP SYSTEM; EACH INCLUDES MAJOR PRO- DUCING COUNTRIES OF THE WORLD; EITHER COULD PROVID PERIODIC UPDATES FOR AREAS OF CURRENT CRITICAL INTEREST 	
PROJECTIONS MADE WITH COST RELATIONSHIP/DEPENDENCY COMPUTER MODEL	
 COSTS OF THE 3 YEARS OF LACIE RESEARCH AND DEVELOP- MENT ARE NOT INCLUDED 	
 COSTS ASSOCIATED WITH APPLICATION, DEVELOPMENT, AND TEST PHASES FOLLOWING LACIE ARE INCLUDED 	
 COSTS OF COLLECTION AND GROUND PROCESSING SYSTEMS ARE INCLUDED ONLY AS AN ANNUAL PAYMENT FOR LAND- SAT PRODUCTS 	
 NOTE THAT OTHER SYSTEMS COULD BE DESIGNED – WITH DIFFERENCES IN COST, PRODUCTS, AND ASSOCIATED BENEFITS 	

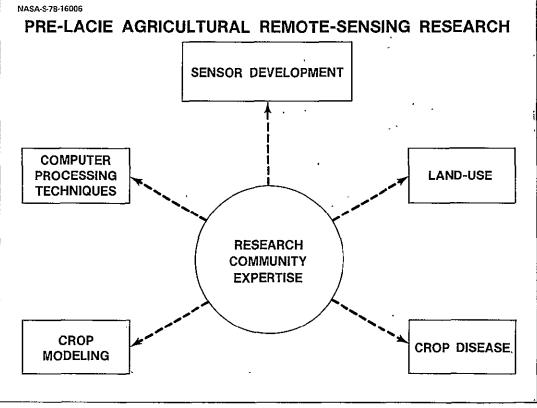

COST OF PRESENT SYSTEM

- PRESENT USDA FOREIGN CROP INFORMATION SYSTEM COVERS ABOUT 110 COUNTRIES. IN ADDITION TO REPORTING ON CROP PRODUCTION, IT ALSO REPORTS ON TRADE, STOCKS, CONSUMPTION, POLICIES, AND PRICES
- PRINCIPAL SOURCE OF FOREIGN CROP INFORMATION IN USDA IS THE 98 AGRICULTURAL ATTACHES AND ASSISTANT ATTACHES
- RESPONSIBILITY FOR ESTIMATION OF FOREIGN CROPS LIES WITH FOREIGN AGRICULTURAL SERVICE (FAS), EXCEPT FOR THE U.S.S.R. AND THE PEOPLE'S REPUBLIC OF CHINA, WHICH ARE DONE MOSTLY BY ECONOMICS DIVISIONS OF ECONOMICS, STATISTICS, AND COOPERA-TIVES SERVICE (ESCS)

PROPOSED PROGRAM OF ECONOMIC EVALUATION

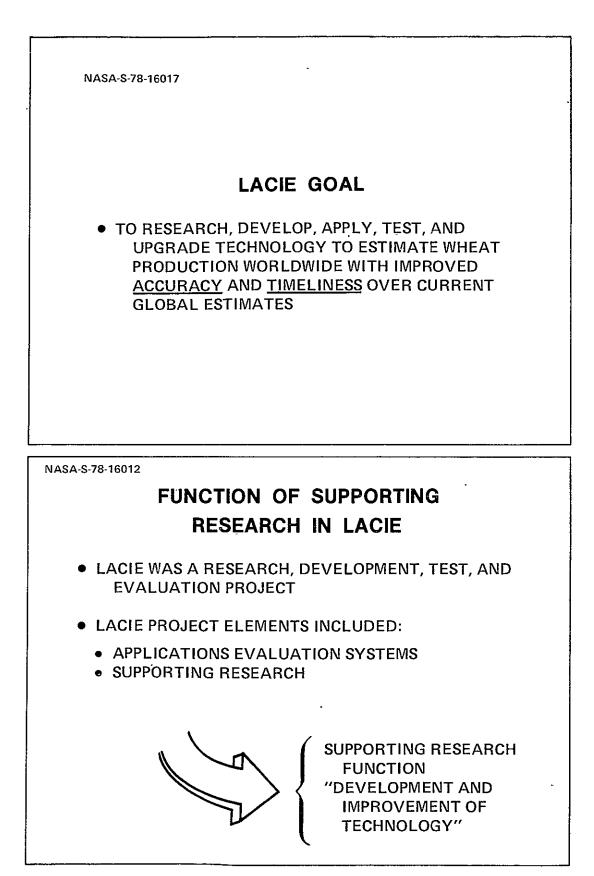
- DEVELOPED BY INTERAGENCY ECONOMIC EVALUATION PLANNING TEAM
- APPROACH IS PRAGMATIC AND ORIENTED TOWARD INFOR-MATION USERS AND USES PROVEN ECONOMIC METHOD-OLOGY WHEREVER POSSIBLE
- FIVE TASKS SPECIFIED WITH FOLLOWING OBJECTIVES:
 - APPRAISE THE USEFULNESS OF IMPROVED WHEAT INFORMATION TO MAJOR USER GROUPS
 - MODIFY AVAILABLE MODELS TO ESTIMATE THE EXPECTED VALUE OF IMPROVED WHEAT PRODUCTION ESTIMATES
 - ASSESS THE IMPACT OF DIFFERENT LEVELS OF PUBLIC FOREIGN CROP INFORMATION ON STRUCTURE OF GRAIN TRADE
 - ANALYZE THE IMPACT OF EVOLVING REMOTE-SENSING TECHNOLOGY ON THE QUALITY OF WHEAT PRODUCTION INFORMATION
 - UPDATE COST PROJECTIONS

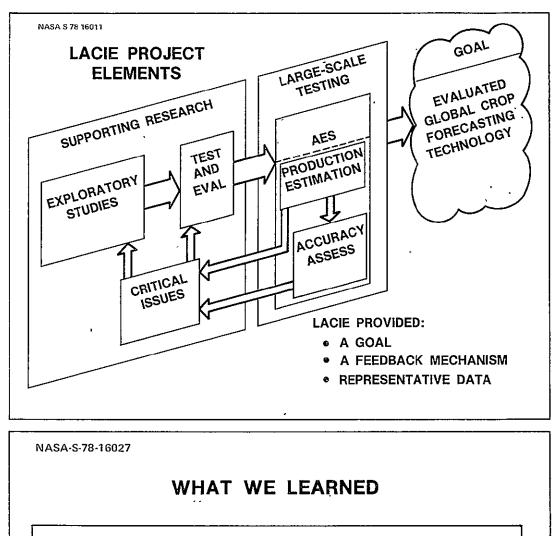

N79-14486

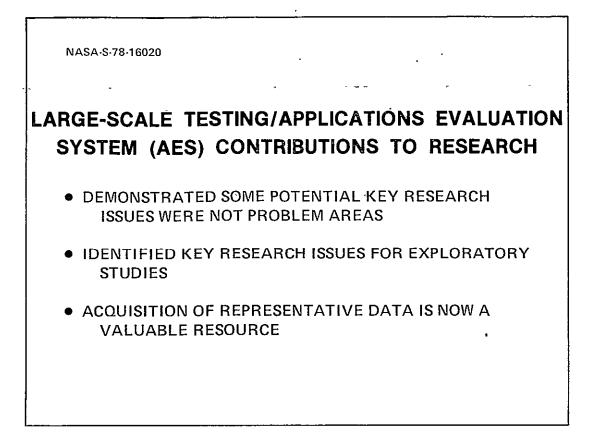

SUPPORTING RESEARCH AND TECHNOLOGY (SRT) SESSION

SUPPORTING RESEARCH, A FOCUSED APPROACH TO RESEARCH AND DEVELOPMENT J. Erickson, JSC

Original pflotography-may be gurchased from EROS Data Center

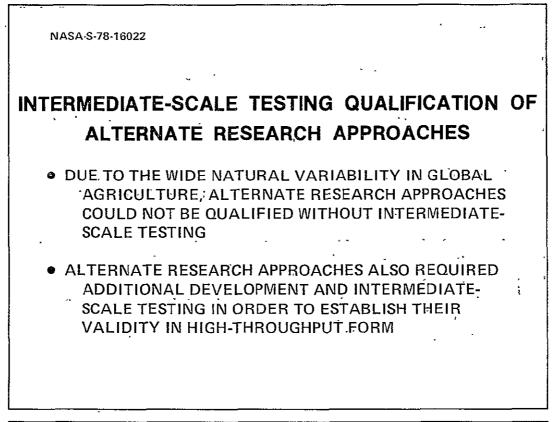

Sioux Falls, SD 57198

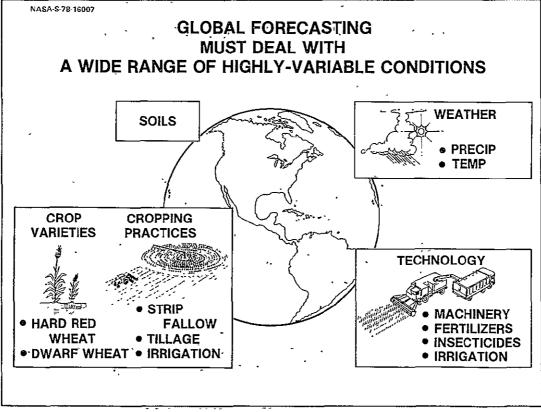


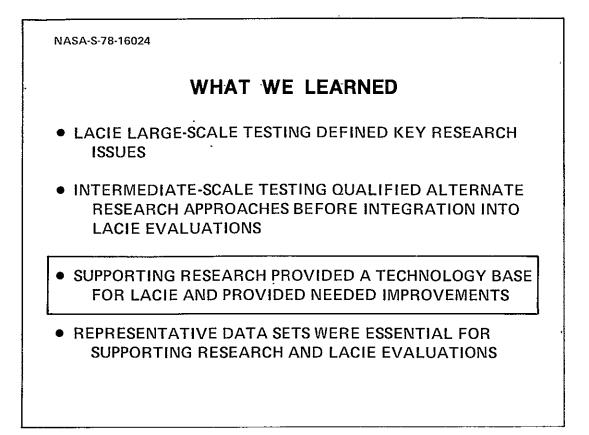

PAGE 362 INTENTIONALLY BLANK

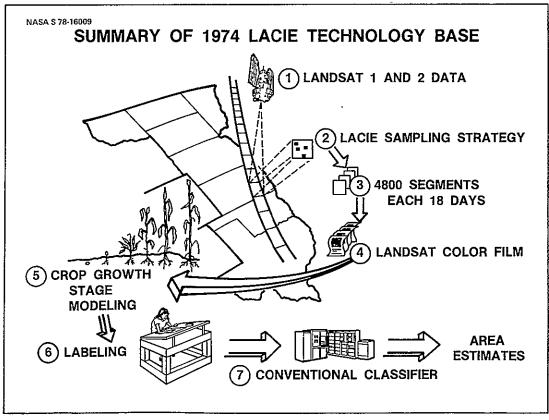
.

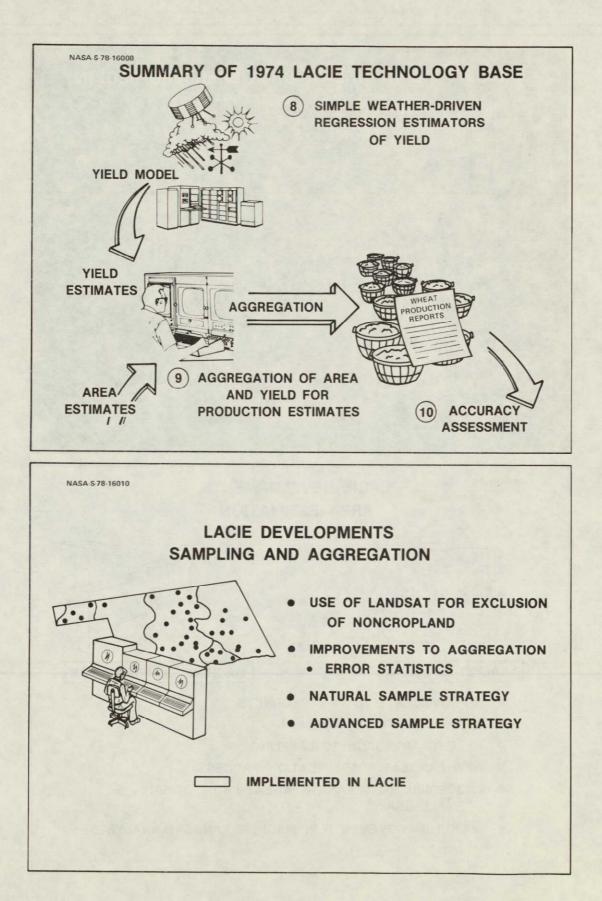
- LACIE LARGE-SCALE TESTING DEFINED KEY RESEARCH
 ISSUES
- INTERMEDIATE-SCALE TESTING QUALIFIED ALTERNATE RESEARCH APPROACHES BEFORE INTEGRATION INTO LACIE EVALUATIONS
- SUPPORTING RESEARCH PROVIDED A TECHNOLOGY BASE FOR LACIE AND PROVIDED NEEDED IMPROVEMENTS
- REPRESENTATIVE DATA SETS WERE ESSENTIAL FOR SUPPORTING RESEARCH AND LACIE EVALUATIONS

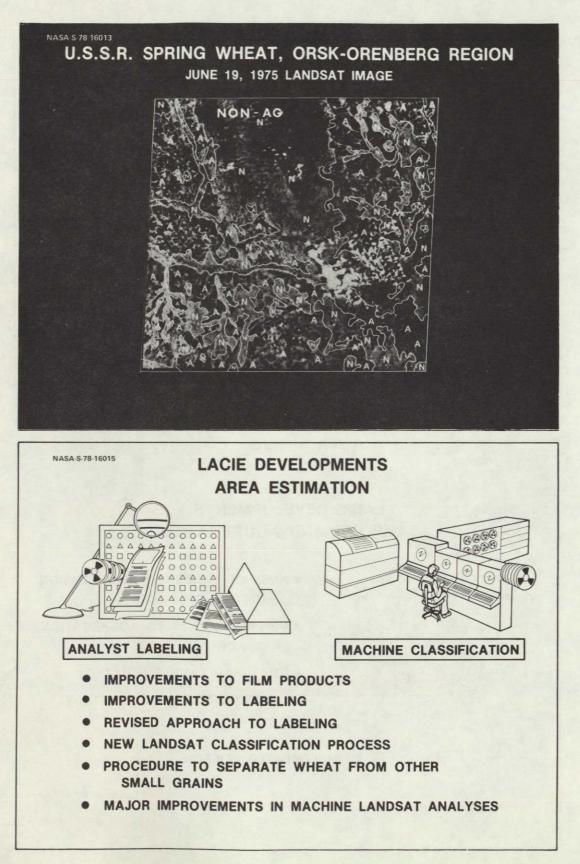


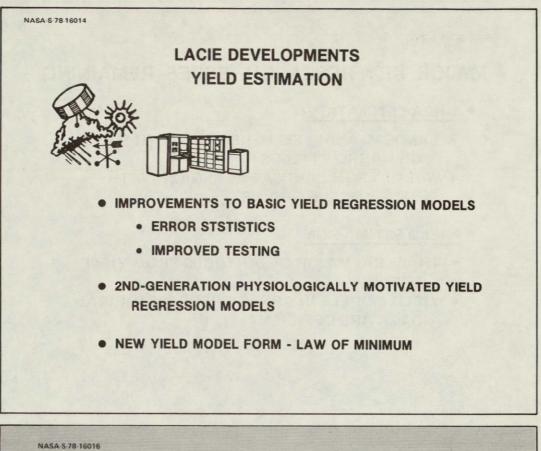

WHAT WE LEARNED

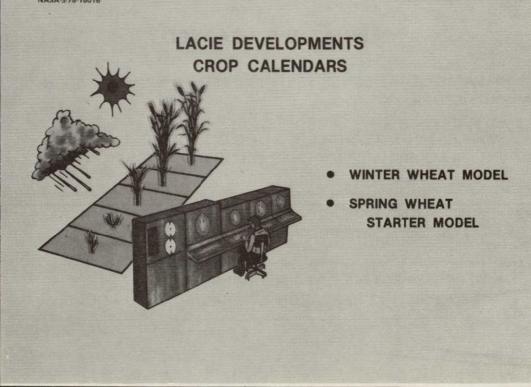

• LACIE LARGE-SCALE TESTING DEFINED KEY RESEARCH ISSUES

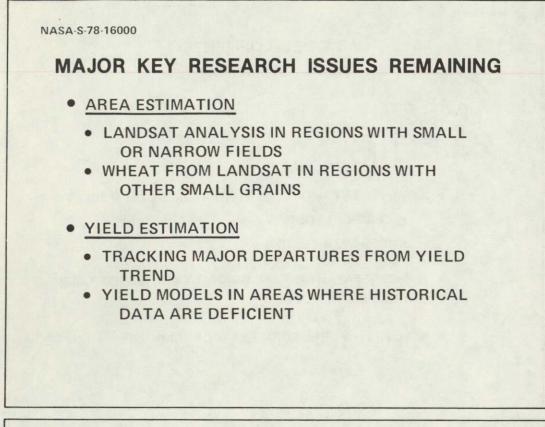

 INTERMEDIATE-SCALE TESTING QUALIFIED ALTERNATE RESEARCH APPROACHES BEFORE INTEGRATION INTO LACIE EVALUATIONS


- SUPPORTING RESEARCH PROVIDED A TECHNOLOGY BASE FOR LACIE AND PROVIDED NEEDED IMPROVEMENTS
- REPRESENTATIVE DATA SETS WERE ESSENTIAL FOR SUPPORTING RESEARCH AND LACIE EVALUATIONS

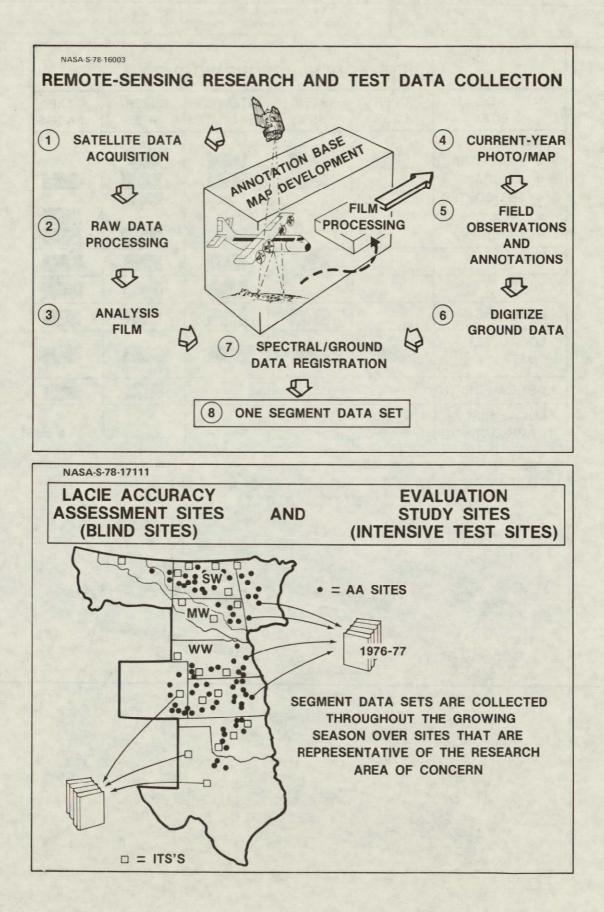








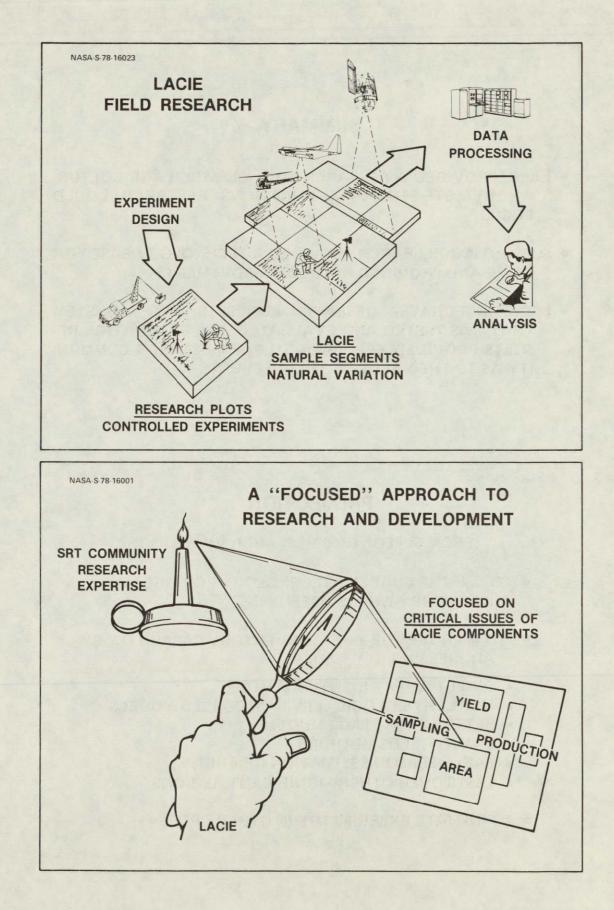
ORIGINAL PAGE IS OF POOR QUALITY

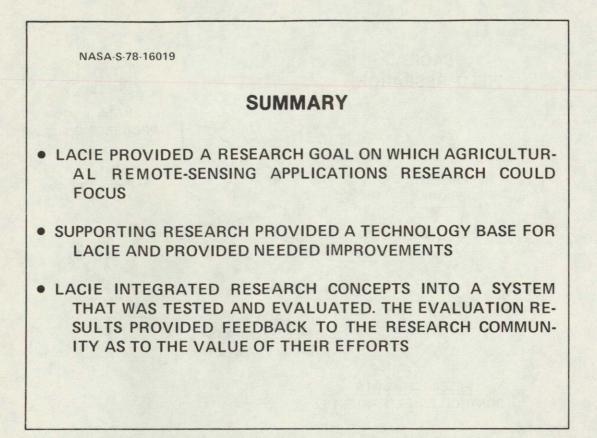


WHAT WE LEARNED

- LACIE LARGE-SCALE TESTING DEFINED KEY RESEARCH
 ISSUES
- INTERMEDIATE-SCALE TESTING QUALIFIED ALTERNATE RESEARCH APPROACHES BEFORE INTEGRATION INTO LACIE EVALUATIONS
- SUPPORTING RESEARCH PROVIDED A TECHNOLOGY BASE FOR LACIE AND PROVIDED NEEDED IMPROVEMENTS

 REPRESENTATIVE DATA SETS WERE ESSENTIAL FOR SUPPORTING RESEARCH AND LACIE EVALUATIONS

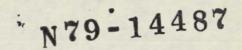

ACQ SITES	OPER SEGS	BLIND SITES	INTENSIVE TEST SITES	SUPER- SITES	EXP FARMS
IMAGERY • SPACECRAFT • AIRCRAFT • HELICOPTER • TRUCK • HANDHELD	-				
CROP ID'S					
YIELD	1 10				
FIELD OBS		S	E	С	С
LOCAL MET DATA					
OPTICAL DEPTH	Sec. a	1 Star			
LOCAL HIST AGR DATA		Star Star		and the second	
	-	TO 1960	FROM	940 1930	
NOAA USDA USDA	80 1970				DING
U.S. CANADA U.S.S.R.			*REGIONS &	YEARS DATA	MISSING
U.S.		VERY LIT	**	YEARS DATA	1


ORIGINAL PAGE IS OF POOR QUALITY

374

Sec. 27

V.

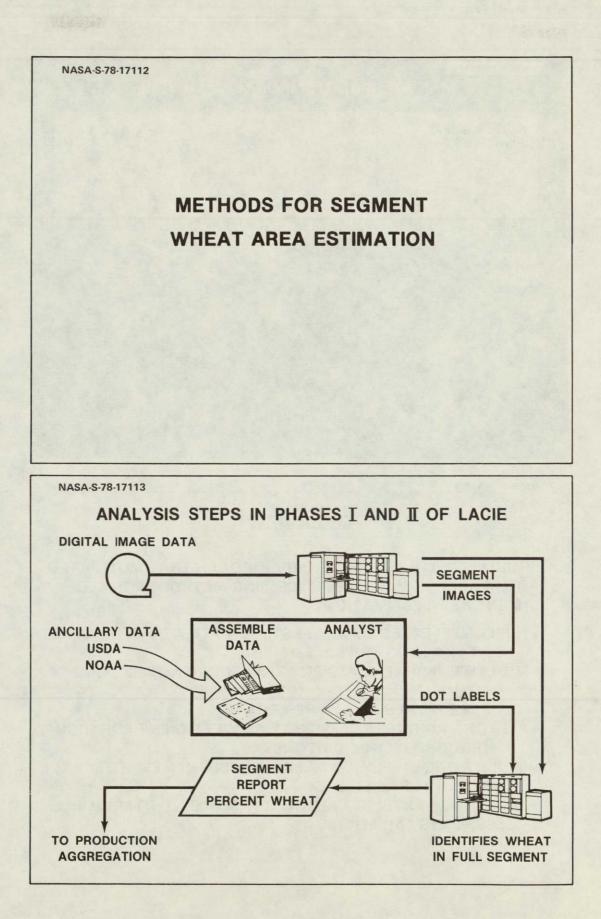


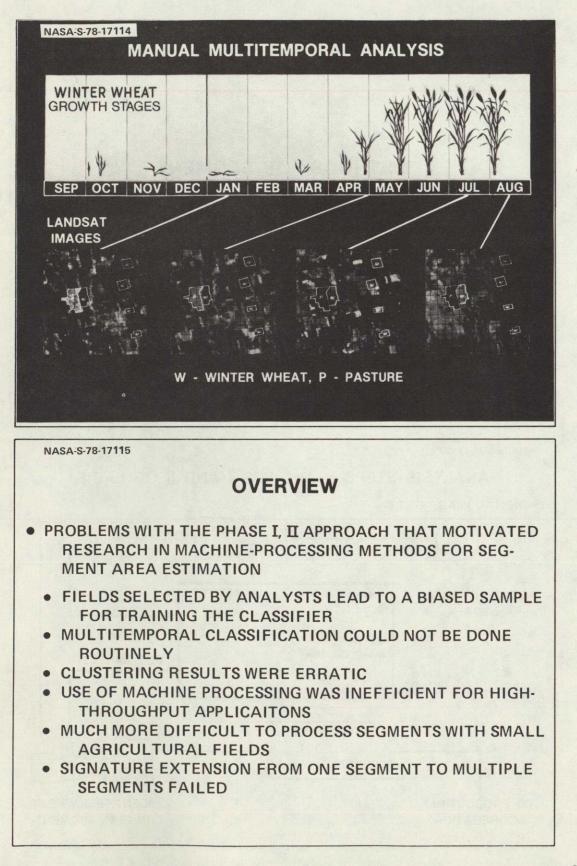
PROJECTION

(FROM SUPPORTING RESEARCH VIEWPOINT)

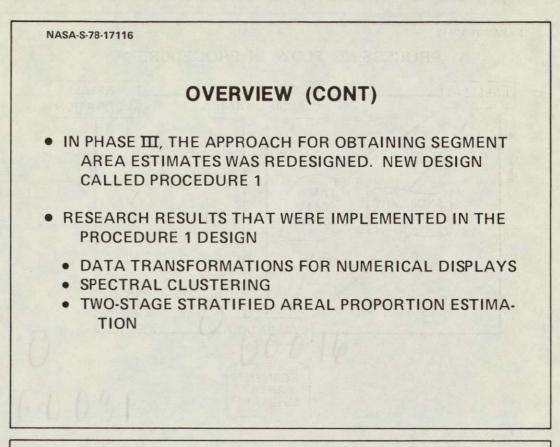
• TO USE THE CURRENT TECHNOLOGY FOR WHEAT INVENTORY WHERE USEFUL

- TO IMPROVE THE WHEAT INVENTORY CAPABILITY BY ADDRESSING KEY ISSUES
 - DIRECT WHEAT IDENTIFICATION
 - MORE PHYSIOLOGICALLY BASED YIELD MODELS
 - BETTER CROP STAGE MODELS
 - SMALL-FIELDS METHODS
 - EARLY-SEASON ESTIMATION OF AREA
 - TESTS OVER OTHER SIGNIFICANT REGIONS
- TO INITIATE EXPERIMENTS IN OTHER CROPS

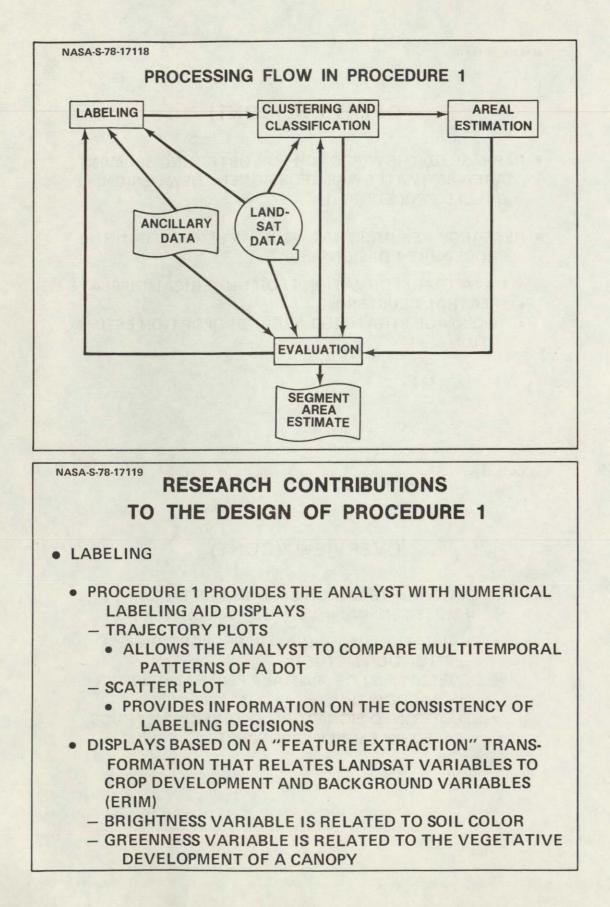


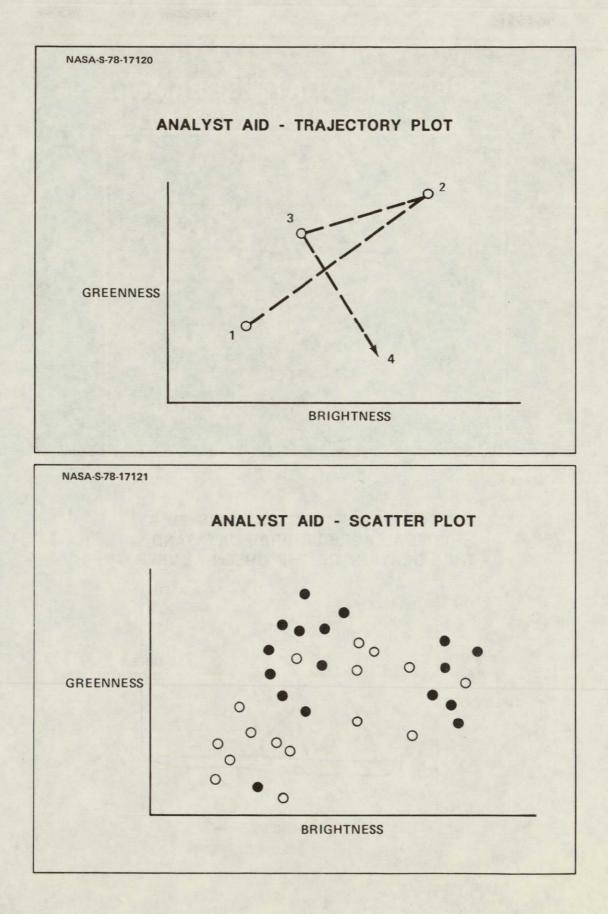

SUPPORTING RESEARCH AND TECHNOLOGY (SRT) SESSION

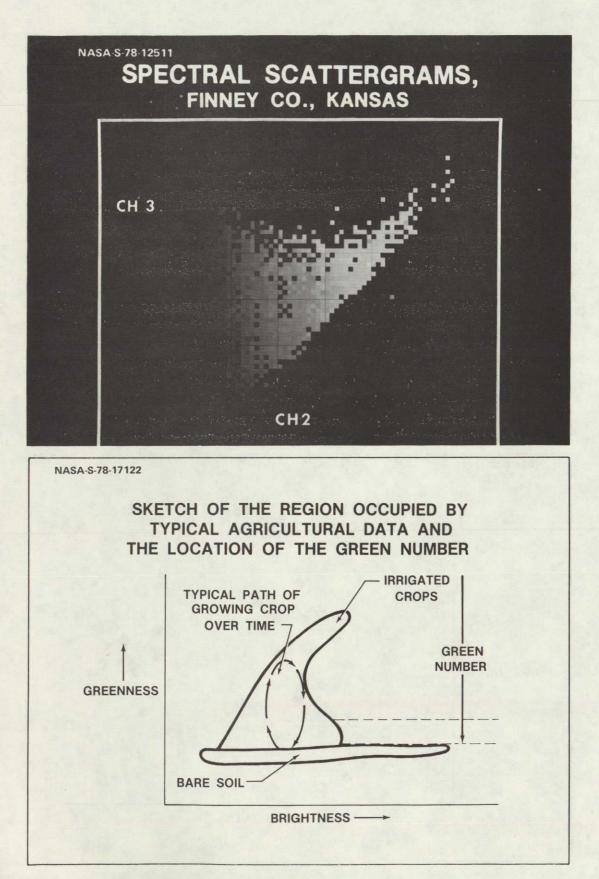
METHODS FOR SEGMENT WHEAT AREA ESTIMATION R. Heydorn, JSC


Original photography may be gurchased trom EROS Data Center

Sioux Falls, SD 57198

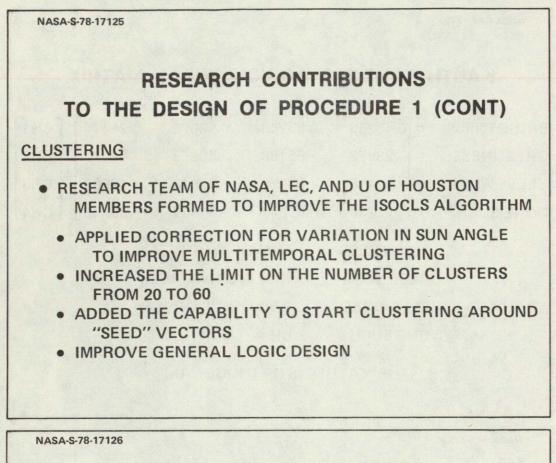


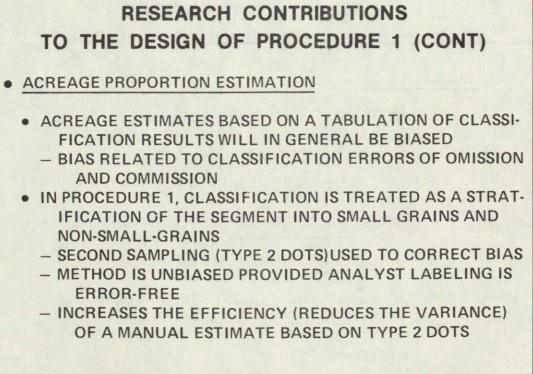

ORIGINAL PAGE i OF POOR QUALITY

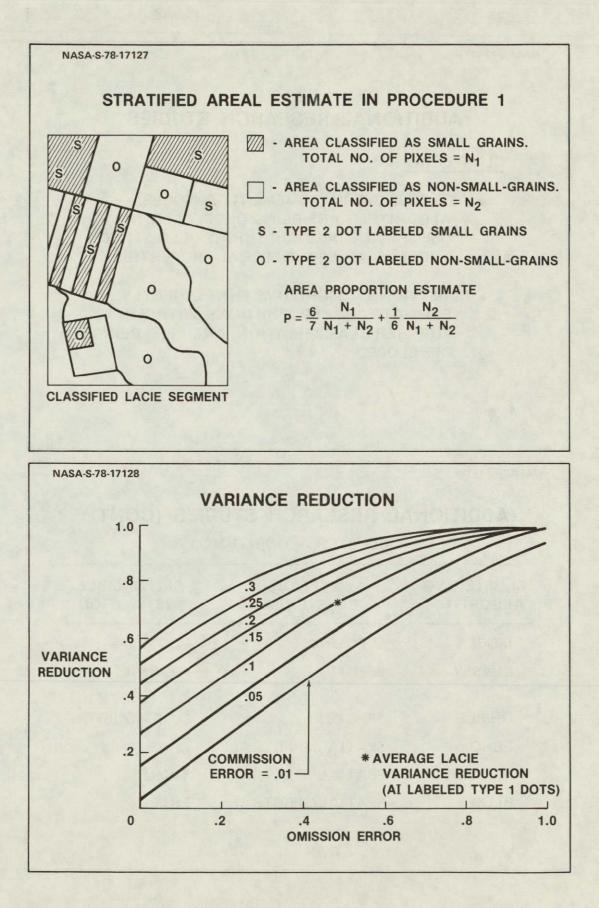


OVERVIEW (CONT)

- ADDITIONAL RESEARCH STUDIES FOR FUTURE REMOTE-SENSING INVENTORY APPLICATIONS
 - EVALUATION OF (UNBIASED) PROPORTION ESTIMATION METHODS
 - DEVELOPMENT OF SPATIAL/SPECTRAL CLUSTER-ING ALGORITHMS
 - STUDIES INTO SIGNATURE EXTENSION METHODS BASED ON SAMPLING CONCEPTS

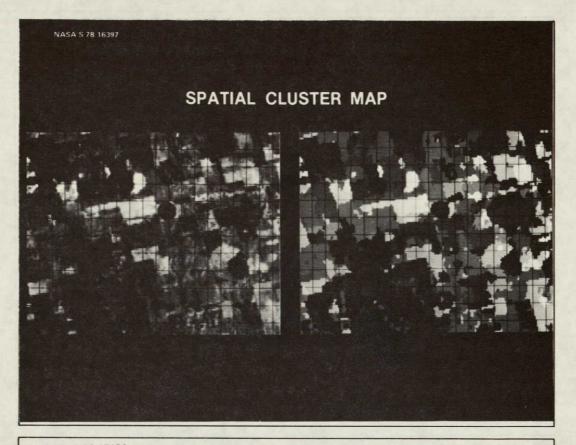

ORIGINAL PAGE IS


NASA-S-78-17123					
KAUTH	H LANDSA	T AGRIC	ULTURAL	MATRIX	
BRIGHTNESS	= 0.43258	0.63248	0.58572	0.26414	[СН1]
GREENNESS	=28972	56199	.59953	.49070	CH2
YELLOWNESS	=82418	.53290	05018	.18502	СНЗ
NONE SUCH	= .22286	.01249	54311	.80945	CH4
В	RIGHTNESS	SUM C	F CHANNE	LS	
G	REENNESS	IR MI	NUS VISIBLI	INCHER SI	
Y	ELLOWNESS	RED	MINUS GREE	N	
N	IONE SUCH	CH 4 -	СН 3		
	(THE MATE	RIX IS ORTI	HOGONAL)		


RESEARCH CONTRIBUTIONS TO THE DESIGN OF PROCEDURE 1 (CONT)

CLUSTERING

- CLUSTERING IS USED IN PROCEDURE 1 TO "AUTOMATICALLY" GROUP THE LANDSAT DATA INTO SPECTRAL SUBCLASSES
 - SUBCLASS LABELS ASSIGNED FROM TYPE 1 DOTS
 - MEANS AND COVARIANCE MATRIX ESTI-MATES REQUIRED FOR CLASSIFICATION ARE DERIVED FROM THE SUBCLASSES
- IN THE EARLY LACIE CLUSTERING ALGOR-ITHMS AT JSC REQUIRED MULTIPLE MANUAL ITERATIONS AND WERE NOT SUITABLE FOR BATCH PROCESSING


ADI	DITIONAL RESEARCH STUDIES
CLUSTER	ING
AL USI	POSSIBLE IMPROVEMENT TO ISOCLS, GORITHMS ARE BEING DEVELOPED THAT E SPATIAL (AGRICULTURAL FIELD STRUC- RE) AS WELL AS SPECTRAL PROPERTIES
EST FU	TERING ALGORITHMS THAT DIRECTLY FIMATE CROP PROPORTIONS (WITHOUT RTHER CLASSIFICATION) ARE ALSO BEING VELOPED

ADDITIONAL RESEARCH STUDIES (CONT)

CLUSTER ALGORITHMS

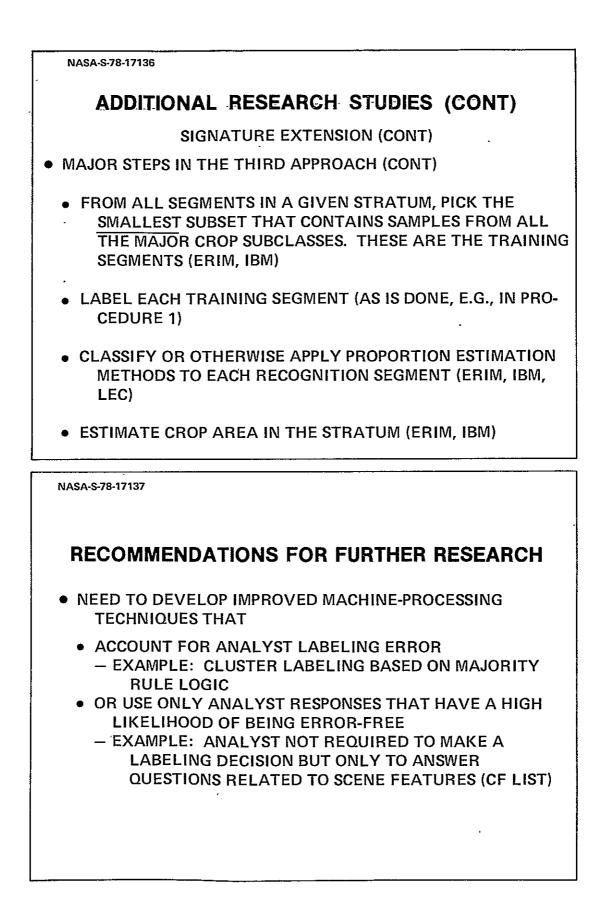
CLUSTERING ALGORITHM	TYPE OF CLUSTERING	RESPONSIBLE INSTITUTION
ISOCLS	SPECTRAL	LEC
CLASSY	SPECTRAL	JSC (NRC) LEC
UHMLE	SPECTRAL	U OF HOUSTON
ECHO	SPATIAL/SPECTRAL	LARS
AMOEBA	SPATIAL/SPECTRAL	TAMU
BLOB	SPATIAL/SPECTRAL	ERIM

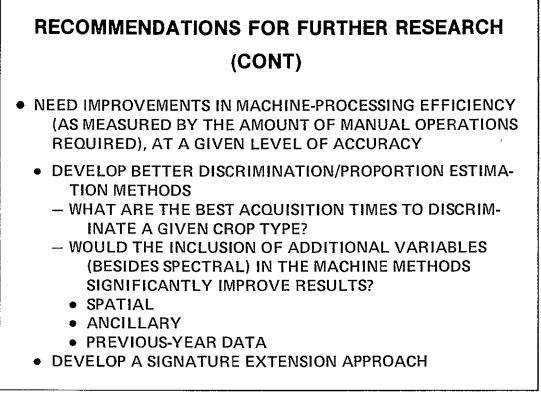
ORIGINAL PAGE IS OF POOR QUALITY

NASA-S-78-17131

14

PROPORTION ESTIMATION METHODS


METHOD	DESCRIPTION	RESPONSIBLE INSTITUTION
 INVERTING THE CONFUSION MATRIX 	ESTIMATE THE OMISSION/ COMMISSION ERROR MATRIX AND USE IT TO CORRECT FOR BIAS	UNIV OF TEX/ DALLAS
• MAXIMUM- LIKELIHOOD ESTIMATE OF PROPORTION	ASSUME NORMAL COMPO- NENT DENSITIES AND MAXIMIZE THE LIKELI- HOOD OF THE MIXTURE DISTRIBUTION W.R.T. MIXING PROPORTIONS	UNIV OF TEX/ DALLAS
METHODS OF MOMENTS	ESTIMATE THE PROPOR- TION OF COMPONENT MOMENTS IN THE MIX- TURE MOMENTS	TEXAS A&M UNIV


NASA-S-78-17132		
PROPORTION	SESTIMATION METHO	DS (CONT)
METHOD	DESCRIPTION	RESPONSIBLE INSTITUTION
• CDF MIXTURE METHOD	ESTIMATE THE PROPOR- TION OF COMPONENT MARGINAL CUMULA- TIVE DISTRIBUTION FUNCTIONS (CDF) IN THE MIXTURE MAR- GINAL CDF'S	UNIV OF TEX/ DALLAS
• BIN METHOD	SAME AS ABOVE EXCEPT DENSITY HISTOGRAMS USE IN PLACE OF CDF'S	LEC
 POSTERIOR PROBABILITY 	TREAT CLASSIFICATION AS SMALL-GRAINS/NON- SMALL-GRAINS STRAT- IFICATION AND ESTI- MATE SMALL-GRAINS PROPORTION FROM A STRATIFIED RANDOM SAMPLE	JSC

ADDITIONAL RESEARCH STUDIES (CONT)

PROPORTION ESTIMATION METHODS

- SMALL-SCALE EVALUATIONS SHOWED THAT THESE PROPORTION ESTIMATION METHODS DID NOT OFFER SIGNIFICANT IMPROVEMENT OVER STRAIGHT CLASSIFICATION APPROACHES
- SOME INDICATION OF POTENTIAL BENEFIT OFFERED BY SOME OF THE METHODS (E.G., BIN METHOD) IN MULTITEMPORAL APPLICATIONS
 - SOMEWHAT LESS SENSITIVE TO REGISTRATION ERRORS

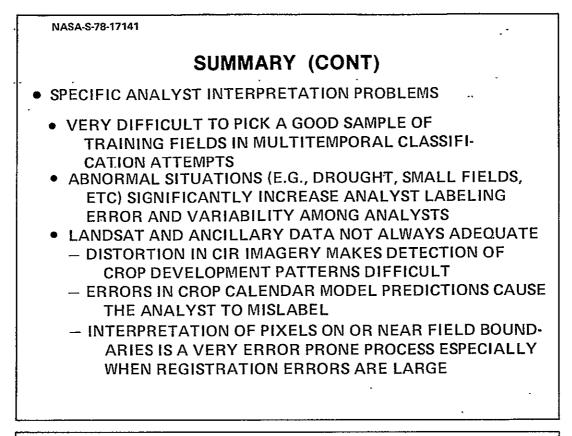
N79-14488

SUPPORTING RESEARCH AND TECHNOLOGY (SRT) SESSION

MANUAL IDENTIFICATION OF CROP TYPES C. Hay, University of California at Berkeley

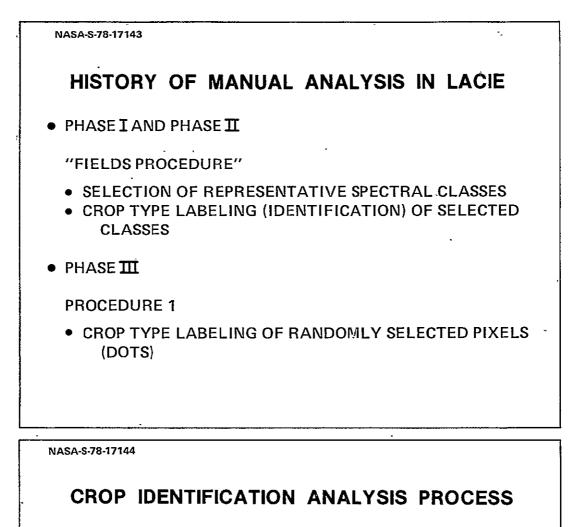
Original photography-may be gurchased troms EROS Data Center

Sioux Falls, SD 57198

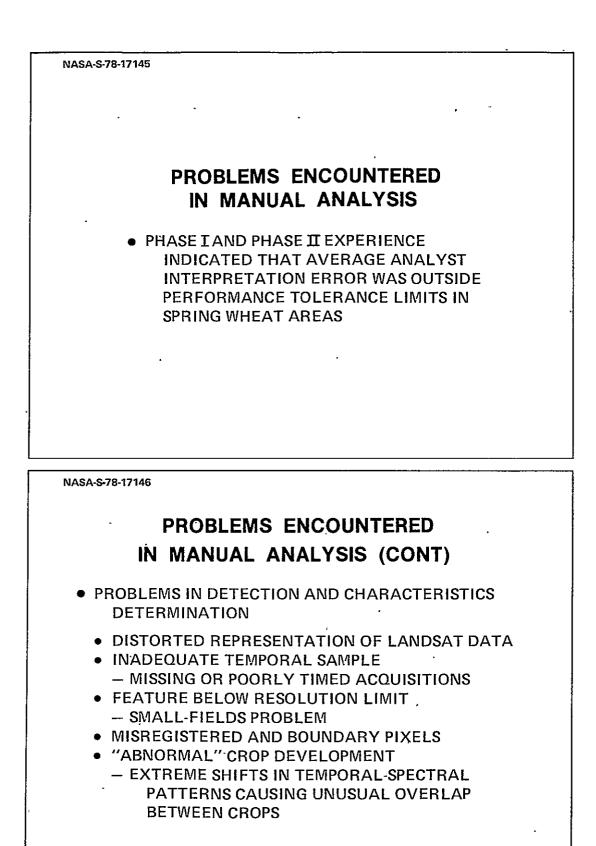

PAGE 394 INTENTIONALLY BLANK

NASA-S-78-17140

SR&T EFFORTS IN MANUAL IDENTIFICATION OF CROP TYPE FROM LANDSAT DATA


SUMMARY

- MANUAL CROP IDENTIFICATION NEEDED IN LIEU OF GROUND DATA IN FOREIGN AGRICULTURAL INVENTORY SYSTEM
- PHASE I AND PHASE II EXPERIENCE INDICATED MANUAL MEASUREMENT ERROR OUTSIDE PERFORMANCE TOLERANCE RANGE IN SPRING WHEAT REGIONS
- DEVELOPMENT OF IMPROVED MANUAL PROCEDURES DEPEN-DENT ON AN ADEQUATE UNDERSTANDING OF THE MANUAL ANALYSIS PROCESS
 - FEATURE DETECTION AND CHARACTERISTICS DETERMINA-TION WITH LANDSAT DATA
 - FEATURE INTERPRETATION AND EVALUATION WITH LAND-SAT, A PRIORI, AND ANCILLARY DATA



SUMMARY (CONT)

- SPECIFIC RESEARCH DONE TO AID ANALYST LABELING PROBLEMS
 - NEW LANDSAT DATA PRODUCTS WERE DEVELOPED
 - FOR BETTER FEATURE DETECTION AND CHARACTER-ISTIC DETERMINATION
 - CROP SPECTRAL SEPARABILITY STUDIES UNDERTAKEN
 TO INCREASE UNDERSTANDING
 - SEMIAUTOMATIC LABELING PROCEDURES BASED ON STATISTICAL DISCRIMINANT ANALYSIS OF QUESTION AND ANSWER RESPONSE DATA WERE DEVELOPED TO INCREASE CONSISTENCY AND ACCURACY OF LABELS
 - INTERPRETATION KEYS WERE COMPILED AS A BASIC TRAINING TOOL TO DECREASE VARIABILITY AMONG ANALYSTS

- ANALYSIS COMPONENTS
 - FEATURES OF INTEREST: CROPPED FIELDS
 - FEATURE DETECTION AND CHARACTERISTICS DETERMINATION
 - DISCRIMINATION OF UNIQUE FEATURE BASED ON LANDSAT SPATIAL, SPECTRAL, AND TEMPORAL CHARACTERISTICS
 - FEATURE INTERPRETATION AND EVALUATION
 - ASSIGNMENT OF A NAME OR LABEL (E.G., WHEAT, NONWHEAT) TO A DETECTED
 FEATURE BASED ON EVALUATION OF
 LANDSAT, A PRIORI, AND ANCILLARY DATA

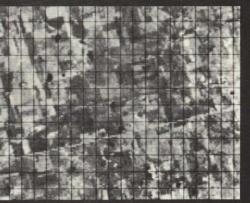
<section-header><section-header>

NASA-S-78-17148

PROBLEMS ENCOUNTERED IN MANUAL ANALYSIS (CONT)

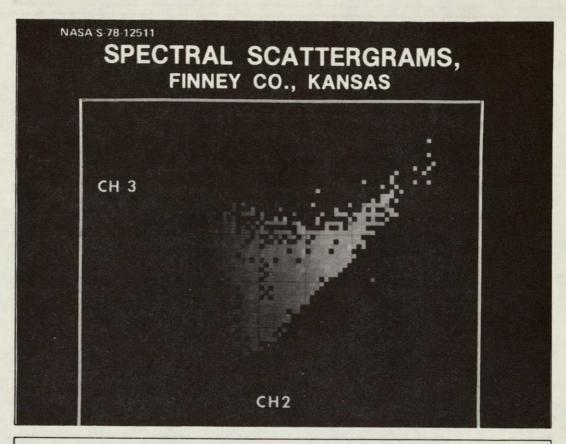
- PROBLEMS IN DATA INTERPRETATION AND EVALUATION
 - ANCILLARY DATA INSUFFICIENT
 - NO YEAR SPECIFIC ADJUSTED CROP CALENDAR FOR CROPS OTHER THAN WHEAT
 - MINIMALLY ACCEPTABLE PERFORMANCE OF ADJUST-ABLE WHEAT CROP CALENDAR MODEL
 - INCOMPLETE CROPPING PRACTICE INFORMATION
 - LIMITED USE OF HISTORICAL AGRICULTURAL STA-TISTICS
 - INADEQUATE RECENT EPISODAL EVENTS DATA
 - INSUFFICIENT LABELING OPTIONS AND/OR GUIDE-LINES
 - MISREGISTERED AND BOUNDARY PIXELS

NASA-S-78-17149 MAJOR RESEARCH EFFORTS DO IMPROVE ANALYST LABELS • LANDSAT DATA PRODUCTS IMPROVED AND EXPANDED • IMAGE PRODUCTS DEVELOPED • UNDISTORTED SPECTRAL IMAGE PRODUCTS • PRODUCT 3 OR KRAUS PRODUCT • ISOPERCEPTIBLE CHROMATICITY IMAGE STUDY

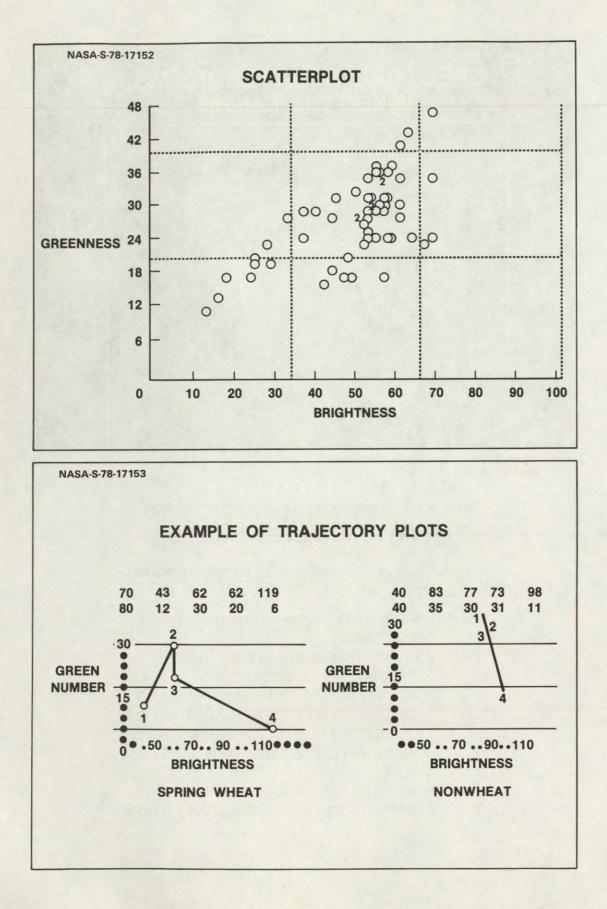

NASA-S-78-17150

EXAMPLE OF STANDARD IMAGE PRODUCT 1 AND PRODUCT 3 FOR SEGMENT 1640 - MAY 20, 1977

IMAGE PRODUCTS



PRODUCT 3


OF POOR QUALITY

NASA-S-78-17151

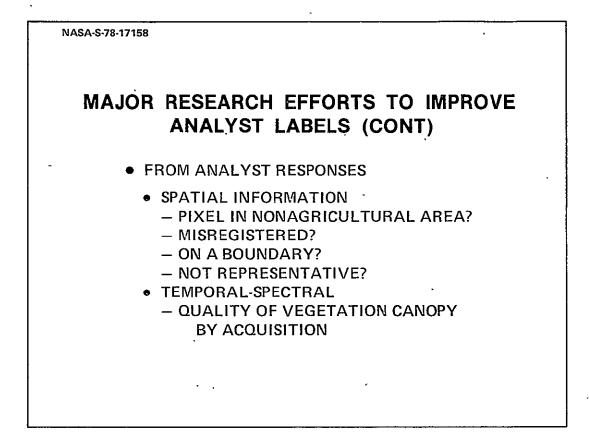
MAJOR RESEARCH EFFORTS TO IMPROVE ANALYST LABELS

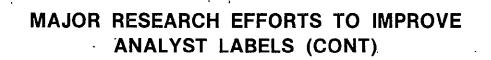
- LANDSAT DATA PRODUCTS IMPROVED AND EXPANDED
 - NUMERIC AND GRAPHIC PRODUCTS
 DEVELOPED
 - AFFINE TRANSFORMATION FIRST APPLIED TO LANDSAT DATA
 - SCATTERGRAMS: GREEN NUMBER VS BRIGHTNESS FOR EACH ACQUISITION
 - TRAJECTORY PLOTS: GREEN NUMBER VS BRIGHTNESS FOR EACH SAMPLE PIXEL
 - NUMERIC LIST: GREEN NUMBER AND BRIGHTNESS FOR EACH SAMPLE PIXEL

MAJOR RESEARCH EFFORTS TO IMPROVE ANALYST LABELS (CONT)

.*

A PRIORI STRATIFICATION OF UNLABELED CLUSTERS


- DELTA FUNCTION STRATIFICATION PROCEDURE
 - POTENTIAL BENEFITS
 - DECREASE ANALYST LABELING EFFORT
 - INCREASE OVERALL SEGMENT PROCESSING EFFICIENCY
 - INPUT DATA
 - VEGETATION INDICATOR (MSS 7/MSS 5 RATIO) OF CLUSTER MEANS
 - A PRIORI STRATIFICATION CRITERION (ACQUISI-TION SET DEPENDENT) USING VEGETATION INDICATOR


NASA-S-78-17157

MAJOR RESEARCH EFFORTS TO IMPROVE ANALYST LABELS (CONT)

LABEL IDENTIFICATION BY STATISTICAL TABULATION (LIST)
PURPOSE OF LIST IS TO
CONTROL BIAS DUE TO LABEL ING ERROR

- CONTROL BIAS DUE TO LABELING ERROR
- DEVELOP A RESEARCH INSIGHT INTO VARIABLES THAT ARE MOST INFORMATIVE IN THE DOT LABELING PROCESS
- LIST IS A QUESTION AND ANSWER APPROACH TO ANALYST INTERPRETATION
 - ANALYST REQUIRED TO SELECT AMONG A SET OF ANSWERS
 TO SPECIFIC QUESTIONS
 - THESE RESPONSE VARIABLES ARE WEIGHTED
 - WEIGHTED RESPONSES ARE SUMMED TO
 - GIVE A WHEAT/NONWHEAT DECISION FOR EACH DOT
 GIVE AN ESTIMATE OF RELIABILITY OF THE DECISION
 - INPUT DATA . ,
 - LANDSAT SPECTRAL VALUES
 - SPATIAL INFORMATION FROM ANALYST ANALYSIS
 - ANCILLARY DATA VALUES

- AUTOMATICALLY EXTRACTED DATA
 - EXPECTED WINTER AND SPRING WHEAT BIOSTAGES BY ACQUISITION
 - GREEN NUMBER OF PIXEL

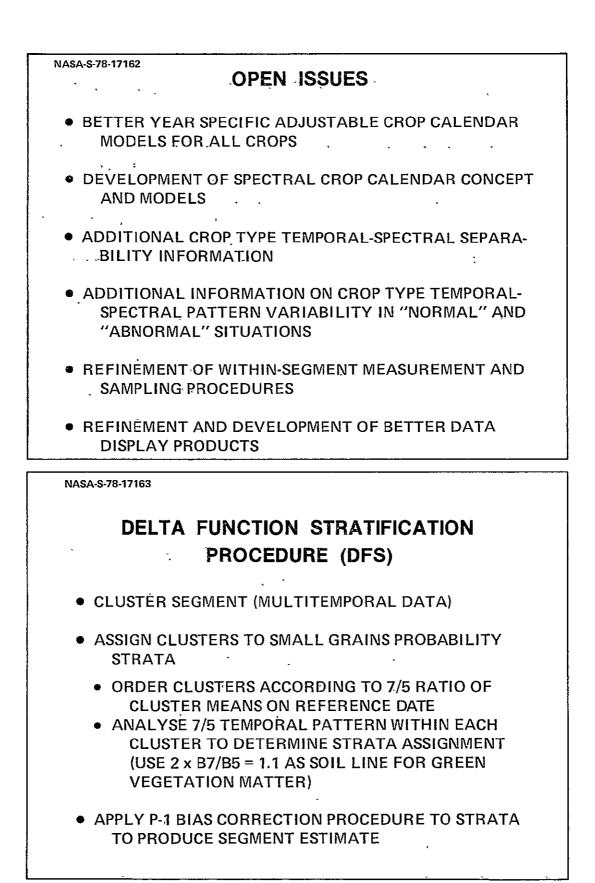
.. .

NASA-S-78-17159

- BRIGHTNESS NUMBER OF PIXEL
- WINTER AND SPRING WHEAT PRINCIPAL COMPON-ENT GREENNESS STATISTIC
- AUTOMATICALLY EVALUATED INFORMATION
 - GREEN NUMBER IN SMALL GRAINS RANGE?
 - VEGETATION INDICATION FOR PIXEL VALID FOR ACQUISITION SPECIFIC BIOSTAGE OF WHEAT?
 - PIXEL FOLLOWS SMALL GRAINS VEGETATION CANOPY DEVELOPMENT PATTERN?

MAJOR RESEARCH EFFORTS TO IMPROVE ANALYST LABELS (CONT)

• LIST: TEST RESULTS


(4 TRAINING AND 4 TEST SEGMENTS EACH SITE)

- WINTER SMALL GRAINS SITES
 - ANALYST
 - 18-PERCENT OMISSION ERROR
 - 13-PERCENT COMMISSION ERROR
 - LIST
 - 17-PERCENT OMISSION ERROR
 - 15-PERCENT COMMISSION ERROR
- SPRING SMALL GRAINS SITES
 - ANALYST
 - 50-PERCENT OMISSION ERROR
 - 29-PERCENT COMMISSION ERROR
 - LIST
 - 53-PERCENT OMISSION ERROR
 - 39-PERCENT COMMISSION ERROR

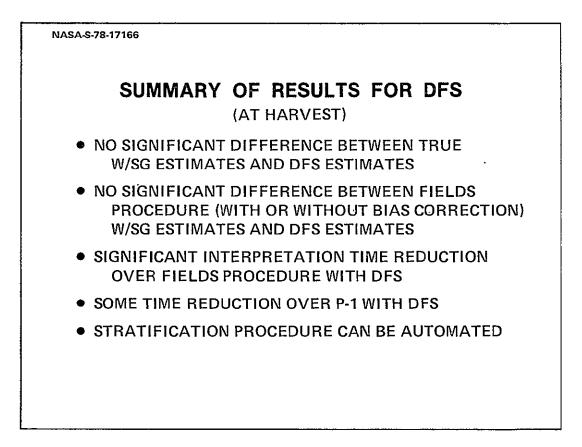
NASA-S-78-17161

CONCLUSIONS

- MULTIPLE DISPLAY FORMATS NEEDED FOR MOST EFFICIENT AND EFFECTIVE ANALYSIS OF LANDSAT DATA
 - IMAGE FORMAT FOR OPTIMUM SPATIAL INFORMATION EXTRACTION
 - NUMERIC AND GRAPHIC FORMAT FOR OPTIMUM TEMPORAL-SPECTRAL INFORMATION EXTRACTION
- TEMPORAL SAMPLING RATE (ACQUISITION HISTORY) MOST SIGNIFICANTLY AFFECTS LABELING ACCURACIES
- QUALITY AND QUANTITY OF A PRIORI KNOWLEDGE AND ANCILLARY DATA DIRECTLY AND SIGNIFICANTLY AFFECT LABELING ACCURACIES
- PROCEDURAL MODIFICATIONS CAN HELP STANDARDIZE QUALITY OF PIXEL LABELS
 - LIST
 - A PRIORI STRATIFICATION OF UNLABELED CLUSTERS

EXAMPLE OF CLUSTERS STRATA ASSIGNMENT

.

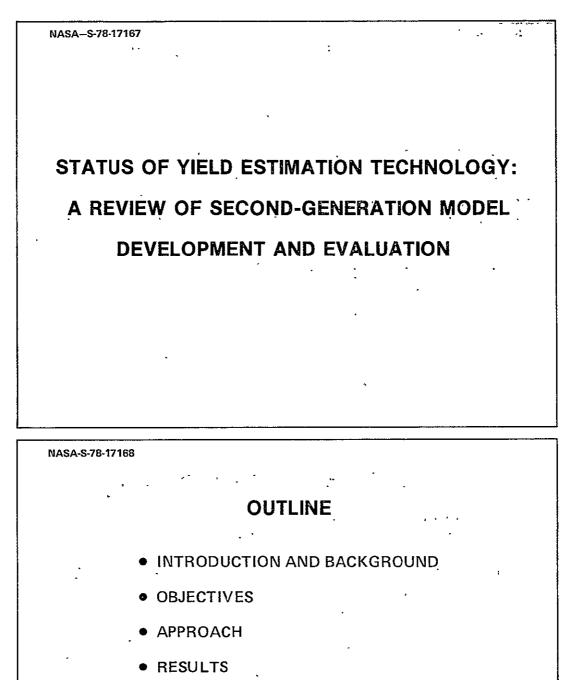

SEGMENT 1041

STRATUM	CLUSTER NO.	- · ·	IO ON ACQUISI RTSON BIOSTA	
		MAY 15, 1976* (3.5 TO 4.0)	JUNE 2, 1976 (4.5 TO 5.0)	JULY 8, 1976 (7.0 +)
MA HA HB MB LA LB	38 55 15 44 10 4 40	3.17 2.49 1.89 1.87 1.42 1.00 .97	1.36 2.07 1.93 .89 1.75 .85 1.19	1.23 .86 .97 .98 1.39 .86 2.24
*REFERE				

NASA-S-78-17165

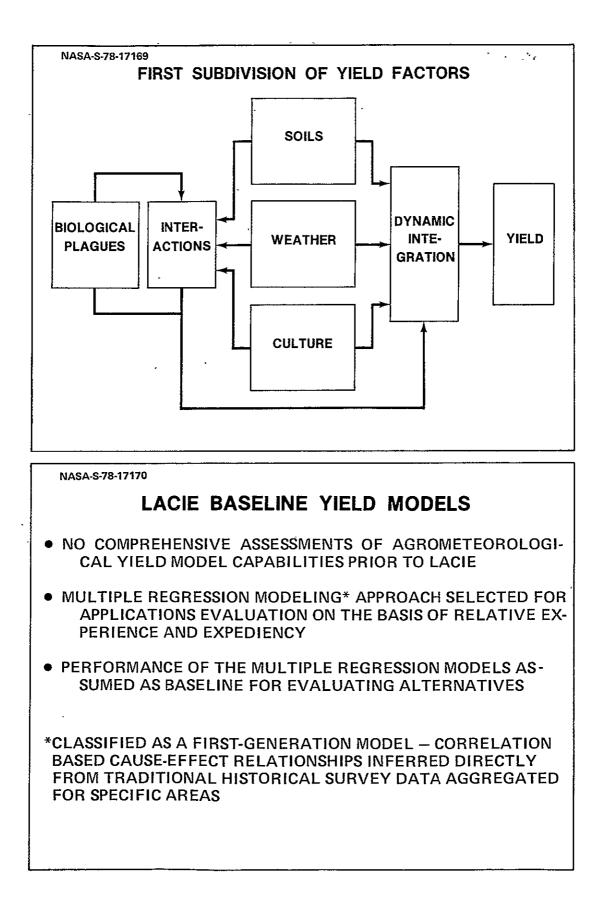
EXAMPLE OF CLUSTERS STRATA ASSIGNMENT (CONT)

- HA = (>1.10, >1.10, <1.10)
- HB = (>1.10, <1.10, <1.10)
- MA = (>1.50, >1.10, >1.10)
- MB = (>1.10 & <1.50, >1.10, >1.10)
- LA = (<1.10, <1.10, <1.10)
- LB = (<1.10, ANYWHERE, >1.10)


PAGE 412 INTENTIONALLY BLANN

N79-14489

SUPPORTING RESEARCH AND TECHNOLOGY (SRT) SESSION


STATUS OF YIELD ESTIMATION TECHNOLOGY – A REVIEW OF SECOND-GENERATION MODEL DEVELOPMENT R. Stuff, JSC

PRECEDING PAGE BLASIK NOT PLINED.

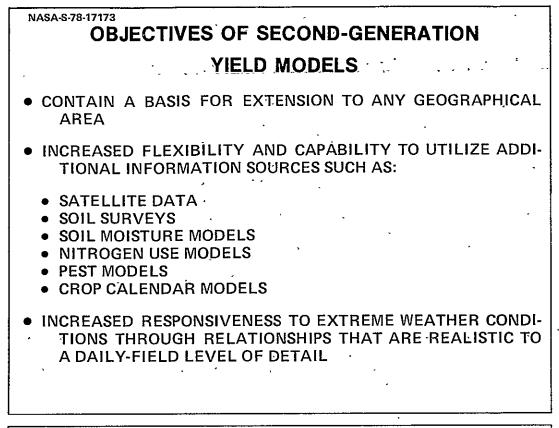
- CONCLUSIONS
- **RECOMMENDATIONS**

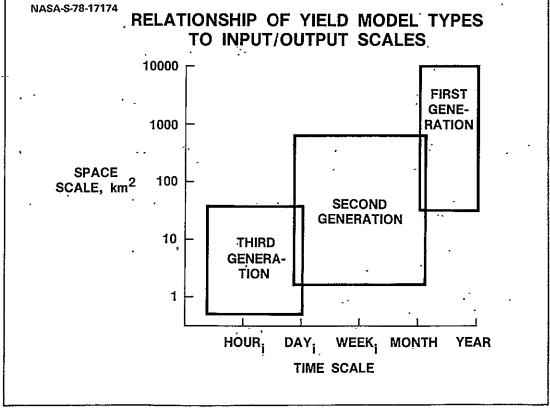
2

MODEL FORM

$\hat{\mathbf{Y}}$ = CONSTANT + TREND + WEATHER EFFECTS

CONSTANT = THE BASE YIELD CHARACTERISTIC OF A REGION IN THE ABSENCE OF TECHNO-LOGICAL ENHANCEMENT

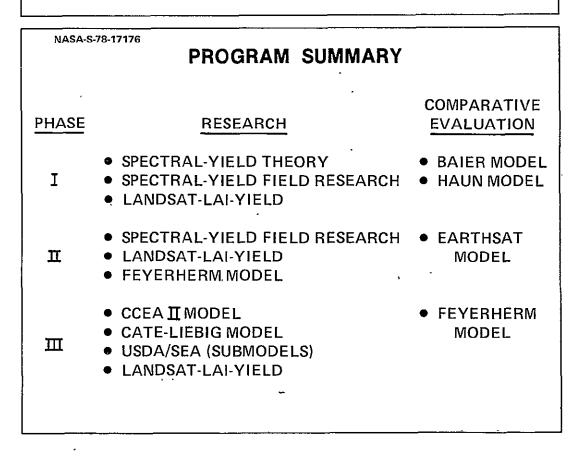

TREND = THE COMBINED EFFECT OF THE TECHNO-LOGICAL IMPROVEMENTS ON YIELD – EXPRESSED AS A FUNCTION OF THE CHRONOLOGICAL YEAR

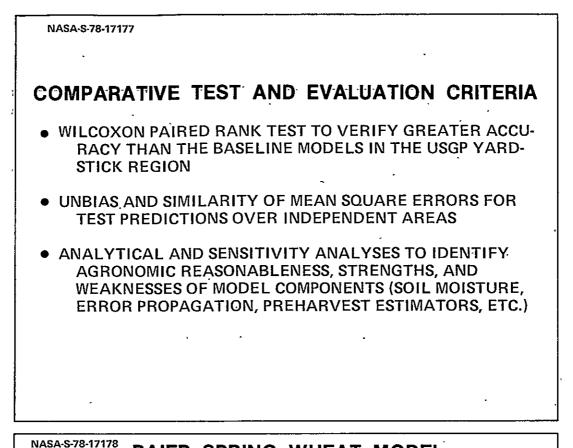

WEATHER EFFECTS = THE COMPONENT OF YIELD VARIATION ATTRIBUTABLE TO FLUCTUATIONS ABOUT THE LONG-TERM AVERAGE WEATHER IN A CROP REGION

BASED ON PREMISE THAT THERE IS A LEVEL OF YIELD GENERAL-LY DETERMINED BY LOCAL TECHNOLOGY AND SOIL CAPABIL-ITY WITH YEAR-TO-YEAR FLUCTUATIONS ABOUT THAT LEVEL DUE TO WEATHER VARIATION

GENERAL LIMITATIONS OF THE LACIE BASELINE YIELD MODELS

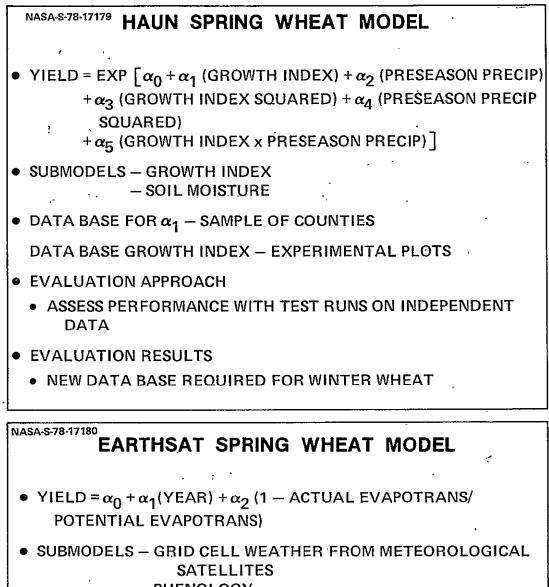
- NOT EXTENDABLE TO DIFFERENT OR ALTERNATIVE GEO-GRAPHIC AREAS
- NUMBER OF VARIABLES (RESPONSIVENESS) CONSTRAINED BY LENGTHS OF HISTORICAL DATA RECORDS
- UNCERTAINTIES ASSOCIATED WITH THE USE OF SURROGATE VARIABLES
- DAMPING OF POTENTIAL RESPONSE AMPLITUDES DUE TO IN-FORMATION LOSS IN AREA-TIME DATA AVERAGING
 - EFFECTS OF LOCAL SHORT-DURATION WEATHER PHENOMENA
- EFFECTS OF CROP CALENDAR SHIFTS
 - EFFECTS OF SOIL USAGE CHANGES


INITIAL APPROACH AND BASIC RATIONALE


• IDENTIFY EXISTING AGROMETEOROLOGICAL MODELS THAT COULD POTENTIALLY SATISFY THE SECOND-GENERATION OBJECTIVES AND ESTIMATE THEIR PERFORMANCE RELA-TIVE TO THE LACIE BASELINE MODELS

GREATER YIELD ESTIMATION ACCURACY MAY BE NEC-ESSARY TO MEET LACIE GOALS AND BELIEVED POSSI-BLE WITH MINIMAL ADAPTATION OF THE BAIER OR HAUN MODELS WITH EXISTING DATA

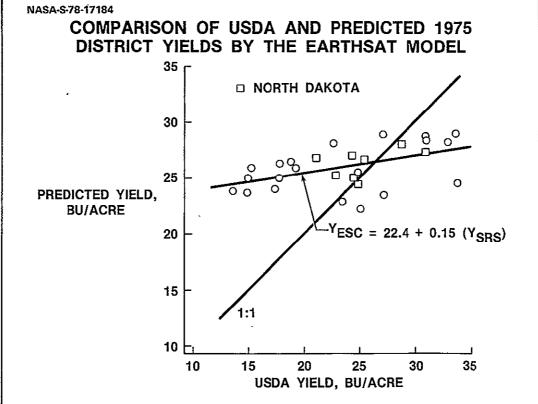
• CARRY OUT RESEARCH NECESSARY TO UNDERSTAND THE APPLICABILITY OF MULTISPECTRAL OBSERVATIONS FOR ES-TIMATING CROP YIELDS

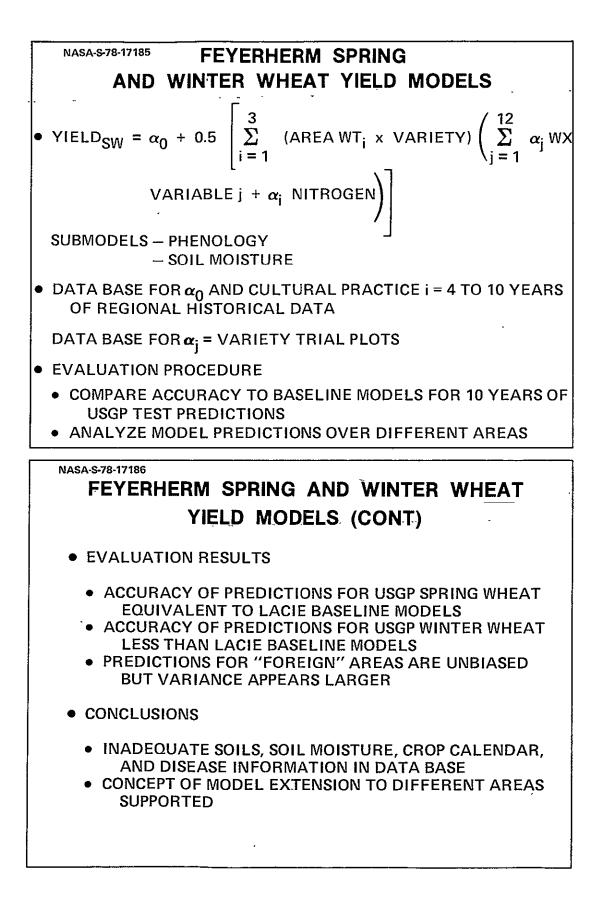

IT WAS HYPOTHESIZED THAT LANDSAT DATA PRESENT A MEANS OF IMPROVING YIELD ESTIMATION SINCE THE INTEGRATED EFFECTS OF MORE YIELD FACTORS ARE POTENTIALLY OBSERVABLE AT ANY DESIRED LOCA-TION

⁷⁸ BAIER SPRING WHEAT MODEL

- YIELD = F(DAILY MAX TEMP) x F(DAILY MIN TEMP) x F(ACTUAL EVAPOTRANS/POTENTIAL EVAPOTRAÑS)
- SUBMODELS PHENOLOGY – SOIL MOISTURE
- DATA BASE EXPERIMENTAL PLOTS THROUGHOUT CANADA
- EVALUATION APPROACH
 - TEST RUN FOR VARIETY TRIAL DATA FROM USGP EXPERI-MENTAL STATIONS
 - RECALIBRATE FOR WINTER WHEAT
- EVALUATION RESULTS
 - MODEL PREDICTED ERRATIC AND UNREALISTIC YIELDS
 - NO STABLE CALIBRATION FOUND FOR WINTER WHEAT

- PHENOLOGY
- SOIL MOISTURE
- DATA BASE FOR FITTING YIELD EQUATION = 1950 TO 1972 FOR 3 NORTH DAKOTA COUNTIES
- EVALUATION PROCEDURE
 - USE AREA UNITS (COUNTIES, DISTRICTS, AND STATES) AS REPETITIONS TO COMPARE MODEL PREDICTIONS FOR 1975 WITH INDEPENDENT TREND ESTIMATES
 - TESTS METEOROLOGICAL SUBMODEL


NASA-S-78-17181
EARTHSAT SPRING WHEAT MODEL (CONT)
• EVALUATION RESULTS
 MODEL PREDICTIONS WERE LESS ACCURATE THAN TREND PROJECTIONS
APPARENT MODEL BIAS WITH EXTENSION TO DIFFERENT AREAS
LOW DEGREE OF ASSOCIATION BETWEEN VARIATION IN AC- TUAL AND PREDICTED YIELDS
• CONCLUSIONS
 CRITICAL VARIABLES MISSING IN MODEL ADDITIONAL RESEARCH ON ESTIMATING PRECIPITATION FROM SATELLITES NEEDED
·

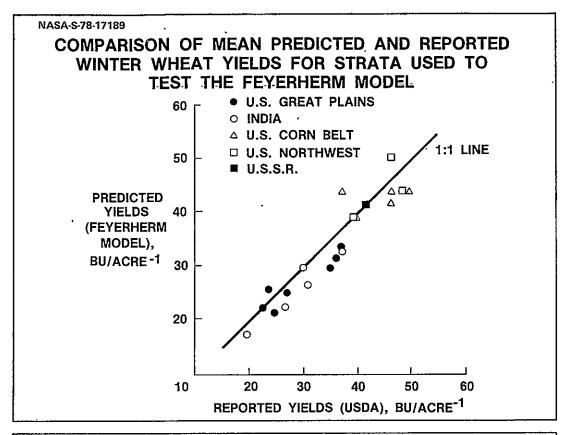

		ERIES N		
	ST ATISTIC		EA STRATA	
	STATISTIC	COUNTY	DISTRICT	STATE
EARTHSAT MODEL	CORRELATION COEFFICIENT REGRESSION	0.27	0.45	0.45
	COEFF (SLOPE)	.08	.15	.21
	MEAN DIFFERENCE	2.0	2.1	.8
	RMS ERROR	7.0	5.8	4.3
TIME	CORRELATION		<u></u>	
SERIES MODEL	COEFFICIENT REGRESSION	0.75	0.90	0.94
	COEFF (SLOPE)	.55	.74	.85
	MEAN DIFFERENCE	3.1	3.4	3.2
	RMSERROR	5.6	4.3	3.6

.

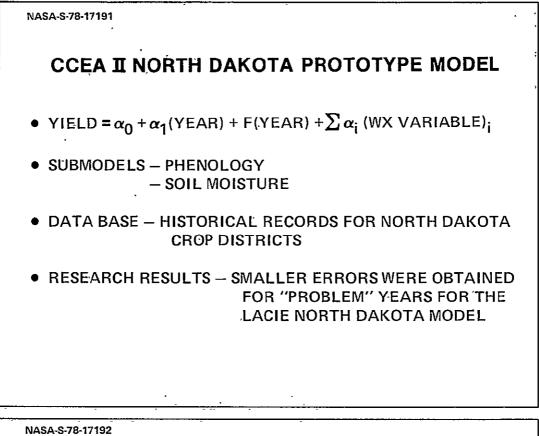
ORIGINAL PAGE IS OF POOR QUALITY-

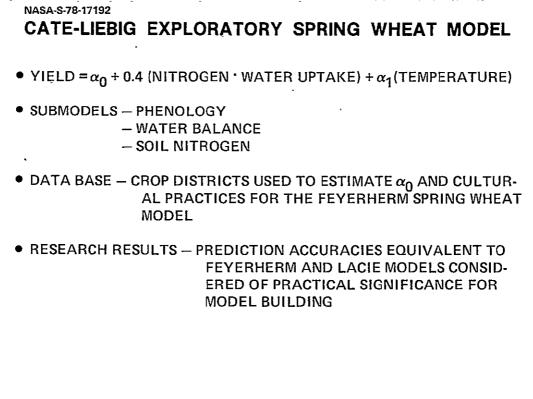
ASA-S-78-17187 RESULTS COMPARATIV AND LACIE	/E TEST	OF THE	FEYER	IERM
SPRING WHEAT	LACIE P	HASE Ⅲ**	FEYERI	IERM***
PSEUDOZONE	BIAS	RMSE	BIAS	RMSE
MONTANA	-0.6	2.2	-0.1	2.6
NORTH DAKOTA	-1.2	2.9	1	2.5
RED RIVER	-1.4	4.0	.9	2.7
MINNESOTA	6	3.8	2.6	5.6
SOUTH DAKOTA	8	3.0	.9	5.0
TOTAL	-1.0	2.6	0.4	2.1
WIL	COXON ST	ATISTIC =-0).05	
* MODEL PREDIO	CTIONS RE	LATIVE TO	USDA REP	ORTED

YIELDS

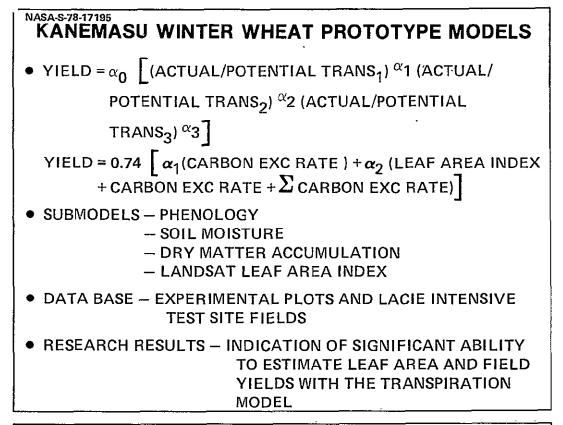

**** BASED ON COOPERATIVE MET STATION NETWORK**

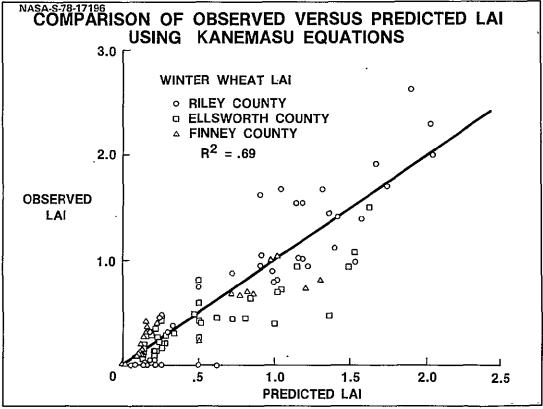
*** BASED ON SYNOPTIC MET STATION NETWORK

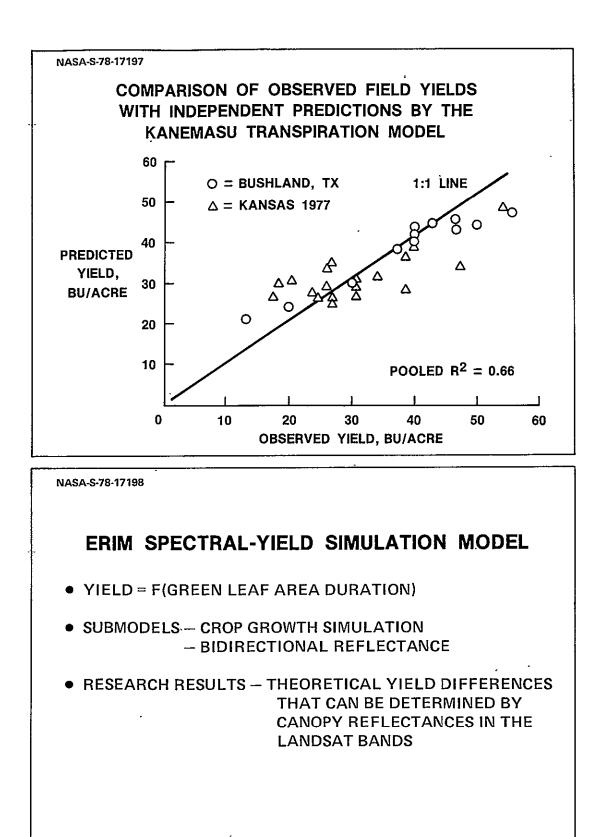

NASA-S-78-17188 RESULTS COMPARATIN AND LACIE	VE TEST	OF THE	FEYER	IERM
WINTER WHEAT	LACIE PI	HASE <u>Ⅲ</u> **	FEYER	HERM***
PSEUDOZONE	BIAS	RMSE	BIAS	RMSE
MONTANA	-0.3	2.7	-0.1	2.2
BADLANDS	1	4.6	2.0	4.6
NEBRASKA	.2	2.9	2.2	4.5 ·
COLORADO	8	3.4	1.6	4.6
KANSAS	3	3.4	.9	3.5
OKLAHOMA	.1	2.2	-1.0	2.2
OK-TX PAN-				
HANDLE	5	2.7	8	3.6
TEXAS	5	2.8	-1.3	2.2
TOTAL	-0.1	1.9	0.6	2.4
WIL	COXON ST	ATISTIC = -1	.78	
* MODEL PREDICTI	ONS RELA	TIVE TO USI	DA REPOR	TED YIELDS

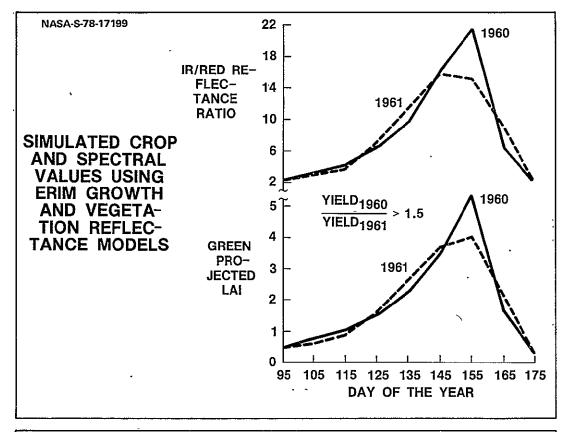

** BASED ON COOPERATIVE MET STATION NETWORK

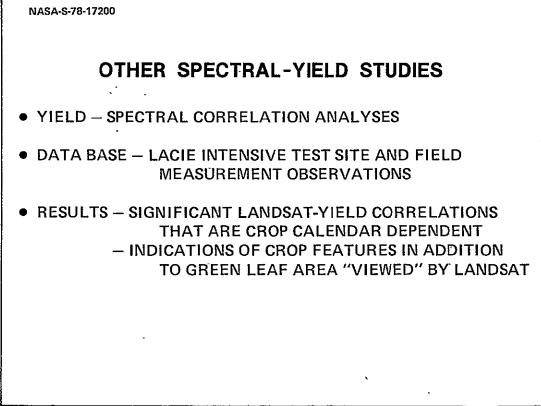
*** BASED ON SYNOPTIC MET STATION NETWORK

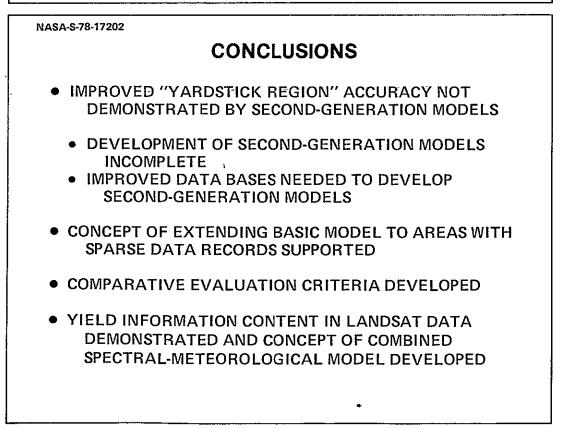

NASA-S-78-17190							
PRELIMINARY TESTS ON FEYERHERM WINTER WHEAT MODEL							
<u>REC</u>	SION	BIAS, <u>BU/ACRE</u>	RMSE, <u>BU/ACRE</u>				
U.S. GREAT PLAINS	S, 7 STATES x 10 YR	0.6	2.4				
U.S. CORN BELT,	5 STATES, 12 YR	.8	4.4				
U.S. NORTHWEST	3 STATES, 12 YR	1.0	4.5				
U.S.S.R.	1 OBLAST, 10 YR	· 6	3.4				

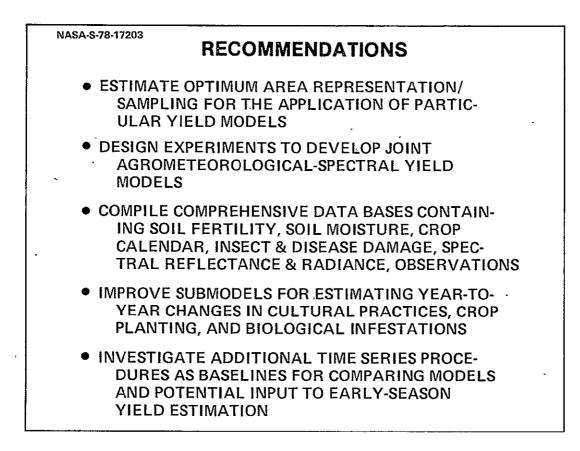




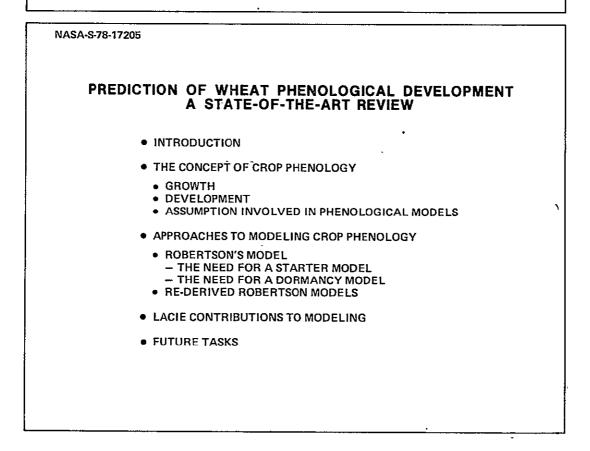

SPRING WHEAT	LACIE PI	HASE <u>∭</u> **	CATE-L	IEBIG***
PSEUDOZONE	BIAS	RMSE	BIAS	RMSE
MONTANA	-0.6	2.2	0.8	3.4
NORTH DAKOTA	-1.2	2.9	.1	1.4
RED RIVER	-1.4	4.0 ·	8	3.2
MINNESOTA	6	3.8	-1.3	5.8
SOUTH DAKOTA	8	3.0	.8	4.1
TOTAL	-1.0	2.6	0.0	1.3
WII	_COXON ST	ATISTIC = -	1.17	4
* MODEL PREDI YIELDS ** BASED ON COO *** BASED ON SYN	OPERATIVE	E MET STAT	IÖN NETW	
-S-78-17194			-	


- SUBMODELS PHENOLOGY
 - SOIL MOISTURE
 - WINTER SURVIVAL
 - TILLERING
 - KERNEL SET
 - . KERNEL WEIGHT
 - LANDSAT
- DATA BASE RESEARCH PLOTS AND COMMERCIAL FIELDS
- STATUS DATA COLLECTION INITIATED



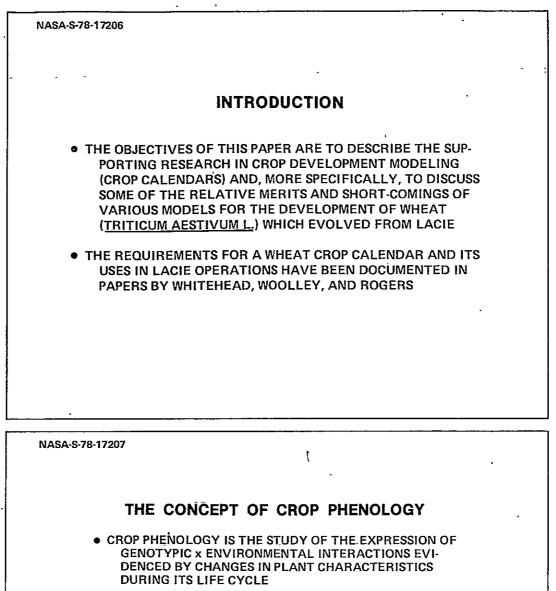


	NASA-5-78-17201 LANDSAT - CROP DATA CORRELATION								
ł			CC	EFFICIE	NTS	*			
	SAMPLE	NO. FIELDS	PLANT HEIGHT	GROUND COVER	YIELD DETRACTANT	ESTIMATED YIELD			
	А	30	0.28	0.26	-0.13	0.45			
	В	23	.45	.77	.02 ·	.75			
	С	23	.25	.70	.16	.73			
	COMB	76	.54	.77	02	.62			
	CORRELATION BETWEEN GROUND COVER AND YIELD (COMB) = 0.30								
	* KAUTH GREEN NUMBER								


SUPPORTING RESEARCH AND TECHNOLOGY (SRT) SESSION

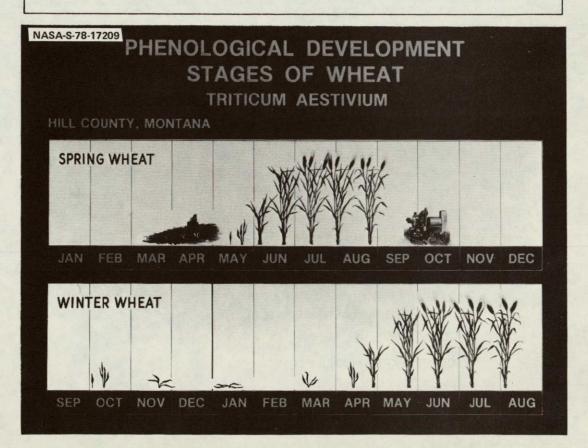
PREDICTION OF WHEAT PHENOLOGICAL DEVELOP-MENT – A STATE-OF-THE-ART REVIEW M. Seeley, Lockheed/JSC

PAGE <u>434</u> INTENTIONALLY BLANK


PREDICTION OF WHEAT PHENOLOGICAL DEVELOPMENT

A STATE-OF-THE-ART REVIEW

437


DIRE 436_INTENTIONALLY BLANK

- PHENOTYPIC CHARACTERISTICS ARE MANIFESTATIONS OF BOTH GROWTH AND DEVELOPMENT. HOWEVER, THESE TWO PROCESSES ARE FREQUENTLY CONFUSED
- GROWTH REFERENCES AN INCREASE IN PLANT SIZE (ROOTS, SHOOTS, STEMS, LEAVES, ETC.). THIS IS CELL DIVISION TO A PHYSIOLOGIST
- DEVELOPMENT IS THE SEQUENCE OF LIFE CYCLE EVENTS (INCLUDING GROWTH) WHICH LEAD TO CHANGES IN TISSUE STRUCTURE AND/OR FUNCTION. THIS COVERS CELL DIVISION, DIFFERENTIATION, AND SENESCENCE

TYPES OF PLANT DEVELOPMENT

- THERE IS SOME DISAGREEMENT AMONG AGRICULTURAL SCIENTISTS CONCERNING THE CONCEPT OF PLANT DEVELOPMENT. THREE VARIANT CATEGORIES OF DEVELOPMENT CAN BE DESCRIBED
 - THE <u>POTENTIAL</u> RATE OF DEVELOPMENT IS DETERMINED GENETICALLY AND CAN ONLY BE ACHIEVED UNDER CONTROLLED OPTIMUM CONDITIONS
 - THE <u>ACTUAL</u> RATE OF DEVELOPMENT IS THE RESULT OF A SYSTEM OF GENOTYPIC × CLIMATIC × NUTRITION-AL INTERACTIONS WHICH OCCUR AT THE BIOCHEMICAL LEVEL IN NATURAL ENVIRONMENTS
 - THE <u>OBSERVED</u> RATE OF DEVELOPMENT DEPENDS ON THE DEGREE TO WHICH A CROP EXPRESSES CHANGES IN TISSUE STRUCTURE OR FUNCTION AND THE FRE-QUENCY AND ACCURACY OF OBSERVATIONS OF SUCH CHANGES

SOME IMPORTANT ASSUMPTIONS ABOUT WHEAT DEVELOPMENT MADE IN LACIE CROP CALENDAR RESEARCH

- PHENOTYPIC CHARACTERISTICS OF WHEAT EXPRESS THE DEVELOPMENTAL PROCESS WELL AND ARE EASILY OBSERVED
- WHEAT IS RELATIVELY STABLE PHENOTYPICALLY
- THE DEVELOPMENT OF WHEAT CAN BE MODELED WITH READILY AVAILABLE CLIMATIC DATA
- THE SPATIAL VARIABILITY IN THE OCCURRENCE OF SPECIFIC STAGES IS RELATIVELY UNIFORM OVER YEARS

NASA-S-78-17211

APPROACHES TO MODELING WHEAT PHENOLOGICAL DEVELOPMENT

- R = CONSTANT STANDARD NORMAL CROP CALENDAR
- R = F (GDD) COOPER, KINCER, NUTTONSON, OTHERS
- R = F (T, DL) NUTTONSON, ASANA, OTHERS
- R = F (Tx, Tn, DL) ROBERTSON, FRIEND
- *R = F (Tx, Tn, DL, M) BAKER, TRENCHARD
- R = RATE OF DEVELOPMENT/DAY
- GDD = GROWING DEGREE DAYS
 - T = DAILY MEAN TEMPERATURE
 - DL = DAY LENGTH
 - Tx = DAILY MAXIMUM TEMPERATURE
- Tn = DAILY MINIMUM TEMPERATURE
 - M = MOISTURE

*LACIE RESEARCH MODEL FORM

NASA-S-	78-17214 .
	PROBLEM [,] 1
	THE NEED FOR A STARTER MODEL TO
	INITIALIZE THE BMTS USED IN LACIE
	INITIALIZE THE DIVITS USED IN LACIE
	STARTING THE BMTS WITH NORMAL PLANTING DATES RESULTED IN ERRORS (COMMONLY 10 OR MORE DAYS) DUE TO THE DIFFERENCES BETWEEN NORMAL AND ACTUAL PLANTING DATES
	STARTER MODEL DEVELOPMENT IN LACIE
	LACIE PHASE I
	1. HAUN (CLEMSON) DEVELOPED A SPRING WHEAT STARTER MODEL USING TEMPERATURES, ESTIMATED SOIL MOIS- TURE, AND PRECIPITATION. TESTS OF THIS MODEL IN NORTH DAKOTA CRD'S SHOWED AN RMSE OF 11.4 DAYS
	LACIE PHASE II 2. FEYERHERM (KSU) RELATED TEMPERATURE ACCUMU- LATIONS TO PLANTING DATES FOR SPRING WHEAT. PRELIMINARY TESTS IN NORTH DAKOTA SHOW AN RMSE OF 6 5 DAYS
	3. STUFF (NASA/JSC) AND PHINNEY (LEC/SSD) USED TEMPER- ATURE, PRECIPITATION, AND NORMAL PLANTING DATES TO ESTIMATE PLANTING OF SPRING WHEAT. PRELIMIN- ARY TESTS IN NORTH DAKOTA SHOW AN RMSE OF 6.5 DAYS
NASA-S-	-78-17215
	PROBLEM 1, (CONT)
	LACIE PHASE II AND TY
	 4 LYTLE ET AL (CCEA) DEVELOPED A STARTER MODEL FOR SPRING WHEAT USING TEMPERATURE, PRECIPITATION, TRENDS IN PLANTING, AND THE DIFFERENCES BETWEEN PRECIPITATION AND POTENTIAL EVAPOTRANSPIRATION (THORNTHWAITE). PRELIMINARY TESTS IN NORTH DAKOTA SHOW AN S.E.E. = 4.5 DAYS
	5. DEVELOPMENT PLANNING AND RESEARCH ASSOCIATES, INC., ARE CURRENTLY DEVELOPING A STARTER MODEL FOR WINTER WHEAT USING NORMAL PLANTING DATES, SOIL TRAFFICABILITY (SOIL MOISTURE), AND FARMER BEHAV- ORIAL CONCEPTS TO DATE, THERE ARE NO TEST RESULTS

.

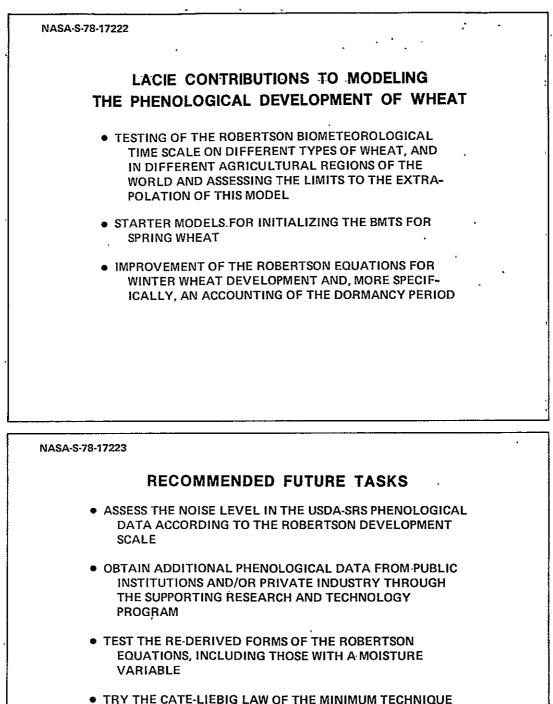
				,
P	ROBLE	M 1.		
ACCURACY OF SPE WITH FEYER				
COMPARISON OF LACIE A MENT IN SPRING WHEA AND CANADA)				
OBSERVED (ACC)	JOINTING	HEADING	SOFT <u>DOUGH</u>	<u>RIPE</u>
MEAN BIAS (DAYS)	3.7	1.6	7.8	5.6
STANDARD ERROR (DAYS)	7.2	6.8	9.9	11.7
			,	
			·	

PROBLEM 2 WITHOUT CORRECTIONS FOR THE DORMANCY PERIOD IN WINTER WHEAT, THE PERFORMANCE OF THE BMTS WAS POOR (PHASE I) ADJUSTMENTS FOR DORMANCY IN THE LACIE WINTER WHEAT CROP CALENDARS LACIE PHASE II 1. BASKETT ET AL (LEC/SSD) ADJUSTED THE BMTS BY DEFINING THRESHOLD LEVELS IN THE DAILY INCREMENT OF DEVELOP-
IN WINTER WHEAT, THE PERFORMANCE OF THE BMTS WAS POOR (PHASE I) ADJUSTMENTS FOR DORMANCY IN THE LACIE WINTER WHEAT CROP CALENDARS LACIE PHASE II 1. BASKETT ET AL (LEC/SSD) ADJUSTED THE BMTS BY DEFINING
CROP CALENDARS LACIE PHASE II 1. BASKETT ET AL (LEC/SSD) ADJUSTED THE BMTS BY DEFINING
MENT (DID). THIS MODEL WAS USED OPERATIONALLY IN PHASE II; HOWEVER, IT STILL SHOWED ERRORS OF UP TO 20 DAYS FOR THE EMERGENCE TO HEADING PERIOD
2. FEYERHERM (KSU) CORRECTED FOR THE DORMANCY PERIOD BY ADJUSTING THE BMTS INTERVAL FOR EMERGENCE TO HEADING USING ANNUAL PRECIPITATION AND JANUARY TEMPERATURE. THIS METHOD HAS BEEN USED IN OPERA- TIONS SINCE PHASE II. WHEN TESTED ON AN INDEPENDENT PHENOLOGICAL DATA SET, THIS METHOD SHOWS ERRORS IN ESTIMATING THE EMERGENCE TO HEADING PERIOD OF 15 TO 20 DAYS

PROBLEM 2 (CONT) LACIE PHASE III AND TY

- 3. BAKER (FORT LEWIS COLLEGE) ADJUSTED THE WINTER WHEAT MODEL FOR DORMANCY BY USING A DAILY MEAN TEMPERATURE BASE AS THE CRITICAL VALUE FOR STOPPING THE EARLY GROWTH PERIOD (0° C) AND RESTARTING IN THE SPRING. (4.5°C) TO DATE, THIS MODEL SHOWS RMSE TERMS OF 18 OR MORE DAYS FOR THE E-J PERIOD WHEN TESTED IN U.S. WINTER WHEAT AREAS
- 4. TRENCHARD (LEC/SSD) ADJUSTED THE BMTS FOR THE EMERGENCE TO JOINTING PERIOD IN WINTER WHEAT BY RE-DERIVING COEFFICIENTS FOR THIS PERIOD USING A USDA-SRS PHENOLOGICAL DATA BASE FOR 23 CRD's. THE S.E.E. ASSOCIATED WITH THE E-J PERIOD IN THE NEW MODEL WAS 11.5 DAYS. TO DATE, NO INDEPENDENT TEST HAS BEEN MADE

ERRORS IN D AND STAF					
STAGE	2	3	Â	5	6
ORIGINAL					
BIAS	6.78	16.97	-8.46	-1.77	6.71
RMSE	9.32 -	20.45	9.66	6.03	7.72
RE-DERIVED				•	
BIAS	12.07	6.25	0.51	0.61	0.19
RMSE	13.38	11.58	4.77	4.31	3.84
NEW (RDCC)	-				
BIAS		-1.47	0.62	-0.08	-0.25
RMSE ' '		10.06	-5.04	4.23	3.54
NO: OBS	46	32	71	83	48


WINTER WHEAT CROP CALENDARS ERROR IN DAYS WHEN RUN FROM THE OBSERVED PLANTING DATE

STAGE	2	3	4	5	6
ORIGINAL					
BIAS	6.78	20.00	0.57	-1.19	7.15
RMSE	9.32	24.73	8.20	7.00	11.40
RE-DERIVED					
BIAS		28.57	24.50	24.40	22.53
RMSE		35.92	33.60	28.67	27.71
NEW (RDCC)					
BIAS		1.66	2.26	2.18	0.49
RMSE		17.57	12.83	11.18	11.74
NO. OBS	46	94	102	103	55

NASA-S-78-17221

RE-DERIVATION OF THE ROBERTSON MODEL FOR WINTER WHEAT

- TRENCHARD (LEC/SSD) RE-DERIVED THE ROBERTSON TRIQUADRATIC EQUATIONS FOR EACH BIOSTAGE, USING USDA-SRS WINTER WHEAT PHENOLOGICAL DATA FROM SEVEN STATES. RESULTS OF THIS WORK ARE ENCOURAGING, BUT THERE IS A LACK OF INDEPENDENT PHENOLOGICAL DATA WITH WHICH TO TEST THIS MODEL
- TRENCHARD USED THE SAME PHENOLOGICAL DATA SET TO DERIVE A NEW BMTS FOR WINTER WHEAT IN WHICH PRECIPITATION (RDCC) IS SUBSTITUTED FOR DAY LENGTH. THIS MODEL FORM FIT THE DATA FROM WHICH IT WAS DEVELOPED QUITE WELL AND WILL BE FURTHER TESTED

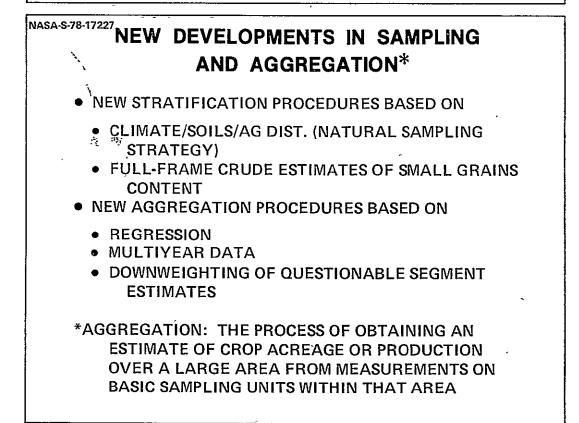
- IN MODELING PHENOLOGICAL DEVELOPMENT
- ASSESS THE USE OF MSS DATA IN BOTH DEVELOPING AND CALIBRATING CROP CALENDAR MODELS

NASA-S-78-17224
SUMMARY HIGHLIGHTS FROM THE STATE-OF-THE-ART
REVIEW PAPER ON WHEAT PHENOLOGICAL MODELS
 CROP DEVELOPMENT MODELS (CROP CALENDARS) HAVE TRADITIONALLY BEEN BASED ON OBSERVED CHARACTER- ISTICS OF THE PLANT LIFE CYCLE (CROP PHENOLOGY) OF THE FUNCTIONAL FORMS AVAILABLE, THE ROBERTSON
BIOMETEOROLOGICAL TIME SCALE (BMTS) FOR ESTIMAT- ING THE DEVELOPMENT OF SPRING WHEAT WAS USED IN LACIE BECAUSE IT USED A SIMPLE PHENOLOGICAL SCALE AND IT CONSIDERED CURVILINEAR EFFECTS OF TEMPER- ATURE AND DAY LENGTH
 STARTER MODELS DEVELOPED TO INITIALIZE THE SPRING WHEAT CROP CALENDAR IMPROVED ESTIMATES OF THE FIRST BIOPHASE (E-J) BY 40 TO 50 PERCENT
 WINTER WHEAT DORMANCY MODELS, REQUIRED TO ADJUST THE ORIGINAL SPRING WHEAT BMTS, IMPROVED ESTIMA- TION OF THE EARLY STAGES IN WINTER WHEAT BY 50 PERCENT
 IN ORDER TO FURTHER ADVANCE THE STATE OF WHEAT PHENOLOGICAL MODELS, MUCH MORE FIELD DATA ARE NEEDED TO TEST RESEARCH MODELS SUCH AS THE TRENCHARD CROP CALENDAR WHICH USES TEMPERA- TURE AND MOISTURE INPUTS

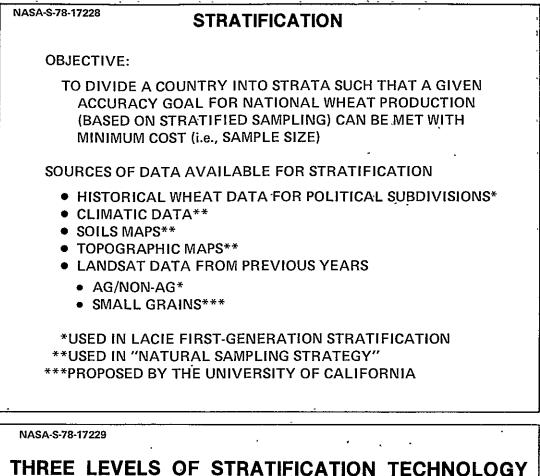
RESOURCES ALLOCATED FOR LACIE CROP CALENDAR DEVELOPMENT

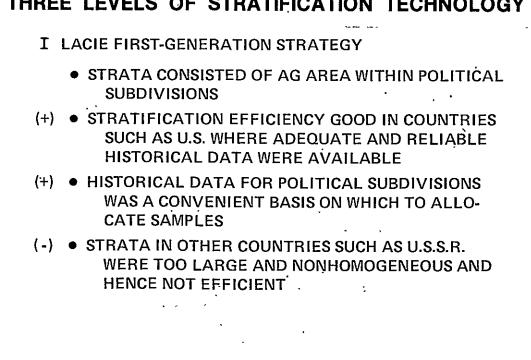
FUNDING
\$ 25 000
\$ 40 000
\$ 60 000*
\$100 000

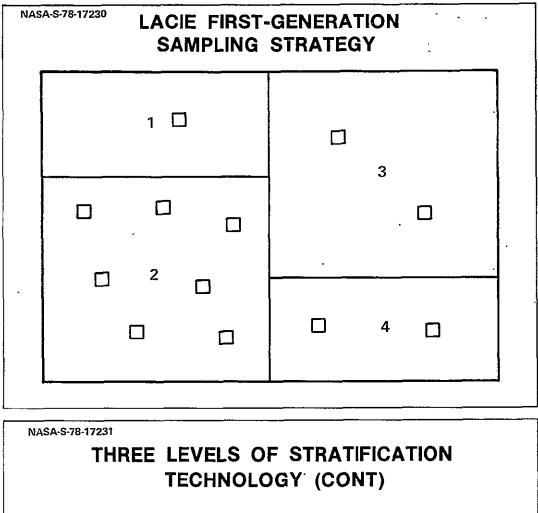
N79-1449


SUPPORTING RESEARCH AND TECHNOLOGY (SRT) SESSION

NEW DEVELOPMENTS IN SAMPLING AND AGGREGA-TION FOR REMOTELY SENSED SURVEYS A. Feiveson, JSC

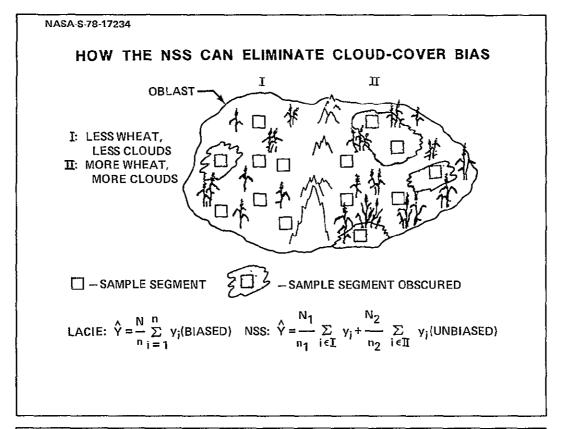

.

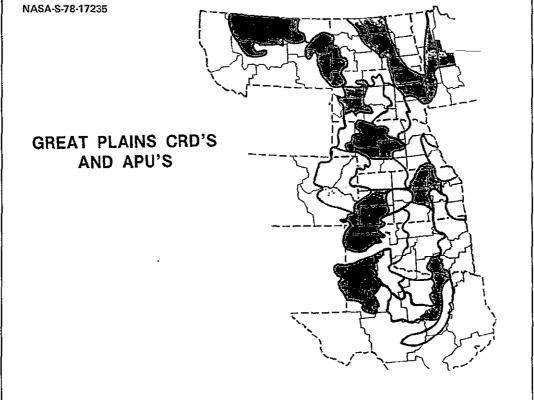

NEW DEVELOPMENTS

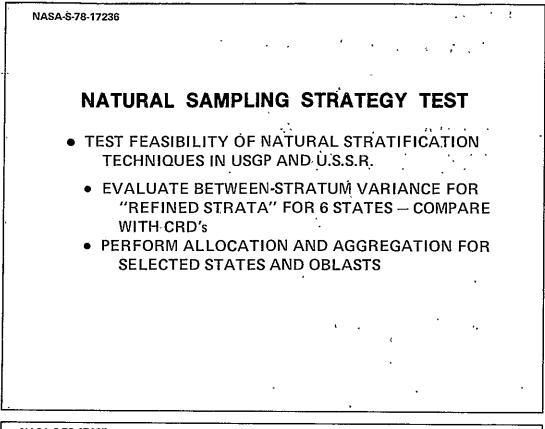

IN SAMPLING AND AGGREGATION

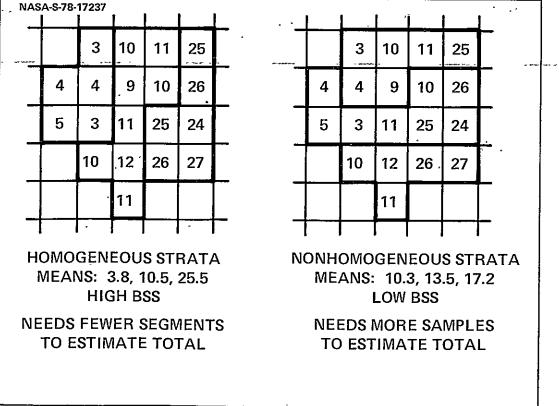
PAGE 450 INTENTIONALLY BLANK



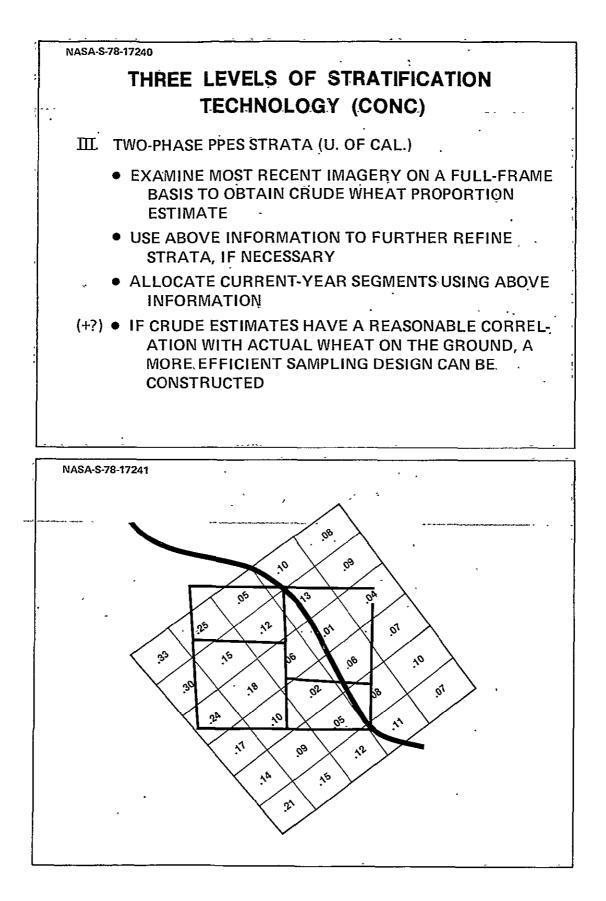



II. NATURAL SAMPLING STRATEGY


- DIVIDE COUNTRY INTO APU'S (AGROPHYSICAL UNITS) BASED ON CLIMATE, TOPOGRAPHY, SOILS, AND AG
- INTERSECT APU'S WITH STRATA FROM FIRST-GENERATION STRATEGY TO FORM "REFINED STRATA"
- (+) PROVIDES MORE HOMOGENEOUS STRATA IN COUNTRIES WITHOUT ADEQUATE HISTORICAL DATA
- (+) COULD REDUCE BIAS CAUSED BY UNEQUAL INCIDENCE OF CLOUD COVER
- (-) MORE DIFFICULT TO DECIDE ON ALLOCATION OF SAMPLES TO STRATA SINCE HISTORICAL DATA NOT AVAILABLE AT STRATUM LEVEL



ORIGINAL PACE IS OF POOR QUALITY



NASA-S-78-17238 NATURAL SAMPLING STRATEGY TEST RESULTS						
A. RELATIVE DIFFERENCE* IN BETWEEN-STRATA VARIANCE, APU vs CRD						
STATE	AG DENSITY	WHEAT DENSITY	WHEAT YIELD			
TEXAS	0.7469	0.6346	-0.1690			
OKLAHOMA	.1649	.1231	.2059			
KANSAS	5.2776	.0293	.9139			
NEBRASKA	.1515	.2182	1.2616			
S. DAKOTA	.1560	.1819	0975			
MINŅESOTA	9643	.2253	4574			
* [BSS(APU) – BSS(CRD)] /BSS(CRD) – BASED ON COUNTY STATISTICS						

NASA-S-78-17239 NATURAL SAMPLING STRATEGY TEST RESULTS (CONT)

B. AGGREGATIONS IN U.S.S.R./U.S.

NO. SEG- MENTS (NSS)	NO. SEG- MENTS (OLD)	CV PRO- DUCTION (NSS)	CV PRO- DUCTION (OLD)
76	108	9.1	6.6
6	12	28.6	22.7
⁻ 48	52	38.2	38.8
17	28	39.3	39.5
	MENTS (NSS) 76 6 48	MENTS (NSS) MENTS (OLD) 76 108 6 12 48 52	MENTS (NSS) MENTS (OLD) DUCTION (NSS) 76 108 9.1 6 12 28.6 48 52 38.2

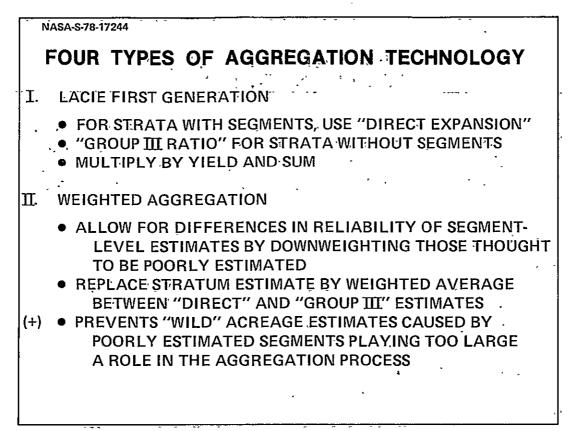
PRELIMINARY TEST OF VIABILITY OF FULL-FRAME ESTIMATES

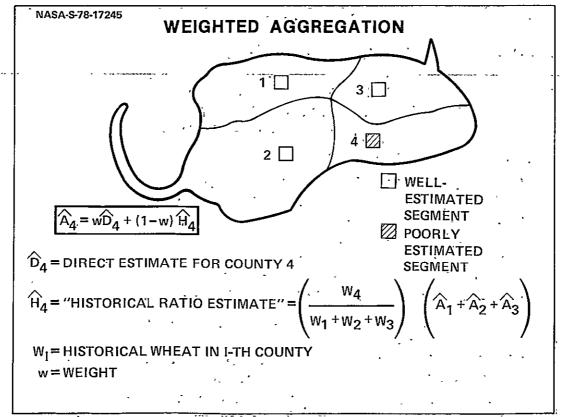
• COMPUTE CORRELATION BETWEEN "CRUDE" WHEAT PROPOR-TION ESTIMATES MADE FROM FULL-FRAME IMAGERY AND ESTIMATES MADE BY INTENSIVE EXAMINATION OF DETAIL-ED IMAGERY FOR A SAMPLE OF SEGMENTS IN SOME CRD's IN KANSAS

RESULTS:

NASA-S-78-17243

×


LOCATION	NO. SEGMENTS	CORRELATION
SWCRD	16	0.82
CENTRAL CRD	16	05
CENTRAL CRD*	14	.79
DIFFERENT DATE		


AGGREGATION

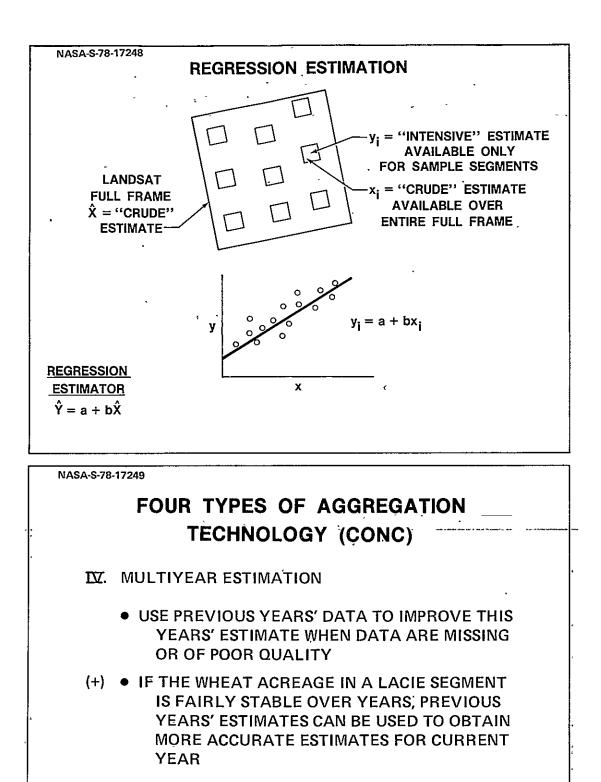
OBJECTIVE: TO COMBINE SEGMENT-LEVEL WHEAT ACREAGE ESTIMATES WITH AVAILABLE YIELD AND AN-CILLARY INFORMATION SO AS TO PRODUCE THE MOST ACCURATE ESTIMATE POSSIBLE FOR A COUNTRY'S WHEAT PRODUCTION

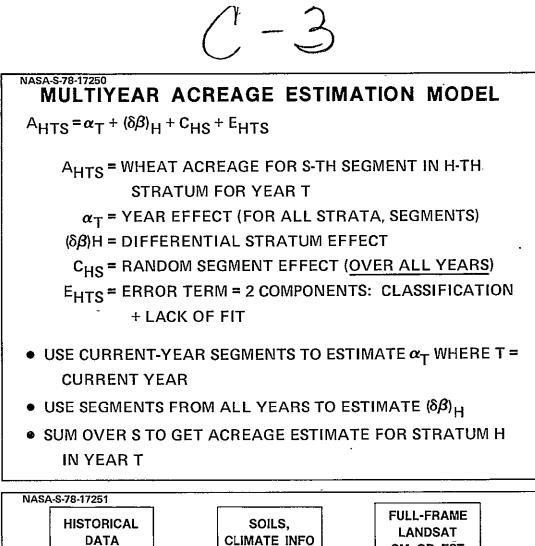
SOURCES OF DATA AVAILABLE FOR AGGREGATION

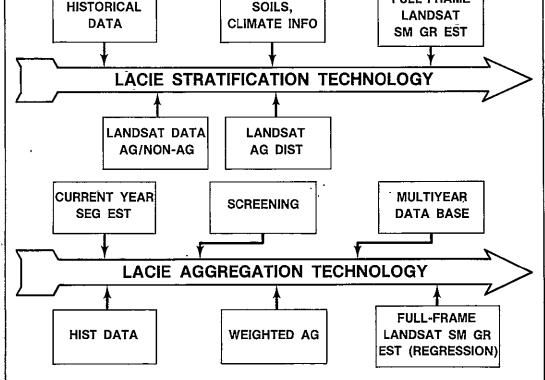
- CURRENT-YEAR SEGMENT WHEAT AREA ESTIMATES*
- OTHER YEARS' SEGMENT WHEAT AREA ESTIMATES**
- INDICATORS OF SEGMENT ACCURACY (BIOPHASES USED, CAMS RATING, ETC.)***
- FULL-FRAME IMAGERY****
- CURRENT-YEAR YIELD ESTIMATES*
- HISTORICAL YIELD AND WHEAT ACREAGE DATA*
 - *USED IN LACIE FIRST-GENERATION AGGREGATION TECHNOLOGY
- **PROPOSED FOR MULTIYEAR ESTIMATION BY H. O. HARTLEY ***PROPOSED FOR WEIGHTED AGGREGATION
- ****PROPOSED FOR REGRESSION ESTIMATION (UCB)

PRELIMINARY TEST OF WEIGHTED AGGREGATION (WHEAT ACREAGE) WEIGHTED AGGREGATION FOR COLORADO (PHASE III)

• WEIGHTED AGGREGATION FOR COLORADO (PHASE III) WAS PERFORMED USING A FUNCTION OF BIOPHASE COMBINATION TO DETERMINE WEIGHTS

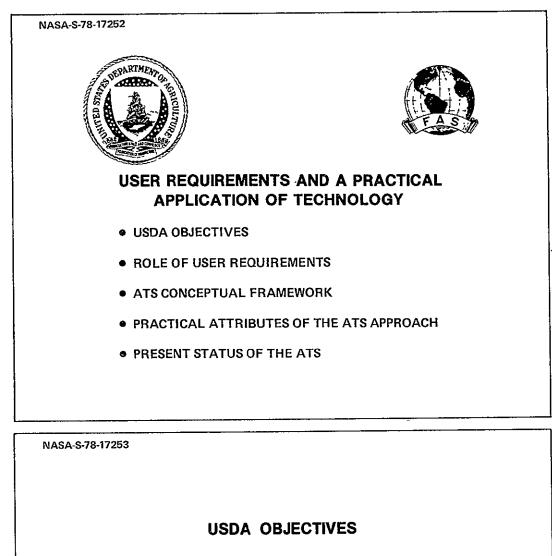

RESULTS:


LACIE		WEIGHTED		USDA
ESTIMATE*	<u>S.E.**</u>	ESTIMATE*	<u>S.E.</u>	ESTIMATE*
2718	318	2205	271	2360


*THOUSANDS OF ACRES **STANDARD ERROR

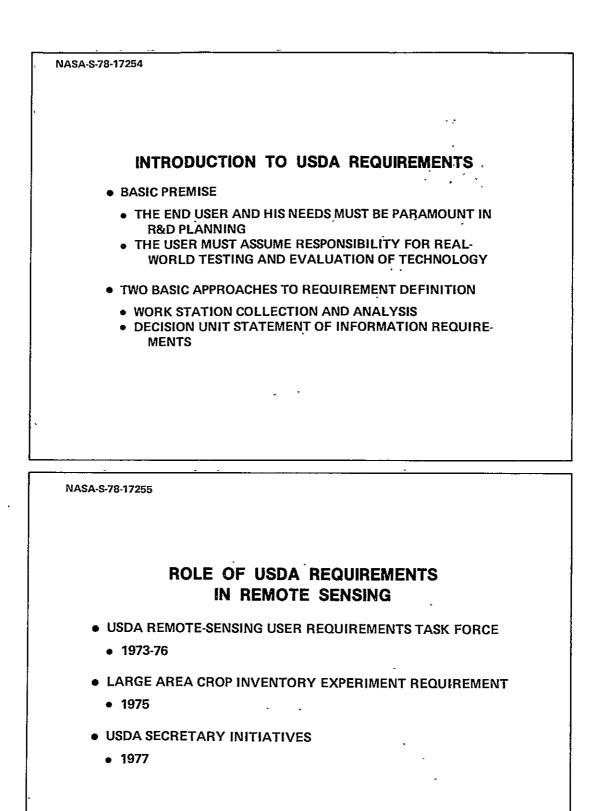
 NASA-S-78-17247
 FOUR TYPES OF AGGREGATION TECHNOLOGY (CONT)
 III. REGRESSION

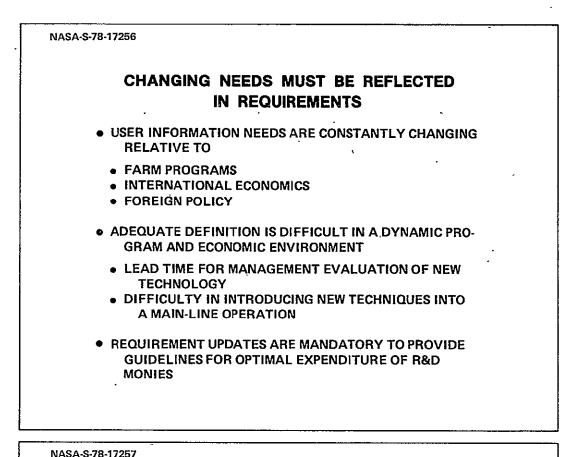
 CONSTRUCT CRUDE FULL-FRAME ESTIMATES OF WHEAT PROPORTION
 USE STANDARD SEGMENTS (INTENSIVE ANALYSIS) TO CORRECT FULL-FRAME ESTIMATES VIA REGRESSION
 (+)
 IF CRUDE ESTIMATES HAVE REASONABLE CORREL-ATION WITH WHEAT ON THE GROUND, A MORE EFFICIENT LARGE-AREA ESTIMATE CAN BE MADE

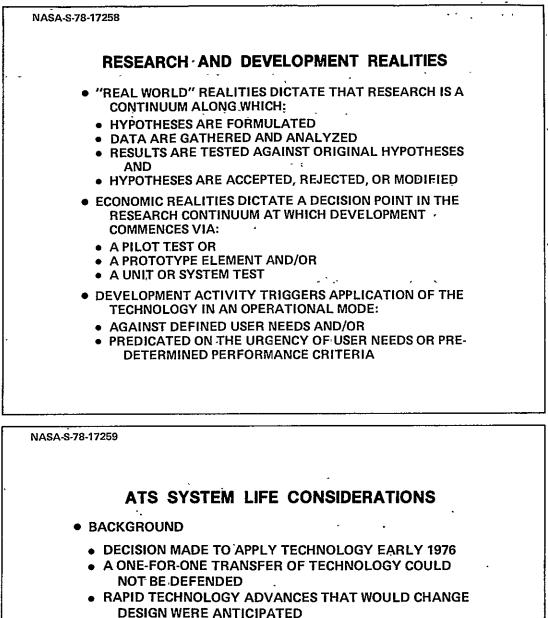

SUPPORTING RESEARCH AND TECHNOLOGY (SRT) SESSION

COLLECTION AND ANALYSIS OF FIELD MEASUREMENT DATA M. Bauer, Purdue University Material not available at presstime

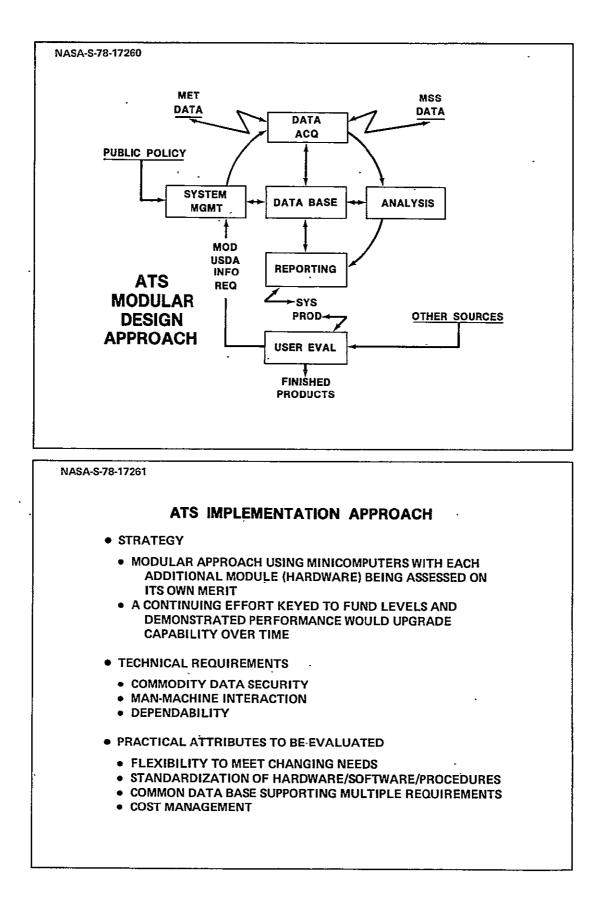
PAGE 466 INTENTIONALLY BLA

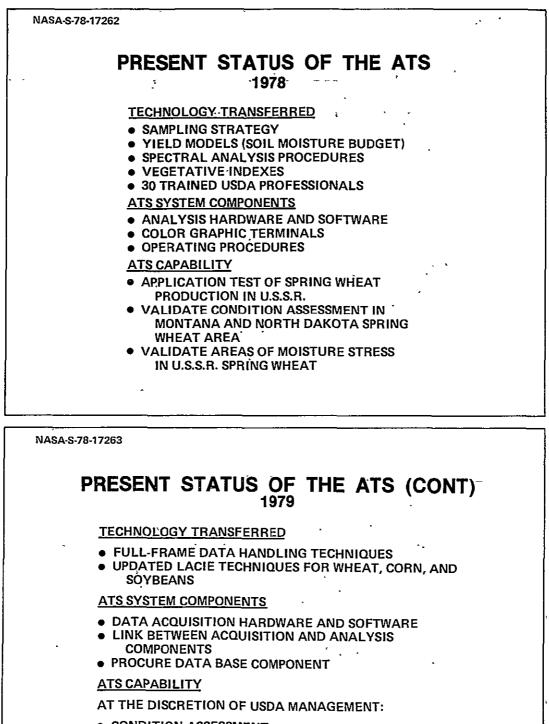

USDA APPLICATION TEST SYSTEM (ATS) SESSION


TECHNOLOGY TRANSFER: CONCEPTS, USER REQUIRE-MENTS, AND THEIR PRACTICAL APPLICATION J. Murphy, USDA


- PARTICIPATE IN THE LACIE EXPERIMENT
- TRAIN A MULTIDISCIPLINE TEAM IN THE TECHNOLOGY
- EVALUATE THE TECHNIQUES USED TO ESTIMATE WHEAT PRODUCTION
- PLAY A LEAD ROLE IN COST-BENEFIT STUDIES
- FORMULATE A COST-EFFECTIVE DESIGN FOR TECHNOLOGY TRANSFER

PAGE 4/70 INTENTIONALLY BLAI


TECHNOLOGY TRANSFER
• FACT: A "CLOSED-LOOP INFORMATION SYSTEM" APPROACH IS ESSENTIAL TO A CLEAR DEFINITION OF RESPON- SIBILITIES AND CONTROL MECHANISMS BETWEEN USER AND THE R&D COMMUNITY
 IMPETUS TO APPLY NEW TECHNOLOGY MAY ORIGINATE FROM
 A USER ORGANIZATION THE RESEARCH AND DEVELOPMENT COMMUNITY
 KEYSTONE IS USER TEST AND EVALUATION TO DETERMINE PERFORMANCE AGAINST REQUIREMENTS CONSTRAINTS TO IMPLEMENTATION MODIFICATIONS NEEDED LONG-TERM RESEARCH REQUIRED
 SUPPORTING ELEMENTS NECESSARY TO SUCCESS STAFF EXCHANGES COST CONTROL AND STANDARDIZATION



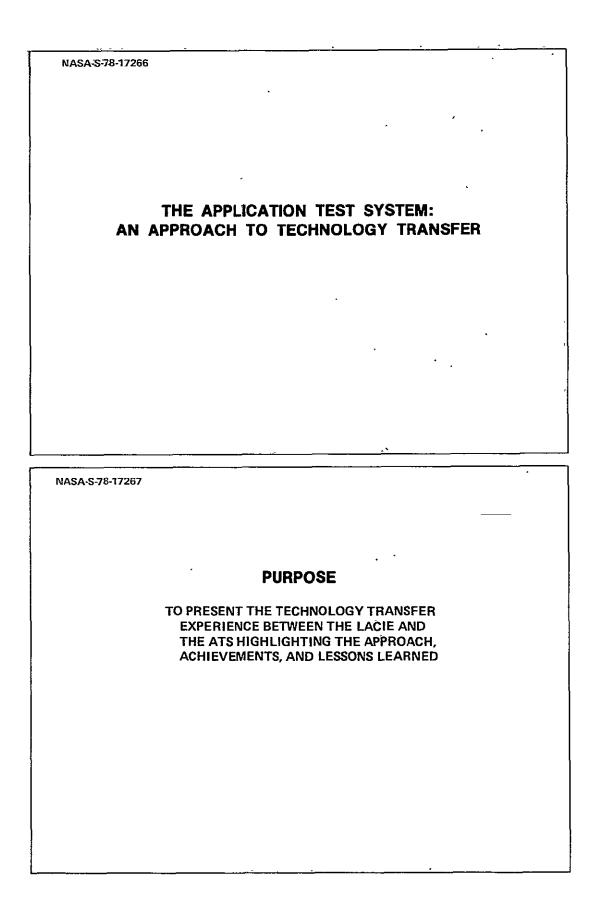
 DECISION MADE TO PROCEED WITH CLASSICAL SYSTEMS APPROACH

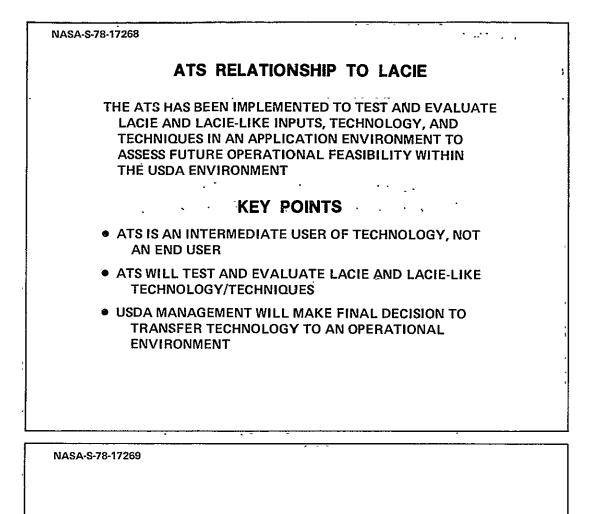
KNOWN CONSTRAINTS


- COST/PERFORMANCE MEASURABLE INDEX MUST BE SHOWN
- CHANGING USER DEMANDS
- CHANGING TECHNOLOGY

- CONDITION ASSESSMENT
- PRODUCTION IMPACTS
- AVAILABLE YIELD MODELS
- GEOGRAPHIC DATA BASES

~

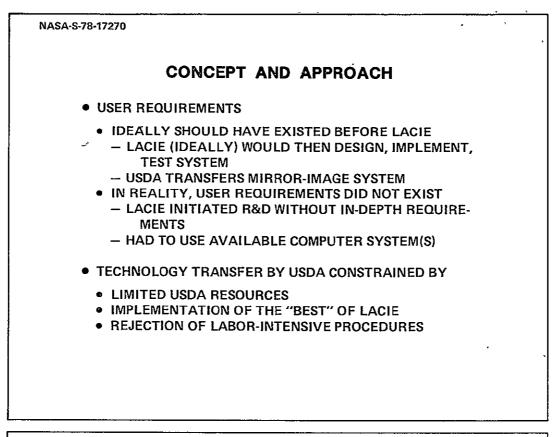



SUMMARY (CONT)

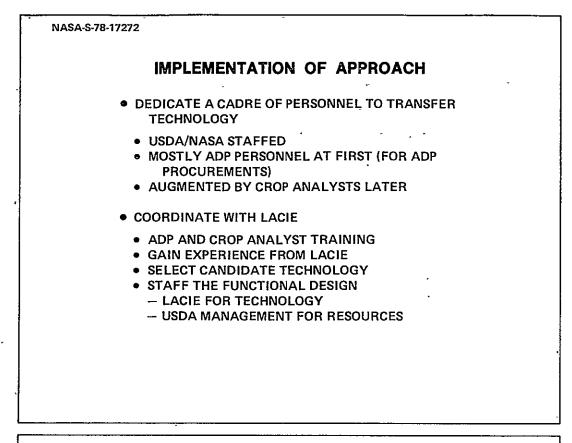
- USDA DESIGN APPROACH BUILDS ON CONSTRUCTION OF A DATA BASE SHARED BY OTHER COMPONENTS OF A "CLOSED-LOOP" PROCESSING SYSTEM
- USDA DESIGN CAN ACCOMMODATE CHANGING TECHNOLOGY AND USER REQUIREMENTS IN A COST-EFFECTIVE MANNER
- USDA APPLICATION OF LACIE-LIKE TECHNOLOGY IS
 - PREDICATED ON AN UNDERSTANDING OF THE "REAL WORLD" ENVIRONMENT OF AN OPERATIONAL AGENCY AND
 - DRAWS ITS STRENGTHS ON PROVEN EXPERIENCES IN OPERATIONS AND SYSTEMS ANALYSIS THEORY

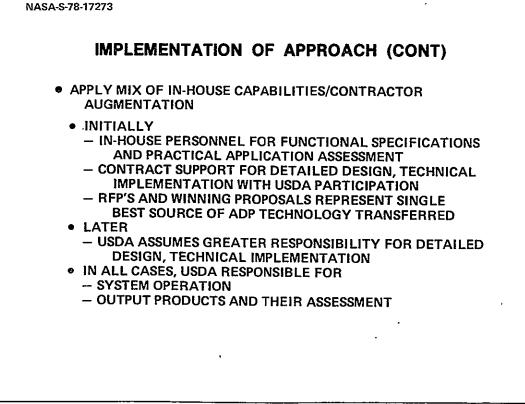
USDA APPLICATION TEST SYSTEM (ATS) SESSION

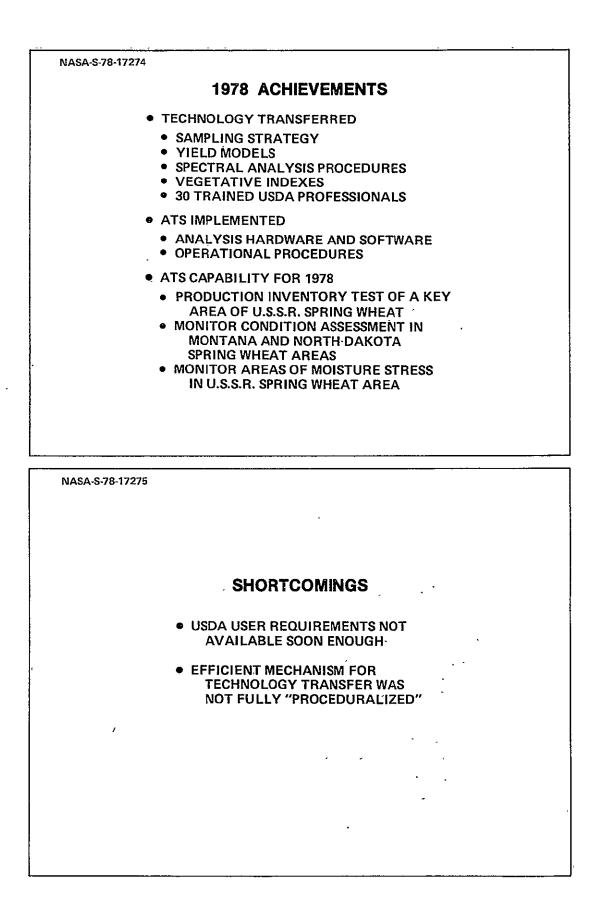
THE APPLICATION TEST SYSTEM: AN APPROACH FOR TECHNOLOGY TRANSFER F. David, USDA

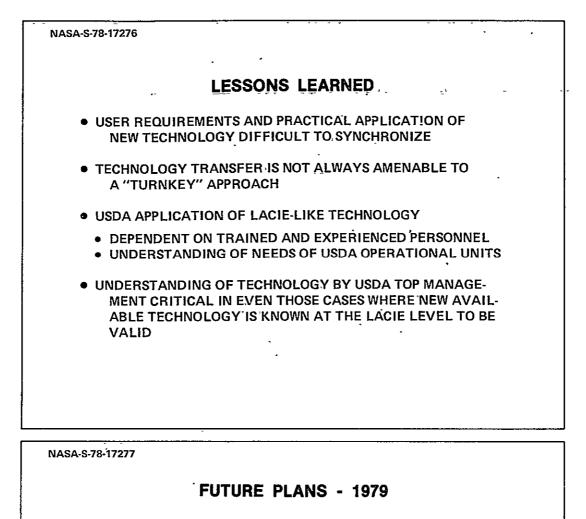


OVERVIEW OF PRESENTATION


- CONCEPT AND APPROACH
- IMPLEMENTATION OF APPROACH


•


- ACHIEVEMENTS
 - SHORTCOMINGS
 - LESSONS LEARNED



NASA-S-78-17271 CONCEPT AND APPROACH (CONT)
 TECHNOLOGY TRANSFER IMPLEMENTATION HAD TO BE MODULAR
 SINGLE, VERY LARGE INVESTMENT DECISION NOT REASONABLE VIEWED AS HIGH RISK BY USDA INSTEAD, A SERIES OF RELATIVELY SMALL INVESTMENT DECISIONS IS BEING/WILL BE MADE HENCE, MINICOMPUTER APPROACH FOR INCREMENTAL INCREASE IN CAPABILITY PRESENT ATS CONFIGURATION REPRESENTS FIRST INCREMENT
FUNCTIONAL CAPABILITIES TRANSFER NECESSARY
 NOT A MIRROR-IMAGE TRANSFER TECHNOLOGY STILL EVOLVING USDA MUST INVEST IN MINICOMPUTER HARDWARE/ EXECUTIVE SOFTWARE/APPLICATION SOFTWARE CLASSIC SYSTEMS APPROACH NECESSARY, USING IT AS A "ROADMAP"

- TECHNOLOGY TO BE TRANSFERRED
 - FULL-FRAME DATA-HANDLING TECHNIQUES
 - UPDATE LACIE TECHNIQUES FOR WHEAT, CORN, SOYBEANS
- "END-TO-END" SYSTEM
 - ANALYSIS COMPONENT
 - ACQUISITION COMPONENT INSTALLATION
 - DATA BASE COMPONENT PROCUREMENT
- ADDED ATS CAPABILITIES (AT USDA MANAGEMENT'S DISCRETION)
 - CONDITION ASSESSMENT
 - PRODUCTION IMPACTS

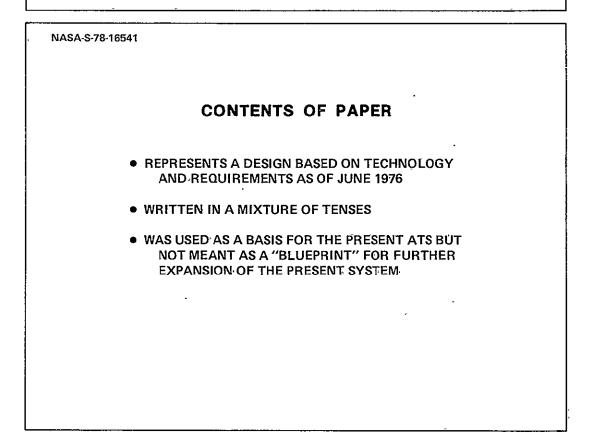
CHRONOLOGY OF EVENTS			
DATE	EVENT	LACIE SYMPOSIUM PAPER	
APR 1975	USDA USER REQUIREMENTS	USER REQUIREMENTS AND A PRACTICAL APPLICATION OF TECHNOLOGY	
FEB 1976	MANAGEMENT PLAN	TECHNOLOGY TRANSFER TO USER ATS	
		FUNCTIONAL DEFINITION AND A DESIGN OF A USDA SYSTEM	
APR 1976	DESIGN STUDY INITIATED	DATA BASE DESIGN FOR A WORLDWIDE MULTICROP INFORMATION SYSTEM	
AUG 1976	DESIGN CDR	A MODEL FOR COST PROJEC- TIONS OF APPLICATIONS SYSTEM	

DATE	EVENT	LACIE SYMPOSIUM PAPER
	·	
JUN 1977	ATS CONTRACT AWARD	THE APPLICATION TEST SYS- TEM: TECHNICAL APPROACH AND SYSTEM DESIGN
OCT 1977	ATS USE INITIATED	
DEC 1977		THE APPLICATION TEST SYSTEM: EXPERIENCE TO DATE AND FUTURE PLANS
	<u>وت</u> .4	
1		

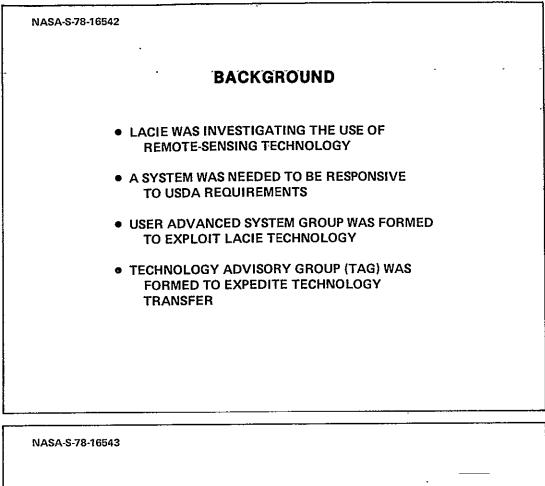
,

USDA APPLICATION TEST SYSTEM (ATS) SESSION

FUNCTIONAL DEFINITION AND DESIGN OF A USDA SYSTEM S. Evans, USDA

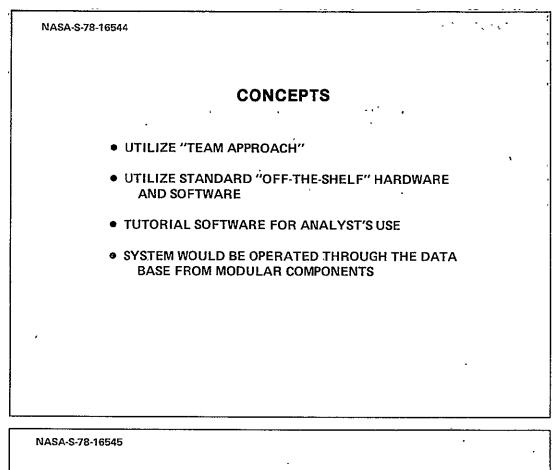

NIΔ	SA-S	78.1	6540
INA	3H-9		0040

. '

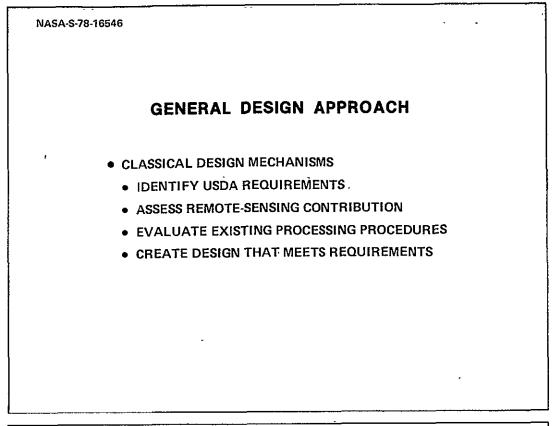

FUNCTIONAL DEFINITION AND DESIGN OF A USDA SYSTEM

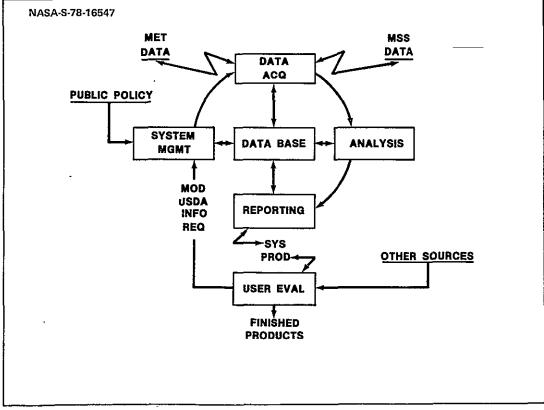
,

,

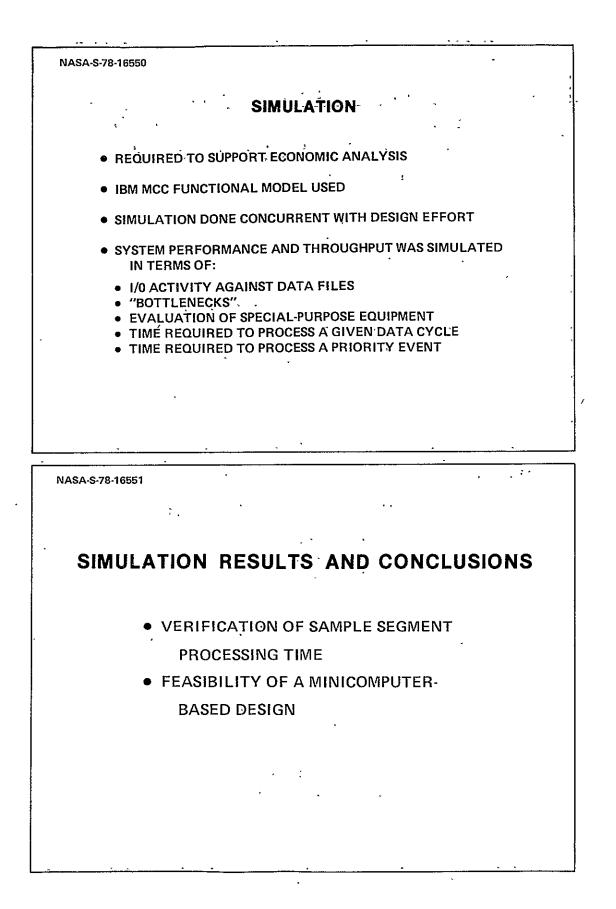


PAGE 4/98 INTENTIONALLY BLAN


CONSTRAINTS


- AVAILABLE MANPOWER WOULD BE 60 PERSONS
- PERSONNEL WOULD NOT LIKELY BE FAMILIAR WITH ADP TECHNIQUES OR TERMINOLOGY
- 7-DAY TURNAROUND
- SECURITY PRECAUTIONS FOR SAFE-GUARDING CROP ESTIMATE DATA
- SOFTWARE TO BE WRITTEN IN HIGH-LEVEL LANGUAGES

OBJECTIVES


- VALIDATE AND ASSIST IN OPTIMIZATION OF LACIE TECHNOLOGY
- TRANSFER OPTIMIZED TECHNOLOGY
- TRAIN USDA ANALYSTS IN LACIE TECHNIQUES
- APPLY LACIE EXPERIENCE TO ASSESS POTENTIAL OF OTHER FEASIBLE PROJECTS
- ACHIEVE DETAILED SYSTEM GOALS:
 - TIMELINESS
 - ACCURACY
 - OBJECTIVITY
 - CONTINUITY

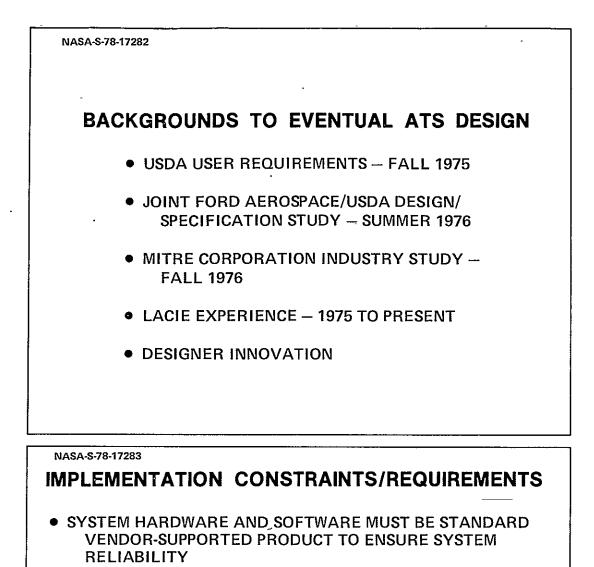
NA	SA-S-78-16548
	DATA PROCESSING SYSTEM (DPS)
	DPS PROVIDES
1	 DATA BASE STORAGE AND PROCESSING CAPABILITY CROP ANALYSIS DISPLAYS AND PROCESSING REPORT GENERATION END USER INTERFACE
	COMPUTERS AND PERIPHERAL DEVICES
	 STANDARD PRODUCT SMALL TO MEDIUM MODULAR
	 OPERATING SYSTEMS AND SUPPORT SOFTWARE
	 STANDARD PRODUCT STANDARD "HOOKS" PROVIDE INTERACTIVE INTERFACE
,	

	DPS COMPONENT CONFIGURATION
	HOST COMPUTERS
	 HIST DATA EVAL DATA REPORT DATA
	• DATA BASE COMPUTER
	 YIELD ANALYSIS AGGREGATION REPORTING
	• ACQUISITION COMPUTER
	MSS DATAMET DATA
•	ANALYST COMPUTERS (3)
	ANALYST STATIONS (3 x 3)

USDA APPLICATION TEST SYSTEM (ATS) SESSION

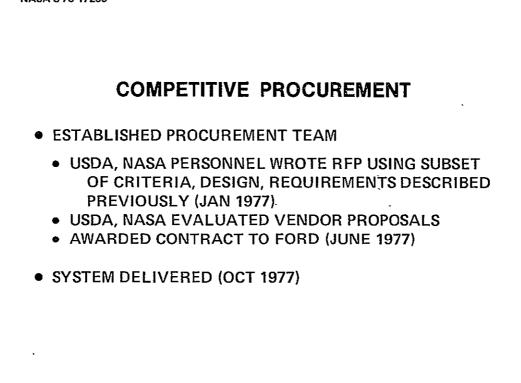
ATS – TECHNICAL APPROACH AND SYSTEM DESIGN R. Hurst, USDA

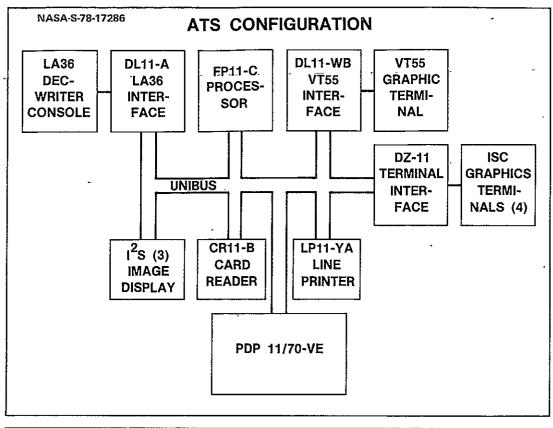
THE APPLICATION TEST SYSTEM TECHNICAL APPROACH AND SYSTEM DESIGN

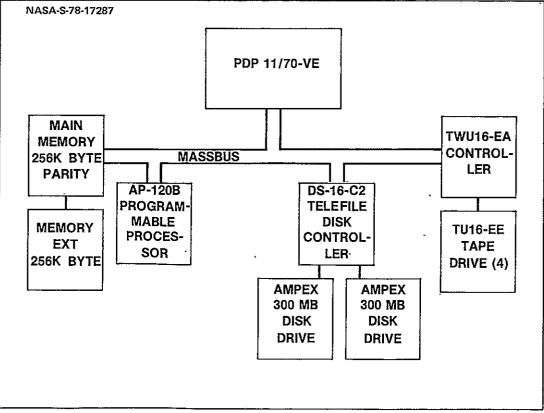

NASA-S-78-17281
OBJECTIVES
PRESENT THE DESIGN OF THE ATS COMPUTER SYSTEM WITH REGARD TO:

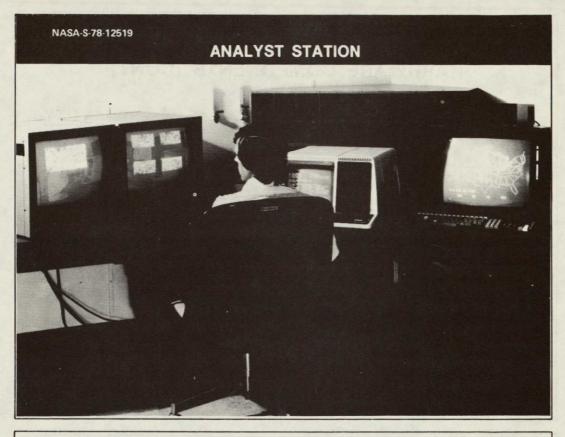
ESTABLISHMENT OF REQUIREMENTS
PERFORMANCE SPECIFICATIONS
PROCUREMENT ACTIVITIES

DESCRIBE MAJOR HARDWARE AND SOFTWARE COMPONENTS
DESCRIBE SYSTEM UTILIZATION
PRESENT CURRENT AND PLANNED AUGMENTATION


PAGE 498 INTENTIONALLY BLAN


۰ <u>.</u> ۱




- OPERATING SYSTEM MUST NOT BE MODIFIED
- MODULAR COMPONENTS (RESPONSIVE TO DYNAMIC OPERATIONAL SYSTEM REQUIREMENTS)
- HIGHER LEVEL LANGUAGES USED FOR APPLICATIONS
 SOFTWARE
- CODASYL DATA BASE MANAGEMENT SYSTEM MUST BE PROVIDED
- QUERY PACKAGE MUST BE PROVIDED
- MUST BE STAND-ALONE SYSTEM BUT HAVE CAPABILITY OF INTERFACING WITH A DATA ACQUISITION COMPUTER SYSTEM AND A DATA BASE COMPUTER SYSTEM
- MUST SUPPORT 5 ANALYST STATIONS

APPLICATION TEST SYSTEM HARDWARE COMPONENTS

ITEM	MODEL	QUANTITY		
CPU	DEC PDP 11-70-VE	1		
MAIN MEMORY PROGRAMMABLE	DEC 512K BYTES FLOATING POINT	-		
PROCESSOR SYSTEMS, INC., AP120B 1 ANALYST CONSOLE/STATION				
IMAGE DISPLAY ALPHA/GRAPHICS	I ² S MODEL 70E	1		
DISPLAY	DEC VT55	1		
DISPLAY HARDCOPY	DEC VT55	1		

APPLICATION TEST SYSTEM HARDWARE COMPONENTS (CONT)

ITEM

MODEL

QUANTITY

PERIPHERALS	
AMPEX 9300, 300	
MEGABYTES EACH	2
DEC DUAL DENSITY,	
45 IPS	4
DEC 600 CPM	1
DEC LA36	1
DEC LP11A, 600 LPM	1
MASSBUS, UNIBUS	
ISC 8051	4
	MEGABYTES EACH DEC DUAL DENSITY, 45 IPS DEC 600 CPM DEC LA36 DEC LP11A, 600 LPM MASSBUS, UNIBUS

APPLICATION TEST SYSTEM SOFTWARE COMPONENTS

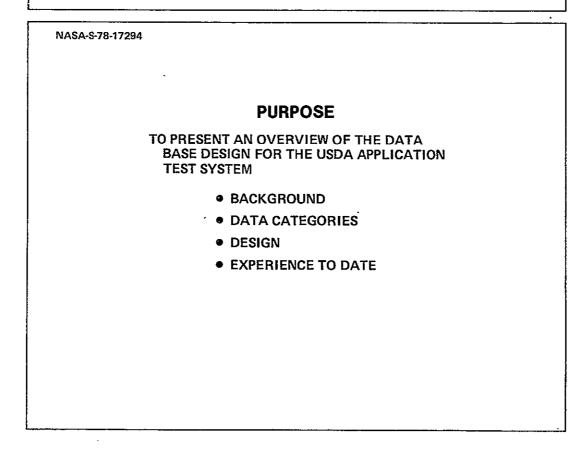
DECIAS

ITEM

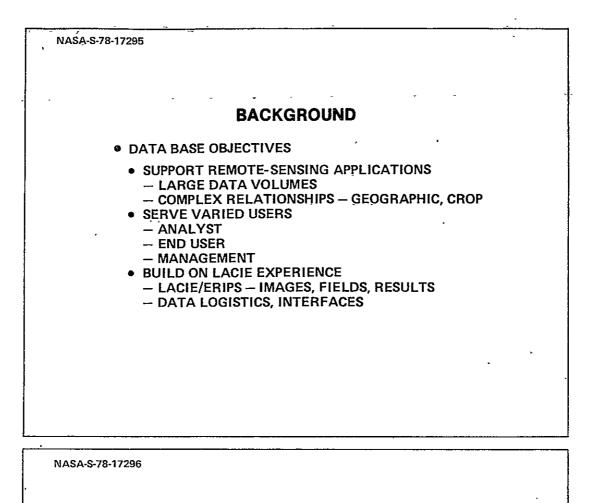
MODEL

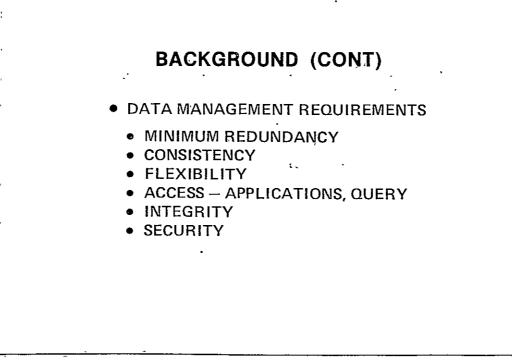
OS	DECTAS
ANALYST STATION SOFTWARE	FORD AEROSPACE IMDACS
FORTRAN COMPILER	DEC FORTRAN-IT PLUS
COBOL COMPILER	DEC 1974 ANSI COBOL
SORT/MERGE	DEC UTILITY
TEXT EDITOR	DEC EDI, INTERACTIVE TEXT EDITOR
ASSEMBLER, SIMULATOR	FLOATING POINT SYSTEMS, INC
DBMS	CULLINANE CORP IDMS (CODASYL BASED)
QUERY	CARS 3
STATISTICAL PACKAGE	TEXAS A&M MATHPAC

USDA APPLICATION TEST SYSTEM (ATS) SESSION

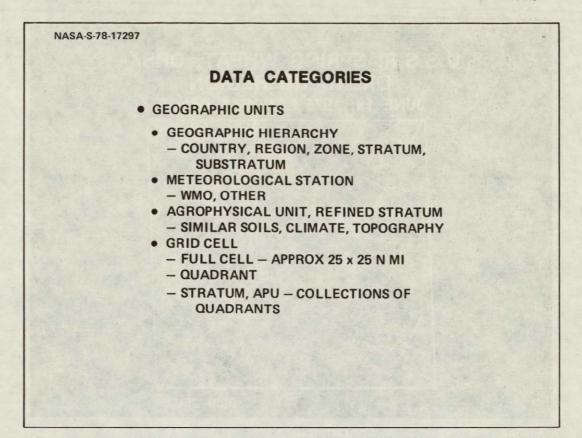

DATA BASE DESIGN FOR A WORLDWIDE MULTICROP INFORMATION SYSTEM G. Driggers, USDA

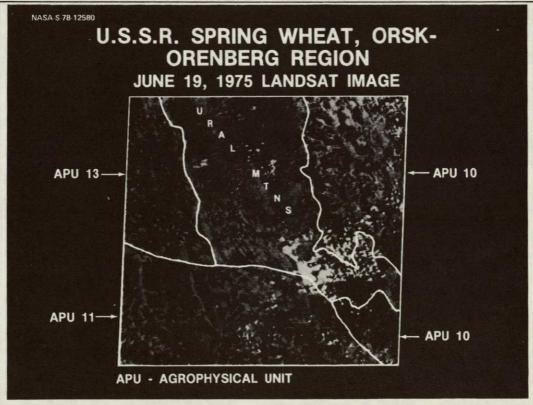
Original photography-may be gurchased from EROS Data Center

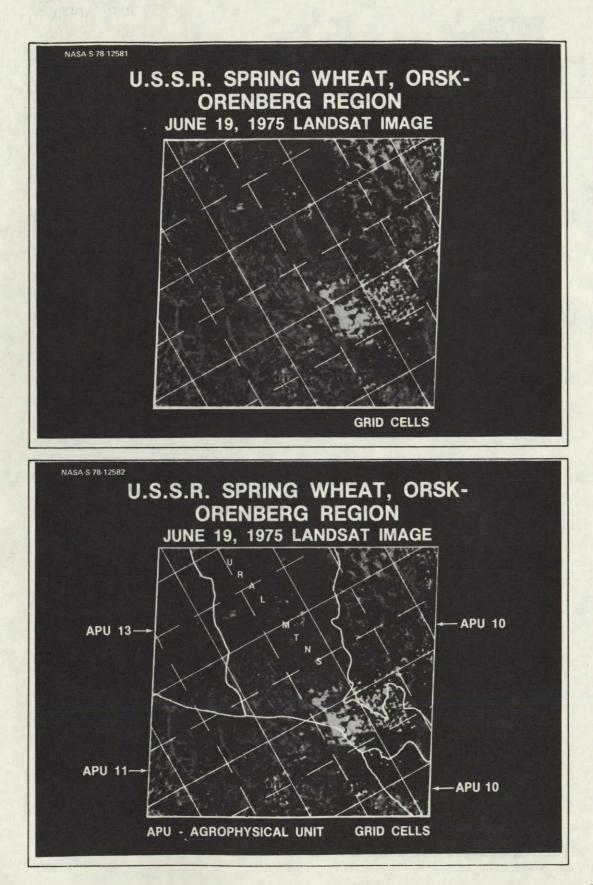

Sioux Falls, SD 57198


-

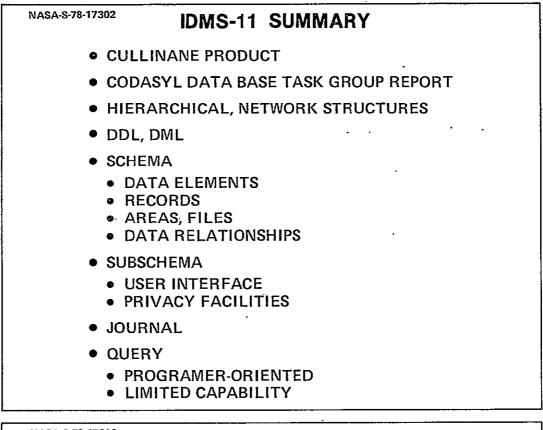
DATA BASE DESIGN FOR A WORLDWIDE MULTICROP INFORMATION SYSTEM

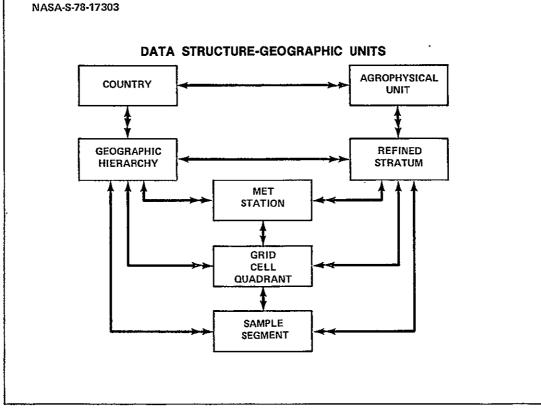



PAGE 508 INTENTIONALLY BI



OF POOR DUALITY

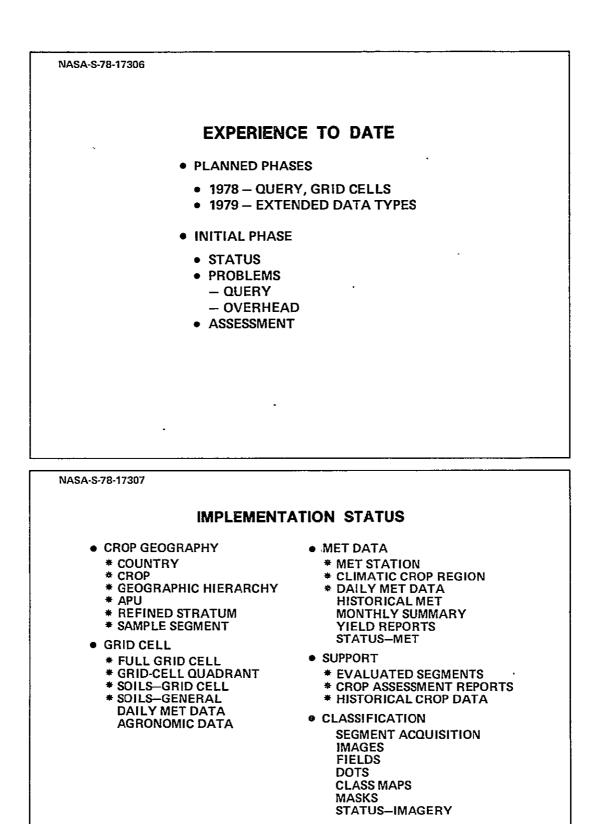



ORIGINAL PAGE IS OF POOR QUALITY

DATA CATEGORIES (CONT)
• METEOROLOGICAL DATA
 STATION – DAILY, MONTHLY GRID CELL – DAILY, MONTHLY
AGRONOMIC DATA
SOILSCROPPING PRACTICES
CROP ASSESSMENT REPORTS
• ATS, CAS
HISTORICAL DATA
 USDA DATA – AREA, YIELD, PRODUCTION METEOROLOGICAL
• STATUS DATA

.

 CONFIGURATION HARDWARE PDP 11-70, 512K BYTES MAIN STORAGE DISK STORAGE TELEFILE CONTROLLER TWO AMPEX DISK DRIVES WITH 300-MB PACKS TAPE DRIVES (4) SOFTWARE – IDMS, FMS, QUERY DESIGN APPROACH RECORD TYPES STRUCTURE SCHEMA DESIGN STORAGE ALLOCATION
 PDP 11-70, 512K BYTES MAIN STORAGE DISK STORAGE TELEFILE CONTROLLER TWO AMPEX DISK DRIVES WITH 300-MB PACKS TAPE DRIVES (4) SOFTWARE – IDMS, FMS, QUERY DESIGN APPROACH RECORD TYPES STRUCTURE SCHEMA DESIGN
 RECORD TYPES STRUCTURE SCHEMA DESIGN
STRUCTURE SCHEMA DESIGN



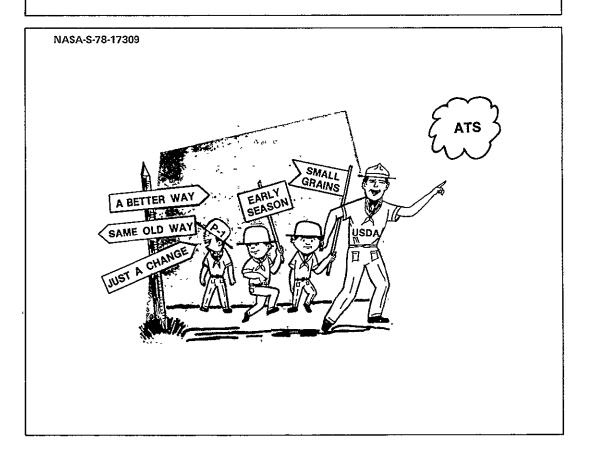
.

NASA-S-78-17304		<u></u>	
DATA VOLUME (MI	LLIONS	OF BYTES)	
	5	.5 ACO/SS	<u>7.0 ACQ/SS</u>
• IMAGERY, CLASSIFICATION D	ΑΤΑ	245	310
ANCILLARY DATA		35	35
• SOFTWARE, WORKING STORA	GE	<u>50</u>	<u>50</u>
TOTAL		330	395
REQUIRED DISK CAPACIT	Y (MILLI	ONS OF BYT	ES)
	ASSUM	ED DISK LOA	D FACTORS
	60	70	80
	PERCEN	IT <u>PERCEN</u>	<u>T</u> <u>PERCENT</u>
• AVERAGE 5.5 ACQUISITIONS	550	470	415
• AVERAGE 7.0 ACQUISITIONS	660	565	495

NASA-S-78-17305 <u>ASSUMPTIONS</u> 266 SAMPLE SEGMENTS LANDSAT-2 FORMAT (4 BANDS, 117 LINES OF 196 PIXELS) 350 METEOROLOGICAL STATIONS 3450 GRID CELLS (FULL, QUADRANT)

.

USDA APPLICATION TEST SYSTEM (ATS) SESSION


ATS – EXPERIENCE TO DATE AND FUTURE PLANS G. May, USDA

Original photography may be gurchased from: EROS Data Center

Sioux Falls, SD_ 57198

PAGE 518 INTENTIONALLY BLANK

THE ATS EXPERIENCE TO DATE, CURRENT AND FUTURE PLANS

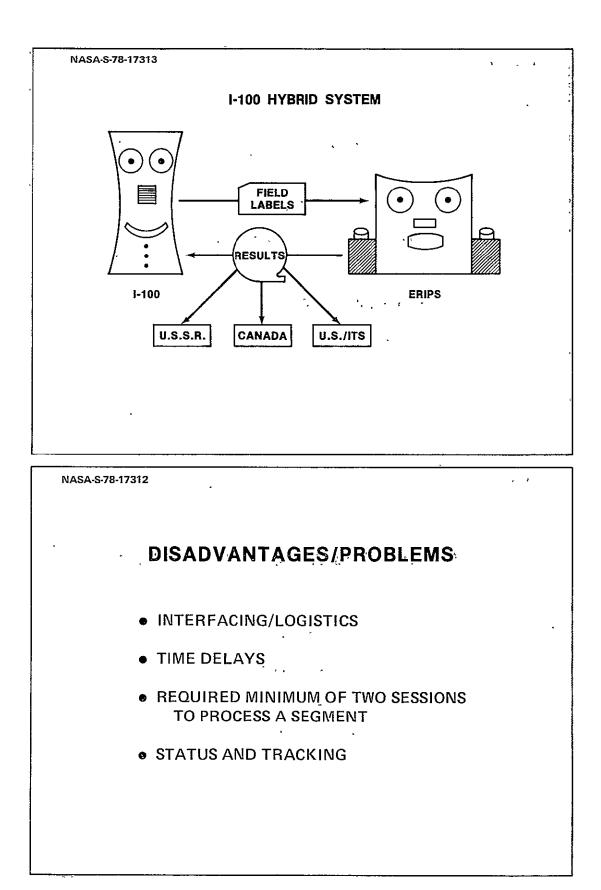
PAGE 520 INTENTIONALLY BLANK.

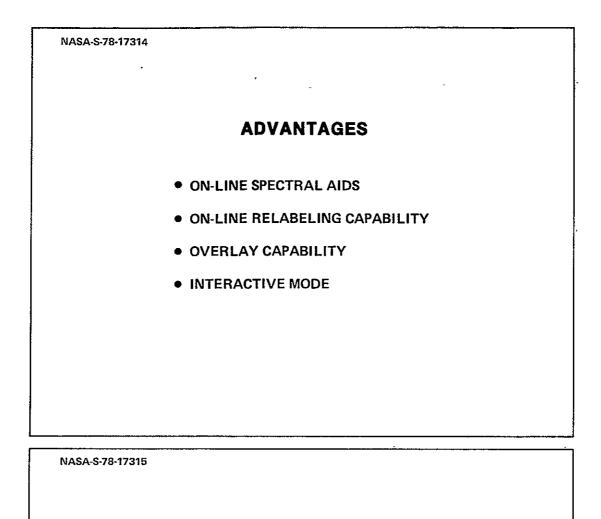
-

PURPOSE OF PRESENTATION

.

DISCUSS THE DATA ANALYSIS COMPONENT AND HOW THE DATA ARE BEING APPLIED TO PROBLEMS IN AGRICULTURE


-

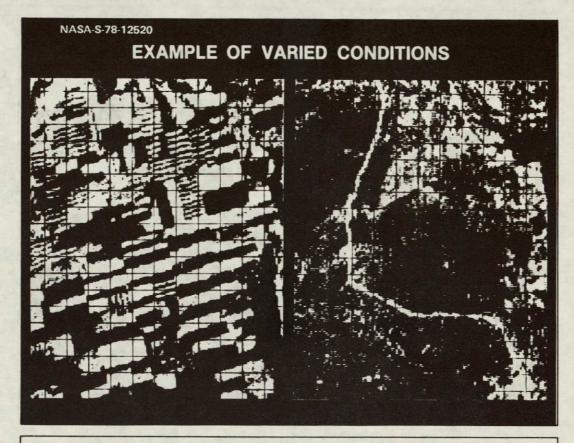

NASA-S-78-17311

THREE-PART PRESENTATION

- ANALYST EXPERIENCE TO DATE
- CURRENT WORK
- FUTURE PLANS

•

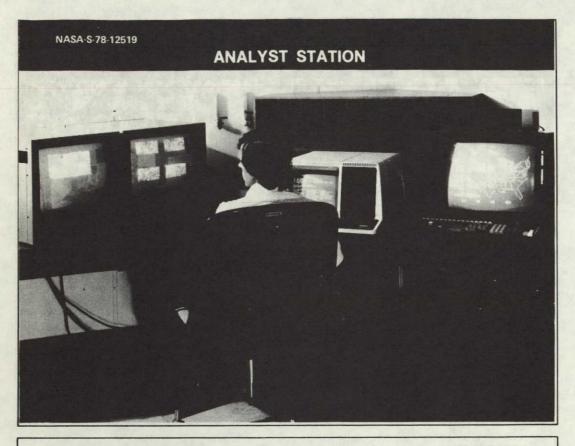
VARIED CONDITIONS THROUGHOUT STUDY AREA


- CULTURAL PRACTICES
- WEATHER CONDITIONS
- FARMING METHODS

-

• CROP TYPES

i

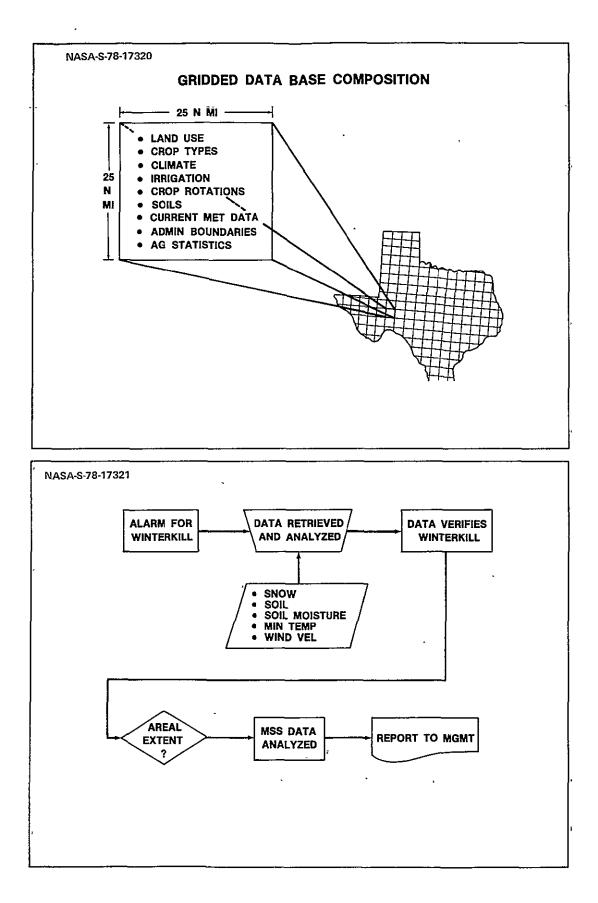

`

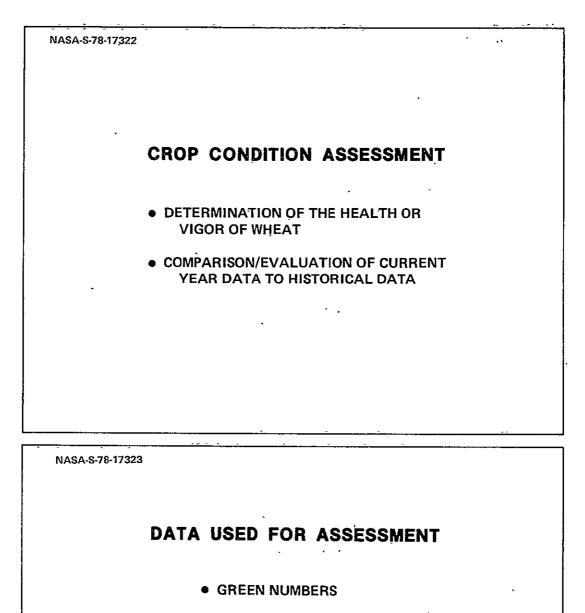
)

SUMMARY OF I-100 HYBRID EFFORT

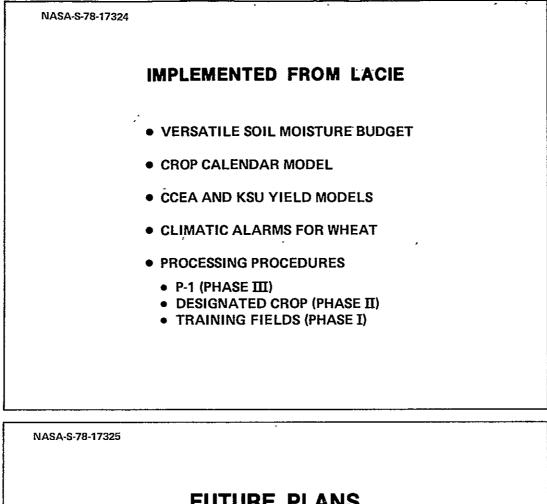
- HARDWARE, SOFTWARE PROBLEMS IDENTIFIED AND CORRECTED
- IDENTIFICATION OF IMPROVEMENTS THAT UPGRADED SYSTEM
- USDA ANALYSTS GAINED EXPERIENCE IN PROCESSING AND ANALYZING SEGMENTS ON INTERACTIVE SYSTEM
- EXPERIENCE GAINED WAS INCORPORATED INTO THE DESIGN AND IMPLEMENTATION OF THE USDA APPLICATION TEST SYSTEM

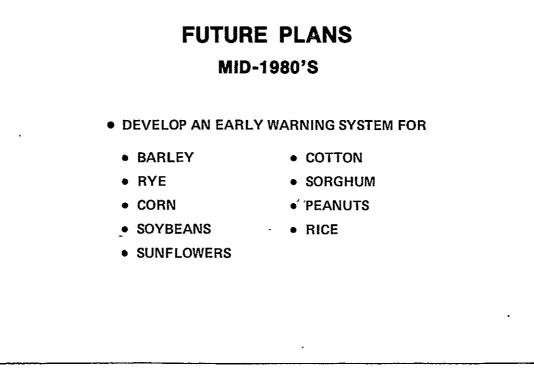
ORDERAL PARE B

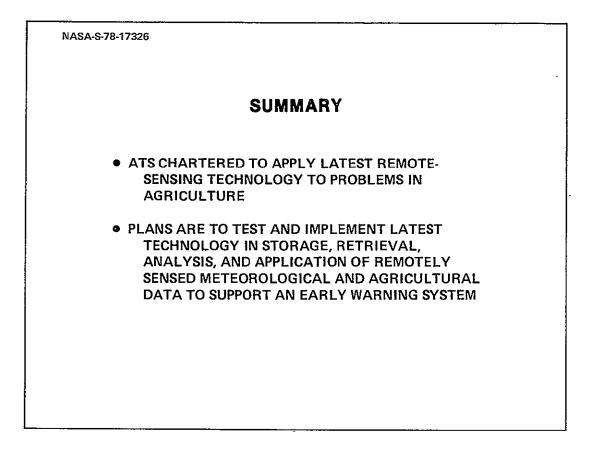

CURRENT PLANS


 DEVELOP AN EARLY WARNING SYSTEM FOR SPRING AND WINTER WHEAT

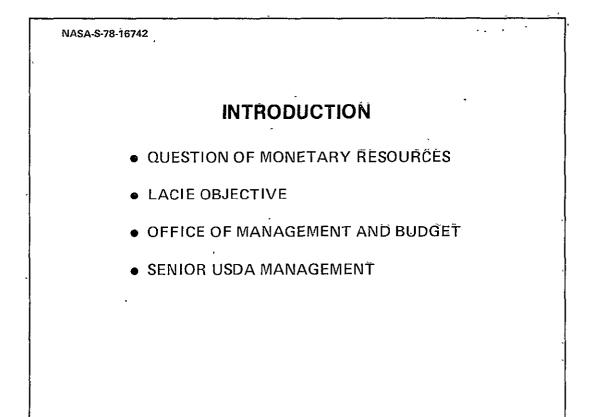
 THE PURPOSE OF THIS SYSTEM IS TO DETECT AND ASSESS, AS EARLY AS POSSIBLE, CROP CONDITIONS THAT MAY AFFECT PRODUCTION AND QUALITY OF WHEAT


ORIGINAL PAGE IS OF POOR QUALITY

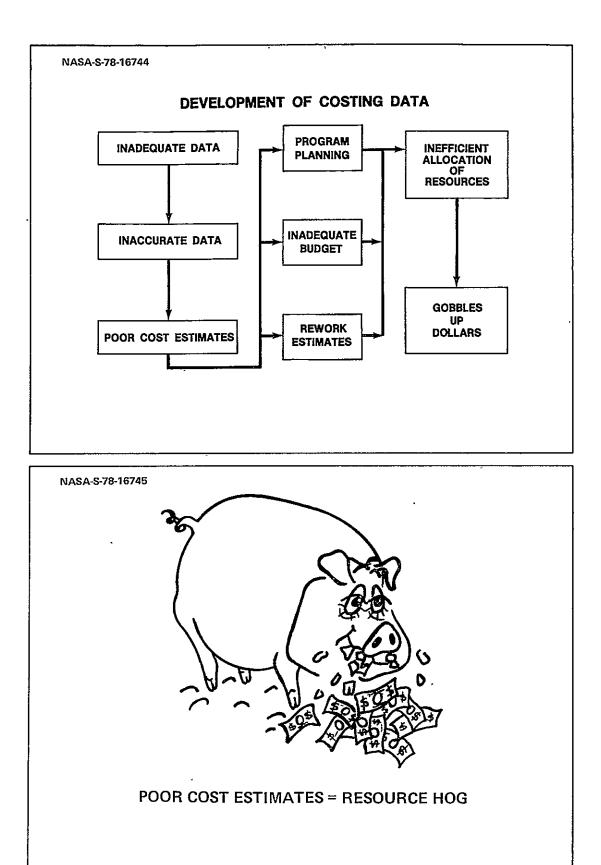

1

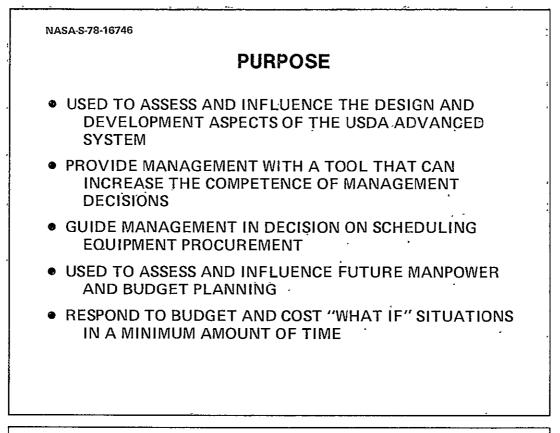


- LANDSAT IMAGERY
- CROP BIOSTAGE
- METEOROLOGICAL
- SOIL MOISTURE (WHERE
 AVAILABLE)

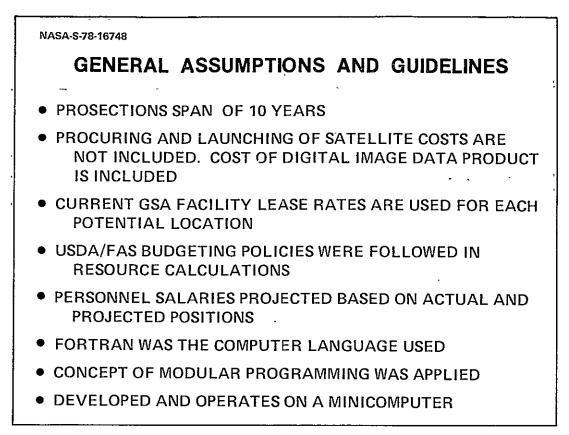


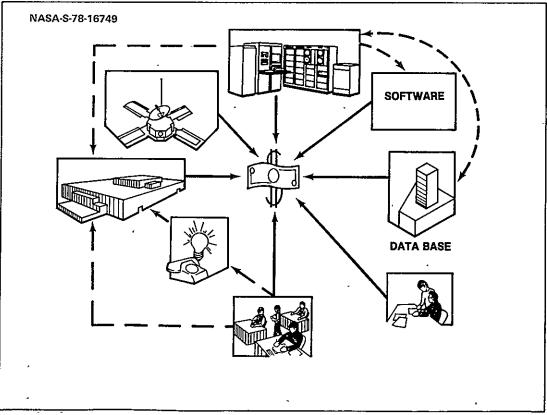

N79-1449

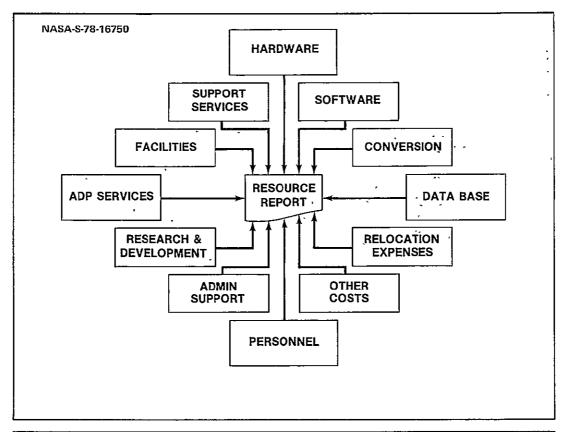

USDA APPLICATION TEST SYSTEM (ATS) SESSION

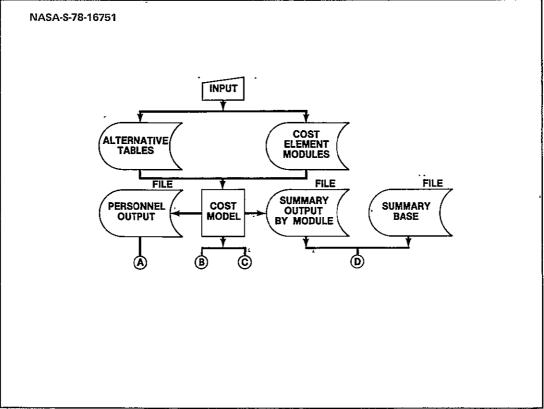

RESOURCE MODELING: A REALITY FOR PROGRAM COST ANALYSIS L. Fouts, USDA

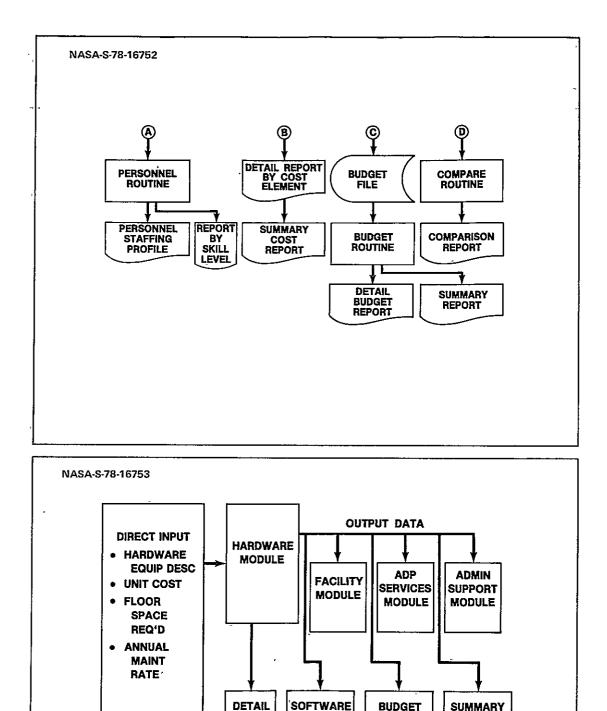
PAGE 532 INTENTIONALLY BLANK



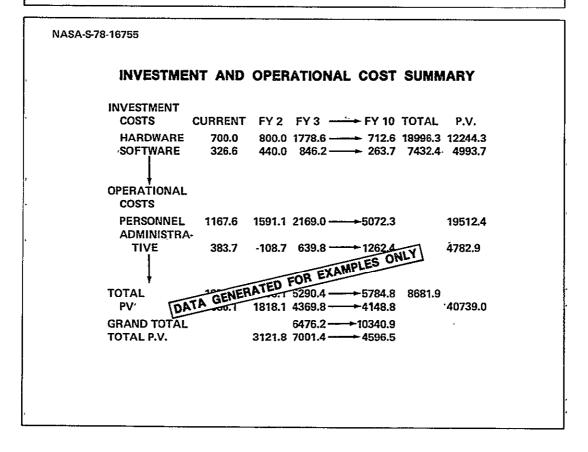


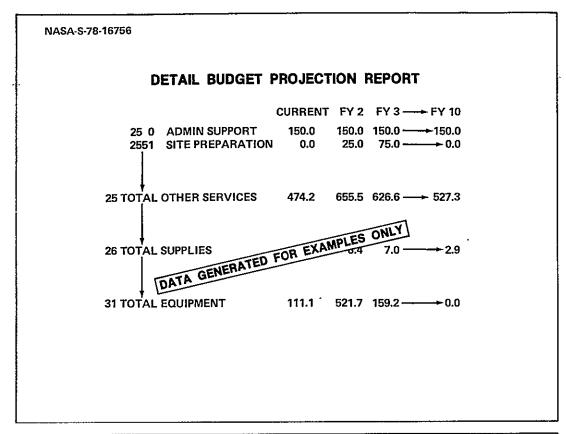




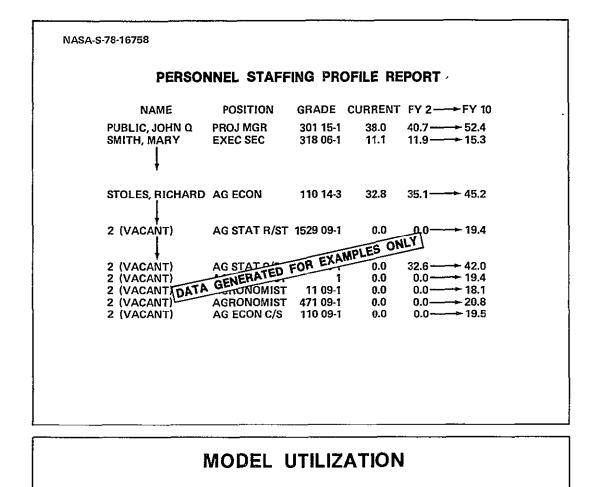

APPROACH TO MODELING • IDENTIFY MAJOR COST ELEMENTS • CATEGORIZE COST ELEMENTS · INVESTMENT OPERATIONS • ESTABLISH INTERDEPENDENT RELATIONSHIPS • DETERMINE DETAIL COMPONENTS OF EACH ELEMENT • OUTPUT FORMATS

MODULE

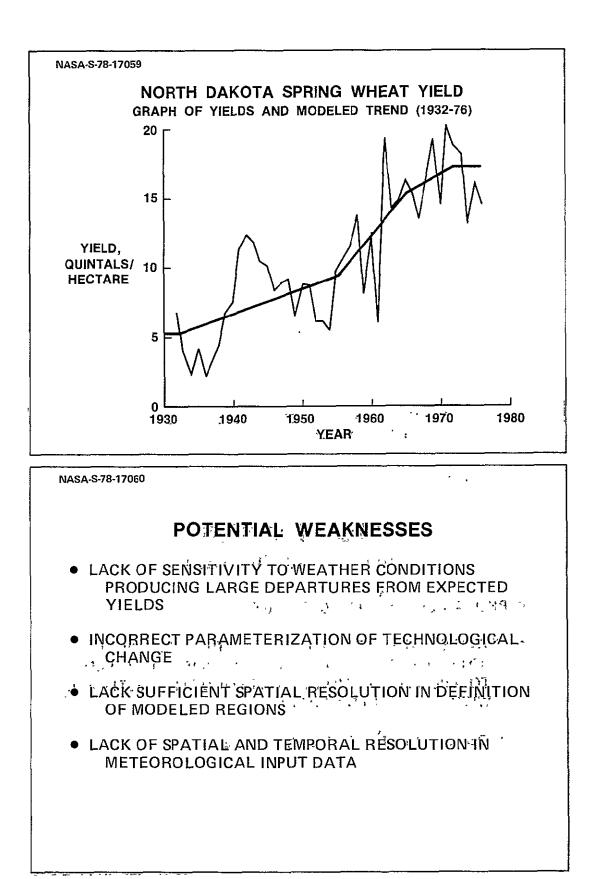

FILE


FILE

REPORT


DETAILED REPORT - HARDWARE

DISK CONTROLLER 15 9.1 9.1 9.1 9.1 DISK UNITS 34 15.0 139.6 139.6 30.0 MAG TAPE CONTROLLER 14 12.5 12.5 12.5 12.5 MAG TAPE DRIVE 25 14.0 28.0 28.0 14.0 GRAPHIC TERM/COPIER 12 7.5 7.5 7.5 0.0 CARD RDR/PUNCH 5 15.0 15.0 15.0 15.0 15.0 LINE PRINTER - 1200LP 1 31.5 31.5 0.0 0.0 V V V 131.5 31.5 0.0 0.0 V V V 131.5 31.5 0.0 0.0 V V V V 19.2 XAMPLES ONLY TOTAL HARDWARE VALUE V 19.2 XAMPLES ONLY DATA GENERATED FOR V 727.2 302.1	DISK UNITS 34 15.0 139.6 139.6 30.0 MAG TAPE CONTROLLER 14 12.5 12.5 12.5 12.5 MAG TAPE CONTROLLER 14 12.5 12.5 12.5 12.5 MAG TAPE DRIVE 25 14.0 28.0 28.0 14.0 GRAPHIC TERM/COPIER 12 7.5 7.5 7.5 0.0 CARD RDR/PUNCH 5 15.0 15.0 15.0 15.0 CARD READER 8 5.6 0.0 0.0 0.0 LINE PRINTER - 1200LP 1 31.5 31.5 0.0 0.0	DISK UNITS 34 15.0 139.6 139.6 30.0 MAG TAPE CONTROLLER 14 12.5 12.5 12.5 12.5 MAG TAPE CONTROLLER 14 12.5 12.5 12.5 12.5 MAG TAPE DRIVE 25 14.0 28.0 28.0 14.0 GRAPHIC TERM/COPIER 12 7.5 7.5 7.5 0.0 CARD RDR/PUNCH 5 15.0 15.0 15.0 15.0 CARD READER 8 5.6 0.0 0.0 0.0 LINE PRINTER - 1200LP 1 31.5 31.5 0.0 0.0	NAME	ατγ	PRICE	CURRENT	FY 2	→ F	Y 10
MAG TAPE CONTROLLER 14 12.5 12.5 12.5 MAG TAPE DRIVE 25 14.0 28.0 28.0 14.0 GRAPHIC TERM/COPIER 12 7.5 7.5 7.5 0.0 CARD RDR/PUNCH 5 15.0 15.0 15.0 15.0 CARD READER 8 5.6 0.0 0.0 0.0 LINE PRINTER - 1200LP 1 31.5 31.5 0.0 0.0	MAG TAPE CONTROLLER 14 12.5 12.5 12.5 MAG TAPE DRIVE 25 14.0 28.0 28.0 14.0 GRAPHIC TERM/COPIER 12 7.5 7.5 7.5 0.0 CARD RDR/PUNCH 5 15.0 15.0 15.0 15.0 CARD READER 8 5.6 0.0 0.0 0.0 LINE PRINTER - 1200LP 1 31.5 31.5 0.0 0.0	MAG TAPE CONTROLLER 14 12.5 12.5 12.5 12.5 MAG TAPE DRIVE 25 14.0 28.0 28.0 14.0 GRAPHIC TERM/COPIER 12 7.5 7.5 7.5 0.0 CARD RDR/PUNCH 5 15.0 15.0 15.0 15.0 CARD READER 8 5.6 0.0 0.0 0.0 LINE PRINTER - 1200LP 1 31.5 31.5 0.0 0.0	DISK CONTROLLER	15	9.1	9.1	. 9.1		9.1
MAG TAPE DRIVE 25 14.0 28.0 28.0 14.0 GRAPHIC TERM/COPIER 12 7.5 7.5 7.5 0.0 CARD RDR/PUNCH 5 15.0 15.0 15.0 15.0 15.0 CARD READER 8 5.6 0.0 0.0	MAG TAPE DRIVE 25 14.0 28.0 28.0 \rightarrow 14.0 GRAPHIC TERM/COPIER 12 7.5 7.5 7.5 \rightarrow 0.0 CARD RDR/PUNCH 5 15.0 15.0 15.0 \rightarrow 16.0 CARD READER 8 5.6 0.0 $0.0 \longrightarrow 0.0$ LINE PRINTER - 1200LP 1 31.5 31.5 $0.0 \longrightarrow 0.0$	MAG TAPE DRIVE 25 14.0 28.0 28.0 \rightarrow 14.0 GRAPHIC TERM/COPIER 12 7.5 7.5 7.5 \rightarrow 0.0 CARD RDR/PUNCH 5 15.0 15.0 15.0 \rightarrow 15.0 CARD READER 8 5.6 0.0 $0.0 \rightarrow 0.0$ LINE PRINTER - 1200LP 1 31.5 31.5 $0.0 \rightarrow 0.0$	DISK UNITS	34	15.0	139.6	⁻ 139.6	>	30.0
GRAPHIC TERM/COPIER127.57.57.50.0CARD RDR/PUNCH515.015.015.015.0CARD READER85.60.00.0 \longrightarrow 0.0LINE PRINTER - 1200LP131.531.50.0 \longrightarrow 0.0	GRAPHIC TERM/COPIER127.57.57.50.0CARD RDR/PUNCH515.015.015.015.0CARD READER85.60.0 $0.0 \longrightarrow 0.0$ LINE PRINTER - 1200LP131.531.5 $0.0 \longrightarrow 0.0$	GRAPHIC TERM/COPIER127.57.57.50.0CARD RDR/PUNCH515.015.015.015.0CARD READER85.60.0 $0.0 \longrightarrow 0.0$ LINE PRINTER - 1200LP131.531.5 $0.0 \longrightarrow 0.0$	MAG TAPE CONTROLLER	14	12.5	12.5	12.5	 ≻	12.5
CARD RDR/PUNCH 5 15.0 15.0 15.0 CARD READER 8 5.6 0.0 0.0 \longrightarrow 0.0 LINE PRINTER - 1200LP 1 31.5 31.5 0.0 \longrightarrow 0.0	CARD RDR/PUNCH 5 15.0 15.0 15.0 CARD READER 8 5.6 0.0 $0.0 \longrightarrow 0.0$ LINE PRINTER - 1200LP 1 31.5 31.5 $0.0 \longrightarrow 0.0$	CARD RDR/PUNCH515.015.015.015.0CARD READER85.60.0 $0.0 \longrightarrow 0.0$ LINE PRINTER - 1200LP131.531.5 $0.0 \longrightarrow 0.0$	MAG TAPE DRIVE	25	14.0	28.0	28.0		14.0
CARD READER 8 5.6 0.0 0.0 → 0.0 LINE PRINTER - 1200LP 1 31.5 31.5 0.0 → 0.0	CARD READER 8 5.6 0.0 0.0 → 0.0 LINE PRINTER - 1200LP 1 31.5 31.5 0.0 → 0.0	CARD READER85.60.0 $0.0 \longrightarrow 0.0$ LINE PRINTER - 1200LP131.531.5 $0.0 \longrightarrow 0.0$	GRAPHIC TERM/COPIER	12	7.5	7.5	7.5		0.0
LINE PRINTER - 1200LP 1 31.5 31.5 0.0 0.0	LINE PRINTER - 1200LP 1 31.5 31.5 0.0 0.0	LINE PRINTER - 1200LP 1 31.5 31.5 0.0 0.0	CARD RDR/PUNCH	5	15.0	15.0	15.0		15.0
	1		CARD READER	8	5.6	0.0	0.0		0.0
TOTAL HARDWARE PRESENT VALUE DATA GENERATED FOR 27.0 727.2	TOTAL HARDWARE PRESENT VALUE DATA GENERATED FOR EXAMPLE 712.6 727.2	TOTAL HARDWARE PRESENT VALUE DATA GENERATED FOR EXAMPLE 712.6 727.0 727.2 302.1	1	-					
PRESENT VALUE DATA GENERATED 727.0 727.2	PRESENT VALUE DATA GENERATED 727.0 727.2	PRESENT VALUE DATA GENERATED 727.2	TOTAL HARDWARE			FOR	XAM	-7	12.6
			PRESENT VALUE	ra gi	ENERA	727.0	727.2		02.1



	TOTAL	CURRENT	FY 2	FY 3	+ FY 10	TOTAL
11 — PERS	SONNEL					
co	MPENSATION	136.4	179.5	253.6 —	436.5	3512.5
12 – PERS	SONNEL					
	NEFITS	32.3	23.3	44.6 —	45.8	440.7
21 – TRA'						
	ANSPORTATIC					
	PERSONS	25.0	27.5	30.0 —	15.0	279.0
	NSPORTATION	-	<u> </u>			40.0
			3.5	10.0	NLY 0.0	40.0
	THINGS TS, ERDATA GEN	TED FO	OR EX	MPLES .	- 53.7	561.0
25 – OTH	FEDATA GEN	ERATED	655 5	626.6	527.3	
26 - SUPP	PLIES	4.3	8.4	7.0	- 2.9	67.1
31 - EQU		111.1	521.7	159.2 -		2753.9
	OTAL			•		40774.0
GRAND T	UTAL	816.7	1446.1	1165.1	+ 1081.2	13774.9

- COST ANALYSIS
 - INITIAL COST ANALYSIS FOR OMB 1976
 - UPDATED COST ANALYSIS FOR OMB 1977
 - FINAL COST ANALYSIS FOR OMB 1978
- ADP IMPACTS
 - OMB ADP BUDGET PROJECTION FY77, 78, 79
 - CONFIGURATION COST COMPARISONS
- BUDGET USE
 - FY78 ADP PART OF BUDGET
 - FY79, FY80 ENTIRE BUDGET IN ZBB DECISION PACKAGES
- MANPOWER PLANNING
 - EFFECTS OF NEW POSITIONS
 - CURRENT STAFFING PROFILE
- RESPONDS QUICKLY TO MANAGEMENT REQUESTS FOR INFORMATION

YIELD MODELS EVALUATION METHODOLOGY

- THROUGH HISTORICAL TESTS
 - TEST FOR SUPPORT OF 90/90 CRITERION
 - EVALUATE MODEL RESPONSE TO EXTREME WEATHER CONDITIONS
 - DETERMINE PREHARVEST PREDICTIVE ABILITY OF MODELS
 - MONITOR IMPACT OF SIGNIFICANT CHANGES IN TECHNOLOGY
 - EVALUATE ABILITY TO ESTIMATE PREDICTION ERRORS
- EMPHASIS HAS BEEN ON THE U.S. GREAT PLAINS AS A YARDSTICK TO EVALUATE FOREIGN CAPABILITIES
- THROUGH OPERATIONAL TESTS
 - EVALUATE THE METEOROLOGICAL DATA HANDLING CAPABILITIES
 - TEST THE "TRUE" PREDICTIVE ABILITIES OF THE LACIE YIELD MODELS

NASA-S-78-17062

YIELD MODELS 90/90 CRITERION TEST

- PROBABILITY $(|P-P| \le 0.1P) \ge 0.9$
- IT CAN BE SHOWN THAT THE 90/90 CRITERION WITH BOTH ACREAGE AND YIELD ERRORS IS EQUIVALENT TO A 90/93 CRITERION FOR A PRODUCTION ESTIMATE WITH ONLY YIELD ERRORS
- PROBABILITY $(|P_{*} P| \le .0707 P) \ge 0.9$

