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CENERAI. I N'ritttl)IICI'ION

'I'heoret i ca i l l o i d meehau I ca rt-search erissent i a l l y seekm to t i nd

complete quantitative and (It ial it. t ive desc'rlpt ion s ul LIL' vcluclty, prett-

sure, temper' it lire and inv tither relevant properI y-I iel(Is of f I iii (I t Iow

s^ystemtt of tliverse^ boundary and initial conditions,' stud a:,pvclally to

underst.md Iiow tIit•se propert y-fiel(Is determine, or arc themselves Ii) lu-

enct , il hy, such special and of i vi) very important fluid dyt ► amical pht-nomena

as flow instability, transition and turbulence.

Early efforts In theoretical Iluid nk-chanics focused on the so-called

"potent ial flow" of ideul incompressible fiuidsc. tluite a large class of

flown could he described as potential flows and the analytical methods

employed to dec;cribe "tech flews, were .clnwr:L perfect. 	 ll(:wever, viscosity

was soots recognized as a real fluid dynamical property critical to an

undersLauding, and to it complete description, of any important flow phent -

menon. This knowledge led to the creation of the mathematical model of

viscous: f luids governed by the has;ic Navicr-Stokes (N-S) ecquat ions.

Virtually every effort its theoretical fluid mechanics since the formula-

Lion of the N-S equations has become one of f indilig Solut ions to complets'

or simplified versions of the N-S equations for prescribed boundary

and initial conditions.

tint there ir: now a rapidly growing belief among fluid mtchanic5

re .e: ► rchers that either the N	 equations may nut be a completely correct

mathematical model of the general real fluid flow system, or thev mov

not have been adequately uudersLood by their users. It appears that

some corrections need to he made regarding q ;peciall y the expressions.

or conception of the fluid stress-strain rUtatiun employed in the N-S

i



c • cllt: ► t i out:, , i he botandary coed I i l olls emp I oyed f or t be var kil l I vs, and l he

nature of the variables themselves.	 Ftirther • more, notwlttut ► tand-

i ng t he .illparent I neomp I t•tt • nc-K:► of t ilt • dose r l pt I vt • bower, or i tc t ilt•

undo rsl and i ng of the N-S equat i otr y .ts a nail hems l i ca l uu ► de l of the gene r . ► 1

I !c► id I low systen ► , the mathematical problem of tiolvini; those ecivatlun:.,

fur any other than the :simplest cages, remains a rather formidable and

often yet impossible la:.k. F rom the few solutions of the N-S equations

avaflahle, very little intormation on very important flow phenonten.t such

as t low instahl l itv, transition and turbulence are yet possible. '111etft,

.u ► d :timilrtr misgivings lead one to the inevitable opinion that it would

be unlikely to formulate a satisfactory unif led model of general tlaid

flow capable of describing such IF 	 flow phenomena as turbulence, within

tilt: f ramt-work of determinist is classical mechanics and thcrn ►cAynan ► icts

such as the ordinary understanding of the N-5 equations would represeut

In ether words, if the N-S e,luations are to be employed ),Wtier.tily For

the description of fluid flow systems, it seems that all the variable~

i ► t tile N-5 equations must be understood to be sea! istical, not determiu -

Istic, quantities.

In the face of these realities theoretical fluid mechanics research

turned to statistical methods, especially, and often exclusively, for

the description of the turbulence phenomenon. 	 Initi.,IIy these rstatis-

tical methods con^;isted in direct formulation and application of proba-

bility (list ributi„n functions to describe the turbulent velocity, pressurc-

ind temperature fluctuations in simple turbulent flows (refs: j , 7	 .1

More roc • cr► t ly, powerful methods (refs: 2, 8, IZ, 14) based upon :.l .t is-

t ical mechan i c • s and thermodynamics have been deve I aped , in which u, u

models of the f luld f low system (usually as a set of iut erac• t in); I ► rt i-
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clew) ure conceptual tied and in which mechanical characteri -it icti are

vi.-wed ass probabilities :u ►d their values appear ;is mat hetuatlea] expect-

at ions.

lit ► t a I t hough these 'st . ► t I st ica 1 mechanical approac bcs -.how def t n i t e

promist- toward eventually resolving the I laid I low problem, there appears

to be st 111 a loiW, way to t he real ization of that Koal . Fundamental

problems, notoriously those of determining the proper stress-strain rela-

tion in the fluid flow system and the proper "history" tffects to iaci-

1itate closure of the set of descriptive equations of t 11 Ilaid Ilow

system, remain virtually untouched, and continue to palgue every effort,

however Sophisticated, it mathemat it al ly modeling the gent, r-A fluid I low

System.

From all practical considerations it seems quite valid to conclude

that iheoretical fluid mechanics research has for a while now been stuck

in a dead-end alley and does riot appear to possess any sensible exit-

d i recti on. And tire time seviiis overdue to re-evaluate the progress , in

theoretical IIuid meehanIcs research, as well as to systematically s.t

up the fluid Clow problem tow. ► rds a complete practical solution.

The urgent need for a systematic approach in theoretical fluid

mechanic~ research cannot be overemphasized. Hitherto, the trend in this

area of luuoan endeavor has been characterized by whit ma y be (lescr ibed

metaphorically :ati the "band-wagon" mentality: someone at sonic point

int roduces some "nc•w" method and everyone . f amps into his hind-wa).;on

with modifications and extensions but with little or no understanding

of the fundamental philosophy involved; iind when the new method is seen

to lead nowhcre, .t lull appears as the crowd waits for antttltc•r "new"
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melhud to emers;e. Such isn appraoch is completely unwarranted and has

hecn ve r y expensive in terms of monetar y cost and Ind ivf citia l fruntra-

t ions, not Lo n►ent ion its Ir tit t Icssness in terms of .c b.islc undcrstand-

Iu; ., and solut ion of the I Itlid I l,iw prol,lem--a prublt•m of extreme Impor-

tancu to man's technological and gent•ral development .

A sySLematit • approach to t luid usc•c • hanics researc • li sh"Illd le.id lc:

(:I) a better perspective of the su1 ► tvmal fluid flow problem,

(I))	 [hc I den tit it at Ion of thcr i n I imaI p rob leuls I mid .lmentaI to a
complete solution of the supremal problem, and

(c)	 it clear recopnitIon of the posr;il+i i it ic e s or impossihi l It Ics-
of complete solutions to the tInid tlow problem, as welI at; ()

the nature and type of mathtrmat ical Lot) Is ideal IY recited to
tac kI iiig the mathemat i c a I model ing of the f Iuld f low •.ysI.em.

And the results of such efforts should iniuse definite and nccdcd direction

to theoret1.caI fluid mechanI c s research.

In I 1)69 this invesLIgator undertook thlb heeded systcnuit I 	 invest I -

gat ion of the general fluid flow problem, and by 1971 had fully constated Lo

himself that any complete practical solution of the fluid tlttw problem

must involve the application of a valid and complete "general -syrstVill"

Lheory. It (1008 indeed appear that the I I u id I low syst em represela >. a

real model of the general dynamical s ystem in nature, t0 the extent th.it

anyone who caii effectively analyse the fluid flow s y stcm can also. with

only slight modifications to his technique, eftectively describt the

dynamical characteristics of any other natural system. Fol lowilu v, t xtt:i

save research in search of a "general--system" theory complete ;slid vill id

for all natural systems, this investigator erstablishcd in 1973 the

imindattoil for the formulation of such a theor y .	 Elt •munt5 cif this

It 	 thec y are prusented in reference (1). 	 As will ulti-

matel y be seen, gem.• ral- system theory either rt!:olvcs or points to a

i

ti ^.
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,I, I iit1Lc direct Lon fur the resultit Ion e,l al l the l'undanrenta1 1) rot) lemss

hith. , rto encountered in Hi, complete d, , ., t iption of I lu1d f low systems,.

The present work reps, , ,, nts a prel imInar y.  app  icat i„n of the tinder-

lying; princ'11)less of this invest i gat or ► s "general svSLuni” theory to the

des:, rilot Ion allot anaIvsses ,ef the fluid t low systens.	 Arr -it icuipt is made

herein to establish practical models. or elenecnts thereof. of the general

I Iuid I low system from tilt , point of v iew tit tit,- gent-ral sys it -m t heory

fundamental principles. Results thus obtained are applied to a simple

"experimental i luid flow system," as tes t case, with particular emph.isis

on the undcrstandi , ig of fluid flow instability, transition and turbulence.

'I'hlss report, iiowever, Is a prescrit-it Ion only of the' IinulamentaI

aspects of the stated work. In litter and more detailed cif forts b .- , tills

investigator, each of the major findings rel,ortcd herein is taken sep,lr-

ately and considered in depth.

Vic I undamcn to 1 phi l osophy that w i l l he employed t h rout;taout this

and future work Is that any equations that are to be used must he detived

by ubjecLive application of the uuivers.si and lnvarlant ;;eneral systeus

theory to the fluid flow s y st em; and any assumptions made must bu

explicit IN, indicated.	 Nothing Is taken to he sacred unless It conforms

speciti,.illy to the universal Invariance principles of thk general system

theory. That, It seems, is the only way by which we can he sure to

deLect and correct all those fundamental errors which have been prop.i-

gated through the hi5tory of fluid tneclianicss research and which have

stymied the development of :i true understanding; of fluid Ilow.

The "expet imental t luid flow system" chosen as the test case In tl,iti

work Is the very simple t l,iw satisfying the following re,luirements:

4	 !^
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(.t)	 int • umitressII)It , and t ime- Intltohendtmt t I.it	 1-it t- I)mmdary
I.ivi , r t low };twt 1 t ut • (I by t lit . t • yuat iun L , :

u/ "x + Jv/Jy - o
	

tl.l)
u 1u/ox + vJu /^) y - .)( I ^^/, v)/ tv

lh)	 Is tilt- relevant systvin part Iv1. • vist • usit y divided by tilt,
" ISS dviisity, that is, if tale rulevant systom Dart icle iK the
1 l Ill d ITIOI CCU I0, tIIVIt t_ - v - 1 i /p .	 It is ' 114.-.. 11 	 whit hood
reason, that the tistial molecular viscosity ilimild nut vary
In tilt '.xpvIAm.• ntal 111lid flow syhtcnl";

(r)	 tilt- lollowing; houndary - omlitIons are satiyllud.

u	 v	 (I at y	 Q }
a	 U 1 as y

whi t4• u, v, x and y have the usual inv aiiin};.

(I.1)
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''I' AA t ► F '1111. FIXIU I'L( ►b' S1'Stf."I

'. 1	 [it[ tofu, t ion

Wh: t	 I rci er t o as the St : it i ^,t I t'•c t	 pl,roavlc C., A) I	 t It.,t

Aar approach iu tht analvSis of Hv: • tc .t • which In hasud upon t tit : ► 1

energy as the primary and Indeed sole rv I vvaiit system varIabIv and which

i , f ouncled upon t he theory of t he "genera l -vyst ctn," as enrtnc l at ed by

thin lnier:tI valor In retcrcnve (1), with istaIImtIc "I tnc(h all icm :Ili It r;

1)rLinary ;it ti^t14.tl tool.

Gencro', Ky y tcm theory pruvidt • s the ct phv y tcal foundat ion ttt tlli:,

approach and permits the exten.,lon of a generalized n:ec! ► anlcs to tit.•

deacr i nt lull of the hutdc dynamic 's of ally tty y tcm, onev the syt:t t•ni' :t

tI relevant" eIcinents (i.e. system particles) have hevii identified. 	 Stat -

ltitical nuvchanicti, on the other hand, provides the analytical ruin by

which the interactions of the s;yst.ctu particlt•s and the cons,rquent statci-;

ut the systvin may he studied.

Details of statistical mechanical techniques for the analysi ►: of

the interactit ► ns of vets of particles are usually commonly availahlr ill

modern texthooks on that subject; this investigator especial iv rccom-

mrndr, the prcr.cn tations giveil by Khlochin (tt) and ISalescu (2).	 taut

details of the general s ystem ncoory from which rile plivs i c'v of SEA

deriver; are beyond the scope of the present work.	 it :should yuft ice,

nt ► n.'tlteless. to ante that the basic tenet~ of Sr.A are gviit rally accepted

in modern physics ,.nd stat i,t ics--espet i,cl lv in modern go, icral k inct is

tlivory. Sadly, however, the potent IaI value of there t. nets in general

system anaIysen is not very much appreciated by m.tn\ of t lit , it' uscrs

Within the framework of SI:A, the analvsin of anv 5y:.ictit revert
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. • 1..1 it it lit Iv tt► tht• 1)r of) lt-Ill of tlt terntlnljig It 	 cv, - I it Ion or ItlNoltit (on

of	 tht • !:v •.tt Ill 's total v I I rgv IIt . 1tl based ul•on .Ipl,114 . .IltIt- i111tlaI .ntd

boantd.aiv t. oil litlons; anv other ruIevaitt !,v?ilvin va1 1.11^Ik mai he recovrrud

b y •i, ltrtyrlat y	amt usually re  at Ivt I  ,,Imi,iv, t,t • 40,10.11 1,	 Ilrul. ► f ions

based upon moda I :ut•a I vst s of t lic -:vHtvnl l s t ul .11 vilit . I t-,V I it . 1 41 .	 The ban I i

governlnf; equal ion is. of course. Iht • t•tlu,at lost of cotlht • r it tun of t.1t.11

viii , r}, y Ior it t v.,,[ cm part isle Ilit	 i,•t itl}, with Its ur,- It • vant " uiivirottmiiit.

However. it Is iu the nicanilip, and the IdvilI.. 11 /cat Ittn o1 I Flt •." ,tt • m 11.11 1 1

c le t hat SEA is mt►:.t sensI t i vc antl nn ►st Itrt ►ne t o t•rror., ,	 Nevert I It- It ss

r'
the cunceptlua of tlic uystem part icIv can ht• made vxat I .

Hit- moth I of it s y stem . t • :	 room of intvi.ict iiig t,ystcm part ivIcs

arraiirt•tl In accordznu• e with dome generalizeti structure principle and

transforming iu :accordance with some !,t • nrralixed nu-chanIes is what wt-

refer to, livrr• in, as the SEA, or statistical energy, uu ►tit • I.	 1 shall flow

hrict Iv present tit,- SLA modt • 1 of the 1 laid t haw •;vstem.

2.2 The phys tea 1 Muds• 1

Kassent i,al ly. the physical SEA modal o1 tht• I Itlitt I low svmtrm is an

Iol lows:	 that the float I low system is at iul y ill-,I lilt it -.1 -it i^.t ICA

IieIJ of t • ttert;y statvs space-time str.ttiIIvd Iit an ;,I der t•ithrr of nit•no-

tonIcal I^ i lit- ruasing or of monot on t ca I I v der reasIng :•t.at y total - enerl,V

v.al acs. We may t ut ther undcrstand this moth•I when wt- consider i-t More

detaII whit it IS wt• ruler to as tht• encr l •.v -state. from the h.islc ti1:1

model tut I ht • geracra I system, ally syst cm Is a set of lilt I I, t i nl; p.at tit 1 t ..

w i t h press r i hed i n I t f at and boundary Monti I t i on-, .	 An.l we let I nc the s y st vm

{tart I 	 II , (that	 I::,	 I he "rt 1t•v. ill I, 	 5v-:t 1'111 t•It • Iltt'I1I )	 clot	 nt t cs:;:tI i I • .	 I • : .I

tliscrctt, t • ntity but rather as .t stiltlstic.tl >.lIhspacv of the sllt p tc"t-:.v;ttm

t'omlttisint; all lllotic ph y sical or ortlin:at\ units of the slthjtet-:.v,ttm
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which Ilk laesss Ident Ic.61 nlua I	 tttt al enurlSy	 anti	 what	 ,	 mot Ion	 is ilk scrIbed

by	 vxatl Iv	 t14t camv	 :•tat i y l it A	 law.	 Iltc	 t t ril l	 "phv^lt	 11	 ur	 nrdln.11 ."	 It:

of course. in relat lion to	 the	 sealo, ul	 purt apt Ion	 ,o	 t Ile	 uh jut t	 tt m.

HMIs, wh-it	 one avvepto as 	 .1	 sYlttunt't: part it	 le	 dependt,	 t'n	 tht•	 :,t ,Ile,•	 at

which the one proposes to drscribu the	 systenl.

In the flultl I'Ittw sv:+tem the physical or ordinary slyr,tvin units are

usual ly tilt• 1 luid molt t Iles (of to in t11e ca-.t (1l dissot • lated fluidN, atnmb

or lunized part it Ivs).	 'i'hu I luld I low system part it I,• whit li wov y h:tl I

Simply call the "fluid particle" is thus; any stat ittt it al subspace of tilt•

I laid 1 I,tw system runt Aininy, list) Ivvules which possess ident it-ill ttle,ul 1411.11

enery,% .old whose mot ions are described b y exal-t ly the r:autt .t at I!,t IcaI law.

In other words, a t told particle tall be either it 	 I Itlid ololetult or

a group of flultl molecules, or in dissocfatctl t luitls, a single ,1tom tor

lonized particle or a group of ,home; or ionized particles:.

5truminskiy (20) has argued 41tlite conviucin> •,ly that indtud theorct;-

cal its well as experimental data indicate that the main difference between

turbulent flows Involves geoups of molecules rather that individual mole-

cule:.; that Is tt- say, flultl particlu.• lu Iamin,:r flown ma y conslst of

sing1t , tmllecules while in turbulent f low&: (lull part irit• i would he groups

tut moletulus,	 tanerally, of course, the number t o t I Itild zenith 01141lecilic",

or other) within any fltlld particle will depend upon flit local tut:41

enerl;y I ield.	 I'tte matlit•malical characterizat(on tit tit I Itlftl part icle

:Mize in it 	 laid f lttw ~\stem is dislc • ussud later.

;Jet w,. Itowever, cont. Ititle with our phv>•i c,iI 	 11	 1 '1 F)ll.	 Wk . I`" Ilttw,

1 or examp I t, that ill the absence- tot anv ext trna I IV l ngto- tcd tnt'rf;v t i e l d

Krownian-tvpc motion s;huuld prevail anun f; ill  the naoicculus of an y Iluid

system; that Is, al 	 the Ilulu unit, would have iduntira] mean total

N.

i
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t iior1;y and oxcetav tit at i.-.t It al Iv siml i.lr mot Ion anti, thcrutt/ry Ibt I lull

tsylittm wt l
it 1A biv unt- largo lltId Ilarlit • Iv. 	 'Phut	 a 4t.11;n.mt I lulu , .v::ttill

with no vnvr1;y Iiiput would t t-if i 
ill 

it onl y mit , I laid par 114 It^ .u1d t lit •IvI.•It•.

wiltliti poliat ' t,s ultly Intvrllal dvimmic m --tilt 	 , .ot i oo of lilt' -. ­ 11-i witilill tilt'

t I uid part It • lo.	 A system can pussetitl t• xt 11 11.1 1 dynanti t t, - i t) I v i I I t ( ol► -

taln!i lnoru than one tivstum part It • Ic.	 I I . howl'vur. -its vxtvrnal cllt•r):Y

I luld i ►, impost'd upon .1 I lidd iivimitvttl. then I low m,lv ocrtlr II tht' inq ► osed

energy 1 it-id Is citht'r mm-unitorm or in nun-ttnilormly cunstraincd In

1114' . fluid I low tivtltvill; tills will result	 In local Val 1.11 Ion of tilt- mt•.ut

total unvi-files of I:.c fluid unit-4 which will manilt t	 a Stratil1, Itiou

tit t liv I laid	 •4 tout ot1 t ht' bast y of nivalk I tlt.1l t • ut•I gv- --t h.lt I s. ati .t

shear i nK o:	 nL f l it ltl,	 I n such a 1 I ow 41 t flat ion . t host . t l u l 4' l tilt l I ^ pos-

V14 if) ,. I thmit i t .1 l invan tilt it l t'llt'rgv 1',r ot lp t o I urm f lit' 1 I ow vm-rgy 4tat vs .

WItbIit caull such I Iow oner1;v statt'. o gle can. :it II 1st conceptu.111y. dis-

tingulsh and group together tho4t • I llid 11111 t4 whotit• Will Ion oboes the e;anit'

stilt I s t IcaI I.iwts--these are the f lulll hart Iclets.

Qultc obviuusIv. it tI Ili d part icIv call 	 be p robab i I I st I va I I v

described. :;incc b y dt'lsnittun it is u subspace of it Iluid spaev c()ntAlllll ►;

thosv ordinary or physical units (11KIlrcult•s in this ca4t') of the I laid

which pusst-fis stat ist ical iv similar nttlt ion as wt-11 a4 idi nt it ai mean tot a)

ener1;y.	 Furthcrnit ► re. we now h.lvt • a bet ter underslandltip, ul d4'-lit ► ite dit

I crvncct+ .uuoily, 1I tiid aytiLulns.	 For I list ancv. we know tI,11 :1 sl ;igii.tilt

Il ill tl with nu t• nergy input tonstI(titus ()Illy otur IItliti 11.1r t14'1 " . .Ind thus

possesses on l y i ill e rna I dynaml cti; it shvi ll - vii I I (lw 1111I.'t I lk . lit I 1 114'11 .Ih .tilt'

wit ii'll tont -Iiit-. at	 It'.i:.t	 two t'llelgy 8tatt-s vacll t i t	 wit it'll t '^ml.1iit:	 1111i'l

p.II I icict:; .old a nun-shcilred t low fillI -iI collt . Iill 0IIIV one cnt I,g%

with at	 Ic.it;t two flultt 1).1rtic•Ics.



In concitt::lon tit this plust•rat.it ton it f he phytiictal t onceptlon of the

SEA model of the fluid t low rtystem, I witst re-emphasize that what is

heing des craht•d is a .,.t.,ti:it teal, not ct itt•termIitIsI It 	 I told	 t cneti;y

states. Such a si.a t 	ical field Is best conceptualized as an Instant-

uneous clt ► ud of non-tin IIorm property dutsIty.	 fhus, anv pulnt in .t I luid

I low syt;Lem is alwa ys enclosed by a fluid p.trtIvIe; and ., t laid part lc lc

t • .uauot ht• concUptuaI Izt•d a . a 1 ixetl subspact .	 I'hctt • lott	 cmii nary to

posrtthle criticism that the SEA model implies discreteness of energy

status in ct ,Lradiction to acct•I,tvd contintttim coutcpts tit 	 !;ynit•ntn,	 f'

a cireful study of the foregoing discussion should obviate the fact that

the SF.A model tit% • ruIy emphasizes th.t t it 	 f orm energy 1 X141 	 f 1	 t

impost-d ulton all undissoci at ed I Iuld system, for example, will i11L rut l Lit t• :t

stI -itiftctttton of Lhe I lutd molecules on the basis Of "it 311 total energies:

anti that as a rest,lt oI this stratification or "tshcarinf;" of the tluid,

grotaps of, rather titan individual, fluid molecule.,. will become the relt•-

viii[ c • haracterisLit • units of tilt . 1 Ittld system.

2.3 Characterization of Lhe Flow 1. itrgy State

From ft,rcgoink discussions of the phvsical SFA model of the tlaid

flow ty;tem, a Clow energy state is seen to be merely a set of inlc-r -

at Line; I Iutd parLIvIvs it I of whtt • h possess Ident icaI tilt- an total ent•rrIt

'thus, one of the characteristic descriptive variables lot- any arbitrary

energy state.	 i t must.	 he	 the state	 tnurgy	 dt unity,	 c • .-- dtAflnd	 ;V`v • 	tht•
1

total energy per unit	 volume in	 that	 entI t'gV	 :.Late. Thv	 val	 t	 t
I

:;huuld he uniform throughout the	 t low t nt r1;y	 titan ,
1 1

	but .	 t gorse.

only 1)rohahiI ist Ic.tl Iv !;o; for e j is clearly a ,;tat i:.t ii -.11 variahte.

Eacit 1 luid part it: It , within tfae onergy statt•,	 would c-ttttt•aln WOIt • . ult•^.
J

(or tither ipproprIaLc I)hyStcal units) whost • toted energy would ct^rv,spiind

with e  and whose mean total energy would also ht • iticnt ical .
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A t low cnvigy stat y may lurther he do!,( I- 	 '1" .1 vulcemc• of ":ilnii 1 11"

f Ic11d pat tivIct► .	 liv the term 
i
's i lit[ 1.er" w, must ccrt.ci111y mean Ihat the

I Iu1 d earl icles possctss ident Ic. ► I mv,m t tit . 1 1 energy and tha1 t he 11101 [ tills'

of the I luld Dart icIv., obey exact I  tt1c >.•eme :it at Isl Ical 1.1w.	 As it t luid

volcnnc. it 1 low energy state could he dc:.c 1 ihcd in tc rm, of chararterh,l It

lett};lh sc.ticN- -I or vx. ► m{ ► It•:	 its thickucss, It.-. I. 1i, ,l lc and It.-; width or.

Ill terms oI c • orreSponding spherical or cylindl ic. ► I coordiu..te:,.	 lu thi!

work, w.- sl1.11 I employ the nymhol. A	 to rc icrc:.viil the characterf • ,1 is

Spatial t.l::. of the arbitrary I low energy tstcete, ^: . ► 1'• ► in, A J , ncust he

a stat itst it-ill vilrial,lc• • ,in, c a f low onergy that. Is only probahi I Ist.14-al1,

do scrlbable.

I Inal ly, in it 	 It • ld of interact Ing I Iov, c uergv tstatct; it would ft

ncccssary to dimt.1m,clish the locations of the energy states; relative • lc ►

some reterence frame.	 In this work we ~hall choose as o11r rvit-ronve frame

the energy state in the field which putssesses the lowest energy density

value; and we shalI call this reference energy utate the "rt • lative zero"

. • n.•rt;y SLAG with j-0. Furthermore, we shall employ the vymhol,	 1  t0

descrihc tit, location of ntv other envrgv st,itt rolat ive to tht• zero

cnerg-, :Mate.	 Motes prev Isely, and for computational I.1cI I its:, Ilit • local

value • of	 i will he def fined it-, the coordinates of ;my polnt of I lit crost

in the energy state i relative to whatever coordinate s y stem by which the

t IAllsfurmed energv I field has bvt•n described and in whi. h the orlt',ln c.t

Coordinates lies lit 	 lower boundary of the relative zero vnvigv (;tact.

In other words. 4 ` wi I I be employed as a lot-A por,it ion vec tor radi.il to

tho lower houndor y of the relative zero cucr};v state and centered it

the location of the f low field being Invest igatud. 	 I'hc vector	 q r11:.1
1

again h. • a statistical variahl.• for any flow cner yv 11(.11.•
.I
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2.4 SEA Ruhresentatton of the Fluid Flow Problem

We have .beady observed that the fluid I low problem ( , on,, rn:,,

essentially, the qualitative and yuantitative description of relevant

1)ropt , rty Iiclds (such as velocity, etc.) 4)1 I Mild flow systems with

appropri.ite elucidation of associated dvnamic:rl phenomena such as flow

Instability, transition and turbulence. W, -itek now to re-forcuilate this

fluid flow problem in the parlance of the statistical energy approach (SI:A).

Tlic Si?A model represents a t laid f I,,w systen. as a I ield of Inter-

acting flow energy stator,, and cacti flow energy statt. is described as A

field of interacting "similar" fluid pa r ticles, wiiure, by Hit , term

"similar" we mean that the fluid particles possess idvutical mean total

energy and their motions obey exactly the same statisticai Inw. Thus,

more generally a fluid flow system is modeled by SETA as a field of into-r-

acting fluid particles ;;ome of wlcich are "similar" and some "ton-similar."

Quite clearly this latter conceptualization of the fluid flow system

readily permits tested mfthods of stati^ 2:tical mechanics to be objectively

applied i+i the analyses of fluid flow. We further noted that a flow energy

state may be characterized by the three statistical variables e j , Aj,

and RJ , which describe respectively: the total energy density, the spa-

tial size and the position vector of the energy state.

Within the framework of the statistical energy approach the fluid

flow problem therefore reduces to one of describing the statistical

field e  for any fluid flow system, and then recovering any desired pro-

perty field of the fluid flow system from appropriate secondary calcu-

lations based upon modal analysed of the energy density field ej.

In this work we shall refer to the instantaneous energy density

field e f , as the flow system response energy field. Generally the flow

i
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syt;tvin response energy I I eld is a sprie r-time it istrlhutlon Invotvin;, the

variable.; ^ j , and 
k  

or any other variables by which the f low energy State

has been c h.,t.,cterized.

vii. statistical energy approach thus splits the supremal Iluld flaw

problew into two Int imal problems, naiiwly:
...1

(a) Computation of the flow system response energy held; and

(h) Comput.tt ion of any desired 1 low sy- . tem propert v I leld by
secondary analyses of the response energy Ifold.

And In each case, statistical mechanics is the basic and self -suggesting 	 r'

tuathew,,l i e., I t uo i .

Finally, we note that the concept of tl,c fluid part ic le Iut rod tit ed

by SFA must necessarily alter out usual formulations of transport coefft-

cIcnts in fluid flow systems.	 For instance, ti; the transport of momentc,m
I

we may speak of malecular viscosity, per sc, only in cases in which there

exists only internal dynamics, that Is, when there exists oniv one very 	 !

large tlaid particle; othurwise, we must define and employ a "particle" or

"eddy" viscosity and not molecular visc ,mity.	 it is clear that Such a

particle or eddy viscosity would always he space:-dependent. Even iu the

so-called lamin.,r flows the appropriate viscostty is not necessarily the

usual molecular viscosity, although it seems, from practical experimental

results, that the appropriate laminar flow particle viscosity equal,-; the

molecular viscosity in magnitude and distribution.

2.5 C( mrat ive Rem.erksA bout SEA and Other Stat isti.cal A_pji clies

At this point I must emphasize that the statistical energy approach

described in this work is (lulte different Irum current and perhaps more

familiar statistical mechanical :.approaches to turbulence studies, such

as are described to references (t, e, 12, I*5, ]if, and 15).	 Tlu-rc• ,ire

three major differences that are easily discerned.

'- •--;^_ .^^^-era.
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Fiist, the basic mode ls of tl ► e I I1,Id fl ow sy:; t vm JIffer ht•twvvn SEA

and convent ioual t;tatlst 1, al Inechani, .11 Methods.	 Mu-,I , if nut .11 1 , , on-

Ivin orar y >itut i:;t is al nu-, huuit it inAvsv.; of f Mid t low modvI tl ►r iluld

flow syr:ttm as a r+tt of InteractIng fluid nlulet , ulex; SEA mudcis tIic I luid

t low system as a set of ini ractinl; "groups" oI 11111 l nu ► Ivcult:► - tht , I Iuld

particles--some of which -ire Similar and some „t which are non - s imilar.

'I'o this invert (gator's knuwlt•,li;e, only a ret'e111 work by St ruminskiy (ZO)

and per ha1,:+ some other • subscqut • nt work by the saint , and possibly Iollower-

aw hors have ri.-co ;o l zed the 11eed l or tilt' concept of I I tl i d part i c i is .

Fu ► thern ►ore, as a result of this SF.A model, the concept of molecular v_is-

co::ity gives way Lo that of a spate - t in ►e dellt • ndcr► t "I ► ;11 t it 1e-vl sc•):; ity";

andthis real i zaL f on automat i c.11 l y resolves the long-1 i ved 5l re:,r;- st ra l n	 1

rulat lon problem in fluid dynamics.

Secondly, the techniques used to simplify the mathematical analvser,

differ between this work and most other st:itir:ticat mcchanlcaI .u ► :11^•a•s

of the fluid flow system. in this work prubabiI1t y theory and the metl ► odx

of stochastic :analyses re explicitly cnq ► hasized in cuntrattistinction t„

the general and special kinetic Llwory approaches and approximations

employed by contemporary models.

Thirdl y , and most importantly, unlike motet, if not all, other statis-

tical mechanical analyser; of the fl ►tid flow system, SEA is a strictly

scalar energy method. The experiences of many investigators over many

ayes of men have :shown scalar energy method-: to be more t,cneral and more

powerful than those methods of analysis based upon vector concepts of

force, momentum and aicceleration. 	 Nonetht•ltrss, inVt,5ti);.,tors had hitherto

very reluctant Iv avoided the use of energy methods primarily be-cause, cvcn

L hough the n►t • t hods were :,imply, they gave only g i ,,I)A rt•su l t s anci ill t ht-

absence of general techniques for the decomposition of energy Into other

4	 1
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I t • Iev.lilt I)ropet I it 'r• vllich aN vt•Iot i I y, at tt • Ier.tt Iittl. I orv, . It ov,pvt•It tire,

•ieuSlty and "41 on, llu • tie energy utethods could not I,t • 0IIIPIove4I ill any

det•tiltd work.	 llowevet, thy • g. • nera l rcr^.t.m thoory t•nunclatt •.I b y tills

Investigator has now removed, or, if you will, polntod to a definite

direction for tilt , removal ol,the alutemenliuned dilflcult y ; it. i5 now

possible to recover most desired property-1 teids I rum :i }riven total cmurgy-

livid.	 Ihu:;, the scalar energy method 11.18 be.n emancipattd and h.t:

regaint•d its 1 ormidab f l i t y.

The Stat isL ical energy approach has been appl ied i It tl i I t ert•nt f orm

and with remarkable success, to problt-nts In acoustics and structural

anaIysIS (I6).	 fit 	 a number of large system dynamical .tnalyses (lj)

are ?,hitting towards SETA especiall y because of the mathematical ~Implicit",

of the method. This Investigator strongly anticipates that SEA will

htt'onle a standard system's analytical method once- more investigators a:;SUre

t11entSelvc • s of t he v.i l ielity yet simpI icity tit the modal analyses of I he

System response energy field suggested In this wort, for the recovery of"

tivsired property I it-Ids of systems.

Finally, SETA very clearly stands higher 
ill
	 hierarchy of descrip-

tive methods t11an hitherto

such, utters a more likely

a better Understanding and

as of the I)ruhlrmS of flow

tItIs realit y wt , shall test

though, quite pract i.:Il, "

einployed methods of fluid flow analysis and .Iii

avenut , t han other t ontemporary methods, to

containment of the turbulence prublem as well

instability and transition. 	 To illustrate

the SEA model by applying, it to our simple,

.^xperimcr tal 1 lutd 17 low system."
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3. THE TURK111.ENCE PARAM1:ThR. 0

SEA, Ceference (1), I dent Ifies the turbuIence field of any r,ystem as

net pure Iluctuation field of that system, characterized by a mean

ulence energy, e'. And in "general-system" analyses; the mean value

athematical expectation, e', of the turbulence energy field, is shtcwn

e a computable fraction, 0(d), of the System's; total kinetic energy,

Obviously this phi-parameter, which we shall generally call the

ulence parameter, is extremely important in the SEA iiescript,on of

d flow turbulence. We shalI investigate In this chapter, the general

nature of this turbulence parameter, 0(0), with respect to the fluid flaw

system. First, we list the relations and constraints dt-fining y(0),

as derived in reference (1).

e' . W) • e

^(0) r 20exp(-0.7360 2 ); and	 (3.1)

0 < m( fl ) < 1

In the above relations, e' is the local mt-an turbulence energy, e is

the local total kinetic energy and 0 is a dlmrnsiunless cluantlty which

can readily be shown to be directly proportional to the local flow fluc-

tuation Reynolds number.

From relations (3.1) we deduce, as illustrated in figure (2), that

c (0) has a maximum value equal to unity when y tf 0.82, and that as

H ► 0 or as 0 - 4^s (6) -► 0. Thus, if in any i low sys;tcm the 0-valuc

Iics close to unity, most, if not all, of that system's total kinetic

energy will reside in the turbulence mode. For a standing fluid we

therefore expect that 0 will assume Its critical val s ►e of 0.82 and should

be space-time independent. On the other hand, in fluid flow sk-items we
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expect that:

0 < p • 0.82: or

A > 1	
(3.2)

Sidle we knew that In practical Iluld flow s ysLems the lulu fluctuation

Reynolds number is usually greater than unity and since 0 Is directly

proportional to the Iluctuation Revnoids number, we may speculate that in

real flow systems the constraint, 0	 1, shoul d hold.

3. 1 The Phi - Equation

Since the total kliretic energy, e, of Al f 1111(1 flow :VStem IS r+lmply

the stem of the mean kinetic energy e, and the turbulent kinetic energy

C'. the relation between e' and e, (3.1), yields the following relation

between e and e.

e = ( 1 -y)e	 (3.3)

We wav now establish the e(luatiolt of cwolution of m(()) by subtracting

the equation of transport of the mean kinetic energy. e, from the cqua-

tion of transport of the total kinetic encrpy, e, using the relation

( 3. 3) above.

For our simple "experimental fluld flow sv5tem" it can readily be

shown that the transport equation for total kinetic energy could be

written as follows:

uae/ax + vac /,)y - ca ? a /ay`- (I /2y-3c /('Jy) ;IC-/,Iv	 (3.4)

Substituting for e	 111 equation (3. 4) and stlbtractin^', the me:lli

kinctir e(uation, ;I L ; is customarily done in Void mechanics research, we

obtain the equation of evolution of ^0) as lol lt)ws—,

+ 0 / ay - La 2 ^ /,+y 2 + 	 (':)^/ay)` - Ic /2y - ; t. / ay	 (3.5)

- 0 /.•) a e/ ay) Way

Cquation (3.5) corresponds exactly to the classical "prey-predator"
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. •du.tt I4111 tttnurrtmly &-fill)loved In tilt' stutfv of	 oNv:.lI	 Intl the rctabI I I t v of

natural uVmtl n 1s.	 This shutuld tit , c,pcc • ted. ..ince S may be vit •wud as the

normal l zc • d predator (ur turbulvocc • ) popul.rt ion ft • eding; upon flit' prey

(or invan i Ittw), and t he rebv critical Iv depentler ► t on tht• qu.ntt ity and qual-

ity of the moan flow.

The f o l lowing buuudary t • ond it i our; mil-.1 hold:

^(' t ) • I as y ' 0

(3. h)
"(u) - U as y

3.-1 An:ilyr _m of lhr Phi-Equation

ket us now investigate sonic of the more obvious I nil) li cat ions of fit•

t•vol ul ion cquat ion for the t urbulcncc paranu • tur. t , nrd rat• t o wh;rt t•r.t vii t

rcucl ► fmpl it atiuns conform t:'itl ► or contradict  expel ina utal ubrcerv.rt tuns

of f'.uid flow svrcteurs.

We steal i rewrite t •quation (3.5) in a transformed form using; the l.t • vy-

I.t•,•s transformation fur a flow over curved bodies as full y discussed and

employed in reference (18); and wt • shall use exactly the notations of

referenct • (18).	 Thus, the (x, Y) space transforms Into th.' {£,(x), n(x, 01i

upac. • . and Chu (u, v) velocity field transforms; into the (F, 1') dimun-

,,iutries:. vt.'luVIt)' f iold; v describes: the body radius and t .lescribes
u

the transverse curvature (f/t ), while 1 descrlb,-:. the flow type• (j--O,

for planar f low; j 1, torAxisyninictric I low).	 Using; tht• above t ran:,f t , r-

ut.itIon and with primes indicating; partial dlfferentiatIof) with respect

to ri equat i4 lit ( 1.5) t ransforms to the f o I lowing,:

i 4	
12

wht_• re : C . 1 IM-0

r t = -(T I + 'I , - 'I • , - T,, - T51

co ^ h(.)^^/^^,)

ti^
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1' I 	(4, ) /1-► y(oli 
c 
r I t I )
„

T;, • Vv c G ,./v)'/(t.t.' 1)

.r,	 1 9/c

'r,, - z F , / 1•'

'1'; _ (Pb e ) , / (I► /I ► c.)

K	 -2i.vc,F(I,4 /Ij)1 /(It`d)

Let us now scparatcly Inspect the couIIIcl -lit s Cu, C IS and (- tit ctI

rind; In cyuat ion (3.7).

c'	 is the tortficicnt of tilt , sour cc of' nun- -IIocarIty in cilu,it ion

(3.7); it I  it function only of ^ anti i!; (Icf InItvIv nun- T.cro; thus,Ilit,

evolution of y0) transverse to the Ilow direction will alwa y s he non-

Iincar.

C l does not cxpI IcIt lv corttairt Q•. but I:; composed of IF vt . tone, which

seem to ct (ect ivcly import the Influences of various tIow conditions .is

follows:

'1' 1 . Tire basic term: also import ink; the el Icy t of external ly-imprenscd
st r, , .im curvature

T.)	 Imports the impact of the trantiverse flow (I.c. transpiration at

the houndarIes t etc- .) anti the tnt Im-;ice of extcrimIly- impressed
stream curvature: also the direct filllucitcc of vl-;cuslty and om-

pressibilit.y arc carried by thrs term

T imports the direct	 effects	 of	 shear	 and	 thcnii,iI	 :+tratII icatJim

'ri, import s the effect of shear:	 and

'I't, imports t he effects	 of	 comprossibi l Ity	 and	 thermal	 :.t I-it 1I teat fort.

Thus t in	 terms of the	 impact	 or	 fill lucnce of	 IF low t y pe and	 f low hound; try

rind	 initia' cottditiotts on	 the	 tiirhulencc	 field	 of	 :I	 1 • 10w	 systt1m,	 it	 fs

clearly the coefl Icicnt c l that is critic:al-

C
0 

contain!; essentially the int lutmce of the str^ ,unwise gradicnt 
of 

J

,



?I.

We may conc l ode f rout 1 he ahovc t hat t by cvol it( tun of op int r l cats I v

Involvct+ the inylac t4 of f I ' -w type and t low hottndary and IitIti.tl cond It I ons..

.t:, would he expected In I—val I low shoat iotls. liowcvcr, it rumainh to be

determined if the impacts, of Ilow tvpc and flow conditioner tin the turbu-

lence parautc • ler follow the dircctIon:: usu.tlly observcd fit 	 flow Pitt-

uatIona.	 To make, tItit; dctorminatIon wt' must attcntltt an analytical »ol 'it Icoil

of cgnation (3.7) and then inspect such it solution, or we may numerically

vxlwi imn'sit on squat hull (i.1) in the comitutc • t', v.tt ^ inl', tit,. d  l lBrent
)

impacts. Imported by the' cocfl iclents C .,, C i . atul Cr).	 'it) an extent we

i
shal 1 t-xecut y hoth alternatives in this report .

An analytical t► olcrt ion of equation (3.7) may he fit ILfated by trans-

forming the cdctat lon into tltc• classical Abel's cutlet lull. with tunct Iona)

coefficicnts, and employing KaiukU's, reference (10), s,olutlon to the

Abel etlu.tt ion.	 Those ct torts yield the ful lowini', irrtct;ro-dif fort tit I.tl

equation:

where:	 !s	 IKi(Jm /Jf,)/(1 -x))11/(Ctc.)Idf.

i'he solut ion may he completed for 	 it 5 can he expIisttIv intt•-

grated. Nonetheless some deductiorcar may yet he made conccrning the cvo-

lotions of .p by I lse inspect lov of the partial sol tit [,)it 	 in equation

(3-8).

Wv clearly till' t 1'om equation (3.8) th.tt the	 H e at 1111V 1-that i-m

wi if he described by a I unction of n dect:L tlSing from a maximum at fixed

boundaries t o it minimuut in thcr t rcc stream: the slope o! the curve hcing

critically determined by the coefficient CI.

The E,-evolution of the turbulence parameter Is more difficult to

explic(tly determine from equation (3.8), but the general nature of the

solttt ions to the "prey -predator" equation, to which class equation (3.7)

t

1



" 411111" "W.7TM111mp11WW mm

ht'It,t1 1 !'•.	 11l! ►!t's.t,+ .Iom	 will t'volvt	 l ikt	 ' r lt,, 1-A It " t'mrvk-tl,	 from illi-

t IA I% Iow value; Ihrough it tranhIt tonal ran I., is growinp, valtic • st to it

t 111.11 Fall )-,L- of IIIgh. hilt t , 4)11:. 	 111t u 	 t ► uly Klowl y t'hist!l;lul;, villa.... 	 I'Itle.

t-volut Ionary trtsnd contorts, with pllym It: aI real ity.

t • mrtilt'rmore. by Inj4pt't'tin', till • r.ihllH Id tits' 1('1111 -4	ti11UUKil 'I", of

tale cct ffI,:toitt C i In the partial st,I tit loss. t'quation ( ► .a), it 12+ t,IKy

to see that tilt' directions of tht' Impclt t:; tit I It,w lypt , and I I,)w contll(Ions

Asoso con I o rm wish physical rc-.r l i t y.
r'

Thu.:, tllt • turbultnct' par:11nt • ter, ;, .Ippt'arm to he a very plausible

conception.

3.3 Nume rical Solution of tilt' Phi-1?cLuutIon

A prc'liminar y rtmmurlcal tioNt ion of thc• t ranrctornk • J V(pl , st ion ( 1.7)

is ;Itit-mptud herein as follows;:

Uilnt! thv notation In relcrt'ncc' (Is), tilt' followingg, approximations are math•.

^ tt s>rti, n	 YIynr+l, rt+1 -Y1 ^nrt• I, n i Y{pm+I, n- i 	(t.y)

t m+I, n ; Y,t ^nr11, nil -Y ` ,`I' nrfl, n	 Yt, ^ ' rofl, n - 1	
(1.1(1)

t	 ^	 ► 	 (3.11)

l nr+ I, n	 ' ill, n- 41 rsr+ I, it

m*	 ittt	 L(XIX?-XJ)J 'nl+l, 
it - (X1Xy-XAX1,)Jrn, 1 ► s/	 ("i.111

(2Ar;? - Xt,)

I?quatIolt ( 1.1) can then he ruwrItten as I o I low,:

-Art ' nrl-1 . n+l + It
rs t nr+ l , n - (; n ' fit+	 rt I	 nm, n	

( 1. 14)

*
w1wrt • :	 A	 -(YI + r. Yr,)

n

B	 IC()	 (X I Xy - Xr)/(2X-,A.;,,) - Y, - C YSI
n

*
c: t 	(c Y C, - Y3)

,.1	 j
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m, 11	 2'	 ol, n	 '

>w

m, rl	 m, n 

CO	- -I2FvL ( 1 , 41, /0 f'/ ( t t - I) X 11,, I	 n

I:quat i.oil ( 3. 14) hart the lritli.IgtmoI melt I Ix torm and can readl 1  he !.oIvcd

to yield 
`, n1+1 , n

Mlle ttumvrI, -II .iloproximations empItived litI ,,, ilt .Irc c14 , arIv not tht'

bv9t possible; the convergunct: obtained has not htv+It satisfactorv. None-

tht-It.ss, I [}turns ( 1) .11111 ( y ) show :1 tvpfcal evoI tit ion of ,i, In n shear

Ilow. A more dutatled numerical analvsls of equatton (`i.7) will he

performed In a 1utIIro work.
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1

4.	 '1'lih, 'i'l1RBULEN(A !'LOW FIELD

4. 1	 ill,	 of 'lurhu!t •nt v Fnerly rielcl

As alread y Indivatud 111 the 1 ► rt • r ► •clin}, chapter, „>.•it,-raI-Nyht1.1111,

O,- K ) tht-or y gIvvs the mat lit-mat i val expec tatI ton . e' it tilt' turlmIvntc

t • t ►urgy livid of any s y slem as a coml ► ut.ihle traction. ; . of that systvillos

total kind it • energy i it ld. v.	 Sint, tilt• tot.il kiuvt (c cner);y f lull of

.t system in del lned III 	 theory as tilt- sum of the lurhulc • nct• kin.•t It

.uerKy, t', and tilt• rntati I low tn.r};y ^, the i(IIIowin); rt . Iations rvsult:

'l ' lic ,hove relatIotim Irr,, ► ly that omo the tot .II It. l lit , t Ic I i r flit! 8v,w tt. ► t

cncrgy field of a fluid flow s y stvin I  known. tilt • correslloi ► diny. mt • an ttir-

h ► 1l.mre kinetic• ener);v fiI . 1.1 m•iv be tons iticrcd lnowt ► , it the 1ivlit of the

turbulence haranicter. ;, IN :list) known.

l:.u.lII^	 how ,^vvr. wt , nuly know the tt , Inl vt•Ii^city I IvId or tllt olc•an

vv I of i t v of a l l Ow svl+t. nl and we wool I Want to exi 1 l i t • i t I v t unll ► ut c t IL

mv,ul t irhulc • nt Vt . Ioclt y field in somt • vIvvit coordin.lt	 tli ► cctIons	 In

ord-t to acc• ompiish tills task wt' Would have to .•xllloil ctillati o lis (4. 1)

and (4.:) in search of I► ract it •I I acid va I iii forniti 1 it ions by which w. • may

rt , cover vvlocily fields I rom tot;ll kinc•t it onc• r ) •• y I It lds In any deslralAo

cot-rd inatt • d i cect iolt. Lt • t us now ,il temp( t il:.tt task for the me aii t urbu 1. nt

vt•I ilk . Ity 11.•Id.

Let its rcl ► resent the tot .1 1 , mvao aml t tirlm l once vc I ttr i t v I i c Ids (A a

tl lit d fI(1w system by the vectt,us V. V. and V'. r.•+11c•c ► IvcI)•.	 III

E	 dImensiun.11 carts-stau coordinate ►;vtit. •m tilt SL- Vc I111 it"' lit.-Ids h

V (u, V. w)

V (11, V. w)

V' (W. v', w')

(4. 1)
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In tt,lms o) th ► »e vvloclt y fIt,ids, till • cnrrklee, v	 cutd v maV ht,

. • xpressed as follows:

1
1.	 I, (u	 + v	 ► w )/2

	

I(u + v + w )/2	 (4.4)

2	 2
^•'	 t, (u'	 + v'	 t• w' )12

And from equations (4.1), (4.2), anal (4. 60 we obtain tilt- relations:

'	 ?	 2	 2	 2	 2	 7	 -2
(u' • + V'	 + w' ) = ylu + v	 + w 1	 {y,/(I-p) Ilu	 + v	 4- w 1	 (4.'J)

A general expression for the turbulence components ill tht.• principal

d i roc C ions of t ht, , ru ferenc e I rime may be K i ven as I 4) 1 1 I )w:;

qp{ rII U^}	 i^o /(1-a>ttY ij u il: i, ) ► 	 ", v, z	 (4.(► )

wht,re:

U	 U. Us V, 11	 - W; U' - U' , U , = V' , I1' = w' : 11	 11,

	

x	 y	 z	 x	 y	 z	 x

	

uy , = V, u , = w: and th; • y-terms rl!prest,nt the fractional redistri- 	 i

hution of the turbulence energy from one principal coordinatt, directil ►a	 I

to an(,tl it , r.	 0hViouslV, ths.' tollowing constraint applies:

(Y	 + v	 +Y	 ) _ (r	 + Y	 +I	 )	 (Y	 + Y	 + Y	 ) = I	 (l..I)
xx	 xv	 xz	 yx	 yy	 vz	 zx	 zy	 zz

As ;I 	 i rrst approxi mat ion i n t h i s work war had assumvil t hat :

for i= j
i, j = X. v,	 (4.r1:;)

r ..	 = tl for	 i	 .f
1)

We have found this assumption not to be acci • ptable since we know that

w' may be quite different from zero even ill 	 which :Ire two-

dimensional in the mean. W. .ould correct for such :in assumption by

compIf cat ing tilt, ^(0)-function; but that wou Id bc• ItighIV unklesi rat) lc.

The Y -term~ may be formulated 
ill 	 of the total and mean velo-

city fields by Invoking an analogy ht,t-ween the y-tensor, apparent tram

the above relation, and tilt, well-known strain tensor. ']'his exerci5t, is,

however, rather delicat y ; it will be given full attention 
ill 	 later work.
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I- or t lit• 11111-post . of t he rt-Imi i nder o f t li i ti work wt • sha 1 I make :i :;c, and

tpproxiutatI oil , 11.11114.•1v, that:

t i	_ . ► 	 I; for :II I	 i	

19	 Is , X $ Ys 7.

(1-a)/2; for all i f J

This assumpt ion automatical tv satirifies the run-it raint s (4. 7) and appears,

in tart, to he a rcasonahle approxIm,tt Ion in manv practical Ilaid flow

syxtc III ti.	 I'bc • (luantIty, .t.	 i r s to 1)c .t s y stc • m coIIt;tant	 4'c Shal l

cxpetinitnt with a Iew va l ucs of .1, fn the r • inge 0.3 - a	 0.6: but iu a

later and more det:tl led work wt• steal l attempt to I ind appropriate Ior- 	 i

niti l at ions for a.

Thu fort-going results indit:Itc that onc • c the total or the mean

velocity I it-Id of a I lu ► d I low systt•m is known, then only a knowlcdl;e

of Elie gyp-parameter is rctluired to obtain the corresponding mean turlmit•nee

field for the system,

4.2 The Probabi l ity Law of Turbulence Intensity

funeral-system t hc(iry Indicates th: ► t it we tier int • a t tirbidenre

intensit y , I - c'/c, the local ratio of Elie turbulence kinetic , energy to

the total kind is	 Own the probability tictt y il v I unct ion t•t I is

given as follow~:

1 I (i) = tx(K1)ldf;t/dil + f x
(} ' )^dg;, 0	 i	 I

0	 c 1 ;;cwh, i

i
where:	 g,	 I{I + (I- i ll ) 'i/i

t

I x(it) = 128x'/icxp(5 x) -I1 ; o - x

0	 ; elscw1wre

and fl 1.:, it--, previously def ined, proportional t o the local I 1 iu • t ttat ion

,
1
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1^eynolcls ueumher.

Since ,P - 2uexp(-0.7360 2 ), our earlier speculation that the constraint,

U	 1, must hold y ie lds, that:

e - i- 11(0.50)1^

	

(4. 10)

Thus, once we have computed the y-field for a IIuid flow system we

may not only compute the merni turbulence field but also, from knowledge

of f I (i), we may completely (.lc-:scribe the statistical Ii.•ld (it the turbu-

lence.

4.3 The Spectrum of Turbulence Enema

Finally, genera l-system theory also provides a spectral rcpresenta-

tion of Uce turbulence energy field.

If in any energy state of it flow system the most probable turbulence

frequene:v is w 
c• , 

then the turbulence kin	
L

etic energy, E , , which rcr.tdvs in

the turbulence frequency w =- z - w
c 

in that energy state is )-,iven by

general system theory as lollows

(EZ /e) = 2560z f ' /[(z 2 + r) 2 ){exp(5z) - 1 I1 	 (4. 1 ki)

or	 (EF /0 - 256Hz^'/ (1-^)(z` + N^) {exp(5z) - l]	 (4.l2a)

Employing equation (4.10) we have that

(Es /(-)	 256z" /I)
	

(4.116)

(Fz /e) t- 256z (l 41)(1-w	 (4.1?b)

where:	 1) z 1 (z'' - Q110.5^) /Nc.n0.5y)^)Iexp(Sz) - I}

Quite obviously, thuse spectral forms conform with observed reality; the

bulk nl the turbulence kinetic energy is seen to reside iu tht• lower

frequency fluctuational modes.

i
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In the context of "general-system" theory the mean motion of 11

I luid I low System (i.e. the mean Mow I Iu Id) Is the inst:uttaueous rum of

the Dori • translational awl the pure rot ,itional motion ut that system.

'I'hts 15 the usu.illy obsetved mean motion of the I IUid I low Systc•u ► .

Let us agairn denote the total mot ton of the• fluid flow system by

the velocity field, V	 (u, v, w), in three-dimenslonal cartercinu coord-

inate system; and let us denote the ►neon (or observed) motion by V

(u, v, w); the pure rotational motion by the velocity V tt and tie purw

tranrs ]at ionaI motion by the velocity, V 	 (yx, (I V , riz)•

The mercn I low energy, e, Is then gIvvit as IoIIows:

	

^• = joV-	 P (V2 + VK) /2	
(5.1)

p (1 -y)V- /2

The pure rotational velocity fteld may he rwitten as: V I,= wxr, where

III this c.cse r	 jr x	i + ry	j + r7	kf Is the vector of the local

I laid Dart isle rotation. 	 Since the generrll mot ion of a s y stem part It , lo

within any energy state may usually be replaced by the motion of the

center of volonuv, A. of that particle plus a pure rotat ion and a pure

vibration of the particle about A such that the total kinetic energy

density of the particle correspon2s to the total kinetic energy density

valet- in the .aergy state, it he:omes obvious that in this case r may be

considered identical with the fluid particle characteristic radiu5 . rc,.

alteady discussed in reference (1); it
c
l essenti,ill y represents the

characteristic radius of that fluid particle whose surface passes through

the :,pare-point of interest. Reference (1) suggests the fullowini; tornw-

lat ions t'or I



x

r2 m' xv/ (lie	 I)x IV

or: r	 n,yi ( 1-S)cc * II` /{Re'I;)u*/Jy' 1
Y

rz = III , xz /(Rt- 1w* 5.2c)

where u	 v	 w	 are the component	 total	 velocities non-dimenslonalized iJ

With II attd	 kc	 - (t1	 x/v):	 Is)	 is	 a	 numerical	 con::taint and	 x,	 Y,	 and z
max'	 x max

arc respectively	 the effec• tivc streamwise,	 transverse and lateral	 c•oordl-

notes	 in	 tht•ee-dimentiional rectangular cartesian coordinate systom.

Tln- pure	 rotational velocity may also her written	 in three-dimensional

c • artcsian coordinate system as	 follows:

r 7 - - r ) i + (w z rx - wx r L )	 + (wx r	 - w r )	 k	 (5.3)
Y	 Y

_	
Y	 Y z

where:

wx . ( aW!ay — 3vPz) /2

W  - ( 3u/3z — aw/3x)/2	 (5.4)

wz . (av/Jx - ,► u/3y)/2

Thus, the observed mean velocity field may be written as follows:

u = a+ w r - w r
x Y  z 

v=q
y 
+w 

z x
r -w x r.r	 (5.5)

w = q  + w x r y - as
Y r 

and:

(u1 + v 1 + w • ) _ (1 - y,) (u + v + w )	 (5.f7)

I
From equation (5.6) we may gimioralize the following relations

between the observed and the total vviociLv field~ in t'luid flow systciw;:

  
t .

xx	 xy	 4syxz
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{•^y vx c,2 + (1- 0 y YY )	 v •' - O y y6 • W" 11

(5. 7a)
w = i -4.y	 n1 - yy	 v' + (1 - py , )	 W2 I 1

tx	 zy	 ^i

whvre	 quid the r-terms are as previously defined in the preceding chi ► p-

tvr.	 Il, according to our second approximation of the pi-ccedinf; chapter,

we take y ij s a, for all i - j and Y 	 for all i f y, then

vgnations (`).7a) redur y as follows:

u = GI {u2 -	 G 1 (v^ ' + w`) } §

i

_

W	 GI {wz -	 G;^ ( u .')
I

+	 v") 1

whcrv:

G1 - (1 - Qa) I  and G, _	 (1 - a)/l2(1- ,ta) I

If, therefore, the total velocity field of the fluid flow system

is known, the observed mean velocity field may readily be computed from

a knowledge of ^ and a. If we want to compute thv actual mute transla-

tional and pure rotational velocities we must employ equations (5.3) saki

(5.4).

It is easy to see from the foregoing, that in the ^o-called boundary

layer flow~, the observed mvan velocity field would be mostly rotational

velocity; ti ►at is, pure translat.ion is very small in the bound^iry layer

compared to pure rotation.

Alternatively, the quart[itiCs u , v , and w , may be computed Crum

the evolutionary equation for e as obtained from equations (34) and

( 3 • b) in (A preceding chapter. For our "experimental fluid flow

system" we would have the following.; equations for e and its components:

uje /:;x + V, ► V /, )y = ta'e/ay'	 f . 12y - t. / (1-s)	 a , /^y - ,:, / ^^	 /'^ y	 (5. r1:,)

eau- iax + v;lu /ay = Ea 2 u2 /ay	 /2y -	 /(1-¢)	 ;1^Jy - ^f/ ► y},,il /;+Y (5. rib)

	e = (u" + V 2 )12	 (5. 8c)
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► .	 ME' COMI 1 I1'I'A'I'llON OF Tlfl : FLUID H.OW 5Yti' EM

b. 1 A 10,.i_cr_^ hyi of Ueseript ive Philosophy

The I laid 1 141 systc'Pl miry be descrihed in any one of ,t-vvt.i1 ways

depcn,ling on the scale of hindan ►cnt.ility of property-fields that one Is

interested in. This freedom In description sets "p whit I have • called a

hierarchy of descriptive philosophy, haled upon Lhe c•lementarit y of the

. • hoses hasic propert y -t ield.

In physical reality the fluid flow s y stc-m Is mw;t tundant-ntally

an energy system; that is, Its	 hasic property-f ieid is "energy."

Any description of the fluid flow system as an energy field Play therefore

be refurred to as a "single-field" or "general system" approach. it would

be the highest physical description of the fluid flow system.

Lower clown in the hierarchy of descriptive philosophy we miry choose

to describe a fluid flow system as a mixture of "force,." and "energy";

such a description would conform with the classical TianiItunian mixed-

field approach.

But by far the most popular and, therefor,, the dominant descrip-

tion of the fluid flow system in contemporary fluid mechanics resrarch

is the Newtonian mixed-field approach in which the system is viewed as

a mixture of "momenta" and "force" ftelds. Clearlv, the Newtonian

appro.., h i:: lower in the hicr. ► rchy of descriptive philosoph y Lhan the

Hamiltonian approach.

The reason for a descent in the hierarchv of descriptive philosophv

is usuall y the desire to obtain more dutailed information in an explicit

form and on as many property-field~ of the subjeet,s.-;tvm as possible.

For instance, the general system approach would usual l' yield only the

i



32,

tofaI vile1-gy I I vId of a y ub)ect r► ystt • m while +hc Il.uillto+^i.n+ .al+broach

would provide the force field is well as the tot-ti kinetic energy f fields;

t he Newtonian approach, lilt tic other hand, would explicitly yield the

velocity, m.tss-density, temncrat.ure, I.i i• isury and of licr property-f ields

of the same tcub jec • t Sys [em.

Blit what one }rains in explicit 'detail" thu one lose~ in vxpIIvIt

n coml,ICxI(y" of (lit• chosen lilt •l hod . 	 I'll, Ncwloniall mixed- Ileltl approach

requires more complicated equation,-;, often with severe vIost ► rc problems,

for the description of the Iluid I low system Ihan dote; the liamiltonlan

mixt • d-Ilcld approach; and, as we IlAVe seen in 1rfl 0.)	 of this report,

Ole general system approach describes tilt, I I tiid f low :;~ • stem by one vary

simple oquation--the equation of conservation o1 total energy.

6.2 The Cener:aI-System Aj).L)ro .:it It

Ili en+p loy i ng SEA (or Lite genera l system approach) for the comput a-

tion ' >f the f luicl f low system, ussentlaI ly only the lol lowing t III k t

procedures are required:

	

(i }	 r ransIForill the ord inary sp.+cc of t hr f I u I d f 1 ow syst cri by
some set of transformations into the general system space,
for instance as discussed ill 	 (17) and (:tl),

(ii) Solve Lite sing1lc fundamental equation of the general system
in the transformed or general system space: and

(iii) transform the solutions Irom (li), above, back into the

ordinary space of the fluid syste[n.

Wh.,t one obtain_, in (iii), above•, IS the response total tnergy 1 IcId In

the ore inary space of tilt, fluid 1 low s' sLc ',.	 In order to rec• ovcr any

other property-field from this tot.+l energy field one must cmplov lilt-

restilts of the analvscs of cncrgy 	 by this investigator,	 omt,

of whi. • n have heen presented Ili this report, and all of which arc

upon this investig.itor's general system theorv.

-
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The foret;oItip, notwithstandIog, a tund;unent , II dittieull y in ttte full

apltl ic • at Ion of t he general system approach st 1 I I rewaln:; unrer:ulved . ► t

the tIme 01 thin: report.	 '1'hit; c • oncerils the vlicit,tl ion of a simple livt

of transformations for transtocminy; the ordinary space ut tiny system

into the general ,system apace. A number of relev:utt t ranhlormat ions;

11:1ve heen Suggested  by different Investigators such as in refcrvut't • s (11)

and (32.) , but these transformation:; tit i I I make more do minds on c • ompttt c I

time and ;:Dace 01:111 the pretient invest igator st rongly hel ieves is nvre,, .-

ary; alter all, the aitn of the exercise of the general system approrn-li

is to attain maxituum silly II city with maximum accuracy and not just to 	

1
find another alternative approach.	 At tilt - mom. nt, 1;Iven a fitlrIv laugv	 I

computer space and time (though nu ►ch sutaller than what would he rvq ►alrvd

by other contemporary methods to provide the same or equivalent amount

of rest► lts) t ht-, investigator's general systt • m approach can vield very.

.ivtailed results oil fl ►aid Clow system; but :;t:c • h vomptacr spacv and

time are out easil y available.

6.3 A Derived Newtonian Approach

An .t I t t • rimt i ve wav to test or demon:,t rate rh i s t nvest igator's gen-

oral system approach I5 to deduce from it the relevant descriptive

equations III 	 lower scale of description, such ; ►ti the y popular Newtonian

mixed-1 ield scal y , Ior instance, and then to ex.tmine the correspondence

of the deduced description with experimentally veriflable knowledge on

teal IIuid Ilow systems. 	 In doing so we have tome to the cont . l Its tkill that

Hie system of N-S equations of fluid mechanics is in itself a complete

and correct do -icI- i1)1 Ion of the civnamics o 	 fluid t low in ;I 	 space,

provided that:

(a)

	

	 al 	 the dependent variables in the N-S equations .irk.' 1111(112r-

stood to be total variables admitting only of statistical
description;
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(;1)	 tit. vist ,r,ity term, t , is uncivr:stood to he n,t the ur.ual
kinvinat is viscobity based upon molecular tr.utt,port of momentum,
but rather the generalized "fluid particle" or "eddy" viscos-

ity based upon the transport of mona-utum by the conceptual
fIiiId particles of fIiiId Ilow systcws: nu,lccular vistosity
would be only a spacial case of Cris otltly viscosity; and

(c)' the conventional understanding t f pressure 1s m.nti iflvd to
explicitly distinguish bctwecn tit(- intcrnal ptes';ur y of a

fluid flow sytitem and the internal gravitational tirces in

the fluid systvin; this is cspccIaIIY important in the gvilt • ral -
Izatton of the Bernoulli equation.

For the purpose of practical computations ill 	 report th. N-S

equal ions will, tht-roore, be atcclited will ► thu viscosit y t ► l rnt, I ,	 .10^

giv.-n by the following siml)1c form:

t = v(I + 'f • t t / I t)
	

(h. I)

where I' is proportional to the integrateu value of the f-parameter at

any x-station attd t: t is any one of the currt-ntly employed eddy viscosity

models ill 	 tluid flow analysts. 	 In offeet, ': will "erve In

tl ► is case as the usual intermittency factor for a flow in which ttansi•

tfon is imagined to begin at the leading edge or entrancc rogion.

Althott l;h cquation(6.1) is not exact, it should suifict • t:. prov.,

tht validity or invalidity of the concepts suggested by the yt•n.r,tl

system theory as applied to our "experimental fluid flow ;yst.-ni"

To compute the "experimental fluid flow -system" we shall cxvcute

t.hc lollowing proced:tres:

(i) solve the following system of coupled equations for the

velocity and ep-profiles, for all x-stet ions Ill I I;tid
flow systt•rn:

at,/ax + Wv )y = t)	 tt,..))

u^ 1 11 /,+x + vt3u /(Iy - o(eau/<ty)/ny	 (6. i)

E - v(i + T ET/tt)	 (b•/t)

ua^/iix + vao/ay - Ea 2 tlaY 1 + I,	 1- ,D) 1(,, O /ay)1
-,c/2y - at:/ay - ((/.•)ae/ay );l4 /;)y	 (6. 5)
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+y	 (b.f ► )

l •	 u` + v2 + w" 2, u' (in this case)	 (6. 70

and ► .
I 

Is given by the tlsu.l I mixing l l • rlltt h eddy v i acom i t y
101hll' I	 illll t I1.	 1 ii I IUW I I1,, ho1111IIrY	 ')Ild l l io11K llrl' lll)fit't'Vl'll :

^	 l
11 Mid V + (13 . o.. V . O
(y • U and u ► U, ; as y	 u	 (6.7h)

(ii) At each x-stat ion compute the mean flow field as follows:

I

wll('rl (,,	 (L -	 a)', C 2 	a)/{2(1 - ¢	 a)i,
and a is experiment.11ly varied hl • twcen 0. 1 and 0.6.

(iii) At each x-station com,•ute the turhult'nt Ibiw 1ivId ati
follows:

u 92 - C 3 (u` + (;Lv2 )	 (6.10)

V i2 . (,3 W + CyIA? )	 (6.11)

where C	 S.a, C,, a ( I - :1)/2.1 and a is as previously clef Ined.

'I'liese thrt • t • steps complete the comptltal ion of th, I I ^w t Md.

Other aspects of the flow s y stem may t)e determinsed in the usual mannt•r

tram the mean and the tut-bulent velocity fivIcis.

Time has not permitted us to include in this report the results

of Lliv actual demonstration of the above computations for our "experi-

mental fluid flow s y stem."	 In ,I 	 report those results will he

presented.
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7. CtiNCLUD I NC kt:MAkKS

A primary con• • Itr;ilun I rum this rescarch work ire that the 11111d I i+,w

system is sent;tbly, fully and practically descrlhed by the "peneral-

system" theory enunciated by this inv,•tLik,ator.	 'lids stitc•u+ent rests

f irmJv on at least the fol lowing •, theoretical and prat t ical observations:

First, although the explicit. derivation of the i;uvernint, equat ions

of fluid flow from the fundamental cyuation of the " ►;eneral-system" it;

not included in this report, the similarity between the I:ittt . r and the

Navier-Stokem (N-S) equations is rather obvious. Indeed, the N-S equa-

tions can readily he shown to derive I rum t lie fundamental equation of

`lie };moral system; hence our confidence in the N-S equations as a v11 ill 	 t

model of fluid dynamics. Itut , although the N-S equations may now enjoy

our full confidence, we n„te that without the benefit of the :nslght into

their nature generated by "general-systt•nt” theory and the SEA model,	 rt

the N-S equations may easily become brost ,tly nits understood anti misused.

Se, )truly, from current theoretical nn,l cxperI nit -tit aI know ledge+ of

the fluid t low system. the SEA model presented in this work appears to

tic inherent Iv consistent and complete. vis-a-vis, the provision of (h"k,J)

insight into the real physics of fluids. The model cxpltins the r. it

mcch.tuics of fluid flow in greater detail thrett tic) must o her .ontctnpc)r-

ary models of the fluid f l ow system. But above all, by obviating very

clearly tho relat ic)uship amc.,S the dil'lt rent tvper, :md +hc different

modes of fluid f l,lw, Lilt- SEA inodel greatly simpl i t ies the analyses of

t luicl flow systems.	 In this regard, the natnr4	 it turhult nev, Olt-

nature of the "observed" mean flow and the• natur. • of Lhe rel.tt iunship

bCtweell the turbulence field and the observed (or measured) me-.cn I1ow
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f Ili- id deserve part Icular attent ion.

• l ill-till It • r► t a Is clvarly Neat i 1 icd to he 1 lit' pure I luctuat iccci.il amide

of the f laid hart icles of ti lt. fluld IF low sy!ttenl. 	 Anti. cant nary to clttrt-

rlICJI1 .1t I irinat Iona; Such ut+ that the torhu1ence I icld tut tilt- f luid f low

systvin Is not generitIIy it till igrte function of the alt-an velocity pruIiIv.

the SEA „ do I dcn ►tmst rates t h.i t i ndeed the mean t urhu I enre t i t , I d can bt,

cxpretcsed as a computable tit idtit tunrt Ion of tilt • Mean IF 	 t ivltl. ('.en-

oral svc,tcm phllosophy clearl y expusea that the errors in ctarlicr predic-

tion methods wlIIch lets to the .eft i rim irI In that the turbulence t livid i^<

not i;t'nerislly a unitlu.- function of the mean I low 1 ivld were uol at all

title to tilt' reliahiIIt y of those mvt c tods on the mean flow field for tilt

description of the turilulent flvId; rather. the errors were due to HI

tart that most. 1! not all currently avail • thle theurt•tic.11 mt'thods in

t lulu mechanicrt, are founded either upon no fundainental 1-hilosophical

considerations -it .11 I , or upon cr ►-uneouS phi 10•,010hical wi •^ :^. ran'',.	 For

instance, the exavlination of experimental data should not automatically

Icad to some intuit ive or empirical formulation to descriov the "ohservvd"

trend; Witl!out considerat Ion of virtual Iv al I IlosHible varict ivs of the

obscl'ved s y sttrm such intuitive formulist ions Would usuall y he at hcNt

st rict. ive an It WmII d Ill tell be comp Iet y Iv t • rroncous. for I I w :, halt le 1 - 4 ,. 1 ,it

Ili. , I dvnaroic.il :,vsIcm beImvior 1s often counlct -Intuitive.	 I'll crcatc :i

realistic relation tram physical obsurvatlons it '~ critic.11 01:1t one

IormuIaLe a vaI id phi Iosoplolcal barte--a coilsi..;tcnl and comp !k tc lountl--

at 1011 ot- viewpoint that inrlutieb thv ohsct • ved dicta	 Cont :IiW • d within or

der ► vcJ t rom ,:uch it ph i losoph i ca 1 hale woo 141 he ,i t heor y upon wh i ch t he

cniptrl.caI or exact relations v,ilid in the observed s y stent may he ftuildl.A•

'I'hc error- :.ituation hero;, clarified above i- .ni.ilo l •,ous to the t,i.,

I	 1
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Ill it ,licilie whert' tile' symptomh of n (ll ' .t . ,	 li•.	 u	 . i li .l 1. -11141

clabolatc'ly dumerthed while tI,, , true natill. of t	 Ai;.. ,;,v .: i th. fli,'cl ► -

.In let; b y wh I ch It gelle 1 :1l es	 svmI)t „Intl have	 ) I t (. l y e 1 ilded the

doctor.	 Most of wh.tt current lv AlVilI1.lhlc thcoretir.lI mtodcI s of fluid i I„w

describe are obmervational•--ulltlral and Instrumc' nt:ll--IIho4ionti- hardly

.Illy model, before SLA, tit-scribed the- real nature of the I Itlld 1 II ►w svntcm.

iitis rather pompous :statement is borne out It* } lhc- tact th: ► 1 , with very

little effor., virtcially every hitherto f , ivvii dii-scription of Iluld Il•,w.

upon which numerous theoretical models hingt-. c.in be reconstructed ;1:. 	 .I

ohservat tonal i I lusimis from the point cif view of Olt- SEA surd. I prv,;vntvd

herein.

I would nut he belaboring m y criticisill of tlit "i;vniptonsati•	 ilrlrroat-to"

commonly practised in fluid mechanics rusvarch wcr y it not for the inher-

ent Iv adverse impacts of that approach. 	 E),pecial ly, ont' ma .lor lint- of

inquiry, arising from the aforementioned "symptomatic-approach," and om

which has, more than any other, seriously stymied the development of flit*--

bulcnev theories, is the continued combination. in all turbulence motifls,

of flit- pure f luctuation and the pure dI :r;ipative etiert',y fields.	 I'llI>-

error and I I. , dc•rst rust I ve i mpat- t s are not cativ to :;c, out rc i de t l., v i c w-

poiiii	 11 Hit , SIA model.	 It Is true that the dissil,at ivl energy f ichl

appears to he derived from the fluctuat inn enerlt y IF Iv 1, hilt It is aI^;ti

true that these two flclds arc charactcrIstIc. I I v very difl--t..lit.	 Wo ii.ivc

;howl ► in reference (1) that the gross; product ion and grovr; di:o4ll,.it i• it of

fluctuat lrn energy Ill any system are ,. e xtremely compt i t-.ited quint I t iei: to

thcoret ical ly doscribc. Whit we measure as the turbl► lent-e t ivId is only

flit' net fluctuat ion energy field--a much simpler tluant ity to cowrtil.

I'lie dissipative energy field manife -;tn +iti the pressure and tenilit,raturt

^i
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fivids ul my rtysten► and shoul.l be cunhldercd st , parately I rum the tur -

bulencc f I, , Id: only tl,cir Intc • rac • tiun tot Intcnic-pc • ndcmcv tied) lot . noted.

Final Iv. It -t u^; rt member that tIit , St,it iA i s al 1 nc rgy Approach (SI:A)

is a gcneral approach val id ncn t _)uet for tht.-	 ript 14m if the I I,dd

i how system but for the dcscr [lit ton of any conevivable natctral ^ystcui.	 I t

bascil upon an internally cunsistcnt and uuivers, !) IN, , omplc-t y phi lu-

sophic. ► 1 viewpoint transcend lny, Lilt- I Imirathms of ticuhfcci ivity.

.
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