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GENERAL_INTRODUCT 10N

Theoretical fluid mechanics research essentially seeks to find
complete quantitative and qualitative desceriptions of the velocity, pres-
sure, temperature and any other relevant property-ficlds of fluid flow
systems of diverse boundary and initial conditions: and especially to
understand how these property=ficlds determine, or are themselves influ-
enced by, such special and often very fmportant fluid dynamical phenomena
as flow instability, transition and turbulence.

Early efforts in theoretical fluid mechanics focused on the so-called
"potential flow" of ideal incompressible fluids. Quite a large class Jf
flows could be described as potential flows and the analvtical methods
employed to describe such flows were almost perfect. However, viscosity
was soon recognized as a real fluid dynamical property critical to an
understanding, and to a complete description, of any important flow phleno-
menon. This knowledge led to the creation of the mathematical model of
viscous fluids governed by the basic Navier-Stokes (N-S) equations.
Virtually every cffort in theoretical fluid mechanics since the formula-
tion of the N-8 equations has become one of finding solutions to complete
or simplified versions of the N-S equations for prescribed boundary
and initial conditions.

But there is now a rapidly growing belief among tluid mechanics
researchers that either the N-§ equations may not be a completely correct
mathemat ical model o. the general real fluid flow system, or they may
not have been adequately understood by their users. 1Tt appears that
some corrections need to be made regarding especially the expressions

or conception of the fluid stress-strain relation employed in the N-S
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equat fons, the boundary conditions cwployed for the variables, and the
general nature of the vartables themselves. Furthermore, notwitnstand-
ing the apparent incompleteness of the descriptive power, or in the
understanding of the N-S equations as a mathematical model of the gencral
fluid flow system, the mathematical problem of solving those equations,
for any other than the simplest cases, remains a rather formidable and
often yet impossible task. From the few solutions of the N-§ equations
available, very little information on very important flow phenomena such
as flow instability, transition and turbulence are yet possible. These
and similar misgivings lead one to the incvitable opinion that it wuuid
be unlikely to formulate a satisfactory unified model of general fluid
flow capable of describing such fluid flow phenomena as turbulence, within
the framework of deterministic classical mechanics and thermodynamics
such as the ordinary understanding of the N-5 equations would represent.
In other words, if the N-S equations are to be employed generally for
the description of fluid flow systems, it seems that all the variables
in the N-8 equations must be understood to be statistical, not determin-
istic, quantities.

In the face of these realities theoretical fluid mechanics research
turned to statistical methods, especially, and often exclusively, for
the description of the turbulence phenomenon. Initially these statis-
tical methods consisted in direct formulation and application of proba-
bility distribution functions to describe the turbulent velocity, pressure
and temperature fluctuations in simple turbulent flows (refs: 5,7, 21).
More recently, powerful methods (refs: 2, 8, 12, 14) basced upon statis-
tical mechaniecs and thermodynamics have been developed, in which new

models of the fluid flow system (usually as a set of interacting parti

—




3.

cles) are conceptualized and in which mechanical characteristics are
viewed as probabilities and their values appear as mathematical expect-
ations,

But although these statistical mechanical approaches show definite
promisc toward eventually resolving the fluid flow problem, there appears
to be still a long way to the realization of that goal. Fundamental
problems, notoriously those of determining the proper stress-strain rela-
tion in the fluid flow system and the proper "history" cffects to faci=
litate closure of the set ot descriptive equations of the fluid flow
system, remain virtually untouched, and continue to palgue every effort,
however sophisticated, at mathematically modeling the gencral fluid flow
system.

From all practical considerations it seems quite valid to conclude
that rheoretical fluid mechanics research has for a while now been stuck
in a dead-end alley and does not appear to possess any sensible exit-
direction. And the time seems overdue to re-evaluate the progress in
thecretical fluid mechanics research, as well as to systematically scl
up the fluid (low problem towards a complete practical solution.

The urgent need for a systematic approach in theoretical fluid
mechanics research cannot be overemphasized. Hithercto, the trend in this
area of human endeavor has been characterized by what may be described
metaphorically as the "band-wagon'" mentality: someone at some point
introduces some "new' method and everyone jumps into his band-wagon
with modifications and extensions but with little or no understanding
of the fundamental philosophy involved; and when the new method is scen

to lead nowhere, a lull appears as the crowd waits for another "new"
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method to emerge.  Such an appraoch is completely unwarranted and has
been very expensive in terms of monetary cost and individual frustra-
tions, not to mention its fruitlessness in terms of a basic understand-
ing and solution of the fluid flow problem--a problem of extreme lmpor-
tance to man's technological and general development,
A systematic approach to fluid mechanics research should lead to:
(a) a better perspective of the supremal fluid flow problem,

(b) the identitication of the infimal problems fundamental to a
complete solution of the supremal problem, and

(¢) a clear recognition of the possibilities or impossibilitics
of complete solutions to the fluid flow problem, as well as of
the nature and type of mathematical tools ideally suited to
tackling the mathematical modeling of the fluid [low system.
And the results of such efforts should infuse definite and needed dircction
to theoretical fluid mechanics research,

In 1969 this investigator undertook this needed systematic investi-
gation of the general fluid flow problem, and by 1971 had fully constated to
himself that any complete practical solution of the fluid flow problem
must involve the application of a valid and complete "general-system”
theory. It does indeed appear that the fluid flow system represents a
real model of the general dynamical system in nature, to the extent that
anyone who can effectively analyse the fluid flow system can also, with
only slight modifications to his technique, cffectively describe the
dynamical characteristics of any other natural system. Following exten-
sive research in search of a "general-system'” theory complete and valid
for all natural systems, this investigator established in 1973 the
foundation for the formulation of such a theory. FElements of this
"general-system" thec 'y are presented in reference (1). As will ulti-

mately be seen, gencral-system theory either resolves or points to a

o
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definite direction for the resolution of all the fundamental problems
hitherto encountered in the complete description of {luid flow systems,
The prescot work represents a preliminary application of the under-
lying principles of this investigator's "gencral system'” theory to the
description and analyses of the fluid flow system. An attempt is made
herein to establish practical models, or elements thereof, of the general
fluid flow system from the point of view of the general system theory
fundamental principles. Results thus obtained are appiied to a simple

' as test case, with particular emphasis

"experimental {luid flow system,’
on the understanding of fluid flow instability, transition and turbulen&e.
This report, however, is a presentation only of the lfundamental
aspects of the stated work. In later and more detailed cfforts by this
investigator, each of the major findings reported herein is taken separ-
ately and considered in depth.

The tfundamental philosophy that will be employed throughout this
and future work is that any equations that are to be uscd must be derived
by objective application of the universal and invariant general system
theory to the fluid flow system; and any assumptions made must be
explicitly indicated. Nothing is taken to be sacred unless it conforms
specifically to the universal invariance principles of the general system
theory. That, it seems, is the only way by which we can be sure to
detect and correct all those fundamental errvors which have been propa-
gated through the history of fluld mechanics research and which have
stymied the development of a true understanding of fluid 1 low.

The "experimental fluid flow system" chosen as the test case in this

work is the very simple flow satisfying the following requirements:




(a)

(b)

()
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incompressible and time=independent flat plate boundary
layer flow governed by the equations:

su/ax + dv/iy = 0 1.1
wiu/ax + vau/iy = d(cdu/dy) /oy (1.2)

¢« is the relevant system particle viscosity divided by the
mass density; that is, {f the relevant system particle is the
fluid molecule, then € = v = u/p, It is assumed, with good
reason, that the usual molecular viscosity should not vary
in the "experimental fluld flow system';

the following boundary conditions are satislied.

u-v-Oaty-O]

U asyo»w (5:3)

where u, v, x and y have the usual meaning,

-,
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2. SEA MODEL OF THE FLUID FLOW SYSTEM

2.1 Introduction

Whet [ refer to as the Statistical cocregy Approach (88A) Is that
scalar approach in the analysis of systems which 1s based opon tocal
energy as the primary and Indecd sole relevant system variable and which
is founded upon the theory of the "general=system,” as enunciated by
this investigator in reference (1), with statistical mechanics as its
primary anaivtical tool.

General system theory provides the "physical foundation of this
approach and permits the extensfon of a generalized mechanics to the
descrintion of the basic dynamics of any system, once the system's
"relevant" elements (i.2. system particles) have been identified. Stat-
istical mechanics, on the other hand, provides the analytical tool by
which the interactions of the system particles and the consequent states
of the system may be studied,

Details of statistical mechanical techniques for the analysis of
the interactions of sets of particles are usually commonly available in
modern texthooks on that subject; this investigator especially recom-
mends the presentations given by Khinchin (1) and Balescu (). But
details of the general syvstem theory from which the physics of SEA
derives are beyond the scope of the present work. It should suffice,
nonetheless, to note that the basle tenets of SEA are gencrally accepted
in modern physics wnd statistics--especially in modern goaeral kinetic
theory. Sadly, however, the potential value of these tenets in general
system analyses is not very much apprecifated by many of their uscrs.

Within the framework of SEA, the analysis of any system revert:
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convenlently to the problem of determining the evolotion or involution

of the system's total energy fleld based upon applicable initial and
boundary conditions; any other relevant system variable mas be recovered
by appropriate, and uwsually relatively simple, secondary caleulations
based upon modal analysis of the system's total energy ticld, The basi
governing equation is, of course, the cquation of conservation of total
energy for a rystem particle intevacting with fts "relevant” environment,
However, it Is fn the meaning and the Identitication of the system parci-
¢le that SEA is most sensitive and most prone to errors, Nevertheless,
the conception of the system particle can be made exact,

The model of a system as o  ronn of interacting system particles
arranped In accordance with some generalized structure principle and
transiorming {n accordance with some generalized mechanics is what we
refer to, herein, as the SEA, or statistical enerpy, model. 1 shall now
briefly present the SEA model of the fluid flow svstem.

2.2 The Physical Model

Essentially, the physical SEA model of the fluid flow system is as
follows: that the fluld tlow system is at any fnstant a statistical
field of energy states space-time stratified in an order cither of mono-
tonically increasing or of monotonically decreasing state total-enerpy
values, We may further understand this model when we consider in more
detall what it is we refter to as the energy state. From the basic SEA
model of the general system, any system s a set ol interacting particles,
with prescribed initial and boundary conditions. And we detine the system
particle (that is, the "relevant" system element) not necessarily as a
discrete entity but rather as a statistical subspace of the subject=system

comprising all those physical or ordinary units ot the subject=systen
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which possess {dentical mean total encrgy and whooe wmot lon is desceribed
by exactly the same statistical law., The term "physical or ordinary” s
of course, in relation to the scale ol perception of the subject-system,
Thus, what one accepts as a system's particle depends on the scale at
which the one proposcs to describe the svstem,

In the fluld flow system the physical or ordinary syvatem units are
usually the fluid molecules (or, In the case of dissociated tluids, atomns
or lonized particles). The fluld flow system particle which we shall
simply call the "fluld particle” is thus any statistical subspace ol the
fluid flow system containing molecules which possess [dentical mean n(&.n
energy and whose motions are described by exactly the same statistical law.
In other words, a fluld particle can be either a single fluid molecule or
a group of fluid molecules, or in dissociated fluids, a single atom or

ionized particle or a group of atoms or fonized particles.

Struminskily (20) has argued quite convincingly that indeed theoreti-

cal as well as experimental data indicate that the main difference between

turbulent filows Involves groups of molecules rather that individoal wmole-
cules; that is to say, fluid particles in laminar flows may consist of
single molecules while in turbulent flowe fluid particles would be groups
of molecules. Cenerally, of course, the number of fluid units (molecules,
or other) within any fluld particle will depend upon the local total
energy field. [rhe mathematical characterization of the fluid particle
gize in a fluid flow svstem {s discussed later.
Let us, however, continue with our physical argumentation. We know,
for example, that in the absence of any externally imposcd encrgy tield
Brownian-type motion should prevail among all the molecules of any Fluid

system; that s, all the fluid wnits would have identical mean total
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energy and execute statistically similar wotfon and, theretore the fluid
system would be one large fluld particle., Thus, a stagnant fluld system
with no energy taput would contain only one fluld particle and theretore,
would possess ouly internal dynamics-=the motion of the units withio the
fluid particle. A system can possess external dypamics only 1f it con-
tains more than one system particle., 11, however, an external encrpey
tield is imposed upon a flufd system, then {low may occur if the imposed
energy ftield Is either non=uniform or is non=unitormly constrained in

the fluid flow svstem; this will result in local varlation of the mean
total energies of the fluld units which will maniftest as a stratifticatdon
of the fluid “r<stem on the basis of mean total encrgy=-that is, as o
shearing o! (ne (luid., In such a flow situation, those fluld wnits pos-
svesing identical mean total energy group to form the flow energy states,
Within each such flow energy state, one can, at least conceptually, dis-
tinguish and group together those fluid mits whose wotion obevs the same
statistical laws--these are the fluid particles.

Quite obviously, a fluid particle can only be probabilistically

described, since by definition it is a subspace of a fluid space containing

those ordinary or physical units (molecules in this case) of the fluid
which possess statistically similar motion as well as fdentical mean total
energy. Furthermore, we now have a better understandiog of detinite dit
terences among fluld systems. For Instance, we know that a stagnant

fluid with no energy input constitutes only one fluid particle and thus
possesses only internal dynamics; a sheared @'low must he delined as one
which contains at least two energy states cach of which contains tluaid
particles; and a non=-sheared flow must contain only one encrpgy stat

with at least two fluid particles.

_______hr__v4,ﬁ",__"__-___“______—_-1"-, T — — e e ——
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In conciuzion to this presentation of the physical conception of the
SEA model of the fluid flow system, I wust re-emphasize that what is
being described is a statistical, not a deterministic, field of enerpy
states. Such a siatistical fleld is best conceptualized as an instant-
aneous cloud of non-uniform property density. Thus, any point in a fluid
flow system is always enclosed by a fluid particle; and a fluid particle
cannot be conceptualized as a fixed subspace. Therelore, contrary to
possible criticism that the SEA model implies discreteness of enerpy
states In costradiction to accepted continuum concepts in fluld systems,
a careful study of the foregoing discussion should obviate the fact thut
the SEA model merely emphasizes that a non-uniform energy fleld, il

imposed upon an undissociated fluid system, for example, will introduce o

stratification of the fluid molecules on the basis of mcan total energics:

(L

and that as a result of this stratification or "shbearing'" of the fluid,
groups of, rather than individual, fluid molecules will become the rele-
vant characterisicic units of the fluid system.

2.3 Characterization of the Flow Encrgy State

From foregoing discussions of the physical SEA model of the fluid

flow system, a flow energy state is seen to be merely a set of inter-

acting fluid particles all of which possess identical mean total enerpgles.

Thus, one of the characteristic descriptive variables for any arbitrary

energy state, ., must be the state energy density, vi—-dvlincd ax the

i
total energy per unit volume in that energy state. The value of €

should be uniform throughout the flow cnergy statco, but, of course,

l Al

only probabilistically so; for e, is clearly a statistical variable.

i
Each {luid particle within the energy state, j? would coutaln molecules

(or other appropriate physical units) whose total cnergy would corcespond

with e1 and whose mean tocal energy would also be identical.
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A flow energy state may further be described as a volume of "similar”

fluid particles. By the term "similar" we must certainly mean that the
fluid particles possess identical mean total energy and that the motions
of the fluid particles obey exactly the same statistical law. As a fluid
volume, a tlow encrgy state could be described in terms of characteristic
length scales-=tor example: its thickoness, its length and its width or,
in terms of corresponding spherical or ecylindrical coordinates. In this

work, we shall employ the symbol, A , to represent the characteristic

spatial size of the arbitrary flow energy state, must be

s again, A,,
) J
a statistical variable since a flow energy state is only probabilisticall
desceribable.

Finally, in a field of interacting flow energy states it would b

necessary to distinguish the locations of the encrgy states relative to

some reference frame. 1In this work we shall choose as our reference frame

the energy state in the field which possesses the lowest energy density
value; and we shall call this reference encrgy state the "relative zero”
encrgy state with j=0. Furthermore, we shall employ the symbol, fy0 to
describe the location of any other energy state relative to the zero
energy state. More precisely, and for computational facility, the local
value of L, will be defined as the coordinates of any point of interost

]
in the energy state j relative to whatever coordinate system by which the
transformed energy field has been described and in which the origin of
coordinates lies in the lower boundary of the relative zero encrgy stato.
In other words, E‘ will be employed as a local position vector radial to
the lower boundary of the relative zero energy state and centered at

the location of the flow field being investigated. The vector o must

again be a statistical variable for any flow energy state

“-—;&_Lu‘ L
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2.4 SEA Representation of the Fluid Flow Prolilem

We have already observed that the fluid flow problem concerns,
essentially, the qualitative and quantitative description of relevant
property fields (such as velocity, ete.) of fluid flow systems with
appropriate elucidation of associated dynamical phenomena such as flow
instability, transition and turbulence. We seek now to re-formulate this
fluid flow problem in the parlance of the statistical energy approach (SEA).

The SEA model represents a fluid flow system as a tield of inter-
acting flow energy states: and each flow energy state is described as a
field of interacting "similar" fluid particles, where, by the term
"similar" we mean that the fluid particles possess identical mean total
energy and their motions obey exactly the same statistical low. Thus,
more generally a fluid flow system is modeled by SEA as a field of inter-

"non=-similar."

acting fluid particles some of which are "similar" and some
Quite clearly this latter conceptualization of the fluid flow system
readily permits tested methods of statistical mechanics to be objectively
applied in the analyses of fluid flow. We further noted that a flow encrpy
state may be characterized by the three «tatistical variables ej. Aj,

and ¢, , which describe respectively: the total energy density, the spa-

]
tial size and the position vector of the energy state.

Within the framework of the statistical energy approach the fluid
flow problem therefore reduces to one of describing the statistical
field cj for any fluid flow system, and then recovering any desired pro-
perty field of the fluid flow system from appropriate secondary calcu-
lations based upon modal analyses of the energy density field eJ.

In this work we shall refer to the instantaneous energy density

field e,, as the flow system response energy field. Cenerally the flow

e e o R
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system response energy fleld is a space-time distribution invoiving the
variables Al, and EJ or any other variables by which the flow energy state
has been characterized.,

The statistical energy approach thus splits the supremal fluid flow
problem into two intimal problems, namely:

(a) Computation of the flow system response energy field; and

(b) Computation of any desired flow system property fleld by
secondary analyses of the response energy field.

And in each case, statistical mechanics is the basic and self-sugpesting
mathematical tool.

Finally, we note that the concept of the fluid particle {ntrndu;;d
by SEA must necessarily alter our usual formulations of transport coeffi-
cients in fluid flow systems., For instance, in the transport of momentum
we may speak of melecular viscosity, per se, only in cases in which there
exists only internal dynamics, that is, when there exists only one very
large fluid particle; otherwise, we must define and employ a "particle" or
"eddy" viscosity and not molecular viscosity. It is clear that such a
particle or eddy viscosity would always be space-dependent. Even in the
so-called laminar flows the appropriate viscosity is not necessarily the
usual molecular viscosity, although it seems, (rom practical experimental
results, that the appropriate laminar flow particle viscosity equals the

molecular viscosity in magnitude and distribution.

2.5 Comparative Remarks About SEA and Other Statistical Approaches

At this point I must emphasize that the statistical energy approach
described in this work is quite different from current and perhaps more
familiar statistical mechanical approaches tn turbulence studies, such
as are described in references (2, 8, 12, 13, 14, and 15). There are

three major differences that are easily discerned.
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First, the basic models of the fluid flow system differ hetween SEA
and conventional statistical mechanical methods., Most, if not all, con-
temporary statistical mechanical analyses of fluid flow model the tluid
flow system as a set of interacting fluid molecules; SEA models the fluid
flow system as a set of interacting "groups" of (luld molecules==the fluid
particles--some of which are similar and some of which are non-similar,

To this investigator's knowledge, only a recent work by Struminskiy (20)

and perhaps some other subsequent work by the same and possibly tollower-

authors have recognized the need for the concept of [luid particles. !
. L

Furthermore, as a result of this SEA model, the concept of molecular vis- )
\

cosity gives way to that of a space-time dependent "particle-viscosity"; ‘

and this realization automatically resolves the long=lived stress-strain
relation problem in fluid dynamics.

Secondly, the techniques used to simplify the mathematical analyses
differ between this work and most other statistical mechanical analyses
of the fluid flow system. In this work probability theory and the methods
of stochastic analyses tre explicitly emphasized in contradistinction to
the general and special kinetic theory approaches and approximations
employed by contemporary models.

Thirdly, and most importantly, unlike most, if not all, other statis-
tical mechanical analyses of the fluid flow system, SEA is a strictly
scalar energy method. The experiences of many investigators over many
ages of men have shown scalar energy methods to be more peneral and more
powerful than those methods of analysis based upon vector concepts of
force, momentum and acceleration. Nonetheless, investigators had hitherto
very reluctantly avoided the use of energy methods primarily because, even
though the methods were simple, they gave only global results and in the

absence of general techniques for the decomposition of encrgy into other
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relevant properties such as velocity, acceleration, lorce, temperature,
density and so on, these energy methods could not be employed in any
detadled work, However, the general system theory enunciated by this
investigator has now removed, or, if you will, pointed to a definite
direction for the removal of  the aforementioned difticulty: ir is now
possible to recover most desired property=fields from a given total energy=-
field. Thus, the scalar energy method has been emancipated and has
regained its tormidability.

The statistical energy approach has been applied in ditferent forme,
and with remarkable success, to problems in acoustics and structural ”
analysis (16). 1In fact, a number of large system dynamical analyses (19)
are shifting towards SEA especially because of the mathematical simplicity

of the method. This investigator strongly anticipates that SEA will

become a standard system's analytical method once more investipators assure

themselves of the validity yet simplicity of the modal analyses ol the
system response energy field suggested in this work for the recovery ol
desired property fields of systems.

Finally, SEA very clearly stands higher in the hierarchy ot descrip-
tive methods than hitherto employed methods of fluid flow analysis and as
such, offers a more likely avenue, than other contemporary methods, to
a better understanding and containment of the turbulence problem as well
as of the problems of flow instability and transition. To illustrate
this reality we shall test the SEA model by applying it to our simple,

though, quite practical, "experimental fluid flow system."
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3. THE TURBULENCE PARAMETER, §

SEA, reference (1), identifies the turbulence field of any system as
the net pure fluctuation field of that system, characterized by a mean
turbulence energy, e'. And In "general-system'" analyses the mean value
or mathematical expectation, e', of the turbulence energy field, is shown
to be a computable fraction, ¢(0), of the system's total kinetic energy,
e. Obviously this phi-parameter, which we shall generally call the
turbulence parameter, is extremely important in the SEA description of
fluid flow turbulence. We shall investigate in this chapter, the general |
nature of this turbulence parameter, ¢(6), with respect to the fluid flow
system. First, we list the relations and constraints defining ¢(0),

asg derived in reference (1).

e' = ¢(0) + e

L

$(8) = 20exp(-0.73602);: and (3. 1)

0 < ¢(8) 1

A

In the above relations, e' is the local mean turbulence energy, e is
the local total kinetic energy and 6 is a dimensionless quantity which
can readily be shown to be directly proportional to the local flow fluc-
tuation Reynolds number.

From relations (3.1) we deduce, as illustrated in figure (2), that
¢$(6) has a maximum value equal to unity when ¢ = 0.82, and that as
6 >0 or as 0 + 4,¢(G) + 0. Thus, if in any |low system the (0-value
lies close to unity, most, if not all, of that system's total kinetic
energy will reside in the turbulence mode. For a standing [luid we
therefore expect that 6 will assume its critical value of 0.82 and should

be space-time independent. On the other hand, in fluid flow svstems we
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expect that:

0 <6 <0.8; or
8 > 1 (3.2)
Since we know that in practical fluid flow systems the unit fluctuation
Reynolds number is usually greater than unity ard since 0 is directly
proportional to the fluctuation Reynolds number, we may speculate that in
real flow systems the constraint, 0 > 1, should hold.
3.1 The Phi-Equation

Since the total kinetic energy, ¢, of a fluid flow system is simply
the sum of the mean kinetic energy ¢, and the turbulent kinetie energ}
e', the relation between e' and ¢, (3.1), yields the following relation
between ¢ and e.

e = (l-p)e (3.3)
We may now establish the equation of evolution of ¢(0) by subtracting
the equation of transport of the mean kinetic energy, e, from the equa-
tion of transport of the total kinetic energy, e, using the relation
(3.3) above.

For our simple "experimental fluid flow system'” it can readily be
shown that the transport equation for total kinetic energy could be
written as foliows:

ude/ax + vae/dy = ed? e/ay’=(c/2y-de/iy) deldy (3.4)
Substituting for e e/(1=¢) in equation (3.4) and subtracting the mean
kinetic equation, as is customarily done in fluid mechanics research, we
obtain the equation of evolution of ¢(06) as follows:
udd/ox + vag/dy = ca2¢/oy? + {e/(1-¢)} (3¢/ay)? = le/2y - de/oy  (3.5)
- (e/e) se/dy) 3¢/dy

Equation (3.5) corresponds exactly to the classical "prey-predator”

-l

13
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vquat fon commonly employed in the study of ecosystems and the stability of
natural systews, This should be expected, since ¢ may be viewed as the
normalized predator (or turbulence) population feeding upon the prey
(or mean tlow), and thereby critically dependent on the gquantity and qual-
ity ot the mean flow.
The following boundary conditions must hold:
$(0) » 1 as y » 0
(3.6)
4(0) 0 as y » =
3.2 Analye's of the Phi-Equation
Let us now investigate some of the more obvious fmplications of the
evolution equation for the turbulence parameter, ¢, and see to what extent
such implications conform with or contradict experimental observations
of f'uid flow systems.
We shall rewrite equation (3.5) in a transformed form using the Levy-
Lees transformation for a flow over curved bodies as fully discussed and
employed in reference (18); and we shall use exactly the notations of
reference (18). Thus, the (x, y) space transforms into the {£(x), n(x, y)
space, and the (u, v) velocity field transforms into the (F, V) dimen-
sionless velocity field; I‘O describes the body radius and t describes
the transverse curvature (r/:“). while j describes the flow type (j=0,
tor planar flow; j=1, for anisymmetric flow). Using the above transfor-
maltion and with primes indicating partial differentiation with respect
to n equation (3.5) transforms to the following:
'l +Cp'?2+Ci9' +C, = O (3.7)
where: Co = 1/(1-¢)
Cp = ={T; +Typ = T3 = Ty - Ts}

Co = K(34/3E)

}

T ———— T — ﬁv—m"’—-———-———j
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Let us now separately inspect the coefficients Cy, €, and €, occur=

ring in equation (3.7).

C. is the coefficient of the source of non-lincarity in equation
(3.7): it is a function only of ¢ and is detinitely non=zero: thus, the
evolution of ¢(0) transverse to the flow direction will always be non-

linear.

C, does not explicitly contain ¢, but is cowposed of five terms which

seem to effectively import the influences of various flow conditions as

follows:

T, ¢ The basic term; also importing the effect of externally-impressed
stream curvature

T, : dimwports the impact of the transverse (low (i.e. transpiration at
the boundaries, etc.) and the nfluence of externally-impressed
stream curvature; also the direct influence of vigcosity and com-
pressibility are carried by this term

Ty : imports the direct effects of shear and thermal stratification

Ty ¢+ imports the effect of shear; and

imports the effects of compressibility and thermal stratification.

Thus, in terms of the impact or influence of flow type and [low boundary

and initia' conditions on the turbulence field of a flow system, it is

clearly the coefficient €} that is critical.

Co contains essentially the influcuce of the streamwise gradicnt of §.
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We may conclude from the above that the evolution of ¢ intricately
Involves the fmpacts of flow type and tlow boundary and initial conditions,
as would be expected in real flow situations, However, it remains to be
determined (f the impacts of flow type and flow conditions on the turbu-
lence parameter follow the directions usually observed in real flow sit-
vations, To make this determination we must attempt an analytical solution
of equation (3.7) and then inspect such a solution, or we may numerically
experiment on equation (3.7) in the computer, varying the different
fmpacts imported by the coefficients C,, C;, and Cy. To an extent we
shall execute both alternatives in this report. :

An analytical solution of equation (3.7) may be initiated by trans-
forming the e¢quation into the classical Abel's equation, with functional
coefficlents, and employing Kamke's, reference (10), solution to the
Abel equation. These efforts yield the following integro=differential
equat ion:

o' = =fer0 Q=072 < 2/6-) 4 1-0)i}
where: §o= JK{(3¢/06)/(1=¢)}11/(CyE))dE

(3.8)

The solution may be completed for ¢(s,q) if § can be explicitly inte-
grated. Nonetheless some Jdeductions may yet be made concerning the evo-
lutions of ¢ by the inspection of the partial solution given in equation
(3.8).

We clearly see from equation (3.8) that the ¢-protile at any f-station
wiltl be described by a tunction of n decreasing tfromn a maximum at fixed
boundaries to a minimum in the free stream: the slope of the curve being
critically determined by the coefficient C;.

The f£-evolution of the turbulence parameter is wore difficult to
explicitly determine from equation (3.8), but the general nature of the

solutions to the "prey-predator" equation, to which class equation (3.7)
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belongs, suggests that ¢ will evolve like "logintic” curves, from Ini-
tially low values through a transitional range ol prowing values to a
final range of high, but constant or only slowly changing, values, This
evolut ionary trend conforms with physical reality.

Furthermore, by inspecting the signs ol the terms 1 througn T, ol
the coefficient €; in the partial solution, equation (5.8), It Is casy
to see that the directions of the impacts of flow type and flow condicions
also conform with physical reality.

Thus, the turbulence parameter, ¢, appears to be a very plﬂuulblF
conception,

3.3 Numerical Solution of the Phi-Fquation
A preliminary numerical solution of the transtormed equation (3.7)

is attempted herein as follows:

°"m+|. 5. "l".,,u. ,,H-m,,,,,. a” Yrbmﬂ' - (3.9)
"'mﬂ. n ® Yuloy, at1 " Y5%1, 0~ Y6041, n-l (3.10)
sty Cun L, 5 (3.11)
d &1 (3.12)

‘m+l. n m, n* ¢m+|. n

J 0 = g - W - ; Xe = XaXi 4 ! 5 ¥
CI7ETS S fxixo-xe,, - aXs=XaX)e 1/ (3.13)
(2A67 * Xg)
Equation (3.7) can then be rewritten as follows:
-Au ¢m+l. ntl i Bn ¢m+l. no Cn ﬁm+l. et ”m. n (3.14)

x
where: An = -(Y) + GYy)
* *
B“ » [l‘” {XIXI_' - x‘)/(lelf\:-‘\) - Y‘- - G \’l,.'

*
(:.1 = (G Y = Ya)

Using the notation in reference (18), the following approximat lons are made.
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*
nm‘ a® Co (XzXy - XX, ) ."'s I(2x”ApJ‘
“

5, ’.l. n’(‘-’l. n) A (c‘)m+l. n

’
. & &l P4 2
Co .2f.v¢(nulp) F/(et )lnrH. B
Equation (3.14) has the tridiagonal matrix form and can readily be solved
to yield ¢n+l. =

The numerical approximations emploved hercin are clearly not the
best possible; the convergence obtained has not been satisfactory. None-
theless, figures (3) and (4) show a typical evolution of ¢ in a shear
flow. A more detailed numerfcal analysis of equation (3.7) will be

-

performed in a future work.

-




24.

4. THE TURBULENCE FLOW FIELD
4.1 The Mean Turbulence Encrgy Fleld
As already indicated in the preceding chapter, "poncral=systen”
(=8) theory gives the mathematical expectatfon, ¢' of the turbulence
cnergy field of any system as a computable fraction, ¢, of that system's
total kinetic energy field, e. Since the total kinetie energy field of
a system is defined in g-s theory as the sum of the turbulence kinetie

energy, ¢', and the mean [low encrgy ¢, the following relations result:

e'mypremy g (4.1) :
Y o= ¢/(1-¢) (4.2) }
The above relations imply that once the total kinetic or the mean flow :
energy field of a fluid flow system i# known, the corresponding mean tur-
bulence kinetic energy field may be considered knowa, it the tield of the
turbulence parameter, ¢, is also known, /
Usually, howover, we may know the total velocity tield or the mean
velocity of a flow system and we would want to explicitly compute the
mean turbulent velocity field in some given coordinate divections. In
order to accomplish this task we would have to exploit cquations (4.1)
and (4.2) in search of practical and valid formulations by which we may
recover velocity fields from total kinetic encrpy flelds in any desirable
coordinate direction. Let us now attempt that task for the mean turbulent
velocity fleld.
Let us represent the total, mean and turbulence velocity fields of a
tluid flow system by the vectors V, V, and V', respectively. In three-
dimensional cartesfan coordinate system these velocity tields ber v
V 2 (u, v, W)
Voo(u, v, W (4.3)
V! vt %)
'{
o
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In terms of these velocity (lelds, the energies, ¢ ¢, and e' may be

expressed as follows:

2 . 2
@ plu +v +w)/2
- 2 2 2
e 2p(u +v +w)/2 (4.4)

2 2 2
e' zp(u +v' +w )/2

And from equations (4.1), (4.2), and (4.4) we obtain the relations:

2 : 2 2 2 2 = T e
(u' +v' +w ) =¢glu +v +w ) = ($/(1=¢)){u +Vv +w ] (4.95)

A general expression for the turbulence components in the principal
directions of the reference frame may be given as follows:

ui) 1¢/(l-¢)}{vijﬁ ii: i, §, =%, y, 2 (4.6)

u'j = ¢y

L)

where: - -
u *u,u =y, u sw u =y, u =sv, u sy';u =y,
X y Z x y z x
"y' o TR and the y-terms represent the fractional redistri-

bution of the turbulence energy from one principal coordinate direction

to another. Obviously, the following constraint applies:

+ = = + = &
(ox ¥ N YY) '® Vs F Y vt ™ o ¥ e i (4.7)

As a flrst approximation in this work we had assumed that:
=1 fori=4

H 1! j = X, ¥, 2 (‘:‘-8“)
=0 for i # j

"1j

ij
We have found this assumption not to be acceptable since we know that
w'? may be quite different from zero even in flows which are two-
dimensional in the mean. We could correct for such an assumption by
complicating the ¢(8)-function; but that would be highly undesirable.

The y-terms may be formulated in terms of the total and mean velo-

city fields by invoking an analogy between the y-tensor, apparent from
the above relation, and the well-known strain tensor. This exercise is,

however, rather delicate; it will be given full attention in a later work.

-
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For the purpose of the remainder of this work we shall make a second

approximation, namely, that:

= a < ]; for all § = |
t 1, J, = x, ¥y, 2 (4.8b)
= (l=a)/2; for all 1 ¢ }

Y“

1!]
This assumption automatically satisfies the constraints (4.7) and appears,
in fact, to be a reasonable approximation in many practical fluid flow
systems., The quantity, a, appears to be a system constant. Ve shall
experiment with a few values of a, in the range 0.3 - a < 0.6 but in a
later and more detailed work we shall attempt to find appropriate for-
mulations for a. .

The foregoing results indicate that once the total or the mean
velocity field of a fluid tlow system is known, then only a knowledge
of the ¢-parameter is required to obtain the corresponding mean turbulence
field for the system.
4.2 The Probability Law of Turbulence Intensity

General=system theory indicates that if we define a turbulence

intensity, I = ¢'/e, the local ratio of the turbulence kinetic energy to

the total kinetic energy, then the probability density function of 1 is
given as follows:
f.(i) = £ (g) |dg,/di]| + £ (g,)|dg,/di], 0 < i < 1
1 X X A
(4.9)
= () : elsewhere
£l
where: g; = o{1 + (1-i*) “}/i
a3
g2 01 - (1-1°)*}/
fxtl) = 12885/lexp(5 X) =1} 1 0= x < v
=0 i elsewhere

and 0 ig, as previously defined, proportional to the local fluctuation
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Reynolds number.

Since ¢ = 20exp(=0.73607), our earlier speculation that the constraint,

0 < 1, must hold yields, that:
0 = (-in(0.5¢))" (4.10)
Thus, once we have computed the ¢-field for a 1luid flow system we
may not only compute the mean turbulence field but also, from knowledge
of fl(l). we may completely describe the statistical field of the turbu-
lence.,

4.3 The Spectrum of Turbulence Energy

Finally, general-system theory also provides a spectral representa-
tion of the turbulence energy field.

If in any energy state of a flow system the most probable turbulence
frequency is W then the turbulence kinetic energy, Ez' which resides in
the turbulence frequency w =~ 2z -+ w, in that energy state is given by
general system theory as follows:

(E fe) = 25682°/[(2? + #7) (exp(52) = 1]) (4.11a)
or  (Ez/d) = 25682°/ [ (1-¢) (22 + 67) (exp(52) - 1]] (4.12a)
Employing equation (4.10) we have that:

(Eg/e) = 2562°/D (4.11b)
(Eg/e) = 2562°/{D(1-¢) (4.12b)
where: D = {(z° - En0.5¢)/6En0.5¢)5}{exp(3z) - L1}
Quite obviously, these spectral forms conform with observed reality; the
bulk of the turbulence kinetic energy is seen to reside in the lower

frequency fluctuational modes.

e -‘I.L-.ﬂ.‘ fini i il P .. 1.



. THE MEAN FLOW FIELD

In the context of "general-systen” theory the mean motion of a
fluid {low system (i.e. the mean flow field) is the instantaneous sum of
the pure translational and the pure rotational motion ol that system,
This is the usually observed mean motion of the fluid flow system.

Let us again denote the total motion of the fluid flow system by
the velocity field, V (u, v, w), in three-~dimensional cartesian coord-
inate system; and let us denote the mean (or observed) motion by v
(u, v, w); the pure rotational motion by the velocity VR and the pure

translational motion by the velocity, VQ (qx. qy' qz).
The mean flow energy, 5, is then given as follows:
e =$oV’ - p(v{"‘2 + vi)/2
' {5.1)
= p(1 =9)V4/2

The pure rotational velocity field may be written as: VR = fo. where

in this case ¥ - {rx L = ry o P k} is the vector of the local
fluid particle rotation. Since the general motion of a system particle
within any energy state may usually be replaced by the motion of the
center of volume, A, of that particle plus a pure rotation and a pure
vibration of the particle about A such that the total kinetic energy

density of the particle corresponts to the total kinetic energy density

L
value in the caergy state, it hecomes obvious that in this case r may be

considered identical with the fluid particle characteristic radius , ;v'

already discussed in reference (1); |lrl essentially represents the

characteristic radius of that fluid particle whose surface passes through

the space-point of interest. Reference (1) suggests the following fTormu-

4 »
lations for rc:
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r? = w'x" /(Re |u*[) (5.2a)
» X s i
r’ = m'xy/(Re Iv*l)
y X
or: ry = myt(l-¢)u*}l‘I{Re::|au*/;)y|} (5.2b) |
2 23 A
ry = wkz/(Reg|v]) (5.2¢)

where u*, v*, u* are the component total velocities non=dimensional ized ‘
with Umax‘ and Rei = (Umxxlv): m is a numerical constant and %, y, and 2 ~
are respectively the effective streanwise, transverse and lateral coordi-
nates in three-dimensional rectangular cartesian coordinate system.

The pure rotational velocity may also be written in three=dimensional
carteslan coordinate system as follows:

= (myrz - wzry) o (wzrx - wxrz) & (wxry - wyrz) * k (5.3)

where:

v, = (dw/dy - dv/oz)/2

wy = (dufdz - Ow/ix)/2 (5.4)

w, = (ov/dx = ou/fay)/2

Thus, the observed mean velocity field may be written as follows:

u=a +uwr - Ww.r
b y 2 zy

v= q, +w,r - wr, (5.5)

U

W qz o mxry - myrx
and:
(W2 +v2 + W) = (1 - ¢)(u” +v? +w’) (5.6)
From equation (5.6) we may generalize the following relations
between the observed and the total velocity fields in fluid flow systems:

e = .2_ e .‘,2
u= {(1 ¢wxx) u ¢nyv ¥ }
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v = l'¢yylu? + (1-¢yyy) . v? - ¢‘yz . w?)*
- i (5.7a)
o PSR L AR e B e B
where ¢ and the y=terms are as previously defined in the preceding chap-
ter. If, according to our second approximation of the preceding chapter, |
we take ilj = a, for all 1 = j and Yij = (1-a)/2 for all i # j, then
equations (5.7a) reduce as follows:
3= Gy lu? = Gy(v? + w2))"?
v =G {v? = Ga(u? + w?)}l” (5.7b) |
w =G {w? - Gy(u” + v2)}* : -1
where: : ‘
Gy = (1 - d*a)l=I and G, = ¢(1 - a)/{2(1-¢a)} 1
1f, therefore, the total velocity field of the fluid flow system
is known, the observed mean velocity field may readily be computed from
a knowledge of ¢ and a., 1If we want to compute the actual pure transla-
tional and pure rotational velocities we must employ equations (5.3) and /
L
It is easy to see from the foregoing that in the zo-called boundary
layer flows, the observed mean velocity field would be mostly rotational
velocity; that 1is, pure translation is very small in the boundary layer
compared to pure rotation.
Alternatively, the quantities u, v , and w , may be computed from
the evolutionary equation for ¢ as obtained from equations (3.4) and
(35) in @ preceding chapter. For our "experimental fluid flow
system" we would have the following equations for e and its components:
ude/ox + v.iG/.iy = cg3’e/dy? - {r./2v - e/ (1=¢) *« 5/3y = B /1"."]":’/"»; (5.8a)
udn? /ax + vou’/dy = eau?/ay? - {.;fzy - e/(1-¢) + 343y - ‘\"""’-"}“'“' /3y (5.8b)
€= (v +v9)/2 (5.8¢)
A1
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6. THE COMPUTATION OF THE FLUID FLOW SYSTEM

The fluid flow system may be described in any one of several ways
depending on the scale of fundamentality of property-fields that one is |
interested in. This freedom in description sets up what 1 have called a
hierarchy of descriptive philosophy, based upon the ¢lementarity of the
chosen basic property-field.

In physical reality the fluid flow system is most fundanentally
an energy system; that is, its sole basic property-ficld is "energy.”

Any description of the fluid flow system as an energy field may therefore
be referred to as a "single-field" or "general system” approach; it would
be the highest physical description of the fluid flow system,

Lower down in the hierarchy of descriptive philosophy we may choose
to describe a fluid flow system as a mixture of "forces" and "energy';
such a description would conform with the classical Hamiltonian mixed-
field approach.

But by far the most popular and, therefore, the dominant descrip-

tion of the fluid flow system in contemporary fluid mechanics research

is the Newtonian mixed-field approach in which the system is viewed as

a mixture of "momenta” and "force" fields. Clearly, the Newtonian
approach is lower in the hierarchy of descriptive philosophy than the
Hamiltonian approach.

The reason for a descent in the hierarchy of descriptive philosophy
is usually the desire to obtain more detailed information in an explicit
form and on as many property-fields of the subject-system as possible.

For instance, the general system approach would usually vield only the

'
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total energy field of a subject system while the Hamiltonian approach
would provide the force field as well as the total kinetic energy flelds;
the Newtonian approach, on the other hand, would explicitly yield the
velocity, mass=density, temperature, pressure and other property=-ficlds 1
ol the same subject system,
But what one gains in explicit "detail” the one loses in explicit
“"complexity" of the chosen method. The Newtonian mixed-field approach

requires more complicated equations, often with severe c¢losure problers,

Y
A b W

for the description of the fluid flow system than does the Hamiltornlan
mixed=1icld approach; and, as we have seen in re‘ (1) of this rvpur;.
the gencral system approach describes the fluld flow system by one very
simple equation==the equation of conservation of total cnergy.

6.2 The General-System Approach

- ‘LML—A

In employing SEA (or the general system approach) for the computa-

/
tion of the fFluid flow system, essentially only the following three
procedurcs are required:
(i) transform the ordinary space of the fluid flow system by
some set of transformations into the general system space,
for instance as discussed in references (17) and (22),
(ii) solve the simple fundamental equation of the general system
in the transformed or general system space; and
(iii) transform the solutions from (ii), above, back into the
ordinary space of the fluid system.
What one obtains in (iii), above, is the response total energy fleld in
the ordinary space of the fluid flow s swe .  In order to recover any
other proporty-field from this total! energy field one must employ the
results of the analyses of energy suggested by this investigator, some
of which have been presented in this report, and all ot which are based
upon this investigator's general system theory.
i
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The foregoing notwithstanding, a fundamental ditficulty in the full
application of the general system approach still remains unresolved at
the time of this report. This concerns the elicitation of a simple set
of transformations for transforming the ordinavy space of any system
into the general system space. A number of relevant transformat fons
have been suggested by different investigators such as in references (17)
and (22), but these transformations still make more demands on computer
time and space than the present investigator strongly belicves is necess-
ary; after all, the aim of the exercise of the general system approach
is to attain maximum simplicity with maximum accuracy and not just t;
find another alternative approach. At the moment, given a fairly large
computer space and time (though much smaller than what would be required
by other contemporary methods to provide the same or equivalent amount
of results) this investigator's general system approach can yield very
detailed results on any fluid flow system; but such computer space and
time are not easily available.

6.3 A Derived Newtonian Approach

An alternative way to test or demonstrate this investigator's gen-
eral system approach is to deduce from it the relevant descriptive
equations In a lower scale of description, such as the popular Newtonian
mixed=-field scale, for instance, and then to examine the correspondence
of the deduced description with experimentally verifiable knowledge on
real fluid flow systems. In doing so we have come to the conclusion that
the system of N-S equations of fluid mechanics is in itself a complete
and correct description of the dynamics of fluid flow in a vector space,
provided that:

(a) all the dependent variables in the N-§ equations are under-

stood to be total variables admitting only of statistical
description:

L

e, P NI TUPT NNt T
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(b) the viscosity term, ¢, is understood to be not the usual
kinematic viscosity based upon molecular transport of momentum,
but rather the generalized "fluid particle” or "eddy” viscos-
ity based upon the transport of momentwn by the conceptual
fluid particles of fluld {low systems; molecular viscosity
would be only a special case of thls eddy viscosity; and

(¢) the conventional understanding of pressure is modified to
explicitly distinguish between the internal pressure of a
fluid flow system and the internal gravitational forces in
the fluid system; this is especially fmportant in the general-
fzation of the Bernoulli equation.

For the purpose of practical computations in this report the N-S

equations will, therefore, be accepted with the viscosity term, o, _.3
given by the following simple form: :
€= vl 4T e /) (6.1) i
where T is proportional to the integratea value of the ¢-parameter at 1
any x-station and € is any one of the currently employed eddy viscosity
models in turbulent fluid flow analyses. In effect, 7 will serve in
this case as the usual intermittency ractor for a flow in which transi- /
tion is imagined to begin at the leading edge or entrance region.
Although equation(6.1) is not exact, it should suffice to prove |
the validity or invalidity of the concepts sugpested by the penceral
system theory as applied to our "experimental fluid flow system”
To compute the "experimental fluid flow system'" we shall exccute
the following procedures:
(i) solve the following system of coupled ecquations for the
velocity and ¢-profiles, for all x-stations in the fluid
flow system:
au/ox + av/dy = 0 (6.2)
udu/ox + vou/dy = (edu/oy) /oy (6. 3)
e=v(l+T (l/u) (b.4)
udp/ax + vap/dy = ed4/ay? + {c/(1-9) 1 (o¢/ay)?
~{c/2y = de/dy = (e/e)oe/iyliag/iy (6.5)
[
2l
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= l; 2 oy (6.6)
e ¥ + v +w = u*® (In this case) (6.7a)

and € is given by the usual mixing lenpgth eddy viscosity
model and the following boundary conditions are observed:

$+>1
unndvvn‘}asyoo
¢ *0and u *» U;; as y » = (6.7h)

(ll) At each x-station compute the mean flow field as follows:

= G (v - r;,v?)‘2 (6.8)

e

<l

> sl
= G, (v’ - Gu?)*? (6.9)

i
where Gy = (1L - ¢ » a)”, Go=¢(1 - a)/{2(1 - ¢ + a)l, .
and a is experimentally varied between 0.3 and 0,6, -

(ii1) At each x-station compute the turbulent flow field as

follows:

u'? = Gy (u? + G,v?) (6.10)

v'? = Gy (v 4 G?) (6.11)

w'? o= 646, (v + v?) (6.12)
h where G = ¢.a, G, = (1 - a)/2a and a is as previously defined.

These three steps complete the computation of the tlow field.
Other aspects of the flow system may be determined in the usual manner
from the mean and the turbulent velocity fields.

Time has not permitted us to include in this report the results
of the actual demonstration of the above computations for our "experi-
mental fluid flow system." 1In a later report these results will be

presented.

-
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7. CONCLUDING REMARKS

A primary conclusion from this rescarch work is that the fluid flow
system is sensibly, fully and practically described by the "general-

system'"

theory enunclated by this investigator., This statcement rests
firmly on at least the following theoretical and practical observations:
First, although the explicit derivation ol the governing equations
of fluid flow from the fundamental equation of the "general-system' is
not included in this report, the similarity between the latter and the
Navier-Stokes (N-S) equations is vather obvious. Indecd, the N-5 equa-
tions can readily be shown to derive from the fundamental equation Jt
“he general system; hence our confidence in the N-§ equations as a valid
model of fluid dynamics. But, although the N=S equations may now enjoy
our full confidence, we note that without the benefit of the Insight Into
their nature generated by "general-system” theory and the SEA model,
the N-S equations may easily become grossly misunderstood and misused.
Secondly, from current theoretical and experimental knowledge of
the fluid flow system, the 3EA model presented in this work appears to
be inherently consistent ard complete, vis-a-vis, the provision of deep
insight into the real physics of flulds. The model expleins the real
mechanics of fluid flow ip greater d:tail than do most o her contempor=
ary models of the fluid flow system. But above all, by obviating very
clearly the relationship amcag the different types and the different
modes of fluid flow, the SEA model greatly simplifies the analyses ol
fluid flow systems. In this regard, the nature of turbulence, the
nature of the "observed" mean flow and the nature of the relationship

botween the turbulence field and the observed (or measured) mean [low
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field deserve particular attention,

Turbulence is clearly fdentified to be the pure fluctuational mode
of the (luid particles of the fluid flow system. And, contrary to c¢las-
sical atfirmations such as that the turbulence field of the (luid flow
system is not generally a unique function of the mean velocity profile,
the SEA » del demonstrates that indeed the mean turbulence field can be
expressed as a computable unique function of the wean Hlow field.,  Gen-
eral system philosophy clearly exposes that the ervors in carlier predic-
tion methods which led to the affirmation that the turbulence field is
not generally a unique function of the mean flow field were not at ail
due to the reliability of those methods on the mean flow field for the
description of the turbulent field; rather, the errors were due to the
fact that most, {f not all currently available theoretical methods in
fluid mechanics, are founded either upon no fundamental philosophical
considerations at all, or wpon erroneous philosophical wiscacring. For
instance, the examination of experimental data should not automatically
lead to some intuitive or empirical formulation to describe the "observed”
trend; without consideration of virtwally all possible varieties of the
observed system such intuitive formulations would wsually be at best
restrictive and would often be completely erroncous, tor the simple reason
thot dvnamical syvstem behavior is often counter=intuitive. To create a
realistic relation from physical observations it fs critical that one
formulate & valid philosophical base==a consistent and complete found-
ation or viewpoint that includes the observed data. Contained within or
derived from such a philosophical base would be a theory upon which the
empirical or exact relations valid in the observed system may be tounded.

The error-situation being clarified above is analogous to the case

¥
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in medicine where the symptoms of a discase have been tocussed upon and
elaborately described while the true nature of the discase and the mech
anice by which {t generates those symptoms have completely eluded the
doctor., Most of what currently avallable theoretical models of {luld flow
describe are observational=-optical and lostromental==illusions; hardly
any model, before SEA, described the real nature of the fluid flow system.
This rather pompous statement is borne out by the fact that, with very
little effort, virtually every hitherto given description of fluld {low,
upon which numerous theoretical models hinge, can be reconstructed as
observational ifllusions from the point of view of the SEA model pr;srntrd
herein.

1 would not be belaboring my criticism of the "symptomatic-approach"
commonly practised in fluid mechanics research were it not for the inher-
ently adverse impacts of that approach. Especially, one major linc ol
inquiry, arising from the aforementioned "symptomatic-approach,” and on
which has, more than any other, seriously stymied the development of tur-
bulence theories, is the continued combination, in all turbulence models,
of the pure fluctuation and the pure dissipative cnergy fields. This
error and its destructive impacts are not casy to see outside the vicw-
point of the SEA model. 1t is true that the dissipative epergy ficld
appears to be derived from the fluctuation encrgy field, but it is also
true that these two flelds are characteristicelly very different. We bave
shown in reference (1) that the gross production and gross dissipation ol
fluctuation energy in any system are extremely complicated quantitics to
theoretically describe. What we measure as the turbulence tield is only
the net fluctuation energy field==a much simpler quantity to compute,

The dissipative energy field manifests as the pressure and temperature
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ficlds of any system and should be considered separately from the tur-
bulence field: only their interaction or Interdependency need be noted.
Finally, let us remember that the Statistical Inergy Approach (SEA)
is a general approach valid not just for the description of the fluid
flow system but for the desceription of any conceivable natural system.
is based upon an internally consistent and universally complete philo-

sophical viewpoint transcending the limitations of subjectivity.

It

o
14




10.

11.

12.

13.

14,

Ik

l6.

—

Anviwo, J.C.: Elements of a "Gencral-System” Theory, Research '
Report KRI-GST78-1JCA, Keamies Research Institute, Division of
Keamies Foundation, Virginia. November 1978 J

Balescu, R.: Equilibrium and Non-Equilibrium Statistical Mechanics. ‘
Wiley Interscience, New York, 1975

Bass, J.: Solutions turbulentes de certaines equations aux derivees
partielles. Compt. Rend. Academy of Science, Paris, Vol. 249,
p. 1456, 1959

Bradshaw, P, and Ferriss, D.H.: The Response of a Retarded Equili-
brium Turbulent Boundary Layer to the Sudden Removal of Pressure e’
Gradient. A.R.C. 26 758, NPL Aero Report 1145, March 1965

Burgers, J.M.: A Mathematical Model Illustrating the Theory ol -
Turbulence. Advances in Applied Mechanies, Vol. 1, 1948

Burgers, J.M.: Statistical Problems Connected With the Solution of
a Non-Linear Partial Differential Equation in Non=Lincar Problems of
Engineering. Academic Press, 1964

Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge
University Press, Cambridge, 1956 )

Herring, J.R.: Physics of Fluids, 9, p. 2106, 1966

Ishida, K.: The Stochastic Model for Unimelocular Gas Reactions.
Bull. Chem. Soc. Japan 33, 1030-1036, 1960

Kamke, E: Differentialgleichungen Losungsmethoden una Losungen.
Band 1. "GCewohnliche Differential Cleichungen." Chelsea Publishing
Companv, 1948

Khinchin, A.T.: Mathematical Foundations of Statistical Mechanics.
Dover Publications, New York, 1949

Kraichnan, R.H.: Journal of Fluid Mechanics, Vol. 5, p. 497, 1959

Kraichnan, R.H.: Dynamics of Fluids and Plasmas. (8.1. Pai, editor)
p. 239. Academic Press, New York, 1966

Krzywoblovki, M.Z.: Applications of Wave Mechanics Theory to Fluid
Dynamics. NASA CR 140847, 1974

Lee, Jon: Statistical Mechanical Approaches to Fluid Turbulence.
Journal of Math. Physics 15, NO. 9, September 1974

Lvon, R.H.: Statistical Energy Analysis of Dynamical Systems.
M.1.T. Press, 1975

-,




17.

18.

lgl

20.

21.

22,

23

41,

Mastin, C.W. and Thompson, J.F.: Elliptic Systems and Numerical
Transtormations. 1CASY Report 76-14, NASA Langley Research Center,
1976

Price, J.M. and Harris, J.E.: Computer Program for Solving Compres-
sible Nonsimilar Boundary Laver Equations for Laminar, Transitional
or Turbulent Flows of a Pertect Gas. NASA TM X-2458, April 1972

Sage, A.P.: Methodology for Large Scale Systems., MceGraw-Hill,
New York, 1977

Struminskiy, V.V.: Applicability of Dynamic Methods to Descri, tion
of Turbulent Flows. Fluid Mechanics., Soviet Research, Vol. 5, No.
5, September=October 1976

Taylor, G.1.: Statistical Theory ol Turbulence. Proc. Roy Soc,
A 156 pp. 307-17

Thompson, J.F., Thames, F.C. and Mastin, C.W.: Boundary-Fitted
Curvilinear Coordinate Systems For Solution of Partial Differential
Equations on Fields Containing Any Number of Arbitrary Two-Dimensional
Bodies., NASA CR-2729, July 1977

Van Hove, L.: The Approach to Equilibrium in Quantum Statistics,
Physics 23, 441-480




42,
i
|
|
Meaa oni rgy Late bhoundaries ‘ -3

asing v,

Incre
™

Increasing mean

1:‘]0 th 3‘0

Flgs t Schema of the statistical encrgy sLate concept

oot
L_—_——___A.é—,i,,,, - - R Tt TN



R T R R O N WS

ISSTwaag







T v T —— P —
B P




	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf

