
NASA-CR-158960

Final Report

The Determination of
Measures of Software Reliability

(NASA-CR-158960) 'IFIF DETEBMIMATICN OF N79- 15674
I?EASDf:ES CF SOFTRARE FELIABILITP Fical
Feport (SerosFace C o r p . , El Segundo, C a l i f .)
118 F HC :.?6/?lF A 0 1 CSCL 09E ' Jnc las

G 3 / & 1 42154
F. D. MAXWELL

THE AEROSPACE CORPORATION
El Segundo, Calif. 90245

Prepared for
NASA Langley Research Center
Hampton, Virginia
under Contract NAS1-14392

National Aeronautics and
Space Adrninist rat ion

Scientific and Technical
Information Office
1978

https://ntrs.nasa.gov/search.jsp?R=19790007503 2020-03-22T01:32:10+00:00Z

Report No.
NASA-CR- 1589 6 0
ATR-79(7590)-1

THE DETERMINATION OF

MEASURES OF SOFTWARY RELIABILITY

Prepared by

F. D. Maxwell

December 1978

Advanct3 Programs Division
THE AEROSPACE CCRPORATION

E l Segundo, Calif. 90245

Prepared for

NASA Langley Research Center
Hampton, Virginia

Contract No. NAS1-14392

ACKNOWLEDGEMENTS

The work reported here was performed by The Aerospace

Corporation under Contract No. NASI-14392 with the NASA Langley

Research Center under the technical guidance of Mr. G.E.

Migneault. It utilized data collected from a software

development project sponsored jointly by the USAF Rome Air .

Development Center, with Mr. Frank Sliwa as the Project

Engineer, and the Metric Integrated Processing System (MIPS)

team at the USAF Space and Missile Test Center under the

direction of Mr. J. A. Salazar. The contractor for the

development of the pertinent MIPS segments is Federal Electric

Corporation.

Acknowledgement is givp,n to Dr. E. Pate who contributed to

the computer program implementation of the statistical

analysis. Much valuable assistance was received from Mr. Sam

W. Beddingfield and Ms. Ruth Pervorse in the preparation of

this mapuscr ipt.

vii

SUMMARY

The objective of this study is to establish the

feasibility, cost, and benefits of software reliability

measurement in a specific environment, and to formulate from

this study recommendations for more general applications. The

ultimate goal of the entire program is the determinaticn of

software failure rate parameters analogous to hardware faildre

rate or wear-out rate parameters.

During the first phase of this effort, data collected

on categories of errors encountered during a software

development was analyzed to determine if consistent measures

could be derived to use as valid indicators of reliability.

The failure ratio (number of failed runs F observed in N total

runs in a given elapsed time) and the failure rate (number of

failed runs F observed in t seconds of CPU time in a given

elapsed calendar time) demonstrated qualification as such

measures.

The principal effort since the last report has been to

apply rigorous statistical analyses and non-parametric methods

to the existing data base. Linear and non-linear orthogonal

polynomial regression analyses confirmed the validity of the

failure rate and ratio as potential measures of reliability. A

high positive statistical correlation was shown between failure

severity and error category, failure severity and error count,

ix

and error category with error count. In addition, a

preliminary investigation into reliability forecasting showed

the ensemble averages of both the failurc rate and ratio are

stationary and statistically significant.

The failure rate and ratio measures appear to remain

valid indicators when subjected to the parametric and

non-parametric analyses described in this report. The

preliminary attempt at forecasting was statistically valid but,

this, of course, needs to be validated by real-world

observitions. Problems encountered in data collection due to

lack of direct control over the process highlighted the need

for formalizing this critical portion of any future effort even

if the cost increases. Operational avionics systems should

provide a superior source of failure data since the recording

of such*'information is routinely performed as a part of

aircraft maintenance by personnel other than the software sta€f.

X

CONTENTS

I.

11.

111.

IV.

V.

VI.

SECTION I

Introduction....
SECTION 2

1

7 ~ackground
Project ASTROS D3ta. 7

11 Viking Data......................................

SECTION 3

Descriptive and Comparative Analyses of LSDB Ptogra-
13 Modules ..

Project ASTROS Data.............................. 13

22 Viking Data......................................

Effects of Schedules............................. 28

SEC'I'ION 4

Further Analyses on the Existing Data Base..
Regression Analys is
Composite Module Regression
Module CDmparison
Non-parametric Analyses
Non-parametric Results...........................

Non-parame? ric Correlation..,....................

SECTION 5

Reliability Forecasts............................

SECTION 6

Significant Findings

31

32

32

33

44

50

50

5 3

VI1 . SECTION 7

Conclusions and Recommen~lations 72

APPENDIX A: REFERENCES A - 1

APPENDIX 8: COMPUTER PR0G.S B-1

APPENDIX C: DATA ACQUISITION FORMS C-1

APPENDIX D: BIBLIOGRAPHY D-1

xii

FIGURE

5- 3

5-4

5- 5

5-6

5- 7

s-a

5-9

5-10

5-11

5-12

TABLE

3-1

3- 2

3-3

3-4

3- 5

4- 1

4-2

4-3

LIST OF FIGURES AND TABLES

Failure Ratio . Number of Statements

PAGE

61

__I

Failure Ratio . Number of Statements 62

LDG Failure Ratio 63

LDI Failure Ratio 64

LSD Failure Ratio 65

BDP Failure Rate 66

BDT Failure Rate . Number of Statements 67

LDG Failure Rate . Number of Statements 68

LDI Failure Rate . Normalized by Number of
Statements 69

LSD Failure Rate . Normalized by Number of State-
ments .. 70

Success/Failure of Runs by Module 20

LSDB Statement Types 21

Viking Failure Source Distribution 23

Viking Failures 24

Viking Operating System Recorded Failures 26

K-S Tests €or Normality of Variables (Successful
Runs) ... 46

K-S Normality of Variables (Runs with Detected
Errors) ... 47

Non-parametric Correlation of Variables 49

xiii

FIGURE

2-1

3-1

3-2

3-3

3-4

3-5

3-6

3-7

4 - 1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4 - - 1 0

5 - 1

LIST OF FIGURES AND TABLES

PAGE
I

MIPLSD Visual Table of Contents................. 10

Distribution of Program Activities in 2700 Run
Sample ... 15

Number of Statement Changes in 2700 Run Sample. .. 16

Types of Errors Encountered in 2700 Run Sample. .. 17

Number of Runs by Module in 2700 Run Sample. 18

Distribution of CPU.............................. 19

Viking Failure Ratio............................. 27

LSDB Total Failure Ratio......................... 30

Composite Failure Rate........................... 3 4

Composite Failure Ratio.......................... 35

Failure Rate Normalized by Number of Statements 36

Failure Ratio Normalized by Number of Statements. 37

Failure Ratio Normalized by Number of Changes. ... 38

Failure Rate Normalized by Number of Changes.. ... 39

LDG Failure Rate Normalized by Number of Changes. 4 0

Composite Failure Rate Norrnal.ized by Number of
Changes .. 41

BID Failure Ratio Normalized by Number of Changes 42

LDG Failure Ratio Normalized by Number of Changes 43

Composite Failure Ratio.......................... 57

5-2 Composite Failure Ratio.......................... 58

xiv

FIGURE

5- 3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

TABLE

3-1

1-2

3-3

3-4

3-5

4-1

4-2

4-3

LIST OF FIGURES AND TABLES

Failure Ratio . Number of Statements
PAGE

59

.

Failure Ratio . Number of Statements 60

LDG Failure Ratio 61

LDI Failure Ratio 62

LSD Failure Ratio 63

BDP Failure Rate 64

BDT Failure Rate . Number o€ Statements 65

LDG Failure Rate . Number of Statements 66

LDI Failure Rate . Normalized by Number of
Statements 67

LSD Failure Rate . Normalized by Number of State-
ments .. 68

Success/Failure of Runs by Module 20

LSDB State.nent Types 21

Viking Failure Source Distribution 23

Viking Failures 24

Viking Operating System Recorded Failures
K-S Tests for Normality of Variables (Successful

26

Runs) .. 46

K-S Normality of Variables (Runs with Detected

Non-parametric Correlation of Variables
Errors) ... 47

49

xv

1. INTRODUCTION

This report summarizes work performed at The Aerosnace

Corporation on a software reliability measurement study f: tti

Langley Research Center, National Aeronautics and Space

Administration, under Contract NAS1-14392. The specific

objective of the study is to establish the feasibility, cost,

and benefits of such measurement in a specific environment; and

to formulate from this study recommendations for more general

applications of software reliability measurement directed

towards the goal of the determining of'software failure rate

parameters analogous to hardware failure rate parameters. A

collateral objective is the identification of any other factors

possibly contributing to software reliability that might be

observed during the course of the data collection and analysis

effort.

This study was initiated in April, 1976. The work

accomplished between April, 1976 and April, 1977 was reported

in September, 1977 in NASA Contractor Report 14L205'. This

report covers the work performed between April, 1977 and June,

1978.

a

Data analyzed in this study came from two sources:

(1) Project ASTROS (Advanced Systematic Techniques €or Reliable

Operational Software) , a joint effort of the Space and
Missile Test Center (SAMTEC) and the Rome Air Development

3

Center (RADC), both organizations within the Air Force Systems

Command; and (2) the NASA Viking ProgrAm at the Jet Propulsion

Laboratory.

For the purpose of this stddy we have deficed reliable

software as follows:

It is software that is correct (capable of execution

and yielding correct results) and that meets other

user requirements such as timing and interfacinq with

the environment.

This concept is consistent with an earlier statement, "Software

possesses reliability to the extent that it can be expected to

perform its intended functions satisfactorily. There is

justifiable cencern about attempting to base measiirement on

"intended €unctions", but mo:re restrictive formulations tend to

prevent recognition of reliability problems arislng from poorly

drawn specifications. A need exists to evaluate software

reliability against formally specified, as well as against more

loosely defined or implied requirements.

For reliability measurement, the software is operated

over a period of time; segments of the operation are scored as

failure or success by the qualitative criteria cited above;

and, from these scores, an indicator of meae:-red reliability is

generated.

2

The principal indicators derived from he data are the

failure ratio and the faiiare rate. The failure ratio, U, is

defined as

U = F/N

where F is the number of failur%s observed in N runs in a given

calendar period, usually one month. The failure r a t e , u, is

defined as

u = €/t (2)

where f is the number of failures observed during the total pPU

time, t seconds, accumulate? over a giver, 2alendar period,

again usually one month. These failure zetrics, and

particularly their complement, the reliability metrics,

R 1 - U S/N

where S stands for the number of successes and

MTBF = t/f

(3)

(4)

are analogous to commonly used hardware reliability

expressions. The relation of these metrics to those used by

3

other researchers i n software r e l i a b i l i t y is described

elsewhere. 2

The f a i lu re r a t i o and the f a i lu re r a t e are obtainable

from records usually maintained i n the development of c r i t i c a l

software: they are consistent i n time and among modules for the

spec i f ic program studied; and they are poten t ia l ly useful for

management and research purposes.

The use of the f a i l u r e ratio, i .e. , the r a t i o of

fa i led runs to t o t a l runs i n a given period of time, az a

measure of software r e l i a b i l i t y is one of the innovations

introduced i n t h i s s t u d y . Previotls investigators had simply

reported the number of f a i l u r e s per calendar interval . To the

extent that the ngmber of runs per month (or other in te rva l) is

not uniform, these measures w i l l yield d i f f e ren t resu l t s . For

most purposes, the measure tha t w i l l be preferred is the one

that has the smallest va r i ab i l i t y . I n t h e e a r l i e r report on

t h i s s t u d y it was shown tha t the f a i lu re r a t i o affords a more

s table measure of r e l i a b i l i t y .

I n the course of the s t u d y it was observed that many

r u n s ended i n f a i lu re due to improper data setups, job control

cards, or other fac tors not d i r ec t ly associated w i t h the code

developed. By counting as f a i l u r e s only those runs i n w h i c h

the cause of t h e failurE resided i n the program proper, WE

generated t h e program fa i lu re r a t io .

Both the t o t a l f a i lu re r a t i o and the program fa i lu re

4

r a t i o exhibit a general trend w i t h time. By the use of

regression, trend l i nes can be generated for the development

period and/or for the most recent in te rva ls t o provide

indicators of progress or lack of progress. The generation arid

use of these trend l i n e s is discussed i n the previous

report . 3

The pr incipal e f f o r t since the l a s t report has been to

verify the va l id i ty of these measures by more rigorous

s t a t i s t i c a l analyses and to determine i f meaningful

correlat ions could be observed between var iables exis t ing i n

the data base. Linear and non-linear orthogonal polynomial

regression analyses corroborate the e f fec t ive use of the

f a i lu re ra te and r a t i o as measures of r e l i a b i l i t y . A h i g h

posi t ive correlat ion was shown between f a i l u r e sever i ty and

error category, f a i lu re severi ty and error count, and er ror

category w i t h e r ror count. I n addition, a preliminary

investigation in to r e l i a b i l i t y f x e c a s t i n g showed tha t the

ensemble averages of both the f a i lu re r a t e and r a t i o a re

s ta t ionary and the confidence l i m i t s were defined.

The fai-lure r a t e and r a t i o measures appeared t o remain

valid indicators @hen subjected to the parametric and

non-parametric analyses described i n t h i s report . The methods

for analyses that were developed may be generalized to a broad

class of problems; however, the spec i f ic r e su l t s should only be

generalized to comparable data bases.

5

Problems encountered in data collection due to lack of direct

control over the process highlight the need for formalizing

this critical portion of any future effort. Operational

svionics systems should provide a superior source of failure

data since the recording of such information is routinely

performed as a part of aircraft maintenance by personnel other

than the software staff.

During this study, a search Gf the literature for

generalized models of software reliability was conducted. The

bibliography resulting from this search is contained in

Appendix D.

6

2. BACKGROUND

As noted earlier the data for this study came from two

sources: (l? Project ASTROS at the Space and Missile Test

Center; and (2) NASA's Viking program at the Jet Propulsion

Laboratory. These data bases are briefly described in the

following sectior.,.

2.1 Project ASTROS Data

The ASTROS data that was analyz d in thi epor t

was collected during the development of the Launch Support Data

Base (L S D B) , a portion of the Metric Integrated Processing

System (MIPS). MIPS provides the primary metric (i.e.,

positional) ?lata processing for test or trajectory measurement

activities on missiles, aircraft, and satellites. MIAS

includes control, real-time, and non-real-time egments. LSDB

is a non-real-time se3ment that includes data management

functions, coordinate transformations, and other scienti€ic

calculations supporting track Veneration from multiple

sources. It is run prior to launch operations without

real-time constraints.

The design of LSDB was started in September, 1975.

The software failure data was collected during development of

the LSDB from the initial coding through the in-house test

phases prior to acceptance by the government. During the

7

der-eLopment, the number of lines of code continually increased

as runs were being made, and the effect of these changes on the

reJxability measurements is discussed later in this report.

lliring Frogram development there was no unusual pressure to

T’C .itrol reliability for current runs, but there was adherence

t,, normal standards €or reliable software.

LSDB was developed as part of a demonstration program

nr! structured programming techniques. Personnel appeared to be

m t tivated by their participation in such a demonstration, and

?lie data collection efforts and management attention may have

constituted confounding human factors that affected both the

data and the measurements.

The MIPS system specification required a modular

program structure, hierarchical program design, and execution

ordered programming. In addition to tllese overall

requirements, the decision was made to create a highly

clisciplinc programming environment €or portions of the

non-real-time segment that include the LSDB. This environment

inrluded the following:

i l . top-down development

b. itructured code

. program support library

d . chief programmer teams

e. s trtwiured walk- throughs.

8

The data accumulated for the evaluation phase provided

a unique oppor :unity to conduct software reliability

measurements during program development.

The LSDB program is composed of five major components

(here referred to as "modules") consisting of approximately 40

independent subroutines (referred to as "utilities"). The

modules, linked with controls, are illustrated in Figure

2-1. The entire LSDB Program comprises approximately 25,iOO

lines of FORTRAN source code, of which the modules account for

about 18,000 lines. wf the total, approximately 40 percent of

the module code consists of comments. Most of the LSDB code

was written in structured FORTRAN, translated into ANSI FORTRAN

by means of the S-FORTRAN precompiler, and then compiled on an

IBM 360/65 computer. Small segments were written in the IBM

assembly language (BAL). Originally, five programmers were

assigned to LSDB. After a few months, the participation was

reduced to a staff of three plus a programmer-librarian.

SAMTEC Data Documentation

Ior every run made on LSDB, a run analysis report form

was completed that Listed the date, the module name, CPU time

for the run, and coded information on t h e number of changes and

run s teps as shown in Appendix B. The run was scored as a

success or failure by thz development group. If a run was

identified as a failure, additional information, contained in

the failure analysis report, was provided identifying the type

9

Figure 2 -1. MIPLSD Visual Table of Contents

10

and cause of failure. This form was also prepared by the

program development personnel. This form is the second exhibit

in Appendix B.

It was not known a priori what factors in the

programming and computer system environment might affect

software reliability. For that reason, the stipulated

requirements for the software product (here LSDB) as well as a

description of the general environment was included as part'of

the record of this SGftware Reliability Measurement Study.

Forms for cepor ting this background information are reproduced

in Appendix 8. The primary use intended for this information

is for future comparative evaluation of the reliability

measurements on LSDB with those from other sources. It is

hoped that analytic information about t h e effects of

programming, test, and management techniques can be gained from

such comparisons.

Data were received from SAMTEC through June of L977

when the developing contractor's contractual obligation to

collect the data ended.

2.2 Viking Data

In order to establish an additional source of data,

the cooperation of the Jet Propulsion Laboratory staft

responsible for Viking ground data prccessing was solicited and

received. This system was f u l l y operational with limited

development effort to correct errors and to make enhancements.

Data were received from April, 1977 through September,l977 in

the form of status reports and IBM computer operating system

tapes. The June tdpe was unreadable and the September tape was

not received.

No source of data equivalent to the SAMTEC Run

Analysis form was available from JPL. However, it was possible

from tbe information contained in the error discrepancy

reporting system (VISA'S) to determine which errors were

actually software-caused and to perform some failure rate and

r at io calculations.

12

3. DESCRIPTIVE AND COMPARATIVE ANALYSES OF LSDB PROGRAM

MODULES

The raw data collected during the LSDB development a t

SAMTEC was examined during t h i s phase of the s t u d y to determine

i f other measures than f a i l u r e ra te or r a t i o could be derived.

The analyses were done to provide i n s i g h t in to the detai led

analyses tha t might be possible, or t ha t should be performed.

Variables such a s the number of runs by module, types of runs,

number of statement changes, number of l i n e s of code, types of

errors and types of statements s u c h as assignment, logic and

control were computed and compared. The r e s u l t s are given i n

the following paragraphs.

3.1 Project ASTROS Data

The t o t a l number of available records of runs

available from Project ASTROS is 2,718. The sample selected i s

2,700 (1,389 for 1976 and 1310 for 1977) of which 514 were

unsuccessful. W i t h the exception of 4 1 runs, a l l e f f o r t s

indicated o n the forms were i n the category of program

development. The d i s t r ibu t ion of program a c t i v i t i e s i n the

2700 run sample is given i n Figure 3-1 and indicates a dominan t

mode of compile and run. The d i s t r ibu t ion of the number of

statement changes is g i v e n i n Figure 3-2. The sever i ty of

f a i lu re i n 490 cases was loca l job f a i l u r e only; four other

cases were reported as miscellaneous and one was reported as

13

r ea l time. The error category d i s t r ibu t ion is given i n Figure

3-3; the dominant modes were logic e r ro r s (97) and operation

e r ro r s (115). Single e r rors were detected i n 419 of t h e

f a i lu re s ; however, t h i s measure is questionable for the actual

number of e r ro r s since the sequence of detection of e r ro r s i n

sequential runs is unknown.

The d i s t r ibu t ion of the number of runs by Module is

g i v e n i n Figure 3-4. The BDP was the l e a s t used Module (185

runs) ; the LSO was the most used (4 9 2 runs) . During 1976, the

LDG Module had the longest runs fCPU=300 sec .) ; all modules,

except LSD, had a t l e a s t one run of 199 sec. CPU time. The

1977 pat tern of modille use showed an increase for BDT, LSD and

LSO. LSD showed the longest run of 312 CPU. The d i s t r ibu t ion

of the percent of t o t a l CPU t ime by module is given i n Figure

3-5.

The percent of successful runs by module is tabulated

i n Table 3-1. The average success r a t e for a l l modules

improved from 77.1% i n 1976 to 85.0% i n 1977.

The source code for the e n t i r e Metric Integrated

Processing System (MIPS) was obtained from the contractor and a

SNOBOL program (see Appendix A) was writ ten to categorize the

LSDB program i n terms of statement type per module. T h i s was

done to assess the correspondence between er ror r a t e s and

program complexity as ref lected by statement type. The

1 4

n
I n
I

0

d
I

M

Q
k
7
M
iz

15

0

e - - - - -
cc
(v
In

-

8
d
I

\o
t-

E I

cif
W >
0

(c

w 1

I I
t 6

ERROR CODE

COMPUTATION
LOGIC
DATA INPUTS
DATA HANDLING
DATA OUTPUTS
AR R A';
DATA BASE
0 PER AT1 ON
EXECUTION
OTHER
JCL
KEY PUNCH

ABSOLUTE
FREQ

5
97
1.7
12
3
1
4

115
41
87
51
72

NO ERROR - 2195
TOTAL 2700

NO ERROR

RELATl VE
FREQ
(PCTi

0.2
3.6
0.6
0.4
0.1
0
0.1
4.3
1.5
3.2
1.9
2.7
81.3
100. 0

(2195)

P.DJ U S E D
FREQ

- (PCT)

1.0
19.2
3.4
2.4
0.6
0.2
0.8
22.8
8.1
lie 2
10.1
14.3

loo. 0
--

Figure 3 - 3 , Types of Errors Encountered in 2700 Rur! Sample

17

BDP
BDT
BID
LDG
LDI
LSD
LSO

Figure 3-4. Number of Runs by Module in 2700 Run Sample

- (185)
, . (314)

. -. t 419)

. . (458)

. (533)
(492)

(299)

F-4

0
VI

D
VI
2

-
D
J

x
J

n
m
-

c
D m

a n m

C
0

3
P
L.

m

.r(
U

.e

U

Ei
ln
I

19

aD
dr
m

m e
t-4
d m

. .

at-

moD
rlcl

. .

O*

hlrr
NN

* .

0 0

N W
NN

. .

cot-
a*

rl

e .

m m
W l n

cv
0 .

I-fF

m m
cv

* e

w
cl
3
L3 z

m
a0 rn
rl

W
m
0
0

t

W
0 z a:
V
H
E
H z
t3
VI
c,

s w w a
E

r&
0
tn w w
05
0 w a
W

8 * *
8
8
c *
8
8
c *
U
U
U *
U
8
8
8
8 *
8
c
c
8
c
c
c
c *
8
8 *
C * c
* & * c * a
4l
U P
C C I
* Q ,
* 4
c
c
c
c
c
c
c
c
c
c
c
8
8
8
c
c *
8
c
c
c *
)r *
c
C
c
c
c
c *
4l
C
c *

W m
4

0
rl
m
rl

'i" cl

20

L
a
T
t
11
c
a

C
€

4

C rr:
c

c
C
i

c
C c:

€
C
U

0
C
U

Q, u
C

assum2tion was made that invocaticm of an external routine

(subroutine call) , logical decision and branching, and looping
were statements of greater complexity than assignment. The

distribution of statement types between the various modules of

TSDB is tabulated in Table 3-2.

The results of the tabular analysis are shown in Table

3.2. The results indicate no clear pattern or relationship

between variables or statemenc use and failure ratio.

3 2 Viking Data

The Viking data exhibited failure characteristics that

are similar to the ASTROS data in a number of ways. For

example, Table 3-3 shows that the source of failure could be

attributed to the program in only 28% of the total. During the

final month of data acquisition, the program errors const:tuted

only 16% of the total. Most of the error sources were not

explicitly identified.

The data for the monthly distribution of CPU time,

number of runs, failure ratio and failure rate are given in

Table 3-4. There was no apparent significant decrease in the

recorded failure ratio or failure rate prior to the fourth

month for data acquisition. However, at the end of the six

month interval, both the failure rate and failure ratio were

reduced to approximately me-half the beginning levels. Figure

3-6 is a plot of the failure ratio for software only as well as

22

0 rl 0 rl d r-l

' 0 m m m 0 eJ I2

23

8 4
ac,
0

0
.

m
u7
m

0

ac,
Fi
4

0
.

ap
I-
o
0

0

rl N
I- 0
0 O

0 0
.

0 m
r- \D
N rl
0 0

0 0

I

W n

a u aJ
U
E
H
4l

24

the composite of a l l VISAS. The number of data p o i n t s does not

provide an adequate date base for more detaileci analyses. The

r e su l t s do indicate a possible trend i n which the f a i l u r e r a t i o

for software alone declines a t a lower r a t e than the

composite. The t o t a l number of recorded program f e i t u r e d i d

not change s ign i f i can t ly during the l a s t four months of data

acquis i t ion; however, a s ign i f icant increase i n t h e failclre

incidence i n some par t of the system caused an increase to a

leve l greater than the th i rd month. The data are adequate t o

permit in te rpre ta t ion of t h i s change. The trend, pr ior t o tha t

time, indicated tha t the t o t a l program was approaching a

l i m i t i n g leve l that would be asymptotic to the program f a i l u r e

ra te .

The f a i lu re r a t i o and f a i l u r e ra te for the operating

system are recorded i n Table 3-5. B o t h improved by an

approximately factor of three over the t e s t interval . The

f i n a l r a t i o was 0.01.

25

m
ca
cu
0

0

cu
4
0

0
.

0

U
r

l-l
0
m
l-l

Q\
l-i

d
4
LI a a:

In
m
N
0

0

I-
O
0

0
.

N
cu
d

r-
(v
m
4

0
d

h
4
E

d m
I C 0
r l d
0 0

0 0
. .

w w
0 0
0 0 * .
G O

L

40

35

30

20

15

I
1

0
A M J J

MONTHS
A

Figure 3 - 6 . Viking Failure Ratio

27

3 . 3 Effects of Schedules

Scheduled reviews have an apparent e f f e c t on the r a t e

of f a i lu re . Figure 3-7 reveals the e f f e c t s of schedulding of

LS3B a c t i v i t i e s as reported by VAFB. The notation (n)

re fe rs the reader t o a point on Figure 3-7.

1) The h i g h points: In-house t e s t i n g of the module

LDI s t a r t ed i n ear ly 1976 (1) . I n April the

tes t ing was reduced i n order to reevaluate t h e

t es t ing . In April to May period the t e s t ing wao

resumed. (3) represents the f i n a l t es t ing of

LDI and the tes t ing of LDG. (5) represents the

tes t ing of modules BDP, BDT, B I D , LSD, 2nd (7)

represents the tes t ing of LSO.

The low points: (2) was a period i n which the

documentation for the PDR (Preliminary Design

Review) was produced. Points (4) Sept 1 and

(6 j December 15 were the times of the f i r s t and

second CDR. (C r i t i c a l Design Reviews).

Reviewing the above data i t is c lear t h a t , a t l e a s t i n the

gross sense, the number (r a t i o) of f a i l u r e s occurring i n a

module vs time is strongly a f u n c t i o n of managerial act ion.

28

Telling the team what to test and when to test it influences

the maxima and minima values of the curve. However, the

magnitude of the maxima is a dependent function of the number

of e r r o r s in t h e code (although how many are discovered is

again a function of the testing procedure).

29

0" 30

0.25

0.20

0.15

0.10

0.05

0
M A M J J A S O N D J

Figure 3 - 7 . LSDR Total Failure Ratio

3 0

4. FURTHER ANALYSES ON THE EXISTING DATA BASE

During the first phase of this study, failure rate and

ratio neasur:me?ts were plotted and simple linear regression

analyses perf~rmed.~

data collection process, it was decided to subject the existing

data base to more rigorous analyses both Lo verify the validity

of pas-ible measurements of reliability and to determine

meaningful data that should be collczted for future studies.

To gain the maximum benefit from the

Since the data were acquirtd temporally, general time

series analyses art possible for most parameters. The methods

include linear and non-linear regression on time,

autocorrelation, limited spectral analyses and stochastic

forecasting. The results of the latter three methods are

defetrkd to the next section.

Where the measurements were not adequate for

parametric analyses, non-parametric analyses der3 performed.

These methods include tests for normal+-ty, yoodness-of-fit to

theoretical distributions (deterministic modcis) , correlatloq
of variables or parameters, and tests for similarity and

difference of variables.

An additional and important method for analysis is the

between module comparison for internal Val idity of

characterization and homogeneity. The comparison for external

validity was reported previously. 3

31

4.1 REgKeSSiOn Analysis

Nonlinear regression analyses were Fer foxn-sd on

the failure rate and failure rztio measured oarameters. The

method used, in mDst cases, was orthogonal polynomial

regression. This method is somewhat more complex than simple

least squares regression. !-?oweverl the precision vers*:s

complexity trade off of parameter estimates, and adaptability

€or assessing improvement achieved by adding coefficients for

higher order terms justify the complexity. The method involves

the computation of a set of coefficients for each data point

and remapping of the orthogonal polynomials back into a

fundamental regression equation.

4.1.1 Composite Module Regression

Nonlinear (second order) regression was applied so as

to observe the asymptotic behavior of the data. The results of

the regression for composite modules over 16 months are given

in Figurss 4-1 and 4-2 for the rate and ratio respectively.

The results normalized by the number of statements are given in

Figures 4-3 and 4-4. The average failure rate decreased from

an initial value of iipproximately 1% to a value of

approximately 0.1% at the end of the observation of program

development. The failure ratio <jf failed to total runs dropped

from 15% to 5% (approximately) during the observed development

interval.

3 2

As expected, the second order composite regressio?,

tor data stratified by week, produces the same general range as

linear regression for failure rate and failure ratio estimates

at the extremes. However, the more accurate fit reveals that

the trend is toward an increase in failure rate and failure

ratio from the initisl value and a subsequent decrease with

time. The regression demonstrated by the normalization of

statement changes is shown in Figure 4-5 .

4 . 1 . 2 Module Compat ison

Comgarisons of the trend in failure rate and failure

ratio normalized by the nilmber of statenent changes shown i n

Figures 4-6 through 4-10. Consistency in the decrease of the

failure rate and failure ratio of a l l modules both at the

beginning and at the end of the observation period was observed.

It may be seen that the general forms of the

regression curves are reverted J ' s , inverted U's, with some of

the inverted J's having no significant up-turn.

33

1976

I

0

1977

M A M J J A S O N D J F M A M J

Figure 1 - 1. Composite Failure Rate

34

0.30

0.25

A

H
I s
1c * 0.20

k
0

e
W

A

U

-

4 0.15
L

4

P -
g 0.
2
0
0

0.05

c
0

1976

0

0
0

0 0
0

3 6 9

1977

0

c!

I I n
12 15

M A M J J A S O N D J F M A M J

Figure 4 - 2 . Composite Failure Ratio

35

0.24

0.20
c.

7 s
E 0.16
X

w
W
CY
2 - -I 0.12
LL.

W
I-

vr
0

0 u

-
2 0.08

0.04

1976 1977

n
J

0 3 6 9 12 15
M A M J J A S O N D J F M A M J J

F i g u r e 4 - 3 . F a i l u r e Rate Normal i zed by Number of Statements

36

1976

-
3 6 9

1977

12 15
M A M J J A s o N D J F rd A M J

Figure 4-4. Failure Ratio Normalized by Number of Stateinents

37

0*48r
0.40

0.32

0.24

0.16

0-

1976

-

-

-

-

Omo8-- 0 0

3 6 9

0

M A M J J A S O N

1977

0

Figure 4 - 5 . Failure Ratio Normalized by Number of Changes

38

0.24

0.16
4

-?
0,
x -
2 0.12
oc:
W =
3
3 0.08,
c3
m
-

0.04

1976

-\

0

1977

0
0

12 15 18
M A M J J A S O N D J F M A M J J A

Figuro 4-6. Failure Rate Norrnalized by Nu1nbt.r of Changes

1976

0

0

3 6 9

1977

A 0

1
12 15 18

M A M J J A S O N D J F M A M J J A

F'igurc 4 -7. LDG Failurc Rat. Norriializcd by Nutnbt>r o f Changes

0.24

0.20

7-
0,

E

0.16 -
e
W

0.12 3
z
P
* 0.08 8
E

-
-

0 u

0.04

0

1976

-

0

0 3 6 9

1977

0

I
12 15 18

M A M J J A S O N D J F M A M J J A

Figure 4-8, Conipositc Failure Rate Normalized by Number o i Changes

0.40

0.32
m-

52

- 0 0.24

2

3 0.16

X

-
p f

W
lx

-
2
0
M
-

0.08

0

1976

0

:
0 3 6 9

1977

0

0

0

--
12 15 18

M A M J J A S O N D J F M A M J J A

Figure 4-9. BID Fa i lu re Rat io Normal ized by Number of Changes

42

0.48

0.40

'- 0.32 0,

2
2: 0.24
a

X
--c

0 -
w
3
-4

2
23 0.16
3

0.08

1976

0
0 0

I ! I
0 3 6 9

1.977

*
12 15 18

M A M J J A S O N D J F M A M J J A

Figure 4-10, LDG Failure Rat io Nortnalized by Numbrr of Changes

43

This charcicteristic, of course, is the equivalent

quadratic form €or the €irst three terms of the negat,ive

exponent i aL given by

for x 2 1 and

4 . 2 Non-oarametric Analyses

Befoie any statistical tests ace performed, the data

m u s t be examined for level. of measurement and distribution.

For data having measurement precision sufficient f a r parametric

tests, the sample distributions of undetermined form must be

checked to determine i f there is sufficient goodness-of-fit to

established theoretical distributions. For validity, such

tests require that underlying assumptions be met. Failing

Either criteria, the data must be analyzed using non-parametric

techniques. Transformations are legitimate only i f the data

can be transformed and the inverse transform of the results can

be ma w d back into the original domain of the data for

consistent interpretation.

4 4

Tests for goodness-of-fit to a normal distribution

were made on the number of stirtement changes, CPU time and

failure severity. The results of the Kolmolgorov-Smirnev tests

are given in Table 4-1 for the successful. runs and Table 4 - 2

for the runs in which program errors were detected. The

resuits indicate that none i> f these variates can be assumed to

have come from a normally distributed population with any

reasonable conEidence.

A test for goodness-of-fit to 3 Poisson distribution

was made on the CPU time by runs distribution . The results

indicated the probability of the sample distribution having

m m e from a Poisson distributed population was less than

0.00001. The same results were observed for success/failure of

runs. T;lerefore, Poisson models appear to be inappropriate

models for the variables.

Tests were a l so made to determine the probability that

the number of reported statement changes for successful and

unsuccessful runs could have come from the same population.

The results of the tests indicated the probability to be less

than one chance in 7.@0,000.

Another test was made to check the corrnboration of

work category (program modification) similarity for SUCCeSSflJI

runs with runs having failures. The resulcs of a XoL-mogorov-

Smirnov test indicited a 2iobability greater than 0 . 9 9 9 9 that

the work categories were from the same populatio?.

4 5

TABLE 4-1

K-S TESTS FOR NORMALITY OF VARIABLES

(5136 SUCCESSFUL RUNS)

VARIABLE MEAN STD MAXIMUM 2-TAILED

DEV. ABSOLUTE TEST

DIFFERENCS P (Ho)

NUMBER OF

STATEMENT

CHANGES

CPU TIME:

(Sec)

5 5 - 0.34 0. oooo+

28.39 4 6 . 4 1 0.26 o.ooo+

46

TABLE 4-2

K-S TESTS FOR NORMALITY OF VARIABLES

(514 RUNS WITH DETECTED ERRORS)

VAR I AB LE MEAN STil . MAXIMUM 2-TAILED

DEV. AB SO LUTE TEST

DIFFERENCE P (ao)

NUMBEE? OF

STATEMENT

CHANGES

CPU TIME

(Sec)

1s 1.5 - 0.29 o.oooo+

33.29 88.28 0.35 o.oooo+

FAILURE 2.9 0.61 0.52 o.oooo+
SEVERITY

47

Kolmogorov-Smirnov tests were performed on variables

which were measurable at the appropriate level and €or which a

sufficient number of runs were recorded. The tests dere made

on the distributions for the number of statement changes in

success€ul runs compared to tinsuccessful. The outcome is that

which might be expected intuitively. Specifically, the

probability that the number of changes was similar in both

case5 was less than 0.001 which is stronger than might be

expected. In contrast, the work catcqories for successful runs

OK unsuccessful runs are indistinguishable. The probability of

them being from the same population is 0.999.

48

TABLE 4-3

NONPARAMETRIC CORRELATION OF VARIABLES

~~~~ ~~~~~~ 

VARIABLES COMPARED CORRELATION SXGNIFICANCE 
I_ (ORDERED) COEFFICIENT LEVEL 
F ure severity with 0.978 0.001 
erlor category 

Failure severity with 
error count 

Error category with 

CPU time with number 
of statement changes 

Work category (Program M o d . )  
with Program Activity 

CPU time with Program 
Activity 

0.917 

0.903 

0.248 

0.128 

-0 .461 

Program Activity with -0.3570 

number of statement changes 

0.001 

0.001 

0.001 

0.001 

0.001 

0,001 

CPU time with error category -0.153 0.001 

CPU time with error count -0 .147 0.001 

CPU time with failure severity -0.138 0.001 

All other Parameter Comparisons 0.11 

49 



4 . 3  Non-Parametric Results 

The relationships between variables were examined 

using distribution-free (non-parametric) methods. The methods 

included Spearman's non-parameti 2 correlation analysis, 

Kolmogorov-Smirnov tests for similarity (independence) and 

Chi-square tests for comparability. 

4.3.1 Non-parametric Correlation 

Table 4-3 presents the results of the non-parametric 

correlaticn analyses performed on variables that were measured 

at the appropriate levels. It may be observed that the highest 

positive correlation (on a scale from -1 to +1) is (0.978) 

between the failure severity with the error category . This 

high value €or correlation should be interpreted as being a 

measure of the concentration of failures €or local job failure 

only. In contrast, the error category distribution is quite 

broad and multimodal. The second highest correlation is a l s o  

attributable to the concentration of failure severity into one 

category. A similar effect was observed for correlation of 

error count (number of errors) with any other variable. As it 

should be, the correlation of error count with the category was 

high (0.903). 

The next group of correlation coefficients are not as 

impressive but perhaps provide more insight into relationships 

that are not as intuitively obvious. The CPU time was 

50 



correlated with i! number of variables. The CPU time is 

distributed over 177 categ.Jries with a general distribution of 

the highest percentages in the first L2 categories; for the 

next 12 categories the CPU time dropped to approximately 

one-third the average for the first 12 and continued as a long 

tailing-off for the remaining categories. The general form is 

that of a negative exponential, which of itself is not 

significant. However, in terms of potential inference rather 

thar, €orm, the characteristic is similar to a Chi-square 

distribution with three degrees-of-freedom. This mzy or may 

not be due to chance, but if it is significant, ftlture studies 

night be directed toward the decomposition o€ the CPU time 

dependency upon a small number ( 4 )  of factors. It should also 

be cautioned that apparent variables may not be indepevdent 

but interactive instea&. ‘In any event, the data as recorded 

does not permit factor analysis, and therefore, the 

non-parametric correlation of CPU time with other variables was 

computed as given, in Table 4-2.  

The variable found to have most significant positive 

correlation with CPU time was the number of statement changes 

( 0 . 2 4 8 ) .  The coefEicient is not high in absolute value but it 

is relatively high compared to other variables. The two 

relatively high negative correlations are due to the ar trary 

ordering o f  the program activity measured variabl.: which is 

comprised of combinations of compile/run activities. The 

51. 



correct interpretation o€ the results should be that there is 

relatively high correlation of projram activity w i t h  CPU time 

and the number af statement changes, respectively. The other 

correlations are of lesser magnitude; the proper interpretation 

is as given by the sign i n  the table. 

52 



5 .  Reliability Forecasts 

Any sequence of tests or experiments must eventually 

be concluded. The key question is when to stop. There are a 

number of answers to the questior! that are premised upon given 

criteria or values. In either case, the future reliability 

must be addressed. For example, the criteria could be the 

maximum deviation of a sample from a deterministic estimate, or 

the maximum mean-squace-error between samples at a given 

confidence level. Another answer could be to stop when a 

measure of failure converges, or when the forecast converges to 

some value or has a well defined trend that passes through 

zero. The forecasts for the failure rates and failure ratios 

were computed for the composite (ensemble average) of the five 

modules and the individual modules. 

The method for forecasting is based on work first 

published by G.U. Yule and refined by Box and Jenkins.' I t  

is a stochastic method that dces not depend upon the 

assumptions require? for a deterministic and stationary model. 

The autoregressive integrated moving average (ARIMA) method is 

,ornewhat a misnomer in t h a t  the "integration" evolved from a 

hardware application concept which makes use of a nonstationary 

summation filter. 

The d a t a  plots (as  stratified by month) and forecasts 

€or nine months beyond the 16 month test period are given in 

53 



Figures 5-1 and 5-2 for composite fa i lure  ra te  and coqposite 

f a i lu re  r a t i o  respectively.  The 95% confidence bands for 

forecasts  are indicated. Where the lower band goes below zero 

i t  is omitted. I t  may be seer! from Figure 5-1 t ha t  the 

forecast  for the composite f a i lu re  r a t e  converges to  

approximately 0.02. Figure 5-2 reveals t h a t  the forecast  for 

the composite r a t i o  trends toward zero a f t e r  remaining a t  

approximately 0.025 for three months.  

Figures 5-3 and 5-4 present addi t ional  normalized 

f a i lu re  r a t i o  forecast  examples. I n  Figure 5-3 the forecast  of 

BD? f a i lu re  r a t i o  as normalized by t h e  number of statements 

predicts  tha t  the trend would approach zero asymptotically i n  

approximately s i x  months  f o l l o w i n q  the end of the recorded 

t e s t s .  The trend declined from the i n i t i a l  s tochast ic  estimate 

of approximately 0 .02  per 10' s t -  -eri\ents. Thc *oturn toward 

the end of the t e s t  period is a t t r ibu tab le  to the number of 

changes to  the program mcdule. Figure 5-4 reveals  a similar 

Eorecast trend for the 3DT module except the zero asymptote is  

predicted for e ighi  months  a f t e r  the end of the recorded data 

inter-;?I. '?he dbsEnce of an upturn is apparently due to  fewer 

pro9ra1i c:.?rrycs.s. The LDG f a i lu re  r a t i o  as presented i n  Figure 

6-5 i r  , - s l z t i v ~ l y  ' . lat  (on t h e  average) for the f i r s t  1 0  months 

-2 



and begins a downward trend in January of 1977 toward zero in 

June of 1977. The forecast preaicts that the normalized 

failure ratio of the LDG Module should have converged toward 

zero by the beginning of 1978, providing the type of 

perturbations introduced after the end of the data acquisition 

period were not significantly different from the perturbations 

encountered during the 15 months in which data were collected. 

The L D I  and LSD failure ratios are given in Figures 5-6 and 5-7 

respectively and are quite similar to LDG as previously 

discussed. 

The failure rate characteristics with forecasts are 

given in Figures 5-8 through 5-1-2. The B D P  module exhibits 

failure rate characteristics in Figure 5-8 that are quite 

similar to the BDP failure ratio. However, for the B D T  module 

the correspondence between the failure rate, as presented in 

Figure 5-9, and the failure ratio is not as good. The best 

forecast estimate based on all past BDT moduLe measurements 

prodLices divergence Erom zero. However, this may be 

influenced by the wide divergen-e of failure rate at the 

beginning of the test period. If only the last 10 months oE 

the test data were used the forecast would likely converge. 

This module obviously ha? rather severe problems initially. 

The best estimate for the failure rate of the LDG module is 

almost linear and the forecast indicates earlier convergence of 

the  failure rate approaching zero sooner than the rate for B I Y  

55 



module an6 closer to the same time as the BDP module. The LDI 

and LSO failure rate characteristics, as exhibited in Figures 

5-11 and 5-12, are not significantly different, as  a function 

of time, than the failure ratio forecasts. 

The essence of this analysis is that the ensemble 

average of both the failure rate and failure ratio are 

stationary and provide a basis €or forecasting the program 

reliability. Individual module forecasts may n o t  be as well 

behaved. Future study should provide an opportunity to test 

verify these methods for forecasting. 

56 



0 

5 7  



9 r- rn 



O \  

0 

tu F 
0 

K 
0 

2 
d 

00 
0 
0 

0 
0 

z 
0 

r/r 

a 

0 

cn 

rw 
C 

59 



00 
)5; 
r( 

0 
0 

a0 

0 

0 
TT 

d 
(u 

0 
m 0 

C 
c- 

9, 
0 

00 
0 
0 

0 



x 
Jr, 

CI 

X 

0 

r/) 

U 

7 

-. 

0 

v) 

7 

5 

U 

E 

PP 
Y 
C 

E 
3 
v) 

b c 
k 

x 
2 
a 
W 
N 



Qo 
h 

2 

h 
b rs 

! I I I i 1 1  C 
8 
0 





m r- 

0 

0 

64 



0 

0 

0 0 0 0 

65 





67 



a 
d 

4 
0' 

2 
d 

8 
0 

0 8 
0 

68 



6.  SIGNIFICANT FINDINGS 

Specific findings from this study and potential 

applications include the following: 

1. Meaningful measurement of software reliability 

during development is feasible. These measurements should be 

useful to line management as a systematic method for assessing 

the progress of software reliability and identifying and 

comparing sources. 

2. Data acquisition for measurement of software 

reliability requires a deliberately distinct effort. The data 

normally recorded for systems records are not adequate for 

software reliability measurements. All personnel involved 

should be fully aware of this limitation. 

3.  Most of the failures during development were not 

due to coding errors but, rather, were caused by associated 

data processing procedures. Such an outcome suggests that 

management might be able to enhance program reliability during 

development by establishing standards for data handling and 

program operation in general. Time, effort, and costs should 

be reduced if appropriate procedures are implemented and 

conscientiously €allowed. 

6 9  



4. The faillure processes are not accurately described 

by deterministic methods: stochastic processes are apparent. 

Therefore, simplistic generalized models should be cl-osely 

scrutinized before being employed. A generalized method may be 

adapted to modelling of a specific case or set of data. 

However, the converse is no: legitimate. Specifically, 

changing coefficients and exponents (of a deterministic model) 

that are derived from a single set of data does not produce a 

"generalized" model of anything. 

5. Scheduling or other management actions appear to 

have a significant affect on the rate of occurrence of failure 

during development. Such interactions are apparent 

contributors to widely varying excursions in failure events. 

Line management, project management and functional (software 

development) management should be alert individually to the 

potential for such induced problems. 

6. The natural outcome of some of the measurements 

produced data that were stratified into a limited number of 

categories. The analysis of such data must be restricted to 

theoretically sound and verified methods. Non-parametric 

(distribution free) methods should  be used where appropriate 

and inverse transformations of results (as well 3s 

transformations of data) cannot be validated. Pretest of data 

acquisition procedures and instruments is strongly recommended. 

70 



7. Stochastic methods may be used at the end of a 

given time interval €or estimating f u t u r e  reliability. T h i s  

capability leads to criteria for  definition of when to stop 

development testing. Examples are a forecast trend that is 

asymptotic to an acceptable level of e r r o r :  or is stationary 

about zero. This s h o g l d  provide b o t h  management and 

researchers with J basic tool for comparison and assessment of 

programs for meeting f u t u r e  reliability goals, comparative 

reliability and comparison of t h e  benefits of continued testing 

against: incurred costs of time and effort. 

7 1  





Data col lected during the development of a software 

system needed for ground based launch support a t  the Air Force 

Space and Missile Test Center, Vandenberg Air Force Base, 

Cal i fornia ,  and from the operat ional  V i k i n g  ground data  

processing s y s t e m  a t  t h e  J e t  Propulsion Laboratory, Pasadena, 

Cal i fornia  was analyzed t o  determine i f  any valid measures of 

software r e l i a b i l i t y  could be made t h a t  might  have u t i l i t y  when 

applied t o  operational avionics systems t o  p::edict t h e i r  

r e l i a b i l i t y .  

The  f a i l u r e  r a t e  (number of f a i l u r e s  d iv ided  by CPU 

seconds for the calendar in t e rva l )  and t h e  f a i l u r e  r a t i o  

(number of f a i l u r e s  divided by the t o t a l  number of runs for the 

calendar in t e rva l )  emerged a s  val id  measures. They were 

subjected to l i n e a r ,  and to nonlinear orthogonal polynomial, 

regression analyses whic5 confirmed t h e i r  v a l i d i t y  as 

ind ica tors  of system s t a b i l i t y .  

The composite f a i l u r e  r a t e  and r a t i o  data were a l so  

used to  forecast  the r e l i a b i l i t y  of the system for nine months 

following the seventeen month t e s t  period fox which data  

exis ted.  The forecas t  predicted t h a t  t h e  f a i l u r e  r a t e  would 

converge t o  0.002 and the r a t i c  " .uld converge t o  near zero 

a f t e r  an i n i t i a l  three months a t  0.025. T h i s  forecast  coilld 

n o t  be validated against  real-world experience since the data 

73 



collection process had ceased after the seventeen month 

period. This lack of corroborating data emphasizes .ne 

criticality of defining the scope of the data collection 

process at the outset, to insure the availabili'y of necessary 

data 

The raw data plots of failure rate and ratio exhibited 

both high and low points. Project staff at SAMTEC was queried 

as to any events that might have caused these and it was 

learned that the high points were all directly related to the 

start of intensive periods of testinq and the lows to relative 

inactivity due to program review preparation. The concerned 

project manager should note from this that other than pure 

software problems can impact apparent progress. 

The techniques of measurement discussed in this report 

appear promising as indicators of reliability. It is 

recommended that they be applied to operational avionics 

systems with a recorded history of failures to accomplish the 

further step of establishing an effective measure 0, software 

reliability analogous to hardware mean time to failure. 

Careful attention to data collection should be paid to insure 

the quality and continuity of the data base, includiRg 

separation of actual software changes. The establishment and 

analysis of this data base would be a major cmtribution 

towards the goal of system certifiahility. 

74 



APPENDIX A 

REFERENCES 

1. JOHNSON, J. P. "Software Reliability Measurement Study" 
SAMSO-TR-75-279, Aerospace Corporation, El Segundo, Ca. 8 
December 1975. 

2. HECHT, K. "Measurement, Estimation And Prediction of 
Softt.xe Reliability" NASA CR-145135, Natimal Aeronautics 
and Space Administration, Washington, D. C., January 1977. 

3. HECHT, H., STURM, W.A.8 and TRATTNER, S.,  "Reliability 
aeasurement During Software Development," NASA-CR-145205, 
National Aeronrutics and Space Administration, Langley 
Pocearch Cer - Bampton, Va., September 1977. 

4. H45STEAD, M. H., Element of Software Science, Elseiver 
Publishink Co., New Y o r k ,  1977. 

5. KOPETZ, H., "On the Connections Between Range of Variab' 
and Control Structure Testing" International Conference on 
Reliable Software, L o s  Angeles, 1975. 

6 .  KENDALL, M . G . ,  and STUART, A., The Advanced - Theory of 
Statistics, 2d ed., 3 Vols., Hafner PublLshing Co.; New 
York 1968. 

7. BOX, G. E. P., and JENKINS, G., Time Series Analysis 
Forecasting and Control, Holden-Day, San Francisco, 1970. 

A-1 



SNOPOe (VERSION 3-7. JUL. 1 0 s  1971) 

WOPRIETART COnPdTER SYSTEtlS IhC 

LSTLIf l IT = 500000 1 
LAtICHOR = 3 00000020 2 

00-0 3 
00000040 4 INFUT("O1SK' v 1  s80 1 
00000050 5 

DEFINE( ' IN?TWD( 1'  t 00n00060 6 
CEFINE(  'F<Tfl03( 1 '  ) 0 0 ~ 0 ~ ~ ~ 0  7 

00000080 8 
P A T I  = "C **a** F" 00000090 9 
PAT2 = "W' 00000100 10 
PAT3 = 'C' 
PAT4 = "EJECT" 03000120  12 
PATS = LEN151 . P 1  LEN:ll . P2 LEN(661 . P 3  LEN(8) . P4 00000130 13 
PAT6 = *Wl?LICIT*B I *'REAL" I "XNTEGER" I "LOGICAL" 14 

OObOOllO 1: __ 

PAT9 = *'DIMNSION" 00000170 17 
PAT10 = "DATA" 00000160 18 

OU1)001~3 19 PAT11 = "C.tLL" 

FAT12 = KL'LL I SPAN(" " l  20 
* PATTEKN FOR S.<Ir'PING ONE OR R3PE BLANKS 

4 PATTEW FOR IF STATEKENTS 
-1 - * PATTESN FCR EXECUTE SikTEnENTS 

PAT14 = PAT12 "EXECUTE" PAT12 " t "  E2 
* PATTEZN FOR STOP STCT:HENTS . .~ 

PAT15 = "STCP" 23 
* PA'TE7N FCR E L S E  STATEt!ENTS 

PAT16 = "ELSE" 
* PATTERN FOR ALL  END STATEHENTS 

24 

P A T l I  = "E::D" 25 - 
* Pf iTTEW FOR LETTERS 

PAT1 8 = "AE.CDEFGHL'JKL~N3PQQSfWWXYZ" 2 6  
* PATTERN FOR OIGITS 

PAT19 = "01;3556389" 27 - 
PAT20 = PAT16 PAT19 28 

* PATTEII FOR A L F H ~ N L C l E R I C S  

* PATTERII FCR ICENTIFXERS 
P1T21 PAT12 ANY(PATl8)  ( N U L L  I SPAN(PAT20)) 

* PATTE2N FOR <IDENT?FIZR> 2 TYPE ASSIGWENT ST4TEflENi'S 
2 9  - 
30 

00000210 31 
-_-I - ---  -. 

-c 
* PATTERN F@R <DO FOR' STATEHENTS 

PAT23 = "00" PAT12 "FOR" JL 

* PATTERN COR <US30> STATEflENTS 
PAT24 = 'iUtlGO'' 3) 

* PATTERN FOR F;OCEUURE STATEMENTS 
PAT25 = "Pn'0iEDUF;E" 34 

* PATTERN FOR < C Y C L E >  STATEtlENTS 
PATC6 = "CICLE" 35 

* PATTERN FOR <30 CASE, STATENENT ' 
36 - 

PAT27 = "03" FCTlC "C4SC" 

b- i  



zi -2  



P3 PAT36 :SIBLKST) 84 
P3 PAT35 :S(REIDLOOP) 65 
P3 PAT36 :S(DOLWT) 86 
P3 P a l 3 7  :s(?: lr ;L3T) 67 
P3 PA138 :StSERST) e6 
P3 PAT39 :S(READST) 69 
P3 PATS0 :S(DOLAC,ST) 90 
P3 P4Tbl :StLtFST) 01 
P3 PAT42 :S(EXITST) 92 
P3 PAT43 :St@&?lST) 05 
P3 PAT22 :S( CISGST 1 04 
P3 FAT31 : S f A S t S T )  05 

00030390 06 
K X M E C  = NOUmEC 1 00000400 97 
WTPUT = 6UF :(REAOlOOP) 00000420 99 

SKIP EUF = DISK : F ( X I T )  
EUF PAT1 :S(NEh7100ULE)F(SKIP) 

OOC00443 1 0 3  
00000450  1 0 1  
00000450 102 

0 0 0 0 3 ~ 0  1 0 4  
33000490 1 0 5  
OOCCOSOO 106 

COt!ZEI:T t m C 3  = WC3H t 1 :(FEADLOOP) ca030510  107 
o 3 0 o o s ~ o  1 0 8  

TYPEST hOTYPE = NOTYPE t 1 :(READLOOP) 00030530 1 0 9  
ooooos.’,o 1 1 0  

C@%ST hQCOW4 = NOCOIW t 1 :(READL@3P) 0@0$055Q 111 
03000560 1 1 2  

EQUIVST h3EQlJ = hVEQU t 1 :(READLOOP) 00000570 113 
OOOCO590 1 1 4  

DIMST NODIH = N O J I I l  t 1 :(READLOOP) OC0005CO 1 1 5  
OOOOOaOO 116 

00000620 118 
CALLST NOCALL = NOCALL t 1 :(REAOLOOPI OC000630 119 

0 0 5 0 0 0 ~ 0  1 2 0  
IFST NOIF = NOIF t 1 :(REIDLOOP) 00000650 1 2 1  

00000660 1 2 2  

OATST NODAT = NODPT + 1 :tREACLOOP) a o o a o 6 i o  1 1 7  

EXST NOEXE = NOESE t 1 :(READLOOP) 1 2 3  
13 

STPST NOSTOP = t:OSTOP + 1 :(READLOOP) 1c5 
126 

ELST NOELSE = NOELSE + 1 :fREADLCOP) 127 
1 2 8  

EWST NOENO = h‘3E:m + 1 :(READLOOP) 129 
130 

AStST N04SG ZN3ASG + 1 : i i ” b , L O 3 P )  1 3 1  
132 

N3DOST NGDOS = NC30S + 1 :(READLOOPI 1 3 3  
1 3 4  

NOLI!IST NOUNS = h‘CfJ4S + 1 :IREADLCOP) 135 
130 

NOPROCST NOPROCS = NOFd3CS + 1 :(READLOOP) 1 3 7  
1 3 8  

NOCYLST NOCYLS = SSCYlS t 1 :IREADLCOP) 1 3 9  
1u0 

NODOCST N O E S  = NODCS t 1 :(WEADC@3P) 1 4 1  
1 4 2  

NOCST NOC’”‘ = ttCC4SE + 1 :(READLCCP) 143 

B - 3  



164 
145 
146 
147 
148 

SUPST NOS93 = NOSBS + 1 :(RfADLCOP) 149 
150 

153 
154 

GLKST BLKSK = BLKSK + 1 :(READLOO?) 

8p"n:T DcMTI( :: @p-'NTK + 1 :[.- 155 
156 

NArlLST NLK = NLS + 1 :;READLOOPI 157 
158 
; REKfT R hK = 0 h' t : ( R  GO 

160 
READST REEDK = REEDK + 1 :fREADLOOP) 161 

169 
LIE\ST LK = LK + 1 :(READLOOP) 169 

170 
KIT TTR:33( I 00000570 171 

GLlTFUT = 00003680 172 
O'JTFJT = 00000690 173 

OCOC0700 174 C'JTPUT = 
CJTF'JT = "EhT-Cf -JW" : ( E M 3  ) @0600710 175 

Cv^OCO:tO l i b  
03C03730 177 

CUTPUT = 000G0740 178 
CUTFUT = PG000750 179 
CJTPUT = BUF 00030760 130 
C'JTFUT f 00030770 161 

03000750 152 O'JTFUT = 
40?00790 183 N3CC'l = 0 

!:3TYPE = 0 OCCOC930 184 
N;CC::?( = 0 C O O O O S l O  185 
h'"Gil = 0 03000E20 186 

I N f T n D C  O'JTFLIT = 

00000930 187 ::?DIY = 0 
N30AT = 0 OOOOC840 le3 

OOOSOSSO 199 
00303860 100 

NOEYE = 0 1Q1 
t:JSTCP = 3 

::%$ss = 0 105 
KC33S = 0 l CO 

NX'NS = 0 197 
:oPzccs = 0 1QB 

HO'YLS = 0 100 
t42:tli = 0 :co 
r:3CASE = 0 t01 
liC;;?T = 0 202 
ti0i:IT = 0 203 



204 
205 
206 

NOSPS = 0 
NORTECS = 0 
BLKSK = 0 _ . ~  
O@:*JTK = 0 20-  

NLK = 0 2 0 8  
RELK = 0 209 
REEDK = 0 210 
OCK = 0 
EXK = 0 212 
DKK = 0 213 
LK = 0 214 

NC-tNVEC = 0 : 1 RETL IRN t OQpo08105 - . .  
OCOOOS50 216 

PRTrrOD OUTPUT = 00000890 217 
OUTPUT = 00000900 218 

OUTFUT = "NL'BER OF COttlENT CARDS IS ..." ECOCOn 00000920 220 
OUTFUT = "t?JilBER OF TYPE CARDS IS.. ." NOTYPE 00000930 222 
CUTPUT = YWKSER OF ccmm CARDS IS.. :* mo,m @0000~40 222 
OJTPUT = "t:.l??FQ @F ECUfV3LEt;SE COQcIS IS. .  ." NOEQU ( r , 7 0 0 @ 0 ~ 0  223 

00000360 2:4 
WTPUT = "NL'X>ER OF DATA CARDS IS . . ." N03AT 00000970 225 
OUTPUT = "KV:SER OF CALL STATERENTS IS ...'I NOCALL 00000980 226 

F 227 @UTFUT = " t lYSER OF IC ST4TE?ENTS IS . . . M I  
OL'TFUT = "NS:':;9Ei? OF EYECUTE STATEXEtiTIi IS.. ." NOEXE 228  
OJTFUT = "NURSER OF STGP STATEflENTS IS . . ." HOSTOP z:? 
CJTPLIT = "t;J!%ER OF ELSE STATEflENTS IS..." NOELSE 230 
@:ITPUT = "!:L':'?ER OF EYil STATEI?EtJTS IS. . ." NPEh9 231 

232 
OUTFUT = "BJX3ER OF <DO FCDr STATEWNTS IS.. ." t:ODOS 233 
OUTPUT = "NU3BER OF <U!:30> STATENENTS IS.. - "  NOUNS 234 
CllTFUT = "?::'"SEl! OF FX?EDU?E STATEMCNTS IS.. ." HDFPOCS 235 
GiJTFUT = ":,LNSER OF <CYCLE> STATEKEtUS I S . .  ." NOCYLS 236 

C'.ITPtJT = nnmooio :io 

OU;FET = * *  4 r e - C  t.t.ar,R OF DIKENSION CA.PDS IS ..." hC0Ifl 

.. I 

0JT;UT = I I .3 .  I . ,  .3ER OF IS5IGt::ltr:T STATEtlENTS IS.. ." NOASG 

CUTFUT = "NU:lE;ER Or' LI!:?ECOGNIZED STITEKErlTS IS . .  .I* NCtiNREC 
OUTPilT = "t4CtlSCR OF COO CASE, STATEffEtlTS IS.. ." N3OCS 

237 
238 

OUTFUT = "t!L":SER OF <C4SE> STATEREtJTS IS.. ." NOCASE C39 
OUTPUT = "WXEER OF KRITE STATEtlEHTS IS ..." tiOL3T 240 

241 
242 

OUTPUT = "NUKEER OF FORtlAT STATEMENTS IS..." NGFMT 
OUTPUT = "NJX3ER OF <S3SPOUTINE> STATEt!ENTS IS.. ." NOSSS 
OUTPUT = "h"JPt??P OF <RETUQN> STATEf%NTS IS.. ." NC?TNS 243 
OUTPUT = "tdI:L;ER Oh 6LOCK DATA STATEKEt4TS I S . .  - ' I  8LKSK 244 
OUTPUT = "N5llSER OF <DO UNTIL> STATERENTS IS..." DOUNTK 245 
OUTPUT = ":iUtlSE!? OF N W E L I S T  STATERENTS IS..  ." NLK 246 
OUTPUT "N!.'::?ER OF REI!I::O STATEMNTS IS.. ." REUK 247 
OUTPUT "t,UX,.:ER OF READ STITEIIENTS IS.. ." REEDK 248 
EL'TFUT = "N'J:ISER OF <PO LABEL> STATEt!ENTS IS..." DLK 249  
OUTPUT = "t:L'X3CR OF E X I T  STATEREKTS IS . .  ." EXK 250 
CC'TPUT = "t:C:?lSER OF L t . @ E L  STATEEENTS IS.. ," LK 251 
GUTFJT = "KLI,:Z~ER OF <DO W I L E >  STATEPIENTS IS.. - ' I  OhX 252 
OUTPUT = : t RETURN 1 

EM) 
00001000 253 
00001010 254  

'(0 ERRORS DETECTED IN S3URCE FFOSRAM 

B -5 



3 ****a FUNCTION BASRIT ***** 00000013 

J U R l E R  DF COMXENT CARDS I S  ... 617 
::':'?€9 OF TYFE CARDS IS...43 

;;'':'.ER OF EC'JIVALEKE CAWS IS . .  .36 
:;':3ER OF D I X K S I C N  CAQ3S IS ... 4 
:L' 'ZER OF CPLL STATEHE?:TS I S  . . .07 
X ! X R  OF IF STATERENTS I S  ... 107 
L':SEG DF EXECUTE STATEMENTS IS.. .45 

. ,\.P c *+u.r,R OF CiX..YCN CAQDS IS. . . 3 +  

., ,.,- - * . .  ER CF @ I T A  C-'.SDS IS . ..4 

.. ,..- r __ .. -- '? OC STOP STATE3Er4TS IS ... 5 
;L':::;,TF: OF ELSE STATERENTS IS.. .j5 
..,\.-.E 
n c I  ,,R OF EX3 STATEtIE%TS I S . .  . i 1 5  
<!J:'?ER OF ASSIC!OENT STATEKENTS IS . .  . O  
':".:F? OF <DO F O P >  STATEMNTS IS . .17 
.-'.:5ER OF cL'!:C3> STATEtlENTS I S . .  . C 5  
\J::SER OF FXICEDU7E STATEKENTS I S . .  .19 
:?::>E!? CF <CYCLE> STATEtlENTS I S . .  . 2  

L?. OF 1 C A S E Y  SiATEMEMS I S . .  -10 
:L'?!' ; OF W?ITE STATEMENTS IS . . .16 
:c" OF FCPt!1T STZTEHENTS IS. - .  16 
L;,-L< OF (S2CEOJTItiE> STATEKENTS IS.. .P 

.n i-1 L r 7 OF (PETU2:J> STATEI!ENTS I S . .  . 2  

- ~-- 
. ... 2 OF BLOCK DATA STATEYlEIITS IS. ..O 
L'Y 79 CF 100 U?:TIL> STATEMENTS I S . .  . O  - 
.J' . L,? OF N:t!ELIST STATE::E:JTS I S . .  - 0  
:'" .'ER OF R E U I t 3  STATEMENTS I S . .  . O  
.:ll::5ER OF READ STPTEtlENTS IS.. . O  
!'J';3ER OF <GO LCZEL> STATEXNTS IS ... 0 
, L S L R  OF € \ I T  S T A T E H E r X S  15.. .331 
*:J:::5!? OF LASEL STATERENTS IS..  . O  
WSER OF i o 0  WILE> STATEMENTS IS ... o 

3 **I** FUNCTION FEREIT e**** 00000010 

qLMBER OF tO!lMENT CARDS IS ... 957 
4UtlPER OF TYPE C4RDS IS ... 57 
.c.8..ER OF C C t X W  C4RDS IS.. 29 

<U:IP,ER CF D i M E r S I C N  CARDS I S  ... 4 
4 3 l T F R  OF DATA CACLlS IS ... 5 

~ * ,  f.,.. 
- 
JU::.>;R O F  ECLJIVALEtsCE CARDS I S . .  .45 

VU::bER OF ChLL STATEYErJTS IS . . .76 

R -6 



VtR6ER OF IF STATENENTS IS ... 109 
\VlBER OF EXECUTE STATEHENTS XS...60 
vl;::eER OF STOP STATEHENTS IS . . .5 
.*'..Q 
w v  ,. t? PF FLSC ST4TEtIEyTS IS., .31 

C 2 3 E R  OF END STATEMENTS IS.. .146 
V'J:I=.ER OF ASSIGMENT STATEKNTS IS.. .O 
WZSER DF (00  FOR> STATEtlENTS IS. ..34 
Y":?tR OF <14K!O' STATEH€t:TS IS.. .14 
TLV:SEIZ OF Fi: ICEDURE STATEtlEkTS IS.. -35 
WKBER OF <CYCLE> STATERENTS IS.. . O  
W:!SER OF UKRECCGNILED STATEXEMS IS.. .O 

' W E E R  OF U2ITE STATEKENTS I S  ... 2 1  
W.L!SER OF FCRaAT STATEPIENTS IS.. .21 

.rIWE.ER OF BLOCK DATA STATENENTS IS...O 
\" ,r.Tc .,.. L-R Oi <DO UNTIL' STATE:!ENTS IS...O 
,,, ,..- 
L C 3 E R  OF RENIN3 STATE?iENTS IS..  . O  
\L'::ZER OF REA0 STATEHENTS IS...O 

cI. .-*EA OF NA'FLIST STATFIIENTS IS..  . O  

KYSER OF <DO LdSEL> ST:TEt!ENTS IS...3 
? . ' 3 E Q  CF E X I T  STATEMENTS IS.. - 4 6 0  
:LI.':SER OF LZPJEL STATEtZNTS IS.. . O  
JGX3ER OF <DO L!ILE> STATEHENTS IS...O 

: ***** FUNCTION PCDOIT *I*** 00001200 

4U:;BER OF COXlENT CARDS If . . .652 
<I?.*  wga3-R c OF T l P E  CARDS IS.. .40 
WXSER OF COMXOS CARDS IS . . .32  
UYSER OF ECVIVALENCE C A W S  LS. . .13  
Jdl':SEi; OF D1I:Et:SIGN CARDS IS . , .4 
4Ut:SER OF DATA CARDS IS . . .15 
4W3ER OF CALL STATEMENTS IS ... 58 
W ; : @ E i ?  OF IF STCTEYENTS IS . . .143 
.:.J:iSER OF EXECUTE STATE:lE:ITS IS.. .87 
WEBER 01; STOP STATEMENTS IS ... 8 
VRBER O F  ELSE STA7EtfENTS I S . .  .71 
JLII!?ER OF EN2 STATEtXNTS IS.. .205 
.(C::EER OF ASSIt!?ENT STATEHENTS IS . .  . O  
.(!J;i9ER OF <CS FOR> STATEtlENTS IS.. .39 
' W B E R  OF <UNDO2 STATEI!ENTS IS.. .22 
.I'J:!SER OF PRCCEOUFEATEMCNTS IS.. .39 
W Z 3 t R  CF <CICLE> STATEKc::TS IS . .  .I 
JWleER OF UNRECCGNIZED STATERENTS IS.. . O  

W % E R  OF FCRMAT STA-8 tHE'4TS I S .  . .119 
'llYt9ER OF <SVCRGUTINE> STATEKENTS I S . .  .4 

- W::FER CF *.PETUCN, CTATEMENTS IS ... 5 

B -7 



*EL.? C F  C A L L  STCTEP:EKTS IS ... lS2  
\C::SE? OF IF STATEPEN75 IS ... 304 
L::C.E~ OF EXECUTE STATEMENTS IS ... 182 

'4S!?E2 OF <C4SE> STPTEflEtJTS IS.. .61 
,vd.p ? OF W I T €  STATEZENTS IS ... 218 
<' . , . . - E A  '..C, OF FCY!4T STATEVENTS IS.. . l o 3  
.;IJ"ZER OF ~SU;SCUTItJE> STATEXNTS IS.. . 9  
<U::;CLR OF cREfUT;!:> STATE:!ENTS IS.. .10 
4S::XR CF BLCCK DATA STATEt?ENTS IS...l 
'::"?E4 OF < G O  I INTIL' STATFHEHTS IS. . . 0 
I_ 

.,:":LE2 OF NAMELIST STCTEPIENTS IS.. . O  
iV::SER PF REUI:D STATERENTS IS. . . O  
<;':!C.;P OF REa3 STATENENTS IS.. .3 
\'L!P:?EE O C  (33 L4EEL> STBTEMNTS IS.. . O  
':'J;:ZCR Of E Y I T  STZTEI134TS IS.. .lo09 
;2:lt-ER OF LZEEL STATEI1ENTS IS...O 
W S E R  OF <DO U H I L E >  STATEP!ENTS IS ... 0 



JWbER OF BLOCK DATA STATEMNTS IS...1 
WHBER OF <DO UNTIL> STATEMENTS IS...O 
VJX3ER OF NAflELIST STATEEENTS IS...O 
\7'"'3FR @F REUTh'O ST4TFtlFNTS IS -0  
UKBER OF READ STATEftESTS IS.. .O 

W E E R  OF <DO LAGEL> STATERENTS IS...O 
;UHBER OF E X I T  STATERENTS I S  ... 563 
\Wl3ER OF LbSEL ST4TEtiFVTS IS.. . O  
:<X3ER OF <DO WHLlE> STATEVENTS IS . .  .O  

: *e*** FWCTION STUFIT ***** 00000010 

M-TRER OF COMr?ENT CARDS I S  ... 4 5 2  
W E E R  OF TYPE CARDS IS.. .E6 
JUKSER OF COXKON CARDS IS.. .34 
4315ER OF EQUIVALENCE CARDS IS. . .8 
J!.':lBER OF CIHENSIC?( CARDS IS . . . 2  
C1DER OF CATA CARDS IS ... 17 
VWJER OF L A L L  STATERENTS IS ... 2 8  
V-CISER OF I F  STATEVENTS I S  . . .143 
4!L':!3CR OF EXECUTE STATEP'ENTS I S . .  .lo? 
JUXSER OF STOP STATEnENTS I S  ... 6 
VUHBER OF ELSE STATEHENTS IS...58 
JUYSER OF END STATEMENTS IS...197 

G:SER OF <DO FRR> STA1E::ENTS IS.. .3S 
WflBER OF <LJNUO> STATEENTS IS.. .2b 
W E E R  OF FROCEDURE STATEZENTS IS...30 

':L'X:CER OF A S S I F V X N T  STATECENTS IS.. . O  

.:C'XSER OF <CYCLE> STATEVENTS IS.. . O  
4Uti3ER OF U!SECCSNILED STATENENTS IS. . - 0  
W B E R  OF <DO CASE> STATEHENTS IS...lO 
VOKBER OF <CASE> STATEMENTS IS...59 
\VKtER OF L'?ITE STATEKEIITS IS . . .36 
WSER OF FORYAT STATEMNTS X -  . . .35 
W a E R  OF <SUB.POUTINE> STATEflENTS IS...3 
WHSER OF <RETURN> STATERENTS I S  ... 5 
C':!E.ER OF BLCCK DATA STATEMENTS IS.. . O  
W:lSER OF <DO U:ITIL> STATEFIENTS IS.. .4 
*IUM6ER OF NAMELIST STATEKENTS IS ... 1 
WXBER OF REWIND STATERENTS IS...2 
YUWBER OF READ STATEFIENTS IS., . 3  
GXSER OF (00  LABEL> CTATEFIENTS IS.. .2  
V'JNBER OF EX1 r STATEMENTS IS. . .340 
VUKBER OF LABEL STATEHEKiS IS ... 2 
'W:BER OF <DO U H I l E >  STATEMENTS IS...O 

c^ ***** FUNCTION WRITON ***** 00000015 

B -9 



1. 

2.  

3 .  

4 .  

5- 

6. 

7. 

8, 

APPENDIX C 

DATA A'CQUISITION FORMS .. 

COHPUTER PROGRAY RUN ANALYS I S REPORT 
INSTRUCTIONS 

To be f i z z e d  out by p r o g m - n g  Zibrarian or respmsib te  p r o g m s n e r  
a f t e r  each cmputcr  rim. If the m was ursucessful (SYXTAX errors, 
abort, caku tc f ion  e r r o r ,  loop, e t c . ) ,  the swpZenienta2 f o m  
CO:-PUTER P.WC?J. FAILURE 2JALYSIS RSPOZT s'izoutd also  be co.72ete .  
Tnis foim wiZ2.2ieId error s t a t i s t i c  duta rmd compter m tine i h t a  

usc progrim memnic. 

n i s  time is start t ime of computer execution from the corrputer 
printout. 

If a n s w e r  is no, C o v l e t e  COIPLJER PROGRkV FAILLE AYUYSIS FSQRT. -- 
Ilhi; can be gocten from,tfie c o q u t e r  printout.  

Cbeck t h e  apprcpriate box. 

Oeck the appropriate box. 

Geck the  a?pro?r;ate box. 

check +he appropr5zte box. 



1. 

2.  

3. 

4 .  

5. 

6 .  

7. 

S. 

COPIPUT ER PROGRAFZ RUN AI! ALY S I S REPORT.. 
Computer Program Coiirponcnt ID 

a. Fr0gi-m k v e l  opxent c3 
b. Frognm Pbd>fjcat ion:  

(1) Implenenta~ion of A d a  t i ona l  Requirement CI 
(2) hplemcncation of Hardxare Change CI 
(3) !-lemry/Time Optimization m a c e m e n t  
(4) E ~ O T  Correction 
(5) Design b b d i i j c a t i o n  

c .  r”iogrm Conversion . 
d. E h e r  _- 

G X i / C P C  S t a a s  

a. C?C T e s ~  znd Eva1 [] c. Full In teg .  Test 
b. ‘ a r t j a l  Znteg. Test [ j  d. Producrlon Progran 

e. O t h e r  

Frogran Acti\< ty 

a .  Co;;pj!arion [) c. b n  w i t h  no c o v i l e  

b. C o T i l e  and run C ]  d. Other -- 
!:.i.~her of Source Sla:c-lcn;s alznged/Dzi  eied lrtserzed 

a. h’one [I e. 31-40 13 i. IOl-lSO 
b. 1-10 [) f. 41-50 j. 151-200 
c .  11-20 [I 6 .  51-75 (3 k. O v e r  200 

d .  21-30 [J h. 76-100 [3 

CI 
CI 
c3 
c3 
c3 

c3 
c3 
c3 

c3 
C3 

CI 
CI 
c3 

-- Cnn t a c t 

c-2 



1. 

2. 

3. 

4 .  

I ti57 EUCT I OliS 

k. 

B. 

C. 

D. 

E. 

F. 

G .  

H. 

1. 

J .  

K. 

L. 

c - 3  



- DATE 
-4 

S Y m  

C0i:rPUTER PROGRk3 FA1 LURE ANALYSIS REPORT 
. .  
1. C0r;put er Frogran C o z p n e n t  ID --- - 

. X;m -- ns - -- Yr -- I'm -- _-- B Y  -- 2. Run b t e :  

3. Sei 'eri ty of Failure 
- 

A. Gusd C o q l e t e  System to Crash 
\ 

B. Caused A k p c n d e n t  Job to F a i l  

C. Local Job F a i l u r e  Cnly 

D. Real Time Fai lure  

-.-- 
E. Gher 

4 ,  Error a t e g o r y  

A. Coiqu"c3t i o n a l  Error, 

E .  b g i c  Error 

C. Data T n p t  Error 

D. Data i-izndling Error 

F. I n i e r i a c e  Error 

G. k r a y  Process ing  Er ro r  

H. Ea'a Ease E r r o r  

__-_ L. CZther 

CI 
CI 
CI 
L3 

r-I 

Count 

c3 

C - 4  



APPENDIX D 

BIBLIOGRAPHY 

Sar low, Richard and Scheuer , Ernest, "Reliability Growth Dur ins 
a Development Testing Program, Technometr ics, Fib 1966, V o l .  - 
8,  No. 1, p. 53. 

Abstract: The problem of estimating reliability of a 
system undergoing development testing is examined. It is 
assumed that the test program is conducted in K stages and that 
:imilar items are tested within each stage. In addition, it is 
,ssumed that the probability of an inherent failure, qo, 
remains constant throughout the test program while the 
probability of an assignable cause failure in the i-th staqe? 
qi, does not increase with i. The number of inherent 
failures, of zssignable cause failures, and of successes is 
recorded in each stage. Maximum likelihood estinates of qo, 
qifi = 1, 2, * * *  , K) and a conservative confidence bound 
for the reliability in the K-th stage are obtained. Numerical 
examples to illustrate the methods are given. 

Belady, L . A . ;  Lchman, N. Y.; "An Introduction to Growth 
Dynamics", Statistical Computer Performance Evaluation, 
Freiberger (ed.) Academic Press, New YorC, 1972, 503-522. 

Belady, L. A.; Lehman, M. M.: "On the Macro-Dynamics of 
Programming and Other Systems", in preparation Fall 1971, 
disposition unknown on 27 March 1973. 

Belady, L. A.: Lehman, M. M.: "Programming Systems Growth 
Dynamics", IBM Research Division RC3546, September 1971. 

Berkovitz, Shimshon: "The Calculation of Availability of 
Systems with Arbitrary Structure and Success Criteria". MTR 
2314, The MITRE Corporation, Bedford, Massachusetts, 17 May 
1972. 

Abstract: A recursive scheme for computing system 
availability from component element availabilities is developed 
and displayee. It requires only the knowledge of all minimal 
sets of components needed for successful system operation. It 
does not rely on any series? parallel or bridge structure but 
is applicable to the most general redundant systems. The 
scheme can be truncated at any level of recursion to yield good 
approximations. Included is a discussion of how the level of 
truncation depends on the number of system components, their 
availabilities and the desired accuracy. 

Boehm, Barry W . :  "Software and Its Impact: A Quantitative 
Pssessnent" , Datamation, May, 1973, 48-59. 



Erown, J. R. and Lipow, M., "Testing for Software Reliability," 
Proceedings, 1975 International Conference on Reliable 
Software, IEEE Catalog No. 75 CH0940-7 CSR. 

novel methodology for evaluation of testing in support of 
operational reliability assessment and prediction. The 
methodology features an incremental evaluation of the 
representativeness of a set of development and validation test 
cases together with definition of additional test cases to 
enhance those quilities. If test cases are derived in typical 
fashion (i.e., to find and remove bugs, to investigate soft..-are 
performance under off-nominal conditions, to exercise 
structural elements an3 functional capabilities of the 
software, and to demonstrate satisfaction of software 
requirements), then the complete set of test cases is not 
necessarily representative of anticipated operational usage. 
The paper reports on initial research into formulation of valid 
measures of testing representativeness. 

Abstract: This paper presents a formulation of a 

Buckley, E'. J., "Software Testing - A Report From the Field, " 
Droc. 1973 IEEE Symposium Computer Software Reliability, 
Brooklyn Polytechnic Institute, April 1973, pp 102-106. 

Cbandy, K. M.; Ramamoorthy, C. V.; Cowan, A.: "A Framework for 
Hardware-Software Tradeoffs in the Design of Fault-Tolerant 
Computers", M I P S  Conference Proceedings, Volume 41, Part T, 

framework of four inc'ices called the Hardware Reliability 
Efficiency index (HRE), the Software Reliability Efficiency 
index (SRE) , the Real-Time Criticality index (RTC) of a system, 
and the inclusion factor. For a given method of achieving 
reliability HRE and SRE are measures of the increase in 
reliability of the system per unit of expenditure. For the 
same amount of expenditure, a method with a high HRE (or SRE) 
gives better reliability than a method with low HRE (or SRE). 
In this paper we shall discuss ways o€ computing the fficiency 
indices for severrl different reliability methods. The 
real-time criticality index is a measure of the penalty 
incurred for a late completion of the system mission. Thus an 
air-traffic control system would have a high RTC compared to 
other systems. The inclusion factor (defined later) is a 
dimensionless number; if the inclusion factor for a given 
method is less than one, then that method should not be used in 
the system. The inclusion factor is a function of the method 
beinq considered and of system objectives. Thus a given 
tecbnique may be opti-..ally included in the design of one system 
ana excluded from anot3er. 

1972, 53-63. 
Abstract: Our approach to reliability rests on a 

D- 2 



Coutinho, John de S.: "Software Reliability Growth", Record, 
IEEE Symposium on Computer Software Reliability, 1973. 

Craig, G. R., Hetrick W. L., Lipow, M., Thayer, T. A, et al, 
Software Reliability Study", TRW Systems Group, Interim 
Technical Report, RADC-TR-74-250, Oct 74 (Under RADC Contract 
F30602-74-C-0036, Software Reliability Study). (AD787784/8GI) 

Abstract: The study of software error types, 
techniques for locating them, and recommendations for 
improvement of reliability are discussed, Interim results from 
a study of errors encountered in three large software packages 
are presented. Data collection and analysis schemes are 
summarized for subject data sets; and plans for data collection 
on a fourth software project are outlined. Finally, a survey 
of present software reliability models and a summary of TRW 
work in this area are given. 

Davenport, Wilbur B., Jr.: Probability and Random Processes, 
McGraw-Hill Book Company, New York, 1970. 
"Dept. of Defense, Military Standardization 
Handbook--Reliability Prediction of Electronic Equipment, 
MIL-HDX-217B {Sept 1974). 

Dickson, S .  C., Hesse, J. L., Kientz, A. C., and Shooman, M.L., 
Quantitative Analysis of Software Reliability." 

matured as a discipline in the past decade under the pressure 
of increasing user requirements, little formal thought has been 
given to a systems reliability approach encompassing both 
hardware and software aspects. The preponderance of existing 
literature has concentrated on formal verification techniques 
for existing firmware or software, leaving the reliability 
analysis realm essentially untouched. Since many applications 
such as space programs, airline reservation systems, and 
military weapon systems require high reliability assurance 
prior to release to the user, the purpose of this paper is to 
suggest a methodology suitable for use in system reliability 
studies. The prediction model which is developed is based on 
error correction rates, and is applied to the time profile of 
these rates for several classes of data. 

Abstract: Although reliability engineering has 

Proceedings, 1972 Annual Reliabilit and Maintainability 
Symposium, - IEEE Catalog No d 7 7 - R ,  pp. 148-157. 

Ellingson, 0. E. "Computer Program and Change Control," Proc. 
1973 IEEE Symposium Computer Software Reliability, Brooklyn 
Polytechnic Institute, April 1973, pp. 82-89. 

Endres, A. "An Analysis of Errors and Their Causes in System 
Programs," Proceedings, 1975 International Conference on 
Reliable Software, IEEd Catalog No. 75 CH0940-7CSR. 

D-3 



Fsller, W.: An Introduction to Probability Theory and 
Applications, Wiley, New York, 1957. 

Floyd, R. W., "Assigning Meanings to Programs," Proc. Symp. in 
App. Nath.c Vol. 19, American Math Society, Providence, R . T . ,  
1967, pp. 19-32. 

Funami, Y. arid Halstead, M . H . ,  " A  Software Physics Analysis of 
Akiyama's Debugging Data," Proceedings of the MRI S sium on 
Computer Software Engineering, Polytechnic T n s t i t u t y s  New 
York (April 1976 1 .  

Abstract: It is probably obvious that 8 ,  the number 
of errors that a programmer might make in implementing any 
given algorithm in any given programming language, depends upon 
the total number of opportunities for making an error. Until 
recently, it has also been equally obvious that there was 
little reason to expect that such a basic quantity even 
existed, and even less reason to suspect that it could be 
measured. Recent discoveries in an area of Natural Science 
called Algorithm Dynamics or Software Physics (6, 8, 9, 10, 
14) , however, include a simple hypcthesis which relates a set 
of neasurable parameters of a program to the total number of 
elementary mental discriminations required to generate that 
program. A few experiments on Programmer Productivity (5, 7, 
11, 13) kavs suggested that the hypothesis successfully 
accounts for the combined effects of program volume and program 
difficulty. 

None of the reported studies have specifically 
addressed the application to program bugs. Yet if the 
hypothesis is in reasonable agreement with reality it yields 
the total number of elementary mental discriminations required 
in writing a program, and this must also be the total number of 
possibilities for making an erroneous discrimination. In the 
following sections we will reproduce the hypothesis and apply 
it to an independent set of data presented t c ?  khe Lubjana 
Conference by Akiyama in 1971. 

Girard, E. and Rault, J . D . #  "A Programming Technique for 
Software Reliability," Proc. 1973 IEEE - Symp. Computer Software 
Reliability, Brooklyn Pbly. Inst.r April 1973, pp. 44-50. 

and traditional programing techniques ate first reviewed. 
Then we propose and describe a two-step programming technique 
which, among other advantages, allows one to enhance software 
testing and reliability. It is shown how this technique can be 
included in two different program testing schemes 
(probabilistic and deterministic) arid used to assess 
quantitatively program reliability. 

Abstract: The overall feature of software products 

D- 4 



Gnedenko, B. V., Belyayev Y. K., and Solovyev, A.  D., 
Mathematical Methods of Reliability Theory, Zcademic Press, New 
York, 1969. 

Goodenough, 3 .  E., and Gerhart, S.L., "Toward a Theory of Test 
Data Selection," ?roceedings, 1975 International Conference 

Abstract: This paper examines the theoretical and 
practical role of testing in software development. We prove a 
fundamental theorem showing that properly structured tests are 
capable of demonstrating the absence of errors in a program. 
The theorem's proof hinges on our definition of test 
reliability and validity, but its practical utility hinges on 
being able to show when a test is actually reliable. We 
explain what makes tests unreliable (for example, we s'low by 
example why testing all program statements, predicates, or 
paths is not usually sufficient to insure test reliability), 
and we outline a possible approach to developing reliable 
tests. We also show how the analysis required to define 
reliable tests can help in checking a program's design and 
specifications as well as in preventirlg and detecting 
implementation errors. 

I on,Reliable Software, IEEE Catalog No. 75 CH094a -7CSR. 

Green, T. F., and Schneidewind, Howard, G. T., and Pariseau, R. 
J. "Proqram Structure Complexity and Error Characteristics," 
Proceedin= of the Symposium on-Computer Software Engineerinq 
XXIV, MRI Symposia Series, Po-technic Press, Brooklyn, NY 
(1976). 

The ability to detech and correct errors in a computer 
program is governed to a great extent by the structure of the 
program. Structure is important in two ways: (1) errors are 
more difficult to find in complex structures; and (2) more 
errors are generated initially during programming with complex 
structures. A method of characterizing structure is to 
represent the program l03ic in the form of e directed graph, 
where nodes and area represent decision instructions and 
straight line coding, respectively. This representation can be 
analyzed in terms of the following measures; probability of 
reaching an arc with an input; test coverage achieved with N 
inputs; numbers of nodes and arcs; and ration of actual to 
maximum number of arcs. Sicce program structure is most 
meaningful when relatea to the distribution of possible errors 
in the program, the ability to detect e r r o r s  i n  various 
structures is studied. This is accomplished by employing an 
error detection simulation model. The relationships which are 
analyzed are error detection and test coverage as a function of 
program structure and number of inputs. These functions would 
be used in the design of software to avoid structure which ace 
difficult to test and during testing for allocati.nq resources 

D-S 



to tests in accordance with structure and error detection 
character is tics. 

As expected, it was found that the abitity to detect 
errors decreases with increasing complexity. This was caused 
by program coverage decreasing with increasing complexity. An 
interesting aspect of the results is the asymptotic nature of 
the functions, which demonstrates the difficulty of finding 
additional. errors after a critical value of coverage has been 
achieved, where the critical value of coverage is relatively 
low in complex structures. 

Haines, Andrew L.: "Some Contributions to the Theory of 
Restricted Classes of Distributions with Applications to 
Reliability", M73-35, The MITRE Corporation, Washington 
Operations, May 1973. 

Haney, F. M.: "Module Connection Analysis - A Tool for 
Scheduling Software Debugging Activities", AFXPS Conference 
Proceedings, Volume 41, Part 1, 1972, 173-179. 

Hecht, H., Measurement, Estimation, and Prediction of Software 
Reliability, VASA CR-145135, National Aeronautics and Space 
Administration, Washinqton, DC (January 1977). Also in 
Software Engineering Techniques, Infotech International. Ltd. I 
Maindenhead, Berkshire, England, (1977), Vol. 2, p. 209-244. 

IEEE: Record, 1973 IEEE Symposium on Computer Software 
Reliability, New York City, April 30 - May 2 1973, No. 73 CHO 
0741-9 CSR. 

Itoh, D., and Tzutani, T., "FADEBUG-I, a New Tool for Program 
Debugging," Record 1973 IEEE S m osium on Computer Software 
Reliability,IEEEC?talog No. *-rcsH. -- 

Jaynes, Edwin T.: "Prior Probabilities", IEEE Trans. or 
Systems Science and Cybernetics, Vol. SSC-4, Yo. 3, September, 

Abstract: Xn decision theory, mathematical analysis 
shows that once the sampling distribution, loss function, and 
sample are specifi*d, the only remaining basis €or a choice 
among different admissible decisions lies in the prior 
probabilities. Therefore, the logical foundations of decision 
theory cannot be put in f u l l y  satisfactory form until the o l d  
problem of arbitrariness (sometimes called "subjectiveness") in 
assigning prior probabilities is resolved. 

The principle of maximum entropy represents one step 
in this direction. Its use is illustrated, and a 
correspondence property between maximum-entropy probabilities 
and frequencies is demonstrated. The consistency of this 

1968, 227-241, 

D- 6 



principle with the principles of conventional "direct 
probability" analysis is illustrated by showing that many known 
results may be derived by either method. However, an ambiguity 
remains in setting up a prior on a continuous parameter space 
because the results lack invariance under a change of 
parameters; thus a further principle is needed. 

It is shown that in many problems, including some of 
the most important in practice, this ambiguity can be removed 
by applying methods of group theorketicsl reasoning which have 
long been used in theoretetical physics. By finding the group 
of transformations on the parameter space which convect the 
problem into an equivalent one, a basic desideratum of 
consistency can be stated in the form of functional equations 
which impose conditions on, and in some cases fully determine, 
an "invariant measure" on the parameter space. The method is 
illustrated for the case of locsltion and scale parameters, rate 
constants, and in Bernoulli trials w i t h  unknown probability of 
success. 

analysis and the principle of maximum entropy are needed to 
determine the prior. The distributions thus found are uniquely 
determined by the prior information, independently of the 
choice of parameters. In a certain class of problems, 
therefore, the prior distributions may now be claimed to be 
fully as "objective" as the sampling distributions. 

In realistic problems, both the transformation group 

Jelinski, 2.: Moranda, P.: "Applications of a 
Probability-Based Model To a Code Experiment", Record, IEEE 
Symposium on Computer Software Reliability, 1973, 78-80. 

Jelinski, 2.: Moranda, P.: "Software Reliability Research", 
Statistical Computer Performance Evaluation, Freiberger (Ed.), 
Academic Press, New York, 1972. 

Advanced Information Systems subdivision of McDonnell Douglas 
Astronautics Company, Huntington Beach, California, to conduct 
research into the nature of tne software reliability problem 
including definitions, contributing factors and means €or 
con tro 1. 

development of two large-scale real-time systems form two 
separate primary data soGrces for the reliability study. A 
mathematical model, descriptively entitled the 
De-Eutrophication Process, was dt;eloped to describe the time 
pattern of the occurrence of disc re2ancies (errors). This 
model has been employed to estimate the initial (or residual) 
error content in a software packagd as well as to estimste the, 
time between discrepancies at any phase o€ its developiwnt. 
Means 01 iredicting mission success on the basis of errors 
which occur during testing are described. 

Abstract: Software reliability study was initiated by 

Discrepancy reports which originated during the 

3- 7 



Problems in categorizing software anomalies are 
described and the special area of the genesis of discrepancies 
during the integration of modules is discussed. Management 
techniques which should reduce the number of software anomalies 
are described. 

Jelinski, 2.; Moranda, P.: "Applications of a 
Probability-Based Model to a Code Reading Experiment", Record, 
IEEE Symposium on Computer Software Reliability, 1973. 

Johnson, J. P., Software Reliability Measurement Study, 
SAMSO-TR-75-279, Aerospace Corporation, El Segunda, CA (8 
December 1975). 

software reliability measurement program using both manual and 
automatic data entry. The program is to be run in conjunction 
with SAMTEC at Vandenberg AFB in an effort to establish 
measurement and evaluation criteria for the advanced systematic 
techniques for reliable operational software (ASTROS) ) 
project. An integral part of that project is the 
implementation and evaluation of structured programming 
techniques. 

describe the software development environment, the hierarchy 
and size of programming modules, and to capture any significant 
Events that will affect programming and test while they are in 
progress. Forms and instructions for their use for manual data 
collections are included, as are descriptions of items that 
could be collected automatically. 

Abstract: The report contains plans for a complete 

Included in the report are all forms necessary to 

Keezer E. I., "Practical Experiences in Establishing Software 
Quality Assurance," Proc. 1973 IEEE Symp. Computer Software 
Reliability, Brooklyn Poly. Inst., April 1973, pp. 132-135. 

King, J. C., A Program Verifier, Ph.D. Thesis, Carnegie-Mellon 
University, Pittsburgh, 1969. 

Abstract: This research is a first step toward 
developing a "verifying compiler." Such a compiler, as well as 
doing the standard translation of a program to a machine 
executable form, attempts to prove that the program is 
correct. In order to do this a program must be annotated with 
propositions in a mathematical notation which define the 
"correct: relations among the program variables. The verifying 
compiler then checks for consistency between the program and 
its propositions. 

method and then describes a prototype verifier in detail. This 
verifier, running on an IBM 300, operates on programs written 
in a simple programming language for integer arithmetic. Many 
programs have bet I autcmatically verified by this program. 

The thesis presents the theoretical basis of the 

D-8 



These include a simple sort program, a program which examines a 
number for the property and a rather subtle program 
which raises an integer to an integeral power. 

The formal analysis of a program produces 
"verification conditions: which must be proven to be theorems 
over integers. The verifier proves these theorems by using 
powerful formula simplification routines and specialized 
techniques for integer expressions. Ideas for improving this 
verifier and for building one which will operate on a more 
complicated programming language are presented. 

Knuth, Donald E.: "An Empirical Study of FORTRAN Programsn, 
CSD Report CS-186, Stanford University, 1970. 

Abstract: A sample of programs, written in FORTRAN by 
a wide variety of people for a wide variety of applications, 
was chosen "at random" in an attempt to discover quantitatively 
"what programmers really do." Statistical results of this 
survey are presented here, together with some of their apparent 
implications for future work in compiler design. The principal 
conclusion which may be drawn is the importance of a program 
"profileln namely a table of frequency counts which record how 
often each statement is performed in a typical run: there are 
strong indications that profile-keeping should become a 
standard practice in all computer systems, for casual users as 
well as system programmers. This paper is the report of a 
three month study undertaken by the author and about a dozen 
students and representatives of the software industry during 
the summer 1970. It is hoped that a reader who studies this 
report will obtain a fairly clear conception of how FORTRAY is 
being used, and what compilers can do about it. 

LaPadula, Leonard J., "Engineering of Quality Software Systems, 
Vol VI11 - Software Reliability Modeling and Measurement 
Techniques", MITRE Corp., RADC-TR-74-335, Vol VIII, Final 
Technical Report (Jan 1 - Jun 30, 1973), Jan 1975 (Under RADC 
contract F19628-C-73-0001, Software Reliability and 
Timeliness). (AD A007773). 

Abstract: This report presents an overview of the 
technological background commor. to the six tasks of project 
522A, a part of MITRE Project 5220, The Advanced Systems 
Technology Program, under the direction of the Rome Air 
Development Center, United States Air Force. Besides 
discussing general background, this voiume provides an 
introduction to each of the other seven volumes of the entire 
report 

LaPadula, L. J.; Clapp, J. A.: Engineering of Quality Software 
Systems", MTR-2648 Volume I, The MITRE Corporation, Bedford, 
Massachusetts, June 1973. 

D-9 



Lipow, M. Estimation of Software Package Residual Errors, 
TRW-SS-72-09, TRW Systems Group, Redondo Beach, CA (Nov 1972). 

Lipow, M. , "Maximum Likelihood Estimation of Parameters of a 
Software Time-To-Failure Distribution", TRW Systems Group, 'IRW 
Report No. 2260.1.9-73D-15 (Rev 1) , Jun 1973. 

Lipow, M., "Some Variations of a Model for Software 
Time-To-Failure", TRW Systems Group, Correspondence 
ML-74-2260.1.9-21, Aug 1974. 

Liskov, B. H.: "Guidelines for the Design and Implementation 
of Reliable Software Systems", MTR-2345, The MITRE Corporation, 
Bedford, Massachusetts, 14 April 1972. 

Abstract: This document describes experimental 
guidelines governing the production of reliable software 
systems. Both programming and management guidelines are 
proposed. The programming guidelines are intended to enable 
programmers to cope with a complex system effectively. The 
management guidelines describe an organization of personnel 
intended to enhance the effect of the programminq guidelines. 

Littlewood, B. and Verrall, J. L. "A Bayesian Reliability 
Growth Model for Computer Software," Journal of the Ro a1 

Lloyd D. and Lipow, H. Reliability: Management Methods, and 
Mathematics, Prentice-Hall, Rnglewood Cliffs, New Jersey, 1964. 

London, R. L. "Certification of the Algorithm Treesort," Comm. 

Statistical - Society, Series C, Applied Statistics, - -I& 
ACM. Vola 13, NO. 6, 1970, pp. 371-373. 

Yac Williams, W., "Reliability of Large Real-Time Control 
Software Systems," Proc. 1973 'EEE Symp. Com uter Software 
Reliability, Brooklyn Poly. Inst. April 197 pp. 1-6. 

view of the design of today's large and complex real-time 
computer -based control sys terns using mu1 t i -proce ssor computers . 
design tool in anything like the hardware sense. Tn fact, it 
is not to clear how tc define software reliability in a precise 
way and to measure it. What can we learn about software 
reliability by examining hardware reliability theory? 

definition of software reliability: a) an overall or 
high-level definition, b) an intermediate-level definition 
(which might be termed a system designer's definition), and c) 
a low-level, measurement, or nitty-gritty definition. 

+- - -- - 
Abstract: This paper is written from the point of 

The software reliability is not under control as a 

This paper may be viewed in terms of three levels of 



Merritt, M. J. et al., Characteristics of Software 
guality,"Report 25201-6001-RU-00, TRW Systems, Redondo Beach, 
CA (December 1973). 

Miller, T. and Fteund, J., Probabilit and Statistics for 
Engineers, Prentice-Hall, E d i E ,  New Jerseyx965. 

MIL-STD-483, Configuration Management Practices .. - . % . # 3 ~ ,  
Equipment, Munitions - and Computer Programs. 

MIL-STD-490, Specification Practices. 

Mills, H. D., "On the Statistical Validation of Computrr 
Programs," IBM Report FSC-72-6015, July 1970. 

MIPS (Metric Integrated Processing System) Performance and 
Design Requirements, System Segment Specification, 
MIPS-1023-3117,C6, Data Processins Directorate, Federal 
Electric Corporation, Vandenberg Air Force Base, Car Contract 
No. F04701-72-C-0203 (29 November 1976). 

Moranda, e. ,  "Probability-Based Models for the Failures During 
Burn-In Phase", Joint National Meeting ORSA/TIMS, Las Vegas, 
NV, Nov. 1975. 

Moranda, P. B. and Jelinski, Z . r  "Software Reliability 
Research", Conference on Statistical Methods for the Evaluation 
of Computer Systems Performance, Providence, R.I., Wov 1971. 

Moranda, P.B. and Jelinski, Z., "Final Report on Software 
Reliability Study". McDonnell Douglas Astronautics Company, MDC 
Report No. 63921, Dec 1972. 

Munck, R. G.: "Discussion of Session VII, Software 
Reliability", Statistical Computer Performance Eva'luation, 
Freiberger (ea.), Academic Press, New York, 1972, 513-514. 

Nelson, E. C. A Statistical Basis for Software Reliability 
Assessment, TRW-SS-73-03, TRW Systems Group, itedondo Beach, CA 
(1973). 

Abstract: A mathematical definition of the 
reliability of a computer program is developed from the 
mathematical definitions of a program and program execution 
given in Blum's mathematical theory of the semantics of 
programming languages. The reliability so defined is 
measurable and it is related to the structural properties of 
computer programs using concepts borrowed from the PACE system 
of automated software test tools. 

Ogdin, Jerry L.: "Improving Software Reliability," Datamation, 
(January, 1973), 49-52. 

D- 11 



Pierce, William H.: Failure-Tolerant Computer Design, Academic 
Press, New York, 1965. 

Richardr, F. R., "Computer Software: Testing, Reliability, 
Models, and Quality Assurance", Naval Postgraduate School, 
Monterey, CA. July 1974. 

Rubey, R. J. "Quantitative Aspects of Software Validation," 
Proceeding:, 1975 International Conference --- on Reliable 
Software, IEEE Catalog No. 75 CH0940-7 CSR. 

quantitative descriptions of software errors aqd methods for: 
gathering such data. The software development cycle is 
reviewed and the frequency of the errors that are detect.ed 
during software development and independent vsl;-lation are 
compared. Data obtained from validation efforts are presented, 
indicating the number of errors in 10 categor:r?s and three 
severity levels; the inferences that can be drawn E r q - m  this 
data are discussed. Data describing the effectiveness of 
validation tools and techniques as a function of tine are 
presented and discussed. The software validation cost is 
contrasted with the software development cost. The 
applications of better quantitative software error data are 
summarized. 

Abstract: This paper discusses the need for 

Rudner, Beulah "Design of a Sedding/Tagging Reliability Test," 
in oummar of Technical Progress, Software Modling Studies, 
R A L d - n 3 ,  Rome Air Development Center (May 1 9 r  

Schick, G. J.; Wolverton, R. W.: "Assessment of Software 
Reliability", MDAC Paper WD 1872, McDonnell Douglas 
Corporation, August 1972. 

achieving reliability of large-scale software systems. 
Comparative studies of a contemporary U.S. Air Force software 
project, a NASA software project, and a commercial real-time 
software project are described. Software development and test 
management procedures which lead to software reliabilitv are 
analyzed. The underlying premise advnaced is that soc, ' .  i 
reliability must be designed into the system from thc -.*:.ining 
using a systems approach. The paper describes the sy - 
approach to software reliability which requires (1) 
understanding of the total software development and test life 
cycle, ( 2 )  identification of conventional and extended 
conventional test techniques for precision validation testing 
of applications programs, and (3) allorstion of resources in a 
cost-and periormance-effective maimer, in advance, over the 
entire development period. The paper focuses on the testing 
approach, test planning and integration, deficiency reporting 
and control, and data collection and analysis. 

Abstract: This paper discusses the problems in 

D-12 



Schneidewint, N. "A Methodology for Software Reliability 
Prediction a-ld Quality Control," Naval Psstgraduate School 
Technical Report NPS55SS72111A, November 1972. 

Abstract: The increase in importance of software in 
command control and other complex systems requires increased 
attention to the problems of software reliability and quality 
control. This paper reports on initial attempts to develop a 
methodology for Naval Tactical Data System software reliability 
and presents the results of several statistical analyses which 
were performed in order to obtain an appreciation for the 
statistical characteristics of software reliability data. An 
appcoach to analyzing software reliability problems is outlined 
and a methodolog1 ?or reliability prediction and quality 
control is presented. Characteristics of software reliability 
statistical distributions are reported. 

Schneidewind, N. F. "An Approach to Software Reliability 
Prediction and Quality Control," Fall Jolnt Computer 
Conference, 1972, pp. 837-847. 

ASstract: ?he increase in imporoance of software in 
command and control and 0thr.i complex systems has not been 
accompanied by commensurate progress in the development of 
analytical techniques for the measurament of software quality 
and the prediction of software reliability. This paper 
presents a rationale for implementing software reliability 
programs: defines software re'iability; and describes some of 
the problems o1 performing s ware reliability analysis. A 
software reliability progran LS outlined and a methodology for 
reliability prediction and quality control is presented. Tfre 
results of initial efforts to develop a software reliability 
methodology at the Naval Electronics Laboratory Center are 
reported. 

Shoopzn, M. L. and Natarajnn, S. "Effect of Manpower Deployment 
and r 'OL Generation cm Software Reliability." Proceedings of 
the tlaposium on Computer Software Engineering X X I V ,  MRI 
Symposia Series, Polytechnic Press, Brooklyn, NY (1975). 

Ehooman, Martin L.: "Operational Testing and Software 
Reliability Estimation During Program Development", Record, 
IEEE Symposium on Computar Software Reliability, 1973. 

models which can be used to measure, manage, and predict the 
level of perfection (frGedom from bags) of software durina the 
development and test stages. The ineasures used are the. 
reliability function, R(t), and t h e  mean time between software 

Abstract: This paper dlSCliSSeS some quantitative 

D-13 



failures, MTTF, both of which improve as more resources (time, 
man-hours, computer-hours) are expended on the program. The 
methodology described is most applicable to the last (but 
extensive) phase of software development generally called test 
and integration. 

data on the system, or sir.ce we wish to predict, on a 
preliminary version of the system. The obvious choice is the 
succession of updated versions of the software produced during 
system integration. it is proposed that the functional 
software test program (system exerciser) written to test all 
large software systems be used to generate this data. The only 
additional efforts required over a normal test program to 
obtain the necessary data are: (a) careful post-analysis of 
test results to segregate hardware, software, and operator 
errors, and (b) running of the functional test occssionally 
during the entire system integration phzse rat:.er than just at 
the end. 

A plot of the MTTF versus time yields a growth curve. 

In order to calculate the MTTF and R(t) one needs test 

Once several points on the curve have been established the 
future behavior (during test and integration and immediately 
after program release) can be predicted by extrapolation. 
Unless a technique well suited to the physical problen is used, 
extrapolation can be very misleading. A m x h  better technique, 
requiring fewer data points €or= the same prediction accbracy, 
is t=, postulate an underlying model for error removal and use 
the test data to estimate the model constants. The error model 
used in this paper is based on previous work relating R(t) and 
MTTF to debugging data. The number of errors remaining in a 
software program is probabilistically modeled in terms of the 
number of errors corrected, the program size and the initial 
number of errors. An additional assumption is made that the 
software failure rate (crash rate) is proportional to the 
number of remaining erro:s. This allows one to write an 
expression for the software reliability and the mear cime to 
software failure. To evaluate the two constants in the model, 
it is necessary to collect test data of the type previously 
described at a mirlimum of two separate points in the test and 
integration phase. If data is taken at more than two points 
the additional data sets may be used to study the consistency 
of the  parameters and validate or suggest changes in the basic 
model. If the model is validated and the paired parameter 
estimates are consistent, then the data at the several test 
poinLs can be used for a pooled estimate. 

D-14 



Shooman, Martin L.: "Probabilistic Models for Software 
Reliability Prediction", Statistical Computer Performance 
Evaluation, Freiberger (Ed.;, Academic Press, New York, 1972. 

hardware-software systems developed in the 1960s, the problem 
of computer system reliability has emerged. The reliability of 
computer hardware can be modeled in much the same way as other 
devices using conventional reliability theory; however, 
computer software errors require a different approach. This 
paper discusses a newly developed probabilistyic model for 
predicting software reliability. The model constants are 
calculated from error data collected from similar previous 
programs. The calculations result in a decreasing probability 
of no software errors versus operating time (reliability 
function). The rate at which reliability decreases is a 
function of the mail-months of debugging time. Similarly, the 
mean time between operational software errors (MTBF) is 
obtained. The W B F  increases slowly and then more rapidly as 
the debugging e i f o r t  (man-months) increases. The model permits 
estimation of software reliability before any code is written 
and allows later updating to inprove the accuracy of the 
parameters wnen integration or operational tests begin. 

Abstract: With the advent of large sophisticated 

Shooman, E. L., "Software Reliability: Measurement and 
Models", 1975 Annual Reliability and Maintainability Symposium, 
Washington, DC, Jan 28-30, 1975. 

Abstract: With the advent of large sophisticated 
hardwzre-software systems developed in the 1960s, the problem 
of ccmputer system reliability has emerged. The reliability of 
computer hardware can be modeled in much the same way as other 
devices using conventional reliability theory; however, 
computer software errors require a different approach. 

software errors and provides working definitions of software 
errors and software reliability. Some of the basid data on 
frequency of occurrence of errors is then discussed. The 
paper then summarizes and references some of the software 
reliability models which have been proposed and concentrates on 
one developed by the author. 

This newly developed probabilistic model predicts 
reliability based on the initial number of errors in i! program, 
the number removed, and the number remaining is the program. 
The model constants are calculated from operational test data 
on the software performance . 
no software eirors versus operating time (reliability 
function). The rate at which the reliability decreases is a 
function of the man-months of debugging time. Similarly, the 
mean time to occurrence of operational software errors (MTTF) 
is obtained. The MTTF increases slowly and then more rapidly 

The paper begins by describing the types and causes of 

The calculations result in a decreasing probability of 



as the debugging effort (man-months) increases. The model 
permits estimation of software reliability before any code is 
written and allows later updating to improve the accuracy of 
the prediction when integration or operational tests begin. 

Shooman, M., et al, "Summary of Technical Progress Software 
Madeling Studies", Polytechnic Tnstitute of New Y o r k ,  
RAW-TR-75-245, Interim Report, Jun 1975 (Under RADC Contract 

to 30 June 1975, Polytechnic Institute of New York conducted 
research uinder RADC contract F30602-74-C-0294 in the area of 
software reliability. This report presents the progress of 
this research. Subjects of investigation were Markov models 
for  the prediction of software availability, theortetical 
models €or software testing, automatic programming, automatic 
testing of programs and collection of error data, estimation of 
the initial number of program errors, program complexity and 
hierarchies of computable functions. 

of software availability has been completed and a report 
RADC-TR-75-169, "Computer Software Reliability: Many-State 
Markov Modeling Techniques," 9as been published covering this 
topic. This technique involves using a statistical model to 
predict the future performance of software using past 
performanc2 data. 

software testing fot use in determining the ntinimum number of 
tests that are necessary to verify that a program has been 
completely tested. This involves determining the paths that 
are contained in the program and the number of tests necessary 
to test each path. 

The seeding and tagging approach for estimating the 
number of software ecrors in a piogram has been investigated 
lrnd experiments have keen planned to verify this approach. 
This method of estimatigg the initial error content of a 
program involves several people debugging the same program. 
The total number of errors are then statistically determined 
using the number of errors found by each person that are 
contained in common with a "tagged" set of errors. 

by matching the power of the programming language to the 
complexity of the problem being so lved is being addressed by 
the investigation of hierarchies of computable functions 
defined bvy substitution and recursion. This research relates 
to the extension of basic automata theory to set up degrees of 
difficulty in computation and to adapt the schemata provided by 
recursive function theory to programming in higher level 
languages with more useful data types. 

F30602-75-C-0294) (AD A018 G18). 
Abstract: During the period of time of 1 October 1974 

Research into the use of Markov models for prediction 

Theoretical models have been studied concerning 

The possibility of reducing chances for program errors 

D-16 



Sukert, A. N. “A Software Reliability Modeling Study“ Rome Air 
Development Center (ISIS) Gr if €is Air Force dase, NY 
RAW-TR-76-247 Aug 1976 (AD A030437). 

Thayer, T. A., et al., Software Reliability Study, Final 
Technical Report, 76-2260.1.9-5, T R W  Defense and Space Systems 
Group, One Space Park, Redondo Beach, CA, Contract No. 
F30602-74-C-0036 (19 March 1976). 

Techniques for categorizing errors according to type, 
identifying their source, and detecting them are discussed. 
Various tec’qiques used in analyzing empirical error data 
collected from four large software systems are discussed and 
results of analysis are presented. Use of results to indicate 
improvements in the error prevention an3 detection processes 
through use of Cools and techniques is also discussed. 

A survey of software reliability models is included, 
and recent work on TRW’s Mathematical Theory of Software 
Reliability (MTSR) is presented. 

Finally, lessons learned in conjunction with 
collecting software data are outlined, with recommendations for 
inproving the data collection process. 

Abstract: A study of software errors is presented. 

Thompson, W. and Walsh, D. “Reliability and Confidence Limits 
for Computer Software,” General Research Corporation Report. 

Trauboth, H., “Guidelines for Documentation of Scientific 
Software Systems,” Proc. 1973 IEEE Synp. Comput : Software 
Reliability, Brooklyn Poly. Inst., April 1973, pp. 124-131. 

Tribus, Myron: Pitts, Gary: “The Widget roglem Revisited“, 
IEEE Trans. on Systems Science and Cyberr.=tics, Volume SSC-4, 
No. 3, September 1968, 241-248. 

Abstract: The Jaynes “widget problem” is reviewed as 
an example of an applicqtion of the principle of maximum 
entropy in the making of decisions. The exact solution yields 
an unusual probability distribution. The problem illustrates 
why some kinds of decisions can be made intuitively and 
accurately, but would be difficult to rationalize without the 
principle of maximum entropy. 

Trivedi, A. K. and Shooman, M., “Computer Software 
Reliability: Many-State Markov Modeling Techniques”, 
Polytechnic Inst. of New York, RAM3-TR-75-169, Interim Report, 
Jul 1975 (Under R A W  contract F30602-74-C0294, Software 
Modeling Studies). (AD A0014824). 

Abstract: Many-state Markov models have been 
developed for the purpose of providing quantitative reliability 
criteria for computer software. The software system under 
consideration is assumed to be large, so that statistical 

D-17 



deductions become meaningful, and is assumed to initially 
contain an unknown number of bugs. The basic models provide 
estimates and predictions for a quantifier that represents the 
state of debugging of the system and which is generally the 
most probable number of software errors that will have been 
corrected at a given time in the operation of this software 
system based upon preliminary modeling of the error occurrence 
rate and the error correction rate. The models also provide 
predictions for the availability and for the reliability of the 
system. The differential equations corresponding to the basic 
many-state Markov models are solved for verification and 
demonstrative purposes. 

performance of system software for a medium-sized software 
operating system. These data have been analyzed to obtain 
frequency distributions of the random variables representing 
the time to close software error reports. The data are then 
used for application of the basic many-state Markov model. A 
general discussion of error data collection is undertaken in 
some detail, and suggestions are made for possible improvements 
in software error data documentation practices. 

many-state Markov models are discussed. The classes of the so 
called many-state Markov G-Models and H-Models are developed to 
handle, respectively the case of arbitrary degress of system 
degradation and the case of various categories of system nrlownn 
states. The solutions and results of some of these cases are 
presented. Finally, the computational efficiency and tradeoffs 
involved in the solutions of the many-state Markov models are 
d isucssed. 

Manufacturer's data have been obtained on this 

Various extensions and modifications of the basic 

Tsi-..ihritzis, D. and Ballard, A. "Software Reliability,n 
I h t O R ,  Vol. 11, No. 2, June 1973, pp. 113-124. 

Abstract: Our approach assumes that there is 
increasing interest in both practical and theoretical aspects 
of the reliability of computer software, and this paper reviews 
many aspects of software design and production which affect 
reliability. For the most part, the topics are discussed 
relative to simple examples, and with reference to the previous 
work r ? t  others; however, a new approach to formally proving 
sys:b.m cortectiness is presented. The system can be 
.=>resented at any instance of time by its state. The progress 
Oi the system is represented by a state history. Any property 
can therefore be described as a relation between states. The 
correctness proof is an induction with respect to the sequence 
of such states followed during execution. The paper also 
covers, in review, program design, protection, programming 
style, testing and other topics. 

D-18 



Wagoner, W. L., "The Final Report on a Software Reliability 
Measurement Study", The Aerospace Corp., Report No 

Software Reliability Measurement Study performed by the 
author. The objectives of the study were as follows: 

TOR-0074 (4112) -1, Aug 15, 1973. 
Abstract: This report presents the final results of a 

1. To establish a rudimentary definition of software 
re li abi 1 i ty . 

2. To identify Sarameters affecting software failure 
rates ( e . g . ,  program size, difficulty, programmer 
experience, schedule, etc). 

3. To determine the critical parameters required f o r  
a software reliability model, including the 
distribution of software errors as a function of 
time. 

The I epor t includes : 

1. A definition of terms relative to software 
reliability. 

2. A section discussing software error detection 
rates and parameters which affect this process. 

3. A summary of existing models and a comparison 
with a model proposed by the author. 

4. An annotated list of ereferences on software 
reliability. 

Weiss, H., "Estimation of Reliability Growth in a Comples 
Systems with Poisson Failure," Operations Research, Vil. 4, 
1956, pp. 532-545. 

Welker, E. L. and Lipow, M. "Estimating the Exponential Failure 
Rate from Data with No Failure Event," Ptoceedings 1974 Annual 
Reliability and Maintainability Symposium, fEEE Catalog Wo. 
74CH0820-1RQ~January 1974) . 
Wolverton, R. W. and Schick, G. J., Assessment of Software 
Reliability, TRW-SS-72-04, TRW Systems Group, Redondo Beach, CA 
(1972). (Identical with paper in Proc. of the 11th Annual 
Meeting of the German Operations Research Society, Hamburg, 
GERMANY, Sept 1972.) 

Zelen, Marvin, ( e a . ) :  Statistical Theory of Reliability, 
Proceedings of an Advanced Seminar Conducted by the Mathematics 
Research Center, US Army, at the University of Wisconsin, 
Madison, May 8-10, 1962, University of Wisconsin Press, 1963. 


