
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19790007505 2020-03-22T01:32:18+00:00Z

STANDARDIZED

DEVEL OPMEN 'Ln

t	 HLO

r	 A mF OFM	 C7 r.,

COMPUTERrn

SOFTWAREzv)c.
r^ ca ^; a

Robert C. TausworthE-

N	 Q
F-1 ^

m

...
^-+ ra	 ^

-	 - s	
.

f:	 PART II
STANDARDS

co	 wLnf4r4

hham'.I	 KI 1W

co u -Rw'
N

v Q tir

aet r[utwision Laboratory	 California Institute of 	 rechnolo11 • Pasadena, California

aI

o-1s

STANDARDIZED

DEVELOPMENT

OF

COMPUTER

SOFTWARE

Robert C. Tausworthe

PART II
STANDARDS

Jet PropuEsbrl LaUcra;ory . California .nsl[tule of TechnrOgy • Pasadena. California

PREFACE

At the time Part I of this work was being published, the jet Propulsion
Laboratory's Deep Space Network (DSN) was in the process of developing
and writing a set of Software Standard Practices, for which Part 1 was . cited
as the "methodology textbook." The standards were developed over several
years by a group we simply called the "Software Seminar." Tt was created
ana chaired in its "pathfinder period" by Walter K. Victor, who was, by the
way, the significant inspirator of Part T. Mahlor. F. Easterling then led that
symposium (second Webster [43] meaning) through its .next "pilot" phase.
Edward' C. Posner steered it through the arduous, major, final phase
involving detailed standards development, consenstis building, writing,
review, and publication; he also sponsored the .final symposium (first
Webster [43] meaning) immediately after the standards were signed off by
upper management. Daniel C. Preska administered the writing of the
standards, with editorial assistance by Richard C. Chandlec.

The test-bed for the methodology reported in Part I had been ail effort of
medium magnittide—a Program (the Mhl3ASION language processor)
containing about 55,000 lines of non-real-time assembly language code. The
results of .that methodology test.-bed seemed to indicate that programmer
performance better than had been encountered in past DSN projects could
be extended to the DSN as a whole—an organization involving perhaps LOG
programmers in various disciplines.

With that bc)ief, the implementation team manager of a critical
hardware/software project--to completely upgrade the digital data systems
in all of the deep-space stations around the world--undertook the additional
task of applying and evaluating the then-emerging DSN Software Standard
Practices as a standards-test-bed activity. The overall project, including
software for system performance tests, generated approximately 100,000
fines of hard-real-time assembly language code over about 2-1/2 years.

That project could ill-afford to be a mere guinea pig for a software
standards seminar, because the delivery of the first-phase system was
crucially tied to upcoming spacecraft launch dates and committed on-going

t

r

IV Preface

missions. Even. moderate deviations from the original schedule could not be
tolerated. Short slippages could, perhaps, be accommodated if detected
early enough for appropriate replanning.

Yet the prospects for success using the standards seemed good. A
software manager was appointed, cognizant software development
engineers for each of the major assemblies making up the system were
selected and a secretariat function (Chapter 17) was established.,.	 P
Subcontractors were selected to aid in all. activities of the implementation
and integrated with JPL personnel into a unified team. All were
admonished to apply and conform to the (draft-form) software standards to
the maximum extent, except where it could. be shown that adherence to
standards was interfering with the schedule. Waivers were granted on a
case-by-case basis, in writing; to record the details wherein standards
proved ineffective.

The project demonstrated numerous gratifying benefits arising from the
methodology presented in Part l and the more detailed standards contained
in this second volume. Among these were good schedule and cost
performance, high product reliability, adequate documentation, increased
productivity, and smooth development and delivery.

The delivery elate did slip from the origina: 2-1/2 year plan by somewhat
less than 1 month (3% accuracy of original plan). However, this slip was
predicted about 7 months in advance of its actual occrrrence, so that
effective contingency planning could he initiated. The 6% cost overrun was
also predicted well enough in advance that .reallocation of project resources
was effective. These excesses were considered unusually slight, particularly
in comparison to past JPL experience and then-current industry-published
data.

The software contained an average of approximately 3 errors per
thousand lines of code, measured from the beginning . of system integration
tests, as compared to 10-20 errors per thousand lines commonly reported
in similar projects not employing top-down structured programming
methodology. Tiiis test phase, as a matter of fact, required only about 15%

Hof the overall. effort, whereas industry-published Daures and previous JPL
experience quoted about a. 50% level of effort. The difference in. effort was
expended in the design and planning phases to produce a more mature,
well:documented, reliable product.

The development and delivery were reported as being smooth and
controlled. No "tiger teams" were required during implementation, no
significant renegotiation of scftware cor-►mitments was needed near the end 	 _

Preface v

of production, and the software was delivered ready for operation with very
few liens levied for future corrective action.

The standards, of course, did not accomplish these achievements—people
did, JPL was fortunate to have had outstanding personnel performing in an
exceptional, professional manner throughout the project. All that one may
claim for the standards is that they provided a methodology which allowed
eael: member of the project to apply himself or herself toward the
accomplishment of project goals in the most effective way.

That methodology held up to its promise. The managers, designers,
coders, operational personnel, documentarians, and theoreticians in concert
had crafted and codified a viable, detailed set of practices for producing
software. All concerned had had .n voice in the creation and adjustment of
their software engineering discipline, and for once the "horse" designed and
built by a "committee" didn't turn out to he a "camel."

Part IT of this monograph, then ; exposes this detailed set of rules for
software implementation. I have broadened some of the DSN. practices in
some instances, in an attempt to make them more readily adaptable to
organizational structures different than that of the DSN, Additional
consonant . .practices from other sources have also been incorporated to
broaden the scope of applicability to projects of types other than the high-
technology, high-efficiency, single purpose, custom=built variety demanded
by the deep-space-station environment.

There are many .whom I must thank and acknowledge for their many and
various contributions toward the completion of this second volume.
Robertson Stevens, the former manager of a large computing facility and,
during this time, manager of the upper-level organization coi ntainin- the
hardware/software project, was the propounder of marry of the manage-
ment policies and status monitors that are found in this work. Paul T.
Westmoreland wax the manager of the implementation project; his
professionalism, ability to: manage, faith in a standardized approach; and
courage to commit that approach to a critical task have been a personal
inspiration.

I must also acknowledge the effectiveness of Alvin F. Ellman of the
Bendix Corporation, who was software manager. It was perhaps Al's ability
to recognize what quantitative information a programmer co ,.sld communi-
cate naturally to management and others that led to the refined status
monitors that proved so effective. His ability to relate to and interface with
project-internal programmers and project-external systems engineers and
users was a major factor in an organization-wide feeling of confidence in
the health of the growing and maturing software.

vi Preface

The subsystem Cognizant Development Engineers were Robert Desens,
Frank Hlavaty, Ronald Murray, Gary Osborn, and Steve Yee. Observance of
their applications of the standards and their performance under the
standards produced many refinements for efi`ectiveness.

The members of the DSN Programming System Steering Committee
included, at various times, Walter K. Victor, Robertson Stevens, Mahlon
Easterling, Lee W. Randolph, Carl W. Johnson, Cecil P. Wiggins, Edward
C, Posner, Malvin L. Yeater, William C. Frey, William D, Hodgson,
Angela. Irvine, Raul D. Rey, Richard B, Miller, and Donald L. Gordon. Each
made special contributions too miimerous to single out.

R. Booth Bartley and Lawrence R. Hawley were both co-developers and
appliers of the rules given here during the various implementations of
elements of the DSN Programming System. Their support, feedback, and
ability were sorel y needed and freely provided during the preparation of
this material. Kay Landon and Leonard Benson proofread Part I and
generated its index; they also progammed a prototype CRISPFLOW
processor; leading to the descriptions in Appendix Q Annamarie Grana
helped evaluate the utility of Appendix C, using it as .a guide for fl :n

generation of two SRDs. Frank Hlavaty collaborated in the formation of
Appendix E. Michelle Martin and Marshall. Polsley contributed to the
format and content of Appendix I. Richard Schwartz's influence is
prevalent in the standard language discussions in Chapter 17. John Johnson.
and Henry Kleine were instrumental in the formation of the CRISP
language.

I give special thanks to Georgians Clark, who typed and corrected the
entire manuscript; to Carol Rosner, who had typed a preliminary draft of
the first five chapters; to Margaret Seymour, who drafted all. the figures
except those in Appendices G and L; to Silvia Munoz, who aided in
generating the index; to Harold Yamamoto, who edited the volume for
publication; and to Doris Perry, who coordinated all the artwork and was
responsible for the final .page makeup. I also extend a belated thanks to
Anita Sohus, who coordinated all the artwork for Part T.

Finally, 'I wish to thank those who have participated in the many
seminars and classes given on this material during its various stages of
completion; many insights into the secrets of software engineering across a
broad programmer base were revealed to me as the result of these
interactions.

Robert C, Tousworthe

fj

,,F.

.;F

f

CONTENTS

PART II

XI.	 SOFTWARE ,R!EQUIR:EMENTS AND DEFI.NITiON
STANDARDS	 1

11.1 GENERATtN'G SOFTWARE
RIEQU'lR'EMENTS 2

11.2 GENERATION Of THE SOFTWARE
ARCHITECTURAL DESIGN 7

11.3 GEN:ERATI:N:G THE SOFTWARE
FU:N.CTIONA.L SPECI IF.I:CATION	 14

11.4 DOCUMENTIN83 TECHNICAL R:F,QU'IRE-
MENTS AND FUNCTIONAL
SPEC:I : F]CATIONS	 1'9

11.5 RULES FOR THE SOFTWARE
DEVELOPMENT LIBRARY 33

11.6 SUMMARY 34

XII.	 PROGRAM DESIGN AND SPECIFICATION
STANDARDS 35

12,1 RULES FOR STRUCTURAL DESIGN 36
12.2 R'U'LES FOR DATA STRUCTURING AND

RESOURCE ACCESS DESIGN	 39
12.3 RULES FOiR DEVELOP NG STR.UCTU'R:ED

PROGRAMS	 45
12.4 RULES FOR APPLYING STRUCTURED

PROGRAMMING THEORY	 49
1.2.5 RiULES FOR REAL-TWE STRUCTU:RED

P R.OG RAMS	 53
12.6 STANDARD DESIGN PRACTICES	 57
1.2.7 R .UtES FOR DOCUMENTING

STRUCTUR'E,D SPEC IfI-CATIO:NS 58
12.8 RULES FOR THE SOFTWARE DEVELOP-

MENT LIBRARY	 83
12.9 SUMMARY 84

X11I.	 PROGRAM CODING STANDARDS 85

111 RULES FOR CGD1'NG STRUCTURED
PROGRAMS	 SR

vii

.1

i

Viii	 Contents

13.2 RULES FOR CODING STRUCTUf ED
REAL-TIME PROGRAMS 93

13.3 RULES FOR DOCUMENTING
STRUCTURED CODE	 94

13.4 STANDARD PRODUCTION
PROCEDURES	 99

13.5 (SUMMARY 101

XIV.	 DEVELOPMENT TESTING STANDARDS 1`03

14.1 RULES FO'R SPECIFY'IiNG DEV 'LOP-
MENT TESTS 104

14.2 RULES FOR DEVELOPING , TESTS FOR
R+E A:L-T [M E P'RO G;R AMS	 107

14.3 RULES FOR ASSEMBt-'ING AND PER-
FORM'1NG TESTS	 107

14.4 RULES FOR CODING TEST ELEMENTS . 109
14.5 RULES FOR DOCUMENTING

DEV E LOPM`F-NT-TEST SPECI F I CAT(ONS. 111
14.6 RULES FOR DOCUMENTING TEST

RESULTS	 111
14.7 RULES FOR THE SOFTWARE

DEVELOPMENT LIBRARY 112
14.8 DIAGNOSTIC PROCEDURES	 113
14.9 SUMMARY.	 114

XV.	 QUALITY ASSURANCE STANDARDS 115

15.1 STANDARD QA ACTIVITIES	 116
15.2 QA M'EASUR-ES DURING PROGRAM

DEVELOPMENT 117
15.3 SOFTWARE TEST:IN.G

CHARACTERISTICS 118
15.4 RULES FOR ACCEPTANCE TESTING

AND CERTIFICATION	 129
15.5 SOFTWARE AUDITS 132
15.6 DOCUMENTATION OF QA ACTIVITIES 138
15.7 RULES FOR SECURITY, INTEGRITY, AND

CONFIGURATION CONTROL 143
15.8 SUMMARY 145

XVI.	 LEVELS OF DOCUMENTATION 	 147

16.1 HUMAN FACTORS	 148

1

r

Contents IX

16.2 DOCUMENTATION STANDARDS.	 , . . . 155
16.3 PREPARATION OF DOCUM:ENTATi.ON 166
16.4 SUMMARY 169

XVI!I.	 A STANDARD SOFTWARE PRODUCTION
SYSTEM 171

17.1 AN LNTEGR. ATE:D SOFTWARE
PRODUCTION SYSTEM	 172

'17.2 THE STANDARD PRODUCTION SYSTEM
SUPPORT IJB'RARY 185

17.3 STANDARD PROGRAMMING LANGUAGES
AND LANGUAGE STANDARDS	 187

17.4 CRISP-PDL PROCESSING 201
17.5 FLOWCHARTING FROM CRISP-PDL	 .	 .	 . 205
17,6 TEXT AND PROGRAM FILE EDITING. 210
17.7 MANAGEMENT DATA AND STATUS

REPORTING	 212
17.8 CONCLUSION	 217

APPENDICES
A. GLOSSARY OF TERMS AND

ABBREVIATIONS	 219
r STANDARD FLOWCHART SYMBOLS . 237
C. SOFTWARE R EQ-U I R E.M ENTS

DOCUMENT TOPLCS 251
D. SOFTWARE DEFIN.ITI:ON DOCUMENT

OUTLINE	 263
E. SOFTWARE SPECIFICATION

DOCUMENT OUTLINE .	 ,	 275
F. USER INSTRUCTION MANUAL TOPICS .	 . 295
G. CRISP SYN TAX AND STRUCTURES	 .	 .	 . 309
H. DEVELOPMENT PROJECT NOTEBOOK

CONTENTS	 373
I. OPER.ATIUNS. MANUAL CONTENTS	 .	 . . 383
J. SOFTWARE TEST REPORT" CONTENTS 399
K, SOFTWARE MAINTENANCE MANUAL

CONTENTS	 407
L, SAMPLE PROGRAMS FO:R PROJECT

MANAGEMENT 41.5
M. USEFUL STANDARD FORMS 513

n.t

N

Contents X

PART !

	I. 	 Introduction

	

11.	 Fundamental Principles and Concep s
HLL Specification of Program Behavior
IV. Program Design
V. Structured Non-Real-Time Programs

VI. Real Time and Multiprogrammed Structured Programs

	

VI l l.	 Control-Restrictive Instructions for Structured
Programming ('CRISP)

VIH. Decision Tables as Programming Aids
IX. Assessment of Program Correctness
X. Project Organization and Management

::!.,.^„

,.^'

XI. SOFTWARE REQUIREMENTS AND
DEFINITION STANDARDS

This chapter is the first of a set containing specific standards extracted
from, or generated in response to, the methods presented in Part 1. These
are the rules that guide the top-down; hierarchic, modular, stnscture:l
approach to software development.

Thera are, of course, no universal rules to maize intricate programming a
simple task, and there is perhaps very little hope of ever-completely
formalizing the programming process. Design is a creative, inventive craft.
But merely, identifying the constraints, objectives, design tools, and
parameters in a standardized way yields considerah;y progress in dealing
with problems effzctively. Furthe°snore, these stand-w-d procedures c;ui be
taught. References [zj through .[Sj are examples of standards in effect based
on the methodology reported here.

The standards and practices contained in the remainder of this work- are
meant Frimarily to apply to new programs or major extensions to existing
programs intended for operational use. They are meant to be easy to use, to

s'
^r

1

r

2	 Software Requirements and Definition Standards	 [CHAP, 11

} e somewhat flexible, and to provide guidelines for focusing the activities
toward what is most needed.

The use of a consistent outline and format for documenting each activity
is presumed. The outlines in Appendices. C, D; and E contain a detailed set
of topics to he considered in rlciining the requirements and functional
behavior of a software packaaz. The topics also give guidelines as to what
material is to he specified within each topic.

A large portion of any software engineering. activity deals fundamentally
with the planning of a software development, rather than the actual doing
of it. T recognize that a discipline for such planning is needed just as much
as a discipline for doing, so I have oriented : the rules given here toward the
more technical aspects of project engineering and software development.
The interested reader wish.ing to delve more deeply into management and
planning disciplines .may consult [1] through [1.11.

4

11.1 GENERATING SOFTWARE REQUIREMENTS

A software requirement .is a need established for a piece of software by
an organization in order to achieve certain goals, The requirement-
generation activity culminates in the approvals, negotiations; and
commitments o," resources necessary to initiate ; sustain, and complete the.
software development. Although] have not considered requirements
generation in past chapters to be among the software development
activities, nevertheless, there are a few guidelines that can make the
generation of software requirements more uniformly responsive to the
needs of oncoming activities.

The Software Requirements Document (SRD) is; relatively speaking, a
non-technical document; in its first-reviewed form, it probably contains
only enough functional and technical information and mqui.rements
(perhaps by reference) to identify the need for a perhaps intangible
ea.pability. At this point, its content is primarily oriented so as to allow the
authorizing organization to determine what it is approving.

Fart of this approval involves the expenditure of resources to permit the
requirers (and, later, implementors) to supply more planning information
and technical detail.

.requirements are only definite to the extent that they are documented.
The needed output of the requirement-generation activity is an SRD .
:satisfying the following criteria (see Section 3.3):

Sec. 11,11 Generating Sr twrrre Require 	 3'

a. Tt should he adequate to identify the objectives of the program, its

	

environment, the configuration .needed for its operation, the resources 	 I
required for its support, and the advantages and disadvantages in the
service it provides, as related to the customer organization,

i
b. It should be 'adequate to permit the developmental ac,Mties to

proceed tinder a reasonable assurance that major revision of
requirements will not be necessary,

c. It should he adequate for review and approval by cognizant authority
on the Basis of its conceptual feasibility in accordance with the other
criteria above. Tt should contain manpower, schedules, and
development Bost estimates, as well as reasonable variances for the:;e
estimates, at least: for the next paase of activity.

As T indicated in previous chapters, it may not always be feasil:)lc to
actually complete the S U, until after some of the software development
process has already begun (iti a tot -down way, of course). That part upon
which the funding and manpower approvals are based (the overview)
probabiy derives in largest part from the justification section (see Appendix
C). This justification —intended for management—contains material oriented
principally toward establishing; the need for, and feasibility of, software to
fulfill certain goals or missions of the funding organization.

The remainder of the SRD —far guiding the implementation—deals with
sefting forth technical requirements, developmental constraints, and
acceptance criteria in enotigh detail to identify the external functional and
operational characteristics of the software. These can subsequently he
negotiated, refined, and then implemented so as to sa.'dsfy the sponsor's
goals. The final STtD constitutes in agreement between the requesting and
implementing organizations on the software to he produced.

The SRD contains material that may well he broken into several separate
documents, such as, perhaps, a Software Justification Report, a Software
Acquisition Plan, a Software Functional Rcgiiirement, and so on. Some
material may he included directly, if not extensively, while some may be
appended or referenced. The hierarchic nature of the outline .in Appendix C
permits this to be done quite easily in the most accommodating way,.
should the need arise.

The reader may notice, compariii ;' Appendices C, D, and E, that the
SRI), Software design Definition (SDD), and Software Specification
Document (SSD) outlines are all very similar in appearance. But while they
cover the same general topic, they do not generate the same content. The
SRD, upon completion, contains customer/user requirements and
constraints, and estimates the .resources available or .needed for software

,,F-

a	 Software Requirements and Definition Standards	 [CLAP, 11

production. The SDD identifies those external characteristics of a program
needed to fulfill the givini: requirements, establishes the program
architecture, refines costs and schedules, and presents a work breakdown
structure by tasks. The SSD defines the external and operational
characteristics of the program and specifies how these are to be effected
into internal program structures, "as built." By giving these documents the
semblance of a conformable outline, T have tried to ensure a rough

.downward traceability from pre-design requirement to definitions, to
implemented specifications, and upward, again, in the reverse order.

11.1.1 Rules for Generating Software Requirements

The following guidelines for structuring software requirements form a
small set of standards to aid in the preparation of the SRD through the
overview phase, culminating. in a .Requirements Review, Sections 3.1 and
3.2 contain useful guidelines for recognizing requirements.

1. Complete the SIR-D, supplying the material indicated in the topical
outline (Appendix C), documented subject to the rules in Section 11.4.

Delete items in the outline that are irrelevant or do not
apply, or marl: them as "not applicable." Mark purposely
unspecified iterns as "development .prerogative," perhaps
conditioned by the addition of modifiers, such as "subject
to approval." Cite existing material, such as policies and
c^mstraints, by reference; include deviations from these,
however. Figure 11-1 presents a graphic table of contents
for the SRD that emphasizes the hierarchy of management
information. The complete graphic table of contents is
shown as Figure C-1 (Appendix C).

2. Establish a set of criteria and weights for the S.RD review, such as
breadth of coverage, 'level of detail, adherence to standards, etc., and obtain
concurrence on these from the review board.

3. Identify cost and schedule drivers likely to impact the decisions that
have to be made. Establish priorities and constraints for development, with
emphasis placed on factors that tend to drive costs up if they are not
identified and frozen early.

Include any known factors involving special complexity
that tend to .jeopardize schedules or place stringent
demands on specific. (and. possibly scarce or unavailable)
personnel.

Sna
cn

Software
Requirements 3
Document ^-+	 f

F-.

r 2 9 4	 5 7

IntrodNction Environment Policies FunctianaF
Acceprarice 3toand

Justification
and Interface
.Requirements

and	 Regurrements
Contralnts

and	 Appendices
PValuation Ar,	 I

Pnaklli—

Criteria ;^'
• t t f Grq

n M_
Purpose Method or

12

p

2 2 f
Proach

Fundjngand quirements

t

Manpower Contraints

3 3 3 ^	 I

ilestone and Priorities
Estahljshment eview

:Schedule

and.
of Need

Phasing
c

4 4 4
General
Oescription Software Performance
of:Needed Deliverables Requirements
Software

g 5 i

-	 .Feasibility Reporting
Studies Requirements. -

r'

Figure 11-1. A visual table of contents for the SRO, showing hierarchy of management Items important f
o

r approvaf phase Cn

6	 Software Requirements and Definition Standards	 (CHAP, 11

4. Identify and summarize or reference the functional processing of
inputs required to obtain the proper outputs. Define user/customer
technical requirements only down to that degree of detail beyond which no

Y	 major influence on resources, schedule, or programmatic requirements is
typically felt.

State specific input/output formats,. details on internal or
external data structures, computer internal operat=ions, etc.,
only if they do exert a major influence on development.
Generate and append requirements not in this categoiy,
but. needed . by implementors, as later detailed functional
Requirements.

,. Identify existing known capability, technology, or routines that may be
used (directly or with modification), especial ly if the existence of these can
have a great impact on cost or schedule.

6. Identify and rank characteristics that compete for development
resources. First:- and secor.d-order dorninances (Appendix L) are useful for
this purpose. Qualify, as appropriate, any conditions that may alter this
ranking.

7. Identify organizations or individuals (if known) to be involved in the
implementation, operation, and use of the software, and state the roles of
each.

8. Establish criteria for evaluating implementation team performance
and for program acceptance and delivery.

9. Determine schedules and cost bounds. Estimate the relative values of
required capabilities and available resources that can be applied toward
delivery within these bounds.

For example, the earliest date that Cie software can be
accommodated, if delivered; the latest operational date
software can be delivered without serious degradation of
the project goals; etc. Include possible conflicts between
this activity and other -)ngoing work. This cost/time
schedule is not intended to define : day-to-clay work plan;
brit, instead, to establish a baseline for needed capability,
to he refined in the next phase (the architectural de:-=_gnu ~"
based on more detailed considerations.

10. Prioritize technical requirements so as to accommodate the schedule
and cost bounds.

Sec, 11.21 Generatinn of Software Architectural Design	 7

For example, require pi:ogram modes that will permit,
perhaps, a degraded, but acceptable, paitial performance
during mission operations if delivery is late.

It Prior to the actual SRD review, grade the SRD relative to review
criteria and weights established in Rule. 2, above, to gauge the pre-review
quality of the SRD. After the review :presentation, urge the review board
likewise to grade the .SRD.

12. Obtain management approval (at least informally or in principle)
before proceeding to the next phase (the actual software development
activity). Approval signatures should be those required by the normal

organizational procurement policy, based on the estimated_ptogram cost,
even if the work is to be performed in-house.

13. If iterations or negotiations of requirements are necessary after
approvals were obtained in order to complete the SRD, inform the board-
convening authority for possible re-review if there are major redirection or
cost/schedule impacts,

14. Do not release any requirements for formal design and coding until
these have been approved, with concurrence from the implementor:.

11.2 GENERATION OF THE SOFTWARE
ARCHITECTURAL DESIGN.

Once a set of requirements has reached the implementing organisation,
the implementor ^--nters upon a design feasibility study, translating the
requirements given in the SRD into a definition of the needed design, the
scope of work, refined cost/schedule estimates; and project organizational
activities. This phase of the software definition activity culminates in a
Software Design Defivition* (S1DD), which displays the program and
development team architecture.

This activity can, and prrbably should, take place it concert with the
generation of some of the later, more detailed, technical software
requirements. Much of the SDD may even have to be developed as Ehe
S_Rb is being completed, as a cooperative interaction between initiator and
implementor.

* 'This'docurnent is termed the SoftNarc IDefinitinn Document in the JPL Software Standards,
cited is Ptl through [B].

a	 Software Requirements and Definition Standards	 [CHAP, 11

The SDD is, as was the SRD before it, largely non-technical; in that it
contains a lot of planning information—this time from the implementors
point of view; It does, however, contain enough technical detail (perhaps
by reference) to carry the program functional and internal behavioral
specifications to the _point of structuring the remainder of the development
task according to the following criteria;

a. It defines the manner in which the program and its technical
documentation shall respond to each of the requirements in the SM

b. it should be adequate to _permit the remainder of the developmental
activities to proceed under a reasonable assurance that a major
revision of the program architecture will not be necessary..

e, It should be adequate for review by technical authority and
management on the basis of its technical feasibility and the soundness
of its manpower, budgetary, and cost/schedule estimates.

A candidate outline for an SDI? appears graphically in Figure 11.2 and
more detailed in Appendix D. The rules for completing the SDD represent
a bridge between those for the SRD and those for the detailed Software
Functional Specification, described in Section 11.3, and those for the
Programming Specification, the sub}ect of Chapter 12.

11,2.1 The Work Breakdown Structure

The 'Work Breakdown Structure (WBS) is an enumeration of all work
activities in hierarchic refinements of detail, which organizes work to be
done into short., manageable tasks with quantifiable inputs, outputs,
schedules, and assigned ,responsibilities. It may be used for project
budgeting of time and resources down to the individual task level, and as a
basis for progress reporting. relative to meaningful management milestones.
A software management plan based on a WBS contains the necessary tools
to estimate costs and schedules accurately during the architectural phase,,
and. to provide visibility and control during production.

Such a plan is structured to evaluate. technical accomplishment on the
basis of task and activity progress. Schedules and networks (see the first
example of Appendix L) are built upon technical activities in terms of task
milestones (i,e., accomplishments, outputs, and other quantifiable work
elements), projected versus actual task progress can be reviewed by
technical audit and by progress reviews on a regular (say, monthly or bi-
weekly.) basis, Formal Project Design Reviews are major check points in
this measurement system.

How refined should this WBS be? Let me answer this question by
showing how the WBS and schedule projection accuracy are interrelated,

P

SIDE) Gn	
'.
1

Software
tS

-	 - Design- y
Definition

10.

`	 3 2 3 q
5.

7
n

Environment Design Guide-
Program

lntroductian Management and linerand Appendices
information Interfaces Constraints

Architecwre

 I t

'92

Purpose af.
Team and

User
Standards.
and' Glossary

Program
Wark
Structure

Epuir.nnment Conventions
2 Z

2 2 2

Scope of
This

c on and Operational Modes ai
Acceptance

Teri References

Document
Manpower

J3

Environmen e13 Operation Discipline ?

3 3 3 3 3	 3 y

Gercral Descript- Milestone System! d
DA Program

ior. of Opera- and Review Subsystem Chm. Architecture Measures LI:Analyses
tinnslEnviron ' Schedule Interfaces ics

to
men!

q q A 4 q q =

General De•
of Nation ment Documentation

Proredunl Usi rlOperator

ProgramArchi- l

tn:

E.Environment

-
"r U"

-
5 5 5 - 5

Assessment Resources Design Data Base I
dE and Control Architecture
Feasibility Support i

I
1

i

Figure ii2. A hierarchic outline for the GOOD for describing the program architectural design

t

10 Software Requirements and Definition Standards	 [CHAP. 11

if .a project has identified, say, during its architectural design phase, a
certain number of equi-effort milestones to be achieved during the course
of development, then the mere number of milestones achieved by a certain
date is an indicator of the progress toward that goal A graph of
accu .miilited milestones as a function of time, sometimes called a "rate
chart," permits certain predictions to be made about the future completion
date rather handily and with quantifiable accuracy, especially if the
milestones are chosen properly.

Let us suppose that it is known a .priori, as a result of generating the
WBS, that a project will be completed after M milestones have been met.
These milestones correspond to all of the tasks that have to be
accomplished; and once accomplished. are accomplished forever (i.e,, some
i	 'later activity does not re-open an already completed task, if such. is the
case, it can be accommodated b .y making M larger to include all such
milestones as separate events). The number M, of course, may not be
precisely known from the first; and any uuncertainty. in M is certainly going
to affect the estimated completion date. This can be factored in as a
secondary effect later, as needed for refinement of accuracy..

Now, let pis further suppose that it has been possible to refine the overall
task into these M milestones in such away that each task is believed. to
require about the same amount of effort and duration to accomplish.
Viewed at regular intervals (e.g., bi-weekly or monthly), a plot of the
cumulative numbers of milestones reported as having been completed
should rise linearly until project completion (}Figure 11-3).

More quantitatively, let the reporting Period interval be denoted T; let n
denote the most optimistic (but realistic, if all goes well) number of
milestones (constant each AT period), which can be completed in AT days,
let m be the average number actually completed; and let q = 1 — (min).
The last value, q, is the WBS deviation factor inherent it the WBS.

The value of m. is a reflection of the team productivity and q is a
measure of their ability to keep up with an optimistic version of the
schedule. Both are attestations to team effectiveness—first, in their ability to
produce, and, second, in their ability to create a work plan that adequately
accounts for contingencies. It is important to stress that q . does not in any
way reflect on a team's ability to produce; it is merely a measure of how
much-.the WBS depends on everything going well. Low values of q show
!ow deviations from optimistic performance inherent in WBS formation,
that's all.

The project with a given productivity should require a time (M/ni)A`I to
complete, which time, of course, should not depend on whether a WBS was.

'I

,I
j

See. 21.21 Generation of Sof fare Architectural. Design
	

11.

w

j	 r^-
w1

I	 ^

50.

STANDARD	 IM4111zEXPECTED COMPLETION {	 ,DEVIATION = P

ACTUAL:
CbMPLETION,TM

30^ -	 MAX1MUM , PECFORMANCE -
SCHEDULE (p=1) -

-— ACTUAL	 -
MILPSTONE.

'•'	 ^,.' PROGREss

^^ E

`EXPECTED TIME
i

-

10.- TOIMILU TONE
ACHIEVEMENT

OI
6	 .10	 n a0'	 --	 40 50	 60 70	 s0	 -

I

I

1

t

TIME. CT STEPS

Figure 11 -3. Cumutative milestones achieved as a function of time (case illustrated has
parameters ,p = 1 — q, n = 10, p = 2/3, M = 40)

made or not (I am discounting, in this discussion, whether WBS generation
increases or decreases productivity). Thus, M.-%m should he a constant . value,
relatively speaking, If M is made large, tasks are smaller and shorter, so
proportionately more of them are completed each AT reporting period%
The original project schedule will; in fact, assume some productivity, or
mean. accomplishment rate; but an acival performance value is generally
unknown until progress can be .monitored for some period. of time.

But while the numbers. M and q may not affect the team productivity,
they do directly influence the effectiveness with which a .project can
monitor its progress and predict its future accomplishments. Generation of

t: . a WBS, of course, gives the parameter M. Monitoring t he completion of
milestones provides estimates for m. and q. From these, projections of the
end date and calculations for the accuracy of this prediction can be made.
Based on such .information, the project can then divert or reallocate
resources to take corrective action, should progress not be deemed suitable.

A best straight-line fit through the cumulative milestone progress. over
the fiat r reports (of an expected H = M /m reports) at AT intervals will
predict the time TM to reach the final milestone, It will also provide art
estimate of in and q: The predicted completion date may be expected to
deviate from the projected . value (as a one-sigma event) by no more than [7]

rms(TM) ^5, 1.48(q/M).1a2(R/r)1/2TM 	 Y	 ^

F	 `#.

12	 Software Requirements and Definition Standards	 [CHAP, 11

within first-order effects. This bound permits the specification of WBS
characteristics that enable accurate early predictions of future progress.
The bound above shows that high accuracy depends on having a low q.lM
ratio. Therefore, one must be willing to ray for WBS optimism at the cost.
of generating and monitoring progress relative to a more detailed LVBS.

As an example, suppose that a 18% end-elate prediction accuracy is
required by the end of the first quarter WR = 0.25) of a project. Then the
milestone/ optimism tradeoff, factor according to the bound above is lvllq
= 878; hence; if the WBS is highly optimistic (q = 1), that WBS should
contain 878 equi cl.uration milestones! If the project is confident that it can
hold . more closely to its optimistic schedule (has most contingencies
provided for); with a q = 0.2 .5, then it needs only about 220 milestones. A
one-man-year project with bi-weekly reporting, one milestone per report
(28 milestones in all), must demonstrate a q = 801 deviation factor! Less
than one milestone, on the average, can be missed!

Perhaps this is a sad realization to some.readers; but it is almost certainly
a fact The model for these figures may be held suspect, but let me say it is
based on very conservative assumptions. It is, therefore, both necessary and
important to generate a detailed WBS rather carefully, and to monitor
milestone achievements relative to this W13S very faithfully, if accuracy in
predicting the future progress of a project is of great importance.

11.22 Rules for Generating the Software Design Definition

Many of the rules to be applied in generating the architectural design are
the same as ►hose previously given in Section 11.1; therefore, I will not
repeat them here. The reader should, however, apply them when entering
upon the generation of an SDD,. but orient them toward the criteria in
Section 1. 1.2,. above. The reader should: also. consult Sections 12.1 and 12.2
in the next chapter for additional. guidelines toward the architectural design
of internal program procedures.

1, Cotnple.te,the SD.D, supplying the material indicated in the topical
outline (Appendix .D), documented subject to the nites in Section 11.4 and
Chapter 16, according . to the specific cases being documented;

Delete items in the outline that are irrelevant or that do
not apply, or mark them as "not applicable." Mark
purposely unspecified items as "later design prerogative;"
perhaps conditioned by the addition of modifiers such as
"subject to approval." Cite existing material, such as
Standards and Conventions, by reference only; include
deviations from "these, however. Figure 11-2 illustrates the
format of the SD]D.

J'

.A':.

Sec. 11.2] Generation of Software Architeofaral Design	 13

2. Characterize the goals of the program development in terms of
priorities among reliability, maintainability, modifiability, generality,
usability, and efficiency.

3. Provide a top-down. structured conceptual design that depicts the step-
by-step decomposition of the program into its major modes, subfunctions,
and algorithms. Document this design in a form suitable to later carry on
the formal top-down detailed design (SSD phase).

in some instances, hand wdrawn, properly annotated flow-
charts or CRISP-PDL will suffice. In such cases, the
program architects need. -not be overly concerned with the
detailed correctness of procedures, so long as the basic
architecture is sound enough for cost and schedule
estimates. The flowcharts themselves are normally not .a
part of the SD.I3, but an overview of the architecture is,

4. Set work assignments and team interfaces. Choose these assignments
so as to minimize the implications of human and program interfaces (see
Chapter 10) and to maximize module inner cohesion (Chapter 4).

5. Design the major data stnictures and program data bases to the extent
needed to establish the program architecture.

Specifically, leave to the detailed specification phase all
considerations that do not directly respond to the SRD or
that do not impact cost and schedule in a significant.
manner.

G. Couple the development of the SDD to any concurrent efforts toward
completing the SR-D or toward development of the SSD.

7. Determine how requirements shall he met by design and how each of
the design items shall be prioritized to accommodate requirements.

Specifically, identify requirement not being responded to,
'or conflicts or changes in priorities, schedules, etc. Figure
114 illustrates one such method of illustrating how
requirements will be accommodated.

8. Determine refined cost and schedule estimates based on a. Work
Breakdown Structure of tasks using: the architectural design as a model for
the estimation. Give variances or tolerances for each item estimates', and
combine these into overall tolerance estimates for the costs and schediule. If
a tolerance goal has been given, refine the architecture and cost/schedule
estimates until One goal is met.

r

14	 Saftware Requirements and Definition Standards	 [CHAP. II

1.2
Po 	 MARK IiI peep Space Station	 MKIII-OSS-CPA

 Command Subsystem Software	 7.5-75
page 2of4

Requirement Priority/
Sched Accommodation Method Adjustments

• as ' per
requirements • .	 •

4,3,2.5 Initiate and verify proper A/'76 Real-time; interrupt-actuated 	 none
command transmission software/MoDCOPAP-11
-,o spacecraft • contrrl of Command Modulator

A,mrnbiy, Four•mfm, dedi"fe-d .
team•	 Abstract of

C",RfD3 o SRD '	 required schedule
requ irement and priority can

be met

Figum i,i ,A. A Loom for demonstrating the accommodation of requirements and priority
(shown at Architectural Design Review)

9, Limit the program arch i tectural phase of activity to that level of detail
required to fix costs and schedule. If additional architectural details are
required, develop these as .pant of the formal design phase.

10. Orieazt the Work Breakdown Structure toward measurable milestones
that can he reported upon completion. Account for the possibility that
certain tasks will need to he repeated, and include contingencies as separate
tasks .when. appropriate,

11.3 GENEF'ATING THE SOFTWARE FUNCTIONAL
SPECIFICATION

The functiona; specification activity is primarily concerned with
describing the detailed end-to-end characteristics of the program, without
too much concern ever what goes on in the middle (except as may emerge
due to conflicts ber.veen these definitions and what the concurrent design
effort has beenaMe to support), Generating a set of functional
specifications is at ieg st as demanding a task as designing the program they
describe; and specifications are just as likely to be in error. Because
specifications cannot he "nun," there is a tendency to postpone writing
them until later-, when there is a Program that can he run. For many

Sere. 11.31 Generating Software Functional Sperifications	 15

reasons such an approach is wrong, principal among which is that the
specification., not the program, should define correctness.

Many of the rules for software functional definition resemble :ales given
in pi evious sections, and also resemble design rules to be given in the next
chapter. That is the case, as I stated earlier, because there is a conformity
in the methods, not because the products are the same.

The software functional definition occupies a part of the Software
Spec?.fication Document (SSD), which I call the Software Functional
Specification (SFS). It is purely technical in nature; it pertains wholly to the
external characteristics of the program. For this reason, many may choose
to treat the SFS as a first (or separate) volume of the SSD. l have shown the
SFS as an Wegral part of the SSD, inasmuch as it may be hiflnenced by the
internal algorithms in concurrent design or coding actvities.

T;_c Software Functional Specification responds to, extends, refines, and
then documents the technical concepts laid clown in the SRD and SDD. The
SFS is not a mere restatement of the SRD of the SDI]—it defines the way
the"program shall respond in order to f0fill the requirement.

The SFS, when complete and approved, satisfies the following criterion:

It defines the meaning cf program correctness; any program meeting
the technical and documentation specifications %will be deemed a
satisfactory deliverable.

During the completion process, each phase of the SFS development
satisfies the following criteria:

a. It is sufficient to initiate the development of user manuals as a
separate activity, parallel to (but coordinating with) any concurrent
program development activities (design and production).

h. It is adequate for continuing the program development actii ities
(design and production) with reasonable assurance that major
revisions will not be necessary.

c. It is reviewable by project and user personnel on the basis of its
technical feasibility and accuracy, in accordance with the SRI}, SDD,
and the other criteria above.

The rules for generating the remainder of the SSD (the Programming
Specification) are contained in the next chapter.

11;3:1 Rules to Structure Function&; Specifications

Program definition is primarily concerned with deciding what the
external characteristics of a program shall be, and leaving how these

'l

16	 Software Requirements and Definition Standards	 [CHAP. 11

functions are to be implemented to the program design activity: The
guidelines in this section aid in identifying the functions and developing .the
relationships between the functions and the data they process.

1. Complete the SFS portion of the SSD as specified in the topical
outline supplied iii Appendix E, documented subject to the rules in
Section 1.1.9.

Segment the material into semantically refined, hierarchic
levels of detail. Cite existing material by reference only if it
is a stable, maintained documentation. Figure 11-5 shows a
graphical outline of the SFS within the SSD.

2. Start the hierarchic development with a one-page block diagram and
accompanying narrative that shows the program properly imbedded in its
environment and defines the major system and data interfaces.

3. State and display processing specifications primarily as functional
"black box" transformations of input data and input conditions into output
data and output conditions.

4. Display the distinct program modes, preferably using data-
transformation descriptions in the foram of information flow diagrams and
explanatory narrative. State the logical conditions that invoke and
terminate each such mode. Define intricate mode selection and transition
logic, preferably in the form of decision tables based on program control
inputs.

5. Define .Functional criteria for the program in terns of specifications of
input data, processing, and output data, and by criteria that define ranges of
acceptable measured behavior (see Chapters 14 and 15).

6. Describe input and output data sets in terms of their information
content, the substructure imposed by relationships between items, and the
correlations among data items. Leave to later design the details of data
structuring to accommodate accessibility and storage, unless those
considerations are already in effect (existing . data bases), or are necessary to
state the program functional definition.

7. Strive to stricture specifications into modular forms that have as few
connections as possible with other specifications not in the same direct fine
of hierarchy. A connection in this sense refers to dependencies and
interrelationships between specif.-caticns. Well-modularized specifications
can. lead . to well-modularized designs. As aids toward this end, he guided by
the following:

Purpose
apecrncanen
Standards"
Gonveritions

Systemy
^escnption

Functional
Organization,
Overview

G

2 2 2

Scope of Hard'.vare Configurations fit

Applicability Cunstraints and Modes Li

r
3 3 3

^
System Software

tnpub
Processing

Overview Environment OutQut

4 4 4

General Operator
Description Interfaces Functions
of Program

5 5

Data
Supporting Base
Programs Specifications

Figure 11-M Graphical Outline of the SSD with functional specMeation items ai nphsslzed.

rn

L1	 t

ti

k.
W

A

ci
O
A

to
'CS

`Cs

Ô
w

Q
Q6

V

r	 `

:i

... L--

f
- 18	 Software Requirements and Definition Standards	 [CHAP, 11
s:

a. If two specifications correlate, attempt to make this connection take
the form of a shared subspecificatian, i:e„ a common definition.

b. If a specification. of a part of the program's behavior at a given
t _.. hierarchic level depends on logical input conditions, then strive to

partition that specification into subspecifications	 that will be
independent of those logical conditions at the next hierarchic level.

c. Avoid specifications in which }logical control is to he specified by a
l subdefinition at a later hier:irchic level. That is,	 impose control

definitions downward throe 'i the specification hierarchy, subject to
 (b), above:

d. Strive for functlonal ;pecificatious, in which all elements of each are
j	 related #o the performance of subfunctions that combine to achieve a

single, nonvaryins; functional goal. When practical; state subspeeifi-
cations so as nrt to imply strict logical sequence of operations so
much. as subfunctional composition and precedence,

e. Avoid specifications,	 other things being	 equal,	 whose elements
modularize unrelated actions together (i:e., which specify a set of
subfunctions that do not have a common functional goal), A later
alteration to such a definition could generate .profound side effects in
other definitions.

S. Extend the hierarchy of specification detail to that point for which the
set of final definition "stubs" (leaves of the hierarchy tree) contains no
subset of elements that could be useful 	 as separate	 or common
subdefinitions of other definitions. Each such definition element should
represent a concept that is entire and within comprehension.

9. Coordinate functions that apply to major information structures so as
to isolate dependencies on internal data-type; record format, eta, for each
structure.

This will tend to minimize redesign and receding; should
the data representation structure change. Specifically,
define operations that process information elements by
field identifier or name, rather than by position. Describe
operations in terms of the field or .fields necessary for the
operations to accomplish their functions.

11.3.2 Rules for Enhancing Program utility

1. Specify the program so as to allow flexibility in tolerances and
7.	 formats, and to adjust criteria for control decisions without changing the

..,Asic structure..

r

i

fi

s
	 Sec. 11.41 Documentation	 '!9'

2. Specify attributes of the program in such. a way that the program can
run, at user option; in a degraded fashion when input data quality has
degenerated..

Specifyprovisions;, in Stich cases, to print out alarm and
continue, except, perhaps, in interactive environments
where a stop and go-ahead command can be aecommo-
elated, in any event, retain the data and work up to the halt
point.	 f

3. Specify program responses for i.ecognized; expected. modes of failure
sous to "fail soft" or "fait safe," according to the cost or risk of the failure.

4. Orient the computer-to-human interfaces toward th-- user and/or
operator.

Such human engineering can add much appeal to the
program, just as an interior decorator can increase the
appeal of a home. however: . base Stich interface definitions
primarily on requirements, projected performance gains,
and implementation costs, and secondarily upon aesthetic
appeal.

5. Use descriptive messages to describe errors sensed during operations
whenever storage permits.

Avoid messages which refer to conditions that violate the
program's error criteria as being "illegal" (against the law),
when what is meant is "improper," "invalid," or "not
permitted" (in violation of the program's capability),

6. Specify program characteristics that foster testability; in some cases, a
program function can he defii erl in terms of the tests that validate
correctness, include, where practical, self-diagnostic capabilities, stich as
data checking and consistency monitors, into the functional definitions.

11.4 DOCUMENTING TECHNICAL. REOUIREMENTS AND
FUNCTIONAL SPECIFICATIONS

Both technical requirements and functional specifications deal with
program external characteristics, and, therefore, the documentation of each
somewhat resembles tha other. The riles it this section set forth standards
for supplying graphic material and narrative to describe both.

t

20	 ,software Requirements and Definition Standards 	 [CHAP i1

It is worth remembering that the S:RD and SOD are chiefly management:
oriented; and are not particularly useful as surviving documents, except,
perhaps, as a means to record project history. That is, their useful lifetimes
do not generally extend beyond. the software development period,

The SSD does survive, and contains the complete technical, as-built
description of the program .produced, The 'level of detail in the SSD is,
therefore, inuch greater than in either of its antecedents. Further
documentation rules for program specifications are found in the next
chapter (Section 12.7), and Chapter 16 has definitions of standard Classes of
documentation. Also see Section 16.3.2 for documentor responsibilities.

11,41 Hulas for Organizing Documentation

1. Document software items, such as requirements, definitions; etc.,
concurrently as those items are being developed.

2, Organize material in the documentation into hierarchic levels of
increasing detail, Arrange the material in such a way that the upper levels
are directly suitable .for ext: action and presentation at reviews.

3. Display management and planning information, in a top-clown format,
iri which the top level .summarizes management resource requirements,
project duration; etc. Detail subsequent levels into catcriories that show
increasing levels of rationale for items appearing at previous hierarchic
revels.

4. Organize technical material in Dewey-decimal ord.-,,r of hierarchic
definition detail as illustrated in Figure I1-6. The numbers for this
hierarchy may he obtained as follows.,

a. ff s is the Dewey-decimal identifier of a section ire which an item
numbered n (by, rules in following sections) appears for further
jetailed expansion, and if this item has not previously appeared in the
documentation hierarchy, then number the section detailing this item
as section s.n of the document.

b, If an item number m has been referred to as a. common item in
several places in the document, its description should-appear in some
separate section, say, section number d. In this case, append any new
information learned about the common item in section s to section d
of the document, and annotate section s, item art, with the fact that
full information about this item appears in section d.

c. Start the top-level Dewey-decimal identifier d for such common items
with alphanumeric level-I section number for ease in locating and
distinguishing the documentation section number.

Mor1e Name

New Item

d	 m

existing
(commonl
item

old Item

ll!-
^^I	

(s.rn)

any ne",
intormatioi,

Figure 11-6. organization of new design items and collection at subspecffications into
the SSD

ci. Denote the rich table appeari ng tinder action number s using the

descriptor sin.

11.4.2 Flukes for Representing Functional Information

1. state and display processing requirements in the form of "black-box"
modes of operation; and state the general logical

conditions that invoke

each operational .mode (see Figure

kn T .s

22	 Software Requiremenh; and Definition Strrndard<	 [:CHAP. 11

MCLL.TL•HIISSICIIU
COMMAND

CALIBRATE 1 3
 Command'

1	 Configure CMA	 Modulator
Enable HSDL	 Assembly (GMA)

i	 HDSL	 InterfaceMonitor status

4
High Speed

Data-Line
(HSDL)	 5
Interface

to mission	 CALIBRATE I1
control	 Reconfigure CMA'

for bit rate,
S/C frequency

•	
7

B
-a

i
7

IDLE I	
J

Configure .CMA
Monitor Status,
Generate
Alarms	 Connects to

A; 8, or Gt	 ^^•
selectable by

8	 mission
C

12

9

IDLE 11

IDLE 1 plus
Transit
dummy
Command

HSb L

1a	 11

ACTIVE	 Cmd	 ABORT
IDLE /I except 'Anomaly	 Generate Abort
Transmit	 ormessage, scrub
actual	 Manua	 current
Cummands	 transmission i

Figure 11-7. Input-processing-output modes of operation for the software. in a multi-
mission ground command system for spacecraft use .(accompanying .narrative to thlb
strode diagram will detail functions and events actuating transfers between modes; this

Is not the program flowchart from which coding proceeds)

_-r.s

I

Sec. 11.4] Darumentation	 23
i

2. Display major processing functions within each rnGde - f rimarily as a
top=down hierarchy of input-processing-output charts (nee Figure 11-8) and
accontpanying narrative, rather than as controWogic flowcharts, unless such	

E

charts are necessary to display the logical	 sequencing of program
requirements.

i -

i
Input-
Processing-
Output

I
i

f
i

J`'

Overview	 Mot 	 Function 1	 Function Zof this
level

(,P I•P O

Function 1
Overview

Cross
References Functian 1.1 r'

Function 1,1	 Gross-	 InputProcessing	 Output
Overview References Detail Detail Detail

Applicable Formats Fiies/FapesData Base

i
r	 •	 •

Figure III-& A. sample for. representing hierarchic Input-processing-output (HIPO)
functions in documentation (two methods of detailing are shown, and others may also
be used; cross-references may thus be necessary between "cousin" sections of the

document)

i

1

24	 Software. Requirements and Definition. Standards [CHAP. 11

3. Use information-stream diagrams to identify the source of each
required: input, the required routing through processes, .and the destination.
of each required output.

For example, inputs may emanate from existing data-base
fllei., or from information to be supplied by a group of
.users or operators. Outputs may be destined to files, or,
perhaps, to users by mail.

4. Describe inputs and outputs as (perhaps .formatted) information
structures, rather than. data structures or storage structures Inter to be
designed, unless these, structures represent existing data bases, or else are
relevant to the satisfaction of a stated software requirement.

S: Document complex logical multi-mode requirements in the form of
decision tables. A mode is defined as a way of operating a program to
perform a certain subset of the processing requirements that normally are
associated together in the program function.

6. If internal data interfaces are required to define a program function,
describe the pertinent assumed characteristics of the interfaces in
supplementary data interface definition tables, hierarchically evolved. Keep
the state of all such interfaces current, and make all references to data
interfaces during the definition activity agree with the tables,

7. When it is necessary to define functions algorithmically, use CRISP=
PDL or some similar syntactic structures superimposed on (abbreviated)
English, mathematical or programming terminology to describe such
algorithms, or produce flowcharts and narratives along the guidelines given
in the next chapter (see, also Chapter 17).

8. Use full graphic aids, such as mode diagrams, information (or data)
flow diagrams, data structure diagrams, decision tables, timing analyses, and
{only when sequence is important) control-logic flowcharts, along with
accompanying narrative. Such accompanying narrative should supply
explanations and detail not contained. in the graphic aid (such as rationale
or instructions on how to interpret the .graphic). Do not leave graphics
unexplained in the narrative.

11.4.3 Rules for Graphic Representations

1. Limit all graphic representations; such as mode diagrams, decision
tables, information flow diagrams; data stricture .illustrations, and control-
logic flowcharts; to one page each, except in unusual circumstances. Use
hierarchic expansion and nesting to provide detail, rather than off-page
connectors.

Sec. 11 . 41 Documentation 	 25

Figures 11-9 and 11-10 illustrate a hierarchic definition of
program modes.

^	 y

TM'
MBASIC

t
Entry

illegal password	 (3rab Core,
check pal;-

word

normal

2 RUN, GO TO, et aL	 3

	

Cimmand	 Direct state-	 Execution
ments with

Accept, edit; and parse 	 expressions
input statements. Gen-	 Execute interpretive
erate interpretive code.	 code in workspace,
Store interpretive code	 either for stored
and indirect symbolic	 ENE), PAUSE, or	 program (indirect) or
statements. Execute 	 last program	 for direct statement
commands and direct	 statement	 passed from command
statements not needing	 in
interpreter

	

EXIT	 EXIT

A

Exit

Close all files, clear
workspace, rewind.any
tapes, .transfer contro
back to executive

plgure 114 A simplified mode diagram for the MBASIGTM Interactive language
processor (boxes show required modes of operation and reasons for transitions
between modes as stated In the language specification; this diagram does not snoww the

design of the program Into modules)

A trademark of the California Institute of Technology.

26	 Sofa, are Requirements and Definition Standards
	

tICHAP. 1 J

4	 Moe 11.2
o;pmand

Lisfirig of	 page, I of I
Symbolic
File Data

Program
Symbolic
Workspace

3	 6

Command

Program

an
User Commands	 (See Figure	 Binary,User

 Statements	 Workspace

Program
Data
Wbrkspace

9
cSymboli

mbor

Program	
Diagnostics,
Listings, and Data	 Symbolic

Program and
Data

I Primary entry of commands and source program statements in normal mode
shall be from user interactive terminzi,

.2 Upon commands LOAD and MERGE, symbolic programs shall Ir- taken from standard-
format MBASIC or system files. (See also requirement for COPY in language
specification [Ill.)

.3 The command-mode functions are listed in Figure 11-9.

.4 Symbolic files shall be printed online printer by use of uOPY_TO HSP.

;5 The current symbolic program shall be held in a form suitable for EDIT,
MODIFY, etc.

.6 The current binary (interpretive) code-shall:be held in a form suitable
for execution upon RUN, GO0 TO, em

.7 Data Workspace shall hold all current values of variables, or mark
that variables.have not been initialized,

.8 Symbolic ,nrkspace shall be written on a %file upon SAVE, symbolic
workspace or other files written upon COPY command.

i9 P6mary user display medium shall be interactive terminal.

Figure 11-10. A brief mufti•mode Information flow diagram and narrative that Usts a few
of the top4evel requirements for the - command made of an Interactive MBASICTM
lanquap processor (later levels refine the separate operational mode requirements

within the command mode)

r	 ,

Sec. 1.1,41 Documentation	 27

2. Conform 6ymholic graphical representations of 1l0 media and
processing operations to ANSI-X. 3.5-1970 Standard Flowcharting symbols

`	 (Appendix 9):

3. Draw information..-flow °lines on charts as double4ine arrows,
preferably having: both heads and tails in the direction of flow. Draw
control"logic flow (sequence) lines as single solid lines terminated by an
arrowhead, only one arrowhead jser line segment. Connect comments to
chanted symbols by dashed lines without arrowheads.

These conventions are suer marizee in Figure 11-11, Figure
11-12 illustrates an input-processing-output definition
table. Detailed flowcharting standards appear in Section
12.7.21

4, Distinguish processing functions on hierarchically expanded charts. by
horizontally striping the chart symbol. Use vertteml stripes to indicate
process definitions .detailed elsewhere, Use horizontally striped symbols to
denote hierarchically expanding information structures within the current
document.. Use the appropriate ANSI standard symbol (Figure 11-13).

a: Number all boxes, at the top right of each, on all charts. Use a pre-
order traverse of nodes (Section 5.1.3.3) for procedural flowcharts and
topological sorting (Section 4.3.3) for information-flowcharts. Conform
narrative descriptions to the chart numbering scheme, such as illustrated.

6. Annotate input and output data bases with appropriate information to
locate the complete data-base interface documentation.

7. Label boxes on functional diagrams with the ftmetion. they perform,
letting the shape: of the box define the agency by which that function is
accomlkiished.

For example, raw input data may he indicated as being
recorded on a disk for later backup. The box, however,
should not be labeled merely "disk," but with its function,
such as "digital original data record,"

11.4.4 Rules for Naming and Referencing

1. Develop a hierarchic table of contents for the technical descriptions
using the numbering scheme in Rule 3 of 11.4.3, above, when applicable
(such as flowcharts—see Section 12.72). Use the upper left of each box in
charts to refer or cross-reference the next layer of detail through this table
of contents.

j

i
i

i

w

mode number 3.2

Made NaD

Source	 Cross-Refer	 SymbolComment	 —,	 ence Number	 identifier	 a
Y • 	 ^
r.

1.3.4	 2

I	 Procedure Name	 3

Ext.	 Format Name
Tape	 Internally	 Printed

	

tput	

Destination
Input	 Defined	 Ou	

Comment	 yy
Procedure

Control	 I
Flow

I

4	 c

	

6	 C.n
File Name

Externally	 Data	 a
Intermediate	 Defin ed in
File	 Procedure	 Core

Information

C:	
Flow

Figure 11-11. Information-flow diagram standards (annotations in "clouds" are not part of standards)

Sec, 11.41 Dnownentrition

Input -- Processing — Output Table

Description:	 Mode:	 Program Mode

Identifier. Made nuntbrsr

Prepared by:	 Phone:	 Date:	 Dare

Striped if
detailed	 INPUT DATA SET NAME

further at	 Inputs:next level
Jltputs, data Lases, media,

files, etc.

I,

Saftwam
Interfaces:

ce	 .
ther

M
ms Marie

 Req't. Ref
fJthcr I	 SRD s . n

rmProgram 2	 XYZ p. rI

Made
hwerfacing
Ra to

N,	 filixtion r)

System/Subsystem
Interfaces

Can also state
priority

Subsystt':n
Interfar e
Dara

w
5ubsyste+n
interface

OUTPUT DATA SET NAME

output:

Outputs, clot=r bases, nrettirr
	 Signature	 Date

fiics, err:.

Figure 11-12. Input-processir_g•output definition table, showing interfaces to other
program modes or other Ruben terns

30.	 So trvare Requirerrzear.v and Definition. Standur4	 [CHAP, 11

i
i

Structure type xpanded elsewhereE
in this document

Not 6p€rnded here, but
documented elsewhere
{reference attached)

in core

' nanre n^ntc	 ,

online

storage

nairre name

doc+anent

game rrdine

magnetic
tape

riarrre name

arbitrary

medium

frame mine

^r

Figure 11-13. Striping conventions for information, data, and storage structures
(unstriped symtmis are not expanded elsewhere)

i

l

Sec. 11.41 Meti mentativn	 .31

2. Name all processes and information structures used in later referenLes
using mnemonically derived. symbols. Insert all such names in the document
glossary.

Remember that names given to required modes of
operation or to processing requirements in the SRD are not
necessarily going to be the same as the names of processing
modes or actions defined. in the SDD, and these in turn
may be altogether different than the names of executable
modules and data structures specified in the SS.D.

3. State the mnemonic derivation of all names used in a description 	 _.P
unless such names have previously occurred .in an ancestral definition of the
hierarchy. Names appearing in "cousin- descriptions, unreferenced in .their
common ancestor, should be defined n:nemor_ically in both cousins. Insert
all mnemonic derivations into the glossary.

11.4.5 quies for Decision Table Formats

1. Format decision tables into the standard form used in Chapter 8 and
illustrated in Figure 11-14. Fill in these tables according to the 'remaining
rules in this section.

2. Separate Condition/Action and Stub/Entry sections by double or
boldface lines.

3. Limit the size of tables to one page using hierarchic subtables if
necessary;

4. Designate tables by their mnemonic name and assigned Dewey-
decimal number at the head of the table.

5. Normally, strive to limit each table to no more than B conditions, .15,
decision rules, and 15 actions by hierarchic nesting of table entries.

B. Use dashes to indicate immaterial condition entries and ignored
actions in a rule. Do not leave blank entries.

7. Use a consistent set of indicators in .LEDT condition entries ("Y" or
"N," "T" or °T"). Use "X" in action entries to indicate single actions or
multiple actions where sequence is immaterial. Tf action-item sequence is
material, number such items in the action entry in their order of logical
precedence. Assign equal. numbers to processes having equal precedence.

8. Arrange the action-stub items in their general order of execution, if

possible. Number each action item .and indicate whether there is further
hierarchic development.

,:f

Not more
than 15
actibns

Figure 11-14. Summary ck decision table documentation rules

Sec. 11.51 Software Development Library.	 33

For example, if there is no :further detail, merely use the
action number n; if there is more, but the action is not one
common to other charts, then use nl; if the action is one
common to other charts, described by the cross-reference x,
then write n/x.

9, If decision rules invoking the same action have been combined, then
state, if possible, the relative freauercies of the uncombined rules if there is
to be an attempt at optimizing the decision logic.

10. Enter only rules flat correspond to true alternatives into the tabie. if
the order of rule testing is necessary or pertinent to specify this entry, then
state the sequential testing procedure or give a reference to the procedure
elsewhere in the documentation.

11. Unless otherwise stated, assume that control flow of each table %viol
merge into a single (proper) exit -at the end of the table.

11.5 RULES FOR THE SOFTWARE DEVELOPMENT
LIBRARY

L. Begin with the full document outline and enter an asterisk N in front
of all sections to be completed.. As sections are subsequently completed,
remove the asterisk, if a section expands and creates now subsections, enter
headings for these into the Table of Contents (prefixed with an asterisk:, if
not complete).,

2. Start the description of each expanding subsection unit on a separate
page. Affix to each page a block in the upper right-hand corner containing
the date, "page—of—," the subsection mnemonic name, and Dewey-
decimal :nurnher of the unit: Date each page with its. date of submission
into the Software Development Library (SDI,). Any changes should regWre
redating that page and reapproval, if the unit is in project change control.

3. Affix a signature control block to each unit to contain the initials of
the person writing it and the concurring initials of the project manager.

These initials testify that the ,documentation specifies the
desired program behavior, that it is being accepted into
project change control, and that any father considerations
which must be based on that unit can begin.

4. Make the SDL the central repository. .for all documentation, be it
working-level, look-ahead, or approved.

t"

i

34	 Software Requirements and Definition Standards 	 [CH-AP II

	

5. Maintain a glossary and data interface definition table definitions as 	 {k	 {

alphabetical files in the Software, Development Library (on 7-112 X 12.1/2
cm (3 X 5 in:) or IBM cards, for example, if not in computer files), to allow
for flexibility in refinement of infQrination,

11.6 SUMMARY

This chapter has given a set of guidelines for developing and
documenting functional characteristics of a .program; estimating. costs and
schedules for its production, setting design criteria, establishing the
program architecture, providing management visibility and .controls, and
enhancing program utility. These guidelines become standards when it is
necessary to have a commonality of approach, or when these guidelines
contribute to the goals of the software project (e.g,, minimize life cycle
costs, maximize income or utility, reduce cost or schodule. overruns, etc.),
Guidelines in the next chapter extend the standardized approach to
software into the design arena; subsequent chapters then cover compatible
standards for coding, testing, and duality assurance.

i

f:

7

-i

XII. PROGRAM DESIGN AND
SPECIFICATION STANDARDS

As T said in Chapter 4, there is probably tittle hope of ever standardizing
the design process itself. However, much progress in this direction can be
made by adopting disciplines , that encourage the identification of goals.,
problem constraints, design parameters, and solution alternatives, and that
coordinate these into a uniform, readable product. The design documenta-
tion should describe the. program to the extent the program can be
understood without reference to the listings.

The guidelines that follow in this chapter summarize a set of standards
and practices which encourage design as an activity separate from, but
coordinating with, later coding and testing. The riles also integrate the
program design in a like manner with the functional specification activity
addressed in Chapter 11.

35

36 Program Design and Specification Standardsi

12.1 RULES FOR STRUCTURAL DESIGN.

There is a difference between designing the structure, or architecture, of
-a and designing a program in a structured way. Program structure
refers to the way in which a complex algorithm may be characterhzed in
terms of successively simpler forms: The foremost thing to remember while
attempting to design the program structure is that it is the structural

"s	framework that is being designed —not the procedure, not the data formats,
Fip„control. logic.

The structure of a program primarily manifests itself in . the selection.
among alternatives in various design categories, as described in See tion 2.2.
Structure deals with relationships such as cohesiveness and coupling within
and among the program submodules, the architecture of the functions and
data flows, the intended operational modes; and the conceptual information
structures. Structural .design forms the basis for the remaining .detailed
design effort.

During the early parts of the design phase, there is a strong, almost
irrepressl5le urge, to begin the detailed procedural design before the
prograun overall architecture has been established. Stich techniques as
structured flowcharts and CRISP-PDL may seem natural. tools for defining
structure, but let the designer be aware that such tools only design
procedure, If one begins a procedural design and finds difficulty with data
structure definitions, resource allocations, functional definitions ., and the
like, then profably either the program architecture or the functional
specifications are not yet sufficiently well understood to proceed further.
Figure 12-1 illustrates that processing algorithms are but one area among
design coi?,sid-^rations typically imbedded within the total design task. The
considerations which interrelate with the processing design process demand
that a proper foundation for such design he established. Larry Hawley,. a
colleague at J111, remarked in this respect, "No amount of riveting can
strengthen a building enough to make it a skyscraper if its foundation and
structural members are unsound.”

The guidelines that follow in this section reflect software development
practices which help to establish a sound program structure.

L Estahlish design tradeoff criteria at the outset. Maize tradeoff analyses
of all potentially useful or competing methods for implementing critical
parts of the design. Don't throw these away, Put them in the Project
Notebook:

r

4

F3,	 ^

See, 12.11 Structural Design.	 37

i

Fnmrie,
ledge.

Figure 12-1. The Software Design Task and some conceptual flows of information

2. Begin the major program architecture as a one-page block diagram of
functions, such as Figure .12-2, showing major information flows, data

i
	 bases, and data structures.

3. Obtain a firm commitment from cognizant individuals over external
data bases to maintain a stated interface stnicture, i.e., format, content, and
integrity; to inform your project about the extent, form, and schedules of
any upcoming maintenance needed on the bases; and to consult with your
project before any subsequent changes to the committed interface are
made.

i

sau cy INPUT
b

CRISP input line
input into buffer

a

b
PARSE

Determine Param-
Buffer CRISP type and -ter GODEGEN TAfiGET

parameters Array
Gererate anJ Code for
output target Target
code Compiler rz

Stack p
Frame O

LIST

P"r'int Aindented Includes j
source CRISP statement
listing type, nesting level,

and target labels

Figure 12-2. Tap-level block diagram of a conceptual CRISP preprocessor, showing.
data flow, major aperatfons and data structure, inputs and outputs	 to

Sec,. 12:21 Data Structuring and Resource Access :Design	 39

4. Analyze functional behavior, data structuring, and coupling modes of
modules, and. strive to maximize module cohesion and minimize module
coupling, as described in Section 4.4. In particular, strive to:

a. Define levels of access for all large or potentially changeable data
structures or other resources, to "hide" the actual data or resource
behind functions which access the data in the prescribed way. Pass
information to and from these structures as arguments.

b. Name modules using single-verb; single-specific-direct object actions
that truly reflect the intended function of the module. This promotes

'	 ftmctional cohesion of modules.
i

5.	 Use top-down, hierarchic, modularizing, structured programming
techniques that refine the program procedural design into a hierarchy of
detailing decompositions of the .program function into parts capable of
being perceived as a unit. Maintain consistency and concurrency between
data:stricture and resource-access definition hierarchies and the program
procedural-design hierarchy.

B. Use informal design look-ahead analyses to develop architecture; to
study feasibility of ideas, and to identify common "basic services" that can
be incorporated as subroutines before there is a large investment in formal
documentation or code. Submit approved (signed-off) design items into a
project control for later coding,

7. Describe the relationships bets°een functional modules and the data
they access by stating how the representations of inf6miadon, manipulated
by functions, are to be interpreted by the "real world."

8. Develop decision tables for logically intricate parts of the program, to
identify all relevant conditions and to define corresponding actions.

9. Study the programming language(s) to be used for implementation:
Whereas the upper levels of design are encouraged to be as langua .,,^-
independent a:; passible, it is imperative that the design: be intimately
acquainted with the target language and system capabilities, as they most
certainly will impact the design,

12.2 RULES FOR DATA STRUCTURING
RESOURCE ACCESS DESIGN

The fundamental problem_ s in data structure design are deciding: (1)
when to save the results of calculations, rather than recompute them; (2)
how to store data items so that they are accessible by the operations . which

1

7

1

40	 Program Design and Specification Standards 	 [CHAP, 12

will transform them into output; (3) how to organize the da,±a so that
storage and operations are ef ficient; and (4) how to document the data
structure so that others can understand .the operations .performed on it.
Such discussions are influenced by data type, amount of data, relationships
among data elements; and the algorithms that operate on the structures.

The guidelines that folluw primarily address the design procedures for
structuring data; however, most of these apply equally to designing accesses
to other resources, as well. I would like the reader to know that I intend
that the same rules be applied

in
 the more general case,

.1. Start with the most abstract concept of the information structure of a
problem: Then use stepwise refinements to create a hierarchy of more and
more detail. At each step, refine the representation of data items or the
operations on. data items in a way which details, but does not conflict with,
the previous levels of refinernent,

Figure :12,3 depicts a top-Ievel architectural tier-structure
chart for a conceptual CRISP preprocessor. The indicated
modules; data Rows, and data structures show the
designers first concerns and decisions; later refinements
.delve into secondary details:

2. Concentrate primarily, at each level, with what is being done; ra ther
than how it is to be done (which will be defined at later levels). It is proper
to use a look-ahead design to check feasibility of the curreht level of
thinking; however, submit only approved (signed=of) design ' itenis into
project control and later coding.

A typical abstraction of a . list. structure for the PARSE
module in a CRISP preprocessor might appear as depicted
in Fignres 12-4 and 12-5.

3. At each level of abstraction, attempt to discover only the relevant
aspects of the information structures of the problem, such as:

a. Amount and source of each information stream.

b. Types and other attributes of data elements, e.g., units.

c. Relationships among data elements.

d. Composition of data constituents from data elements.

e. Operations to be performed on the information.

f. Frequency of access and response time.

Then invent conceptual data structures or refinements of previously defined.
structures which can accommodate (a) through (d), above. Invent

.........._..__....------

See, 12,21 Data Structuring and Resource Access Design
	

41

INPUT	 'BUFFER

Input line
into buffer

`	 Buffer
level of
access

NEXT CHAR

Get next input
character

J ^

CRISP	 PARSE

Translate	 Determine	
CHAR

source file	 CRISPtype and	 CHARPTR

to target file 	 parameters	 ERROR

Print.error	 i
diagnostics

TYPE..	 8-LACK

PARAM'41)	 TYPE	 I

FRAMEOPS	 I
Code nesting
stack access.

COD E. G N	 level	 i

Generate and.
output target	 ^^ STATEMENT
code	 I

Translate	
Istatements

OUTPUT

INDENT	 Write target
LEVEL	 file

Or—

LIST

/	 Print indented
source listing

Figure 12-3. An architectural tier design chart for a simple CRISP preprocessor (note
that some flows are indicated but not annotated with specific type or labef Intchnatlan;
other flows, such as communication with ERROR, have been omitted altogether, until a

later abstraction)

..':1

J

^^

42	 Program Design and Specification Standards
	

[CHAP, 12

{a}	 3-Field Tokens:	
F V

P	 F = flag field
V = value field
P = pointer field

f
ib}	 Sequence:	 If character atCHARPTR in BUFFER matches character

in V-field of current token, next tok n.is the orne just
below current token. If there is no match, next
token is found by following P field:

Vnext token if no match, do not advance
CHARPTR (null V never matches(

next token if match,
advance CHARPTR

(c)	 Hag-Field Directives:

L P	 ^!	

Set next parameter token; V-field < 0, P-field = CHARPTR.
Set parenthesis counter PAR ENS = '1.

Increment V-field of parameter token; Advance CI ARPTR,
and advance to next token.

f	 Increment PARENS by 1 and incre . rr:ent V field.of parameter
token by 1 if there is a match. Advance to next token;

i	 ? If there is a match, advance CWARPTR and decrement
PARENS by 1_ Then ,. if PARENS = 0, advance t) token bPlov..
IfPARENS70, increment V-fie,d of parameter token,
advance to token in P-field, and Pdvance CHARPTR. If
no match,. follow {b}, above:

fd} Parameter Tokens: Contains length L and pointer to first character
in the input buffer for each paramete. string of
CRISP statement:

PARAM (I	 ICHARPTRI

Input BUFFE R 	 • • • (--

L Characters --^	 end of-line
special marker

Figure 12-4. Design preliminaries for list tokens and conventions for list parsing of
CRISP statements

Sec. 12.21 Data Structuring and Resource Access Design
	

43

Entry Node

a^	 •	 p	 p

Set parameter 1 to
statement number, if
any is on input. line.

Set paramcter 2 to
cross-reference

number, if any.

suppress U
leading
cosmetics {`1 IF statement

8 to other CRISP statements

Unrecognized, therefore, must
be target string

suppress	 1:1
cosmetics Ufl

Multi-line	 Single-line
IF statement IF statement

Figure 12.5. A partial list structure for the PARSE module in a CRISP preprocessor
(logic for traversing the list tokens appears in Figure 12 -4; node P1 is the accepting

state for recognizing the multi -line conditional statement)

44	 Program Design and Specification Standards 	 [;CHAP.I2

conceptual operations c_ these structures to accommodate (e). Assess the
correctness of the representation; that is, convince yourself that operations
on the data structures correspond to intended operations on the information
structures (i.e;, the real world').

4. Isolate data structures having the some operations and type attributes
into a level of access Make each level of access have a set of data resources
which it owns exclusively, and within which only subordinate levels of
access are permitted to access differently (see. Figure 12-.60.

5 Envision data items and the relationships among items as a "data
graph" structure. Strive to keep such structures simple enough so that a
two,dimensional one page display of the data format with interconnections
and indicators of subgraphs can be drawn to document the design of that
structure. Whenever a data graph has more than one disjoint connected
subgraph; consider whether the disjoint components might not be better
defined as separate structures.

Note that table-driven algorithms simulating finite state
machines are actually interpreters, in which the "program"
.is the tabular data structure. Selection_ of the next state is

Figure 12 .6. Organization of program . moduies into a level of access composed of a set
of funct'v ms that own a data structure

r	 I

Sec. 12.31 Developing Structured Programs	 45

Analogous to IF or CASE, and cycles in the data graph are
loops in the "program." The data graph, in fa:t, is the
"program" flowchart. If this flowchart is iu)srructured,
then that data structure suffers .from the same faults as an
ordinary unsti actured program: The list d isplayed in Figure
12-5 is highly organized, but a few unstructured jumps out
of loops exist, for example. The designer must assess
whether the reasons for this lack of structure are .justified
with respect to the set of competing characteristics
(section 4.5).

6. Decide upon the degree of data packing to save space, as opposed to
the lack of packing to save access time, if packing saves time as well as
storage, consider whether rhe program will be more complicated or require
additional expense (e.g., garbage collection).

1. Carry through look-ahead d,psign efforts for each critical item all the
way down to that level of detail required to ascertain storage, access time,
and other considerations which could :seriously affect the remainder of the
data structuring, Perform such feasibility studies early enough so that the
impact of any adverse findings can be accommodated.

S. For operations that act on data structures, specify operands by field
name, rather than by an assumed substructure position. In this way,
algorithms become insensitive to the substructuring of the data.

12.3 RULES FOR DEVELOPING STRUCTURED
PROGRAMS

This section contains guidelines that relate to the formalized develop-
ment of the detailed program procedure as a hierarchy of structured
modules implemented from the top down, In principle, the coding can take
place concurrently, also from the top down in execution sequence, after the
architectural phase, as design .items are completed:

The program architectural design phase may be considered to be ended
when:

a. All major levels of access have been identified, resources allocated,
and the access-level-hierarchy established.

b: The preliminary functional analysis and program structural definition
exist and are documented in accordance with SDD standards.

r

4

46 Program Design and Specification Standards	 [CHAP. 12

c. The level of detail extends only down to the point required to fix cost
:md schedule, within acceptable variances (say, a 10% goal).

The following rules outline the kinds of steps necessary to formulate and
structure the program procedure in a disciplined way.

1. Define phase one of the program design as that amount of work which
will be required to satisfy the architecture, or "design definition"
requirements. This is a took-ahead effort prior to beginning the formal
design-code-test cycle with noncurrent documentation.

2. Dig not begin the formal procedural design (the SSD) until the amount
of .work has at least reached that preliminary level which satisfies (a)
through (c), above. Then Begin the formal task of developing, documenting,
and demonstrating this design anew ; at level one for the SSD.

3; Begin the main program, each common subroutine, and, perhaps, some
of the major subprograms at documentation level one.

4. Monitor the program structural development using a WBS and tier
chart, or equivalent. Each tier consists of all program modules that possess
the same degree of hierarchic nesting in relation to the 1'evel-one main
program.

Nate that, in a program without subroutines or level-one
subprograms, the tier number is the same as the
documentation level number. The organization into tiers is
illustrated in Figure 12-7.

S. Define .phases of development subsequent to the preliminary (or
architectural design) phase so as to agree with any given priorities or
capabilities set forth in the Software Functional Requirements or in the
Software Development Plan, Such phases are to be . defined by sets of
modules next in top-clown order on subtrees of the tier chart (see Figure 12-
8). The sets of modules for a. phase are to be chosen as testable milestones
that increase project productivity by demonstrating (using dummy stubs)
the appropriate partial correctness of the program in responding to a stated
functional requirement.

8. Orient the design process so as to complete an entire defined phase as
a major project milestone. Complete, and document all modules at the
current formal design phase before proceeding to the next format phase,
(This rule does not pertain to informal loot:-ahead efforts.)

k

3

J

	

Sec. 12.31 Developing Structured Programs	 47

1..2:2

t2

1.2:4

This fexternall
subprogrcm appears
at tier 3 but its

E:1	 interlace informatiart
i

	

1.41,_4	 appears at level 1
f	 I

qMain
 This subroutine appears

	

1.5	 at tier 3, but has
previously occurred at

S7	 tier 2, where its
program ?ree begins

i

51.2
59

51,4
This subroutine:
appears at tier 2
but begins its
documentation
hierarch yatle yel f

Tier 1	 TW2	 Tier 3

Figure 12-7. Organization of program modules iilto tiers by nesting hierarchy (level
number mters to documentation hierarchy; tier number rotors to degree of nesting

within main program)

7. Direct the effort within defined project phases toward completion of
modules having the lowesi—numbered tier. That is, proceed from the toll
downward within each wort: phase.

8: When deemed necessary (hy project managemcnt), segment program
development among several prograi;lmers. Such segmentation shall only
occur at striped-module. interfaces, and each programmer must be able to
view the requirements placed by previous program levels on that striped

i

A	 A	 •	 •	 •

3	 4	 5	 5	 7

saes conceptually Illustrated on the program tier graph as
I encompass more and more modules.of the program

i

48	 Program Design and Specification Standards	 [CHAP, 12

Phase 1	 Phase 2	 Phase 3

{T_

Sec. 12.41 Applying Structured .Programming Theory	 49

J

:k

module as a total interface specification. If timing—either epoch or
duration—is a commodity visible to other modules, it is to be included as
-part of the interface definition.

12.4 RULES FOR APPLYING STRUCTURED
PROGRAMMING THEORY

Structured programming is not programming to eliminate "go-to's,"
although; in some Languages;. struettired programs are "go-to"-free. Such is
the case, for example, using CRISP. Rather, structured programming is
conceiving a program in such a way that the need to think about having to
"go-to hardly over arises.. It is programming with logical stnictures that
encourage clear thinking.

If a language possessed: only the minima! canonical set of. structures
(sequence, WHILED0, IF"IVENELSE), one can argue that there are
certainly times when control branches are needed, If the coding language is
intended to be assembly language, this argument is even more intense. To
maintain the aims of structure, I have, therefore, expanded. the list of
recommended stnietures, in flowcharting; as well as in their corresponding
CRISP forms. Both flowcharts and CRISP ;solate the designer from "go-to"
thinking,

This section contains guidelines for generating the structured control
logic hierarchy of the program. The development of this hierarchy takes
place in-step with the development of the data structure and .resource
access hierarchies described in: Section 12.2 (see Rule 5 of Section 12.1).

1. Arrange functional blocks naturally in a hierarchical design using only 	 i
the control strictures equivalent to those described in Appendix G. Each
block has one entry point and one normal exit.

2. Use recursive subroutines. (i.e., routines that call themselves or each
other) only when a comprehensive statement can be made .to assure that the . .
required functional behavior is achieved. Every horizontally striped module
in a structured design must be formally replaceable by its flowchart or
coding.

3. In cases where alternative control structures perform identical
functions, choose that which best satisfies the given ordered set of
competing characteristics. .

For example, when execution time outranks memory
allocation considerations, one naturally minimizes memory

,,r,

z
50	 Program Design and Specification Standards	 [:CHAP, I'2

requirements and . ..execution time whenever possible. One
considers structures that reduce memory requirements but
increase execution time only when (a) the .loss in speed is a
negligible fraction of the execution time of that .module
and the reduced core is a significant portion of storage -for
that module, ('b) the module operates in an infrequently
called, low-speed program branch in which the increased
time is a negligible fraction of the branch execution time,
or (c) the extra branching contributes to modularity and
readability at a modest loss in speed or storage.

4. Whenever possible; design. the program control logic and. functions to
favor. high-speed, normal operation; if additional' functions are required in
order to achieve a structured design, ,place diem in the slower speed, less
frequently used hrarch.

In some cases; the requirement for structure may be
relaxed by the project management on a case-by-case'basis,
as, for example, in high-speed loops where the time to set,
test, and reset A-ructure flags would be a significant,
fraction of the loop timing In such cases, however, the
benefit and correctness must be clear..

5. Use a structure flag to record the outcome of a decision:

a, When the decision result must be available later in the program but
the data-space upon which the decision was based will be changed by
then, so that the subsequent decision cannot he made correctly, o.

b. When the decision must be available, later in the program and the
flag-set and flag-test storage and/or time is less than that required to
test the condition again:

6. When a structure flag is to be used in a loop to record the outcome of
the loop-termination condition for later use, in compliance with Rule 5.
above, :preset the flag to indicate "unfinished" prior to loop entry, and then
set it to 'indicate "finished" under the appropriate condition.

The flag test may be located either at the beginning or at
the end. of the loop, as illustrated in Figure 12-9: Other
things being equal, placement of the flag test at the loop
beginning increases top-down readability.

i. Consider using a stack structure to save loop-structure flags, as
illustrated in Figure 12-10, below, unless the stack-unstack operation is a
non-negligible fraction of the module execution time.

s

.a

k

	 See. 12;41 Applying Structured Programming Theory
	

51

}

r

i.

i

Figure 12-9: Loop configuration illustrating the use of structure flags to control
Henation.

I

52	 Program Design and Specification Standards

(61

Figure 12-10. Use of a loop struCture flag stack

{

-	 r

E-

Sec. 12,51 Real-Time Structured ?rog.n9?AS	 53

i
This procedure is not only a convenience, since one need
nut keep track of all the loop flag names, but also
somewhat of a savings in mer.tory locations because
separate flags are not needed for each loop. One loop flag
stack suffices for the entire program. The value of the stack
pointer is the level of loop nesting at any point in the
program.

S. Do not use structure flags to :force abnormal terminations. to the sane
point as normal terminations. Abnormal terminations are defined as those
in response to fatal errors which require that control be diverted to a
program recovery mode, such as return to the user for subsequent decision
making and manual operations. In cases where a recovery procedure
partially or totally lies within the program, take steps to assure that the
recovery procedure accommodates every state of the program from which
the abnormal transfer occurs.

9. Avoid duplicate-code function. blocks wherever possible, using
subroutines or structure flags, as needed; except when-

a. The function can be coded in fewer statements than needed for the
setting and testing of structure flags, or than required in the
subroutine calling sequence.

b. The stricture flag test time or subroutine linkage time is a non-
negligible part of the module execution tame.

For example, the two flowcharts shown in Figure 12-11 have the
same .program function; flowchart A has the function f shown
twice (duplicated code), whereas flowchart B has removed the
duplicate code by introductian of a structure flag.

10. Limit paranormal exits from canonic structures to situations that are
either pathological, abortive, absolutely necessary, or ouiside the normal
function of the structure.

12.5 RULES FOR REAL-TIME STRUCTURED
PROGRAMS

The program structures for non-real-time programming form the basis
for the separate, modWar sequential segments of real-time programs;
however, the added element of time interaction makes real-time program
design a more error-prone activity, and even testing is inherently a more
difficult and lengthy process. The rules that follow in this section are
guidelines which reduce the mental capacity needed to comprehend and

k

54 Program Design and Specification Standards 	 (CHAP 12

GOCPa 	 _
f

^i

r

z.

finisher!.
end test

not

iinisiied

9

f

Figure 12.11. Two rreallxatlons of a looping function: (d) using a dupiicated ..function f,
(b) using a structure flag and no duplicaH.on

design such programs. They also promote original correctness and make
verification testing a more practical and certain activity,

1. Avoid the use of interacting concurrent processes as a means of
solving a programming problem unless it is necessary ;, as fixed by
erivirotnnental rr trirements or P`se uniess there is a clear identifiable

,11
	 f	 . 1

advantage which outweighs the extra costs that will be incurred to achieve
reliability.

I

See. 12,51 Real-'lime Structured Programs 	 55

2. Design concurrent or real-time, interrupt-driven modules rising only
hierarchic nestings of the structured forams given in Appendix G.
Concutment processes eventually merge upon normal termination of each,
and proceed only when all component subprocesses have terminated
normally.

3. Identify or define the level of access in the system nucleus that will
permit processes in communicate, synchronize, and allocate shared
resources on a mutually exclusive basis. If these are not provided by the
supplied operating system, devise methods to implement these either into
the operating system ar into the program being developed.

4. Orient program designs toward developing consistent programs only 	
r,1^`

(see Section 6.2). Assess consistency as well as program correctness during
the design process,

. Strive to design processes in terms of fiv,etions that can he easily
tested on a practical real.-time basis.

6. Define synchronization and communication requirements for processes
consistent with Section 6.2..4.

7. State a policy or design rule for each set of shared i esouices that will
make the corresponding processes deadlock-free. Prove that each such
policy is sufficient to 'prevent deadlocks.

& Set internipt priorities for hard-real-time processes to assure that
process deadlines are not missed. Use look-;ahead feasibility studies to
estimate the likelihood of timing errors in critical-deadline modules, but
maintain the top-down formal development discipline.

9. Arrange, where possible, to monitor deadline status and to flag timing
errors. Strive to design the program r'o that the program degrades
gracefully, but does not fail, when deadlines are missed.

Design for the worst case. In some cases, the allocation of
more hardware (e.g., CPUs) to a particular set of
concurrent tasks is possible, and is often more cost effective
than trying to fit too many things into a single restricted set
of hardware,

10, Identify to what extent resource protection (Section 62,3) is needed
in the program being developed and to what extent the operating system
fkdfills these needs, Accommodate, to the greatest extent possible, those
needs not provided. by the operating system by setting appropriate
programming standards.

:,t.

56	 Program Design and Specification Standards 	 [CHAP.12

11. Do not attempt to gain arbitration of interrupt processes by
reassignment of priorities (or interrupt disabling) except in cases where
time is at a premium and the re is a reasonable assurance that the program
integrity (or consistency) will not be violated. Similarly, do not relax the
requirement for corsistency unless it can be shown that any inconsistency is
momentary, and performance lies within required limits.

12. Identify interacting resources and synchronization requirements
among mutual resources early in the top-dawn development of the program
design, preferably at the same level that displays the program furl; (Figure
12-12).

1-miMsecond
trap

WLLISEC	 tUND Sync Rgmtsin

Update 1-milli-	 TIMEMS	 tag	 Tib4e Z50

second timer ng 	 Timing Analysis
e	 in Sec 7.3.28

Figure 12-12. Identification and documentation of interacting resources and synchroni-
2abon requirements at first level in top-down development where processes fork into

concurrent activities

Sec. 12.61 Standard Design Practices	 57

12.6 STANDARD DESIGN PRACTICES

This section contains a few general rules for developing specifications
that relate to the program quality, as reflected in its reliability,
maintainability, generality, usability, modifiability, and performance.

1. Use standard, already proved (and documented), structured algnrithms
and code whenever possible.

2. Minimize the functions in each branch following a decision node by
locating above the decision node all functions which logically precede or
operate on data sets that are independent of the branching condition, The
first function in each branch is thus dependent on the branching having
been executed. Locate below the corresponding collecting node all
subsequent functions that are independent of the branching.

3. Do not use identical (or equivalent) tosi conditions in succeeding
branching nodes if the data. on which the decision is made has not changed;
this is an indication of unnatural, artificial structure.

4. Provide programming standards to prevent the inadvertent misuse of
common resources, Stich as variable, label, and file names, storage
occupancy, 3/0 and interrupt facilities, etc., when not provided by the
programming system.

5. Design programs or subprograms defined by decision tables to provide
complete `esting of the ELSE-rule, unless (1) an ELSE-event is impossible,
or (2) the consequences of not testing the ELSE-event are identifiable and
justifiable on a case-by-case basis.

6. Specify or build flexibility into the program to allow changes in
tolerances, formats, and to adjust criteria for control decisions without
changing the basic structure of the program.

Designing for flexibility does not mean designing for
generality; generality tends to weaken module cohesive-
ness, whereas flexibility does not. However, when a general
app,-oach is as easy to implement as a specific one and
exhibits the same cohesive class, design for the general
case.

7. Provj& options in running the program to accommodate fallback
methods for severe conditions. However, avoid options that may overiv
complicate :)r seriously degrade performance. Specify a no-stop, no-abort
mode f •r programs processing data, so that the program need not stop

.aa

58	 "rogram Design and Specification Standards	 [CHAP. 12

because data quality has degenerated. If a stop capability is -programmed;
make .provisions to retain the data and work up to that point. Provide a
means for continuing the program at the next step, unless to do so is not
meaningful.

S. Design the program to have default. values for eUntrol options so that
the program can he run in its normal mode without the need for control
inputs.

9. Check for errors in data passed ,between mayor modules (especially if
separately compiled, or designed k-y diff=erent indiv?duals): Include self-
checking and.monitoring features within critical modules.

10. Strive to design the control logic of a .rnodui'e so as to be independent
of the way data is stored, and modul -arize accesses to data structures so
that, if data is restructured at a later time (e.g„ for more efficiency), only
the access modules need to be altered.

i
12.7 RULES FOR DOCUMENTING STRUCTURED

SPECIFICATIONS

Documentation of 'the procedural and data design becomes the
programming specification, and, once this has been coded, checked, tvid
delivered, it becomes the "'as Built specification. The design process thus.
culminates in a body, of information contained in the Programming
Specification portion of the SSD.

The extent to which the SSD gets filled in and the order in which the
filling gets done is set by project management in phases as described in
Section 12.3 and Chapter 10. Having :a comprehensive SSD outline, such as
that in Appendix E, even if it is not gohig to be filled in completely; can be
a tremendous boon in the design, because the designer can use it as a
mental jog, filling in. each item in his own mind,. deciding how things should
be clone. If he cannot respond to each item, even in his own mind, there he
is probably going to have trouble somewhere along the way, A graphical
sketch of an SSD with emphasis on the Programming Specification appears
in Figure 1243 (Figure 1:1-5 contains a graphical outline of the SFS
portion of the SSW.

T will assume here that a complete program internal specification consists
of a combination of f ew6arts (or equivalent), narrative descriptions, data
structure .definition tables, correctness assessments, etc., and I give
"documentation rules for each. The level of detail described here will later
be labeled as "Class .A" documentatic., in Chapter 16. The acwal amount

f

SSo
Software
specification
Document

1	 2.. S S1 S.	 4 P5 5 TS	 B 7.

Standards Environment Software
Functional Programming TestNerif Appendices

n
Introduction :and and c Pecifiwtion Specification

Conventions Interlaces Sueccation so

j Saecification SystemlSubsys Program Production
GlossaryStandards and Description Overview Testing

Gonvenlions

2 2 2. 2	 Y

Programming
t fardware
Charactetis Main Program 3efarences

Standards tics and Hierarchies
£onstraints .-	 t'a	 - 	 -

1
8 3 .3

_

nd Software Program
n
R

n Environment
utine

Lrch

lrtsrnal
AnalysesLatio

ards ies

4 4 4

Interface External Sharable

Characteris• Subroutine Subroutine

tics interfaces Identification

5 5

!Joie
Supporting Structure farfutue
Programs Tables Modifications

Figure 12-1& Graphical outfirre of ttr_ SSD, with emphasis on the program intamal design

t

i

}

50	 Program Design and Specification Standards	 [CHAP, 12

and type of documentation for any .given project, however, may be more or
Tess than what I specify in the remainder of this section. Guidelines for
defining a full range of levels of documentation: appear in Chapter 16.

1"2.7.1 General Roles for Bacurnentatlon

In the guidelines that fallow, the term " `module" refers to a "flowebart (or
equivalent) and its accompanying narrative: The .flowchart displays the
control logic and operations making up the algorithm and the. narrative
extends; explains, and expands upon the procedural material. When
feasible, these may be arranged as illustrated in Figure 12-14 for
readability.

The overall guideline that has governed the development of these
documentation rules is the following (for "Class A" detail):

Documentation of each module should .exist to a su, f jicient
degree that correctness can be assessed for each individual
module, formally on the basis of its control-logic, and by
audit for its functional completeness. Specification of data
structure detail and. formats into nal to a. module; as well as
requirements relative to accumulated numerical and timing
errors, may be deferred to a later lever of the documenta-
tion, if appropriate.

This section also contains guidelines to hasten the documentation
process.

narrat've

1	
^

flowchart

Rgure 12-14, insertion of flowchart in the SSO as a foldout an the last narrative page
describing the flowchart can enhance readability when only one side of the page is

used

r

Sec. 12.71 Documenting Structured Specifications 	 61

1. Male design documentation form the interface between design and'
coding activities; however, do not get in series with the clerical activity of
doing the formal documentation.

It is permissible to code from approved hand-written
specifications while the documentation is being. typed' or
drafted; for example (see the method illustrated in Figure
10-7):

2. If working documentation can be entered and maintained in computer
files, rather than produced b hand; then by all means do so, in order to
minimize documentation lag and #o promote project design visibility.

.3. Strive for clarity. Remember that documentation is for communicating,
ideas to people. Therefore, specifications .should discuss the program in
terms come an to the developer, coder, later maintenance personnel, and;
perhaps; the user as well. Even. formal; unambiguous language specifica-
tions way very often require natural language explanations, graphical aids.,
and examples for understanding;

4 Strive for completeness without redundancy. Reading a design should
not require a translator, nor learning. a large data base, nor consultation of
the listings.

5: Specify, control-logic for a given module -:completely, so that module
control can be assesped for correctness, or coded and tested, with no other
aid than references to preceding levels of the procedural design and to
material in the non-procedural sections of the Software Specification
Document at the current development phase.

a. All. decisions are to be explicit and determinable within each
individual module; there should be no need to refer to deeper levels
of design or code (see Figure 1245).

b. Unstriped modules must have explicit values, conditions, and reasons
stated for all control flag assignments.

c. For striped submodules that alter one or more control flags for the
current module or a parent module, state the explicit values,
conditions., and reasons for all control flags altered.

6. Document the functional choract: r stics of a module to that point
which permits an audit of the algorithm of the current module against its
stated function and an assessment of functional correctness. Specifically,.

a. Unstriped modules are to be described explicitly enough to permit
coding without functional ambiguity and without reference to deeper
levels of design or previously completed code.

t

See. 12.71 Documenting Structured Specifications

t

i

b. Interfaces of external subprograms that are not part of the current
design (vertically striped modules) are to he described explicitly, in
sufficient detail that any subprogram satisfying the stated interface
characteristics will operate correctly in the current design. References
to documents that provide additional information may be .included
but explicit interface characteristics must always be described in the
SSD.

c. Striped symbols of the current module that receive control flags from
the current and/or parent modules must have accompanying
narrative explaining ail conditions, values and actions for each setting
of the flags,

d. Functional descriptions of striped symbols may be quite broad, but
must be complete, and tell what actions that submodule performs.
No fiinciian may appear in :a module at level n + 1 .that is not a
component :unction of that module as described at level n.

e. Module functions should be described using assertions defining the
computer state upon entry, the specific action that tak4s place; and
the refevant state of the computer on exit; including time' or sequence
dependencies; quantitative measures, and interrelations among
interfaces.

7. Declare data. structures :accessed by unstriped submodules as to
specific type attributes necessary for coding in the intended programming
language at the current flowchart level without ambiguity. Definitions of
internal data structures accessed by striped modules, not pertinent to
controf logic or functional correctness, as specified in Rules 5 and 6, above,
may he refined in later levels in the design. These s?xcessively provide
more and more detail about the data structures and requirements involved.
Specifically,

a. Use the most descriptive names for data structures permissible within
the programming language, especially when such names eliminate the
need for explanatory narrative.

b. Make each fiirther detailing of a data structure definition coaMstent
with every previous assumption concerning its use. As a minimum,
the final, explicit form of a data structure definition must contain: W
the structure name; (ii) its mnemonic derivation; (iii) Lyric .attributes
(e.g., real, string/array variable, simple variable, etc.;; NO range of
values; (v) scope of activity (i.c., over what portions of the program
the structure is not available for reassignment or reuse b,y other parts
of the program); (vi) description of the use of the data structure in the
program; and (vii) a list of any data structures that share or overlay
storage with this stricture.

I-I",

r

$4	 Program Design and Specification Standards 	 [CHAP, 12

c:.Tleclaration and/'or initialization. of a new data structure may appear
as an entry requirement of the current module; to be performed in
specified, previously defined modules. Document such act-ions in the
narrative or by annotations to the flowchart for the edrrent module.
Locate the actual declaration/initialization code within the specified
modules (striped or unstriped)

'
indented (if permitted by the

programming language') to show that it is a later addition to that
module (not contributing to nor detracting from the previous
assessment of correctness) and annot.ited to indicate the later module
which requires this initialization:

d. Data structures may be referred to in striped modules in generic
terms when nOt related to control-logic correctness. Assumptions
made in such references .must be consistent with the current state of
the data structure definition.

For example, a striped module may state that a set of characters is
"Out" in the ."name table;" whereas an unstriped suhmodule
which impler-rents that function must be specific, as
11 NPTR=NPTR+1 . NAME (NPTR) =N$," in which NPTR, NAME, and Ns appear
as appropriately detailed declarations in data structure definitions.

e. Describe the form and content of data structures, and define
relationships among data items.

For example; one such relationship might read "field 2 has
meaning only if field 1 is nog:-zero."

8. Identify I/O requirements that interface with internal data structures
or other 1/0 requirements. These must be specific for unstr-i.ped modules,
but may be referenced in appropriate generic terms for striped modules:
Specifically,

a. An 1/4 interface is to he defined so as to be consistent with every
assumption concer..ning its use.

b. Any I/O interface not made specific at the current level should be
maintained in an appropriate 1/0 Requirements Table in the
Software Development Library or Project Notebvn ,, .A complete
description of the 1/0 interface must eventually be included in the
SSD (see Section 1-2,7.4, below).

9. Identify all constraints appropriate in the implementation of the
module, such as:

a. Critical maximum time of execution.

b. Data ordering.

c. Machine timing characteristics.

'011:

Sec; 12.71 Mcumenting Structured Specifications	 65

d. Special hardware features.

e. Accuracy requirement as it relates to computer word size and the
need for single- or multiple-precision computation.

12.7.2 Rules for Documenting Structured Flowcharts

As I indicated in Section 7.4, generating flowcharts and maintaining these
by hand in an evolving program design can be time-consuming, non-
productive tasks. Yet, many feel that there is great benefit in having such
charts for their graphic value. In Chapter 17, I discuss automatic
production and maintenance of design flowcharts from CRTSRIike source
statements, as u natural, easy, flexible and productive way of generating
high-gpality charts.

The roles given here describe the format, content, cross-referencing
technique, etc., of such charts; The detail level corresponds to "Class 1y"

standards (Chapter 16); which may be relaxed during the architectural
phase, at project option,

1, Limit flowcharts to one 21-1/2 X 28 cm (8-1t2 X 11 in.) page each,
except in unusual circumstances, such as when a single decision results in
multiple branches that will not fit on one page, and when the symbol-
striping convention only adds to confusion.

2. Conform flowcharts to ANSI Standard X3.5-1370 augmented as given
in Appendix B; symbols should not be varied. in proportion. Symbol text
should be Brief, but exact. Use narrative accompaniment to extend, explain,
and expand upon the symbol function.

3: Give each chart a Dewey-decimalized number that identities its
location in the design hierarchy, All symbols on the chart are numbered
consecutively. A possible exception is the numbering of collecting nodes.
The numbering system recommended is the pre-order traverse (Section
5;1.3.3), or top-to-bottom, left-to-right order. The symbol number is placed
at the upper right of the symbol.

4.. Use cross reference identifiers located at the tipper left of flowchart
symbols corresponding to invocations of subroutines and major program
segments. Subroutines should use an alphanumeric level-1 identifier.. Major
program segments may be .given an integer level-I identifier,

5. Uniquely identify symbo ls by concatenating their chart number to the
symbol number (on the upper right). Thus, the symbol labcled . a appearing
on chart F4 would be designated P4.5. 	 a.

^vj

$B Program Design and Specification Standards	 [CHAP 1.2

B: Enter the name of a striped module so that it appears above the stripe;
it appears again inside the entry "bubble" of the flowchart at the next level.

Figure 1248 shows a set of hierarchically nested subpro-
gram flowcharts, annotated in the correct manner. In this
example, 1.2.5.1.6 refers to a striped box- labeled 8 on chart
1.2.51 at level 4 (since four level numbers make up the
chart number). The entire .chart 1.2.5.1 is an expansion of
the striped box numbered 1 appearing on chart 1.2.5 at
level 3, which in turn is an expansion of striped box
number 5 of chart 1.2 at level 2, which is an expansion of
box number 2 of chart 1 at level 1.

i

I

Chart No. 1	 Chart No. 1.2	 Chart No, 1.2.5	 Chart No. 1.2.1
(Level 1;)	 (Level 2)	 (Level 3)	 {)_revel 4)

Figure 12-16. Hierarchically nested subprogram flowcharts

r

See. 12.71 Documenting Structured Specifications	 67

An unstriped box, such as 1.2.5.1.8 in Figure 12-16,
indicates that further detail i5 available only in the
accompanying narrative or at the code level, and the cross-
reference, X-REF, if supplied; gives a reference to a section
'r► a programming manual or system manual:

Striping conventions are summarized in Figure 12-17.

7. Distinguish subprogram flowcharts by chart exits having a blank
normal exit "bubble," or by chart exits labeled "exit" or " AeoRT,"
indicating paranormal or abnormal termination.

S: 'Llse unstriped' process symbols to state precise, functionally
unambiguous, and explicit specifications for coding, as space permits. Use
narrative keyed to the symbol to explain or expand upon the material given
within the symbol, if needed for understanding. Strive to make the symbol
contain enough information for ending without recourse to the narrative, to
increase coding speed.

R Distinguish subroutine (and function) flowcharts by chart exits having
"RETURN" or "'ABORT" in the normal exit symbol. Each callable function then
has its own hierarchical structure, as specified in Rule 2, abcve.

Cross-referencing conventions are summarized in Figure
12-18; Note that a cross-reference code, when it appears,
takes precedence over the box reference code.

ial. on Chart c:	 (b)	 (cl

n	 X	 n	 n
name	 name	 name

function	 function	 function

Figure 12-17. Module striping conventions: (el) Internal subprogram pracrdure whose
expansion appears as chart c.n eisewhere in this set .of documentation; (b) Internal
subroutine or major subprogram whose expansion appears beginning on Chart 8
elsewhace in this documentation; and (c) externs) subprogram or function whose
"expansion is: not flowcharted In this sat of documentation, but whose precise interface

specifications are given In: section E of this set of documentation

I

68	 Program Design and Specification Standards
	

[CHAP,12

r IF21

Figure 12-18. Subroutine and major subprogram annotation method.

10. Attach or append a table to each top-level subroutine flowchart and
each top-level finw.chart of a major program segment, giving a list of the
cross-references to invocation points within the program, as illustrated in
Figure 12-1&

This table, filled. in as the design progresses, serves to
ensure, in the event that later changes are niade in the
functioning of a subroutine, that the side effects can be
idontified.

Sec. 12.71 Documenting Structured Specifications	 $9

11. Cross-reference the use of a function within a symbol: by wither
placing the appropriate identifier at the upper left of the symbol, or by
attaching a separate striped symbol'to the invoking symbol. Figure 1245
illustrates these cross-referencing methods, Cross-references to standard
library functions are unnecessary.

12. Annotate the entry line of a flowchart with any entry requirements to
be placed on a module at an earlier documentation level:

Such entry requirements are normally initializations of
variables which must be made so that the algorithm of the
current module is operable. Since the initialization pertains
only to the execution• of this module; and not to the
modules at previous levels, the annotation lends readabiltty
to the design, placing the relevant information in the
relevant place. Figure 12-20 shows an example. Additional
material usually appears in the accompanying narrative.

Figure 1219. flowchart convention for t ornputations involving an (a) internally defined,
(b) externally defined, or (c) standard library function FUNC with argunient(s) list

(designator Fn is the cross-reference chart number of Interface description)

,.r,

70	 Program Design and Specification Standards	 [CHAP, i2

NAME

t	 Entry or

	

...._..-.. ^....	 Initia!iration
Information

•

•

•
•

Special
Exit	 -- --	 ^^
Warmati"on

Figure 12-20. Annotation of flowchart to show conditions for entry, initialization
Information, and oxit information

_J?

11,'

13, indicate for each decision box the explicit condition to be tested;
give the answers (as well as meaningful explanations when it lends to
program clarity) on lines from the decision box. Decision boxes may not be
striped (see Figure 12-14).

14. Draw flowchart branches to reflect left-to-right logical consistency:
for binary decisions, draw True (Yes) to the left and ftilse (_No) to the right:
for multiple branches, arrange decisions in a logical CAsE=-order, as shown in
Figure 1-2^21,

13. Locate the collecting node corresponding to a decision branch
directly tinder the decision box vertex, as indicated in Figure 12 22, Below,
even if .one of the branches leads to an abnormal or paranormal termination
rather than hack to the collecting node.

16: Locate the flnwl'ine exiting from.a loop directly below , the loop-entry
fiowline, as illustrated ja Figure 12-23, .

=1

(character
sei= ed)

Sec. 12.71 Documenting Structurecf Specifications 	 71

Figure 12-21, use of explanatory comments on decision branches to clarify meaning of
branching variable values

17. Place only one arrowhead on each flowline, at its termination.

.1.8. Affix to every flowchart a configuration-control box, which will
contain approval signatures and approval dates of the module designer, the
design verifier, and tine project manager or his designate.

12.7.3 Rule, for Documenting Flowchart Narratives

'rhe principal reason for having flowchart-accompanying narrative is that
the flowchart boxes are generally too small to contain both complete
specifications of the functions ailuded to within Wein and descriptiuns of
the significance of algorithmic stops. The runes that follow circaunvent this
lack by providing an orderly format for writing down what should be said
in each box for understanding Mid assessment of program correctness.

1. Arrange the narrative sat each level to have the following format, as
illustrated by Figure 12-24 relative to the flowchart shown iaa Figtire 12-23.

a. Begin each module description with its name, chart number, and elate
of latest change as part of the design document section title.
Identification information should be placed in the upper riglht corner
of each pane. The following configt ►ration is suggested:

Chart Number (decimal number)
Alodule Yarne
Dote	 (date prepared)
Page—of—	 (identifies the ntunber of narrative and iowchart

pages for the module)

ld}

I L-%(al

,,r•

72	 Program Design and Specification Standards 	 [CHAP.I2

Figure 12.22 Consistent format for alignment of collecting nodes following decleion
nodes

Sec. 12:71. Documenting Structured Specifications	 13

Figure 12-23. Consistent format for alignment of fiawline for loop exits

f

'	 14	 Program Design and Specification Standards	 [CHAP,w

SSD-DOI-5466-SPc 4,:

}INph0
817/•7-5
pie 2,0£:7

5.(4.4,1) MONO Procedure	 .4w^_

Rn entry, an input line has been received Into an input buffer via
EMSGIN014). The LiNe ToinTeR, 414PTR,; is positioned no as to extract the	 ''•
first character of the lisle.

This procedure discards leading blanks, If any, and looks for an MUSIC
statem^ftt number, If a statement number is present, the digits are cot.-
ver.el-to an. Integer and placed In the Value variable V; the Class variable.
C is set to 13 to indicate that. the first synhol on the line Ys an integer.
If a statement number is not present. C is sat to D., indicarine the input
line does not have a statement number; V tetrins Its entry value. See

- Table 7,2,2.5 for furturr aTliJ gi class and value definitions.

on exir,. C and V contain the s7m87= Clas p and Value values above, the
Currevt !:HaRacter variable, CCHR, holds the character which stopped the
number scan, alsd LNPTR points to the next input character to be fetched. A
value of V^999,999 indicates the statement number is too large.

.21017	 GET the first character from the current input line (see ENSGIN7U14)
Into CCHR.

.2/P4	 CATegorize CCHR. If Mani', seen to and fetch the first non-blank.
Set L'baracter.Class, CC, and CharacterValue,, CV-, as specified in
Table 7.2.2,5. CC will be 2 .if CCHR is a digit, and CV will contain
Its Integer value.

.3> ,4	 Ff the first non-blank character on a line is not a digit, set C to
record that no statement number is present, and exit..

3-5	 If the first non-blank character is a digit, set C to rccoed that
a statement numbel is present, rn.itiaiize V to the €first statement-
number digit as an integer, and set the .loop structure flag FIND SWitch.
ENDSW, so as to iterate, bringing in digits.

.6-.14	 Bring in remaining digits and convert them into V as follows. After
GET.ting each character:

.7-,9	 If the character is blank, set FNOSW to terminate the scan, as the
statement number has now been extracted-, and exit.

.101P4	 otherwise, CATegoriae the character seen, as in step 2 above.

.15-.12 IP not a digit, terminate the iteraciion, and exit.

,131E143 If CCHR is a digit, ACCUMulate its value into V. Set FNUSW-1 to
terminate the iteration if v exteeds 999,999.

.14	 iteration continues until a71 digits have been processed or until
overflow was detected,

5-59

Figure 12-24. Semple narrative format and content for a module F1NDNO, shown in
Figure 12-25

1=N	 8'/ 7/75	 ^l
L' f^	 tijpq	 . page ? of Z

WT hEKTew
IHCC^i+R

W7 cc. Cr

3

ccn	 ;
t

C-0
F1PSM^0'

e

!T

XT NCKT CMAO
7N CGIY

e
cem-kA K7	 .

cn^

noa^-^
to cc, cr

art7

'	 ^fGil11

	^FyC'.IF,S	 AO[IH.CATf CY
rxro:v. seT i

FlOIM'ON
Oh[R[1011

C^D

i1

7

s-r;o

76 Program Design and Spevificadon Standards	 fCHAP.12

b. Prior to the description of the algorithm of the current module; state
all assumptions on inpWs, common data, etc,, needed for understand-
.ng this module. Describe the module function and its outputs,
actions, and constraints.

c. Key each of the algorithmic steps to the symbol numbers as they
appear on the flowchart; these numbers appear in the left-hand
margin of the narrative as .n. Subroutines or major subprograms
invoked may he distinguished by attaching their cross-referencing
level-1 chart number following the step number, as. n/Sm.

2. Do not include irrelevant or extraneous information. Be brief, and do
not repeat information that exists on the flowchart. Use references rather
than repeating information appearing in parent modules or in auxiliary
tables. Functional detail given in a parent module may be repeated, if
desired, however, when needed to:

a. Identify which subfunctions belong to which symbols on the current
flowchart.

K Detail a. given function into subfunctions.

c.. Clarify the current execution state (for example, by giving an
explanation of the meaning of a certain condition that has caused
entry to the current module, etc.).

The narrative need not include a description of every numbered symbol
on the chart, so long as the overaii documentation is comprehensive.
Descriptions of groups of s ymbols can be used when more meaningful.

3. In specifying actions taken within a module, use single-spaced text in
the imperative mood; avoid using the passive voice except in occasional.
explanatory statements regarding interfaces, conditions, etc.

For example, the narrative description of a module
"PARSE" within a BASIC compiler might read as follows:
"Accept statements and commands entered from the
terminal with normal or line number prompting, or from a
file without prompting during LOAD, MERGE, or COPY (to
workspace). Parse statements and commands, and translate
statements into an executable pseudo-op form. Terminate
abnormally if errors are found, print an appropriate error
message, and return to the command mode."

4. Use descriptive mnemonic names for all data structures. Provide the
mnemonic derivation .of all data-stricture names used in a module at least
once (at its first top-down appearance). Names appearing in tier chat

r

Sec. 12.71 Dwumenting Structured Specifications	 77

' .cousin" modules; .unreferenced in any of their. common ancestors, should
repeat the mnemonic definition in each such module.

5, .Insert annotations or cross-referencing information so as to make a
correspondence between specific detailed requirements or functional
specifications and the current algorithm being documented when such
information has not been included. at a preceding level.

B. Explain the significance of each path following a decision, or the
conditions assumed to be in effect at such points.

7.. Include statements that provide rationale, assumptions; or other
clarifying explanations of the algorithm as needed to lend meaning and
readability to the text. Describing the intended significance of an action
(such as, for example, setting or testing a flag) can save a reader much time
in understanding what that algorithm is supposed to do. It is important to
provide such information for every loop{, stating what assumptions are valid.
during each iteration (i.e., the loop invariant).

12.7.4 Rules for Documenting Date Structures and Resource
Access Requirements

Documentation of the data-structure development hierarchy, or other
resource-access requirement hierarchies, is a dynamic process that requires
visibility and interfacing, usually across wide segments of the development
project. The evolution of a data structure design, for example, can be
maintained in a Data Structure Definition Table (DSDT) in the Software
Development Library or. P.:oject Notebook. When the definitions are
complete, they, are converted into formal descriptions in the SM.

The rules of this section, are aimed at making the concurrent
documentation of such evolution compatible with: later more formal
.inclusion is the SSD. Consult Section 12.7.1, Rules 7-9 for information.
concerning table content.

1. Mai,itain the current level of hierarchic detail for data structures or
other resource access requirements in the most flexible and visible form
available.

The use of 7-1/2 x 12-1/2 cm (3 X 5 in.) cards or pages
in a loose-leaf notebook (each table beginning a new page
or card) or (^omputer files maintained by the SDL permits
good expansion and revision capabiiity.

r

Program Design and Specification Standards	 [CHAP32

2. Make an entry into the DSDT for each data structure or resource
requirement referred to in general terms, or in any way other than its name.
Later, augment the DSDT to State the actual structure name.

3. Strive to make tables provide explicit specifications, or else give
references to such material elsewhere, either in the SSD or in external
documents. Organize DSDT entries in alphabetic order by mnemonic name
for ease in :locating structures referred to. An example of a DSDT entry
appears in Figure 12-26,

4. Include graphical displays and narrative descriptions of data structures
and other resource access definitions. These should not only describe the
composition. and format of the data structure or other resource accesses,
but should also describe the operations (or level of access) performed.

12.7.5 Rules for Documenting Structured;-English Procedural
Specifications

Resides flowcharts and accompanying narratives, there are other
techniques to design and display .procedures in a two-dimensional
structured form :nod explain what is going on: I mentioned the iissp of
CRISP-PDL in Section 7.4 as a simple, effective procedure design lanrntage.
This section provides a few rttles for using such a technique either as
augmentation or as an alternate to the material in Sections 12.7.2 and
12.7.3. If used as an alternate, then. CRISP-PDL should conform to the

SEGNO	 SEGment number (NO), flag variable (range: 3-9) first
assigned in SYSUP (module 2). Value specifies the
configuration currently active, or next to be acti-
voted after configuration by USWAP (module U1), as
detailed in the table oelow. SEGNO is active through-
out the entire program except for the subprogram
EXIT {module 9).

SEGNO = ?	 Configure for
3 SYSIZI_
4 PARSE
5 RUNIZL
6 RUN
7 B'ATCHC
8 6'ATCHR
9 EXIT

Figure 12.26. Example at a Data Structure Definition Table entry

.r

r:

Sec. 12.71 Documenting Structured Specifications 	 79

discipline of both of these sections; as appropriate. As a preliminary design
or look-ahead tool, the rigors may be more relaxed. A skeleton example is
shown in Figntre 12-27, and an SSD entry appears in Figure 12-28.

1. Structure the specification. of program algorithms into w hierarchic,
top-down syntax using the control language of Appendix G superimposed
on simple English language constructions. Use indentations and cosmetics
to dispiay the nesting structure as indicated.

2. Limit each such specification to one page by inventing named
procedural subspecifications for expansion at the next hierarchic level.
These named subspecifications will. be referred to as striped modules, just as
if they appeared on flowcharts.

3. Begin each striped module algorithmic description with its name,
identification number, and date of latest change.

4. Affix to each module a configuration-control box for concurring
signatures (or initials) and dates of the module designer, design verifier, and
project manager, or his designate.

5. Prior to the description of the algorithm of the current module,.
provide a comment block that Mates all assumptions on inputs, common
data, etc., used by this module and visihi'e in the algorithm. Describe the
module function and its outputs, actions, and constraints.

6. Number each step in a procedure in numerical order from the top
down, except for perhaps ENDIF, ENDCASE&, JOIN, etc., which represent
collecting nodes at the end of flowcharted structures. Affix this number to
the statement beginning at the left margin and preceded by a period (see
Figure 12-27).

7. Assign to each subprogram striped module a unique Dewey-decimal
identification code. This code is made by concatenating the step number,
where that subprogram is invoked, with the .,ur gent-module identification
code.

Thus; for` example; if step 3 of module 1.4.6 invokes a
subprogram, that subprogram is given the identification
code 1.4.6.3. Note, also, the use of the virgule in Figure
12-27 to rename subprogram 1.8 as subprogram 3.

S. Assign to each subroutine striped module a unique alphanumeric code
as its level-1 cross-referencing symbol, Annotate each procedural step n
where a subroutine is called by placing the subroutine .number Sm
following the step number, separated by a virgule, as .n/Sm.

f

Program Design and Specification Standards	 [CHAP. 1280

Module 1
C R 15P-X
5 Fab 75
page 1 of I

PROGRAM: CRISP. Processor
< •This.module is the tap+level preliminary desiam
C "'of a CRISP translator for an arbitrary; as-yet
C"unspecified unstructured lower-levd . language, X.
<*The characteristics of this translator are set .
<• forth in Appendix G of this text. No coding
<* language for this program has yet been chosen,
< • and codability of this design has not specifically
<"been considered. This documentation is for
<*architectual studies only.

.1 do Initialize the processor

.2 loop
;3 1	 do Accept control parameters
.4 1	 do Configure as necessary
.5 I	 if	 (control says EDIT mode)
.6/2 1	 do perform source editing <* Note: edit

!	 C•functions are not inckided in Appendix
I	 <' G; this stub is a hook into an
I	 <•envisioned later -apability">

.7 !	 :->(control w!s PD:L mode)

.813 1	 .	 do Cosmetize and list the program descriptions

.9 !	 :->(control says FLOW mode)

.10/4 !	 do Draw flowcharts of the program descriptions

.11 !	 :-> (control says X-translate mode)

.1215 !	 do Translate source descriptions into
^!	 language X

!	 endif: C"control option may skip all the above*>
.13
.14/6

1 .. repeat unless (control says go on)
it	 lcontrol s yi	 oad-and-go) do Link target code

to its compiler, compiler output to loaders, and
... tell loader to initiate execution of job.

.15 do Clean up required for exit
endprogram

Figure 12-27. A conceptual level-1 design description of a CRISP preprocessor using
CRISP-POL-like language (several features that will be required later; such as error
rosponse and recovery ., have been neglected at this stage of design, as given, this
description probably represents Class C or 6 preliminary, or "look-ahead;" design

documentation, not suitable for formal specifications)

fir°

Module 1
CRISPFLOW
23 Sept 76
page 1 of 1

50) CRISPFLOW Detailed Design- Main Program Hierarchy

PROGRAM: CRISPFLOW<*23 Sept 76*> 	 MOD#1
<*This is the top level diagram of the,CRISPF.LOW.
<"processor. See Section 2 of this software speci-
G"fieatlon document for program description star-dards
<* and conventions, Section 3 for environment and
<* interfaces, Section 4 for functional specifications
<* including 1/0, and Section 5.0 for an overview of
<* processing and supporting data structures.

.1 DO CRISPFLOW_ INIT <• Declareand initialize all global
<* data structures*>

.2 DO OPEN-10—MEDIA <*Open necessary 110 and set options*>
,3 Set EOS = ; FALSE <*end -of.source flag*>,

ERR FLG = %F. ".!.SE <*processing condition flag*5
.4151 CALL GETLINE (INVUr rER, EOS) <*Set EOS true if no line left

<* in source medium*>
.5 LOOP WHILE I EOS = %FALSE) <*until end of source input *>
,6 !	 00 PARSE <* Bring in module and build TREE*>

1	 <*Output an error message and set ERRFLG true
!	 <* if a module cannot be. flowcharted as per
I	 <*section 4 of this SSD'*>

7 !	 IF (ERRFLG = %FALSE) < * I f module was acceptable *>
.B 1	 DO LAYOUT <* allocate sizes and coordinates * >
.9 1	 00 DRAW <*Draw the flowchart*>

I	 ENDIF <*otherwise, ignore the module*>
10/S1 I	 CALL GETLINE (INBUFFER, EOS) <*get next input line

1 .. REPEAT
.11 PRINT "FLOWCHARTING COMPLETE"
..12 DO CLOSE 10—MEDIA <*Clean up for termination*>

ENDPROGRAM

Figure 12-28. A CRISP-PdL description of the top-level specification for the
CRISPFLOW processor described In Appendix Ca

,r.

r

82	 Program Design and Specification Standards 	 [CHAP. 12

Thus, for example, if step 3 of module 1.4.5 calls a
subroutine P6 named PLOT, then
°.3/P6	 GALL PLOT(xdata, ydata)"
may appear as the procedural step description.

g If internally. defined .function calls occur in a step, attach their level-1
number codes, as in rule above, to the step number as well, as room
perm its:

For example, if RIGHT is a function numbered Ns; then
".3/N5	 SET TOKEN=RIGHT(TOKEN)
may appear as a procedural step.

10. Make all conditional tests explicit (i.e., no striped decision modules).
Annotate the steps corresponding to test outcomes with meaningful
explanations of that outcome. Note that the description in Figure 12-27 has
not adhered to this .ruic, being a look-ahead design. Figure I2-28, however,
being an SSD entry, has conformed.

1.1. Igo not include irrelevant or extraneous information in describing
procedural steps. Be brief, using references to, rather than repeating,
information. appearing in parent modules or in auxiliary tables. No
functional information given iii a parent module need be repeated, except
as needed to

a. Identify which subfunctions belong to which steps in the current
algorithm.

b. Detail a given function into subfunctions.

c. Clarify the algorithm (for example, by giving an explanation of the
meaning of a certain condition that has caused entry to this module).

K- Use the imperative mood to specifV actions taken within a module,
and use Anoe,spaoed text to describe steps. Double space between steps, if
desired, to group sets of steps for readability.

13..Use descriptive or mnemonic names for all data structures referenced.
Provide the mnemonic derivation of each data structure name appearing in
a module at least once rat its first top-down appearance). Names appearing
in "cousin" modules of the tier chart, unreferenced in one of their common.
ancestors; should repeat the mnemonic derivation. in cacti subir,ddule.

14. Insert annotations or cross-referencing data so as to crake a
correspondence between detailed requirements or functional specifications
and the algorithm being documented, when such data has not been
included in the description of that module at a preceding level.

ti

Sec, 12.81 Software Development Library
	

83

15. IrIC1UC1C Statements that provide rationale, assumptions, or other
clarifying explaitacions of the algo-ithm steps as needed to lend meaning
and readability to duv text.

16. Provide cross-references for each subroutine which locates all culls to
that subroutine. This material is used to aid in identifying, in the event
change, are made, where role side effects may be likely to occur.

12.8 RULES FOR THE SOFTWARE DEVELOPMENT
LIBRARY

1. Make the SDL the central repository for a'.' textual and graphic design
material, be it working-level, look-ahead, or approved documentation.

2. Accept design modules into project control only from the top down.
Keep a tier-chart log of module status which includes:

:i.. Date of submittal.

b. Date of acceptance.

c. History of design changes or proposed changes.

d. Assigned phase of development.

3. Publish regular reports regarding project status that reveal progress
relative to the work breakdown structure, modules completed during the
reporting period, the cumulative number of total modules completed, and
the number of identified stubs at. future levels which are to he yet supplied.
Flag modules with apparent discrepancies, such as those having; erroneous
module numbers or names, those being supplied or worked on in the wrong
development phase, and those with recognized anomalous behavior.

4. Distribute copies of design materials to team members upon request.
Do not permit master copies of approved modules to be altered without
approval of the project manager, The SDL keeps the official master copy in
all cases.

5. Maintain a file of standards waivers, and provide periodic summaries
of waiver activity to the project manager.

6. Disseminate standards information and materials within the project,
and train new employees in the use of these standards.

1. Use available automatic or computer-aided means. for the creation,
Update, and monitoring of design documentation, Implement policies

.•r

1

84	 Program Resign and Specification Standards	 JCHAF32

whereby team members may interact openly with the design base, but
which discourage team members from keeping their efforts invisible or
private.

In the Chief Programmer Team concept, for example, the
programming secretary enters all information, coding, and
testing into the computer; no others are permitted access
to the computer. Such a policy may be necessary, in
austere cases, merely to make programming a public
practice.

B. Maintain a file of all action items levied by design reviews, with the
current disposition of each.

9. Audit all documentation submitted for approval for adherence to
standards.

12.9 SUMMARY

This chapter has put forth standard disciplines that encourage software
design as a hierarchic layering of detail, both in the invention of control-
logic algorithms and data structure abstractions, to focus attention to
relevant details, and to hide irrelevant details, at each point in the design
synthesis. I have tried nci to orient these disciplines toward any particular
programming language, existing or envisioned, but toward the thought
processes during the design process, and toward doca mentizig the results of
that process in a way that is sufficient and useful throughout the entire
software life cycle.

Further discussions on the design xnedium and automatic aids to design
may be found in Chapter 17 and Appendix G. Samples of the
documentation styles appear in Appendix L.

XIII. PROGRAM CODING STANDARDS

Once the program algorithms have all been specified, the data strictures
all defined and laid out, and the 1/0 interfaces all fixed, what essentially
remains is the design of cocle to implement the "unstriped modules" of the
SSD and linkages to and from striped modules. The activity of concurrent
coding, however, requires a bit more than mere rote translation of the
design specification into statements of executable code, modularly
programmed to conform to the hierarchic design levels. in practical
application, there are usually many accommodations that must he made
before the coding can .even get underway. Cencrally speaking, the methods
here recommend that code he generated in an execution sequence; for
example, jot) control code first, then linkage editor code, then module
linking code, and, finally, code for the design specification.,;.

This chapter presents a set of rules for producing and documenting only
the code specified in the SSD. These riles are based on the premise that
noticeably more efficient programs result more from design-level
considerations than from coding-level considerations, and that faithful
coding of the design is of paramount importance,

85

86	 Progra:m Corling Standards 	 jCHAP, 1:3

13.1 RULES FOR CODING STRUCTURED PROGRAMS

At the onset of coding, all data stntetures and other design mechanisms
will have been described, at least to the degree required, in a set of self-
contained, cross-referenced, documented specifications (the SSD). In the
niles that follow iii this section, 1 have assumed that one is coding from
flowcharts and narrative, although one could as easily he coding from
C13TSP-PDI, specifications. (In fact, as will be neon in Chapter 17, the
dividing line between such "design specifications" and "coding" in my
"standard production system" is somewhat artificial because of this.)

Recall that striped flowchart symbols at one tier of the design were
expanded into procedures at later levels, and that unstriped symbols were
constrained to be codable without functional ambiguity—any method of
coding such a subinodule, as long as the code performs as specified in its
unstriped description, must work.

Let me snake a distinction at this point, and for the remainder of the
chapter, hetween a "code module" and a "code sttbmodule," for the
purposes of describing the program code. By a code ntndule, I shall mews
all of the code that corresponds 4:o a "flowchart" or a flowchart symbol and
1 11 its hierarchic descendent striped submodules, including any subroutines
that pe rhaps may k : used totally within the rode module, and not outside.
By a code sub module, I shall refer only to the code that appears explicitly
6r coding a single flowchart. Whenever a striped symbol appears on a
given flowchart, then only the linkage (if any) to the remainder of the code
for that striped symbol will he counted as part of the code submodale.

Thus, for example, the code suhmodule MBASI:Ct'M depicted in Figure
13-.1 possesses less than one page of code; the entire MBASIC I' ^ l code
module, however, consists of tens of thousands of code instructions.

Lear me also distinguish code modules and submodules from "compile
modules," A compile modish, is a set m subset of code modules and/or
submodtties that are compiled together as a unit for any reason, such as to
provide a level of acces:r to a data structure, to segment a program into
overlays, and so forth. The grouping of code suhmodules into compile
modules is part of the code design, and mach of it, if not all, will be
dictated by the program specification.

By definition, the term, "coded," as used i_9ere, means that the unit
referred to has been translated into a comp;'tter language, exists in a
machine readable medium, and contains no syntax errors.

Sec. 13.1+.] Coding Structured Pwgra yns	 87

The following rules are .guidelines for the generation of code modules
and submodides for structured designs.

1. Become thoroughly familiar with the overall design philosophy and 	 rrr
conventions before coding begins, `-g

2. Establish project-wide coding standards for style. Use macros or other
style conventions onl y when these are accepted and used as project

standards. Conform all situations where such standards apply ruthlessly to
the siandard, with deviations only on an approve l waiver Basis.

3. Make coding a direct translation of the flowchart, Code .programs into
a format conforming to and reflecting the structured; hierarchic, top=down,
modular design.

Normally, code unstriped symbols as in-line cede, and code
striped symbols (references to procedures) as linkages to
separate procedure modules runless timing or memory is
critical and such linkages are significant—see Rule 6,
below). Figure 13-1 illustrates the one to-one correspon-
dence between flowchart: and code for an assembly-
lan91 cage stihmodide.

4. Set standard invoking (or calling) sequences for subprograms,
subroutines, and abortive branches, especially if these involve recursive or
reentrant linkages. Prove that such techniques work independently of the
program module being developed.

Code a tch flowchart as a separate code siibmodule or
macro :procedure using the most efficient linking method
available in the programming language. Specifically, if the
linking method makes use of a stack to hold arguments or
return link-ages, and if abnormal terminations lead to
reinitialization of the program, make sure that the linkage-
stack is also reinitialized (notice that this is done in Figure
13-1). When linking modules using the mechanisms
provided h}' a higher level. language, it may be necessary to
know how these mechanisms are implemented (yiz.,
whether a stack is used) in order to provide the .proper
reinitializations required isv abnormal termination.

Limit coding to clear, concise code that will be easy to check, debug,
and modify. Avoid coding4evel optimizations that decrease clarity. If more
optimal' code is needed; then cleariy annotate the listing so that the code
remains an accurate representation of the procedure speeffication. Do not

i7^

1 	 .5 	 .	 . l ,	
'	 #»» U L 2

^	 - <^ &^-»
..

_ NO
1..«#®9

2 . >^\

. ^

^. .

. ^

. .	 ..«

\ :<^	 ©\ 2	 .^

\} ©» 2 .»	 ^

.A

T.

See. 13.11 Coding Structured Programs

TI TLE	 MBAS IC

MBASIC R-BH	 3/20/75
RCT	 3121/75
R8H	 3/21/75

TW.OSEG.;
R-ELOC	 4 o H O^DSEARCH	

MACROS;
SEARCH	 SfMBQL;
SALL;

MBASIC: MOVNI	 LPTR,MAXL; .0 NECESSARY CODE TO
HRLZ	 LPTR,LPTR; INITIALIZE MODULE LINKING PTR
HR,R I	 LPTR,L5TACKh#.-1; SET POINTER TO (-MAXLL,LSTACK-1)
DO	 SYSUP#H;

RESUME:'MOVNI	 LPTR,MAX7L; .2 REINIT
MODULE

LINKING
HR-LZ	 LPTR,LPTR; PTR UPON FkROR: SET
HRRI	 LPTR,LSTACK-1; POINTER TO	 (-MAXL,LSTACK-1)

MBA.03,; .3
DO	 USWAP9fi; .4/U1
MOVE	 R1,SFGNOq#,
XCT	 14BA,TI-3(R1); .5
JRST	 MBA.12;

MBA,T1: DO	 SYSIZ190; .6/3
DO	 PARSE##; .7/4
DO	 RUNIZL4H; .8/5
DO	 RUNR	 ; .9/6
DO	 BATCHCtf; .1017
DO	 BATCHRO#; .1118
NOP;

MBA.12;	 MOVEI	 R1,9; .12
CAME	 R1,SEGNO;
JRST	 MBA.03;
DO	 USWAP; .13/U1
DO	 EXITOfi; .14/9
END	 MBASIC;

Figure 13=1. Correspondence between flowchart and code for a module MBASICT'mll

(the language Is PUP-10 MACRO-10 (assembly language); the preambloprior to the
entry label announces to. the assembler that this Is a reentrant.program and defin.es.the

symbol and macro - definition files; 00 is a striped-module-linkage macro)

a

}	 90	 Program Coding Standards	 [CHAP. 13"

use obscure, undocumented.; or unmaintained features of some instruction
sets or operating systems:

6. Code procedure instructions so as to remain fixed during execution; do
j	 not write code that modifies itself. Sharing memory by core-swapping is

m

- permissible, however.

"
7. Code striped-module subprograms or subroutines as,:in-line procedures_-

I only whenever (a) execution time or storage is a critical parameter, (b) the
" execution time or storage for the calling return sequence is non-negligible, ?

and (c) the function is not used so many times in the program that
repetitions of in-line code would create a burden on the .memory
requirements. Use macros to define such in Tine procedures, when available. } 5J
Otherwise, program such functions as in Rule 3, above.

8. Use the same symbolic names for procedure entry :points, variable
C b

names, etc., as appear in the program procedural design, if permitted by
the implementation language. Clearly annotate listings when alternate
names or labels have had to be used, and create a glossary of such
correspondences:

9. For operations that act on data structures, pass only the field or fields
necessary for that operation to accomplish its function, rather than moving
the whole structure or substructure.

10. If correctness assertions have been supplied in the ;procedural
specification, then insert code to check these assertions at runtime. If
possible, make such. code a compile-time option that can be ovcrndden or
removed from the object program after checkout is complete; however, do
not remove this code from the source code, as 'later modifications may

"

re_ quire it. in further checkout.

w11. Insofar as possible, put all implementation-dependent parameters or

the	 Identify,compile-parameter options tog	 thether in one place in	 code:	 :ese:..
as such, and. give a prescription for changing them should the parameters
require alteration: .

1

12: t!Vlien using a programming language "which permits several data
ì	 structure names to refer to the same or overlapping storage structures (e:g:, ..	 `

b.	 way of the EQUIVALENCE statement in FORTRA,_Y	 Y	 N:)	 confine the
i	 configurations so that no more than one of the data structure names is

active at one tune. Enter the names of each data structure sharing the sane R
storage appropriately in the code documentation. Do not reference the
same data structure within its active range by two different names unless
the conventions are so documented as coding standards and enhance the
readability of tlwe code.i z

Fl

^.b	 'E,	 k	 "'	 ti-bV,	 1^	 !	 b:	 4	 R=Y	 8	 .a r,4.T 	!-'=`	 -	 ',.f	
-sSy..sS.. -^,H r"_"'^r..l?..3'.^._..r_.-k.^—_Ex^,^r•'	 .^,L`4.9a^-^	 h	 4^`,. v, ̂ a.Ltl:	 :.^:.^"4&-18^Li'.x'a£^.si^?.Ifli!:!`3^SL sot'wv?^-'+"h^'t.^:y'C..Tai.'^'di^.._f35C•^+^f1...3^^+c3'^£ss 1^kL.`h3wY3c^k.. ŷ r^' -tl

s

i	 .YL

54 	 ^^

E

>1`

Sec. 13, A Caning Structured Programs	 91

An examplewhere such equivalences might he considered
acceptable is the CRISP program that appears in Figure
13-2. In the example, structure flag names "r=NDMaF- LINE"
and "END_aF_INPUT" in the specification are coded as
references to a loop-contrci stack implemented as the array
FLAG

13. Code the flowchart boxes such that the code for nodes of the

flowchart appear in the same order as a pre-order-traverse list of the graph
nodes. (This rile assumes the flowchart has been drawn w. ith branches in
case-order from the left.) The step numbers then fall in sequence . down the
page (see F igure 13-1).

vEND OF LINE MEANS F.LAG(Q)= TRUE `TEND
LEND _OF_INPUT MEANS FLAG(P)=,,TRUE 1END
%PUSH MEANS P'=.P+I, FLAG(P)'=.FALSE 'SEND
'PULL MEANS P=P-1 %E'ND
` FALSE MEANS 0 'SEND
`•STRUE MEANS i i.END

"PUSH
LOOP UNTIL ($END_OF—INPUT)

1,PUSH
LOOP UNTIL (%END_OF_L1NE

:..REPEAT
%PUiLL

:.. RE:PE.AT
'UPULL

Gib

y

Figure 13.2. A CRISP program segment that uses rieacres to rename specified data
-	 - structure names as reusable stack locations

1K,

n

^ mow.	 _ : ^=M'S 4	 ti ^ 	 Al: Ssrr.Sl^;,^t=+"„ 	 ur̂ ^^5:ck"	 ''_^ sr	 ^ +^^	 a, .z:x^	 `Yi'hast	 m'	 ^^	 r	 ._
l	 L	 {	 R^

f

r

92 Program Coding Standards	 (CHAP. 13

Take care to assure that eztemal system subroutines which
have Both normal and paranormal or abnonaal returns are
coded to conform with the prescribed flowchart. structures
(see E'igure 13-3).

14. When coding in a language requiring jumps to achieve structure,
establish named labels for all locations Branched to, suph as decision
collecting nodes, loop collecting nodes, and Procedure; entries. Set a
standard "for generating these names that does not conflict with names of.
variables used in the design. Do not use "current location t n" as branch

targets even if permitted in the coding language,

OPEN	 ^•
Mag Tape: 0	 can't,
as data	 in use
Channel 2

7

Input	 Drop back
from	 and punt
tape

Df'EN	 2,PGM.11;	 .61M.4.2.3
JRST	 PGM.8^	 ERROR RETURN

J'RST	 PGM.7;	 NORMAL: RETURN

t PGM. T 1 :	 9;	 SPEC I FQ C AT IONS
F1%BlTJMTAO/;	 FOR D'E', ICE
XWD	 0,MAGBUF;	 AND INPUT BUFFER

PGM..7:	 DO	 R!EADMG;	 .7 NAME SHORTENED
JR.ST	 PGM.9;

PGM.8:	 DO	 KHT'EVR;	 .S NAME SHORTENED

Figure 0.3."Usage of a.systam routine that has "normal" and "error return" points (the
code is PpA-10 &aserndty language; iae cross-refcrence in boic 6 is to the Monitor ^

manual,	 4:23;	 tare-striped=modute•linkage macro)Section	 DQ ,is

r	 r..

7

^' ='-^-^•=•^;_tt^r^ ±.`
--,:^ .+ 4t,._r...::'.sv u^ ,r_..h. ^ki=ice...	 -.-	 -	 -	 _

r

See. 13.21 Coding Structured ReabT'ime Programs	 93
'	 z

15. Strive to localize the scope of variables within. each code module
i when supported by the programming language. Pass data to subroutines

normally as arguments; when arguments prove infeasible, then permit links
to global or common pools. Do not permit content coupling between
separate compile modules (see Section 464).

1

16. Define named constants and compiler : mp^ ameters to indicate purpose, :

rather than value. Use separate constants (parameter names) for different
purposes, even if some of these have the same values., for later
modifiability. Avoid the use of "magic numbers," or numbers whose

1.b, hni	 . lmeangs are not trip i	 y t ear va ue.

1:9. Use literal values only if these are truly constants in the problem. t.
Literals should not be used to address data structures by making use of
assumed structural formats, especially if this will limit the extendability,
modifiability, or flexibility of the code being written.

For example, if the third word of an array, Rmem, contains 	 j
a field to be accessed, do not use such devices as "G-T

RECORD.0j)," because the RECORD format is likely to change
eventually.

i
18. Set standards for representation of primitive and extended data types.

For example, set a common convention for true and false tests throughout
the gprogram,ram, if not already apart of the language syntax.

19. Set standards that relate :preferred methods for coding to enhance
^. speed or memory usage, such as indexed vs. indirect addressing, registerto-
{ register vs. registerto memory operations, Byte. access methods, coding the

normal branch as the higher-speed conditional branch, ete.

20. Avoid passing program labels as arguments. Such practice implies the	 .
intention" to use that label as . a control branch target; and : assessment of
control corre mess is thereby made more difficult.

13.2 RULES FOR CODING STRUCTURED REAL-TIME
PROGRAMS

The structure imposed :upon. real-time programs by design specifications
is	 modular partition	 into	 sequential activities which can be coded
separately and then combined for execution. in a, way that should allow for

' g.
	 dirig 	 .real=tunecorrectness to :be assessed: The following	 ules for co

programs augment these given in the .previous section.

Fr._au

K,r

f

k
P

	

'	 94	 Program Carling Standards	 ICHAP. 13

1. Determine methods to be used and establish standards to provide
arbitration among resources as required in the design. Code and validate
such means, as a general rule, before coding any part of the program
making use of these features. (Note: top-down design is still in effect here;
some bottom-up coding may be required, however).

2, Locate the code bodies for concurrent processes appearing within the
same program in conformance with the same standards sot for non-real-
time program segments in Rule 13 of Section 13.1. Maize the code conform
to procedural specifications in a eme to-ene identifiable (and QA auditable)

	

..:.	 way, step-by-step, module-for-module.

Consult Appendix G for FORK-JOIN said WHEN structures. If
program-operated dedicated traps appear, cone these to
conform with the AT. structure.

3. If more than one user can concurrently operate a given process
(program or subroutine), code all module and submodule linkages involved
so as to enable reentrant use. Make provision for each caller to have his
own (.protected, if possible) separate data workspace for data accessed by
the process:

4, If reentrant code is being written; get the reentrant mechanism
working before coding any of the design of the .reentrant elements.

a: Cade the procedural design, then, from the top doom in testable
phases. That is, conform coding to match development testing r phases.

8. Code stabs for real-time checkout that consume the proper durations;
as well as recording trace information for correctness assessment.

13.3 RULES FOR DOCUMENTING STRUCTURE] CODE

The rules for documenting the program code are formulatod so as to
make the code a readable extension. of the programming specification. The
rules are not in the direction of self-documentation, but just the opposite!
The top-clown development process has gone to a lot of pains to maize sure
that program specifications, such as narrative and flowcharts (or
equivalent), :provide all the information needed to understand the program,
without references to code listings. Having listings readable by themselves
negates the life-cycle value of the SSD; the code becomes the maintenance-
analysis medium, rather than the SSD. Changes to the code don't always .get
inserted back in the design documentation when this happens, As a result,
the SSD is soon out of date, a worthless, expensive document.

Wig-.

Sec. 13.31 Documenting Structured Code	 95

Such a philosophy as outlined by the rules that follow is necessary to
avert the possibility that a program can he maintained only at -the code
level. It, .moreover., encourages the use of camputer&;based media for
holding and displaying both design specifications and the code. In Chapter
17, : shall give a special interpretation of these rules so as to keep
flowchart, narrative, code, and annotations all together in one source.

1. Enter into a special, easily located part of the program documentation
all general; program-wide coding conventions and standards that relate how
flowchart specifications are coded. Mahe the set of conventions complete
enough so that, except for special cases covered in the next rule; they are
sufficient for a reader to assess that the c ode is a true translation of the
program specifications.

2. Annotate the code corresponding: to flowchart specifications with any
special supporting information needed to understand how those specifica-
tions have been implemented into code. Such annotations explain each
instance where an unusual or non-standard feature of the programming
language is used and :is material to ascertaining coding correctness.

For example, the FORTRAN statement "I-N/2" assigns to
an integer v°riable, i, the integer part of the division of the
integer N by 2. If it is possible for N to be odd, and if
program correctness acutally depends on the implied
(automatic) truncation, then the statement should be so
annotated. As another example, the MBASIC TM statement
"COPY ' LINKFILE " " clears the current program workspace
(but retains values assigned to variables), loads the program
in the file named "LINKFILE' and returns the MBASICTM

processor to the command mode. If, however, the copied
file contains a statement "oo To lin4tart" (where Iinkstart
is a statement number in the ' ' LINKFILE ! program), then
there is an automatic run-initiation of the linked program
that is not visible to one reading the program in which the
COPY statement appear..-;. In such cases the Copy statement
should be annotated so as to inform the reader that the
current program will be terminated and cleared from
workspace, that the copied program will be executed
immediately after the co py, and that any code subsequent.
to the COPY command in the current program will be
ignored,

3. Do not repeat information appearing in the software specification.
Instead.; if such information is necessary to understand the coding, give a
reference to the proper point. in the specification. This practice makes the

F:

f?

r.

P

^	 ^}^	 .!(4Twaw	 ^	 3.a- !i.	 .IaY:r	 ..a .dtl. t'i^ -	L!'t..:(-	 f	 -^'	 f

96	 Program Coding Standards	 [CHAR 13

code readability rely on the program specification and avoids duplication of
documentation.

4. Conform annotations, whenever possible, to make use of any
automatic program-cheeking facilities available, such as automatic
flowcharting, automatic annotation, control-logic verification, and statisti-
cal testing,

a. Annotate source-language code listings to facilitate subprogram and
subroutine identification; reference, and change control. Specifically,
annotate the code for each striped module with a header containing its
subprogram or subroutine name, its Dewey-decimal number, initials (or
names) and dates of coding, peer concurrence, and testing, all in a
consistent, uniform way.

6. identify steps within modules by annotations that supply the same
identifying numbers as they appear in the design specification. Figure 13-1
illustrates such annotation of an assembly-language program coded from a
flowchart.

7. If a cross-reference number appears on a flowchart box, then supply
this number to the box-reference code in the annotation for the code
corresponding to that box.

For example, within a flowchart module "PUNUL/ 5"

(lnitialiZation for RUN, chart #5), suppose there is a
flowchart box numbered "1" that calls a utility subroutine
1. suR=wO (SET up 1/0 for Run), which is numbered as U7.
Then the Beginning line of the code corresponding to the
"Qo sETRIo" on the flowchart has the identifying annotation
". 11 ug" (see Figure 13-4).

S: Indicate the program structured hierarchy by indenting lines of code,
when permissible in the programming language; to reflect the_ levels of
nesting of structures within other structures.

9: Annotate dummy stubs to be removed later. Use a special, standard,
easily distinguishable series of symbols to identify such annotations: Tdentify
any special debugging code similarly.

For example; suppose an MBASICTM program has a table,
TABLE, to be printed out in a test mode. Then a probe
instniction.might appear as (" 1" starts the comment field}

6:1 PRINT TABLE ! TEST PROBE* * * * *°* * *
ii

K-

Chart 5
RUNIZL
8/B/74
page 2 of 3

5

RUNIZL

017

SETOIQ

Initialize
Editing
Buffers

•
•
•

i

i
t

f

•

•
•
•
Dot	 SET RI();	 ,f/U7
•
•
•

Figure' 13-4. Flowchart and code ileting 4or RUNIZL /'S module. of MHASICTMri 'shown in
Figure 134, illustrating the use of annotations to reference code to procedural

specifications

10. If there are code-level assumptions upon. entry or exit from a module,
state these in a comment block between the module entry and. the
beginning of its compiled statements.

^	
du

Examples of things that might appear in this section are 	 k
memory protection levels required (read=only, write-only),	 ?
reentrant or recursive, register contents and usage, etc.

i

11, if system utilities are used with compile or run-tithe options, give
interfacing data: names of routines, calling methods, parameters and their 	 a
meanings, function or service performed, requirements for calling, etc.

12. If the data structures defined in the SSD require further hierarchic t

detailing at the code level; then insert such information as annotations
located with the data structure, properly referenced to the SSD, Record

^	 further hierarchic detailings of other resource access requirements in a	 ^
similar manner.

a^

I^`r}2^..,.i^:.^i.. _..^^^1^1 ^!,Yf^'^,r^+^nk^,.wr::v.^x.^_...Y:.`w`^'^a„i....^:^^i:^L =isu:its`3s^:n'^^=•^'__.^^^^.^.rY^'A^^''x^at.,^^ail,=,3e.s'"''<i7 ^:,.s,:ie'^^^^^..^:;aL`.,.,....,a...,ke,+r.^u^.t::k;a-a?s.eee+zs'^.'±vr.^.^^:ve^;^^i .4^lk.z„r-:^^Sa,,.: r.. ^ y._..^, ^,s.^.irlF

98	 Program Coding Standards	 ['CHAP. 13

r

13. Provide other auxiliary documentation as may be required to bridge
the design to the code, such. as:

a. Cross-index lists +e.g., chart to file containing its coded form).

b. Public features used (e.g., as index and system registers, buffers, etc.),

c. Glossary of special variables, compiler parameters; flags, literals, and
storage structures not easily defined by name or use context.

d. Memory use map.

e. Timing diagrams.

f. Interrupt handling procedures and relationships.

g. File, table, and data-set descriptions.

h. Examples of input and associated output.

is Listing of special flags, pointers, and other indicators, together with
their usage (which routines, areas or time of applicability, etc.).

j: Commentary describin features of code that link performance to
design documents.

k. Lists of error conditions, codes and messages, cross-referenced to both
design charts and the code itself.

I. Restrictions on the use of code that is particularly sensitive to
changes in the design (mainly in time and memory space, but also
functional limits to subroutines, etc.).

m. Data usage (e.g., shared vs, public files),

n. Hardware or software constraints.

o. Use of .privileged instructions.

p. Procedures for compilation, linkage edit, etc.

13.4 STANDARD PRODUCTION PROCEDURES

This section contains a set of .guidelines by which the Software
Development Library monitors and aids the production of the program
during its evolution.

1. Maintain code; at its current state, in files available to all development
team members on demand (see Figure 13-5). Establish a read-only "control
copy," which includes only the approved code. The control copy does not
contain any code that will not be a part of the final ,program.

-1

Software Development Library

Figure 135: The Software Development Library, showing interaction among control

copy, working copy, and other flies with software team .

.Lljj

"'

`'

100 Progrant Coding Standards	 [CHAP. 13

2. Support the development coding of new modules and developmental
testing so that such activities may take place only by supplementing and
updating the control copy with the new code. Working cepies may also
contain dianmy stubs, interspersed statements to collect or print trace y
information, etc. The control copy may he updated only upon proper
authorization.

3. Maintain a :tier chart or data base of the project-controlled code status.
For each module, supply name, number, dates of submission and changes,
and its state of completion.

Adopt a uniform notational scheme for annotating the
h

chart, such as "S" for "stub; .. "P" for "preliminary," "L"
for "look ahead;" "A" for "audited," "C" for "concurred;"
"it" for "returned for rework," and "" " for "completed" =`
(see Section :10.5.6 for an example). s

4. Arrange to have modules within each loadable program segment of the
control copy entered so that, when listed, they appear in their Dewey-
decimal order. This procedure is an aid in locating code seginents.

For example, suppose that :program # 1 hos submodtiles
1.2, 1.4/Si (i.e., Subroutine #I appears in box 4), and 1.7.
Then the listing order of the program at the completion of
coding tier-1 is NO

I
1:.2

''f

1.7
S1

If 1.2 and S1 require no expansion; but 1.7 has sabrnodules
1.7.3 and 3.7.5, then the listing at the end of the next tier

e
would be in the order

,.x

1:.2
x

1.7

,1.7.3
1.7:5
Sl

and so on,

5. Develo
p, document, and issue procedures by which team members can

access, operate, and update the evolving program. Give specific 'log-on and

't

^r+. n,'.. :_	 .:	:,.	 '.,;	 ._• :		 xy...IL:ii_: w.L^u+iliii}:e	 Ft^i_#^^..d`@Y+.'ki
	 °'_'	 --c°ec^3a...^.-

z	 .

.. s ,r

f
r1

s

See. I3,51 Summary	 101	
r

log-off procedures, as well as procedures for accessing the read-only files
and building working copies.

6. Maintain a standard production configuration including compilers;
editors; and other production software (Chapter 17), as well as manuals,
operating procedures, etc.

7. Provide an archiving function for test data, dummy stubs, and test
results.

S. Create a.file naming and .management policy for project files to ensure
that program modules, data; and the like do not get confused.

For example, one could make compilable segments contain
only suhmodides of a common ancestor module, and. name
the file by that ancestor: If several segments are merged for
testing purposes, name according to the modules or phase
being tested, and attach a test-assembly cede number, TAn.
Similarly, attach TCn to test code, Tbn to i:ist: data. In
each case, conform the version numeral n so that the
assembly, data, etc., all agree.

13.5 SUMMARY

The standards for coding set forth in this chapter are somewhat unusual
in that they emphasize coding from a documented specification: once the
program is coded and verified, the "as=built" specification becomes the
paramount item for• later sustaining effort. The code cannot stand alone--
hut conversely, the , pecification is detailed enough that one can read and
understand it without reference to the code listings! The documentation is,
therefore, of necessity kept current when any changes are made; program
analysis, testing, and debugging are done primarily at the documentation
level.; not at the code level.

I do not want to ;v7ply by this, however, that specifications are
necessarily going to be kept :apart from the code. indeed, as I shall discuss (.
in Chapter 17, there is a way to integrate code and specifications into a
single medium, or program base, if proper computer facilities are available.

1

S

A.

... a

AGE ^,^1i^K NAT

Y. ± j
	 P

PAGE 0' AHK NOT ';=

XIV. DEVELOPMENT TESTING

STANDARDS

Development testing forms the practical basis for assessing program
correctness, and, for :this reason., it could as well' be called. "correctness
testing," or "validation." More often, it is just called "checkout." These
tests are run within the development project as the—program evolves as a
reinforcing measure to assure the developers that the program, thus .far,

x actually performs as specified. 'The guidelines set forth i ll this chapter
provide an organized discipline toward accelerating this checkout process: Al

t
At this point, let me summarize what has been required during the design
and coding process for the purpose of assessing program correctness: ?

a. Control logic has been specified to such a level that will permit an r
assessment of correctness of the program flow on an individual'
module basis.

-	 s	 . :b; The functional 'behavior of each module has been specified to that
r: degree of detail that: will permit an audit of the subfunctions of each

module against its-°stated, function, and will also permit. a correctness
evaluation to t?e made. a

r
103	 ^,

.r	 Vu L	 ,..	 r	 s^^s—`^

104	 Development Testing Standards 	 [CHAP 14 i

c. Each module has been specified in suf ficient detail to permit coding
without functional ambiguity, as a unit, using linkages to striped
modules or stubs:

d. The code is a faithful translation of the design specifications.

Overall end=to-end and final acceptance testing for delivery is covered in
the next chapter as a Quality Assurance function. 5

14.1 RULES FOR SPECIFYING DEVELOPMENT TESTS
Vr

The objective of this section is to set forth a set of basic rules that will

i ['x

increase confidence in program correctness by demonstration of its
implemented features.

1. Devise a sequence of tests or test policy to validate the program at the
current phase in accordance with the remaining rules of this section. For }
each test, decide which modules and program paths are to be exercised..:

These tests should thoroughly exercise all error or overload.
recovery mechanisms; It is the rote of testing to verify that
such recovery modes have actually been ,provided for in the
design and that they function effectively:

2. Identify for each test the set of needed striped modules not yet coded, i
and then design dummy stubs for such in 	 for testing purposes. The
function of these stubs is threefold (Figure 14-1).-

a: To affirm that control flags (and 	 their values) required by a
t

submodule are actually available in the proper form to that I.
submodule. I

b. To affirm that submadules which are specified to alter control flags
may be simulated in a way sufficient to verify control correctness of
their parent module:

c. To provide dummy initializations or translations of data sufficient to
verify the interfaces between all modules at the current phase. An
"Interface at the current phase"	 is defined as	 the	 set of all
assumptions that modules within the current phase make about each
other. .

k

Sec. 1431 Specifying Development Tests 106	 A

(a) Mudule being tested '.4 v*1b) Stub tor FUNC

:1111PNCI
RPT set to
true by
module ...

FUNCI. 'A".
and

set FLAG 14
far...

Requires Set33	 FLAG setup FLAGfatry	 in testFLAG	
?

4-je

FLAG NOT FLAGinitialization
4

FUN
FU

C2„-
)4

FuNC3
andand a,and
't RPTreset RPT reset RPT

if... f ...if
(c) Stubs for FWI`JC2 and FUNC3

true
RFT Print

false

Require
Increment COUNT 0

Teft
iCOU NT by 1 in test

initialization(d)	 Procedure

Test output with FLAG	 true
on entry: ABAC

YnoYes's	 COU.NT,Test output with FLAG	 false 2?on entry; ACAB Ji,

RPT	 false

Figure 14-1. Testingoach flowline usIng4ummy stubs , (pfifitout shows coding complies
with flowchart; funcUonal correctness can be based on whether printout sequence and

othettrac6iintOtmit,lon!appeW . prop.erlo compute modulg:fundtloh)

MN,

r ,

108 Development Tasting Slandrards 	 [CHAP, 14

f7owline in the module. Such tests must demonstrate that the module has
performed correctly and that the module interfaces within the current
phase are consistent.

4. Use path monitors, trace printing; and other test-code features that
will provide visible (and savable) evidence of the partial program
correctness at the current phase.

For example, one may specify that all dummy stubs, upon
exec ►ttion; print out their module name, variables declared;
variables changed. conditions checked; etc. Also, special
execution counters can be inserted into each flowline to
count the number of tines each flowiine is traversed
during a given test.

S; Perform tests after the successful demonstration of Rule 3, above,
which inchide extreme-value, permissible data; out-of-range, non=
permissible data; and random data.

Design such test data principally from the user`s or
operator's viewability of the program, rather than as one
whe is acquainted with the internal algorithms. It is useful
to design such tests using the user or operator manuals, in
whatever state they exist at this point.

6, [define tests hierarchically, so that tests using dum ►ny stubs can be
rcn►n later (in greater detail' when the stubs are replaced.

For example, if a given set of data or conditions cause a
duniniy stub to he invoked in a test, then similar sets of
data or conditions can be added at later phases to test the
flowiines within the striped module replacing the stub.

7. Seel: the simplest and easiest tests that yield a high confidence in
Program Correctness.

For example, one may be able to test au ► indexed loop for
operation at k = 1,2,. , .,n (k being the loop index) to
ascertain that the loop is operating correctly for n much
smaller than its actual titer value; based on such tests, one
may then, perhaps, he able to assess that the algorithm is
correct for a general value of n, up to the actual value:

Ji
i

k

e	
f'

Sec. 14.31 Assembling and Ped nning Tests	 107

14.2 RULES FOR DEVELOPING TESTS FOR REAL-TIME
PROGRAMS

Real-time, noncurrent processes are harder to test than non-rea k, time
programs because of their general asynchronous nature. However, the 	 k
following guidelines are at beginning.

1. Identify the testable status in each phase of development and devise

	

methods either to invoke such events in real4hue, or else to simulate them 	 1
in Parametric time. Define tests tc embody these methods, each of which
introduces a minimum number of untried things.

2. Design dummy stubs for striped modules missing in the current phase
l;	 that will permit real-time tests to operate. lit particular, make sure that

f Sit	
permit

 stub ms 	 progra=ii consiste:icy. (i:e., .repeatabilay of results in .a.
"practical sense," even if there are hugs).

3. Establish the ways processes can interact in terms of tests that can be 	 !

	

performed to validate that interaction; and alien input this test philosophy 	 1
into the program design activity.

4. In addition to tests than traverse each program flowline, develop teats
to exercise the program's response to dynamic conditions and to evaluate
the program's resistance to deadlocks, thrashing, and missed deadlines.

. Develbp tests that include perturbations in hardware configuration;
timing, or faults:. Stich tests are, perhaps, best done b y simulating the	 :.
hardware until consistency and correctness are verified,

ii: Consider the use of hardware simulation to provide test cases that
exercise the basic features and interactions of the software and stress the

ldesign criteria as well, Simulation is	 artieulariv effective in stressing th e-	 p	 g
software in ways than: are difficult to control on actual hardware,

_	 14.3 RULES FOR ASSEMBLING AND PERFORMING
TESTS

l	 1. Append or merge dummy stubs and other test code with the "control'
copy" of the program in the SDI,. to form at s

y
cratch-file program on which

development tests are to be .rain (11Figure 1.4:.2). Do not. maintain a . sepalrate
copy. of the evolving program for testing that could later be 	 cleaned u1L	 g P	 g	 "	 p
to become the . final- program:	 3

^.

^^_]' 	^'X.-tiL.^L.. aPi,X1•_.^-_c.^'YV.e m.^x:^6'.::ki. 	 r, i..yirs	 _-['	 _ na.,.,r, r1h^ .«!r.i <	
%,',ppxy fi. ,̂ ., r: .kh^iS.i[irtv ,^ 1 ^ 5 ^ 	y	 ^ i'Jfino"^"^,s^	 a'R.4^a9_^!^'.-.^`th^ti^_._4'e^n.^r".,e.^c`Y«1.,s. "`we"'.^ ^s,<<«°'4	 (K	 4r1	 >	 s^^5.	 .l^'r`iuC^	 ^	 um^iiful[]^.BI	 ."^'S^'^1^A^is..^"^ie^	 ^	 k. _	 't.

["CHAP. 14108 Development Testing Standards

Sec, 14.41 Costing Test Elements	 109

2. Establish and code linkage-editing procedures to collect the control
copy, dummy stubs, and other test code into an executable program for
each test. (In. Figure. 14-2, the test version of the program is denoted as
"Test Assembly'; the linkage-edit code is Identified as "Test Linkage Edit
Code.")

3. Test real-time programs for consistency and then ascertain correctness.

14.4 RULES FOR. CODING TEST . ELEMENTS

In coding stubs and other dummy test code, it is worthwhile
remembering that, while this dummy code may respond test data back to a
module and its hierarchic ancestors, tha t. data is not the actual data that the
program will access during final operation. It is data supplied to verify
logical control and data-space control functions only Therefore, testing a
module having dummy stubs succeeds only in testing the control aspects of
that module relative to any data emanating from the stub. The data design
is not completely verified until the actual data structures are actually
accessed in their specified manner. Nevertheless, stub tests do contribute to
data structural correctness.

1. Code test stubs in accordance with any specifications for path
monitors, trace printing, etc., as may have beer prescribed.

jf
2.. Keep the dummy code simple. Do not try to perform the functions the

actual module must perform. Rather, simulate the interface needed for the
tests specified only. Remember, stubs are discarded once the actual module
has been coded:

j
iA

For example, suppose a module specified to "accept 	 i {
commands from a terminal,. translate these into the setting

c of a control flag; as specified in Table 4 8.T4, and return,
this value to the program" is to be dummied. It is then

(sufficient for the stub only to return the values of the flag	 1
F

in some simple, test-controlled way, in order to :test the f
effect of command inputs on the remainder of the .program
(Figure 14 3). The stub need not recognize the input a
commands themselves.

3. Code stubs primarily to simulate control and data operations for the
x

current tests) Do not create, test for, nor alter data that is outside the
scope of current test(s). That is, do not code' irrelevant actions into stubs.

ti

A

[CHAP .14

(b) DUMMY Stub

INCOMD

Set
COUNT 0J=u
in :Module ...
t
to

initializeo Initialize test
Set
COUNT
dbuNT,+-i

COUNT

7
A

110 Development Testing Standards

(a) Striped Moc!Wi on flowchart
under test

I
INCOWD

Sift CORM
as in

I d) Table 5 i 8.T4, specifies
UVJ1MrLM Settings

Conditions

Actions:

Set CONFLG 	 5 2 3
CONFLG 2	 CONFLG 3	 CONFLG =5

ry

CONFLG

Figure 14-3. Simplp example of a dkjrnrny Stub
that

merely sequences through control
flag (CONFLG) values to test control logic of parent flowchart ";S1

4. Code several: separate, simpler tests rather than one large test, if this
will speed the total job of stub coding and prograin testing.

5. Insert trAce=inonitor code in :paths (other than dummy stubs) on an as-
needed basis for checkout.

Trace-monitor code is code inserted into progmm paths to
verify that the program during execution went through that

:path; In some instances, it is wise to "breakpoint" (test
stop) A module at its entry to set appropriate data values,
arid, on exit, to. query the exit status.

8. Perform tests, first, to .prove.	that the code matches the flowebar t for
other procedural specification);. 	then, examine.-test output to

assess program
design and operational correctness.

.	 .
.	

.......

t.
I-A

Sec. 24.61 Documenting Test results
	 111

In some instances, due to the great number of dummy
stubs which may be present at that time, it may he
advantageous to delay the design or operational correctness
testing until a significant number of the dummy stubs have
been replaced by the modules they represent. Any
questionable design items noticed should; of course, he
marked for later evaluation in the overall system.

14.5 RULES FOR DOCUMENTING DEVELOPMENT-TEST
SPECIFICATIONS

1. Insert test and dummy stub design guidelines into the SSE] Test
Specification section. This material should include, for each test;

a. The modules being tested; the phase, group, version; etc.

b. The purpose of the test (i.e., which external specifications are being
verified).

c. Test inputs.

& Test procedures; policies, or guidelines.

e. Outputs to be achieved,

2. Specify test code, test data; and test procedures in detail sufficient for
coding and testing, to the extent that any test code written, or any test data
used, or any tests judged to be in compliance with. the specification, should
then wield the same high confidence in program- correctness.

3. Specify how correctness of the modules under test is to be inferred
from the test output. For each test, identify which functional specifications
are being validated; or give a rule for determining which functional
specifications will have been validated based on examination of the output.

14.6 RULES FOR DOCUMENTING TEST RESULTS

Development-test documentation consists of an evolving Software Test
Report (see Appendix J), which summarizes each test, the -modules
involved, and the results achieved; and locates the output in the project
archives. The following riles help organize this documentation for
completeness and readability.

1. Write a simple description of each of the milestone tests performed,
and insert this in the Software Test Report. Identify the modules in the

r.

7 -J.^.. c.^a ^, tk,'tiant,.	 ^..-:d= cx,n ^. ^.r_^_ ^A^c:,^, smyw.a^_ d^'"^ac^.^x^: +•, _

':ii

112 Development Testing Standards 	 [CHAP. 14 f

current phase that are being verified by these tests; it is permissible to
designate complete design phases as entities, as "all of phase 3, plus
modules...."

2. Archive code listings of each of the modules being tested and each of
the dummy stubs. If a module or dummy stub used in current testing is the
same as that used in a previous phase, it need not be relisted if properly
referenced; as "The dummy for PARSE is the same as that listed in
Section ... of this Report."

3. Maintain a "Development Test Directory" as part of the production
:og in. the :Project Notebook, which lists all major modules and gives cross-
references into the archives of tests.

4. In cases where test specifications or criteria are broadly stated; report
how correctness of the modules was inferred from the test output. For each
such development test, specify which functional specifications are being
validated, and the extent, if only a partial validation.

5. Collect all test output for storage in the project archives. Arrange the
test output in the archives so as to be locatable using the development test
directory.

B. Log in the Project Notebook and summarize in the Software Test
Report Al failures, ambiguities, incorrect' actions, etc., for each test.

7. Maintain a file of ".Discrepancy Reports .," into which are accumulated
all of the problem reports related to the design, cod_ i_ng, and testing, up to
the current phase:

Include in such reports the category of .problem, such: as
control logic error, data extraction error, undefined

variable required," "destroyed variable needed by another
module," etc. History of this sort is needed to refine 	 4
standards and improve future estimates of project activity;

4f'

3	

t^14.7 RULES FOR THE SOFTWA .P.E DEVELOPMENT
LIBRARY

1. Establish a standard :file-naming and management poticy for test
assemblies, test data files, dummy stub files, test code files; _scratch files, etc..
(See Rule S of Section 13A for one such example.)

^	 ^f

d+

kx
t

See. 14 . 81 Diagnostic Procedures	 113
3

i 	 Y

2. Retain master copies and backups of all file elements (except scratch
k

	

	 files) for the duration of the project. Files may be updated, or output on 	 i
tape, but not deleted except as provided for in the backup policy. At the
end of the project, the entire contents of project files may be dumped (to
tape or printout) for the archives, and removed from the computer.

3. Retain a copy of all file and documentation updates in the archives. If
an update was initiated by an engineering change order, enter appropriate
cross-references into the project change-control "log.

4. Maintain a cumulative record of the computer resources used to test
the program for later evaluation of team productivity.

Measure CPU time, number of runs, etc., and enter these
figures into the Project Notebook, The total CPU time per
1000 source card images is one such figure that can
characterize the project 's usage of developmental support
resources.

14.8 DIAGNOSTIC PROCEDURES

In this section, 1 do not want to give a full set of diagnostic techniques;
but, rather, how the tester should respond when errors are de. tected.

I. Do not discard test data, test code, dummy stubs, etc., when errors are
found in the program: Rather, retain these in order to retest the program
when the discrepancy is removed.

2. Submit Discrepancy Report forms into the archives for each failure
detected, and summarize each such difficulty in the Software" Test. Report.

	

3: If a real=time program fails in consistency (non-repeatable errors), first, 	 t
seek ways to make the program at least co►,sistent; .end then correct it. I

E

4. Make all. modifications to correct errors using standard software

	

maintenance facilities for source and object text. No modifications 	 s

	

(especially binary corrections) should be made while conducting a specific	 {

	

test: If a binary or other such modifications are necessary, then rerun the	 j
tests after the source program has been updated.

t
This discipline encourages more reliance upon testing as a
.program verification arid, :rather .than as a design -patching
WO

- .-. V3ifA^i^e`11^rf	 rrir^vnxy.e.r

'y
Al

^r

114 Deaelgpment Testing .Standards 	 ('CHAP. 14

5. Determine the set of conditions that result in the error. Then submit
the program to these conditions and ►nonitor the execution as follows:

a. If there are concurrent processes, monitor the interprocess communi=
cations. Typically, this requires examination of synchronization
controls and significant parts of messages transmitted between
processes. Such an examination indicates the flow of control under
which the error occurs:

b. Establish the relevant types of trace information for the processes of
interest and grace the How of control (and timing) within these
processes to isolate the problem into :narrowing subsets of candidates.

c. Once the offending segment of code is isolated, examine the results of
detailed computations (register contents and memory changes, if
necessary) to .isolate the specific cause.

B: Use simulation of hardware in noncurrent program malfunctions to
examine such things as:

a. Whether a supposed process was executed or not.

b. Whether test results up to a given point are correct.

c. The sources of possibly erroneous data.

d. WW6 of two or more events occurred first.

7. Seek abbreviated or scaled-down tests that are sufficient to invoke the
malfunction as a measure toward reducing costs and hardships of computer
usage.

8. If an error seems to appear because data is dieing destroyed, then
check the scoping, either by tests or visual inspection, of the offending
variables or files to find out where these items are being misused.

14.9 SUMMARY

..4°z

I
t This chapter has addressed .disciplines that can :be. apptied to an evolving

program in order to increase its probable correctness upon conipletion: The
disciplines border on formal Quality Assutance measures, which are the
subject of the next chapter. The treatment of "Standard QA" to follow, in

` fact, -has this discipl ine imbedded within % but extends the concept.. of
correctness" and	 testing' beyond the program top-down evolution to the ' r

i: more encompassing concepts that are needed to yield a sout"d, reliable, and
well-documented piece of software,

.de'':'.^tPT^<x''v `9«^rK.'ae3-'?'?'.h9^++'e`a°.h'^.:^..^:. v f z._^ ^Li<<x-.r3::........,.c^u+_	 3e__r k•a. s

t

F*

XXV. QUALITY ASSURANCE
STANDARDS

[el this Out atc±r T shall discuss disciplines fn support of software
develiopulunt whigh contribute to the quality of the delivered product, both
illnetiPonaal anal clocntnctltatiional, over and above the normal precattticons
;,ud practice:;, for good d"ign, coding, develcopmeat testilig, and
dcacu ► uc^nttatico ► i that have been in previous rllaptcrs. The
disviplincs ill this categ on , i call "Standard Quality Asaura nce," or, for
short,)list"QA.-

F

Quality Assurautcc talcs perhaps its many different definitions and roles,
in software production as tllore are producers of gutalit y software. '1'lac
pmend purpose of QA measures, however, is to minimize productioll
problems by hcuer plann ing and exercising better anal tialltor c olltroLs
during the development of the product. The agency that is chartered to
provide the required control functions is Quality Assurance., and many
developers rel at;ate QA mcusures to an organization separate 1'ro'll the.
cltsvelopnael ►t .team in order 1t.) obtain unbiased, dispassionate Volfir11144ola
that the product lu ►s met its reguire ►nants for dcliverahility, MtixEy
et► sto meets will insist on inspections. by their own persneuld.

X15

—	 +5^	 —k* a	 ^4-,uF:' sc2-^• dx.:,Rn	 ..^_̀ ^^"^"^w^^•R^^:^i 6 e r'i's	 ^:.	 ^,	 a---	 _

116 Quality Assurance Standards	 ['CHAP.. 15

However, i do not want to ori'ent this chapter's approach to QA along
organizational lines. I do not want to pichire QA as a task separate from
development, nor do I want to imply that it can be wholly accomplished by
an agency integrated into the development team. Rather, I would like to set
forth functions, disciplines, procedures; and philosophies for QA that can
be independent of the organizational divisions of labor.

The envisioned situation is this: A program and its documentation Have
been (or are in the process of being) produced. At eventual points in the
production, the developers have convinced themselves that a software unit
is ready for configuration-controlled status, perhaps with liens toward
future capability .not yet operational, but coming. At this point, .he
customer, user, or operational organization seeks assurances that the
software configuration satisfies delivery criteria.

The role I cast for Standard Quality Assurance is to provide this
certification. The role of this chapter is to make this certification
trustworthy:

15.1 STANDARD QA ACTIVITIES

Quality Assurance needs to be Both effective and. economical, in the sense
that the expenditure of effort and: costs to certify the product represent a
justifiable cost. savings in the software package life cycle: Ideally,
duplication of effort among personnel should not he necessary. Whenever
there is an. area of interest both to the developers and to QA, the QA tasks.
should be in direct support of development and not in competition. For
thin reason, many QA measures can be integrated into the processes of
design, documentation; coding, testing, configuration control, discrepancy
reporting, and change control. In later verification and certification of the
entire package, the developers should be in direct support of QA; and not
in competition.

Fortunately, the concurrent design, coding, development testing-, and
documentation disciplines, made feasible 'by hierarel ic; modular ., structured
programming, foster concurrent QA., as well: After ail, the whole method so
far described is predicated upon achieving a high degree of initial program
correctness. Many of the rules given in previous chapters are QA .measures. .
Therefore, much of . the QA funs tiorr is already .integrated into the
doweloprnent process:

For example, part of the development cycle includes peer corroboration
of design; coding, and developmental testing as a means for improving
software quality (in addition to producing reliable software more quickly).

k	 ^^

F

See. 1 5.21 QA Measures During Program Development	 117
^t

r

Part of the team organizational discipline is based on the presence of a
Software Development Library and Project Archives to .provide stable
communications media and developmental support to team members. 	 1

Audits necessary for QA also have access to these media.
i

Besides the informal QA measures within a. project, however, there needs
to be a formal; endAe-end demonstration of the software duality and a:

complete audit of the entire software package the executable program and.
its documentation. These should check conformance to standards, design vs.	 i
functional specifications, code vs. design; test results vs, test specifications,
performance vs. requirements, etc. Final certificatioti, is the verification seal
for delivery.

The areas within which. QA can function are [121,

a. Participation in design reviews.

b. Review of documentation, listings, etc.

c. Standards enforcement.

d. Configuration control.

e. Discrepancy reporting.

C, Change control.

g, Testing and test review.

An auxiliary activity { 13] falling into the. QA area is the gathering and
dissemination of statistical data relating to coding, testing, 'later
maintenance, etc., with respect to reliability and performance measures
collected over many projects. Such data ine:reases the unde rstanding of the
mechanisms by which software and software projects fail, calibrates the
amounts and types of testing needed to achieve a. given reliability, and
monitors the differential utility of testing and QA measures as programs
increase in reliability.

1 15.2 GA MEASURES DURING PROGRAM
DEVELOPMENT	 r

Although usually not made a formal part of the certifieation role of QA, E
perhaps one of the greatest contributors to software quality is the use of
peer corroboration during each phase of the program development. Such
corroboration is a QA mechanism because it promotes communication
within the design ,group, tends to create and enforce standards, and
encourages .proper documentation and records.

~Z

I

Moreover, it is just .plain, everyday, good engineering practice. As in all
good engineering .practices, a design should be verified .Design verification;
as I mean it here, is a careful examination of the design by someone skilled
in design, other than the designer himself.. Perhaps the best choice for this
job is the designer's supervisor.; at the least, it should be a senior colleague.
The purpose is to get a concurrence that the design at the current level is
correct (i.e., that it will do what it is supposed to do) and is "good" by
whatever criteria have been established for the project.

Another contributor to quality software is the availability of malfunction
statistics within a prnject and across many similar projects. These statistics,
plus a good set of standards; can drastically reduce the "learning curve" by
indicating where projects typically get into trouble. Then; extra care,
contingency ,planning; and similar measures can be applied as the cases
warrant.

The availability of such statistics means that records need to be kept of
the numbers and kinds of difficulties encountered, the time-distribution of
such occurrences (to show when preventive measures will likely be needed'),
and the seriousness of faults. The Project Notebook is an ideal location for
such statistics during the project development phases; a summary report at.
the end of development can then be incorporated. into organization (or
industry) statistics.

I have already given rules which include these QA measures in previous
chapters, so they warrant no repetition here.

15.3 SOFTWARE TESTING CHARACTERISTICS

Dijkstra's remark at the 1969 NATO Software Engineering conference
[141 to the erect that "testing only proves the existence, rather than the
absence, of'bugs is a widely quoted truth about the nature of a necessary
process in software production. Frankly, however, the prospects for

y

'r

f '

f

3

_x

a
d. St>'

a..

:A

F

Sce, 15:31 Snftivow Testing Clumarteristies 	 119
	 F?

4

Almost every software project seems to enter a phase where it is "90%
complete," in which it appears to remain for a very disproportionate length
of time. Much of this time, as it turns out, is spent discovering and
repairing anomalies in the program, operatiouts manuals, or program
requirements. The numbers and kinds of anomalies in a software package
are natters of f acl and not matters of probability; however, since only a
relatively small portion of a large program's documentation and response
can ever lie verified in a practical sense, the process of discovering
anomalies appears to lie a random process.

Repairing an anomaly requires study, software alteration, and, then,
reverification. Because the differing kinds of anomalies exhibit a range of
difficulty, and because human interaction is always required, the repair rate
also appears to he a random quantity.

Statistical models of discovery and repair provide us with a basis for
extrapolating past performance characteristics into the future, as a means
of predicting when testing will be coinplote, or what the expected
reliability by a certain elate will lie. Such information, if gained early
enough in a project, can point out likely problem areas and perin'it the
reallocation of resources as necessary to re;^l gn completion date>> with
committed capabilities.

15.3.1 A Random Discovery Model

The simple model of anomaly discovery used in Chapter y (viz., the
probAbility that all test will find a new anomaly is assumed
proportional to the number of anomalies yet remaining) seems to apply to
many kinds of testing, especiall:,y in large systems with only a relatively few,
independent errors. This model predicts that an ensemble of identical
projects will find anomalies at a certain average rate, and that there will be
deviations about this mean of a certain magnitude. The average amount of
effort, here represented in units of the time applied, T,,, required to detect n
anomalies is given by the formula

k=o

The behavior of this average is plotted in .Figure 151. The mean-square
variance about this average time is similar in form,

l	
^,-- ^	

I
var(T,,) = z

t3 x-o (A - k)"

^- 5

x'

.;: - _...-^t:.. ;'; ..., 	 . .. x.^.^+t ., _,.,'n..r,.x,w^:."-:: su^n^^W?..s4^-ls^M%f"̀^1'ua^a^'"s• 	-

e

^ 1(

O
Z

10.	 2	 A	 6	 10
1
	2	 6	 10	 2	 4 6 10j

MEAN NORMALIZED TIME, XOTn

Figure 16.1. Normalized mean time to,reach nth anomaly

This latter function is not plottrcl, but the normalized ratio; variance to
square&mean is graphed in rigure 15-2. Both of these figures display -
dependencies upon n and the true number of .anomalies, A, which. of
course, is unknown. The first graph is, additionally, a function of a testing
productivity factor # (it cancels out in the ratio). The discovery-rate graph
is :plotted for several assumed. values of A, but constant initial discovery
rate; Xa	 #A.

1etionThe ratio av Tn^g^Tt), represents the average relative completion.	 ^	 fl? '.. "w
status during anomaly discovery. The behavior of this ratio is shown in
Figure 15-3. It shows, for example; that if there are 100 anomalies, then
when 90%,	 has been found, only about 44% of the total required effort has
been. expended.. It costs 56% of the testing effort to find the last 10% of .the	 }
bugsl And this cost increases to about 	 0% if there are 1000 anomalies. A #	 .
clear reason why software should have as'high a reliability as ,possible prior
to acceptance tests!

Discovering anomalies tells us two things: n, the number found so far, ,
and	 efforts	 to discover

f
A^h,^denoted t

va
andedme

max	 um l k 1ih. oo	 estimations	 a. .	 t ues simultaneously

satisfying the formulas: ,f

Al

,^'—'"may''
-	 ^.-°e.^:'^i`^^35_v_ie"ti^^sxx's^x13.fiau.a-.i."^m-zw.r'^<.^. ^... ,a`y.,,......_ - .0	 >. ^........ a	 ^,.

121

I5.31 Software 7'estirg G)ireracteristtcs
Sew.

ATII

f

^ a

j.
r

equ itions s ►
ibstituted into the first renders	 tlithese

,.

The second nt	 Fi sre 15-4 show s this relatsnnship,
u{ ,^•	 us	 anestimation o{ A independent

value of	 one metely
Aca ^dt0,n

ordinate. To find5thevestinlated

N

the estimated
u	 reads themeasured valises on the	 ro er n-curve.ratio, locates the p	 P ove, for

4
Womputes the inA end substitutes ha& into the last a eld 	 ild^variations n
corresponding 	-,	 may	 -

isis ill the measureNote that small variatnmentsfraction al A.^ usiless n. is an apprc esakile
1

the .predictions j s

11 ^^

t

¢?

4

A
2

20	

i
b

i

ra	 30

ye 10	 75 taa
a

6

E^

4.
u

2

_z
6	 10^p	

l0ti	 2	 4

0	 2	 4

..

lQ	 ANOMALY n

to detect nth anoma Y
Figure IS& Naniietlze^t uatience In time

r

t

,

-:ri{-F4 1'arA".../5.fry	 Yi.. .^'i_:t^-fob^r_T s8S	 -[.N1is[i^s3fv..C.NZI{i,aUl9arsYl.ny P 1i 2..' wyui^'.WS!.a'h.?^I:^h.^:^t^J:.t'SsL ;^L .^f.t7.r3".xxs lu.. rie. Y,'._^v..R _S^s 	 s'eat-:.SK.^r1i.Lel-s.L..41wL44^,..

i

Ih.

:f

[CHAP. 15122 Quality Assurance Standards

10z

6

4
I

l

t

a 2

c

ui
w

10

OU
f

6
CL
CL

t

'

i

q

f^

i.

See. 15.31 Software Testing Characteristics

zo

so

bai .
o

5o'
60

40	 50

ESTIMATOR
30, :.	 VARIATION	 40

20 MEASUREMENT 30
VARIATION ^.

20is	 _
n = 30

o	 10	 20 - 30)	 40	 50	 60	 n	 8a,	 90

IPA
S

123

x
i

= rJ'
r

TOTAL ESTIMATED ANOMALIES A

Figure 154. Measurement ratio ve maximum llkell -- hood estimator for number of
anomalies; given the number n of anomalies leaovered so'far

effort is yet required to find the remaining 10%. This remaining 10%
will almost certain ly require a disproportionate amount of effort to	 l
discover. However, that effort requirement is not unreasonable or
unnatural :It is one of the laws of software:.

c. The variation in the total effort that. an ensemble of identical projects
would require to discover n anomalies increases with n. That is Rut
unusual; most random phenomena display increased variations when
the means value also increases. However, percentage variations usually
decrease as the size of the sample space increases. The anomaly
discovery process, too; displays this normal behavior (Figure 1'5-2) up
until about 8045% of the anomalies have been found. Then; the
effort required to find the final 15-20.% of the anomalies can be
expected to deviate from the expected time by wider and wider

f margins; even on a percentage effort basis. If schedules are being set
or forecasts being made requiring contingencies or reapportionment
of resources; such variances need to be taken into account in order to

1

avert schedule disasters:

d; The above behavior .supposes that. a constant level of effort is being
applied toward' finding anomalies using methods which find these
errors	 as a :purely random eve. nt.	 Therefore;	 these discovery
characteristics will most certainly be in eli'ect unless some testing
method's can be brought to bear which either intensifies the effort or

organizes the test cases .in such a way that errors are morey

r

else

,[}}}

`l

3

y.	 t J	 k	 ^.	
S:y-	

- V.	 9	 ^) 	 S	 .	 :.xM	
FS 	 ti1 1 	 A	 t	 ',	 4	 ^	

k,T	 i^St	 }	 ,.dl.i- .	 ^'y

t*^w..=^.^":.+^eiw3-^rr{^eW.'̂ ^Wrr.Sl.^^f.^£.{A.i^.v1^^^dv^z^.^e'.^:^:ti bs^-'^-£'1iG r'1.-0+-T nt^^^Yt4' iiSwE 	^^fMts^'?`^.i"^'*^atHS ..r:.i i^._.t.r?Yt^.".-.Sf1'P^^"till..+y}`gl^^•.&Xs^°.er]^^.

sh.
,T

124 Quality Assurance Standards	 [CHAP 15
i

deterministically found: (The tests in this and the preceding chapter
are directed specifically toward this latter end.)

15.3.2 An Anomaly Repair Model
Before addressing a more general find=and-fix model. for anomaly

performance, let me first presume that a number of anomalies have been
discovered, that a constant effort (again measured in units of time) is being
applied toward their repair, and that the probability that the anomaly
currently 'being worked on can be fisted by applying only an additional At
effort is proportional to that effort, viz„ uAt for some constant effort factor
u. Such presumptions about the repair process lead to simple calculations
for the statistics of the required repair effort, TR„ for in

	T =av .l.	 m
ni m ^ J

var(T) _ In
u`

	

var(T,,,)	 i

T2

This model predicts that all of the n known an will he repaired
uniformly in time with growing absolute, but decreasing relative,
uncertainty. Each anomaly requires an average time 1. 1 1L to repair, and the
standard deviation from this average is also 111.

This model. also infers that once an anomaly is discovered its repair is a
fairly well-ordered process: The repair rate statistics do not depend r n the
total number found so far, for example. The characteristics of this model, in
fact, fit fairly .well with observable statistics in 'actua l projects; A best-fit
line through observable data; then., is a measure .of u.

Whenever the. initial find rate, JG in the preceding section, exceeds .u, the
constant fix=rate, there will be a certain span of time during which there
will always be open anomalies: detected; but, as yet, unrepaired: However,
there is an eventual time at which the decreasing discovery rate falls off to
the point at which .all knout n anomalies will have been removed, When this

i	 Condition (called "zero defects") occurs, the repair rate, of course, drops to
zero, and the model no longer applies,

ti

N
i

^1 -.N	 ^ rjT̀°	
{,.	

.L1'	
.^	 ^	 ^-	

_}K	 'S^	 }u ^,	 's	 ".4`	 -Fed.-- K	 ^"	 IJ ^^ ^. '..	
-, 	 a t4	 -'	 1	 ^ 	 -	 ^

0	 100	 200	 300	 400	 500	 600

AACA,AI Ih1 DKAM 17.M Y'11:AC \ Y'

100

`90

80

70

60
.J-

50

Z 40

30

20

10

n

..._..:...	 . _._. _	 , _ ._ ,^.^... _..	 -.,,	 a	 ..._

Sec, 15.31 Software Testing Characteristics 	 125

The average time to zero defects can be estimated from the discovery
and repair models and data by extrapolation (Figure 15-5). This will occur
roughly where the two curves cross, a condition given by

nX	 n-1	
1

p ^A EA-- k
k=0

On reaching zero defects, there remain A — n anomalies yet to be found As
it turns out, the ratio r = 1 — (n/ A), or the fraction yet undiscovered at the
time of first zero defects, is a function .principally of the initial rates of
progress, as shown in Figure 15-6. According to this figure, an initial find-
fix ratio in excess of about 2.2 will result in fewer than 10% lurking
anomalies after zero defects have been reached.

15.3.3 Effects of Variation in Etbrt
The anomaly models in the previous section were based on constant

levels of effort being applied to finding and fixing of anomalies. The
Assumption of constant effort is tantamount to equating time and
cumulative expended effort in the equations and figures presented. In
actuality, however, the effort profile may be variable for many reasons,
among which are manpower phasing, availability of computer resources,
and availability of software resources. Thus, the accumulation rate of
applied effort in ay differ greatly from the linearly rising accumulation of
time.

iCHAP. 15126 Quality Assurance Standards

10°	 T`

6

4

L,

r
2

10^E

b

4

I

u

2

10-2

6

4'

A=

100

2

1Q 3

0	 1	 2	 3	 4	 5	 6	 7

A
u ^

:Figure. 754 Mean time interse tion approximation to fraction of anomalies remaining at
time of first zero-detect condition

It is typical that effort during the early testing is at. a rather lower level
than later on, because "things are getting up to speed:" Effort is being put
into planning, coordination; training; and resource acquisition rather than 	

f

into actual testing, Toward the end; effort may drop again, to the level 	 i
supported by operations and sustaining personnel. This phenomenon is 	 j
illus rated in Figure 15-7; in this figure, 1 person is applied for 7 days, 7 for
25, 4: for 22, and 2 for 30 days:	 3

t

y	 ..	 ,^LC
	 iy	 x	 pia+?	 ,

500

400.

0 3001-
um
U^
W	 CUMULATIVE MANPOWER TIMES

01

LQ 200:

7

MANPOWER PROFILE, ,,(II
0 100	 X 4
Z

0

0	 10	 20	 30	 40	 56	 60	 70	 so

TIME, days

Figure 15-1- Work-level profile and cumulattva effort normalized by Initial discovery rate
of A0 - 2 anomallea,per man-day.

Compensation for varying levels of effort (at the same productivity. level)

Is accomplished: by replacing the time variable in figures and. formulas by

the accumulated hours of work up to that point. An illustration of this

principle appears in Figure IM.

Conversely, one may compensate in reverse: That is, the anomaly -versus-

effort behavior may be platted : and analyzed using the previous estimators,

then transl4ted via the projected work-level profile into estimates of

Anomaly status at future dates.

vi

0
Z

)0
?0

30

70

60

So

30

See. 1521 Software Testing Characteristics 	 127

r

rigid

a

r

a,>

rn

'_.

9

128 Quality Assurance Standards
	

ICHAA 15

When work levels change; the productivity factors are also apt to change
merely because a different set of individualsare performing the tasks. If
work levels remain constant for long enough periods of time, the relative
productivity per individual can be estimated and also factored into
calculations. An example of such re-evaluations of productivity is given in
the next section.

15.3.4 Cascaded Testing
Even when work profile effects are factored in, it is frequently the case

that discovery of anomalies takes .place in various environments for
supposed economic reasons. Certain anomalies may, therefore, not be
discoverable in one environment. but, perhaps, discoverable in another; due
to different software ,r hardware configurations.

r	 `

k

For example,, if a set of real -time programs are first tested outside the
real-time environment, those anomalies that are due to the real-time
interaction among processes are; perhaps, not discoverable by any means
until the programs are integrated into their true operational environment.

In such cases, only a lesser .number, say, Al, of the total anomalies will be
findable during the first phase of testing, no matter how long Carried forth.
If the second phase takes place in the final operations environment and
begfhs after n anomalies in the first environment are found, then A -- n
become discoverable during this stage:

This phenomenon is illustrated in Figure 15-9, which assumes a constant
level of effort #. A = 100 total anomalies, and Al = 50 findable during the
first phase. Switching to the operational environment takes :place at 45
errors, or 00% of those that can be found in that environment. As may be
seen, multi=staa testing may take a significantly longer time (31% in the
illustrated case to find all anomalies.

Moreover, the test time requirements on usage of the operational facility
are about the same (52 vs. 46 clays) in .either case, Thus, an expenditure of
16 days saved B days in the operational . facility. Actual dollar costs for such
situations need to be determined in order to justify multi-stage testing when
it can be avoided. Unless there are Other overriding constraints that
mandate multi-stage testing, this form of "l7ottom-up" anomaly .discovery
plan is likely not to be cost and schedule -eilective.

	

Figure 1540 is an actual anomaly history; unfortunately, the work profile	 i	 ^
and productivity information was not available so that a more detailed

	

comparison with the theoretical models was not possible. However, the	 £
reader may note that all of the predicted elements are presents The effects':

N,rte

I

0
z

See. 15,41 Acceptance Testing and certification	 129

\7	 \7

9016
LONGER

70- ?BESTS IN
60 - 015EPATiONAL

ENVIROMENT
50

40 - SECOND STAGE
30,- TESTUNG

20--
FIRST

x

	STAGE
in, TESTiNG

U
0	 10	 20	 30 40	 50	 60,	 70-	 8b

T IME, days
i.

Figure 15.9i Coaraded dIspovqry of 100 anornallesin 2 Wages where So anomalies only
were visible during first stagelor same —OA

-level effort during the start of testing; the decreasing rate of anom lyof low-level	 a
discovery in the sub-operational : environment, the increasing rate thereafter
in the operational environment, and the ultimate leveling 69 as testing
colitinued, 'rhe figure indicate-.; the relative levels of efforts needed to make
the plotted curve best fit the measured points (crosses). The estimated final
number of anomalies was about 306, hat only about 218 were findable
prior to operational transfer,

15.4 RULES FOR ACCEPTANCE TESTING AND
CERTIFICATION

The ultimate goal of a software package is that it operates error-free and
meets operational requirements. The proof that it performs as it should can
he accomplished only by adequate demonstration and stringent testing. The
following rules do not address organizational but functional responsibilities.

1. Determine, the type and extent of detiveruble items and testing needed
to satisfy the acceptance requirements.

2. Develop and document test plans and procedures that define what to
test, how and when it is to be tested, what to look for during and after the
running of the tests, and what to do with materials supplied for testing.
now.rintiinn-, of tmtr in the Teqt SnLeifination in the 99D should include

s ie.

130	 Quality Assurance Standards 	 [CHAP. lS

350

's

300 ...

TOTAL	 ♦iPREDICTED	 +^
t 0250 ANOMALIES	 THEORETICAL(252;t 45 	 CURVE

TO DISCOVER}	
++

	 .
3+	 A -u^ 0

i

I
q 200 +.#,	 A'--106

+
WERATiONS

150
!	 TRANSFER

a 100.

+

RELATIVE LEVEL OF EFFORT

+	 h0 = 1.0 r
50 .. A = .218

5

0
0	 5G	 lob	 150	 200

days 3

Figure 15.70. Application of theoretical anomaly discovery mode; to actual project
Involving:about 700;000 lines at assembly language code '	

u

b: Equipment (hardware) required to 'support and complete the test.

c. Software required to support the test:'

d. Limitations relative to the accomplishment of the test, such as
timing; hardware/software interaction; etc. :.

e. Methods to he used to verify performance of the software, such as
inspection; review of analytical data, visual displays, and analysis of
output

L Acceptance criteria in terms of presence or absence of specified
characteristics, such as inputs, outputs, limits, ranges of input/output;
amount of data, and critical values.

g. Test sequence or list of ordered steps to be executed to perform thetest.''
h. Initiation instructions relative to bringing up . the system into the test .

CUik iguratiol::

{

f` I

t

^^3	^:^!'.}.^Fw-: urt.^..§.-:.-^-^_<._ ^,^-.57-".5:-^:R.r.^r..^kS,_.x;Sfhsi:v'^1 N3. .r_J3t^^rvM.:rn"3.f"'^e. .'S^.	 v.l•'.+'":^^aSL ^^.^ti•"fiw._!3,.'^.^'^4.3';/Y:?,^»4..'rv^.^,i^:.,:^kr^{:......e^S.°^F^'^.'^^'^-Y.r-.:Y,:I+'"RtV e ..-s	 4.:'£ _....^.^^»'^ ,...Y.d'3.^.x, ^.'YA'YC;.

r x.,".y.._!M4 -:.c, Y._ ,._ v_.,<__.._..y.....^...n'W,r[.wvn''1«.^r^sYY,"..*f3^:,1.:]'

Ser. 15.41 :Acceptance Testing and Certification	 1$1

i. Termination and restart contingency instructions.

3. Schedule and perform tests, complete and end-to-end, in accordance
with the test plan, bant first as "validation tests" or "rehearsals" that are
basically gross checks of tine coding against functional specifications and
validations of the test. procedure documentation. Encourage the develop-
ment-testing personnel to perform these validations themselves, to attend
the rehearsals, or to monitor and critique the testing results, If anoanalies
noted .during these dry runs uncover program discrepancies, advise tine
project manager for appropriate action,

The SSD "as built' or acceptance readiness review freezes
the configuratio n for delivery tests. All changes subsequent
to the freeze require: fornnal anomaly reporting and
archiving of redlined items. Ali anomaly summary should
he presented at the acceptance review.

4, .Ascertain that tine progrcann response meets its functional regnirennentr
bmed oil derived primarily from tine user/operator manual(s). Ef tinning
is not critical, enable tlowline-trace featums to gauge what percentage of
the actual instruction code has been tester] during this functional testing.

5. Ascertain that the program response meets performance requirements
(speed, memory usage, ete.) by benchmark tests derived primarily in
response to system and environmental requirements, but using tests
developed for functional testing. That is. certify tine performance
parameters oil 	 same portion of tine program certified functionally.

G. Perform final acceptance tests only in the actual operational
environment or in all duplicate of the actual. Otherwise, !attach a QA
lien to the certificat:ionn for later removal, rafter delivery and contingent
upon states] retest criteria.

r	 Sinnnliation in other than the actual operational environ-	 4
ment is useful as precursoq, testing or perhaps as final
development testing; however, the testing on which 	 i3
acceptance is based should he performed as stated, The
acceptance test procedures shoaid include the generation

and loading of the program to he tested from the delivery
tir	 source tapes/disks.

7. Prescribe tests that,. if successfUL yield a definable level of confidence
in :program reliability.

Test all anodes of operations, all logical conditions, and all 	 t

^f. data conditions .using confidence-level techniques when

was

i	 'k+^2^e+T's	 x -rrt..	 «icz.s.zPr.°.St'.,::5°'`"t`5'?3..^^ict`
w.^^2W_n

432 !Quality Assurance Standards	 [CHAP. IS

they can be applied. See Section 9.4 for one such
teehnique.

8. Subject the program to anomalous data (containing errors, out-of
range vaiues, wrong data sets, etc.), overload conditions, and improper
operations 'interfaces (such as control-sequence errors) to verify proper
program recovery in all cases:

9. If errors are found during certification that are daze to the user/
operator manuals, rather than the program, arrange to have the manuals
corrected before delivery, or else state such errors as :a lien against
certification, later to be removed;

10. Record all deviations from test procedures, impound all test output,
and recover all 'test materials (that are not part of the deliverable
configuration).

11. Classify all anomalies by priority or seriousness in standard
categories, such as:

a. Removal of anojnaly is critical for usage of the software as "required.

b. Anomaly degrades performance or increases operational . risks.

c. Anomaly does not -prevent software from being used successfully, but
it is undesirable in that it requires user/operator reorientation or
work-around.

15.5 SOFTWARE AUDITS

In general, a QA Software Audit [13] consists of a visual inspection of
documents to determine if they xneet certain known standards and 	 !
requirements. An audit is not intended to review the. conceptual approach
to a solution of a problem or to :a .design, It should simply provide definite.
assurance that certain documents are in accordance with ,what other
documents have prescribed. When instances of non-conformance are found,
an audit report should explicitly . detail the location an al`. type of non-
conformance:

If QA audits are carried concurrently with design; coding, documents-
tion, etc., such audits decrease the possibility of oversights, avert

i misconceptions that: could result , in major rework or liens, prevent the
augmentation or alteration of the design unilaterally at later design stages
without proper approvals, and encourage a uniform, standardized design:

n,

j

t

v
Sec„ 15.51 Soffrvare Audits	 133

YY	 ^	 ij

S	 '.

Let me stress that validrding the module algorithm is not a part of the
audit Rather, the auditing process is purely h "bookkeeping - job,
something which keeps the design "honest." It can, and .preferably should,
be done by someone other than the producer himself, as 1 sta7ied earlier. If
performed by a peer, then the peer can both audit and validate.

2.
15.5.1 General Rules for OA Audits"

r
1. Prior to the performance of an audit, make a checklist identifying the

practices to be used; the documentation segments to be present, the
standards to be met, and the problems to be avoided.

2. Identify the limits of the audit in the current development phase, such
as which modules are being given what type of audit (design vs.
requirements, code vs. flowcharts, etc.):

:r
3. Obtain; for auditing purposes, one or more copies of the

documentation that represent the product at the current audit phase.

4: Utilize personnel: for QA who have a good general understanding of
the project in particular and a sound practical experience in QA techniques,

5. Generate a formal QA report to the cognizant project manager for his
information and action.	 Y

6. Do not transfer software from development to operational status
unless a QA audit has been made and certifies that discrepancies -found have
been properly resolved (perhaps by the attachment of a lien to the
certification stating temporary waivers to certain discrepancies): F:

7. Be watchful for omissions in content or apparent contradictions that
may become sources of confusion in later work.

S. Flag items as discrepant where clarity or exactness seems to be needed,
but is not provided:

9: Check the format of each document against its prescribed: outline for
conformity, as well as to catch omitted segments.

TO. Verify that stated program interface speeifieations under Audit match
{	 the cited environmental configuration .descriptions being assumed:

y

11. Verify the existence of all required documents, that these have been
completed to their specified levels, and that the quality of each is
acceptable.

9

1

f -

134	 Quality Assurance Sltttulards	 [CHAP. IS

` 15.5.2 Rules for Auditing Software Specifications	

r

3

' 1. Affirm that every function in the Software Functional Specification is
traceable to a functional requirement, and, co. nversely,. that every functional
requirement has been, responded to in the SFS:

' 2. Affirm that every function in the SFS appears either as a module or is
' imbedded identifiably within some module in the Programming Specifica+

r

tion. :partian of the SSI]:
k

^

3. Audit flowcharts, narratives, mode diagrams, data-flow diagrams, and
all other forms of design specification against structural and documentation`
standards, such as those. given in Chapter 12. Specifically, .make sure that
within :procedural specifications:

a. All decisions in each module test explicit, determinable condition
flags either defined within that module, .pawd to it as att a*gisment
(or globally), or returned to it by one of its subtnodules.

b, Each data structure referenced within a module appears in the	 z
"	 # Glossary and in a. Data Structure Definition Table (if its description is

incomplete in the Glossary):

c. All suliniodules of a given module Perform actions identifiable as
subfunctions of the stated function of the given module. Flag as
discrepant those subfunctions that seem to be missing or extra.

^F

^ d: All horizontally striped modules have corresponding flowcharts. (or	 I
equivalent) at the next design tier, properly cross-referenced by
Dewey-decimal notation: z

e. All vertically striped modules have corresponding interface descrip-
tions in an appropriate External Module Isiter€ace "Description:

' f. All flowchart boxes (or equivalent) which call either external or
internal subroutines have their Dewey-decimal number inserted .in . the
subroutine cross-reference table.

g Flowcharted specifications are. drawn and annotated as per .Section
12.7:2. There must be accompanying narrative, documented as per
Section 12.7.3, for each flowchart. Alternative procedural specifica-
Lions, such as GRiSP-PDL. should be documented as par Section 	 t

12:7:5:

4. Keep a record of each flowchart (or equivalent) audited . by name;
" l7ewey deClmal :identifier and'. version (late. 	 Assign	 r3iscrepancies to

d categories, an give the number of discrepancies found in each categpq--,

F

t
^1T

^F"s`^^,^ClkF .v. i.;	 z."P"3s^. ?	^^^'^ C	 1n^	 ,y	 ^	 3'	 ^_l^i2cail$-^	 €-	 -	 '^''_b^^ •c67^.i-'^a=?m^,',i^ri.sw::o ^:a z1	 ..e..€,^.t=4. ,n.'4,.-3^ut.. .^i .l.-sr.4v	 .. ,.t. , .x	 --

1^J

__	 _	 it^

See. I5.5,1 Software Audits	 135

5. Affirm that real-time programs have documented standards to provide
consistency in concurrent programs. Specifically, verify that methods are
addressed which treat:

a. Arbitration of shared resources.

b. Anti-deadlock measures.

c. Thrashing.

d.. Recovary from deadline failure.

13.5.3 Rules for Code Auditing
1. Verify that any programming constraints or requirements set forth in

the SRD, SDI), or'SSD are being met, such as:

a. Programming:language(s) used.

b. Use of existing capabilities.

e. Compile-unit inodul:arization.

d.. Reentraney considerations.

2. Obtain and use as an audit guide any project-peculiar standards, such
as:

a. Register names, usage standards.

h. Module-to=submoduie linking methods.

c. Special handling of certain design specifications.

d. Definition of compiler .parameters, literals, internal program labels,
and speef it storage structures.

3. Affirm that the code "matches'" the design. In particular, verify that:

a. The code takes the same modular foram as the design, except as
provided for in special programming standards or waivers.

b. No functions have .been omitted, nor have any extra functions been
inserted, except as necessary coding considerations to support the
given design.

c. Coded modules are properly cross-referenced to the design and
annotated so as to make .clear that the code does in fact match the
design, box for box, on the flowchart (or equivalent).

d_ There are no eomoiler diagnostics or.errors.

O

I % e

sV,' 138ualit	 Assurance StandardsQ	
y	 {CHAP. 15

h. Index-register usage tables or standards. ,t
c. Glossary of special variables or literals not in the design and not ;T

.' easily defined by name or use context.

! d. Memory use map..

e. Timing diagrams.

f. interrupt-handling procedures and relationships,

g: File, table, and data set descriptions:
_

h, Examples of input and associated output.

Listing of special flags; pointers And other indicators together with
their usage (which routines, areas or times of applicability):

j: Commentary describing features of code that link .performance to
design documents: r

k. Lists of error conditions, codes, and messages, cross-referenced to
r both the design charts and the code itself.

1. Restrictions on the use of code that is particularly sensitive to
changes in design {,mainly time and memory space, but also functional a
limits to subroutines, etc.).

m: Data usage, such as shared .public files vs. restricted -access files.
a	

n. Hardware or software constraints:

o: Use of privileged instructions:

5. Check that measures specified to provide consistency in real =time and
concurrent programs are actually employed on shared resources in the
prescribed: way:

6. Enter QA approval initials and date into the module headers of all
approved code modules.	 _ ~^

15.5.4 Rules for Development Test Audits
E

Having . .QA active during the module development testing is a measure:.. 	 i
taken to shorten the time required for acceptance testing and certi$catidti
For example, if QA certifiers can see that certain testing required ,for

has been	 aacceptance	 performed as	 routine correctness measure during t
developmenti then such tests 	 not need to be rerun .for: certification:-.	

. .may

1. Ascertain whether a given development test specification fulfills an y
acceptance test criterion. Mark such tests and observe the results of those
in partial: fulfillment of certification requirements..

s =

r

+`	
_mot	 ♦h'°.	 f	 'J`	 -vt	 - :	

Y	 V	 m._-,H	 .V"	 ei Y_	 T	 "L' '̂	''.'	 U a	 ''	 €ta ^;S.	 i	 :^,7S w,' F	 ,d7	 i'x.'=P`,..:Y .R',£. Y,Y`?b rAka-6

'In order for a given development test specification to
qualify as a partial acceptance test, the development test
must conform exactly to the (partial) acceptance criteria:
All functions will have been demonstrated as required., no
new functions or effects will appear, and arty failure that
may mar the result cannot have been the result of a
software anomaly.

2. Perform qualified development tests in partial fulfillment of
acceptance tests using the exact same modules .and data spaces as exist in
the final product. If any such modules have been altered, or if data storage
has been rearranged, the tests should be recertified.

3.. Audit the test code and test data used in development tests that also
apply to certification. Verify that the test code matches the test design, that
the test data invokes the proper required erodes of operation; and that the
program response echoes the-required response.

4: Audit the software test archives to verify that stated development tests
have all been run; in the prescribed manner, and yield the reported results.

5. Summarize the results of such development-supportive QA efforts so
as to show:

a. Coverage of functional requirements verified.

b. Error modes and recoveries demonstrated.

c: Timing, as appropriate.

d.. Validity of results by cross=reference to archived tests or other
documentation.

c. Signatures of test conductors, observers, or acceptance personnel:

L Names, Dewey-decimal identifier, and version date of the certified

i

C-

F

See. 15.51 Software Audits	 137

138 Quality Assurance Standards	 [CHAP 15

have high priority, high reliability, or high impact on operational
requirements, so that they may also receive more intensive testhig;

4. Verify that all required test materials, such as object program tapes,
test data, etc., are certified by QA and are under configuration control
before acceptance tests are performed.

a, Verify that all test. equipment required to perform the tests are
available and calibrated before acceptance tests are run.

B. Verify the proper conduct of the test, such as: .

a. The test conductor Ims brought the system up properly.

b, All conditions of test procedures are observed,

e laach ste in each test is executed in se uence withouE exec t"onpq	 P
using certified data supplied in the correct sequence:

15.6 DOCUMENTATION OF OA ACTIVITIES
ss,

k

Y
Reporting and. record keeping of. QA activities is an administrative

function	 that will	 assist	 the	 QA	 activity itself,	 as	 well as	 project
management, in tracking the progress of a software development and
evaluating its progress against :milestones; Several kinds of reports are -
useful; among which are the configuration status, discrepancy status, and R

- the change status,

t	 ; Configuration status reports are the wee k-hy-week summary reports of
the .progress, in terms of modules designed (arid documented), accepted; r
coded; and checked out, primarily for management It also can contain such

j information as the current version; last update date ., file name or tape a

mu Tiber, and statistics, such as core usage, etc. Figure 1^5-I 	 is a sample

E
report of this type. - t

In larger projects, where the coaguration evolves or changes noticeably
from day to day, there may be the .n. eed for more frequent and detailed
communication among the developers, in the form of an automated.'` Daily
Software Overview." Such a report, for example, may iufornl its readers of
new modules added or corrected problems :discovered or . Rx	 , the 6le'
names of current and test versions of the evolving system, newly created
test data, etc:

A discrepancy status report is another invaluable report, providing
management at predetermined intervals with a summary of the numbers

f and types ofproblems being encountered, the rate of closure of the open

1 -.	 ,	 „"v	 ^jrr .'r.	 '9'4ais4'.
p	 r "T'^v' i^s S'yY''Z't_''l-.h'a^+GFr_",4.r_'4

'affi4^+'4-

CONFIGURATION STATUS REPORT

PROJECT: MBASIC Implementation Report Date.:	 6113175

NOTES:	 Performance relative to schedule established 211175 based
an information as of 6/1/75.

CHART MODULE	 CODE DEV QA RfHEDULE:

CATEGORY TOTAL	 START TEST	 CHECK IARI COMPLETE

1 1 1 1 1 02/01/75 03/01/75

2 3 3 3 3 03/01/75 04/01/75

3 5 1 1 1 01/15/75 08/15/75

4 182 165 148 5 04/01/75 07/15/75

5 12 0 0 0 07101/75 08101/75

6 183 45 1 0 04/01/75 10/15/75

7 1 45 1 0 03/15/15 04/01/75

8 1 1 1 1 03/15/75 041D1/75

9 1 1. 1 1 0:4101/75 04/15175

P 122 3 0 0 06/07/75 09/20/75

R 48 0 0 0 08/20/75 11/15175

.1 8 0 0 0 10/01/75 11/01/75

U 9.6 7 3 6 07/15/75 03/15/76

T 8 1 1 1 10/15175 11/20/75

E 166 0 0 0 08/10/75 05/10/76

TOTALS 837 229 L61 20

PE,RCENTAG'E SUMMARY
CHART CODE DEV QA

CATEGORY START TEST CHECK

i 300.00 LA 100.00 LA 100.00 LA

2 100.00 LA 100.00 LA 100.00 LA

3 20:0!0 NS 20.00 NS 20.r1fl N';

4 90.66 OK 81.32 OK 2.15 NG

5 0.0.0 NS 0.00 NS 0.00 NS

6 24.59 SL 0.55 SL 0.00 SL

7 100.00 OK 100.00 OK 1.00..00 OK

8 100.00 OK 100.00 OK 10.0 .00 OK

9 100.00 OK 10.0.00 OK 100.00 OK

P 2.46 NS 0.00 NS 0.00 NS

R 0.00 NS 0.00 NS 0.00 NS

1 6.00 NS 0.Di0 NS 0.D0 NS

U 7.29 NS 3.13 NS 6.25 N'S

T 12.50 NS 12.50 NS 12.50 NS

E 0.00 NS 0.00 NS C.0'0 NS

TOTALS 27.36 .19.24: 2..39

OK On Schedule
LA Done But Late
NS	 Not Started (.w.r.t. Schedule)
SL	 9e'hind Schedule

r

14;;

w

}

See. 15.61 Dacumentdtian of QA Activities
	

139

21

11

CA
UJ

D
z
Q
U- 1'
Q
a
w
M
2
D
z

140 Quality Assurance Standards	 ['CHAP. I5

items, and perhaps the level of effort in closing such discrepancies. Figure
15-12 shows a plot of a project discrepancy history that might accompany
such a report.

When engaged in a large and complex software development, there will
be many requests for changes to various modules during the program's
evolutionary growth to completion. Since there car. be no change to a
controlled software item without first obtaining an approval for the change,
it is imperative that the status of each change request be monitored until it
has been completed or cancelled. The change status report is a summary
report of such activity, provided at .predetermined intervals to the project
manager. Figure .15-13 illustrates the content of an engineering change log
summary.

i

[i

Figure 15-13. Englneasinig change tog summary 0nn

141Sec. 15.61 Documentation of QA Activities

#

i

i

Such reportb as needed by the project which deal with software quality
are obtainable easily only if there are continuously current records of
routine statistics that can be easily trameribed at any time. Such
information, as mentioned earlier in this chapter, is invaluable for
estimating costs; manpower, and schedules for future .projects. The Project
Notebook is the repository for such statistics as well as the reports formed
from them.

Standard forms for change requests, change orders; change status, and so
on should be employed within a project, or across an organization, to
minimize the number of irrelevant decisions the suppliers of information
have .to make. Figure 15-14 shows a typical standardized sample form for
soliciting changes. Such forms are accepted and processed through the
Software Development Library during the development phase of the
software life cycle.

SoftwareChange Request

Software item: RiKI. No.:

sw In:

Hate'

Attachment:	 Yes 0No- qSubmitted'9 y ;	 Phone:

Version	 GontihlOS .Reply Oatc	 t Need Gate AnomaEy No. Cat-Prior

Change Description

Justification

Other Items Attected

Action

	

Disapproved	 (] Grounds _

Analysis recommended []

Approved	 q Proviso

Comments

Sigiiaiure 	 'Dale Sigdatiure Date

i

i

i

4	 ^

=y^

142 Quality Assurance Standards
	

[CHAP 15

rt

.

h

Sur, 15,71 Security, Integrity, and Configuratinn Contral	 143

specifications me:ct req%tirements, cede matches specifications, surd tests
verify that the .program runs without flaws,

This Software Test Report (STR) is identified in Fi ,gnre 2-12 as the
"Acceptance Certification" doeumentatiom Figure 15-15 presents a
candidate graphical outline of the sn, in which are shown summary
reports of till testing and audit activities, The first section of the report is
art abstract of the QA findings; the second addresses plans, resources,
support, and applicable QA standards and conventions needed to read the
remaining material, The remaining sections document. tlee Findings of
testing and auditing the software to lie delivered, r1 more detailed outline
appears in Appendix J.

15.7 RULES FOR SECURITY, INTEGRITY, AND
CONFIGURATION CONTROL

When software development items are produced, certified, and placed
under project control, they must not again he altered or changed in ally wxy
without proper approvals; testing, documentation, and notification of
concerned personnel. The Software Development Libran- is charged with
makitkg evenAting in the softwaru daveloptr ►cnt visible to all concerned;
while keeping the lock oil material. Such measures, since
they deal with program integrity, qualify its QA functions. The following_
retluq are guideline-s to.promote program integrity,

1. Maintain a master coley and at least one; backup or reserve copy of all
approved material in the SDI... Retain the master copy utndor the hest
physical security warranted by the developtnent circumstances.

The master-copy materials should not he used for testing
or updating, except in cases of extreme emergencies, and
then only while in the personal custody of ;personnel
authorized 1)) , the project manager.

2. Make backup or reserve copies available for testing, update, and other
development activities,

Tut the event backup copies are lost or destroyed, file
master-copy custodian will create replacements from the
master, exercising every .precaution to protect tile; plaster.

3. In the case of master copies of magnetic tapes or removable disks,
then in addition to the current master, retain lit least the previous master

i

nr
A
w.

r,
r

K

2 a

"C

v

aphiealioasUimat the .Soft m Test Report

Sec. 15.81 Summary	 145

and all the update transactions in a form to recover the current master,
should it be lost.

4. Keep all approved copy material up to date on a regular, Workable
update schedule.

151 SUMMARY

Even if any one project does not specify or require every procedure
described in this chapter,, nevertheless, I have presented what I feel 1. 9 a
total and unified methodology for assuring the quality of delivered
software. I have tried- to do this by describing QA functions rather than QA
personnel or organizational' assignments.

I have tried to integrate QA into the dayAo-day software d6velOpment
activities to promote consistency between the Software requirements and
the delivered product, and to detect problem areas early in the
implementation effort, t'hereby'lowering design risk.

04

G PAGE L'_'ANK WT

XV1. LEVELS OF DOCUMENTATION

The word "documentatioft;" as chibfly used in this chapter, refers
specifically to information recorded during the development of a software
system to explain the pertinent aspects of that system. The entire history,
from:.requirements and .program definition to design; to coding, to checkout

a. and. verific ation, and, finally, to certification, may need to:be documented in
one form or another. Included among the items to be so recorded are the
purposes	 methods,	 logic,	 rationale,	 relationships,	 capabilities,	 andt	 p

:limitations of the program components: Also :perhaps, to be included are "A

repoAs of manpower, budgets, schedules, and: implementation planning.

User documents, planning documents, and the others in Figure 2-12 are
further recordings of a program's pertinent aspects that must be written.

Obviously, some. programs . and projects will require -more or less
documentation than will others, and the documentation that is supplied,
may very well place a different emphasis in each of a various number of 7

areas.. The level and . orientation of documentation depends on a number of
factors, which :includes program size, usage, intended -life span, edi ticality of
system interfaces, training of o perators and maintenance personnel and
development team organization, to name but a few.

R, 147

7.1

An

14$ Levels of Documentation. 	 ['CHAP. 16

The objective of this chapter is . .to provide a uniform set of guidelines for
specifying computer program levels of documentation to fulfill human
communicational needs; subject to economic and schedule considerations.
That is; the guidelines are aimed toward producing cost-effective, as well as
useful; documentation. The types of documentation to be produced. and: the
procedures for doing so have been a. dequately discussed elsewhere in this
text and will not; therefore, be repeated; except, perhaps, by summary.

16.1 HUMAN FACTORS

Documentation is for humans; to communicate what humans weed to
know in order to interface in their intended way with the program:
Documentation failing to meet this simple criterion results from inadequate
human engineering. Problems involving documentation; thus; should be
attacked as human engineering problems; not as programming problems:

Good documentation is characterized by order and form, which display a
clear plan or design to whatever the writer wishes to communicate. Clear
documentation does not fall into order by mere chance. Order results from
careful arrangement of suitable material's to fit a definite purpose.

16.1.1 Problems Caused by Inadequate Documentation JA

A 1974 Report to the Congress [1$1 by the Comptroller General of the
United States presented an analysis of over 7107 questionnaires received
from Federal ADP personnel and auditors from more than 70 computer
installations throughout the United States, Europe, and Asia. This analysis
showed that inadequate documentation had increased the cost. of ADP
operations, weakened_ management controls, contributed to the loss of
funds and assets, and limited the potential for sharing computer .programs,

.	 especially mathematical .models• J

The report further cited madegpate documentation as being a significant
factor when programs had to be rewritten and systems redesigned, when
excess time was required to make modifications, and when delays were
encountered in completing assignments: Some of #ht deficiencies reported

E {

were:' that operating instructions were not suppl ied, or were not clear; that
the mathematical model was not explained clearly; that sample runs were s
absent; and that flowcharts were not supplied:

t l
.^

In addition, it was reported teat the lack of documentation made it
diffctilt for auditors and managers to review and identify internal contro s,

F	 which then required considerable . expenditure of time from the program-
ming staff to explain to the auditors and managers how the computer

sA

»...w'°^^ ^^+Y.:_-.,--.. 	 Z--..... ,^..	 ... ,a,a'E'S.«a .:.^.y..,... 	 g- =̀tei. ^'' a..^'.-5.1:',"''qi.'vL'k:.;ASc^iA-.xr_Y".:?9^r^i'dw^i^J13"lA'.^_YF.	 .d.`^'.^Y.—.̀-.,:f:.^yA.^...^e,.:•s:L 	 k^. . 	 f,.w.9... uXr,. c t..J ..i{.-.2i3.w^:. t ..^.. «.....5.. 	 a... ,. ,a.^'4!. _m-.e^.-„d.,	 v'^,.a:

yAy

Sec, 16.11 Hunan Factors	 149

system functioned. Lack of adequate documentat ion in many instances
prevented the application of programs to situations other than those for
which they were originally dt signed, but to which they were suited, if
properly modified.

The net effect of inadequate documentation, concluded the report, was a
high aggregate cost. that could have been avoided, had proper documenta-
tion been provided.

The causes of inadequate documentation seemed to boil down to two
tacks: The lack of standards and and the lack of review and enforcement.
Consistent preparation of adequate documentation under tight :performance
schedules requires good standards and continual review to ensure

compliance with their, stated the report.

"There was literally no disagreement among the respondents in the study
that good documentation practices should be maintained for all
programming projects. The problem seemed to be in assuring that the
necessary documentation actually got done. There always seemed to be
many competing tasks for the software system implementors' time; and
documentation often took low priority--a choice which all too often was
sorely regretted later.

16.1.2 Fulfillment of Documentation Objectives

Deciding the type of documentation and the amount of detail needed in
each circumstance can be made an easier task (than impossible) by setting
objectives and criteria for documentation relative to tvho uses the
documentation, what type v application they have, whether there is
sharing potential of the program, hart+ complex the program is; Note often
the program is expected to operate, how tone its expected lifetime is, how
much the documentation will cost in rel.ction to expected benefits or
probable penalty costs, and schedule criticality. Some of the objectives of
good documentation [tip] are to:

a: Aid workers in producing the program:

b. Aid managers in monitoring and managing production,
f, Ti1—W- —I .,cute} -44— ..- f- -v,--+- —A .,r,^areF.nnc7' :r.^nf 1C .}^a\.^K

iI

fi

100 Levels of Documentation	 [CHAP. 16

Of these objectives, only the first is of direct interest to the programmer
and the second is of concern to his supervisor. The rest are, in large part,
downstream Benefits. Hence, the real monetary value of good documenta-
tion is also likely to be downstream. Much of the documentation to be
supplied in fulfillment of these other objectives, however, is generally
required of the developer. Without proper standards, the developer is
forced to .gaess what level, form; and. content the documentation for others
must take; without proper incentives, he may not be at all conscientious
about his guessing without enforcement of standards, he may, perhaps
(inadvertently), not he able to respond adequately to the needs of others.

All too often; we tend to assume that anyone who can write a program is
also capable of communicating to others how that program works. To
make this assumption a fact is a matter of professional training and
discipline. Program documentation techniques need to be studied and
learned .just as diligently as programming techniques do. As I discussed in
Chapter 10, each worker in the development needs to be capable of
describing his work so that others can read it. It's just good engineering
practice.

I don 't mean to imply by this that there isn't a place for professional
software documentors in a software development. There is. Perha s the
host example of this is the documentation for users (or operator of a
program. Here, the ability to communicate is paramount; unless
instructions are complete and dffec€ive, a program can rarer , be used to its
fullest capability,

14oreover, users of a program have a right to expect that the
dowuinentation they see will measure up to the same professional quality
standards as the program itself.

I spoke earlier of incentives: There is little need for standards
enforcement when. standards are .viable and accepted by each developer as
his own self-discipline. However, programmers will supply most where
their incentives are greatest. if a low priority is placed oil documentation,
or if the documentation effort is given insufficient time or budget, or if the
documentation is not regarded as highly as they program itself,. then the
motivations for quality documentation cannot be expected to even tie for
first place.

i	 16.1 .3 What Constitutes Good 'Documentation?

Documentation quality is characterized by four attributes 1901
completeness, accurac. clarit and economy. In the case of program1?	 Y	 Y^ Y•	 P g	 i

s

^V

Sec. I6.11 Hunan factors	 151

-
"

o
documentation, these are promoted in the team model in Chapter 10 by
making required documentation bE the interfaces between development
activities. Theuali	 produced is precisely that dictated. b	 the activi tyq	 ^Y P	 p	 Y	 Y	 Y
receiving the documentation, as it must he adequate in order for that :R ,

r.
' activity to continue:	 Any documentation supplied, but unused; 	 is

superfluous, and could have been omitted; any not supplied, but needed, is r,-

" quickly apparent, and must be supplied before the activity can continue.

^. Good: documentation addresses a need an the part ofits intended readers.
There are several factors that help match this need to the usability of r

k

documentation. Big, overt: detailed documents ., for example, generally tendg	 Y	 p	 g	 Y r
not to be used very much, even though their users may claim they treed

,

those reams of detail: Size must not he allowed to become synonymous v
with complexity, 1

' The method of presentation very often contributes to clarity. Graphical
representations or displays and narrative descriptions are particularly useful
in promoting understanding, for example The proper narrative content and

. the proper graphic to be used, however, depend on the idea to be
communicated. For program logic, flowcharts or indented procedure
descriptions (such as CRISP-PDL) are effective; for routing of information,

" one may use data-flow diagrams, for data structures, a picture of the data
layout, format, etc., can be illustrative; for real.time program interactions;
there are timing charts, .Petri networks, and state diagrams. All graphics
require	 accompanying ex"planetary narrative to be effective:	 Other
candidate tools that foster Communication are: -

F^ 9

a, Standard outlines for documents.

h: Stundard symbols for graphics, ti

c. Standard .format for narrative descriptions.

P, d. Use of cross-references and indexes.

e. Display of documentation hierarchy.

L Display of program hierarchy (tier charts).

g. Use of decision tables.

h. High-1 evoLprogramming languages. "

i. Use of mnemonic descriptors.

Use of comments in code (for items uneov{ gyred in SSD):

iN'	 qty
L..Sampleruns and: other examples, with-explanations.. =

1. Timing analyses, response pot8.

Schedules, Pe Charts,	 hIcs.m.	 other mane ement rai^^. g	 g .p y4

Lkh

162 Levels of Dortonentation	 (CHAP 1.6

Another factor that governs quality is orientation. Documentation for a
program must always assume that the reader have some prerequisite level
of skill. For example, if a reader does not understand English; then he is not
going to understand a program document written in English, and nobody
can blame the documentor for that. Similarly, no one can expect a person
who does not understand FORTRAN to fully understand the rationale for
certain operations in a FORTRAN program: Nor can one expect that a
program to compute spacecraft trajectories can be made understandable to
a person who has not passed high-school algebra. What one sefks in quality
documentation, however, is an immmcliate recognition of the level of reader
required and a match between the intended readers and those who need the
documentation.

A third factor is documentation in the proper level of detail, If a system
is of any size, different users will ne--d different degrees of detail in the
information they extract. The highoost level should be readable by all and
tell the reader whether or not the deeper levels are of interest (or are even
readable by him). At each level; there should be a reference to the
documentation above and below in depth—that is, there is a need for
doetnnentat'ion to be organized hierarchically in detail and cross-referenced.

Documents also need to display this structure in a form that the reader
can grasp and use as a roadmap toward finding the detail to be extracted. A
graphical table of contents is often a very useful adjunct, except when
stnictured flowcharts are being ,used, these display the program hierarchy
very naturally, already.

Economic considerations and rapidity of accommodation must be folded
into the choice of the docuthentat'ion media. Documentation published as a
Bound hook will not be flexible enough nor inherently fast enough to
accommodate the SSD of a rapidly evolving system, but may be ideal in the
case of a widely used; stable, user ,manual;. for example. The need: for quick
answers to specific technical questions, when there is a maze of
documentation that must s.ecessarily exist for a dynamically evolving,
complex system ., also may tend to indicate that any conventional form of
written documentation may be ineffective. Automated documentation; on
the other hand, if produced and kept current by computer and viewed by
way of a suitable set of terminals, may helpcope with the situation, brit the
extent to which it can be shade to contribute is limited by economic
tradeoff's and user work: habits., (A user who does work at house in off,hours
will be d?scouraged from accessing documentation through a non-..portable
terminal, for example.)

See. 1611 Human factors	 193

In summary (Figure 16-1), for good documentation; the methods of
presentation should match the concepts to be communicated; the
orientation should be toward the intended reader; the documentation
should be organized in hierarchic levels of detail, with ass appropriate 	 t
identification of the required aptitude of the reader for each; the

l documentation should be organized in a form easily displayed or grasped,
to facilitate extraction of sought-for detail; and the media for docunienta-
tion should be chosen so as to be readily available, updatable as
appropriate, and conformable to the development environment. Such

	
I

documentation must be as complete, accurate, and lucid as end-to-end.
economic developmental or life-cycle considerations will allow, 	 i

i
i
i

i

Concepts
tube
Communicated

Method
of

Presentation

♦ 	 Orientation j,?^

Structure

and
Ease of Grasp

Levels
of

Details

Dynamic
Aspects of
Program

Documentation
Medium

;

Figure 16-1. Some factors. that inilueneeithe quality of documentation _

'	 154 Levels of Documentation	 [C11AP. 16

16.1.4 users of Documentation

	Technical documentation falls roughly into five categories: (1) that which	 E

p establishes the software requirement; (2; that. which defines the program
design guidelines, program architecture, and development resources, (3)
that which specifies the detailed program implementation and testing, (4)
that which instnicts users and. operators, and (5) that required internally
during the development process. In previous discussions, r have focused on
one such document in each category, viz., the SRD, SDD, SSD, user
manuals, and the Project Notebook containing programming bulletins,
decision summaries, etc.

Besides technical documentation; however, there are management and
planning documents (the SRD and SDD are largely of this type, in addition
to their technical content). The content of each document produced iii an
effeetive software development must he balanced het-Aveen technical and
non-technical information, rased on the needs of the users of that
document.

According to the congressional report mentioned earlier, 99% of the
respondents indicated that they believed the needs of the intended users
should be paramount in making documentation decisions. Because of the
various types and levels of documentation needed across the user spectrum,
such judgments often require subjective assessments of Benefit,

Users of the program itself need clearly written, accurate, and meaningful
descriptions of how to operate the program, create input, and interpret
output. Programmers need computer system manuals and the technical
documentation that forms the evolving software specification. Auditors
need documentation that cr:.oss<references the entire development, so that
they may verify that that which was required wus specified, that which was
specified was built, etc. Quality Assurance neca?s documentation in order to
validate that deliverables are acceptable, The Software Development
Library needs documentation of its configuration- control procedures;
anomaly reporting measures, etc., as well as documentation of the software
being produced:

i

Project management and programmers alike need documentation in the
form of status reports, police overviews, and team bulletins during the
program development progress. Later readers of the program will need to
know what the various parts of the program do, and. why; they will need to
see the relationships among data items; information flows, and storage
configuration in graphic as well as narrative form,	 i

-

	

	 Modifiers and sustaining .personnel will need maintenance procedures;
such as instructions for updating a data base, installing a new version of the

,,, __

.r

a.

^^a	 v

Sec. 16.21 Documentation Standards	 156	 3

program into the system; handling anomaly reports; and making changes
quickly and effectively.

Deciding on the type of documentation and the amount of detail needed
in each circumstance to satisfy each different type of user need is not a
clear-cut process. Nevertheless; standards can be prescribed that will mid
development projects in making rational decisions relative to such
questions.

Many may think that all the riles I have given in previous chapters for
meticulously documenting each phase of development constitute "over-
kill"—more than any project would ever want. Perhaps so. Some may even
think there is a need for yet more. Perhaps so. In the remainder of this
chapter, I shall address some of the factors that one should consider in
determining what type and how much documentation is proper for a given
development, and I shall discuss standard categories of documentation
levels.

16.2 DOCUMENTATION STANDARDS

Documentation standards tend to coordinate systern structures into a
uniform mold. Standard outlines and formats, as well as standardized
vocabularies; necessarily are based on assumptions made about the kinds of
systems to be described. If these assumptions are improperly conceived,
then the organization of the documentation may be poor for a particular
application, and vocabularies may have to be stretched or misused,

Yet, standard formats and vocabularies allow the readers of doeumeiata-
Lion to find some piece of information without needing . to learn the
concepts And vocabulary peculiar only to one system or program. 'Because
of this, such documents are easier to review, audit, and maintain. There is
also , less likelihood that designers and coders will overlook the full impact
of statements or :graphics contained within it. Thus, standards .tend to
improve the communication between. all people involved.

;i

166 Levels of Documentation	 [CHAP. I6

16.2.1 Standard Levels of Documentation

In large, long=life-eyele programming systems, documentation must be
provided in considerable detail; however, for small, single-purpose, or
"one-shot" jobs, hardly any detail may be needed at all. in important or
widely used applications, documentation may be typeset with professionally
drafted artwork; in small or exploratory programs, handwritten text and
handArawn sketches may be sufficient.

In feanning the document outlines contained in the appendices, the
reader may note that there is a lot of detail called for in each. Every one of
the topics included in each of the outlines is of potential concern to every
program being developed, albeit many topics can be dismissed immediately
as invisible in the current application, or not applicable to it, or understood
as a standard across many similar situations. There will often be additional
topics needed in the outlines for some applications.

Requirements relative to classification of detail and .characterization of
the documentation medium should normaLy be settled prior to the
initiation of work. Such requirements are easiiy stated only if there are
well-defined, standard classifications for documentation from which to
choose. The specified classification then becomes the basis for planning,
directing, and controlling the documentation effort.

The remainder of this chapter describes general requirements for
standard levels of documentation, and for application of these requirements
to intended usages. These standards encourage the production of only those
forms for documentation that are needed and adequate for the purpose.

The lorel of documentation of a particular type needed by a given projeet
is defined as the characterization of that documentation by a classification
of the detail required and by a categorization of the documentation
medium and format quality. This grading can be fitted to the needs of
readers and to the available development resources.

I shall first define four classes of detail, ranging from "Class A" (most
definitive) down to "Class la" (least definitive). The requirements for each.
such class are relaxed successively for each lower class from A to D. I shall
also; then; a little later, define format quality categories ranging from
"Format. I" (highest) to "Format 4" (lowest). Guidelines for selecting
among each of the classes and categories also appear with each definition.

The spectrum of documentation levels defines a lattice. structure (Figure
116-2) or a set of partial-ordering relationships according to detail class and
format category. For example, a document graded . Al is both very detailed

See. 16.21 Documentation Standards

and beautifully :published; a document graded D4 contains little detail and

may be handwritten.

Costs to produce documentation rise as the level of detail increases and

also as the for-mat quality increases, and such costs can
be

estimated or

measured with fait accuracy, The costs of not having documentation of a

given type are not quite as easy to pin down; as these costs depend on

downstream life-cycle utility factors that may or May not happen to occur.

Nevertheless, the agency that refs documentation requirements must

carefully weigh life-cycle factors if there is to be a cost-effective

documentation plan.

I must, therefore, assume, in the few guidelines I give here,. that the

schedule is realistic in that it plans for documenting to the selected level,

and that sufficient ffinding has been allocated for document generation and

distribution, The guidelines that follow are meant to help establish and

select an appropriate level for documentation relative to other issues. The

principal factors other than cost and schedule in selecting a level of needed

detail are the (1) assumed levels of skill of the intended readers, (2) the

sharing potential of the program, (3) its expected lifetime, (4) its

complexity, (5) its use frequency, and (6) its generality of application.

I shall illustrate the concept of standard documentation
levels

more

definitively using the Software Specification Document as a case in point..

	

DECREASING	 DECREASING

	

CATEGORIES	 CLASSES OF
D)

	

OF FORMAT	 A3 ,	 82	 CI	 DETAIL
QUI ALITY

TECHNICIAN'	'V	 V)1(TYPESET

	

ENGINEER
I	 ><^	 "	 HIGH-QUALITY

•
do

TYPING

	

,ARCHITECT	 TYPING

OF

ORIGINATOR	 HANDWRITING OR
LQW-.QUALITY TYPING

Figure 16-2. Docuntentation4evel 1 .8ttice . (clhas of detail i&graded A, Bj C j and D; format:
quality as 1, 2, 3, and 4)

k

NI

158 Levels of Documentation	 [CHAP 16

Suitable interpretations for categorizing other types of documentation
(requirements, operations, etc,) are then not difficult to imagine.

16.2,2 Classes and Criteria for Detail In Software Specifications

The classes defined in this section signify criteria for the amount of detail
to he provided when writing an SM. These classes are comistent with
NASA computer documentation guidelines [21]; but are styled in the
manner of JPL standard prat-vices for engineering drawings (221

16.2.2.1. Class A Specifications

Class A documentation is the most detailed; it contains specific
definitions and detailed descriptions of every, significant factor or item
within the software specification, so that the program specifications can be
understood, implemented, anr: maintained by any techitically qualified
personnel ttechnici: n or equivalent) without consultation, This class of
documentation results when the project adheres rigorously to the SSD
docmhentation rules of Chapters 1.1 and 1 1 2. All descriptions, functions, and

operations are specified in that level of detail which permits it correctness
assessinent l y the designers on :in individua's niodtile Basis, and then coding
without functional or algorithmic ambiguity; no factor of an .item contained
in Class A documentation is left to the discretion of the implementor. All
gperatioiis within anstriped flowchart symbols for other suitable specifica-
tinny) are covered by appropriate references to published works, external
standards or internal conventions, or else are at the programming: language
level (see Figures 12- IS. 12-24, and .I'2-25 for exan.ples).

Since the SSD is also used as a -maintenance document, a Class A
specification could also be oriented merely to descrihe all the pertinent
aspects of the system, its operational environment, its interfaces, testing,
and external data bases; all to the level of detail that permits an
caperienced maintenance programmer to correct errors or implement
a►rtharl.+^d changes without excessive expenditure of time to understand the

z	 program, or without the need for consulting the program developers.

This class of highest detail is appropriate for SSDs whenever the
intended readers/users are to he relatively uitskilleil (technician IcveI)
Personnel, and need such detail to perform. effbetively, or where there is it

need to entire that certain particulars Ile interpreted in a specific way. in
some eases; such as maintenance documentation, there may be a cost
advantage. in lessening requirements for Class A detail by employing
personnel with higher levels of skill. However, since it is not always
possible to select: or predict the community of readers or users, then in such
cases, Class A detail may still be appropriate.

l

Sec. 16,2-1 Pciestmentation Standards	 159

This class is also appropriate for SSDs whenever a detailed audit of the
program is required, or when the SSD is to he used as a contractual
instrument with minimal contract coordination and review. Other
indications for selecting this chiss are (1) a critical application; perhaps
involving personal physical risk; (?') good sharing; potential; (3) high
frequency of use; (4) highly intricate concepts to be communicated; and (5)
long or continuing program fife cycle.

This level of detail probably finds its most applicability in user manuals,
and rightly so: The writer of a user manual is generally unavailable for.,
Consultation, so the user needs the extra detail.

16.2.2.2 Class B Software Specifications

Class B documentation requirements ; =.ri, , tisentially the same as for Class
A, except that the requirements for iteic. definition. detail are somewhat
relaxed. Class B documentation, however, is to lie suitable for conversion to
Class A duality by the addition of further detail, without extensive effort on
the part of the supplier of that detain.

Class B specifications define every factor of the software item being
d^ -cribed to the extent that quailificd personnel (engineer or equivalent)
using documented techniques and approved programming practices can
satisfactoril y produce that item entirely from inforutatic-i supplied: Some
specifications for cording of functions, operations, datat structures, etc., may
he left to file discretion of the implementors if these will satisfy program
requirements with respect to performance and quality without unreason-
able risk (:lice Figure L6-3 for an example). Assessment of control-logic
correctness must be possible oil 	 individual 1110 lisle basis.

The level of detail required for SSDs oriented primarily toward program
maintenance also drops, to that amount needed by qualified maintenance
personnel to correct errors or to implement changes; either after a minimal
consultation with. the Program developers or after some reasoa:ible review
and head=scratching, to discover how a specific part of the Program weeks,

Claus B detail applies whenever readers are assumed to have more skill
(engineer level) than that deemLid appropriate for Class A, or are otherwise
capable of responding properly to less detail. The class is also appropriate
for specifications whenever the audit requirements are for consistency otily,

u>:-	 or When the SSD is to he used as a contractual instninlent with moderate

vendor coordination and review, or with limited contractual risk.

This class applies t specifications for 	 al	 heations programs withro ai.	 pp	 o s^, 	p^,	 onsor nor t'p•,. ,•	 p S•
T	 normal usage, but with limited sharing potential. There may he few
ep.:	 intricate concepts to be communicated, but there is expected to be a long
N`'	 or continuing need for the prograin and its documentation.

^. 160	 Levels of Documentation.	 [CHAP 16

,,
s

_	 FIL ESORT t
Name of input n
fide specified
as entry
argument 1 >

input N and
nume ric
array v'

_	 Al ,...,AN

Reference to
File format /	 documentation where
specified in algorithm is provided
Section 4, 3.1 2 r^

- Sort array U se She-H
A i. , ... ^ AN in sort algo:rithtn:,

ascending Ref. 7.2.6
Reference to omdc rformat specification
in SSD

Print out
sorted array,
as per £o.rmat
4.3. 3

"AA

RE'T'URN

Figure 16-3. An example of a Class B datall flowchart (text within clouds Is not part-of
the flowchart, but are explanations of flowchart conventions; figure also demonstrates

Format Zquallty)

16.Z.2. a. Class C Specifications

Class C Aocumentation represents a yet further relaxation. of re . wire-
ments for detail than does Class B. Class C documentation may ,require a
considerable effort in rewriting to supply, 	 detail to meet Class A or .B
standards, Class C documentation of design detail need only extend dawn to
that architectural level sufficient for skilled programmers using hierarchic, y,
modillar, structured programming practices to produce an acceptable
program. Callouts for standard algonithnis, operations; etc., may he used in
Class C; specifications. The specific methods are left to the discretion of the

ro	 ammer, subject to approval h,	 the desi	 ers, and . provided there isP^ gr	 l	 pP- v	 Y	 p

r

t,
4

1

Sec. 16.21 Dortimentation Standards	 '1611
E

E

niiuinuun increase in risk in not satisfying program. regpiremeiits with
respect to performance and duality and; perhaps, at a nioderate isiewise iii
debugging time or exploratory coding (Figure 164). Plowever, control-irsgie
correctness must still he deterntinahle oil 	 individual neoduie basis.

Class C docutnctitation also further reduces the requirements for detail
supplied to mainteriance prof rattiming. The use of Class C documentation
May require more extensive consultation with program developers, or a
more extensive analysis or reworking of certain parts of the prograin by the
maintenance persmtnel to correct errors or to make modifvations. The
miltiln llsll dorttmentation required is that necessary to set .t ip the program
source meditim for operation and modification; 110 forniats, setup

r.1Ls50RT

1

inplLt
a.ri S za

anu array.

5o. •a array in
:iSL'S:1161nF.
araer

3 t

Prznt array
1 E

.

i

^ _t3E7'JF3r
i

Figure 15-4, An example at a Class C detail f{owehert (corresponds to the subprogram
x in Figure 1d-3; Format 3 drawing-quality used for illustration)

4

t
3	 ..

i

A

a?s

=i

i
,zt

162 Levels cif Documentation	 [:CHAT'. 16

instructions, and the liberal use of comments in the source :,sting (for items
not explained in the SSD; however, redundancy is allowed if ease of use is
enhanced').

Class C should he chosen to document programs at the architectural or
feasibility level, when there are no formal requirements for .QA or Audit: Its
use ,.L5 an SSD should be limited to cases involving implementation by
highly skilled personnel within the cognizance of the project m.mager; it
generally may not be acceptable or satisfactory as a contractual instrument
without close coordination and review of contractor performance.

Class C documentation is probably also advisable for uncomplicated
programs with anticipated low usage, no sharing potential; and short life:
expectancy. It may also be considered appropriate for documents within
stable organizations having low attrition rates, or having high levels of
expertise and experience.

16.2.2.4 Class D Specification. s

Class D documentation is the minimal: acceptable level "f detail
advisable for any .program whose documentation is meant to be retained
and, perhaps; read by others (or by the implementors, at a later time). Such
documentation should only he deemed acceptable in cases where no
upgrading of the documentation class is anticipated, as it may be generally
unfeasible to upgrade the classification to Class A, B, or C without a
n......—+-A .-A........n 	 -M—+ Q+..An.AL- Finn m.n: —	 — of fro

4

$ec. I6.29 1 Mwtarnentation standards	 163

This cuss of least detail should be limited to sitintnar y material,
overv iews, and other reports of mitainial complexity where there is a aced
to record capability, work doiae, results, or what a prograun does for
historical purposes. Class D doctmmntation probably applies to "one-shot"
or single-axe prograun SSDs, or to SSDs for programs rerittiting raider one
man-month or coA.ing under $2DOO (these are not aueaant to be equivalent,
see [2 11).

Class 1) documentation should onl y lie considered for specificaatiotts ill
those cases where the implementor is well-informer: of the function and use
of the prognon, as well as system; enviroutneut, and tither implications. The
use of such Class D documentation should ustaall y lac restricted to use by
the developer only, and may necessitate extensive verbal contact with other
readers, or extensive time, revision, or rework (due to lack of
understanding) lay, those, other than the developer, who wish to correct
errors or to make modifications.

16.2.3 Categories and Criteria for Format Quality In Software
Speciflaations

The categories defined by this section delineate format and publication
quality standards for doc timentation of any detail classification, is covercli
by Classes A, I3, C, and D. Combination of class and format specific.atinlis
are commensurate with NASA documentation guidelines [2:1], but are more
flexible, as the criteria for selection tire herein tnade its separate.
independent issues.

M2,3,1 Format Category t o Formal Publication (Quality

E` ortnat I generally applies to the documentation of programs that arc of
sufTtcietit general interest. wide triage. or Orgllll i7at.ioll',I lLi lll .lgfI value, so as
to be announced and distributed ill highest publication duality
available. Such documentation should be prepared in a formal, rigorolrs
manner, with in-depth technical review, meticulous :proofreading, fall
editing by professioind doe,amentation personnel, and organizational
approval for release aatad distribution.

Ill cases, the text of such documents will be type el and
permanently hound, or cif comparable quality. all aarhvork xvili normally be
of professional drafting gnaality 1231 equivalent to inked drawings with high
rituality lettering, suitable for "textbook" illustrations. The sty le is exactly
that specified ill Chapters 14 and: 12 for narratives, flowcharts, and other
descriptions. Flowcharts are further covered by Appendix B.

Altercations are distributed as errata if minor, and as revisions by
reprinting and reissrae if major.

A.

764 Lecels of Documentation 	 (CHAV, 16

Format 1, or Format Publication quality, generally applies to cases where
the document will find high usage, perhaps external to the organization,
where the organizational image plays a role, where professional
documentation personnel services are available for fortnatting,. editing,
Composing, etc., where a general and wide-spread interest exists in the
program, and where the program is stable.

Format :I documentation probably applies most often to user manuals,
announcements and summaries, and, perhaps, user-group bulletins. tt would
rarely, 1 think, be used for publication of an SSD, and probably should
never be used for an SR. D or SDD.

M2.3.2 Format Category 2: External Report Quality

For-mat 2 requirements are the same as Format .1, except that the
requirements for editing and composition are somewhat relaxed. Format 2
generally applies to the documentation. of programs that are expected to be
widely used within an organization but may also have some outside
readership as well; Such documentation should be prepared with adequate
technical review, good proofreading, editing sufficient to assure format
consistency and clarity of expression, and organization approval for external
release and distribution.

The text of Format 2 documentation should be of high typc ►uritten
quality and suitable for offset printing, such as that obtained. using _a 10-
point I>3M Executive Modern fvpewriter font. Illustrations and artwork
should be drawn to professional ink-line drafting standards '1231; perhaps
with typed-in lettering (see Figure 16-3). The stvle is the same as that
specified for Format 1. Alterations to the documentation are distributed as
change pages, 'unless the doctntent is .permanently bound, in which case,
changes are handled as in Format 1. to any case, the docs[tmant as narmaBY
enclosed by protective covers.

External Report (Format 2') quality is the normal level of ,publication
duality for documentation that is expected to find high .usage, but where
the aid of professional documentation personnel is limited; where the
organizational image is :less sensitive, where the general interest iii the
program is lessi and where the program documentation is perhaps slightly
less stable than one documented as Pormat 1.

Format 2 doatimeutatian :probably applies to most of the user manuals,
announcements and 'sumtnartes' and user-group bulletins printed for use
within an organization, or externally on an interim Basis. Use of Format 2

"

for an SSD will probably only be feasible for highly stable programs, or
°-	 those whose artwork can be computer drawn and whose text is contained

y

..	
iS:v _. ^:ati	

N L"-- _ ... r 4	
{.^ _ tt	

_ Mv .i,...sr_.......

	

m ro+5.	 Z

a
f

r.
F.

Sec. 1 .2) Dortimentation Standards	 165

a	
,

in, and reproduced by, a computer. Format 2 may also be suitable for some
SRDs and SDDs.

16.2.3.3 Format Category 3: Internal Report Quality

Format 3 is a further reduction in. report quality from that required for
either of Format I or 2. Format 3 doctumentation generally applies to
special-purpose or in-house programs that, after careful consideration of
the possible interest of others, appear to have insufficient usage, sharing
potential, or life expectancy to warrant a higher duality format. Such
documentation should he prepared with project and QA review. Internal
release .aid distribu.:.ott are at the discretion of the project. manager.

The text of Format 3 documentation should he typewritten, although
there need not be any requirement placed on the typewriter font. Artwork
may Ile hand drawn tin pencil; if reproducible) using standard templates and
typed4it lettering. (See l :'igure 1-6-4 for in example.) This format should at
least satisfy mieroRhming standards. There is no relaxation on the style of
narratives or illustrations, However, from Formats I and 2. Any
reproduction meditim and Binding suitable to the limited distribution is
permissible. Covers are optional.

Alterations to Format 3 documc ►ttation are handled by distributing
change pages or errata.

The normal working level of documentation within an organization is
Format 3. It is generally used when the numbers of users of the
documentation are limited, but where there is a treed for continued use or a
perma:tent record of the recorded items, The documentation is usually
prepared within the implementing organization, without the aid of
professional documentation personnel, and where there are limited funds or
facilities for drafting and other :artwork The format, 'tieing less restricted;
can also accommodate it somewhat less stable programming environment..

Format 3 documentation is applicable to the working-level SSD, SDD;
and SRO, as well as low-rise documents used for program maintenance and
operations:

U

{

i

f

r

166 Levels of Documentation
	

[CHAP 16

is even" used. (it is usually desirable'- to keep on file for some period of time
the documentation that results from program development,: such as a
program abstract, the Project Notebook, a complied source listing, test
cases, run examples, etc:)

Alteration methods are at the discretion of the preparer or-his supervisor:

This lowest quality of reporting format, like Class :l] detail , : most often.
applies to single use "one-shot" jobs of minimal complexity but for which
the 	 is a requirement to report or record tvliat type of work was being A'
produced, or what the results of a given 'effort were, and, thus, to retain
certain information about a program for historical. purposes. Format 4, A.
thus; is, suitable for exploratory, or look -ahead efforts, where there is little
distribution potential, or for prograuns requiringg tinder one man-month of _.

effort, or costing under $2000 (these are not meant to be equivalent, see

[21j1. Because of the informality of the quality restr: .ictions, Format 4:
documentation can probably be used better than other formats when there
Are unstable elements in the system.

Format 4 documentation is enerally not suitable for most :projects q^

`
leading to .operational programs, or for Inv forms of program documenta=
tion, except, perhaps, project bulletins, status reports, nwmos, etc.

A.

3 PREPARATION OF DO00MENTATION

The procedure for documenting a standardized development consists of y
supplying the required information in various phases, according to rules s,
captained in the previous chapters of this text. Consistent preparation of
ad^.quate documentation under tight performance schedules requires

..standards or guidelines and continual review to ensure compliance with
those -guidelines That which ii going to Abe produced should be l ept to the
minimum necessary to meet the needs of those whom the program will
impinge, because of the high costs of documenting software developments. ^ ti

t

1641 Rules for Project: Management

Besides creating program documentation, gathering and recording status Tg.
information during development is generally considered. 110] to be one of
the most important :project -management. activities However, there are no
hard-and fast criteria universally considered to be most important: in

P evaluating the worth of -a particular report or information" gathering
technique, Nevertheless, timeliness, accuracy, and defiAiteness ^proviaingg
enough rnforma#ion to Identify the accomplished work "unambiguously)
have always ranked high with many managers, and certainly do so with `me.

All

u	 ,,

See. 16.31, Preparation of Documentation	 167

Informal approrches to reporting status seem to work best; written
reports should always be kept to a minimum. When used, they should be
strictly constrained by length, time deadline, and very hard-headed analysis
of tbeir purpose. Defining and tracking concrete events based on functional
capabilities or milestones, as exemplified by WIGS reports mentioned in the
previous chapters, are particularly useful to higher-level managers.

The+ follcnving rules are guidelines to aid project nmliagement in soUzing
standards for documentation and reporting [8'1

1. prepare a list of documentation responsibilities; specifying the
individual responsible for preparing, coordinating, 'reviewing, and editing
each document from its origination through its formal release and updating.
Keep this list current, with updates throughout the life of the project.

2. Establish a documentation plan as early as .possible in the program life
cycle. identify the documents by title, purpose, and criteria for content (see
Section 16,2). Give required or estimated initiation and completion dates
for each, and assign personnel through the list in Rule :1, above.

3. Establish the scope and general outline of the documentation plan.
Address the relative weights or priorities to be given to technical
documentation and to management documentation.

4. Set standards for the formats to be used; the time phasing to be
followed, and the disciplines to be imposed in producing the documents.
Then see that these standards are adhered to by adequate review.

a. Account for software documentation costs and effort adequately in
manpower profiles and scheduling from the outset, and verify that orderly
documentation is being carried on concurrently with design, coding, and
testing of the program:

Quantify the value or benefit - of documentation through
the probable costs that may be required if adequate
documentation is not prepared. Strike a balance behveen
documentation costs and expected usefulness.

8 Estimatte the probable sharing potential and needed availability at
inception; and base documentation requirements upon this ,potential. If the
prospects for sharing change, then alter the documentation and availability
requirements appropriately after careful consideration.

; {.4

168 Levels of Documentation	 [CHAP. 16

cost future developments, provided that recognition of the
potential is made early enough for .proper documentation
and announcement provisions to be made. Even subpro-
grams within a temporary or one-shot program can often
have sharing potential if properly. identified; However, it is
probably not cost-effective to consider sharing low-cost
programs. or subprograms, except in special cases.

7. See to it that the project documentation requirements and
Documentation plan are understood. by personnel .responsible for document
preparation; distribution, review, approval, and updating.

8. Plan for the announcement, publication, and distribution of
documentation to intended or potential users:

9. Institute incentives for documentation commensurate with the priority
given to documentation in the project,

10. See to it that documents and status reports are kept current and
visible to all pertinent team members through the SDL.

11. Use personal contact and meetings to coordinate policies; decisions,
and interfaces between adjacent parts of a system: Confirm and record
agreements after-the-fact in written form. Ensure that. work based on such
agreements proceeds from the written documentation, not on recollections
of ,participants.

12. Insist that documentation be contributed at regular intervals into a
project master file in the SDI:., in addition to those files retained at the
;working level. Versify that there are adequate provisions for updating both
types of files and for querying these files for status report generation: (If
such files can he computer based, so much the better.)

13. If documentation is not up to standards and continually seems to be
troublesome, stop all activities not related to documentation and bring it up
to standard.

14, Insist on simplicity, directness, clarity, and quality of expression in
documentation in as brief a form as the assigned level of detail permits.
Only when this can be achieved can "more documentation" be made to
mean "better documentation."

16.3.2 Rules for Dacumeritors

The following simple rules define the responsibilities of documentors..
x ^'

l ^
	

'ys

3

1

Sec. 16.41 Summary	 169

i
I

	

	 1. Understand thoroughly the project documentation requirements and
the documentation plan.

2. Understand the intended use of the document and the needs of the
intended users.

It may help to make a list of all personnel groups who
form 'cite audience for this document, and to imagine	 i

yourself in the role of each of the readers. Clarify what
each such reader would want in the sort of documents
being prepared before writing the document. If necessary, 	 •
interview representatives of the reader groups.

3. Understand the overall content and appropriate level of detail required
for the document.

4. Verify that applicable standards have been selected for document
format and content.

5: Supply documentation that satisfies project requirements, fits the
documentation plan; communicates with the intended users to the extent
prescribed by the level of detail, and adheres to specified standards.

6. Submit documentation for review, correction; and amendment in
phases concurrent with other software development activities.

16.4 SUMMARY

Adequate documentation of computer programs is clearly an essential
element of efficient: and economical use of computer systems. Good
documentation prevents waste and unnecessary costs in many ways-by
making program modifications feasible, by making redesigns easier, by
making internal controls work better, by facilitating the work of auditors;
and by a host of other ways, all equivalent to 'making programs usable by
others.

Lack of needed documentation and low-quality documentation are
problems in human engineering; which in large :part can be remedied by

i

	

	 setting good standards, and then seeing to it that work necessary for
documentation is performers according to these standards,

I have outlined standard levels of :documentation by content and format,
and I have given typical criteria for choosing among these documentation
levels. Detailed rules for flowcharts, narratives, information flow, decision

A

kM19

170 Levels of Documentation	 [CHAP. 16

tables, etc., are contained in each of the preceding chapters pertinent to
each development activity.

4

S

t.

f

XVIIN A STANDARD S0FrWARE

PRODUCTION SYSTEM

As computer Applications continue to advance, there is an increasingly
more intense need for better and better tools to aid in the construct-ion of
programs. The more difficult a task is, the more powerful the tools must be
in order to combat the burden of complexity that hears down on
impipmentors.

There are ceftain.jobs associated with developing . software that currently,
or-, perhaps, inherently, humans do better than computers, such as creative
thinking,, problem solution, and subjective judgment. Previous chapters -in
this work have set forth standard, structured dbeiplinies that attempt to
orgAnize such processes, And thereby enhance individual and team
productivity.

There are, on the other hand; minky software development tasks of a
more predefined computatiOnA routine, or clerical. nature that computers_ :P ..
can do quiijkly, easily., and perfectly, but which humans tend to do in a
much slower, more awkward, more difficult, and error;prone manner.
Suitable automated tools to reduce this routine or clerical burden during

171

172 Standard Soffiva.re Production System	 LCH.AP. 17

sofhvare generation can significantly reduce programmer time and effort,
.can yield more reliable programs, and can produce enhanced documenta-
tion. In addition; the wide use of automated development support tends to
standardt:re programming methods, programming structures, program
documentation; and all other areas for which support is provided.

The purpose of providing automated support is to make it as easy as
possible for the humans engaged in a software development to perform.
those functions which only they can provide, and vet deliver all that is
expected it) the way of quality programming, proper documentation,
adequate management visibility, and good configuration control.

This chapter discusses, therefore, the standards for a well=fomned.,
efficient, and effective program production support system; in which both
human and automated tools play a well=Balanced, integrated part.

17.1 AN INTEGRATED SOFTWARE PRODUCTION
SYSTEM

Science, technology, industry, and commerce are based on the ability, to
measure things or phenomena, to describe the results in numerical terms, to
make comparisons, to make decisions based on these comparisons; and to
implement these decisioit.5 using standard means. In order that the software
industry be a stable member of the industrial family, its products, too, must
be deseribafile, measurable, and implementable in standardized ways,
Predictability of function, performance, cost, size, and other qualities, then;
becomes a characteristic of the industry. This is what technology is all
About, and the establishment of sound production tools into a standard
. vstein does much to bring the development of software products into such
a teehnologieal arena.

The bounds of a programming system are not limited merely to the set of
automated capabilities one may find in a computer library. Rather, a well
engineered production support facility must consist of a number of other.
elements taking various forms.

17.1;1 The Elements of a Standard Production System

The first element required in a good production system (Figure 17-1) is a
body of sound, effective methodology for systemat'•ic development of the
software items. Such methodology is produced as a result of dedicated
study into the problems of software over an extended .period of time. This
methodology is continually evolving, in eyries, as new discoveries are made
and as amendments and modifications to existing technology are

. introduced. Directions for change come about through observing the effects
of changes in previous cycles, through evaluation in pathfinder projects,
and through continuing applied research.

The second component of an effective programming system is a set of
standard practices, human production disciplines, and software user
manuAls, together with a usor training program, which identify and
formally establish the adopted technology and transfer it into a regular
implementational and operational environment. This set of elements also

Methodology	 `.	 Produc inn	 I.

Standard

Discipline

t

PracticesJ

i
Secretariat

computer	 I.
andExternal 	 OfficeFiles	 I	 I	 Procedures	 I	 ;

Training
Programming	 Aims
Tools and	 `

r

r

Sce. 17.11 Intograted Sof ttnar4 Production Systern	 173
r

174 Standard Sof.tweire Production System	 j:CHAP 1:7

serves as a concrete point: of reference against which firm evaluations of the
established technology by the user community can be made toward possible
future modifications.

The third component of an effective software proditetion system is a
central service :facility, or programming secretariat. This facility supports
the production of software in a number of various ways, such; as by serving
as a distributive agency for standard practice instructions, manuals, and
other production materials; by providing data-preparation or data-entry
services; by updating and editing textual material, e.g., :program code,
documentation; and other material as contained in, and controlled by, the
central facility; by generating or updating standard graphic material held in
project files using standard automated graphics capabilities; by perhaps
administering the software change-control process; etc.

The first three parts of the programming system, then, are odented
toward identifying and solving the human factors that surround software
developments: These have largely been the subject of this monograph up to
this point, and do not need to he further expanded upon here in any great
detail. The fourth and remaining part of the system consists of a set of
automated. aids oriented toward reducing the time humans spend (or should
he spending) .producing adequate documentation, status reports, and the
program itself. These aids are, in fact, the main subject of the remainder of
this chapter.

This fourth and filial part of the programming s ystem, thus, consists of a
library of standard languages and processors, automatic production. aids,
and management-support software, plus the necessary user documentation
and training in the application of such tools to the task at hand. A full
complement of software items in this category is difficult to imagine;
however, as a starting point, the items in addition to a. normal complement
of coding languages should include facilities to aid in the design, testing,
validation; and documentation (both narrative and graphic) of programs
and data, and for gathering and reporting of management information; such
as costs, schedules, current status, productivity, etc. Further, provisions Go
program and data vase configuration management and change control; its
well as features that permit quality assurance metering of the project
deliverables, should be included,

The support facility includes a reference document library in addition to
the computer program library above. The computer library contains a set
of utility programs and suibroutines that are available for tine by projects
developing software, The reference document library, then, contains the
needed documentation for users to be able to apply these utilities and
subroutines to their projects. In addition, the reference document library

Ser. 17.11 Integrated Software Production System	 175

contains standard practice instructions, development disciplines, program=
ming textbooks, and other source materials needed by the community of
program development and impiementation personnel. Since creation and
maintenance of such a library is a support function, Us administration falls
within the purview of the programming secretariat.

17.1:2 Classification of Implementation Aids

Automatic implementation tools fall into three categories; which l shall'
refer to as primary, secondary, and tertiary (Figure 17-2). Primary tools are
those facilities absolutely needed to build a program in a practical sense.
These facilities include the compilers (or assemblers) for the languages
tieing used, program (linkage edit) loaders, data and text editors, and,
usually, an operating system. Without these elements, the programming
task is untenable.

I
Secondary development support aids are those tools which can be used to

increase software productivity and/or program reliability significantly, but
which are not needed in the absolute pragmatic sense, as are primary tools.
These are tools that are justifiable and feasible economically whenever their 	 j
implementational, operational, and sustaining costs are more than 	 o
counterbalanced by the savings they produce. Since the allocation of

i
Primary Aids: Required-tor Programming

Languages; Compilers
Editors
Loaders
Operating System

Secondary Aids: Increase Productivity; Reliability
Graphics"Generation
Document Generation.
Program Analyzers
Execution Monitors
Debug Facilities
Management Tools

Tertiary Aids: Intangible Benefits
Prototypes Under Evaluation

r Figure 17=2. Categoriat3 of #mpternerttation aids

4

176 Standard Software Production System
	

(CHAP 17

development resources to the generation of new support tools can impact
ongoing project delivery schedules as well as their dollar costs; the
production of new tools may not always be advisable when these are in
series with critical-path tasks, even though the eventual availability of such
tools could show a later positive economic benefit. Stich tools should
always be carefully justified in terms of projected life=cycle cost savings
through increased productivity, in terms of schedule impacts with ongoing
projects, and in terms of software quality requirements relative to
reliability, manageability, level of documentation, etc.

Tertiary aids are automated tools of less significant supporting value than
secondary-class tools. Tertiary aids are those with intangible economic or
program reliability benefit within a given production system. These toots
could conceivably be justified on some basis other than economics;
schedule, or program quality; however, that basis should be closely
scrutinized before the tool is allowed to become a formal part of a
"standard .production system„” Tertiary .tools may, however, appear from
time to time in a standard production system on an evaluational or trial
basis, either to be upgraded to secondary (or even primary) status if the
evaluation is favorable, or to be dropped if the evaluation is unfavorable.

In specifying a set of support tools for software devel^pment, the needs,
desires, and frustrations of personnel must be considered in addition to
economic and schedule factors. Moreover, the tools should exhibit human
engineering qualities so as to be elective, generally applicable, and easy to
use over a wide spectrum of applications within the standard system.

When a set of tools is implemented, each must. be absolutely correct;
validated to the point that it can be used with 100% confidence. How else
can one use such a tool to validate other software products or to enforce
standards; unless the tools themselves are faultless?

A final criterion T would impose is the .near- gsolute machine
independence of the programming system application-user interface across
the entire spectrum of host systems being used; within a minimal set of
conventions imposed by the host .hardware and software envirorunent. Such
conventions as tog-on procedures, interactive vs. batch operation; file
mnaming conventions; tape-mounting protocols, complement of peripherals,
and word-length restrictions are very likely to vary from host to host;
nevertheless; automated tools should be able toto respond to these different
environmental constraints and yet maintain effectiveness; Thus, while
materials produced in one standard production system may not be
absolutely portable in source form to another such production system; there
should; nevertheless; be a large base of commonality and uniformity in the

:YF

Y

Ar

=.1

Svc. 1711 Integrated Sc fhvare Production System	 177	

W

k	
z^,

products of each, with absolute portability of applications prograns being
the goal.	 -

When user interfaces cannot be made to support absolute portability,
they must. as a minimum requirement, support program mobility. That
degree of portability vs. mobility sought is one that should balance anv
increased running costs of user programs against the decreased production,
conversion, documentation, and other constituent costs during the total
software life cycle.

17.13 The Programming Data Base

	

Automated or not, the production of a piece of software utilizes a data	 ^f
Pease, consisting of design information; coding information, testing
information, management information, and documentation. Without
automation, a great deal of time is spent locating, transforming, and
extracting information from this data lease to create ineaningful views of
the i#cuts estr;natecl:

if autonuttcd, the complete data base could well reside in an integrated
set of files, accessed and manipulated by standard processors: The computer
system then becomes the design medium, tho documentation-composition
utedicun, and the software management medium, in addition to being the 	 r
more usual cooling, debugging, testing, and operational media: o^

Each clement of a programming data base is generally interdependent on
the others, whether automated or not. But if witomated (Figure 17-3), for
example, procedoml design information can conceptually generate.
flowcharts or data flow diagrams, if needed, and can be automatically
output with the corresponding narrative; code can be audited automatically
for conformance with standards and with the procedural design; prciject
status information can be collected, such as numbers of mod;iles completed

F"

or stubbed in design, code, or test activities, frequency and type of errors
conimitted, etc., test design criteria for traversing each program flowline
can be identified; editing and updating of design, code, testing, and
documentation can be controlled; all accesses to the programming data
Base can deposit activity inform ation back into the management data base	 j
for project status reports generation; and configuration management
standards can he enforced.	 I

e

The programming data base is, therefore, one of the key elements in the

5	 overall concept of the standard software production system. . Combined with
its level of access, it forms the basis for recording and scaring of

s'	 programming data, provides the vehicle for the organization and control of

s
a programming project, serves as the means of communication between 	 rs;

r	 developers, and interfaces program development personnel to each other

c

:a

178 Standard Software Produc ilvn System
	

[CHAP. 17

f

Figure 17-3. The . prograMming,deta base in a production system contains all lnfonnatton
from which , docomentation, reporting, andezecution-emanate

and to the computer. The principal management function of the data base
is, then, to maintain a current and exact configuration of a. program under
development for all viewers: Farther discussion of management data
processing appears in Section 17.7.

r

17.1:4 The Programming Secretariat

The programming secretariat is an individual or group of personnel who
support, all development projects within a certain purview, mach like a
secretarialool aids office mans ement b erfortnin a

c	
body of common;P . '	 Yp	 g	 Y

centralized lerical functions for number of separate, but sir.—Olar, users
(Figure 17-4) Some of the functions typically performed by a secretariat
were mentioned earlier.- data preparation and data entry services,
distribution of manuals and production materials, document preparation.

;.	 and revision, management reporting, archiving, etc, In addition to these

S

IT

Sae. 17.11 Integrated Sof'ttvare Froduchors System:	 179

functions, the secretariat probably must also have the means to generate
new elements and maintain existing capabilities of the software production
system; to control the configuration and integrity of that system, and to
collect user feedback relative to the functioning and use of that system.

Each software development project, as discussed in Chapter 10, contains
a central focal point (its Software Development LibralY for all project-
generated materials. The programming data base being accumulated by an
ongoing project is owned, administered, controlled, and .maintained by the
SDL for that project. However, the automated tools that are used by all
projects to create, update, and extract information from the data base will
not he considered here to be a part of any particular project SDL, but,
rather, to be apart of the centralized prograniming stipport library within
the standard software production system.

In actual developmental operations; a project may interface with its SDL
totally through the secretariat, as in Chief Programmer Team 1341
operations, or the team may interface with its SDL directly. Regardless of
the interfacing made, the contents of a project SDL are entirely determined

Figure 17-4. Secretariat services

1

1 8 Standard Softivare Production Systcm	 [CHAP, 17

by personnel within that development project, not by the secretariat. The
format of a project SDL data base, however, is dictated by the standards of
the production system, not the development team (Figure 17-5). The
secretariat is responsible for maintaining control, integrity, and security of
all software items placed within its :purview.

Except for normal "housekeeping" operations, all clerical support tasks
carried out by the secretariat are performed only on the direct request of
project personnel; and then only when such support can be provided by the
secretariat without project assistance or direct supervision, Directions from
the project may, for example, come by way of original graphics or coding
sheets for entry, by way of marked-up listings for update, or through any
medium for which a standard secretariat support procedure exists.

SOL

Project

a.'Projectview of the SD

Maintained by
Secretariat

;Y

Sec. 17.11 Integrated Software Production System	 181

In operations where secretariat support is absent or limited; the stangard
support procedures and processors should be available for use directly by
development team personnel. However, the advantage in cost and accuracy
of having human clerical tasks performed by clerically trained individuals
instead of programmers is obvious.

To support software developments, the secretariat needs a conglomerate
set of skills that cut across clerical and technical boundaries. Personnel
engaged in clerical support of programming require a set of qualifications
such as typing, filing, and other business practices normal to an office
environment, however, since the computer system forms the medium for
these activities, support individuals must also be skilled in the use of
keypunch or keyboard terminal equipment and must understand the
procedures for preparing data and performing each intended task on the
computer.

If the secretariat is also charged with the creation and sustaining tasks
associated with the automated support functions; then it. must contain
personnel of the type and. caliber found in the regular development projects
and in the sustaining enginecKng and maintenance groups. If training of
project personnel in the use of accepted organfzationa'l software
development disciplines, organizational standards, human/machine inter-
faces; project/secretariat interfaces, etc., are also `required; then personnel
with skills appropriate to perform such training are needed; If enforcement
of standards or software configuration integrity, control; and management
are named as required development support. functions, then appropriate
personnel to administer such functions may also appear in the secretariat.

1.7.1.5 Host System and Environment Considerations

At this point, let me define what is probably a minimum set of
requirements for a host system to accommodate the computer library and
operations within the production system to be discussed: These require-
ments are not meant to specify a recommended set of equipment, the
project size, equipment on hand, and intended tasks also affect the
maximally effective set rather drastically. Instead; the configuration .given
here. is meant to display my assumptions relative to the production system
needs.

The host -stern envisioned is depicted schematically. in Figure 17-6, The
complement of equipment as seen by each user includes an interactive
keyboard terminal and card reader for data and :program entry, magnetic
tapes and online direct access media for data storage, and a high-speed
printer, character display terminal; and plotter for outputs.

l

182	 Standard Software Prodetctfon System [CHAP. 1.7

At least 2

Meg
Tapes

Keyboard _ High-Speed

Central Processing Unit Printer
t
d

B.OK bytes for user programs,
production: aids, and.monitors t
{ezcludiirg compilers:and 10M

` Card
Reader Hard-Copy

i

Terminal

i

- Display

Klass
Storage - ?

Graphi
Plotter

Figure 17.8. StendfrdA nst systetnfierdwae

Since mach of every software development task is the development of
easily readable documentation, I will suppose that I/O and storage. media
support both upper case and lower case alphabetic characters; A CPU size
of SOK bytes over and above operating system and compiler pverheads .has
been. estimated .necessary by Tinanoff 4W Luppino [251; however, much can
still be accomplished within host systems having smaller CPUs:

I will suppose that the host operating system, which controls the
execution of the production system tasks (Figure 17-7), also controls the
allocation of storage on the mass storage device: If more than one user is
required to operate the production system at one time in concurrency, then
the operating system will also administer and accommodate the allocation
of resources among these users.

i

c

Sec. 1r".1j Integrated Software Production System 	 183

User I/O	
user

Qe^ices	
Ptagrams

Operating
system

Production
Aids

I	 Off line	 ,
Storage	 _ _ _	 .y '

Compilers,
Assemblers

Online	 Linkage
storage	 Editor

Loader

Working
Storage,
90K bytes

Figure 17-7. The standard production system interface configuration (the operating
system administers execution of programs, allocates and manages storage and other

resources}

editors, and other typical vendor -supplied software items can often be
modified (especially on mini- and micro -computer hosts) to form the base
for the standard software production system and thereby ease the

development task that implements the standard system, at least on an
interim Basis. Substandard software should be replaced as soon as it is
feasible to do so.

The use of a higher level language . (concurrent Pascal) has been
s.demonstrated to be effective in writing operating system software C261 by

Brincb-Hansen; who estimated a. 20-30 man"year effort was accomplished
by hire .in. only a few months. From the production paint of view, he
concludes, it is both realistic and attractive to replace huge; ineffective
"general purpose" operating systems with a range. of small, efficient systems
for special purposes. 	 F

Y

Si

n

184 Standard Software Production System	 [CHAP. 1.7

17.1.6 User Considerations
One must recognize that the efficiency of a team producing software is

influenced to a significant degree by the intended efficiency of the software
to be produced and by the production tools available to do the job; For
exampla, if a program must (unquestionably) be written in assembly
language for a provably necessary enhanced execution speed, the

productivity of the programmer is likely to be lower than if programming
could take place using a higher-level language having a less speed-efficient
compiler, unless the production system can supply services to equalize this
imbalance. Bri .,,^4-Hansen [961 has estimated that only about 4% of an
operating system needs to he in assembly code.

Another capability that influences development productivity is its
operational mode. An interactive operational environment permits its users
zn immediate view of the response of a program, but the computer costs
for these are usually somewhat greater than those .for the same views
supplied in a queued batch environment. One generally f►nds that there is
an overall developmental cost savings when there is an interactive
capability due to the decrease in user time required to interact with the
system. Some inefficiency in computer operations can thus usually be
tolerated (at least in non-real-time programs) whenever the rise in
computer costs due to this inefficiency is dominated by personnel cost
savings, brought about by improved usability.

Software development spans a time when a great deal of user interaction
with the evolving program is required, regardless of whether the
environment is interactive or not. Provisions to facilitate interactive
interplay during this time are probably very advisable in terms of
development cost savings, even if these raise running costs. 'However_ if the
operational usage of the program must thereafter continually pay for
inefficiencies that facilitated program development, the cost savings may be
eventually reversed.

To counteract such a possibili ty, one might propose a production system
that would balance or equalize program life cycle costs by making the
development task, perhaps, somewhat harder for the sake of decreased litter
operational costs: Alternatively, :and more usefully; the system can contain
modes and ,processors which promote both rapid development and efficient
Operations; this chapter supports the latter alternative:

The standard software production system of this chapter will thus
support Both interpretive simulation and compiled modes of operation.
Programs can be developed interactively using the interpreter, or processor
executing an intermediate code, for checkout and testing. Once.. correct,
these programs may be compiled and optimized for acceptance testing,

t

s

r7

f

Sec. 17.21 Standard Production System Support Library	 185

i

f, delivery, and subsequent operations. The implications of this position on
the development of programming languages for the system have been
explored and endorsed by Weghreit [27].

17.2 THE STANDARD PRODUCTION SYSTEM SUPPORT
LIBRARY

As 1 indicated earlier, the support library contains not only the computer
programs that aid software production, but, also, the manuais and practices
that enable users to employ these aids, The aids themselves represent
various mixes of functions that together provide the following categories of
support:

0 Word processing

• Graphics generation

• Management status monitoring and reporting

• Programming of routine or clerical tasks

• Program generation

• Program loading, linking, and execution

• Program analysis and performance monitoring

e Program repair

s Source data management

r Data protection and integrity

To varying extents, each of the aids will be characterized by such
operational qualities as:

s Cost-effective operation

• Reliability

• Generality and power

• Application independence

• Simplicity of use

• Conciseness and terseness in user interplay

s Naturalness of interplay dialogue

• Consistency with other aids

• System-independent operation

186 Standard Software Production System	 (CHAP. 17

Cosi effectiveness, of course; relates to the cost of :performing a task
using an aid, as opposed ,L. performing the task without it; reliability refers
to the average degree to which the aid performs effectively in. program
production, as compared to its advertized full capability. Generality,
power, and' application independence all refer to the scope . of tasks
accomplished by the aid: to the number of different tasks .performed, to the
amount of work accomplished by each task, and to the range of projects
that may find the aid useful.

Simplic • y in use characterizes features that eliminate unnecessary
variatin:ks in notations; such features enhancing simplicity make an aid
easier to. use because they reduce the number of forms and concepts that 	 ..O
must be learned: Conciseness and terseness of expression enhance usability
by reducing the user/machine interface dialogue. Naturalness is a measure
of the degree to which the symbology of user/machine communication is
humanly understandable and easily remembered over long .periods of time;

Consistency with other aids refers to an overall. conformance with usage
standards, coordinated with respect to redundancies among the various aids.
Consistency would, for example, require that whenever two aids perform
the same functions (overlap in capabilities), then the input .forms and
protocols would be the same for each. Identical forms would be required,
whether input emanates from a terminal, file, or card reader; output forms,
ditto.

More specifically, suppose that aids A and B both can operate on files of
data, and each can duplicate, and thereby create new files; consistency
would not, then, permit using differing syntaxes, such as:

COPY file] To filet

DUPLICATE filet FROM f lel

but would require conformance to a common syntax, say, the first. No third
aid, say, C, could use this syntax to rename filet as f le2 but, instead, would
have some different syntax, as:

MOVE file] TO filet

w 1i a natural "semantic proximity." Finally, no fourth aid, D; could then
use the MOVE syntax to deposit values into variable storage, but, instead,
would have to employ a syntax with a wider implicit "semantic.
differential," such as:

i

r

Sec.]7.3]', Standard Programming Languages	 167

L--T variable = expression

System-independent operation refers to constancy in o eration as viewed
by the user, and has .been discussed earlier (Section 171.5` .

I will not attempt in these pages to provide a complete or detailed set of
requirements or functional specifications for systematizing and automating
a programming data base. Rather, I will try to identify and outline the
salient concepts, key features, skeletal format, and rationale for a typical
programming system support library. A more detailed , set of typical
requirements and specifications for a "Program Support Library" for use by
Chief Programmer Teams [24] has been defined in the works of Luppino
and others (25;28].

Figure 17-8 depicts the skeletal structure of the programming data base
and the processors forming the .basis for the standard .production support
library to be discussed. The processors to be discussed are those for
languages, automatic flowcharting, text processing, and management
reporting. Linkage editors, loaders, job-control supervisors, etc., will not be
covered. As .a result, the design, documentation, program, and management
data base entries are perhaps more fully described than are some of the
other files and documents in the data base.

17.3 STANDARD PROGRAMMING LANGUAGES AND
LANGUAGE STANDARDS

Programming languages form the .primary tools by which computer
programs are constructed. Without a language well-suited to the task at
hand, the most elegant of secondary tools will prove inadequate for
composing high-quality programs, albeit secondary tools may permit one to
build the poor program more quickly or better than would take place
without such aids. 	 i

Those features of a standard language that implement procedural
hierarchic refinement and control logic structures constitute what I will
refer to as the control sublanguage of the language. Much of this text has
already been devoted to discussion of topics that influence the design of a
control sublanguage; Chapter 7 and Appendix G contain standards for the
control sublanguage (CRISP) that I shall be using here in examples.

Those features of a standard language that are not part of the control
sublanguage and that are not concerned with I/O constitute what I shall
refer to as the base. sublanguage,

I
Plotter

Graphics	 or Graphics toGenerator	 Display p
a

Design. Text
Document- Processor	 Runtime

ation. Monitor
Program, E.

ests Interpreters	 Documents, 3a
Listings

Compilers

-Linkage execution	 w
and

Object	 Editor and	 Job
output

Code	 Loaders	 File

Manage Management M

m ent Data
Data System

Text/Data	 Stubs
Editor	 and

Drivers
Test

Test Data	 Data
Generation --.
and Analysis"

Figure 17-9. Skeletal structure aSithia Standard Production Sya#em•Suppott Facility

V

Sec; 17,31 Standard Programming Languages	 789

The base language deals principally with data declaration and storage
management, scalar types, features for data structuring, and operatians on
data, The Department of Defense requirements document [29} for higher-
order computer danguages contains an excellent discussion of features
needed: in a modem base sablanguage.

The remainder of the standard language is the YO subtanguage. An
excellent summary of IIa suhtanguage capabilities for a number of higher-
order .language appears in the work of Goodenough et at 130'1. Further
discussion of /U.-capabilities appears in Section 17.3.4, €olIowing.

It would be preferable, in the interests of standardization and language
commonality, to have only one standard language in the library repertoire.
There is ample evidence x'31,3221 that such a requirement, however, is not a
pragmatic one when implementation and operational costs are considered:
As an alternative, then, there may he a set of standard languages; each
coordinated with the others, all available to users, and all rigorously
policed and maintained.

A coordinated set of standard languages should then differ only in the
ranges of each of its component sublanguages, appropriate to the intended
Application set (non-real-time languages, for example, would not contain
the FORK-,tout structure); the system programming language may permit
certain bit-lever manipulations; etc.. Features common to an two.
.programming languages must, for standardization, have the same syntax.

It is imperative that each implementation not contain source-language
features which are not defined in the language specification, and, moreover,
any implementation of a language feature not explicitly permitted by, the
language must be expressly forbidden, This is necessary to guarantee that
the use of programs and software subsystems will not be restricted to a
particular h, it by virtue of its having a unique version of the language,

Such a restriction represents a commitment to freeze each source
language, inhibit innovations and growth, and confine the language set to
the current state of the art. In return, standardization buys stability, wider
applicability of software tools; reusable software, greater software visibility,
ard, increased payoff for tool-building efforts. Standardization does not,
however, necessarily disallow optimizations which are host-system unique,
nor does it prevent growth and modification as authorized by a responsible
change control :board:

It is equally important that every implementation of a particular
language implements the entire language. If individual processors
implement only a subset of a language, there is then no chance for software
portability, and there is no guarantee that users may access standard

r

190 Standard Software Production System	 [CHAP. 17

supported libraries or application. programs implemented .using another
version of the same language.	 j

Requiring that the full language be implemented will be expensive only
if the language is large; complex, and non-uniform.. A number of smaller
compatible languages that can each communicate with the other and with
libraries of specialized features, support packages, and complex operations
should be the goal.

There is no room in this text to discuss all the factors to be taken into
account in language design. The interested reader is referred to the
interesting works of Nicholls [33] and others [29,30,31,32] for such
information. A few highlights are; however, worth niention here.

In keeping with user utility, those tasks of a routine nature associated
with language processing should be included and standard for all languages
in the standard .set. These include (1) automatic type checking of .variables,
functions, and parameters; (2) runtime checking of data-range integrity
(e.g:, subscripts within range); (3) automatic formatting and annotation of
listings; (4) cross-referencing and indexing of variables, procedure names;
literals, and other useful. program elements; (5) path-analysis, program
tracing, and other debugging features under programmer control; (B)
performance .monitoring for calibration of execution efficiency; (7)
generation of meaningful diagnostic messages for anomalous behavior; and
(8) linkage generation to independent compilation units, with consistency
checks on passed parameters.

17.3.1 Structuring Features

Without discussing the detailed syntax and problem-oriented perform-
ance features of a programming language, let me address some of the
structural and methodology-oriented aspects of the compiler which
implements that language. (I am excluding the assembly language processor
as a "compiler" here,) I envision that compiler as forming a concrete
medium for the program procedural and data design (embodying a program
design language, such as CRISP-PDL), and run the gamut from there all the
way down, .in hierarchically refined stages, to the executable code.

At the highest level, the compiler acts as. a CRISP-PDL processor,
accumulating program design algorithms, cataloging. procedures, cross-
referencing names, and matching (and linking) such thhings as procedural
name usages with procedure definitions. Those procedures, functions,
operators, data names, etc., which appear referenced, but which have not
yet been given formal descriptions in the design and are not recognizable as
elements of the programming language; are used .to inform the
programmers that such items need refinement. Eventually;. when the design

F

Sec. 17 3) Standard Programming Languages	 191

is. complete and when all refinements have reached the programming
language level, then no unresolved references appear, and the output code
is the completed program,

The source :descriptions in the early design can be viewed as "non-
compilable," as no compiler output need appear unless desired'. However,
the compiler is continually prompting the programmer; "What do you
mean by..." naming a textual string used by the programmer, but as yet
unrecognized by the compiler. At each stage, the compiler compiles what it
can, links what procedures and data names it can, and informs the user of
items it cannot handle, as yet; in addition, it flags syntactic errors for
removal.

Such a compiler can even create dummy stubs automatically (or
interactively), given an outline of what stubs in general should do (for
example, do nothing, print the name invoking the stub and return, prompt
the user for input, etc.). That is, the compiler is capable of producing an
executable program in some. form or other whenever directed, at any point
in the program development.

e
The first code produced by the compiler is probably interpretive, and is,

perhaps, incrementally compiled, procedure by procedure. The production
mode is interactive, and the program status can be probed at any point
where the execution pauses for programmer query. Values for variables can
be viewed or altered during such pauses, and the program can then be	 i
continued until a later pause. Because it works in: this incremental,
interpretive, interactive mode, the compiler needs to have the capability to
display and alter values by symbolic name, as well as to edit and to re-
execute parts of the program. The final program, produced by the
compiler, is anan optimized executable code, suited to the operational mode
desired Onteractive . or batch or both).

As for languages: Even with the capability for hierarchic, semantic
refinement built into a compiler, it is a fundamental error to believe that
program developers should be confined to thinking in a proceduraiiy
oriented language. There will always be a need for a "cogitation medium."
separate from. a computer. The major responsibility in language design rests
upon the creation of a tool which facilitates stating the solution to a class
of problems once the solver has reached that point in the solution process
where computerized aid can feasibly be standardized, The compiler I have
described above attempts to aid the solution process by :bridging the gap
between certain program abstractions and their concrete representations in
code.

I

792 Standard Software Production System 	 [CHAP.. 17

7742 An Example of Hierarchic Compiling: Ordered Search

Before going into more detail concerning features; syntax, and semantics
of a language suitable for the standard production system, let me illustrate,
by means of a hypothetical compiler, how the procedural design abstraction.
hierarchy might he accommodated.

Problem. A set of integers is contained in the 1-dimensional array, TABU; of
size N the integers are ordered; so that TABLE[:il :5, TABLE[i + 1l, brackets
denoting subscripts. Design and implement a procedure, SEARCH,(VAL,
FOUND), to seek the integer variable VAL among the TABLE items, and set -a
Boolean variable FOUND, to true or false accordingly.

Solution: The solution method* is to partition portions of the array
iteratively for search into a left part and right part by some as-yet
unspecified criterion. Ths first part of this solution is, then, the CRISP-PDL
procedure:

procedure: SEARCH(VAL:integer, FOUND:bood-ean)

Select initial portion to be searched

loop while (more than one element in portion)

reduce portion to be searched

repeat

examine chosen part and set FOUND

endpracedure

At this point, the compiler has recognized only the underlined keywords,
the procedure name and variables to be passed, znd the procedure and loo
structures. The compiler then asks for definitions of the strings; "Select
initial portion to be searched," "more than one element in portion;"

` reduce portion to be searched," and "examine chosen part and set FOUND."

The programmer responds, in this hypothetical language, with a set of
refinements:

to select initial portion to be searched

declare L, R: integer local to SE=ARCH

L:=1, R: -N
endto.

*Per Brinch-t-lansbt, Stnietured Programming Class Notes, JFL Employee Development
Class, SprEng; 1.975.

See, 17.31 Standard Programming Languages 	 193

to reduce portion to be searched

partition current portion into left and right parts

if (solution impossible in left part)

select right part

select left part
endif

endto

The progarnmer has chosen not to respond at this time to the other
elements asked for above. The compiler then asks for definition of elements
partition current portion into left and right parts," "solution

impossible in left part, "select left part,." and "select right part."
The next set of refinements entered are:

to partition currenc portion into left and right parts

set C to rightmost index of Ieft part

endto

macro.: solution impossible in left part moans

TABLE [C] < VAL

andmacro

to se.lect left part

R.

endto

to select right part

L:-C+1

endto

macro: more than one element in portion means

L<R
endmacro

to examine chosen part and set FOUND

if JVAL=?TA8LE.jLj)

FOUND:-TRUE

(else)

FOUND:=FALSE

endif

endto

At this point, the compiler has recognized all elements of the solution
except "aw. C to rightmost index of left part,' and it finds no
declaraflo:,s for ARRAY and 0, whereupon Is entered:

- r"

/I

194 Standard Software Production System	 [CHAP. 17

declare C¢intager local to SEARCH,
TABLE; array [1. N] of integer global,

Ns integer global

Whether the search is a linear sequencing through TABLE, or a binary
segmentation of the search portion into two nearly equal parts on each
cycle, or almost any other kind of ordered search, it is centralized and
controlled by the single procedure "set C to rightmost index of left,
part," although it is possible that some searches (e.g., a .Fibonacci
partitioning [34.j} might also require some additions to "select initial
portion to be searched."

Carrying the example here further, I shall suppose a binary search is in
order, in which case the foIIowing refinement is entered so as to divide the
search region by 2 in each cycle;

to set C to rirlhtmost index of Left part_ .	
C-- IP ((L R) /2) -;truncates to 3nt.eger Part +7
endto

The concrete declarations and operations above, such as "declare....,
and "C.'- IP ((L+R)' / 2) ," are assumed to be in that regular part of the
language syntax not needing further refinement. I have taken liberty in
assuming that the reader comprehends what is meant by these constructions
in this hypothetical language without explicit definition (which, of course,
the hypothetical user's manual would provide).

The program development is now complete, as all elements have been
recognized by the compiler, On seeing how procedures are defined, the
compiler then provides a suitable linking method. In the example shown,
all procedu es are probably inserted in-line in the object code.

17.3.3 Data Structuring Features
Each programming language in the system must, of necessity, be able to

declare data structures and to operate on those structures as appropriate to
solve the problem at hand, and each of these languages, therefore; needs a
common, standard syntax with which to declare its data. A programming
language tends automatically to set standards for data structure
declarations, and the standard syntax should, therefore, be designed so as to
permit hierarchic development of data structure specifications as discussed.
earlier in Chapters 4 and 12.

In Chapter 2, I defined a data structure as a representation of the
ordering and accessibility relationships among data items, without regard to
storage structures, or implementation considerations. In this sense, data

Sec. 17.31 Standard Programming Languages 	 195

structures lie midway in the mapping process that transforms the problem-
solution domain into the storage and computation domain. Data structures
are characterized by a set of attributes accorded to the data items to be
manipulated. Among these attributes are:

• Ranges of values for data items

• Relationships among data items

• Means of declaration and creation

• Rights and means. of access

• Valid sets of operations when accessed

The specification of a set of attributes defines a data type. The simplest
data types for data items in a language are called fundamental scalar types.
In FORTRAN, for example, integers and reals are the primary fundamental
scalar types permitted. Extended scalar types refer to wider classes of
scalars defined in or through the language syntax, but without direct
accessibility to the underlying scalars that form the extended types. For
example, a FORTRAN complex number is formed from two reals (simple
scalars), and all references to these components are explicit, being achieved
only through the defined set of operations and functions for complex
numbers.

Data that contain scalar types as elements or sub-elements are called
structured types. The simplest structural types in a language are said to be
fundamental or "built-in" structural types. FORTRAN permits only fixed-
dimensional scalar arrays as its fundamental structure; PASCAL contains, in
addition, record and file structures.

Declaration is the notification to the compiler of data type attributes;
when storage is actually allocated at runtime or reserved statically at
compile-time for later operations, the structure is said to have been created
or bound. The access domain of a structure is composed of that set of
operations permitted to read, write; or otherwise manipulate it.

For reliability, most modern languages now provide some measures of
protection and privacy so as to catch the simpler forms of inadvertent
violation of access domains. Such languages are said to be typed, As

opposed to languages that permit arbitrary operations on a variable. For
example, FORTRAN, which permits character strings to be stored in
integer-declared arrays and operated on either as integers or characters, is
untyped in this respect PASCAL, on the other hand, is fully typed, not
even allowing integers to be added to reals without explicit type
conversion,

/I

i

196 Standard Software Production System	 [CHAP. 17

Access attributes are declared forms of access rights, such as literal or
constant (read only) and variable (read/write), qualified by such modifiers
as global (accessible by the entire program or a set of programs), local
to ..(accessible only within a given list of modules and their submoduks},
readable by....{read-access only by listed. modules and their sub-modules),
and writable by...(write-access only by listed modules and their
suhmodules).

Data strictures are also characterizable by storage creation .attributes,
such as .static allocation (fixed at compile-time), controlled (determined
dynamically at runtime), automatic (dynamic iuntime allocation of
temporary data structures and release after use), and variants of these, such
as based storage (controlled storage in which temporary copies are created,
stacked; manipulated, and destroyed in block-structured programs).

Data structure declarations may also establish initial values to be present
upon creation.

An abstract data type is that which can he described by a cascading
hierarchy of data-type definitions whose primitives are fundamental types in
the programming language. The design procedures outlined in Chapters 4
and 12, in fact, describe data structure design as the process of abstract
data type definition.

Programming Ianguages that provide abstract data type declaration
facilities to varying degrees have been in existence since about 1967 when
SIMULA-67 appeared. Since then, there have been an ever-increasing
number of such languages, e.g., ALGOL-68, PASCAL, concurrent
PASCAL, and. PASQUAL. A useful bibliography of papers concerning data
types and programming languages may he found in the work of Tennent
[35): Specifications for a Data Description Language (DDL) have also been
published [311 by the CODASYL group. The Department of Defense
requirements for its Higher-order language [291 state that it be typed, allow
for the definition of new data types and operations within programs, and
permit ranges of values that can he associated with a variable, array, or
record component to be any built-in type, any defined type, or a contiguous
subsequence of any enumeration type.

Specification techniques for data abstractions have been treated by
Liskov and Zilles [361, who concluded that there is no single specification
technique that is universally better than others in terms of providing
mathemat, -- J inambiguity, ease of construction, ease of comprehension,
and minirw^ hty of expression in describing the pertinent usage attr ,'hutes of
the structure, without having to divulge purely constructional details.
extraneous to the problem.

r

t
Sec. 17.31 Standard Programming Languages	 197

Hoare [37], in fact, concluded that it is totally unrealistic to suppose that
any high-level language or automatic process (or even a generalized,
integrated data-base management system) could be made to produce
satisfactory implementations from abstract definitions, in the general case.
Rather, it always will be necessary for the programmer to synthesize some
of his abstractions using fundamental operations and declarations.
programmed levels of access, coding conventions and standards, and
documented data relationships.

The syntax of the base language must, therefore, accommodate each of
the attributes necessary for humans to build concrete data structures from
virtual. abstract data types. The basic attributes needed include an adequate
set of fundan-iental scalar and structure types from which other types can be
generated. Such a set might well include the scalar types

s Integer; hounded integer

• Real; bounded real

• Character; string of characters

• Boolean; logical

• Complex

0 Member of enumerated set

• Double precision (integer, real, complex)

and the fundamental structures over each scalar type may well include

s Array (indexed access, single scalar type elements)

0 Record (field-name access, arbitrary scalar type elements)

• Buffer, or sequence (sequential access, single scalar type elements)

• Set (membership access, discrete scalar type elements)

• List (chained access via pointers to single scalar type or record
elements)

r String of boolean

In addition, the following first-order compound-structural types contribute
enormously toward the case by which data abstractions can he encoded:

* Array of records

• File of records

• List of records

In each of the compound structured types above, the records have scalar
elements only.

i

198 Standard Software Production System	 [CHAP. I7

The capability to compound structural types arbitrarily to the cases in
which elements ident?fied above as scalars can instead be any previously
specified data type is precisely what is needed for abstract data type
definitions. The extent to which such features can be made feasible within a
programming language syntax determines how much of the abstraction
must be programmed using other means.

In order that storage binding time be programmable, the base language
must not only permit static allocations of data structures, but, also;
dynamic allocations wid reallocations during execution. Automatic and
based storage can generally be simulated by special attention to controlled
storage procedures. The capability to declare an initial value to be supplied
when the structure is created may be included as a base-language ..
requirement.

In order that storage locations be bound in a conveniently programmable
way, data ownership declaration options are needed. Structures occupying a
global area should link to access functions by the same means used to
declare those structures for example, a named variable declared to be
global should be accessible by its name throughout the program, regardless
of the order in which variables are declared in its separately compiled
parts. This, of course, is contrary to the FORTRAN practice of locating
elements in COMMON by position, rather than by name. The base-
language processor may require a special linking loader to accommodate
separately compiled modules.

Linking of structures declared to be scoped within a module and
accessible by any of its descendant (perhaps separately compiled)
submodules may also require special features within the compiler and
loader not only to communicate structure names but, perhaps, the module
hierarchy as well. The limited use of data structures by a set of operations
is a subcase of a more gener-nl . problem that in which access rights to
resources are controlled and administered by the language processor.

m
Certain structures (literals) are meant to be read-only by any module;',others
(variable) are meant to be arbitrarily read or written into by any authorized
module; still others conceivably may be read -only to some modules and
write-only (or read/write) to others.

A language that checks and administers such rights of access to resources
must implicitly or explicitly permit programmers to communicate these
rights to the structures being accessed. Most commonly, localization of
access only is available, achieved through separate compilation or through
block structure in the language; functions and subroutines, which are

externally referenceable but compiled together using mutual data among
themselves, then form a level of access to their local data structures.

^dt•.

1

t

Sec. 17.31 Standard Programming Languages	 '199

The standard languages should, however, support the definition of levels
of access to resources within each compilation, and not necessitate the,
perhaps, unnatural dislocation of code segments into separate compile
modules. Moreover, localization of functional access within levels should
he possible; access functions that form a sublevel of access within a given
level of access should not he referenceable above that level of access.

17.3.4 Input/Output Capabilities

The processes of input and output are in truth merely mappings from
data structures in one medium to data structures in another. Among data
structures in. core, such mappings are frequently referred to as type
conversions however, in I/O, the mappings are generally called formatting.
An. I/D type consists of a set of objects or values associated with physical
devices characterized by special selection and assignment operators, special
organizations and associated sets of operations, and an end-of-1/0 property.
Most higher-order languages support a variety of different I/O devices,
transmission modes, access rules, organizational protocols, and structural
attributes.

I/O data types are not always explicit in a language; but a language that
supports I/O functions must include, in the narrowe..jt sense, the following
operations and exception conditions:

• Open. medium for access; assign buffers (can be implicit)

• Close medium access, deallocate buffers (may not be necessary)

• Bead, or select an object from the medium (buffer)

• Write, or assign an object into a medium (buffer)

• End-of-medium, no more data accessible from medium

• No-such-device, medium cannot be identified

• Access-error; improper access operation

• Physical-error, medium physical failure

An open 1/0 medium has at least. a certain minimum set of assigned
attributes, among which are

• Medium type

• .babel or name (if a file)

• Access restrictions (read-only, write-only, etc.)

• Buffer designation

Additional attributes define the I/O data structure for proper conversion
into or from physical storage (character vs. binary, record vs. stream access,

p't •"riu'1^^a Frnw:wn+.^r^s..nywe^m-.r.:sn.^ww.^w.ix.^••:ir„^a.e.:.^.s.-^.,.m^ d--^...,...r-w.,......-^.-..-.^..^.,.._.. _..._. _... _.._ 	 ..	 _.—_.._._...

200 Standard Software Production System	 [CHAP. 1:7

stream in character mode vs. line mode, records blocked vs. unblocked;
formatted vs.:free-farm, etc.).

The interfaces (Figure 17-9) between the base sublanguage and the I/O
sublanguage are the I/O buffer, format specifreation, and attribute table.
The buffer must be capable of receiving or being .assigned any valid. data
type addressible in the base language (actually, just scalar data types and
combinations of them that can be packed into ,aggregates with word or
character alignment). Both formal and default formats must be accommo-
dated, and format generation must be under programmer control.

The programability of the I/O sublanguage is a matter of assigning or
accessing buffer values, setting attribute table entries, specifying format

Operating System

fl (splay

Terminal

Card

t	 ,JPun.^

Language Processor

Base	 l/O

Sublanguage	 Subianguage

Mag
Tape

Printer

Mass
.Storage

Figure 17-9. interfaces between control, base; and 1/.0 sublangueges

Control

Sublang+ --age

Attri-
bute

Table

Format.

Suffer

7

Sec. 17.41 GRISP.PDL Processing	 .201

.parameters, and reacting to exception conditions, The ability to support
170 functions to special devices is :partially dependent, however, on the
presence of data types that map directly to the values implicit in the
devices. in the interests of minimizing host system dependencies and
promoting language commonality among installations, it is important that
the allowable set of TJQ functions he limited to a subset of capabilities
supportable on all standard hosts.

For this reason, the internal attributes of the 1/0 media should not be
accessible by the applications .programmer. Formats. and other programma-
ble attributes should probably be recordable directly on output media, right
along with the output data, so that automatic type checking can be
accommodated (to some limited degree) when that data is read back in by a
program. Devices (such as keyboard terminals) that are input-only must.
then handle only a single type (e.g., character), but with conversions to
scalar types and aggregation into structures via a specified. input format.

17.4. CRISP-PDL PROCESSING

The quality of a computer program can often be significantly related to
the design medium in which that program is developed, embryonically and
evolutionarily, from the ideas that permeate the programmer's mind, to the
completed programming specification. Such a medium must foster the
expression of such ideas easily and quickly (sometimes before they fade.
from memory), and must permit flexible and facile alterations; additions,
and deletions to these ideas as the design evolves. Moreover, the expression
of the design should be as graphic as a "picture of the program"—yet not
be the program, nor constrained by the rigorous syntax of a compilable
computer language. At the final evolutionary stage, such descriptions
should form the principal program design document.

A "Program Design Language," or PDL, * is a formalized embodiment. of
such a design aid, and can take many forms. Probably the most familiar
form of a PDL is flowcharting. Flowcharts have many advantages and many
disadvantages, which will not be named or argued here, .except to say that,
while .being very graphic, they are nevertheless very limited in what they
can rlo for the program designer because of thelimited space available for
expression, because they are primarily procedure-oriented, because of their
inflexibility toward alteration or revision, and because of the expense
required to draft them in a "finished" form.

* This acronym also stands for "Procedure Definition Language," "Procedure Design
Language," and other eguivaleas.

202 Standard Software Production System	 [CHAP. 17

The compiler. described earlier in Section 17.3..1 had the PDL capability
built in, interactively building up the program through stepwise-
refinement-dialog with the user. However, there is more to a programming
task than can be expressed in a procedure-oriented language. There must
also be a way to explain to readers of the documentation the significance of
certain operations, the goals to be met by programmed functions before
they are programmed, the assumptions that have been made at a particular
point in the design, the reasons why the given constructions were used (or
why others were ruled out), and illustrations which facilitate the
understanding process.

i
Such program rationale can, of course, be kept apart from the program

or merged into it somewhat in the form of comments; both methods have
many admirable qualities; Comments tend to explain local effects in
procedures at their points of occurrence. Separate narrative and graphics
are usually better for analyses and more global explanations of program
function.

In the remainder of this section, permit me to focus on some text-
formatting and design-reporting features of a simple hypothetical CRISP-
PD.L processor consistent with later flowcharting requirements (Section
17.5). A more detailed description of CRISP -PDL may be found- in
Appendix G.

Each CRISP=PDL input line consists of possibly three fields: a prefix, a
cosmetic, and the program text, The prefix contains possibly a step number
within the module (usually chosen to correspond to a box or, a flowchart)
and, .perhaps, a subroutine or function cross-reference. The cosmetic
portion. consists of spaces and vestigial fiowlines; so as to present an
indented listing, which displays many of the features of a flowchart as
illustrated earlier in Chapter 7..

The text field of the input is of two varieties: a control-logic text and
non-control-logic text. Control-logic text fields begin with a control
keyword, such as if, loop, repeat, or a left parenthesis "C' Such keywords
signal, the processor to increase or decrease the indenting level and to add,
delete, or modify the vestigial fiowlines. The headings of nested strictures
(e.g., if, loop, else, etc.) increase the indenting level and add flowlines
endings of nested structures (e.g., end.if, e. ndcases; repeat, etc.) decrease
the indenting level and eradicate fiowlines. Abnormal and paranormal .exits
(exit, return, stop, and system) cause no change in indenting level, but do
show a flowline - exit of the current nesting level back to the appropriate
level.

I

Sec. 17.41: CRISP-ML Processing	 203

The output of the CRISP-PDL processor consists of a table of contents
or module director y, a tier chart, and the cosmetized CRISP-PDL with
cross=references of identifiers, subroutines, and functions. Figure 17-:10
summarizes the CRISP-PDL inputs., processing functions, and outputs:
Inputs are the source file being processed and control data that selects
output options. Processing .consists of cosmetizing source .lines; as described
earlier, the accumulation of module and identifier names, page numbers,
and cross-reference material, and the output of such material as directed by
control data.

A more detailed data-flow diagram is shown in Figure 17-11 for purposes
of describing the functions more clearly. Neither the names of symbols nor
the physical structure of the program internal data flows necessarily
corresponds to those in the program internal design.. Symbols are numbered
to identify input (.1), processing (2) ., or output (3), jest as in Figure 17-10; an
additional Dewey-decimal identifier serves to individualize the boxes into
separate functions.

Text appearing between a module ender and the next module header is
copied directly to the listing without cosmetization or diagnostic checking.
Each line is scanned; however, since it potentially contains identifiers. It is
just as important to locate Identifiers in commentary as it is to locate them.
in the procedural listing.

Each module begins a new page, as does any narrative that follows a
module end and a new module header. (Each module end signals .a page
advance.) The output report starts the CRISP-PDL listing at page 1 (the
table of contents and front matter are given Roman numeral page
numbers).

The output .report, in its fullest foram, consists of the following sections or
parts, in order:

• Title page .

• Table of contents

• Program directory

Input	 Processing	 output

Cosmetize	 0 Directory
a Source List	 a Accumulate.	 • Tier -Chart, Stubs
• Control Data	 Linkages	 6 Listing, Cross-refs

• Print Report	 • Diagnostics

Figure 1710. The CRISP-PDL HIPO diagram

l`

Source. Scan Tier Chart A'

• Cosmetize Name
and Prepare Tier a

::CRISP-POL •Extract names
Linka a Chat, Stub

(sl • Build linkages
• Record Statistics

s
Tables Summary

e	
-

3.3 A2.4 .^	 l

3.1
Directory ;s

Scratch R9	 r

Monitor • Sort module

•
names

Print error s Contents
Conte

• Output
diagnostics Glossary directory O

and run info
2.5 y

3.4
Glossary

1.1	 2'1	 • Sort identifiers

=evqfic

	 Configure	 Reinput	 • Enter Cross-
Refs

• Set control	 Cosmetized	 • Output Glossary

 flags	 Source• Open.1/0 	 3.5
 media Report

•Title Page
• Table of Contents
• Listing
• etc.

Control data to all processing functions

figure 17-11. Conceptual data flow for purpose of describing CRISP -POL functional behavior

t

Frr^.

!may} ^!

	 .i ^.'	 ^	 ^

Sec. 17.51 Flowcharting From CRSP PDL	 205

F

t

• Tier chart

• Stub. status report

• .Cosmetized source listing, first module

• Intermodule text

• Cosmetized source listing; second module

• Glossary and cross references

• Statistics of program

The full set of CRISP=PDL. forms appears in Appendix G.

17.5 FLOWCHARTING FROM CRISP-PDL

The equivalence between CRISP-PDL and flowchart structures is not
coincidental.. The exact one-for-one correspondence was, by design;
intended to facilitate software production by making. design-level graphics
available and suitable for program documentation. Programmers who claim
they do not need flowcharts to design and implement programs can use
CRISP-PDL as a much more writable, flexible, and (to them) readable
specification of the program procedure. Processing the CRISP-PDL
produces the more graphic documentation for others to read; automatically
and at low cost.

Still others will, perhaps, choose to work with flowcharts on a primary
basis, but using the entry and update capabilities of a text editor, rather
than manually drawing and redrawing their own charts.

In this section I describe a simple flowcharter for the CRISP language,
called. CRISPFLOW. It is simpler than most general-purpose flowcharters,
such as AUTOFLOVtiW [38], BELLFLOW [39], etc., ;because it only draws
structured flowcharts, one module to a page, and permits no o#£-page
connectors; it conforms .such charts to the layout standards used throughout
the two volumes of this work.

The flowchart symbols plotted by CRISPFLOW will have varying
dimensions according to the text to be contained in each. Nevertheless,
standard ANSI [40] aspect ratios. (width.height) are maintained. The letters
"T" and "F" always label binary decision symbols, true always on the left.
Structures always have straight-down flow paths; that is, branch-collecting

_011

^r
	

A

a

Figure 17-12. Example of CRlSPFLOW source format fora PROMOUF1E &Wcheft-

r

i

r

a

206 Standard Software Production System	 [CHAP. 17

r

nodes are located exactly below the branching vertex, etc. CASE-clause
identifiers become labels on the various paths emanating from the multi-
decision branch. Figures 17-12 and 1743 show an example of CRISP-
FLOW input and output.

Horizontally striped symbols result upon encountering Do or CALL

statements in the CRISP-PDL source; vertically striped symbols are drawn
in response to the keyword cAL.Lx. The remainder of the text on a line
enters the box; the procedure name above and the comment field below.

Loop-collecting nodes are distinguished as open circles; decision-
collecting nodes by filled-in circles.

CRISPFLOW does not chart off-page connections nor any other
unstructured form. No matter how large a CRISP-PDL module is, it is
sized to fit on a standard 21-1/2 X 28 cm (8-1/2 X 11 in.) page b y scaling

PROCEDURE; SAMPLE <*18 SEPT 75'*>	 MOD# 1.3.5

*This sample module demonstrates the CRhSPFLOW
<*syntax with a hypothetical message transmission
<*system.	 Statements denoted STl through 5T4 are

*unspecified here, and the READ routine is
<*external to the set of documentation for which
<*the flowchart is being produced..

11 I'F (UNALLOCATED)
CASE. (MODE)

.3 ST1

.4 5T2
.5 S:T3

.=>(3)
.6 ST4

:..ENUCASES

.71S1 CALL OPEN (MODE)<*CHANNEL IS MODE NUMBER.*>
: ->(ELSE).

,8' LOOP WHILE (AVAILABLE)
.9/XS2 CALLX READ(CHR)<*READ CHARACTER*>

CALL WRITE(CHR)<*WRITE CHARACTER*>
.. REPEAT

...ENDIF
.11 50 GLOSE<*MESSAGE.SENT*>

.T2 DO RELEASE<*DISGONNECT CHANNEL*>
ENDPROCEDURE

.:r

i
I

Sec. 17.51 Flowcharting Rom CIRISP-PDL 207

f

208 Standard Software Production System	 [CHAP. 17

down all symbols accordingly. The number of symbols that can be
flowcharted is, therefore, set by readability, not the caprice of CRISP-
FLOW,

The charting algorithm is very simple in concept, and worth mentioning
here as an interesting design example; For each module in the CRISP-PDL
source, the top-level control structure appears as the following three steps:

DO PASSE <* form a. tree structure for the module*>
DO LAYOUT <*locate and size the chart on a page*>
DO DRAW <*plot symbols and fl'owlines on the page*>

The PASSE step scans each CRISP-PDL statement to extract the step
number, cross-reference, keyword; and comment fields, storing this
information into a node of a tree structure, representing the graph. This
node is attached to the tree by arrangement of son/brother pointers
associated with the nodes, to record the nesting hierarchy of statements in
the CRISP-PDL. Figure 17-14 illustrates the tree format for the SAMPLE
program.

The LAYOUT step applies a "super-box" approach to size and arrange the
boxes on the page. The layout procedure scans the parser-generated tree in
a post-order traverse (see Section 7.32 and [341), and for each node forms .a
transparent "super-box," which encloses the .super-boxes of all its subtrees
(nested elements). The size of each super-box (stored with the other node
information) .is determined by the type of node (i.e., statement) to which it
corresponds, together with the sizes of the super-boxes of each of its
subtrees. The post-order walk . permits the structure of the tree to be
utilized as a "reduction system" or means to layout the chart in a
comprehensive, bottom-up first pass through the tree. As the nodes at each
level in the tree are scanned and "reduced" to super-boxes, they are used in
turn to construct the super-boxes of the .nodes at the next higher level. This
procedure continues until the top-level statements of a module are
combined into the super-box for the entire module.

The DRAW step; . now having the size of the total chart, scales its super-box
to fit the plot page, centers, and performs a pre-order scan (341 of the tree,
during which it establishes coordinates, draws the boxes, fills them with
text, and connects them with flowlnes, arrows, and collecting nodes., all in
one final pass; through the tree.

The box-arrangement algorithm described above is a compromise
between a "dynamic programming" approach and one that forestalls
repetitive, brute-force search schemes, to allow rapid chart layout with only
modest memory demands. The "super-box" approach yields very well

PROCEDURE
'pSAMPLE.

cue,

^y

IF ^DO CLOSE DO REL45E (UNALLOCATED)
b

Zva ^/

THEN ELSE

to

CALL '^
OPEN ('N10DE} LOOP WHILE b(AVAILABLE) r+

Figure 1714. The binary parse tree of procedure "SAMPLE" (SON pointers exit the
bottoms of boxes; BROTHER pointersleave the sides)

M.

NO
t0

-w	 s

r
ti

210 Standard Software Production System
	

[CHAP, 17

arranged charts without packing boxes as densely (or as "cleverly") as might
he achievable using one of the slower generation schemes.

77.8 TEXT AND PROGRAM FILE EDITING

A means for text editing is one of the primary needs in every software
development. Both the design documentation (procedure and narrative) and
the source code (including data) for the compiler are in the form of text
files that require constant application of the editor from inception to
program delivery, and on into sustaining and maintenance throughout the
program life. cycle.

The text editor is, therefore, a general-purpose tool for program
production whose syntax and semantics must be engineered to fit in
uniformly with the other aids in the programming system. It is the means
by which all files operating within the standard program production system
are created and updated.

As with other aids mentioned in this chapter, a detailed set of
requirements for a text editor is beyond the present scope. However, some
of the highlights are worth discussing,

The first interesting aspect of the editor I would propose is a feature
that, while administering changes to program elements (documentation,
CRISP-PDL, code, tabular data, etc.), would at the same time perform
some of the management functions needed to monitor program develop

-ment. Some of the simple things that can be done are to (1) redate any
module altered by the editor; (2) remove configuration control codes (in the
comment field of a CRISP-PDL module header, for example) until the
approval cycle (Section 10.4.2) ' reestablishes the module validity; (3)
identify changes to either code, CRISRPDL, or documentation which were
not also accompanied by changes in the others as well; (4) automatically
queue or identify all altered CRISP-PDL modules or narrative elements for
flowcharting or other output; (5) automatically register program
completion status reports with the management data base when moaules
are added or completed. (or deleted); and (6) register statistics on editing
transactions with the management data base. Stich functions provide the
visibility into programmer activities needed by management to assess the
project's health; diagnose trouble spots, and monitor the team progress.

The other requirements on the text editor relate to its effectiveness as a
productivity-increasing production tool. It should; of course, be able to
operate on 411 text files used within the production system. For efficiency

r.

s
See. I7.61 Text and Program File Editing	 211

and flexibility it should accommodate both sequential and random-access
files, with unrestricted record and file lengths.

The editor needs to be both an interactive tool and a programmable one
as well. That is, it should function directly in concert with the user at a
terminal in interactive dialogue, and it should operate when given pre-
stored or batch-entered instructions,

The programming language should be simple, easy to learn, and easy to
remember, with syntax coordinated among the other languages in the
standard set, as discussed earlier in this chapter. The user should be able to
define (and modify) file and record. structures, whether defined within
program elements, or whether existing in some predefined "structure file."

Files may require both public/private and read/write security keys; the
editor,. moreover, should enjoy no special privilege with respect to private
or read-only files. The user in each case is expected to supply proper access
codes for the operations and files to he accessed. The philosophy for file
security assumed here is one that protects users from non-malicious,
inadvertent usages by others, rather than malicious breaches of security for
illegal purposes. Protection of the latter type is needed in many
applications, and can be added as a requirement in such cases (at some
expense, no doubt).

Some of the features needed are:

a. Editor can be initiated from another processor without loss of
workspace or file status upon return to that processor. However, file
editor does not access workspace of that other processor.

b. Edits files even if already open in another processor. However, the
file editor must provide for consistent usage (Chapter 6) of time-
shared files.

c. Edits records using syntax standard among similar line-editing
capabilities in other processors.

d. Extracts substrings from records by character positions), free-form
fields, user defined format, and field name in user specified record
structure; it can use these in relational operations, in string
expressions, in numeric conversion and arithmetic operations, and for
generating file names.

e, inserts new records or deletes old ones at accessed location.

f. Displays accessed record, extracted substrings, and computations on
user terminal or on output files. Display can be conditioned on
extracted. or other computed data, and formatted as desired by user,

212 Standard Software Production System	 (CHAP. I7

g: Can. copy files to tape; or tape to files; can name and rename files;
can delete unwanted files; can concatenate files; can insert one file
within another.

17.7 MANAGEf41ENT DATA AND STATUS REPORTING

Performance measurement in this section refers to .management gauges
of computer software production, rather than. efficiency metrics on the
software itself, However, the quality of the delivered product ki certainly an
important aspect of performance, and so the measurement of performance
must not exclude quality as a performance factor. Therefore, in this
context., performance measurement 'rhay be reduced to the measurement of
the capacity of a software development team to produce working,.
documented software, together with qualifying measurements of cost, time,
rend -qualit y of product. This function is closely coordinatea with. the ability
of software management to estimate costs, manhours, and schedules, to
assess manpower skills and required areas of specialization, and then to
exercise measures of control over the emerging quality of product.

Basic to the establishment of such measurements is the establishment of
standards, languages, and software production techniques, as discussed
earlier in this work. Once this is done, a conceptual ,procedure for
performance measurement is not difficult to hypothesize;

a. List desirable performance qualities that are also measurable.

b. Develop a mapping of performance units into a uniform scale of
merit,

c. Measure performance and normalize (i.e., convert to a unitless scale),

d. Compute grade based on some formula (say, as a weighted sum of
scores),

The point of view here, is that science, technology, industry., and
commerce are based on the ability to measure things or phenomena,
describe the results in numerical terms, make comparisons, and make
decisions based on these comparisons.

The hypothetical method given above is not without fault; associating
value with measurement is often very subjective. But measured quantities
need not be taken literally as absolutes in order to provide management
with a useful tool: Indicators of trends may often be just as useful to a
manager as knowing the causal relationship basing the measurements,

The ability to assess the performance of a software producer—individual
or group—is basic to estimating costs. and time and to exercising

z

Sec. 17.71 Management Data and Status Reporting	 213

corresponding control over the production process. At the same time, the
ability to measure performance will not, of itself, provide good
management technique. It will, however, permit responsible management

j to measure differences between alternatives and to react accordingly. The
software manager assumed here will, therefore, be assumed to be already
competent in his job, even without automated support; any automated'
capability he is provided should merely aid him in performing that. job.

Every manager has an established need co collect and manipulate data
directly concerned with performance and to use these data, or relationships
among data items, in the performance of his. job. If: collected into a data
base that can be accessed and queried by a computer, then there .needs to
be a well-defined, effective means by which its users .perceive and interact
with that data base. The form of this interface between the data base and
the manager is, thus,. particularly vital to the utility of that system.

17.7.1 The Management Forms Approach

The data-base/end-user=facility interface recommended by the
CODASYL End User :Facility Task Group [41] is one based on the "forms
approach" to data base operations. The essence of this approach is that it
enables the manager, among others, to think of and view the content .of the
software .management data base as a series of two dimensional forms
contained in files and folders (Figure 17-15).

There are three subclasses of forms that may be identified: perception
forms, user forms, and worksheets (Figure 17-:16). Perception .forms form the
level. of access between the management user and the software management
data base; all queries of the data base are eventually effected using
perception forms; so that the manager need never .be aware of the actual
data base structure. The programs and subroutines forming this level of
access are intended to be standard across all developments, with interfaces
defined and maintained by the secretariat function. Each project, however,
has its own data base, and defines and maintains that data base.

User forms are mappable to and from perception forms, but not directly
to and from the data base itself. One defining a user form need not have
knowledge of the data base structure; only the structure of the perception
forms. User forms are meant to be project-special, . the software for
processing such forms being provided by that individual project, or by the
secretariat as a service.

Worksheets are the means by which the end user extracts information
from other forms and operates on this information in a "scratchpad"

`	 i

qualifier
tryM.

e

- Group of items
_ = or V7lbI.9roups M

Pile of forms —	 –

-
L,	 J of same type b

z a
Data
Base

Set of files folder
r tab	 D	 O

List of
items c

Y

file name
Pile of folders

z' Set of forms
form type	 of different n

types

. Figure 17-15. The end-user facility. forme approach analogy
A

H

Prolect•peculiarTemporary Programs T	 —
I
^	 I

IWorksheets,
I	 Secretariat

defines

interfaces

f	 I	 ^

I	 ^	 ^

^,	 f
User defines	 Perception	 I

r	 interfaces	 forms	 Data
Base

!^
	

I	
I

1	 {

I

User	 Secretariat	 I
forms	 6r User

defines
interfaces

I	 Organizationally	 I
Project-Peculiar Standard	 Standard

Routines^	 —	 —	 I —	 `Floutines i
L

Flgure 17.16. Interfaces in a forms-orlented end-user facility

fashion. Worksheets are programmed by each project or project mana ger as
a temporary device for assembling and viewing data relative to team

5
	 performance.

17.7.2 Management Information Processing

Generation of performance-monitoring- reports extracts information from
both the programming data base and the management data base proper. A.
management. information. system to accomplish the task needs to be flexible
to meet the needs-range of its users and adaptable to reporting the status
indicators of interest. Without value-to-measurement mappings, usage will
probably be aimed primarily at spotting trends or making projections of
costs, schedules; and the like.

43

i

A

21$ Standard Software Production System	 (:CHAP, 17

Typical information (forms) of .interest might include

• Tier chart and stub status, perhaps gauged relative to architectural

baseline design

• Actual costs; computer usage, and manpower

Programming transaction statistics

• Lines of code, data; documentation, etc.

• Schedule and PERT status and projections

• Decision Log

• List of action items, problems, anomalies ., and dispositions

• Standards waiver log

• Work breakdown structure and performance status

• Configuration management data

The software to implement management forms constitutes what may be
termed a "management information processor," and, inasmuch as it is
manipulatable (programmable) by the user, it forms a "program
management language," Users will be dealing with all five classes of the
data object: hierarchy shown in Figure 17-.15: items, groups, forms, folders,
and files. They will require naming and sel ^ ,,tion capabilities that direct the
system to define and access occurrences cif data in these classes. The class
hierarchy makes this .potentially very easy.. For example;

TRANSACTION_ SMITH_ RUNTIME. MAY_ 16

could refer to the TRANSACTION file, sMITH folder, RUNTIME form, MAY group,,
rsth (day) items.

Operations on forms to create worksheets may. need to

• Define worksheet format and hierarchy

• Update management base

• Locate materials for query

• Sort/mergelextract material

• Move, copy materials within base

• Remove materials from. base .

The user of such a system must be willing to understand that his view of
the data is largely predefined (by the secretariat) and that there is a finite
set of such . operations that he may invoke: Judiciously chosen, however,

1

J

Sec. 17,81 Conclusion
	 217

these can make the performance evaluation task .a much more informed
process. The need; for voluminous reports on a periodic basis may be
drastically reduced, since managers can access the performance monitors in
a timely manner and locate specific data of interest already in a report4ike
format.

17.8 CONCLUSION

I began this work with a promise to provide formal disciplines for
increasing "the probability of securing software that is characterizable by a
high degree of initial correctness, readability, and maintainability, and to
promote practices that aid in the consistent and orderly development of a
total software system within budgetary and schedule constraints. Perhaps
the initial chapters in this. volume read as. though the programmer himself
were, thus, to become the programmed, a creative, but regimented,
automaton.

Rather, the standards given represent a disciplined approach adaptable to
the development of production software of almost any ilk. That discipline
begins with the understanding why top-down, hierarchic, structured,
modular methods offer the potential for programming improvement. It
continues with the realization that the potential' for improvement is no
guarantee, but that justifiable adaptations or relaxation of standards on a
case-by-case basis may be necessary and are not proscribed It. culminates in
practice when the programming environment supports, and, indeed, fosters,
the use of these standards.

The standard production system I have envisioned; more than described,
in these final pages was meant to aid and abet the software engineer and his
manager; and to profit his organization in consequence. Volumes could, and
may yet, appear setting forth requirements, specifications, and usage of that
system.

1 would have liked to have addressed management data collection and
reporting in more detail, as I: would also with features for source data
maintenance, data security., documentation support, language design, and
many more topics so necessary in a production system well enough
integrated and coordinated to be termed "Standard." However, the system
philosophy, if not the detail, I think, comes through:

Before this monograph was begun, the development of quality software
was. truly an art, well-mastered by only a few of its many practitioners. The
methodology reported in .these pages has, more than once since, produced
evidence that production programming may even now be a passing art

218 Standard Softwrarc Production System	 [CHAP.P. l..i
3

form. Its final passage will not be lamented, however, for it is being
j replaced by a more useful and effective engineering discipline. Whereas art

forms are generally mastered by a few but, perhaps, appreciated by many,
the engineering discipline will be both practiced and appreciated by an

E	 entire community of adherents. With that hope, I bring this work to a long
!	 overdue, but somewhat reluctant, close.

i
c

V

E

for"

tj

J'

APPENDIX A.
GLOSSARY OF TERMS AND

ABBREVIATIONS

This appendix presents definitions of the major concepts and terms as
used throughout this work. In general, concepts and terms found in an
everyday non-technical vocabulary are not included, definitions given,
which may also have a more general meaning outside the field of
information processing, are herein oriented toward the more restricted
context pertaining to software production and technology. Where possible,
these definitions were made to conform to the ANSI vocabulary (42] and to
usages in Webster 's New Collegiate Dictionary [431 (oriented as above); .
inevitably, however, the definitions given may not be the same or 	

i

equivalent to some current usages in the software industry. 	 ?^
i

i

219

'	 ::t`

r

220 Appendix A

Abnormal Termination. Termination of processing of a program or
module within a program due to fatal errors which require that control
be diverted to a program recovery mode, such as return to the user for
subsequent decision making and manual operations.

Abstraction. A mechanism for hierarchic, stepwise refinement of detail by
which it is possible at each. stage of development to express only relevant
details and to defer (and, indeed, hide) non-relevant details for later
refinement.

Abstract Resource. Any commodity or available means that may be
allocated toward the accomplishment of a task, characterizable by
abstractions in representation, manipulations, and axiomatization.

Acceptance Criteria. Criteria that a set of software must soisfy in
conformance with delivery requirements. Software delivered for interim
operations with discrepant items is said to be accepted with "liens."

Acceptance Tests. Tests to verify acceptance criteria for program
certification.

Accuracy. The degree of freedom from error, that is, degree of conformity
to truth or to a rule, Contrast with precision.

Adaptation. Modification of existing software in order that it may be used
as a module in a program development, as opposed to developing
another module for that same purpose.

Algorithm. A prescribed set of well-defined rules or processes for the
solution of a problem in a finite number of steps. In principle, the steps
are sufficiently basic and definite that a human can compute according to
the prescribed steps exactly and in a finite length of time, using pencil
and paper. Contrast with heuristic.

Alphanumeric. Pertaining to a character set that contains letters and digits
only. When applied to identifiers, it usually requires that the first
character be a letter. A "spacer", such as the underscore character, is
sometimes also admitted into the alphanumeric set for identifiers.

Arbiter. A mechanism for effecting the mutually exclusive use of a shared
resource among concurrent processes.

Architectural Design. Selection among major alternatives relative to
control logic and data structural topologies, module coupling modes,
clocking, protocols, resource allocation strategies, etc„ to that degree of
detail which provides convincing. evidence of production feasibility and
which permits cost and schedule estimates of predefined accuracy.

Assessment of Correctness. The process of judging that a program (or part)
is correct, based on a partial demonstration of its actual or envisioned
behavior.. Demonstration. may range from rigorous, formal mathematical..

1-.
	 •	 e

r

Appendix A 221

proof to informal rationale, or from exhaustive testing to mere program
checkout.

Audit. A formal or official examination that attests to the conformity for
non-conformity) between two supposed equivalent entities, according to
a predefined set. of rules.

Bottom-up Principle, A synthesis from concrete, low-level details by
stepwise integration into higher-level capabilities or more abstract.
concepts as a method for solving a problem.

Calibration Error. An error purposely inserted into a program to serve as a
means for gauging the completeness of testing to uncover indigenous
errors.

Certification. A formal or official attestment that acceptance criteria have
been met, or have been met subject to a noted .set of liens for later
removal.

Checkout. Informal validation of a .program or a part of a program by
members of the development team, once the item has been successfully
compiled (or assembled), by running a series of tests. When such
validation .is performed only visually, the activity is referred to as "desk
checking."

Coder. An individual mainly involved with writing but not designing a
computer program.

Coding. The activity of expressing the steps of a given algorithm in a
computer language (or, perhaps, more than. one language). A unit is not
qualified as "coded" until compiled (or assembled) and all syntax errors
removed.

Cohesion or Module Strength. A relative measure of the strength of
relationships among the internal components of a module insofar as they
contribute to the variation in assumptions made by the outside program
concerning the role the module plays in the program. Invariant
assumptions about a .module indicate high strength, .

Competing Characteristics. A set of factors that relate to the final quality
of a piece of "software, but that may conflict or compete for projector
machine resources. These may be ordered in priority to form.
implementation guidelines.

Complexity of a Program. The minimum (conceptual) length of the "proof
of correctness" of a program, relative to a particular set of available
methods for performing the "proof of correctness," such as formal
mathematical rigorous theorem proving, informal (but complete)
reasoning, exhaustive testing, etc. 4

r
r

222 Appendix A

Concurrent Processes. The simultaneous, overlapping, or time-interleaved-
operation. execution of two or more processes in a single- or multiple-

E

processing system.

Concurrent Production Principle. A method in which . the formal
production of software proceeds with concurrent activities among design,
coding, testing, and documentation.

Confidence Level. The probability that a given statement concerning a set
of random variables or a segment of a random process will be upheld, if
tested.

Connections, Connectivity. The set of assumptions the rest of a program
makes about a module (or other program segment), Modules have
connections in control, in data, and in services (functions) performed.
Connectivity increases with the number, type, and variability of such
assumptions:

Consistency. A program quality which assures that the results of executing
a program are repeatable in a practical sense, in spite of any logical
errors which may he present in the program.

Control Data. Data that selects an operating mode or 5ubmode in a
program, directs the sequential flow, or otherwise directly influences the
function of a .program..

Control Logic. The topological connectivity and the set of conditions that
together govern the apparent sequencing of operations within a process
(or among concurrent processes). Control logic is often displayed by
means of a flowchart.

Correctness. Agreement between a program's total response and the stated
response in the functional specification (functional correctness), and/or
between the program as coded. and the programming specification
(algorithmic correctness).

Correctness Proof. Demonstration; however made; that the response of a
program agrees with its functional and programming specifications.

CRISP. Control-Restrictive Instructions for Structured Programming. A set
of keywords used to intro_ duce structured control flow into an
unstructured language. Also used as control sublanguage of CRISP-
FLOW, (flowcharts) and CRISP-PDL processors,

Critical Region. A region within.a process in which a shared resource must
only be accessed on a mutually exclusive basis for program consistency
and correctness.

Data. Representations of measurements, observations, facts, statistics, or
derived quantities, either actual, believed, or assumed, in a form suitable

u

for communication, reorganization,: storage, retrieval, processing,. and
dissemination. Contrast with information.

Data ease. A collection of interrelated data items, usually stored together,
to serve one or more applications by end users. As a goal, the data base
has little (or controlled) redundancy; is stored so as to be independent of
the usages made of its contents, yet is stored for optimal efficiency by
such applications, and is capable of being subjected to a common and
controlled approach when adding new . data or when modifying or
retrieving data existing within the data base. A "data base system is a
collection of separately structured data bases united by regulated
interaction to form an organized whole,

Data Base Administrator, The custodian, an individual or organization, of a
data base or data base system. The data base administrator does not own
the data nor control its use; however, the data base administrator does
control the structure and the modes of access of the data base(s), checks
authority to use data in the base(s), and is responsible for the security and
integrity of the data base(s).

Data Flow Diagram. A graphic representation that displays the paths of
data through a problem solution: It defines the major or essential features
of processing as well as the various media used.

Data Structure. A formalized representation of the ordering and
accessibility relationships among stored data items, without regard to the
actual storage configuration, as characterized by data-.item types, ranges
of values, and scope of activity, suitable for communication, interpreta-
tion, or processing by humans or automatic means,

Deadlock. That condition in which concurrent processes are each awaiting
conditions that can never hold. Also called "stalemates" or "deadly
embraces." Deadlocks occur when each of the deadlocked processes is
waiting for the others to act, but each is unable to do so.

Debugging. Detection, location, and repair of inconsistencies between the
program response and its functional or programming specification. A
program or procedure is said to be debugged if no known anomalies are
present. .

Decision Table. A table of all or selected contingencies to be considered in
the description of.a problem or the specification of a solution, together
with actions to be taken in each combination of contingencies. Also
called "decision logic tables."

Design. That activity which defines program data structures and logical
algorithms in response to, ?zd conforming with, the software functional
specification. It consists of describing: the organization, data .manipula-
bons, 1/0 procedures and formats, etc., carried to a level of detail

r-

t

7

224 Appendix A

sufficient for coding and operational implementation. Also, the word
"design" may refer to the structure of the program resulting from the
design activity; and, therefore, to the software programming specifica-
tion: Deveopment of the software functional specifications is sometimes
called "functional design."

Deque. A data structure (Double-Ended ,Q.UEue, pronounced "deck") that,
together with its access functions, model operations with a linear list in
which insertions and deletions can be made at either end of the list.

Development. That process by which new software comes into being as a
process of design, rather than by a process of modification. It includes
both the architectural and implementation phases.

Document. A medium and the information recorded on it for human use;
by extension, any such record that has permanence and that. can be read
by .man or machine. In this latter sense, a source code listing is a
document.

Documentation. The creating, collecting, organizing, recording, storing,
citing, and disseminating of documents or the descriptive material within
documents.

Documentation Level. Specification of the degree of detail (A,B,C,D) and
the format quality (1,2,3;4) for a .particular item of documentation.

Engineering. Applied science concerned with the utilization of raw
materials, products of technology, and physical laws for supplying human
needs. A profession characterized by the propensity to solve technologi-
cal and related problems with given constraints in an organized,
responsible way.

Error. Any discrepancy between a computed, observed, or measured
quantity and the true, specified, required, or theoretically correct value
or condition.

Flag. A simple data structure that directs the flow of control in a program.
If it has a range of only two values, it is sometimes called a "boolean" or
"switch." Flags used solely to permit a program to have structured
control flow are called structure flags.

Flowchart, A graphical representation for the. definition, analysis, or
solution of a problem in. which symbols are used to represent operations.
In this text, a flowchart describes the logic and sequence of operations in
a module algorithm; drawn to conform to ANSI standards (Appendix B).

Function. Mathematically, a mapping between an input domain and an
output range, in which each input has but a single image in the output,
Therefore, in a program, a. function performs a transformation or service
as determined by its input. However, some modules that are not

Appendix A 225

functions in the mathematical sense (such as random-number generators
and simulators of finite automata) are nevertheless described by
"functional" specifications, because they perform well-defined actions as
defined by finite-state machines. See procedure.

Functional Requirements Document (FAD). A document stating the
essential technical features of a needed data processing capability, along
with technical constraints and conditions to be met, and criteria for
acceptable delivery that can be appended to or made a part of the SRI?.

Functional Testing. Validation of program "functional correctness" by
execution under controlled input stimuli, This testing also gauges the
sensitivity of the program to variations of the input parameters.

Hardest-Out Principle. The building of a system beginning with that part
which, in the final analysis, would have proved to possess the highest risk
to programming if not performed first, At each subsequent step, the next
u posteriori most critical part is added, until the entire software package
is completed.

Heuristic. An exploratory method of problem solving in which solutions
are discovered by evaluation of the progress made toward the final result.
Contrast with algorithm.

Hierarchy. A structure by which objects or classes of objects are ranked
according to some subordinating principle or set of principles. One
common representation of a hierarchy is the directed tree-graph, in
which the root node heads the hierarchy, and all other objects are ranked
by order into levels of subordination, If a single subordinating
relationship governs the hierarchy, it is said to be unordered, otherwise it
is ordered

H1PO. Hierarchic Input-Processing-Output descriptions. These descrip-
tions, often viewed in the forms of graphics (so called HIPO charts), are
used chiefly to express requirements and/or functional specifications for
programs, routines, etc.

Identifier. A svmbol whose purpose is to identify, indicate, name, or locate
a data structure or procedure entry point.

Implementation. That process by which an architectural design is turned
into a delivered program. It includes the detailed functional and
procedural design, coding, testing, and documentation necessary to meet
program requirements, either for new or modified software.

Indigenous Error. An error existing in a program (specification does not
agree with performance) that has not been inserted for calibration
purposes.

1

226	 Appendix A

Inductive Assertion. An invariant predicate appearing within a procedure
iteration. Usually placed just following the loop-collecting node, these
predicates are used as an aid toward proving correctness.'

Information. A representation of knowledge, intelligence, or other
meaningful data in a form that can be used to :cause or .modify the
purposeful actions of humans or machines, perhaps as the result of
proper organization, analysis, and presentation. Contrast with data.

Information Structure. A . representation of the elements of a problem or of
an applicable solution method for a problem, insofar as its information;'
base is concerned.

Information System. An assemblage of methods, techniques, procedures,
programs, or devices that sense, convey, store, process, retrieve, or
disseminate information, united by regulated interaction, to accomplish
an organized, purposeful task.

Infzwmation Systems Technology. The body of knowledge and physical
J

phenomena that constitute an applied science oriented toward the x
industrial usage of information systems.

Instructions. The repertoire of a language or (virtual) machine.

l

,f
Integration. The combination of subunits into an overall unit or system by

means of interfacing in order to provide an envisioned data processing
capability.

Interface. When applied to a module, that set of assumptions made
concerning the module by the remaining program or system in which it
apears. Modules have control, data, and services interfaces.

Interface Testing. Validation that a module or set of modules operate
within agreed interface specifications to assure proper data and. logical
communications.

Interrupt. Any stopping of a process in such a way that it can be resumed.
A particular type of interrupt is the "trap."

Invocation. The linking to or insertion of a procedure body by means of a
named reference within .a procedure. Subroutine linking is sometimes
referred to as a "call." Code insertion is referred to as a "macro call."

Level. The degree of subordination in a hierarchy. See also level of access
and documentation level;

Level of Access. A set of functions, macros, subroutines, etc., that access a
particular data structure or type of data structure, through which all
accesses 1:o that structure or type, except those within the functions, etc.,
must pass. Also called "blusters' and "Parnas modules.".

i

Appendix A 227

Lexical Binding: Location of components constituting a . module ,physically
together.

Lien. A charge upon some discrepant software item in the form of a debt
or duty later to be redeemed or otherwise satisfied, Usually this term
refers to. the delivery of software in some usable form but requiring the
removal of discrepancies (program or documentation) in order to be
complete.

Logic Error, An error in a program, procedure, as opposed to an error in a
program functional specification.

Look-Ahead Design Principle. The principle by which a baseline or
preliminary design (or program architecture) is developed, which
identifies and sketches the key details of the remaining work to be done
to assure that the subsequent .detailed implementation will. be proper
when viewed in retrospect.

Mauro. A body of text substituted directly for a statement or portion of a
statement recognized to be of a proper form. Macro invocations may
transmit .parameters for substitution or for processing before substitution
into the code body that replaces the invocation,

Maintenance. Alterations to software during the post-delivery period in the
forma of sustaining engineering or modifications not requiring a
reinitiation of the software development cycle.

Maximum Likelihood Estimator. That function of observed data that
estimates an unknown parameter of a known or assumed probability
distribution function as the value that maximizes the . probability (density)
function on the observed data.

Mode. A way of operating a program to perform a certain subset of the
functions that the entire program can perform, as selected by control
data or operating conditions. Often, the mode of a program will be
defined as program states, with transitions annotated to delineate events
causing the passages between modes of operation.

Modification. The process of altering a program and its specification so as
to perform either a new task or a different but similar task. In all cases,
the functional scope of a program under modification changes. Contrast
with adaptation :and sustaining. engineering.

Module. Identifiable subportions of a program composed of instructions or
statements in: a foram acceptable to a computer prepared to achieve a
certain result. They are characterized by lexical binding, identifiable
proper boundaries, named access, and named reference. The word
"module" may apply to a subprogram, subroutine, routine, program,
macro, or function. A "compile-module" is a module or set of modules

i

228 Appendix A

that are disz:rete and identifiable with respect to compiling, combining
with other units, and loading.

Monitor. A level of access on a shared resource in a program with
concurrent processes, including the means for arbitration of that
resource.

Muitiprocess: The simultaneous or concurrent execution of separate
sequences of :actions by multiple hardware processors.

Multiprogramming. The time-shared use of a processor in which two or
more programs or program modules execute by interleaving operations
in time.

Named Module. Modules which can be invoked by. name (named access)
and which internally may invoke submodules by name (named reference).
Such invocation in the flowcharted design is denoted by the method of
"striping" the flowchart symbol,

Nesting, The recursive application of the imbedding of structures
(procedural or data) into a hierarchy of structural levels of definition.

Operating System. A system of routines and services that monitors,
controls, allocates, de-allocates, and manages the execution of applica-
tions programs and other systems routines and their usages of system
resources.

Operation. A well-defined finite-time execution within a program,
performing a time-independentt function based on its input.

Operator. (a) In a rog ram, a function or charjeteristic action on data
items (operands). rb) In computer utility; ar. 'individual who monitors or
manipulates peripheral devices and . inrut/output streams during the
execution. of a .program or system.

Opossum. Any of a. family of small American marsupials; chiefly nocturnal,
largely arboreal, and almost omnivorous, When frightened, it feigns.
death [431.

Parallel Processes. The simultaneous or concurrent execution of two or
more processes in devices such as multiple arithmetic units ., logic units,
or device channels.

Paranormal Termination. Unstructured escapes (in control) from a module
In response to normal events or conditions. Compare with abnormal
termination, Modules having paranormal terminations may yet exhibit .a
form of structured control flow, if properly configured into "paranormal
extensions" of structured programming,.

Perception Form. The level of access between end users and a
computerized data base system in an end-user facility approach to data
base operations. All .user operations with the data base are eventually

r

f

Appendix .A 229

effeeted. using . perception forms, as end users never need be aware of the
actual storage structure of the data base. Such forms are usually standard
across a number of end-user grokips accessing the same or similar data
bases. Perception forms are defined; programmed, and. maintained by a
data base administrator function.

Performance. A measure of the capacity of an individual or team to build
software capabilities in specialized or generalized contexts. Performance
distinguishes between .work and effort, as it includes productivity as one
component of its measure. However, performance also measures quality
of work as measured by other criteria as well, as set forth in a prioritized
list of "competing characteristics" early in development.

Phase of Production. That work related to the completion of a specified set
of modules in conformance with requirements and goals. In top-down.
developments, a set of modules that are currently dummy stubs becomes
the next implementation phase.

Post-order Traverse of a Graph. (Tree'). A method of "visiting" each node of
a tree or other appropriate .graph in which at each Branching node the
discipline, "visit each subgraph emanating from this node in leftmost
order" and then "visit this node," is imposed recursively. The meaning of
"visiting" is that particular action taken while at a given node.

Precision. A measure of the degree.of discrimination with which..a quantity
can be stated, as opposed to accuracy; which states. the degree to which
that quantity is free irom error.

Predicate. A. logical proposition or assertion concerning the state of a
program at a given point, having either a trice or false value. Concerning
program correctness, all such assertions must be axioms or proved true.

Pre-order Traverse of a Graph. A method of "visiting" each node of . a tree
or other appropriate graph in which At.each branching node the
discipline, "visit this node" and then "visit the subgraphs emanating from
this node in leftmost order," is imposed recursively. The meaning of
"visiting" is that particular action taken while at a given node.

Procedure. The course of action taken for the solution of a problem. A set
of statements forming an algorithm. Procedures can 'be . programmed as
subprograms, subroutines, macros, or functions. A procedure may not,
perhaps; always compute a function in the mathematical: sense; but,
nevertheless, the term "function" is often used to describe the
characteristic action of such modules.

Procedure Design. Language, A language for specifying algorithms in
ordinary English or other language not to be compiled. Keywords usually
appear, so as to format text and .conform the specifications into a
structured form. Also called a "Program Definition Language".

i

Al

k

Process. A sequence of operations executed one at a time. Two processes
are then concurrent if their operations can overlap or interleave
arbitrarily in time.

Production. That portion of a software implementation that hac to &.with
the generation of code and documentation and the checkout for
correctness by production personnel. Production programming is
characterized by the application of tradeoffs, known algorithms, and
state-of-the-art solution methods toward software generation, as opposed
to programming performed to extend the current state of the art.

Productivity. A measure of the rate at which individuals or teams can
produce or have produced software items, or can perform or have
performed software-related tasks.

Program. A series of instructions or statements, in a. form acceptable to a
computer, prepared to achieve a . certain result, to perform a specified
function within a subsystem.

Programming, A generic word sometimes used to describe the overall
process of program design, coding, and testing, but often it is used to
connote only coding and checkout.

Programming Specification (PS). That portion of the Software Specifica-
tion Document (SSD) which sets forth descriptions of algorithms, data
structures, the modular definition, etc., in sufficient detail that the
program can be coded without functional or algorithmic ambiguity.

Proper 'Program. A program or program segment, such as a subroutine,
subprogram, or function; which has but one .point of entry (in control)
and but one mode of exit .(although, if a subroutine, it may be called
from, and return to, many points in a program):

Protocol. A .rule prescribing the interface disciplines and correct
procedures for communications with a program; subroutine, operating
system, or hardware device.

Queue. A data structure which, together with its access functions, models
operations used in first-.in first-out (FIFO) list algorithms.

Real-Time Process. A process actuated by and acting in response to an
external event sensed by the computer.

Reliability Index. The probability that a program or device will perform
without failure for a specified period of time or amount of usage.

Requirement. A characterization of the cssential features of a needed data-
processing capability; along with a set of constraints and. conditions to. be
met.

_.F

1

Appendix A 231

Requirements Testing. Execution of a .program under controlled conditions
to demonstrate that all stated or implied requirements and performance
criteria have been met.

k Resource. Any commodity or available means that may be allocated toward
the accomplishment of a task. In concurrent processes, shared resources
are characterized as "devoted ." (allocated for mutually exclusive use) or
"mutual" (can be engaged in simultaneous operations under stated
limitations). Resources produced by one process and consumed by
another are said to be "temporary resources"-. other resources are
"permanent."

Routine. A program or program module that may have some general or
frequent use. If a program module, then a routine always returns to the
point of invocation after execution 0.e:, a proper routine) or abnormally
terminates. Other types of routines are not discussed in this work.

Scope. The range within which an identified unit displays itself. Scope of
activity refers to the boundaries within which a data structure or
program element remains an integral unit. Scope of control refers to the
submodules in a program that potentially may execute if control is given
to a cited module. Scope of error denotes the set of submodules that are
potentially affected by the detection of a fault in a cited module.

Secretariat. A centralized facility consisting of processing aids, library
materials, and production services :available to development. projects, for
the purpose of raising productivity, enforcing standards, and monitoring
progress.

Semantics. The set of rules that defines relationships between symbols and
their meanings; in computer language; the rules that define what effects
are caused by statements in the language,

Semaphore. A shared data structure used by concurrent processes to effect
synchronization, consisting .of an arbitrated variable that contains the .net
number of "messages" sent, not yet received; and a queue that contains a
list (if not empty) of processes currently waiting for a "message."

Sequential Testing Procedure (STP). A procedure for searching a decision
table condition entry to determine which rule: applies to a given array of
answers to the condition stub. Thus, an algorithm for processing the
upper half of a decision table to determine which rile is to be activated.

Side-Effect. A secondary effect due to connectivity among modules which,
therefore, propagates in the same mode as program connections: control;
data, services. Control side effects arise in non-proper programming; data
connection side effects arise in use of COMMON, external coupling,
content coupling, and not utilizing the normal parameter passing
rnechanism; and service side effects arise when the role or action of a

s

232 Appendix A

procedure varies. with its application (as a. result of global variables
modified, local data modified and retained, or changes in hardware
status).

Software. A computer program (or set of programs), together with all
materials, procedures, and documentation concerned with the use,
operation; and..maintenance of a data processing capability:

Software Design Definition (SDD) A document chiefly .used to display the
results of the architectural design study and implications of cost,
schedule, and work-breakdown structures to management or customers,
Some high-level technical material, such as that needed to assess problem
areas and other concerns or to show how requirements will be met, is.
included.

Software Development Library (SDL). A project internal facility for
interface and management visibility and for software production
management. and control.

Software Engineering Management. The judicious use of means to effect
and administer the advancement or usage of information systems
technology. Software engineering management recognizes needs, sets
goals, plans modes of accomplishment., devises means for resource
allocation, and directs the approach taken in future information systems
applications and. in the solution . of problems associated with these
applications.

Software FuwMonal Specification (SFS). That part of the Software
Specification Document (SSD) which defines the end-to-end functional
response .of the program in terms of input stimuli, program behavior, and
output contents. Any program that conforms to the SFS is deemed
functionally correct.

Software Requirements Document (SRD). A document chiefly generated
by a customer or other initiator used to display the needs, justification,
and estimated costs associated with the implemeiitation of a data-
processing capability. Some technical material, such as that needed in
support of the justification or establishment of needs, is included.
Detailed technical requirements may be appended or included in the
Functional Requirements Document . (FRD) portion of the SRD.

Software Specification Document (SSD). The . principal .prograin documen-
tation produced by 'a development projecar, consisting of "as-built"
Functional (SFS), Programming (PS), and Test ;specifications.

Software Test :Report (STR). A report of the tests and the results of tests
performed in demonstration of delivery requirements;

't

t

i.

r

Appendix A 233
}

` Specification. A statement or set of statements (documentation) containing
a detailed description or enumeration of particulars with respect to the
function or construction of a piece of software.

Stack. A data structure that, together with .its access functions, models
operations used in last -in first-out (LIFO) list algorithms.

Standard. That which is set up and established by authority, custom, or
general consent as a model, example, criterion, test, or rule for the
definition or measure of quantity, weight, extent, value, or quality.

Strength. See cohesion.

Striped Module.. A named module in the program procedural design, so
called because of the method used to denote such modules on a
flowchart. Striping of a flowchart symbol signifies that a detailed
representation is either located elsewhere in the same set of flowcharts
(horizontal striping), or else at a referenced location (verticaLstriping).

Structure. May pertain to the manner or form in which something is
constructed or may refer to the actual system as constructed.
Descriptions of structure focus an 'interrelation of the various parts as
dominated .by the general character or function of the whole. Designing .
structure is a process of identifying; analyzing, and selecting among
alternatives within design categories.

Structured Program. As used in this work, a .program whose control. logic
topology adheres to strict rules of form, being composed of iterations and
nestings of a set of basic planar flowchart constructions IFTHENELSE,
WHILEDO, DOWHILE, CASE, and sequence formats, along with,
perhaps, paranormal extensions.

Structure Flag. A flag introduced into an otherwise unstructured program
to permit structured control flow,

Structure Graph. A graphical representation showing the control
connections between named modules. The "top" node of the graph
represents the top-level main program procedure; lines from the top
node to other nodes signify that the corresponding named modules
appear as invocations in the top -level program procedure, etc.

Stub, Dummy. Segments of temporary code that replace named modules
for purposes of correctness testing a program during top=down
constriction. These are usually simple procedures that merely test
interfaces or supply test inputs for an algorithm under test. The actual
procedures replace the dummy stubs as they are constructed.

Suave. (adj) Blandly pleasing; smoothly polite; urbane; poliabed... Synonyms:
suave, urbane, diplomatic, bland, smooth, politic mean ingratiatingly

.W^f_

7

I

234 Appcndix A

tactful and well-mannered. Suave specifically suggests the power to
encourage easy and frictionless intercourse (43].

Submodule. A module appearing within a module or invoked by a module.
On a flowchart, the procedure appearing within or referred to (e.g:,
invoked by) any .charted symbol.

Subprogram: As used here, a module whose invocation appears but once in
a procedural specification of a program. Subprograms may be coded in-
line, as a macro (used once), or so as to be linked to (and from) as a
separate procedure body.

Subroutine. A routine that can be a part. of a routine; As used here, a
subroutine is always a proper procedure (one entry point, with return
only to point of invocation), and appears in .more than one invocation in
the program procedure. Some subroutines may also have abnormal
terminations.

Sustaining Engineering, Software-related activities in the post-delivery
period, principally supportive in form; which keep that software
operational within its functional specifications; e.g.; repairing faults,
correcting documentation, removing liens, and estimating costs and other
resources required for such tasks: The holding or keeping of software in a
state of efficiency or validity despite interface fluctuations in system,
subsystem, or applications capabilities.

Synchronization. The scheme by which arbitration constrains the ordering
of operations on shared resources among concurrent processes in time so
as to enable consistency in the program behavior.

Syntax. The set of rules that defines the valid input strings (sentential
forms) of a computer language as accepted by its compiler (or
assembler). Therefore, the structure of expressions in a language, or the
rules governing the structure of a language.

System. An assembly of methods, procedures, programs, or techniques
united by regulated interaction to form an organized whole.

Testing: Execution of a program (or partial program), usually under a
controlled set of input conditions, program configurations, and input
stimuli, performed in order to observe the actual program response.

Tier Chart. A tree-graph representation of a program and its named
modules, in which the subordination relation is invocation. Subroutine
invocation nodes occur more than once; however., all but one of these
nodes appear as leaves of the tree; and the other 'forms the root of the

f`	 subroutine tier hierarchy.

E
i

i	 F	 Appendix A 235
I

Top-Down)Principle. A synthesis from abstract, high-level concepts by
f	 stepwise refinement into lower-level concepts and details, as a method

fi

	 for salving a problem.

s
Topological Sorting. An algorithm for listing the nodes of a directed

acyclic graph, in which precedence in the graph implies precedence in
the list, One such algorithm is the following, Locate a node having no
edges directed into it, transfer it to the list, and delete all edges
emanating from it, repeat until all nodes have been Iisted.

Trap, A special form of .program interrupt: an unprogrammed conditional
jump to a known location, automatically actuated by hardware, with the
location from which the jump occurred recorded.

Tree. An acyclic connected graph. If the tree has n > 2 nodes, then it also
has n — I edges. Every pair of nodes is connected by exactly one path. As
used in this work, the tree often represents a hierarchy, in which edges
are directed to denote a subordinating relationship Between the two
joined nodes.

Type (Data). A set of attributes used to define a set whose elements are
data structures and on which an algebra is defined. Fundamental types
are those explicit in a programming- language. Fundamental simple types
usually include integcrs and teals; and fundamental structures usually
include the indexed array.

User. An indiv-idual or organization which normally supplies informa.,tion
for processing, or which normally receives, interprets, and utilizes the
output of such processing. Contrast with operator.

User Forms. Forms mappable to and from perception farms in an end-user
facility approach to data base operations, User farms are standard V- thin
an end-user group accessing a data base that has been standardized over
even a wider set of user groups. User forms are defined by the end-user
group, and may be programmed and maintained by either the end-user
group or the data base administrator.

Validation. Demonstration that a software item or implementation
conforms to its specification (whether the specification is coi met or not).
Validation attests primarily to conformity with the grounds on which
something is based, to a greater extent than conformity with accuracy
criteria. Compare with verification.

Verification. Confirmation that a program has accurately satisfied
acceptance criteria, or that a data transcription or other such operation
has been accomplished accurately. Verification primarily deals with
accuracy (freedom from error) to a greater extent than conformance to a
design: See validation.

f

236 Appendir A

Work Breakdown Structure. An enumeration of all work activities in
hierarchic refinements of detail that defines work to be done into short,
manageable tasks with quantifiable inputs, outputs; schedules, and
assigned responsibilities; It is used for project budgeting of time and.
resources down to the individual taste level, and as a basis for progress
reporting relative to meaningful management milestones.

Worksheet Forms. Forms defined, programmed, and maintained by the end
user in an end-user facility approach to data base operations. Worksheet
forms are mappable to and from user forms and perception forms. They
are used for extracting, assembling, and viewing of data by the end user
in a "scratch pad" fashion, as a (perhaps) temporary device pertinent to
that user-.

r
i

t

1

g#
k

i

I
i

APPENDIX B

STANDARD FLOWCHART SYMBOLS

Symbols are used on a flowchart to represent the functions of an
information processing system. These functions are input/output,
processing; flow path and direction, and annotation:

A basic symbol is established for each function and can always be used to
represent that function.. Specialized symbols are established that may be
used in place of a basic symbol to give additional information.

The symbols :given in this appendix der. ive from American LVationa!
Standard Flowchart Symbols and Their Usage in Information Processing,
ANSI-l3.5-1970, American National Standards Institute, inc., New York,
Sept. 1, 1970. The ANSI usage, in some cases; has been refined or extended
herein to conform to the needs of structured programming.

238 Appendix B

Table B-1, Basic flowchart symbols

Symbol and dimensional ratio
(width:height) Meaning

Input/Output Symbol, This symbol repre-
sents an .I-/O medium or function, such as
making	 available	 of	 information	 fn:
processing (input), 	 or the	 recording of .

1:213 processed information (output).

Process Symbol. This symbol represents
any hind of processing; for example, the
process of executing a defined operation or

1.213 group of operations resulting in a change
in value; form, or location of information.

Decision Syratinl. This symbol represents a

<>

specific decision or switch operation that
determines which of a number of alternate

1,213 paths is to be followed: This symbol may
not be striped.

Comment or Annotation. This symbol is
used to enclose descriptive comments or
explanatory notes as clarification.	 The

1.213 broken line is connected to any symbol
where the annotation is meaningful.

Sequence, Control Flow. Sequential pro-
gram	 flow	 is	 indicated	 by	 single-line

~'— arrows connecting symbols. Arrowheads
are necessary to Show direction. Use only
one arrowhead per #lowline, at its end

Information, Data Flow. Flow of informa-
tion or data is indicated by double-line
arrows connecting symbols. 	 Arrowheads
are necessary to show direction. Tails arc
optional, but recommended.

jr

11

Appendix B 239

Table 8-1. Basic flowchart symbols (continuation)

Symbol and dimensional ratio
(width-height) Meaning

O Loop Collecting Node. The small open
circle shown represents the iteration point

1 a in a looping operation.

Decision Collecting 	 Node.	 The small
• blackened circle shown represents the

merging of alternative flow	 paths in a
program.	 if this	 symbol	 is	 computer
drawn, it may be desirable not to have the
circle completely blackened, but filled, say,
with an asterisk, as shown.

Begin Concurrent Mode, or Fork. The
symbol shown represents the beginning of
two	 or	 more 	 concurrent	 (parallel	 or
interleaved) processes.

End Concurrent Mode, or Join. The
symbol shown marks the end of two or
more concurrent (parallel or interleaved)
processes. When used to join background
and interrupt processes, the interrupt logic
is disabled on resumption of sequential
mode.

Terminal Symbol. The symbol shown
represents the entry or exit point of a

1:318 flowchart.

Interrupt Symbol. The symbol shown
represents the enabling (or arming) of an
interrupt that may initiate a concurrent
(preemptive	 interleaved)	 process.	 The
process reexecutes each time the event

1;318 occurs until both processes	 reach their
join. The event identifier (name) is placed
in the terminal symbol.

yp

F

1

f

240 Appendix B

i Table 6-1. Basic flowchart symbols (continuation)

Symbol and dimensional ratio
{widthiheight:}

Meaning

Communication Link. The symbol shown
represents a function in which information.
is transmitted by a telecommunication
link. Arrowheads are necessary to show
direction. Tails are optional; but recom-
mended.

Connectors. The symbols shown represent
out-connectors and in-connectors for con-
trol and data flow: A set of two Erich
connectors represents a continued flow
direction when the flow is broken by any

0==> limitation of the flowchart. The use of
such connectors to off-page continuations

D=>O is discouraged except for CASE structures
with too many branches to 6t on one page.

1:1

Crossing. of Flow Paths.. Flowlines may
cross; this means they have no logical
interrelation. Crossing of control flowlines
is discouraged except when absolutely
necessary.

Symbol and dimensional. ratio
Meaning

(width:height)

Punched Card. The symbol shown repre-
sents an I /O operation in which the

1:112 medium is punched cards.

Deck or File of Cards.

614.213

Online Storage. The symbol shown repre-
bents an 1/0 function utilizing any type of
online storage, 	 such as	 Magnetic tape,

1,213 drum, or disk.

Magnetic Tape. The symbol shown repre-
sents	 an	 I/O	 function	 in	 which	 the
medium is magnetic tape.1.1.

Punched Tape. The symbol shown repre-
sents	 an	 1/0	 function	 in which	 the
medium is paper tape.

1;1'12

t

k

10, 711,7171t"MI,

4i	 Appendix B 241
£•^ti

Table-13-2. Spedalized l/O flowchart symbols

5

r
	

1

F4

242 Appendix B

Table B•Z Speclaltzed t/f3 flowchart symbbla (contlnuation).

art
L".

t

'x
r

k

F

Symbol and dimensional ratio.
{width:height}

Meaning

Magnetic Drum. The symbol shown repre-
sents	 an 1/0 function	 in which the
medium is a magnetic drum.

514:2/3

Magnetic Disk.. The symbol shown repre-
sents an I/O	 function	 in which	 the
medium is a magnetic disk.

2/3:5!4

Core. The 	 shown represents an 1/0
function in which the medium is core
storage.

4:1

Document. The symbol shown represents
an 1/0 function in .which the medium is a
document. Lt is used often to denote
output of hard-copy material on either dine

t* 213 ,printers or typewriter terminals.

Appendix B 243

Table 13.2: Specialized 1/0 flowchart symbols (continuation)

Symbol and dimensional ratio
Meaning

(width:height).

Manual Input. The symbol shown repre-
sents an input function in which informa-
tion is entered manually during processing, .

1.912 such as by online keyboards, switches, or
push-buttons.

Display. The symbol shown represents an
I/O function in which the information is.
displayed for human use at the time of
processing, by means of online indicators,

tt213 video devices, console printer,	 plotters;.
etc.

OfCline Storage. The symbol shown repre-
sents the function of storing information
offiine, regardless of the medium on which
the information is recorded.

1:4:886

it 4

i

f

Symbol and dimensional ratio
Meaning

(width-height)

Internal .Procedure, The symbol shown
represents a named procedure (subprogram
or subroutine) module that has a more
detailed representation elsewhere in the
same set of flowcharts. Similar horizontal

1;213 striping conventions apply to other sym-
bols, as well; when they are detailed in this
way.

External Procedure. The symbol shown
represents a named procedure (subroutine)
module or logical unit that is not detailed
in this same set of flowcharts.	 Similar
vertical	 striping	 conventions	 apply	 `o

1'713 other symbols; as well, when they are
detailed elsewhere.

Preparation, The symbol shown represents0 the preparation of a medium for process-
ing, such as obtaining core storage, deciar-
ing data structures; or initializing varia-

1:213 }ales.

Indexed Looping. The symbols shown
represent	 loop	 initialization,	 predicate
testing,	 and update functions.	 Testing
always follows every initialization and
update.

1:419

Non-normal	 Exit. The symbol shown

[>
represents .the exit from. a process due to

1:4110
abnormal or paranormal events.

Rte.

r

1
	 i

TIM

Appendix B 245

Table B. Specialized process symbols (continuation).

(

i

Symbol and dimensional ratio
(widtheheight) Meaning

Merge. The symbol shown represent the
combining of two or more sets of items

1.;0:866 into one set.

Extract. The symbol shown represents the
removal of one or more specific.	 sets of

[\ items from a single set of items.
1 :0:866:

Sort:. The symbol shown represents the
arranging of a set of items into a particular
sequence.

1:1.732

Collate. The symbol shown represents
merging	 with extracting;	 that	 is,	 the
formation of two or more sets of items
from two or more other sets.

1:1:732.

Manual Operation: The symbol shown

VJ represents any offline process geared to the
speed of the human being without using

1 :W.3 mechanical aid.

Auxiliary Operation. The symbol shown
represents an offline operation on equip-
ment not	 under direct control	 of the
central processor:

1:1

4f

Illustration Usage.

Symbol Shape. The actual shapes of the
symbols used should conform 	 closely
enough to those shown in Tables B-1, B-2,
and B-3 to preserve the characteristics of
the symbol. The curvature of the lines and
the angles formed by the lines may vary
slightly from those shown in this standard,
as long as the shapes retain their unique-

Symbol Size. Flowchart .symbols are distin-
guished on the basis of shape, proportion;
and size in relation to other symbols.
Proportion of a given symbol is defined by
the rectangle in which that symbol can be

height inscribed: Dimension and relative size of
the rectangles are given with each symbol

--•--ta^width
by a pair of numbers (width. height):

The size of each symbol may vary, but the
dimensional ratio of each symbol shall be
maintained.

Symbol Orientation. The orientation of
each symbol on 'a flowchart should lie the
same as shown in the tables of this
appendix. Flowline symbols (either control,
information, or data flow) may be drawn
left-to .right, top-to-bottom, .right to4eft,
or bottom-to-top. The principal flow of

- control	 is tap-to-bottom: The principal
flow of information or data should be
depicted. as deft=to-right.

i

Jr:=^

r

f

Appendix B 247

Table.13-& Syrnbal usage;in ftowehartlig(cantinuation)

Illustration Usage

Flowchart Text. Descriptive information
left to•d9ht within each symbol shall be presented so
top•to- as to be readable from. left-to-right, top-to-
bottom text

bottom, regardless of the direction of flow
outside the box.

Symbol Identification, The identifying
R number n assigned to a symbol on the

current flow chart shall be placed above
and to the right of its vertical bisector.
This number, concatenated with the chart
identifier e, forms the unique symbol
Dewey-dmimal identifier, c..n. if the sym-
bol is striped and if there is no explicit
symbol .cross-reference, then the number .
c.n becomes the (implicit) cross-referene-
ing chart number at the next hierarchic
level.

X Symbol. Cross-Reference.. The identifying
chart number or other cross-referencing
element x shall be placed above the
symbol	 and	 to the	 left	 of its vertical

X bisector. When such notation appears, it
takes precedence over the symbol identi-
fier as the cross-referencing scheme.

f
248 Appendix B

T019 7 6-4. Symbol ! usage in tiowchairting-iccntinaation)
r
r

Illustration Usage

Symbol	 Striping. A horizontal Tine is
drawn within, completely across, and near
the top of the symbol, and a reference ton

for 4 the detailed representation: is placed be-
NamB tween that line and the top of the symbol.

The terminal symbol shall be used as the
first and	 last	 symbols	 of the detailed

W	 ,, representation: The entry terminal symbol
Neme contains the name reference that also

appears in the striped symbol.

Din Chan c The location of the detailed representation
chart is contained in the symbol cross-
reference	 (x).,	 if	 any;	 otherwise it	 is
referenced by the concatenation of the

On Chart c,n chart and symbol identifiers.
iurxl

In either case, the chart number is placed
above and	 to	 the	 left	 of the vertical
bisector of the entry terminal symbol.

Connector identification.	 A ,common
identifier, such as an alphabetic character,
number, or mnemonic label (A). is placed.P
within the connector as shown: Additional
cross-referencing for off-page connectors
shall be the page number, p, placed above

to the left of the vertical bisector of

P^
and

A the symbol (only when there is more than
one such page): Off-page connectors to or
from flowcharts of other modules are not
permitted.

1:1

r

t
s

Appendix B 249

Table , 8 4. Symbol usage In flowcharting (!coMlnuetlon).

4-

3

Illustration Usage

Multiple Control Flow Branches. Multi-
pie branches from a symibol are restricted
to the decision symbol. The text within the

two exits symbol shall state .the explicit predicate or
event that causes the branch.

For each conditioned 'branch, each exiting
fiowline is to be labeled by text that
identifies the predicate outcome. Nor-
mally, true exits to the left, false to the
right in binary decisions; multiple branchesFT exit in case-order from the left (if there is

more than two exits an explicit case order).

Event-actuated branches need only anno-
tate exiting flowlines when there are
multiple outcomes to a stated event within
the decision symbol.

.s3

APPENDIX C

SOFTWARE REQUIREMENTS

DOCUMENT TOPICS

This appendix contains a detailed outline for the organization of software
requirements suitable for hierarchic refinement of detail, The first sections
contain preliminary management information and the others go into more
technical detail, as needed.

Figure C-1 is a top-level, visual table of contents of the document
organization. The suggested topics are then detailed in the remainder of
this appendix. Each of the topical headings is follow=ed by a narrative
description for the material to be inserter.

Much of this material may, .perhaps, be supplied by reference or by
attachment. Such practice is to be encouraged, inasmuch as the SRD is not
generally a,document that is maintained after program delivery.

The main principle behind the writing of the SRD is that it gives
management only what it needs (the SIR) in order to approve the
expendirire of funds and to concur with the schedule—at least for the
initial (SDD) study phase of the implementation—and gives implementation
only what it needs (the FRO in order.to respond with an appropriate SDD.

See Chapter ii for more specific and detailed rules in completing the
SRD.

_A'=

261

sA

NN

Ai
t

_

a

ea

x

z

Appendix C 253

SOFTWARE REQUIREMENTS
DOCUMENT

Detailed Table of Contents
k

FRONT MATTER

Title Page. Provide a title page containing (1) document number; (2)
SOFTWARE REQUIREMENTS DOCUMENT; (3) program, project,
subsystem, and system titles; '(4) release date; (5) a signature-approval block
appropriate for the management authority level required; and (B) releasing,
organization. Signatures, when supplied, signal the approval to proceed
with the architectural phase. FRD material may precede SRD approval, or
may be supplied subsequent to approval:

Abstract. Give a brief abstract that summarizes the program requirements;
including costs, resources, and schedule.

Change Control Information. Provide a brief statement that identifies the
method for approval and for arbitration of changes in the SRD.

Distribution List. Provide a distribution list of all parties who are to
receive copies of the SRD:

Distribution Information. Provide a statement that tells how additional
copies of the SRD may be obtained.

Table of Contents. Provide a detailed table of contents for the SAD, which
lists section number, topic title, and page of every item with a heading,
(This is probably the last part of SRD to be completed.)

TEXT OF SOFTWARE REQUIREMENTS DOCUMENT

1. INTRODUCTION AND JUSTIFICATION

1.1 Purpose . of This Requirement

Provide a brief general description of the software to be provided, its
purpose, and the .user benefits or mission characteristics upon which the
requirements for this software are established.

364 Appendix C

1.2 Scope of Appilcablilty

Summarize the level and type of material that appears in the SRD.
Identify the intended readers, State the criteria that govern the content,
extent, and format of this SRD. If pertinent, proscribe items specifically to
be outside the scope of this application. Reference applicable or governing
documents as appropriate.

1:3 Applicable documents

Identify all documents that establish technical requirements, set
constraints and policies, or regulate the procedures to be used in
implementation.

1.4 Eatablishmerd of Need

1.4.1 History and Requirement

State specific user needs, mission requirements, market potential, or
other goals to be satisfied through the services provided by the sottware. If
pertinent, trace the historical development of the application to be
automated.

1.4.2 Analysis of Current Capability

Describe any current capability or in-progress developments that respond
wholly, or in part, to the needs stated in 1.4.1. Identify needs for which no
current capability exists, and give limitations on capabilities that do exist.
State costs, manpower, and other performance figures for providing or
maintaining current services, if these are pertinent to the establishment of
the need.

1.4.3 Analysis of Required Capability

Present justification for the development of software to fulfill the
requirements. above, based on estimated performance gains as they relate to
accomplishing the stated goals of the approving organization.

1.6 General Description of the Needed Software
Provide an intrrductory description of the software to be developed, and

show how this software will meet the needs in 1.4. Use descriptions as
appropriate to characterize the program, to provide tradeoff studies, to
show interrelations between the program and its application;. and to display
its major operational features.

Identify the expected program life, whether the program will be a
developmental, interim, or operational fulfillment of the need, and estimate
major characteristics, such as execution mode (real-time, interactive, batch),

Appendix C 255

computational complexity (number-crunching or data manipulative), etc..
Use graphic aids to illustrate these features.

t6 feasibillty Studies
Evaluate the proposed software, considering timeliness, technological

and economic feasibility, and capability. Identify major risks that will
require later resolution.

2. MANAGEMENT WFORMAT1W

2.1 Acquisition Method . or Plan
2.1,1 Method of Acquisition

State the method to be used to develop the software, such as in-house,
outside contract or some mixture of the two, e.g., in-house definition and
design with outside coding and checkout. If done by outside contract, state
the procurement cycle lead times and other constraints pertinent to outside
contract or purchase of software relative to this development activity.

2.1.2 Responsible Croup and Staff

Identify the in-house organization responsible for the software
development and identify cognizant individuals as appropriate,

2.2 funding and Manpower
2.2.1 Total Project Estimates

State the amount and source of funding to be allocated to manpower,
procurements, and services, for both in-house and outside-contract parts of
the development State methods used to estimate 'these, and state the
probable accuracy in the estimates.

2.2.2 Architectural Phase Estimate

Detail the manpower and funding required for the architectural study
phase of development. Place limits on the expenditures during this phase
that are not to be exceeded,

2.3 Milestone and Review Schedule

Provide a milestone schedule showing estimated major tasks, priority.
phasing, review milestones, and software deliverin=. State methods used to
estimate schedule events. If PERT is used, state critical-path parameters.
Set milestone and probable accuracy by requirements keyed to mission
objectives: Show the architectural phase in detail; and state not-to-be-
exceeded limits on the completion of this phase.

2.4 Software Deliverables

Provide a checklist of specific items required for delivery. If delivery is
phased or prioritized, then state any requirements that define deliverable
items relative to phases or priorities.

3. ENVIRONMENT AND INTERFACE REQUIREMENTS

Introduce the general environment within which the program is to
operate, in which are identified the users, operators, and maintenance
personnel, the envisioned or required system, and the interfaces with each
of these. If pertinent, describe the working environment of personnel.

Identify whether the regnired environment is currently existing; or
whether portions will have to be purchased, leased, or otherwise created,
either on a dedicated or time-shared basis.

Illustrate the environmental requirements graphically as well as verbally.
Show the flow of data or paperwork from the users through the
application.

Use hierarchic levels of detail provided below " appropriate to
characterize the environment (required or existing), to provide tradeoff
analyses, to show interrelations between environmental attributes; and to
display the major environmental features.

3.1 User Environment Requirements

Identify and describe assumed or required user interfaces, such as who
the users are, where they are . located,. what their sources of data are, how
they will generate and submit data to the program or request runs, how
they will make use of the output, other manual tasks, etc. Defer user
procedures, formats, units, etc,, until Section 5.2 (ilser Requirements).

3.2 Operational Environment Requirements

Identify and describe assumed or required operator interfaces, such as
control devices, input devices, operator procedures, data generation
methods, means for delivery of output to users, manual tasks; etc.. Identify
those requirements that are unique to this program and not covered by an
,overall system requirement or governing document. Defer operational
procedures; formats, units, etc., until Section 5.3 (Operational Require-
ments). State. any operational requirements for security, privacy, and
protection of program resources,

3.3 System/ Subsystem Environment and Interface Requirements
Provide a narrative overview of the total system in-which the program :is

required or will be assumed to operate. Include graphic material as

3-

f

Appendix C 257

Lppropriate, such as a block diagram of the pertinent system hardware and
oftware.

1,3.1 Hardware Characteristics and Constraints

Describe the hardware resources that may be assumed or are required as
he starting point for program development.

1.3.2 Software Characteristics and Constraints

Describe the software environment in which. the program is to operate;
and identify required software resources and other constraints on the
development, such as required interfaces with existing user programs, data
bases; compilers, diagnostics, system software, etc. Identify known
documents and manuals required for program development. Defer details
of units, formats, media, etc„ until: Section 5.4.

3.4 Development Support Interfaces and Requirements
Identify and describe any special interfaces required during development.

as well as requirements for any supporting facilities or resources, such as
staffing; services, special software or hardware, computer time; manuals or
documents, Logistics; etc., which are applicable to the development activity
but not covered by 3. t, 3.2, or 3.3.

3.5 Training Requirements
Describe any training requirements that may impact program develop-

ment, conditions for delivery. , or later program maintenance and operation:

4. POLICIES AND CONSTRAINTS

4.1 Standard Practices, Policies, and Procedures
4.1.1 Established Developmient Practices,. Policies, and. Procedures

Identify any existing appropriate practices, policies, and procedures or
controlling documents that will be applicable to, and required of, the
development of the program.

4.14 Exceptions to Established Practices, Policies, and Procedures

Identify extensions, modifications, additions, or other exceptions to
established policies in 4.11 , above. Include a description of any special
practices, policies, or procedures applicable to, and required . ofj the
development of tLe. program.

f

1.1

i

i

{t

268.. Appendix C

4.2 Approach Requirements and Constraints

4.2.1 Development Philosophy

Include a brief description of the philosophy, principles, or disciplines
required in developing the program.

4.2.2 Development Constraints

Identify .any constraints to be placed on the development approach, such
as design medium, programmingg language, maximum core size, required
speed of execution, use of available subroutines, special interface design
procedures, etc.

4..3 Priorities and Phasing
Define priorities . of requirements and give guidelines governing how

resources may be allocated and conflicts resolved. in order to accommodate
these priorities. Define phases of partial capability during development or
to be delivered if the entire program is not to be developed or delivered all
at once.

4.4 Performance Requirements

4.4.1 Reviews and Approvals

Identify all required reviews, the content of such reviews, the makeup of
the review Board, the convening authority, and the action of the board;
state the degree to which board approval, or other authority, is required in
order to continue development.

4.4.2 Change Procedures

Describe procedures to be followed by the developers, users; or others in
soliciting or effecting changes to the SRD if not already covered by Section
4.1.1..

4.4.3 Performance Measures

State criteria, in. order of importance or by weight, by which the
performance of the developers will be judged satisfactory, sucli as (1)
effective control of cost, performance, and schedules; (2) timeliness in
responding to new guidelines or events; (3) achievement of technical goals;
(4) sensitivity to environment, including rules and policies; (5) conformance
to standards requirements; (B) maintenance of adequate progress visibility;
etc,

4.5 Documentation and Reporting Requirements
Identify the types of reports and documentation to be produced, and

establish specifications governing the level of detail, format, medium,

Appendix G 299

quality, and mode of delivery. Include requirements for interim progress
and QA reports, as well as planning, design, coding, testing, and
maintenance documentation, as appropriate.

5. FUNCTIONAL REQUIREMENTS

(This sect-ion documents the overall functional characteristics required of
the program, .to a level of detail sufficient to allow the architectural design
to proceed with adequate assurance to management that what was
approved will actually be done.)

Develop the program I/O and processing requirements in hierarchic
levels of detail. Use graphic aids, such as information. flow graphs, block
diagrams, or procedural flow graphs, and narrate the requirements
concisely, but clearly and adequately.

5.1 Functional Overview
Describe the top-level requirement details of the operational software.

Typical coverage at this point might address the structure, data flow,
functional interfaces, major operating modes; utility factors, security/
protection, .planned later modifications or extensions, etc. If graphics are
used, support these with narrative explanations. Although such require-
ments may be general in nature, they should, nevertheless, be described in
complete sentences. (e.g„ "Decompose the telemetry stream into frames" is
Preferred over "process telemetry").

5.2 User Requirements

State any specific procedural, format,. or 'information content require-
ments on the software (program plus documentation) that relate to the
functional behavior as viewed by the user(s).

5.3 Operational Requirements

State any specific procedural, format, control, or information content
requirements on the software (program plus documentation) that relate to
the functional behavior as viewed by the operator(s).

5.4 Input, Processing, and Output Requirements

Present a hierarchic development of input, processing, and output
requirements (using HIPO or other diagrams if needed). At each level in the
hierarchy, present the following information (either structured or integrated
narrative) for each functional requirement being described:

Input, Present a general description of the input parameters, special
data, necessary formats, initial conditions, and special controls that

260 Appendix C
I

apply to the requirement being defined. Include, where pertinent;
requirements for units of measure; limits and/or ranges of
acceptability, accuracy/precision, frequency of arrival, etc.

Processing. Describe the processing :required on the input data;
including requirements for transformations, sequencing, logical
concepts, timing, reductions, internal program checks, accuracies,
tolerances, data manipulations,. throughput rate, and control options,
as appropriate, in a logical presentation sequence. Include equations
to be solved if necessary. If the program requires a particular
sequence of operations and/or a signiflcant decision process, include
their descriptions (e:g;.; as flow chart and/or decision table; .plus
narrative).

Output. Describe output requirements on display, storage, transmis-
sion, control, or other data, including units of measure, accuracy/
precision, frequency of output,. media, etc., as appropriate.

Interfaces: Describe, as needed, any additional detailed functional
relationships of the interfaces of the program with other programs,
the system, or other processing requirements herein described. If a.
system/subsystem interface specification has been produced; it may
be referenced as the controlling document.

Diagnostics. Specify the requirements for any diagnostics, error
detection, and recovery that must be designed into the function being
described. (In general, other program diagnostics will also be
designed into the program during implementation; however, those
diagnostic features shall be required to include any diagnostics
prescribed in this section.)

5.5 Data Base Requirements
Describe in general and quantitative terms the requirements for the data

base(s) to be produced or used by the program. Include parameter
requirements that affect the overall design of the program (or system of
programs in which this program is a part), emphasizing data characteristics
and data relationships, and .including ranges; units of measure, accuracy/
precision, etc., where applicable. Identify constraints that could prove
critical during design and implementation. Describe, as appropriate,
requirements for data collection, conversion, and distribution.

6. ACCEPTANCE AND EVALUATION CRITERIA

6.1 Competing Characteristics
Include a list of factors or features that compete for development

resources . and order these linearly, or in a matrix, according to their

Appendix C 261

importance in meeting the program technical requirements, such as (1)
program size, (2) execution speed, (3) cost to develop, (4) time to develop,
(5") vulnerability to operator or inputut error, (6) maintainabili . (1)^	 tY	 P	 P	 ty;growthg
potential, (9) documentation readability, (9) portability or machine
independence, and (10) cost to operate. Identify any 'known special
circumstances that may tend to negate or reorder these priorities. State how
major conflicts in priorities are to he resolved.

6.2 Acceptance Requirements and Criteria

6.2,1 Demonstration Configuration

State requirements relating to the location, configuration, conduct and
review of acceptance tests.

6.2.2 Criteria :for Acceptance

Provide a list of criteria or conditions defining when the software
development task is complete, and, therefore, when the formal transfer of
responsibility to operational and user organizations can take place.

6.2.3 Testing Requirements and Criteria

State specific requirements on the form and extent of tests that
demonstrate the acceptability of the software, or reference such documents
as contain this information. include, as appropriate, requirements for
demonstration of control and data F10 interfaces, logical conditions,
processing, and diagnostic functions. Specify performance criteria by which
test results will. be judged to have demonstrated acceptable behavior..

6.2.4 Test Result Documentation

Reference applicable documents that specify the format, content, quality,
and level of detail required in assembling the test data into a coherent
record of test results; otherwise; provide these requirements in this section.

6.3 Quality Assurance Requirements

Reference applicable documents that specify, or identify in this section,
the QA organization and its level of involvement in the software
deliverables. Include, as appropriate, requirements for inspections of
workmanship, configuration control, material custodianship, quality
control, software (documentation) audits, etc; Provide criteria that specify
the extent to which QA reports concerning the adequacy of the delivered
software are a binding condition for delivery.

7. APPENDICES

Appendices may include; but are not limited to, explanatory material and
requirements of an auxiliary nature, .inserted directly or bound separately

I

.0"-

r

j	 262 Appendir C

for convenience. The following suggested topics are typical.. Appendices
may be designated as "Appendix A," etc., if desired; rather than by the
Dewey-decimal system given here.

7.1 Glossary
Provide an alphabetical listing of terms; symbols, mnemonics, acronyms,

etc., used in the body of the SRD having a special, not widely known use.

7.2 References
Provide a. list of all source doernnents, standards, procedures, and

references cited in the SRD body (or elsewhere in the appendices). Give a
short description of the information referred to in each,. if not evident from
the title.

7.3 Analyses

Provide analyses of program requirements as appropriate to support or
clarify functional requirements stated elsewhere in the SRD.

7.4 Formats and Auxiliary Tables
If detailed format requirements have been established by this SRD, and if

these are more appropriately accommodated in an. appendix rather than in
the SRD proper, then insert such information in this section, Similarly,
insert any requirements appended in tabular form in this section (or,
perhaps, as separate appendices).

i
7.5 Typical Run Examples

In cases where illustrations of requirements take the form of examples, to
which the executing program is to conform, and when these requirements
are better appended than inserted in-line in the SRD proper, then insert
such examples in this section.

"pe

11

• s

APPENDIX D

SOFTWARE DEFINt'11ON DOCUMENT
OUTLINE.

This appendix contains a detailed outline for the assemblage of program
design definitions into a document for management visibility and. approval.
On completion, the document defines the program functional and internal
architecture, costs, schedule,. development plan and related .matters to that
extent which permits a competent technical and management review of the
software to be delivered.

Figure D-1 is a top-level view of the document organization; greater
hierarchic detail is provided in the detailed outline that follows, The
detailed outline also contains, along with each topical heading, a
description of the material to be inserted at that point.

Much of the material cited herein for inclusion can perhaps he satisfied.
by references to suitable documentation elsewhere, or by attachment to the
SDD: Such practice should be encouraged whenever the reference
documents are stable, or are under some acceptable change control
mechanism, or else when any instabilities .or changes in those references are
not apt to affect the management information given in the SDD, Technical
details at this point are primarily important: only to the extent that they
impact management decisions,

The principal guideline for the SDD content is that it includes only that
amount .of technical. detail needed .early in the development, which defines
management resource requirements, the program general architecture;
refined -costs, and refined schedules. The SDD is not generally maintained
after program delivery.

See Chapter 11 for more specific and detailed rules for completion of the
SDD.

V

263

i

3
ent Environment Design

on and Guideffnesand
Interfaces. Constraints

92%2

i i
and

User
Standards

h
cture Environment arid

Conventions
^ 2

Scope of
This Cost and Qperational Approach
Document Manpower Environment Gufdefines

3 3. 3

Milestone System/ Priorities an
ApPiicatife and Review Subsystem Competing
f]acunients Schedule interfaces. Characteris-

tics
4 A 4

enera Pro ram t t

Test andm Acceptance Appendices y
Architecturem

Architecture._

Development
Architectural.. Testing Glossary

'jfJverview Plan

2 2 2..

Modes of Aixeptance

4peratian Test References
Pfan

3 3 3.

Functional QA Plan
4rogram

Arch. itecture Analyses t

4 4

Formats andg
Development
Environment

Descrfption

H4Q--t

of Operat ional
Environ-
ent

5
Genera De-
scription of
Prnaram Amhi-

Documen a ^..,	 Proceduraluidelines .and	 Architecture
Auxiliary

Constraints	 Tables

5	 5

Design	 Data
Control	 Architecture

r

1

Appendix D 265

SOFTWARE DEFINITION DOCUMENT

Detailed Table of Contents

FRONT MATTER
i

Title Page. Provide a title page containing (:1) document number:; (2)
SOFTWARE DEFINITION DOCUMENT; (3) title of the program,;
subsystem, and system; (4) the publication date; (5) signature approval
block appropriate for the management authority level required; and (6) 	 y
releasing organization. Approval signatures will be applied to continue
detailed software development.

Abstract. Give a brief abstract that summarizes the material contained in P

the SDD.

Change Control Information. Provide a brief statement that specifies the
level of change control to be exercised on the SDD during the time of
preparation. On. completion, revise this statement to reflect the proper
post-signature change control policy and procedure.

Distribution Information. Provide a distribution list of all parties with
need-to-know status of the SDD who are to receive copies. Provide a
statement that tells how additional copies may be obtained

Table of Contents, Provide a detailed table of contents for the completed
SDD, which lists section :number, title, and page of every item with a
heaC ng. This table is probably the last item supplied to the SDD prior to
completion.

i
TEXT OF DESIGN DEFINITION

1. INTRODUCTION

1.1 Purpose of the Program

Provide a brief statement of the purpose of the program and of this SDD.

1

266 Appendix D

1.2 Scope of We Document

Provide a brief statement that defines the scope of material contained in
this SDD, including a brief statement that scopes each major section of the
document, if necessary.

1.3 Applicable Documents

Identify all controlling documents to which this SDD responds.

1.4 General Description of the Operational Environment

Provide an orientation for the reader that shows the software imbedded
in its operational environment (Both hardware and software). A dataflow
block diagram with explanatory narrative is useful here. Identify the
general mode of operation of the program, such as "stand-alone, interrupt-
driven, real-time program on dedicated XXXX minicomputer operating
under OSOSOS operating system with a 64K-word core and two 10M-byte
disks." Identify any other general system constraints imposed by
requirements or are otherwise critical to the design. Defer details, however,
to Section 3. The emphasis at this point is on communicating an
understanding among readers concerning the overall operational interfaces,
and not on the detailed computer and peripheral interfacing aspects.

1.5 General Description of the Program Architecture

Provide an overview of toe program function, response to requirements,
nature of the problem and type of data input, processed, and transmitted,
etc. Identify the type of program, such . as, (.1} real-time, interactive, or
batch.; (2) computational or data manipulation; and (3) developmental or
operational. ' ,,-- descriptions contained in the SRD may be referenced and
may provide a. -at. portion of the level of understanding needed at this
point. However, any new general information not in the SRD should be
given. A data-.flaw or diagram, tier chart, or other form of high-level
program block diagram which displays the program architecture may be
useful to illustrate the program and its major mode of operation. Defer
details to Section 5.

1.6 Assessment of Feasibiiity

Summarize the results of program analyses, cost and schedule
consideration% availability of personnel, and other factors (such as, perhaps,
salability, profit, organizational goals, etc.), which impact the development
of this piece of software, If alternate plans are available, being developed
under similar criteria or for special contingencies; then identify these
alternatives and their viability. Discuss problem areas and areas of concern
resulting from architectural study.

Appendix D 267

2. MANAGEMENT GUIDELINES

This section is a summary of the project resources, work schedule, and
plans for implementing the requirements given in the SRD. The detail
includes estimates for costs and schedule based on an analysis of the
individual functions to be provided, the estimated time to design, code,
test, and document each such function and configuration to be delivered,
and the resources available to perform the task. A set of characteristics that
compete for machine and management resources is prioritized as a guide
toward implementation (Section 4.3), and it is upon this ordered priority
that the given resource estimates are valid. The schedule and work plan
display how the management resources are organized to accommodate
these priorities, so that, in the unlikely events of schedule or cost overruns,
the highest priority items at least will have been provided

2.1 Team and Work Breakdown Structure

Identify the manpower allocations for development and show a
breakdown of work into tasks. Identify personnel assigned to tasks by name
when possible. Identify project management, supervision, design, coding,
documentation, testing, QA, review, secretariat, and. liaison functions. Based
on work identified in each of the task areas, available personnel, planned
work phasing, and the project team structure, provide a manpower profile
for the software production, testing, documentation, and delivery. Include
favorable and adverse tolerance figures for these estimates and state the
basis for such estimates. In particular, state the assumed individual
productivity (say, as lines of code per day per individual) used in estimating
costs and the schedule of the following sections.

Provide c,.n analysis based on the Work Breakdown Structure of
manpower loading, flow of expenditures for computer facilities and
services, and other factors that influence the level of support required for
the software development. Provide a definition of the work priorities and
indicate how the design and implementation process accommodates the
priority ranking.

2.2 Cost and Manpower

Give the projected or allocated dollar and manpower costs to complete
the program through documentation, testing, and delivery.

2.3 Milestone and Review Schedule.

Present a more detailed, sharp-milestone refinement of the schedule
given in the SRD, and point out any major differences, problems,
reservations, or qualifications.

268 Appendix D

2.4 Installation Plan Summary

Summarize the plans for implementing the software and integrating. It
into its system and operational environments. Describe any negotiations or
agreements necessary to end the development activity and deliver the
program Into operation.

2.5 Resources and Support
State the planned resources and also support other than dollars and

manpower that will be required to develop the software, insofar as these
are drivers for cost, schedule, manpower, or program: architecture. Include
availability of critical facilities, subcontract negotiations, etc.., as
appropriate. Identify deficiencies, either incompletely resolved or
undefined, as lions only if these are currently a problem or if they typically
would not be resolved later, prior to projected needs during actual work
phasing.

3. ENVIRONMENT AND INTERFACES

This section expands upon the overview presented as Section 1.3. Its
function is to define the scope of the task, not to define the sys* m,
environment, and interfaces in detail,

3.1 User Environment
Describe the user interfaces with the program and the functions that user

interactions invoke within the program. Use references to user manuals, the
SRD, and other such materials that describe those aspects. Include only that
information which impacts either the program architecture or the
management resources needed for implementation. Leave other details for
the SSD and the User's Manuai(s).

3.2 Operational Environment
3.2,1 Operational and Operator Interfaces

Describe operational and operator interfaces with the software being
developed to that level of detail at which impacts to management resources
and major technical decisions are typically felt. Use references to the SRD,
operator manual(s),. technical manuals, liaison personnel, etc., to obtain the
level of detail and information deemed proper.

3.2.2 0(perations/Maintenance Plans

Describe the measures to be. used or developed for maintaining or
operating the program prior to delivery, and indicate the suitability of these
measures as preliminary operational methods after delivery. Identify the
post-delivery operations/maintenance responsibility.

:cr: • ._^ -,,.,.Ncmrama-rc^r.. _rw^	 _. __. _.__.r.._	 ...,

Appendix D 269

3.3 System/Subsystem Interfaces
Outline both the hardware and software aspects of the system and/or

subsystem that are needed to .define the program architecture or else are
projected to influence the program architecture significantly if not
identified and .resolved early. Indicate maximum available core, segmenta-
tion constraints, system-imposed timing constraints, the use of existing or
standard subroutines, etc., as appropriate: Reference existing hardware and
software technical manuals, system technical requirements documents, etc.,
if appropriate.

3.4 Program Development Environment

Describe and discuss any aspects of the environment in which the
software is being written,. designed, coded, tested, etc., that will contribute
to adverse or favorable deviations from the plan of this SDD, should
certain identified contingencies be or not be realized. For large programs
that require a work breakdown structure, describe the functional interfaces
which are to be maintained during program development. This section is
generally only warranted when problems are projected to ari due to the
development environment.

4. DESIGN GUIDELINES AND CONSTRAINTS

This section consists of material that defines and constrains the
development disciplines and conventions used by the project.

4.1 Standards and C nventions

Define in this section those special standards and conventions that apply
to this SDD, Additionally, identify or describe any special standards or
conventions necessary for developing the software, but only if these are a
major consideration in establishing the costs, manpower, schedule, or
program architecture. Established standards and conventions may be cited
by reference.

4.2 Approach Guidelines

Define any special methodology to be used to develop, code, or test the
software, and state any special approach or design philosophy toward
solving the software design problems, insofar as these are instrumental in
determining costs, manpower, schedule, or program architecture. Standard
methodologies or approaches will have been covered by 4.1, above.

4.3 Priorities and Competing Characteristics

List the significant technical and management factors that compete for
costs, schedule, and program and documentation quality, Prioritize these so
as to fulfill the design philosophy, documentation plans,. and SRD

requirements. Include such considerations as program size, execution speed,
vulnerability to operator error; maintainability, growth capability or
extension, portability of design, readability of documentation, level of
documentation, vulnerability to system errors, etc.., but only include such
factors if they are deemed to impact costs and schedules.

4A Documentation Guidelines and Constraints

Identify the documents to be produced, the purpose, type, and level of
quality of each, the intended reader, the projected life eyde, and the
allocated resources that have been planned for each. Identify any
documentation factors that need :resolution and that will significantly
impact management resources. Include, as appropriate, project logs,
reports, notebooks, etc,, as well as deliverables. Name individuals
responsible for each.

4.5 Design Control
State summarily the level of design control exercised within the project,

and state the impact of this philosophy on technical and management
resources. Describe the methods and disciplines to be imposed or
developed to assure configuration control and management of the evolving
software.

S. PROGRAM ARCHITECTURE

This section reveals the top-level program functional and modular
hierarchy of algorithmic design structure. Its function in the SDD is to
provide credibility for cost/schedule/manpower estimates and .allocations,
and a basis for reviewing the architectural design that will be used in the
SSD;

This section should demonstrate that the program arch. itecture satisfies
the following criteria: (1) adequacy to fulfill the program requirements, (2)
adequacy for continuing the design, (3) adequacy for coding the design from
the top down on a module basis, (4) adherence to program development
standards, and (5) adequacy for use of the 5SD as the principal sustaining
document after software delivery.

5.1 Architectural Overview

Describe and discuss, in summary form_ the overall program organiza-
tion; both functionally (external characteristics) and algorithmically
(internal characteristics). Only the major functions, algorithms, data
structures, and inputs/outputs that define the program architecture need to
be addressed at this point. Such. descriptions may take the form of modtiiar
data flow descriptions within the system or subsystem, or within the
program; they may take the form of a high-level tier-chart with explanatory

Appendix D 271

narrative; they may take the form of structured-control flowcharts and data=
struc'^ue diagrams (always: with explanatory narrative) to show the :program
algorithmic composition; and, for complex control -logic situations; they
may take the form of modular decision tables. Indicate, based on the
architectural study, the ,approximate core occupancy, segmentation
requirements, timing constraints, etc.

5.2 Modes of Operation
Identify the major operating modes (or ways of operating the .program, as

selected by control data inputs) and the different software configurations (if
more than one exists). Discuss summarily the behavior of the program in
each mode or configuration, the stimulus that causes transitions between.
modes, and the rationale by which control data selections are available at
each transition.

5.3 Functional Architeaure

Describe the functional (or externally ' observable) behavior of the
program, including the detection of, and recovery from, system failure and
input errors. Use hierarchic refinement of detail to that level which defines
the functional architecture of the program sufficient for a high-level design
review. Identify each function performed with a requirment in the SRD, or
else justify each such function within sonic set of valid design criteria.

The emphasis in this section is on the main sources and characteristics of
the input, the main types and characteristics of output data, and the
intermediate flow through the transformational processes involved, for
functional definition. and requirement interpretation, rather than for
detailed procedure / program control, the subject of Section 5.4,

5.4 Procedural Architecture

Provide a. level-1 flowchart. (or equivalent) and narrative that discusses
the entire program algorithm and each functional step. Correlate operative
modes and external functional behavior elements with functions or partial
functions associated. with each procedural step. Expand functions to be
hierarchically refined ("striped" or "named" modules) at succeed _:tg levels,
using the standards given in ClhLpter 12, to that level of refinement
required to give credence to cost /schedule/manpower estimates, to define
the program structure; and to illustrate the design and documentation
standards that will appear. in the SSD. Correlate functions that operate on
major data bases and internal data structures with material in Section 5.5;

If it is. an appropriate design consideration; state what language(s) will be
used for coding and why.

e

t	 .

272 Appendix D

5.5 Data Architecture
Identify and describe the major data bases accessed or created by the

program being developed and identify and describe major data structures
used within the program. Describe only the high level design considerations
of such data, hierarchically refined, as dictated. by the functional and
procedural descriptions in Sections 5.3 and 5.4. In some cases, the baseline
design core map may serve to illustrate memory requirements or
constraints. Include, as appropriate, considerations for data collection,
conversion, and distribution, insofar as these are design concerns that
impact cost and schedule.

S. TEST AND ACCEPTANCE ARCHITECTURE

5:1 Development Testing Plan
State procedural guidelines to be used by the development team in

evaluating; program correctness prior to acceptance testing. Discuss the
projected adequacy of such methods to reduce program errors prior to
verification (acceptance) testing.

6.2 Acceptance Test Plan
Identify plans, procedures, configurations, support, and personnel deemed

necessary for acceptance testing, both in response to the SRD and as
prompted by considerations recognized in the architectural design phase.
Identify testing and reviewing personnel.

6.3 Quality Assurance Plan
Identify the level and type of involvement by QA personnel during the

project prior to delivery. Identify specific functions and services that QA
personnel are sought to provide (e.g., audits of performance vs.
requirements, code vs. requirements, code vs, flowcharts, testing the
program, etc.) ; and state what materials will be provided for QA action.

7. APPENDICES

Appendices may include, but are not limited to, explanatory material of
an auxiliary nature, inserted directly or bound separately for convenience. .
The following topics are typical. Appendices may be designated as
"Appendix A," etc., if desired, rather than by the Dewey-decimal system
given here.

7.1 Glossary
Provide a glossary of all acronyms or mnemonics and all frequently used,

unfamiliar terms used in the SDD. Give short definitions of each, and a
reference, when appropriate; to a fuller definition in the text.

	

E	 '

	

j	 Appendix D 273

j

7.2 References
Provide a list of all source documents, standards, procedures; text books,

etc., used as reference material in the SDD text. Give a short description of
the information referred to in each, if not evident from the title.

7.3 Program. Analyses
Include, as appropriate, any program analyses that .may teud to support,

illustrate, clarify, or, in some cases, refine the material or decisions
contained in the SDD. For example, a decision to code the design in
assembly language may be supported by a timing arnalysis of critical, high-
priority external functions that can only be acconiakodated in assembly
code. The results of coding and testing the architectural portion of the
design (using dummy stubs) may be offered in evidence of.c:orrectness,, etc.

7.4 Formats and Auxiltary Tables

If formats or other auxiliary tables have been established b y this SDD
and are appropriate appendix material, include these in this section.

L

j

t

	

^	 r

7

NC pXQE ..pNK Np^ } • '^^^

APPENDIX E
SOFTWARE SPECIFICATION

DOCUMENT OUTLINE

'Phis appendix contains a detailed outline for the accumulation of all
program specifications into a single document. The items listed are not
meant to be filled out in the order listed as a function of time. Rather,
different sections should be worked on as they are appropriate to the
program development effort. The outline given then organizef that material
into logically related sections for readability. On completion, the document
forms the as-built specification of the program, and serves as the principal
maintenance document.

Figure E-1 is a top-level view of the document organization; greater
hierarchic detail is provided in the detailed outline that follows. The
outline contains, after each topical heading, a description of the type of
material to he inserted at that point.

The level of detail in the SSD may vary according to the documentation
deeds of the program. The topics given are meant to serve as a
documentation checklist. In full, the topics constitute Class A docurnenta-
tion detail.

Mach of the material cited herein for inclusion can perhaps be satisfied
by references to suitable documentation elsewhere, or by attachment to this
SSD. Such practice should he encouraged. whenever the reference

documents are either stable or under the same change control mechanism
as this SSD, or else when any instabilities or changes in those references are
not apt to affect the "as-built * character of this specification.

Chapters 11 and 12 contain more specific and detailed information
relative to Completion of the SSD.

275

/I

SSD

Snftwt are	 N
y

k0

R*

tri

Figure E-1. Graphical outline of the SSD

k

r
1

Appendix E 277

SOFTWARE SPECIFICATION
DOCUMENT

Detailed Table of Contents

FRONT MATTER

Title Page. Provide a title page containing (1) document number; (2)
SOFTWARE SPECIFICATION DOCUMENT; (3) program, subsystem,
and system titles; (4) the publication date; (5) a signature approval block
appropriate for the management authority level required; and (B) releasing
organization. Signatures are to be supplied only at SSD completion, The
date reflects the time of last change to any item in the SSD.

Abstract. Give a brief abstract that summarizes the program specification.

Change Control Information. Provide a statement that specifier the
current level of change control authority during production, and procedures
for updates. On completion, revise this ii1formation to reflect the proper
post-signature change control policy and procedure.

Distribution List. Provide a distributi0t . list of all parties with need-to-
know status of the final complete SSD who are to receive copies.

Distribution Information. Provide a statement that tells how additional
copies may be obtained.

Table of Contents. Provide a detailed. table of contents for the SSD, which
lists section number, title, and page of every item with a heading. This item
is probably the last supplied to the SSD,

TEXT OF SPECIFICATION

1. INTRODUCTION

1.1 Purpose of the Program

Provide a brief statement of the purpose of the program and. of this
Specification.

'I
-1

278 Appendix E

1.2 Scope of Appiicabliiiy
Describe the scope of the document, including brief statements about

each major section of the. document, if necessar,/.

1.3 Applicable Documents
List controlling and source documents that Apply to this specification,

such as the SRD, SOM, user manuals, external functional or programming
specifications, etc.

1A System/Subsystem Overview	 .
Identify the general system, subsystem, and environment (hardware and

software) in which the program operates (a block. diagram with narrative is
useful here). Also, state the general system/subsystem operating mode, such
as "interrupt-driven, real-time, on dedicated MODCOMP operating under
MAX/III with 18K-word core and 5M-byte disk." Identify any other
general system constraints imposed by requirements that influenced design,
such as allocated core size, system-imposed timing constraints; etc. Leave
details describing the system/subsystem to Section 3.

1.5 General Description of the Program
Provide a general functional description of the program, including the

nature of the problem and the type of data generated, processed, or
transmitted. Identify the type of program, such as: (1) real-time, interactive,
or batch; (2) computational or data manipulation; (3) developmental or
operational. If appropriate, describe the method of solution.

2. STANDARDS AND CONVENTIONS

This section describes standards and conventions used in this SSD and in
programming, to describe both the internal and external characteristics of
the program.

2.1 Specification Standards and Conventions
2.1.1 Applicable Documentation Standards

ldentify all existing documentation standards that are used to document
the program as appropriate references to Section 7.2 of the SSD.

2.1.2 Exceptions to Specified. Documentation Standards

Identify, all exceptions to the standards. specified in 2.1..1, above, and
provide alternate standards in their stead, if required.

2.1.3 Special Documentation Standards

Describe any special standards; such as formats for graphics (e.g., Petri
diagrams) or descriptions of data structures (e:g., by a PASCAL4ike syntax),

,ter

r

Appendix E 279

that are not covered by standards above. Deane special terms or symbols,
especially those used in non-standard ways, or in. ways that are likely to be
misunderstood by envisioned readers.

2.2 Programming. Standards
This section describes standards and conventions used to implement the

program and to document the program internal characteristics.

2.2.1 Applicable Policy and Procedure Documents

Identify appropriate policy and procedure documents that govern the
program implementation philosophy, discipline, or approach by appropri-
ate reference to Section 7.2 of the SSD.

22.2 Exceptions to Established Policies and/or Procedures

Identify extensions, modifications, additions, or other exceptions to the
documents listed in 2.2.:1, above, if needed,

2.2.3 Special Policies and Procedures

Describe any special policies applied toward the development of this
program not covered by Sections 27 .2 1 and 2.2.2, above.

2.2.4 Applicable Programming Standards

Cite any existing programming standards used by appropriate reference
to Section 7.2 of the SSD:

2.2.5 Exceptions to Specified Programming Standards

Identify all exceptions to cited standards in 2.2.1, above, and state
alternate standards used in their stead, if required.

2.2.6 Special. Programming Standards

Describe any special standards adopted for this program, such as: (1)
register definitions and usage; (2) naming of variables or program labels; (3)
assumed form of subroutine calling sequences and other procedural
linkages; (4) use of global. macros .; (5) naming of compile-time constants
and parameters; (6) method used to prevent inadvertent misuse of program
resources, e.g., as duplication of variable, file, as.d label names; (7)-method
used for arbitration of requests for use of shared resources; (8) method used
to assure that deadlocks cannot . occur; etc.

2.2.7 Programming Language(s)

Indicate the specific language(s) used and any language extensions
allowed, including macros, when applicable.

i

Y

R

J7

f

2130 Appendix E

2.3 Test and Verification Standards 	
sl

2.3.1 Applicable Test and Verification Standards Documents

Identify all standards documents that are applicable to the establishment
of program correctness and to the demonstration of acceptance criteria by
appropriate reference to Section 7.2 of the SSD.	 x

2.3:2 Exceptions to Specified Test and Verification Standards
Identify all exceptions to the standards specified in 2.3.1, above, and state

alternate standards in their stead; if required.

2.3.3 Special Test and Verification Standards

Describe any special testing standards, such as method of assessing
correctness, reporting and archiving test data, benchmark tests, etc.

2.4 Quality Assurance Standards

2.4.1 Applicable QA Standards

Identify all existing QA standards documents that are applicable toward
inspection for transfer to operation by reference to Section 7.2 of the SSD.

2.4.2 Exceptions to Specified QA Standards

Identify all exceptions to the standards specified in 2.4.1, above, and state
alternate standards in their stead, if required.

2.4.3 Special QA Standards

Describe any special standards, such as rules for cross-auditing narrative,
flowcharts, code, and test results, or for auditing narrative format,
flowchart conventions, indentations or annotation of code, decision table
formats, etc.

3. ENVIRONMENT AND INTERFACES

3.1 System/Subsystem Description

3.1.1 Applicable System Documents .

Reference those source documents and manuals listed in 7.2 that describe
the general interface characteristics of the system or subsystem in which the
program resides.

3.1:2 General Description of System/Subsystem Environment and
Interfaces

Identify the system/subsystem interfaces, and describe the program and
system environment in an introductory manner, for further detailing in

Appendix E 281

appropriate subsections of this section. Use the narrative in this subsection
to expose the reader to the material contained in the coming subsections,
-arcs to .guide him verbally toward a general understanding of the material.

3.2 Hardware Chametedetice and Conatralnte

Identify and describe the pertinent hardware functionally. However, defer
detailed descriptions of hardware iteins, using references to specifications
documents and tecluitml manuals listed in Section 7.2 of the SSD whenever
possible, if not covered in 11.1, above. Otherwise, supply such information
in Sections. 3.2.1--3.2.7, below, as appropriate.

3.2.1 General Description of the Hardware

Provide a narrative description of the pertinent aspects of the hardware
in which the program operates, including functional diagrams, as
appropriate.

3.2.2 Machine Configuration

Include a block diagram of the main frame and peripheral configuration,
if. appropriate.

3.2.3 Main-Frame Characteristics

Identify those main-frame characteristics that are pertinent to the
software design, such as: (1.) read-only iremory, (2) floating point hardware,
(3) allocated core size, etc.

3.2.4 Peripheral Characteristics

Identify the type and quantity of standard. peripherals accessed by the
program. Describe any .peripheral characteristics that are pertinent to the
software design.

3.2.5 User/Operator Control Interface Characteristics

3.2.5.1. Control Input. Devices

Identify all input devices utilized for control of the program, such as: (1)
keyboard, (2) card reader, (3) control panel, (4) special devices.

3.2.5.2.Control Monitor Devices

Identify all output d vices utilized for responding to controls, such as: (1)
typewriter, (2) CRT/hard copy; (3) line printer, (4) control panel, (S) special
devices:

3.2.5.3 Control Device Characteristics

Identify any b-pecial characteristics of control devices, such as: (1) ASCII,
EBCDIC, or Fieldata character codes (2) line rates; (3) half duplex or full

A'

282 Appendix E

duplex; {4} system-imposed characteristics, e.g., data transfer mode by
character or by block.

3,2:6 User/Opemtor.Data Interface Characteristics

3.2.8,1 Data Input Devices

Identify all output devices utilized by the user/operator for data input to
the program, such as: (1) keyboard, (2) card reader, (3) control panel, (4)
special devices.

3.2.6.2 Data Output Devices

Identify all output devices utilized for data output from the program to
the user/operator, such as (1) typewriter, (2) CRT/hard copy, (3) line
printer, (4) card punch, (5) plotter, 6) special devices,

3.2.6.3 Data Input/Output. Device Characteristics

Identify any special characteristics of user/operator data input/output
devices, such as: (1) ASCII, EBCDIC, Fieldata character codes; (2) lire
rates; (3) half duplex or full duplex.; (4) automatic control codes or other
non-printing control characters.

3.2.7 Data Storage Device Interface Characteristics

3.2.7.1 Data Storage input/Output Devices

Identify all .mass-storage devices utilized for data or control inputs and
outputs to the program, such as: (1) disk/drum, (2) magnetic tapes, (3)
paper or cassette tape, (4) other mass memory devices.

3.2.7.2 Data Storage Device Characteristics

Identify any special characteristics of mass-storage devices, such as: (1)
minimum sector size of disk/drum, (2) number of tape recorder tracks, (3)
tape blocking . factor, (4) ASCII, EBCDIC, or Fieldata character codes.

3.3 Software- Environment

Provide a narrative description. of the. system software that imposes
constraints on the program design. Identify the compiler(s) or assembler(s)
used, by version if necessary, and the raode of operation; such as batch,
multiprogram interactive, background batch, etc., if appropriate. Do not
enter information that does not have a direct bearing on the design. If
necessary, however, supply such information in Sections 3.3.1-3.3.3, below.

3.3.1 General Description of System Software

Describe the general organization of system software, with diagrams as
appropriate,

Appendix E 283

3.3.2 Interaction With the Operatin; System

Describe how the program interacts with the operating system,. and
describe any special features of the operating system to accommodate this
design.

3.3.3 Interaction With Other Programs

Describe how the program interacts with other programs, including
library calls for standard subroutines, program linking/overlaying, and
those operating in a multiprogramming environment, if not adequately
described elsewhere in the SSD.

3.4 Interface Characteristics
3.4.1 Operating System Interfaces

Provide a description of operating system/program interfaces, or give a
reference to such material elsewhere in the SSD, or to a document listed in
Section 7.2.

3.4.2 Interfaces With Other Programs

Provide descriptions of interfaces with other programs or give a
reference to such material elsewhere in the SSD, or to a document listed in
Section 7.2. Identify programs that provide data to or receive data from the
program. Identify any special characteristics related to the data transfer
between programs. Define the parameters for data messages and the
characteristics of data control parameters associated with the data.

3.4.3 External Hardware Interfaces

Identify all non-standard or specialized input/output devices. Define the
pertinent characteristics of these devices, such as: (1) control parameters,
(2) response parameters, (3) interrupts, (4) interrupt priority, (5) timing,
constraints. If such information exists in a source document, it may be more
appropriate to cite such a reference than to repeat that information here.

3.5 Supporting Programs
Describe or give a reference to any programs used for operational or

developmental support of this program, if such descriptions are needed to
understand the program specifications herein contained. in such cases,
describe the interfaces and interactions with such programs.

4. SOFTWARE FUNCTIONAL SPECIFICATION

4.1 Functional Organization and Overview
Describe the overall functional behavior of the program, the principal

modes of operation; the different software configurations (if any), and major

294 Appendix E
is

data flows. Cite applicable requirements documents and user/operator
manuals by appropriate references to Section 7.2 of the SSD. The object of
this section is to prepare the reader for the detailed functional
specifications to follow. In this overview, discuss the ge.-pral philosophy
concerning detection of and recovery from system failure and input errors;
if needed, attach these as appropriate Sections 413 and 4.1.j (i and j are
appropriate numerals within 4,1), as detailed below.

4.1.i Detection of and Recovery From System Failure

Describe the technique to be used to detect and recover from system
failure, such as: (1) re-run program, (2) writing of checkpoint recovery file,
(3) storing data on disk and/or tape at specified intervals; (4) backup system
on line, etc.

4.1 j Detection of and Response to Data: Input Errors

Describe the extent to which Input data is to be verified before
processing, and the verification method, such as: (1) checksums on data
records or flies, (2) error detection coding and retransmission, (3) message
to operator for mannai verification, etc.

4.2 Detailed Software Configurations and Modes of Operation
Identify each of the different software configurations (essentially different

programs built or linked together as a unit). For each configuration,
identify the various operational modes (program functions that change as a
result of the operational state or control data). Describe events, conditions;
or computations that cause transitions between modes. Use hierarchic
refinement if modes have functional submodes that need description. Name
and number each mode for input-processing-output descriptions in SSD
Section 4.3. Use decision tables to express mode transition logic and to
identify major functions within modes as appropriate.

4.3 Input, Processing, and Output Specifications
This section contains hierarchically refined input-processing-output

specifications and deals with end-to-end program functional characteristics.
Each major Subsection 4.3J, below, where i is a function or mode
identifier, describes one of the program modes, and subsections within these
refine the various aspects of the mode functional behavior.

4.31 Function i Mode (or Mode i) Input-Processing-Output
Describe the inputs to this mode, the processing functions performed on

the input, and resultant outputs and responses. Illustrate the mode inputs,.
functions, and. outputs by a one-page data flow diagram, and explain the
program behavior. Use decision tables to define responses to intricate
logical conditions; Further informat' ;.n on generating such sections of the
SSD is contained in Chapters Hand U.

f y	°

i

L

2
Appendix E 285

i
I

4.4 User/Operator Functions and Special Features
t

Identify and summarize the user/operator interfaces and specify those
functions performed by the user/operator. Alternatively, give a reference to
the appropriate user/operator manual listed in Section 7.2 of the SSD. If a
reference is given to such a manual in lieu of specifying operator functions
here, then that manual becomes the operator functional specification, and
should also be brought under the same change control mechanism as this
specification.

4.4.1 Control/Response Message Parameters

For the input/output devices listed in Section 3.2.5, define control/
response message parameters, such as: (1) structure and format (reference
7.7.1), ' 2) syntax, (3) message lengths and frequency, (4) device assignment
codes, (5) special timing constraints,. (6) special features such as access keys,
passwords, or lockout keys,. etc.

4.4.2 Data Input/Output Message Parameters

For the data input/output devices listed in Section 3.2.6, define user:/
operator data input/output message parameters, such as: (1) structure and
format (reference 7.7.2), (2) syntax, (3) message lengths and frequency; (4}
device assignment by message; (5) special considerations such as online vs.
ofRine printing/display, (6) data units, (7) data ranges, etc.

4A.3 Operational Environment and Support

Provide specifications for any operational support required for this
program, and state any operational environmental characteristics on which
the specification of this program is based, beyond normal or standard
operational facilities, or give a reference to documents listed in 7.2 that
provide such information.

4:4.3:1 Operator Functions

Specify other user/operator interactions required for operation of the
program, and discuss any pertinent considerations for o$iine activities, such
as transmittal or storage of output, operations log, etc,, as appropriate.

4.4.3.2 Special Functions

Specify any other operational support functional requirements, such as
criteria for running backup operational programs or re-entry of .checkpoint
data, etc.

F

~^1

I

I

2136 Appendix E

4.5 Date . Base Specifications

4.5.1 Interaction With External Data Bases/Files

Descr. .ibe or . give appropriate references to Section 3.3 of the SSD that
state how the program interacts with data bases and files which are external
to .the program: Where appropriate, give data block formats, table formats,
calling sequences, message formats, relationships between fields or records,
units of measure, conversion formulas, etc.

4.5.2 Creation, Access, and Maintenance of External Data Bases/Files

Indicate whether or not data bases and files external to the program are
created and/or maintained by this program. .-)iscuss matters of .privacy,
security; and integrity of such data bases,

4.5.3 Applicable Data Base/File Documentation

Reference those source documents listed .in Section 7.2 of the SSD that
describe the pertinent data bases or data files, including those documents
which describe how the data bases or files are created and/or maintained.

4.5.4 Data Base Descriptions:

If there are no applicable documents referenced by Section 4.5.3, above,
or if further specification is warranted in this SSD, provide that information
in this section. Formats may be put in appendices, Section 7.7.3.	 .

5. PROGRAMMING SPECIFICATION

5.5 Program Overview

Describe and discuss; in summary form, the solution method, the overall
program organization; major internal data structures, and major algorithms
that constitute the main program functions. Give design philosophy and
rationale as appropriate for understanding, and .give references to program
analyses in Section 7.3, if any, which are pertinent to the overall program
description.

The sections under this topical heading may describe relationships
between the functional behavior and the executing modules of the program,
i.e., an analysis of what modules do which functionsi Other subsections may
describe and. depict data flow between executing modules or concurrent
processes to illustrate how the program architecture accommodates the
functional specification. Still other subsections may discuss the roles played.

s• by the various modules in each of the several program modes, or may show
various data interface Characteristics, when appropriate at this high-level=
design overview.

Appendix E 287

Insert Sections 5.0.1 and 5.0. j; below, which discuss design philosophy
and competing characteristics, at appropriate points i and i in the
overview..

SA.i Design Philosophy and Rationale

Include a brief description of the design philosophy, discipline, or
approach taken in the program implementation, and give rationale as
appropriate to explain such descriptions, insofar as such descriptions tend
to explain why the design appears as it does._

5Aj Ordered Set of Competing Chameteristies

Describe the general order of priorities adopted to fulfill the design
philosophy. Include an ordered list or table of factors that compete for
resources, such as: (1) program size; . (2) execution speed; (3) cost to
implement; (4) time to implement; (5) vulnerability to operator error; (6)
maintainab 'c y; (7) growth capability, including extension; (8) portability,
or machine independence; (9) cost to operate; (10) readability of
documentation; (11) concurrency of documentation; (12) vulnerability to
system errors; etc.

5(1)* Alain Program Detailed Design (Module 1)

Provide an algorithmic description of the top-level main program design,
as described in Chapter 12. Hierarchic detailings of the main program into
nested 1-page flowcharts with accompanying narratives (or- equivalents)
then follow as subsections.

5(n) Configuration n Detailed Design (Module n)

If the program has different identifiable compile configurations, show
each such configuration beginning at its top-level flowchart and narrative,
as above. Numeric identifiers can also be used for major program segments
within a program, if desired.

5(S) Internal Subroutine Detailed Designs

5(Si) Subroutine i Detailed Design (Module Si)

Provide a detailed algorithmic description of the top-level design of each
Subroutine i, as described in Chapter 12. Hierarchic detailings of . each
subroutine procedure into nested 1-page flowcharts with accompanying
narratives (or equivalents) then follow as subsections.

* Numbers in parentheses refer to 'Dewey-decimal identifiers for flowcharts, data^structure
definitions; or resource allocation requirements.

I

- 01

A

288 Appendix E

I	 i

SM External Subroutine Interface Descriptions

5(M) External Subroutine i Interface Description

Each section such as this In the SDD shall provide the necessary interface
description for an external module called by this program being specified.
Such description shall contain, but shall not be limited to: (1) the purpose
and function of the subroutine;, (2) the calling sequence; (3) all external
programs and subroutines called, (4) common data areas; (5) operatin
system interface data; (6) mathematical equation, if appropriate; (711
execution speed and core usage, if relevant; (8) input/output, (9)
restrictions for use; and (10) error messages. If suitable descriptions of this
type are documented elsewhere, then a reference to such source material
listed in 7.2 is sufficient.

5M Data Structure Definition Tables

5(Y,j) Data Structure Name j Definition Table

Each section such as this shall describe common, global, or shared data
structures. Such descriptions become the controlling interface definition for
all accesses to the structure, and, when appropriate, identify those functiorLs
forming the level of access to the structure. Descriptions shall contain,ontain, but
shall not be limited to: (1) mnemonic name and derivation of that name; (2)
purpose and . usage in the program; (3) structural description, including
overall 'type,. size, component breakdown, and graphic illustration(s); (4)
substructure definitions, including for each field- t, size, position (If
relevant), relations with other com onents; allowable operations, and
constraints, such as ranges of value; functions or operations that may
manipulate the structure (or its members), (6) associated constants used. to
define structure parameters; (7) relationships with other structures; and (8)
constraints on usage,

50 Resource. Access Allocation Tables

5(Zk) Resource k Access Design

Each section such as this shall describe access requirements, protocols,
methods for achieving mutually exclusive use, synchronization, etc., for a
resource or sets of resources. These descriptions may take the form of
hierarchic levels, of access, described in layers of refined detail in
subsections of each such section.

& TEST AND VERIFICATION SPECIFICATIONS

6.1 Production Testing

This section describes correctness testing by implementors,

v.

r

Appendix E 289

6.1.1 Applicable Existing Production Test. Procedures

Identify by appropriate reference to Section 7.2 of the SSD any existing
and documented production testing procedures (other than standards in
Section 2.3) used to support the validation of this program during
development.

6.1:2 Exceptions to Existing Production Test Procedures

Identify all exceptions to existing test procedures referenced by Section
8.1.1,: above, and state alternate procedures, when applicable.

63.3 Other Production Test Procedures

Define other production testing procedures used to support the
verification of this program during development. Define criteria for test
data selection, and state procedures for determining the validity of
observed program responses to given test data. See Section 6:2.3, below., for
suggested outline.

s.2 Acceptance Test Specifications

When appropriate, this section specifies tests that demonstrate. the
fulfillment of acceptance criteria.

6,2.1 Applicable Existing Acceptance Test Procedures

Identify by appropriate reference .to Section 7:2 of the SSD any existing.
and documented acceptance test procedures (other than standards in
Section 2.3) used for certifying the program..

6:2.2 Exceptions to Existing Acceptance Test Procedures

Identify all exceptions to existing test procedures referenced by Section
6.2,1, above, and state alternate procedures, when applicable:

6.2.3 Other Acceptance Test Procedures

This section defines, when appropriate in this dncument, other
acceptance test procedures used to certify the program prior to operations
transfer: Each subsection provides for the documentation of criteria for test
data selection and procedures for determining the validity of observed
program responses to given test data, Each description shall contain, but
not be limited to: (1) an explanation of the test objectives, (2) test inputs
(files, events, etc., or criteria for their selection), (3) test procedures, (4)
support facilities required (used), (5) test conditions or constraints, (B)
outputs to be achieved, and (7) method of output interpretation. A
suggested list of considerations follows,

81.3.1 Verification of Program Control 1/0 Interfaces

Define tests and techniques to verify proper operation of the program
with the specified user/operator control media (Section 3.2.5).

F
i

r

290 Appendix E

6.2.3.2 Verification of Program Uatr I/O Interfaces

Define tests and techniques to verify .proper operation of the program
with the specified user/operator data I/O media (Section 3.2.6) and data
storage media (Section 3.2.7).

6:2.3.3 Verification of Data Processing Functions

Define tests to verify proper operation of the data processing functions of
the program. Include test cases for normal, random, and abnormal (out-of-
range or otherwise unexpected) data.

6.2.3.4 Verification of Logical Response and Sequence

Define tests and techniques to verify the ,proper logical response and
sequencing of modes in response to control and/or data input parameters.
Include test cases that verify responses to erroneous data or control
parameters.

6.2.3.5 Verification of `Diagnostic Functions

Define tests and techniques to verify proper operation of in-program
diagnostics that aid the user/operator in d^txting failures, correcting
errors, or in determining the causes(s) of abnormal operating conditions.

6;2.3.$ Verification of Software Trap Action

Provide tests to verify proper operation of software 'raps used to prevent
anomalous operation, such as; (1) file record errors; (2) software timers for
endless loops;. (3) out-of-range location address, including out-of-range of
available memory; (4) impossible mathematical computations, a g., divide
by zero.

6.2.3.7 Verification of Error Response

Provide tests to verify that error conditions produce the proper
responses, such as the correct error message.

6.3 OA Measures During Production

This section defines, wh4n appropriate in this docuinent, the level of
activity and responsibilities of QA functions performed for certification and
delivery into operations, insofar as these are not covered by QA standards
contained in Section 2.4. Treated are such areas as (1) procedures for an
audit of the complete software package for conformance to standards, as
well as conformance of code to procedural specifications, procedural
specifications.. to functional specifications, functional specification to
requirements, test results to test specifications, and perfoe-mance to
requii.-Monts; (2) participation in design reviews.; (3) standards enforce-
ment.; (4) configuration control; (5) discrepancy reporting; (6) change
control; and (7) test conducting.

.0•

F

Appendix .E 291

7. APPENDICES

Appendices may include, but are not limited to, explanatory material of
an auxiliary nature, inserted directly or bound separately for convenience.
The following topics are typical. Appendices may be designated as
"Appendix. A," etc., if desired, rather than by the Dewey-decimal system
given here.

7.1 Glossary

List the names of the program, all subprograms and subroutines, and all
variables and parameters used in program design, along with their
mnemonic derivation. Also give short definitions of each and a. reference to
its detailed definition, when necessary. Include all acronyms, as well as
frequently used, unfamiliar terms used in the program subsystem/system
descriptions.

7.2 Listing of Source Documents and References
Provide a list. of all source documents, standards, procedures, and

reference material used for program design, implementation, and testing.
Indicate the subject matter and purpose of each reference,

7,3. Program Analyses
Provide analyses of algorithms, program functions, tuning profile

diagrams, etc., as appropriate in support of design decisions made during
implementation.

7.4 Sharable Subroutine Identification

Identify software items developed that have sharing potential, either as
common software in other subsystems currently being developed or as
candidates for use in future implementations,

7.5 Provisions for Future Modification

Identify those features of the program that will potentially be upgraded
or modified in later versions, Describe provisions, if any, that have been
made to facilitate those alterations, and give guidelines how such
alterations can be installed into the .program.

7.6 Error Message and Diagnostics

Provide a listing of all error messages, the conditions that invoke each,
and the reason why such conditions are improper (if not obvious from the
message).

rte,

d

f

li

292	 Appendix E s {

I

7;7 Detailed Fbrynets

7.7.1 Detailed Control. /Response Message Formats

Provide detailed formats for each control message; together with. the
response(s) to that message as supplementary material to Section 4.4.1.

7:7,2 Detailed Data Input/Output Formats

Provide detailed formats for data inputs and outputs, together with the
associated response(s) as supplementary material to Section 4,4.2.

7.1.3 Data-.Base Input/Output Formats

Provide detailed formats for each external data base or file used to input
data to or accept data from the program when appropriate. Identify each
format with the corresponding data storage device listed in Section 3.2.7.
Include descriptive data, such as: (1) number of characters per file record,
(2) file data format, (3) number of file records, (4) special end-of-record
marks, (5) special end-of-file marks, as . appropriate.

7.7.3.1 Data-Base Input/Output Parameters

For the mass-stora a devices listed in 3.2.7, define input/output
parameters, such as: (1ti structure and format; (2) syntax; (3) lengths and
frequency; (4) device assignment by message; (5) special features such as
access keys, passwords, or lockout keys; (8) special timing constraints; (7)
special considerations such as online vs. offiine operation; (8) data units and
ranges.

7.7.3.2 Data Base Storage Device Data Control Characteristics

Define the characteristics of data control parameters, associated with the
data, such as: (1) verification codes, (2) index tables, (3) list structures.

7,7.4 Communications Line Input/Output Formats

Provide detailed structure and format of all data blocks to be input from
or output to data communicatior circuits, except for data lines to/from
operator-control devices covered above. Reference applicable documents

. (7,2) where appropriate:

7.8 Auxiliary Tables

7.8.i Detailed Design Tables

Assemble in tabular form all auxiliary reference data needed for program
specification, which is better located in an appendix rather than in the text
proper: Display each of these as a separate subsection, 7.8J.

:x

Appendix E 293

7.9 Special Maintmnce Procedures:

Identify any special supporting software, documents; procedures, etc.,
used for maintaining the program, such as for debugging, testing,
verification, QA, automatic redocumentation, etc, Give detailed proce-
dures, guidelines, or hints for maintaining the program, as appropriate.
Such procedures, if extensive, however, may well form a separate
Maintenance Manual, in which case, only a citation to the proper reference
in 7.2, above, need appear. See Appendix K for a detailed set of topics.

7.10 Decision Log

Enter and discuss each of the major design decisions that may affect
programirn sustaining and maintenance.

7.11 Unkage Editor and Job Control Code

Describe the detailed linkage-edit code, job-contra; code, or map
processin;, necessary to collect, load, and execute the program. If
maintenance procedures require altering this code, instruct the reader how
such changes are to be made,

at

8. CODE LISTINGS
The code listings form the final part of the "as-built" software

specification. For large programs the listings will form a separate volume.

I

f
t
i

I

Ok

APPENDIX F

USED INSTRUCTION MANUAL TOPICS

i
This appendix contains an outline of topics typically considered for

inclusion in a software user's manual. The items listed are not exhaustive,
nor are all of those given necessarily applicable to a particular given user
guide. Rather, the topics herein contained are those that should be
considered as candidates for inclusion in a user guide for a specific
application. The demands and needs of users, as well as the type and cost of
software capability being exposed, should dictate the level of detail, the
arrangement of the material, the orientation of the presentation, and the
scope of the content. The outline below is an attempt at providing a
logically and hierarchically arranged. checklist.

This text has repeatedly recommended that the user manual be written at
least in a skeletal form from the top down (in detail hierarchy) concurrently
with the writing of the SSD, hierarchy and with the construction of the
program, so as to provide timely information among developers, to permit
the user manual to be tested concurrently with the program, and to avoid
last-minute efforts to complete the documentation prior to software
delivery. The emphasis in writing the user manual is on providing complete
and effective information for exercising all of the .options and capabilities of
the program. The timely gathering of information and writing technical
material for the manual, however, must not be put in series with the
formal, more clerical aspects (such as typing and reproduction) of a
documentation activity.

As the program construction proceeds in a top-down manner, usage
information in greater and greater detail typically becomes available. If
compiled and written into the user guide during this time, the information
level will tend to aid in assessing whether the emerging program falls
within its required capabilities implemented so far.

"i

i

.a

.l
1

296 Appendix F

Figure F-1 is a top-level view of the suggested document organization;
greater hierarchic detail is provided in the written outline that follows. This
outline contains guidelines after each topical heading for the type of
material to be inserted at that point. In full; the topics constitute Class A
detail.

The users of the program assumed in this outline are not envisioned to be
the operators of the program. The user determines the feasibility of the
program to fulfill his needs, generates or prepares data (or causes it to be
prepared), submits it for operations (either conversationally, interactively,
or in batch), and uses (interprets) the output, if any, for an intended task.
(In some cases, such as where a user causes a data base to be updated, that
output may not be immediate, and may not even be a result of operating
the program being described; in other cases, the task may be the gaining of
insight into a prr blem.)

A topical outline for the operational manual appears in Appendix T. In
cases where it is desirable to combine both user and operator functions into
a single manual, the outlines can be merged appropriately.

Sources for the material contained herein are [44] and [45).

a^s

a

N
V

Figure F-7. Graphical outline of the User Instruction Umival

r

k

298 Appendix F

USER INSTRUCTION MANUAL

Detailed Table of Contents

FRONT MATTER

Title Page. Provide a. title page containing (1) document number.; (2) USER
MANUAL; (3) program, subsystem., and system titles; (4) the publication
date; (5) author and management authority signatures, as appropriate; and
(6) releasing organization. Signature or publication approval should be
supplied only at SSD completion. The date reflects the time of latest
change to any item .in the manual.
Abstract. Give a brief abstract that summarizes the purpose and usage of
the manual;

Change Control Information. Provide a statement that specifies the
current level of change control authority and describe procedures for
submitting change requests and reporting anomalies.
Distribution Information. Provide information that tells how copies of this
document may he obtained.
Table of Contents. Provide a detailed table of contents for the manual,
which lists section number, title, and page of every item with a heading
(this is probably the last supplied item in generating the manual).

TEXT OF MANUAL

1. INTRODUCTION

1.1 General Description of the Program and its Use
Provide a brief statement that describes the purpose and use of the

program. Perhaps also appropriate in this introduction are Background
information, history, relationships to other programs or systems, and major
applications areas.

1.2 Orientation and Scope

Identify the intended readers of this manual, their backgrounds, their
assumed levels of data-processing expertise, and the extent to which the

r

Appendix F 299

content of this manual is self.-contained: Describe the scope of the manual
as it pertains to the usage of the program and its products. identify any
significant limitations of the program in applications.

1.3 Applicable Documents

Identify all documents, controlling or informational, that apply to or
regulate the usage of the program.

1A Program Overview

Provide a brief functional description of the program and its intended
usage, including the nature of the problem it solves, the philosophy and
method of solution, and the type and content of data input, processed;
generated, or transmitted. iden4j the usage characteristics of the program;
such as: (1) major applications; (2) real-time, interactive, or batch; (3)

-computational or . data manipulation; (4) developmental or operational.
Identify the general system, subsystem, and environment (hardware and
software) in which the program operates (a block diagram is useful here)
insofar as these considerations affect usage of the program; leave details to
Section 3.

1.5 Guide to the Use of the Manual

Explain how this guide is to ^:ie used in applications.

2. STANDARDS AND CONVENTIONS

This section describes the standards imposed on or by the using
organization, and the conventions (e.g:; notations and terminology) applied
in this manual.

2.1 User Organization Standards

Identify or reference applicable existing organizational usage standards,
state any exceptions to these standards necessitated by the usage of this

program, and provide any special standards required to use the program

effectively,

2.2 Operations Interface Standards

Identify or reference existing standards that apply to the user/ operations
interface, state any exceptions to these . standards (negotiated as required for
operation of this program), and provide any special standards required for
users to interface properly with operations.

2.3 Manual Conventions

Define notations, terms, and. other conventions or assumptions used
generally throughout the manual. Include such items as ways of

i

300 Appendix F

distinguishing literal fields from	 tactic variables in descriptions of inputtm g	 ^	 p	 p
and output formats, means for differentiating user inputs from outputs in
examples of interactive operations, non-standard mathematical usage,
special acronyms, etc.

3. USER. ENVIRONMENT AND INTERFACES

3.1 Data Flaw
Describe data sources and sinks, the flow of data from sources to sinks,

and the role the program plays in this flow. Identify operations, systems,
library and support interfaces, and. describe their role as seen by the user. A
diagram may be useful for illustrative purposes here.

3.2 User Environment

Introduce the general environment within which the user interfaces with .
the program.. Identify haterfaces among users (if any), location of users, their
sources of data, the media through which they prepare data, submit runs,
and receive output, their manual tasks, relationships among data in the user
environment, etc. Describe user interfaces with management, if appropri-
ate. Defer user, procedures, specific formats, units, etc., until later sections.

33 Operational Interfaces

Identify and describe the interfaces between the program user and the
program operational environment, Discuss, as appropriate: forms, input
media, control media, interfacing procedures, data generation methods,
storage media, modes of delivery of output to users, manual tasks, etc.
Identify those items that are unique to this program. and not covered by an
overall system description or governing document (if this manual need not
be self-contained'). Defer operational procedures, formats, units, etc., to the
operational manual (Appendix T), unless user and operational guides are
combined in one manual.

34 Data Base .and Library Interfaces

3.4.1 Data Base Interfaces

Describe all data files in the data base that are referenced, supported, or
kept current by the program, insofar as these . are visible .to users of the
program. Include the purpose of each such file, but defer detailed formats
(if necessary for use) to an appropriate appendix, If there are offline or
.manually maintained parts of the data base that are pertinent to the usage
of this program, similarly describe these .elements:

. ar

A,

,r]

t

Appendix F 301

i
3.4.2 Library Interfaces

Describe any appropriate user interactions or interfaces with document
libraries; software (program; subprogram) libraries; or oftline storage
libraries other than those described in the operational interfaces above.
Reference source documents for data preparation and editing aids, output
data manitor and diagnostic aff, - etc., as Applicable..

4. FEATURES OF THE PROGRAM

This entire section docume=nts the end-to-end functional characteristics
and usage of the program, ti7 a level of detail sufficient for stand-alone
reference. This section should describe each functional capability and
option of the program fully, giving examples of each, annotated and
explained. Usage of graphic material in explanations is encouraged.

4..1 Functional Overview and Capabilities
Prior to detailed usage characteristics in the other subsections of this

section. , present an overview of .program capability. Typical cove' rage at
this point might address the stricture, 1/0 and data flow, fuctional
categories; range of applications, major operating modes; program,
configurations, utility factors, security / protection measures, etc., as seen
from..the user viewpoint. if graphics are used, support each with narrative
explanations.

42 Input, Actions, and Output

Describe each. feature of the program, as visible or of interest tr the user:,
in sufficient detail that the user may apply the procedures for use contained
in Section 5. Correspond features or combinations of features of the
program to applications as necessary, and describe the options that may be
excerised in each case. Cite and illustrate the advantages to be gained
through use of these features in applications. ('Input, processing, and output
characteristics pertinent. to usage will normally be integrated together in :3
narrative fashion, feature by feature. However, the outline below is
segmented into three separate subsections so as to delineate specific items
for discussion:)

4.2.1 Input Characteristics

Define the requirements of collecting and . preparing user input data,
parameters, and controls. Typical considerations are: (1) purpose or
conditions-e.g., to :make needed revisions to data base; (2) frequency—
periodically, randomly, or as a function of an operational situation; (3)
origin—network operations, program office., :budget data .base; spacecraft
sensor, etc.; (4) accuracy required. for meaningful output; (5) medium—
punched card, manual keyboard, magnetic tape; (6) restrictions—amount of

^T'7c •^TrxC'if.:	̂ ^htr 4'^4'Jp.^,̂ e.!;,.xe'A-.^T^+•'br..—	 -.-`"T:w.ror+^	 ...,.,....	 -. >	 .,	E..	 . ,3.^r. -	 . , v...,-.>_rov:..rr^^.+ea.,rseeo.rn^ <s--^

r

302 Appendix F

data, priority, use authorization, security limitations; M quality control--
instructions for checking reasonableness of input data, actions to be taken
when data appears to be received in error; documentation of errors, etc.; (8)
disposition—instructions for retention, release, or distribution of input data
received.

4.2.1.1 Input Format

Provide the layout. forms and syntax as necessary. Include a description of
each entry, with adequate .grammatical rules and .conventions used in .each
case. Distinguish literal input from syntactic variable identifiers. Typical
considerations include- (1) length, as characters/line or characters/ item; (2)
format, as for example; left justified :ree4orm with spaces between items;
(3) labels, tags, or identifiers; (4) sequence, or the order of placement of
items in the input; (5) punctuation, or use of spacing and symbols to denote,
start and end of input, of lines, of data groups; of items, etc.; (8) rules
governing the use of groups of particular characters or combinations of
parameters in an input; (7) the vocabulary of allowable combinations or
codes that must be used to identify or compose input items; (S) units and
conversion factors; (9) optional elements and repeated elements; (14)
controls, such as headers or trailers.

4.2:1.2 Sample Inputs

Provide specimens of each type of complete input form. Such specimens
should include; as applicable. (1) control or other header information

j	 denoting class or type, date and time origin, or function codes; (2) text or
other input data to be processed by the program; (s) trailer, denoting the

! end of input and other control data; (4) indication of omissions, i.e,, classes
or types of data that may be omitted, or are optional; (S) indication of
repeated data, i.e., classes or types of data that may he repeated; and the
extent of such repetition.

4:2.2 Processing Characteristics

Describe the processing performed, including, as pertinent; (1)
transformations, manipulations, and .reductions on data; (2) accuracy or
precision in computations; (3) sequences of actions; (4) logical concepts•, (a)
error checks and diagnostics (6) :provisions for recovery; (7) controls and
options; (8) applications restrictions;

4.2.3 Output Characteristics

.Describe each of the output forms or other program responses to the
user in sufficient detail for his effective interpretation in stated applications.
Typical considerations include. (1) use—by whom and for what purposes;

.	 (2) frequency'-weekly; periodically, or on demand; (3) variations--
a_	 modifications that may appear on the basic outputi (4) .destination—which

L

,01

f

Appendix F 303

f

users or work area; (5) medium—printout, punched cards, CAT display; (6).
quality control—instructions for identification, Checks for reasonableness,
authorization to edit or correct errors; (7) disposition—instructions for
retention or release;. distribution, transmission, priority, security handling,
and privacy considerations.

4,2.11 Output Formats

Provide a layout of each. user-pertinent output, with explanatory material
keyed to the particular parts of the format illustrated. Include (1) Header—
title, identification, date, number of output parts, etc.; (2) body—
information that appears in the body or text of the output, columnar
headings in tabular displays; and record layouts in machine readable
outputs, noting which items may be omitted or repeated; (3) units and
conversion factors for numeric fields; (4) legends for abbreviated data; (S)
accuracy.; (6) trailer—summary totals, end-of.-output labels, etc.

4.2.3.2 Sample Outputs

Provide illustrative examples of each type of output. In each case discuss
(1) the meaning and use of control data applied,• (2) the source and
characteristics of the data processed; (3) pertinent facts about the
calculations made by the software; (4) characteristics, such as the presence
or absense of items under certain other conditions of the output generation;
other -rariges of input values, or different units of measure.

4;3 Use of the Program

Explain hoV=,., the program and its features are to be applied over its
spectrum of applications. Give selection criteria and specific, graphic
examples that match the program inputs, actions, and outputs to their
intendedinterpretations. Describe any human post-processing of the
presented output which may be required for effective use . of. the program.
State what inferences one may draw from output data, if any.

The intent of this infomation is to give the reader sufficient insight to
judge whether the program: applies to aparticular problem; if it does, then
this information should tell how to make the data into and out of the.
program correspond with the parameters and facts concerning his
application:

4.4 Perfornrtance CharacterMcs

Describe the . performance characteristics of interest to the user,
including, where appropriate;. (1) .quantity . . of input and . output;. (2)
throughput rate; (3. ') accuracy; (4) cost of service;

{5}.
turn-around. time; (6)

reliability; (7) flexibility; (3) quality of service.

,*W

s

K

i

{

t

304 Appendix I±

4.5 Security and Privacy
Describe security and privacy measures implemented in the program that

restrict its usage or guard data integrity via authorization keys, priorities,
protocols, etc. Instruct the user what features are operative within the
several authorization levels, and identify penalties for inadvertent or
malicious i isuse. Provide warning and cautionary information, if
applicable.

& PROCEDURES FOR USE

This section describes how to prepare data or instructions to operations
in order to apply the program to problems it can handle, or to achieve a
desired processing and output. The material delineating input, run, output,
and other procedures below can be integrated together to enhance
readability, if appropriate, and, perhaps, integrated with the material of
Section. 4 :as well,, to match the feature descriptions with the procedures for
their use.

5.1 Initiation and Protocols

Describe the user/ :operations protocols necessary to initiate a run; submit
input, and receive output. Discuss, as appropriate: (1) opening a computer
work order; (2) assignment and use of passwords and account codes; (3)
authorization to use system and-/or data base files; (4) assignment of
permanent private files; (5) instructions for pickup or delivery of I10
material and running the program; (6) differences between interactive and
batch protocols; etc.

5.2 Preparation of Input

Describe the procedures for .gathering input data and putting it in the
format required for running the program. Such procedures might include:
(1) the method of extracting data from source documents or files; (2) usage
of data preparation and editing aids or other software; (3) usage of special
services, such as keypunch operators; (4) a checklist to determine rapidly if
everything has been done; .(5) special considerations for alternative input
media.; (B) special considerations for batch vs, interactive operation; etc.

.5.3 Run Procedures

If processing requires or .permits interaction or monitoring by the user,
provide instructions for terminal operations: Describe {1} terminal setup or
connect. procedures, e.g., log-on; (2.) loading and: start up procedures; (3)
data or parameter input procedures; (4) control instructions;

.
(5) magnetic

;.

I;

r

=F

5

^r.

•.	 -	 ^2Fm...-.fXB.YTLMSi-e11mms^.oa:`T.rAM
-' —aeaaarsr^.^Ta*i _.^?w!fpCpSdSJl'XS".}^+'P.L^SL^.^C-^±'"^0^1PRCt.I':3Y!.'nf2Av

{

	
i+

r
	 Appendix F 30.5

tape operational procedures; (6) cassette tape device operation; (7) run
interruption/recovery; (8) run abortion; (9) special terminal devices; e.g.,

totters (1t}) indications of anomalous behavior and corrective actions • (11)p,
start, restart, and other precautions; etc.

5.4 Output Handling

Describe applicable policies and/or procedures within the user
environment for handling, disposing; dissemination, and routing of the
various forms of output; for storage or archiving of output items for their
later retrieval; for status reporting based on output parameters; for
extraction and summarizing of information; for audits. or other inspections
of the output data, deadlines, etc.

6.6 Restrictions on Use

Identify and explain exceptions and restrictions in the procedures for
preparing input, using the program, or handling the output. Such,:material
might: address (1) limited availability of source data; (2) security
considerations; (3) processing cost vs. time of day. limitations; (4)
restrictions on amount of input or output; (5) accuracy; etc. The
restrictions and exceptions discussed .here are restrictions in usage
procedures; rather than in the program applications.

6.6 Error Handling and Recovery procedures

If not adequately covered in other parts of the manual, describe (1)
r: detection procedures for anomalous output data; (2) meanings of error

messages, codes, or indicators; (3) prescribed corrective actions by the user;
(4) procedures for correcting input errors_, for restart/recovery, for
reporting of anomalous behavior, etc.

6. THEORY OF APPLICATIONS

In some cases a short section revealing salient aspects of the program
model is an advantage in being able to use the program In such cases,
describe in this section the theory required for effective use of. the program.

6.1 The Program Model
If the program reflects a real-world situation implemented via a

parameterized. software model, describe the model, the assumptions
necessary for model validity, the correspondence between program
parameters and real-world values, the pertinent differences between the
model and actuality, and comparisons with other models or programs.

E.
r:

306 Appendix F	 j

I
6.2 Algorithm Analysls

If the actual programmed procedure or sequence of steps executed by the
program influences effective application of the program, discuss the
pertinent details of the algorithms involved. Such an analysis might address
program /user interaction and sequence of operations for the various
operating modes, accuracy of steps, non-convergence in unusual cases,
circumstances under which the program runs inefficiently or requires large
allocations of storage, circumstance under which processing is very
efficient, etc.

6.3 Extensions and 1..lrnitatlons

If the program. model or algorithms have sufficient generality for later
extension to wider applications, or for modification to new application
areas, and these qualities influence the way the program is used or chosen
for an application, they can be described in this section. If there are
limitations in the model or program algorithm that limit the applicability
of the program, and which may., perhaps; cause the user to analyze the
particular circumstances of his application as a result, then these
restrictions can be similarly discussed.

7. APPENDICES

Appended material may include, but are not limited to, explanatory
material and-references of an auxiliary nature; inserted directly or hound
separately for convenience. The following suggested topics are typical.
Appendices may be designated as "Appendix A,." etc:, if desired, rather than
by the Dewey-decimal system given -here.

7.1 Glossary

Give a list of mnemonics, acronyms, and unfamiliar or specially used
terms appearing in the .manual; provide definitions for each.

7.2 References
Provide a bibliography of references to other documents appearing in

this manual. For each; include a brief statement indicating the nature of the
G	 subject matter and purpose of the reference.

7.3 Input and Output Formats
Provide detailed formats and syntax for data inputs and outputs, together

with associated response(s) as supplementary material to Section 4,2.
Define, as appropriate: (1) data base 1 :/O formats, parameters, and control

{^'j

i.

a	 .. , - ' ,tamtasat^^i'âcQiu%^^a-^a9.^!-s^i.^.anan•-^:er.^.ne-^±esry

Appendix F 307

characteristics; (2) communications device 1/0 formats, parameters, and
control characteristics; etc,

7.4 Auxiliary Tables
Assemble in tabular form. auxiliary reference material needed for

program usage that is better located in an appendix rather than in the text
proper. Display each table in a separate subsection, 7.3.i, and introduce or
explain the use of each table narratively.

7.5 Summary. of Features

Provide an abbreviated description of each of the program features for
the knowledgeable user, This summary should be devoid of tutorial
explanations, containing, instead, only technical descriptions or definitive
examples for quick reference.

7.6 Detailed Examples

Display the usage of the .program via sample runs from beginning to end:
Show all: input, indicate all interactions in timely sequence, and display all
output. Give examples of normal and abnormal. runs, and illustrate the
procedures followed in each case.

Jf{+

r

f" File "ar

•a"^+^
PAGE '^

APPENDIX G
i

e CRISP SYNTAX AND STRUCTURES

Chapter 7 introduced a family of languages based on a common set of
control structures called CRISP. The principal use of CRISP in this text has
been to illustrate the isomorphism between. CRISP structures and flowchart
topologies, the use of a procedural design and description language that is
not keyed to a specific coding language, and the natural conversion of these
program descriptions into, perhaps, unstructured coding languages.

This appendix contains a fiknetional description for three types of CRISP
processors: CRISP-PDL, the design and documentation aid; CRISPFLOW,
a graphic aid that flowcharts program algorithms; and CRISP translators,
which overlay such unstructured coding languages as FORTRAN or
assembly language and promote the one-to-one correspondence between
design and code via commonality of syntax and foram,

I have chosen to pattern this description in. the form of a Software
Functional Specification, using Appendix E as a guide for topical material.
Front matter and such sections that are non-applicable have been omitted.
To limit space, all of the Programming Specifications and Test
Specifications normally found in an SSD have been eliminated from this
appendix. Even the functional: specifications that do appear admittedly lack
concreteness and detail in certain particulars.

This appendix; as it stands, then, should be viewed as preliminary and
embryonic in the development of a CRISP system. Neverthless; the format,
content, and level of the document are probably sufficient for the purpose
of this text, both to define most of CRISP and to illustrate what an SSD
might typically look like during the software development process. Other
examples of SSDs appear in Appendix L.

309

:,t^^

310 Appendix G

CRISP
SOFTWARE SPECIFICATION

DOCUMENT

1. INTRODUCTION

1.1 Purpose of this Specification.

CRISP is a set of Control Restrictive Instructions for Structured
Programming, It consists of a few forms that conform program control flow
into structured designs. Programmers using a CRISP system document their
designs and write code using the most appropriate languages available,
except for statements governing program control flow. CRISP statements
are used in lieu of the control statements of the language being used.

CRISPFLOW is a form of CRISP that turns CRISP documentation into
structured. flowcharts. CRISP-PD.L is a program design and. documentation
tool that allows all but CRISP syntax to be freely chosen (usually
abbreviated English), and has as its output cosmetized indented listings;
identifier cross-references, a tier chart, a glossary, a table of contents, stub
status reports, and a statistical usage summary, Other CRISP processors
governed by this specification translate input statements into an arbitrary
given target language, with execution monitors inserted automatically when
desired for correctness testing.

This specification sets forth the syntax and semantics of the CRISP forms;
it is the controlling standard for all processors implemented in the CrUSP
family,

1.2 Scope of Applicability
This document specifies functionally that part of CRISP which covers the

basic control structures (sequence, alternative selection, looping, and
procedure linkages) and .miscellaneous features such as macros, line
continuation, paranormal exits, comments, and end of processing. This
specification does not. cover nor preclude possible subsets; supersets, or
other options that may be implemented into a specific processor. However.,
all processors using the CRISP title must use features strictly in
conformance with the minimum standards herein contained. The CRISP
forms described here are implementation independent; neither syntax nor
semantic value may be altered -to benefit a specific processor design.

Section 2 of this specification contains standards and conventions used in
this SSD. Section 3 discusses environmental and interface assumptionS.

_W11

r

sawTr.2r^srm^tf4—s•rerY...s. ^mu!^ve ...^vmas^-.^.......w.__.^_.^_—	 _^-'^f	 ..

r.

R1?k4'Y..(1. ^..3l^lisl5.4:JA;:.^®M; ^'i^^ . :1.'Y^5 - ^.. c^•ia' P.t?^.^^..P,':..w^ .AYJK:E.^'r.i ..^1^ _^!^!"^'^y':rtn_̂.^_„

Appendix C 311

Section 4 forms the main body of functional specifications for CRISP.
Sections 5 and 6 have been omitted as .being implementation oriented; and
Section 7 contains appended material relative to the functional behavior of
CRISP only.

1.3 System/Subsystem Overview
Inasmuch as the features described in this document are meant to be

machine and software-system independent, the programming and opera-
tional environment for .CRISP are assumed to conform to a broad, generally
non-restrictive set of standards. The assumptions that appear explicitly and
implicitly herein have been made chiefly to foster the readability of this
document rather than to set system requirements for an implementation.
Envitronmental characteristics substantially differing from assumptions
herein stated are permitted to govern so long as they do not lead to
conflicts with syntactic and semantic specifications set forth in this
document, nor produce viewable outputs with significant variations from
those formats specified. Further details appear in Section 3.

1.4 General Description of CRISP

The quality of a computer program can often be significantly influenced.
by the design medium in which that program is developed, embryonically
and evolutionarily, from the ideas that permeate the programmer's mind to
the completed programming specification. The medium must foster the
expression of such ideas easily and quickly (sometimes before they fade
from memory), and must permit flexible and facile alterations, additions,
and deletions to these ideas as the design evolves. Moreover, the expression
of the design should be as graphic as a "picture of the program"—yet not
be the program, nor constrained by the syntax .of a computer language: At
the final evolutionary stage, such descriptions should form the principal
program design documentation.

A ".program design language". or "procedural description language" is a
formalized embodiment of such design aids, and can take many forms.
Probably the most familiar form is flowcharting. This specification
describes a procedure-oriented language type and processors for it, which
result in program specifications and code that can appear much like
flowcharts. Moreover, if 'proper attention has been paid to certain
limitations, the CRISP statements can be flowcharted directly, using
CRISPFLOW as described in Section 4.2.2.

A program design in CRISP=FDL consists of short, English textual
descriptions of data manipulations, operations, and functions imbedded
within structured CRISP control-logic syntax, The output listing of CRISP-
PDL displays the program: as modules of hierarchically refined: algorithms

E

t

312 Appendix G

cosmetically formatted into 2-dimensional, flowchart-like segments. There
is no restriction on the use of the English textual material; only on the
usages of the program control logic, that must adhere to certain syntactic
rules (to be further described later in this document).

CRISP translators access sequential source records and replace
recognized control-logic statements by equivalent target language code that
performs the specified control flow. Although the programming specifica-
tion is not part of this document, it may he useful for the reader to envision
this translation process in the form of macros invoked by the CRISP
statements; each target language has: its own set of "plug in" macro bodies
specifically tailored to that language. Descriptions of the STAGE-2 general
purpose macro processor (References 7.2.1 and 7.2.2) contain enlightening
information regarding the use of such. replaceable macro forms in portable
programming applications. Alternatively, CRISP may form the control
sublanguage of a fully compiled language.

CRISP preempts all control statements from a base language and
substitutes forms that force programs to be structured in control. However,
this specification does not require that CRISP-preprocessors analyze non-
CRISP statements syntactically; hence, usage of non-CRISP control forms
are not prohibited by this specification (but neither are they encouraged).

Programmers may thus construct code using statements from a
background, or base language, such as, perhaps, FORTRAN or Assembly
Language, except for statements that govern the flow of control (branching,
looping, etc.). Such control is accomplished by the use of statements as
specified in this document.

The source program thus ' consists of a mixture of CRISP control-
structure statements and base-language code. A preprocessor for such a
source program would then translate or otherwise process only those
CRISP constructs back into the equivalent base-language-coded structures
for compilation. Base-language statements would be .passed to the compiler
directly (possibly with some format adjustment).

All functions herein described make no assumptions relative to whether
the CRISP processors are real-time; interactive, or batch operated. The
processors are assumed, however, to be solely data manipulative, with
reasonable restrictions on throughput rate and efficiency, and are not
restricted to single-pass translation..

Translators may be preprocessors for a given base lanlniage, such as
FORTRAN, BASIC, or Assembly Language, or may be full compilers for
languages with CRISP as the control sublanguage:.

r
	

Appendix G 313

2. STANDARDS AND CONVENTIONS

F
This section describes standards and conventions used in this SSD to

describe the external characteristics of CRISP.
i

2.1 Specification Standards and Conventions

Flowcharts drawn by CRISPFLOW and illustrated in this SSD adhere to
ANSI standards ('Reference 7.2;3) as augmented fir 'fnteipreted to fill: the
needs of structured programming, as put forth' in Reference 7.2.4. As a
further convention, binary decision .boxes on flowcharts show the true
flowline leaving on the left, false on the right. Ivl"uld e-decision symbols
have the results displayed in case-order from the left. These conventions
Make top-down-left=to-right flowchart scanning correspond to top-down.

E

	 readability of the CRISP code structures.

I	 Italicized lower -case identifiers in SecV:on 4. of this document identify
syntactic variables, for which a substitution must be made. Subscripts may
appear on syntactic variables to ,distinguish multiple usages of the same
type. Square brackets,], enclose optional fields. The syntactic variable
types are listed below:

comment: string of characters not containing ".>"

date: string, presumed to be date

dewey: decimalized module identification number

event: interrupt label

eventlist. list of events

expression: target syntax numeric expression

(name: function name; target syntax

identifier. alp hanumerie, possibly with periods and underscores

index: target syntax discrete=valued variable-

integer positive integer, no decimal. point or sign	 F
label: ABORT transfer .point

moduleender: keyword ending a module
l

moduleheader. keyword and name beginning a module

name: procedure nacre, arbitrary string

pname: program name, perhaps in target syntax 	
k

predicate: boolean-valued expression in target syntax

statement:. CRISP or base-language statement

al

mot.,

314	 Appendix .G..

string: arbitrary string of characters

s. tructure- body of CRISP and base4anguage.statemOots

3

subname: subroutine name, target syntax

template: macro name, string with escape identifiers

valuer value of index or oljTmms variables

-	 xsubname: external subroutine name; target . s
yn

tax	 i'I I

Procedural	 specification. standards	 are	 to 'be	 supplied	 prior.	to
_ commencement of the design activity.

_	 aI2.2' Programming1 Standards

Programming standards are not addressed by.. this specification. To be
supplied prior to commencement of coding.:

- 2.3 Test and VerMotion Standards

Test and verification standards are not covered by this specifleation:.To
?

be supplied prior to commencement of coding

2A Quality Assurance .St ndardb

A standards are not covered.b this specification. To be su 	 lied prior4	 y	 p	 PP'	 P'
to commencement of coding,

3 ENVIRONMENT AND .INTERFACi=S

M System/SubOystern Description

j As discussed earlier (Section 1.3); these CRISP specifications are very
k general with respect to , the. system environment. There are; thus, no

applicable system/subsystem documents. Interfaces: between the CRISP
user and operations are also .undogned by this specification; The user is,
therefore; assumed .to be responsible for the: generation and preparation of
source materials and for the following of. standard procedures and protocols
operative within the computation facility Hosting the CRISP system.

Even though . this CRISP specification is shielded from the operating
system and hardware, certain assumptions about input, output, and storage
media are necessary. The characteristics of these media and the constraints,
they impose on the program are discussed in Section. 3.2, below. Interfaces
with supporting >prograrns are .discussed in Section 3.4..

3.2 Hardware CharacterisUes and Constraints	 y

The hardware functional .characteristics, displayed:.graphically in Figure 	 €
3.21., include:

9

.i

r	 -

Appendix G	 315

O A program cord allocation
• A control4hput medium (optional in this specification)

0 A scratch-file capability

•: A diagnostic output display medium

0 An output -listing device or display.

•Target code output medium (for CRISP: translators)

6 Sufficient memory for tables and: kists

a Plotting capability

Constraints imposed on the hardware by this specific. cation are (1) that
these media be available in a form judged to be suitable for the particular
implementation; .(2)" that the. amount of storage:.needed for such things as E

cross-referencing of identifiers, tier chart, table of contents, glossary, mac.o I
translation, etc.; be. sufficient that programs. of significant size be.
acepmmodateds Information relative to: these limitations may be deter-
mined separately for each implementation':

For the purposes of visualizing CRISP specifications, the . reader may find
it useful to envision these media assigned as follows: The source input !
comesfrom disk files named by the control-data input device, an
interactive demand terminal, from which the other program options can
also hu input.. The program. scratch: files are disk files, and the output
medium is the system line printer. Diagnostics and monitor data appear at
the user terminal, The .CRiSPFLOW plotter draws straight lines .between
points specified, and lines may be output in random order. The operating
mode: is either online: or batch; demand or queued; and operates as, a
sequential program:

3.3 Software Environment

The software required for CRISP consists of an unspecified language
l compiler or compilers suitable to implement and maintain the source

.	 processing. tasks described in Section 4 and to manipulate properly the
media in Section .3:2, above. In addition; text-editing ,and debug facilities
are :required for program developments using CRISP. No standards are If
hereby set by this document for these tools.

I 3.4 Interface Characteristics

Interface characteristics between CRISP`processors.and the system shall
ti

.	 be defined by standards and protocols imposed by 'or negotiated with .the
fl operatin8 environment. CRISP source.media,;however, sha, U . be compatible
{ as follows: Alt CRISP source data shall be accessible by CRISP- y.LJL and

- i

vs

Flowchart
Plotter scratch. ft

Overlay,
etc. CosmetizedMass
storage Reinput

soump
Program
Medium

Storage

CFtlSP
Target

Code
• Translator Medium
• Flo=harter
• Text Processing

Monitor/
Control Diagnostic
Data Medium
Medium

Cosmetized

List Listing

Storage Device

3241lw Hardw	 functions
I chMct9,jsVcs assumed for'Me CRISP	 stem

Figure

IL

Appendix G 317

CRISPIFLOW,	 for processing. That is, all source data can be processed by
CRISP-PDL for Indenting,. cross-r6ferencing

i etc., and. flowcharts can be
generated from oil fo.ms of source input, as well (provided cam is taken to
assure that the amount oftext and numbers of boxes do not yield flowcharts.
beyond read.a.bleRWIts).

4. CRISP FUNMONAL SP9CIFICAMONS

4.1 fthetlanal Organizadbri and OvervibW

The discussion of the CRISP system will apply to CRISP4DL,

'each.CRISPFLOW,. and CRISP translators. The syntax of statements for 	 is
the same, but the output Varies according to -the particular processor used..
The CRISP editor is not covered by this specification.

Exce	 for comments.. CRISP constructions are keyword. actuated.. ThatPt
is, :the Arst symbol or symbols on each line uniquely identify whether a
source statement

is

a CRISP form or belongs to the base language; Such
keywerds Identify the beginnings of structures and substructures, linkages to,
other structures, or the end of structures. or substructures,

Because the CRISP statements %re keyword actuated, it is necessary that

statements in the base language not begin with these keywords. CRISP
structures can conceptually.be . iterated and neste.d. to. any desired level to
produce the intended program. However, flowcharting or the use of
indentation to identify levels of testing and to promote readability tencls to
limit how many levels can actually be accommodated as a practical matter.,
This

specifiPation. does not limit the maximum number of lievels. The
minimum number of levels that CRISP-PDL and CRISPFLOW can
accommodate must be no liessthan 10.

Iwarriving at the structures and syntax herein contained a number of
concerns -have been expressed and evaluated relative to alternatives within
the purview of this specificatiorL. Some of the criteria that . shaped this
specification are listed. below.

These criteria led td the selection of.. imperative-forin verbs for naming
actions to be taken, possibly Modified . by . conjunctives, (IF, UNLESS, WAILE,
UNTIO. AlternatiVe-selection structures are introduced by predicat.e^
conjunctives (iF, lin c. AsE-). Almost all ' structures. that introduce a level of
nesting of statements. within that structure conclude.wft

.
h an approp . riate

ENDXXX^ where	 identifies the type of structure being closed. (An error
message w ill, occur when a mismatch occurs between the structure in effect
and the ENID-type.):

i

8i8	 Appendix G

-
I 	 At one point during the generation of this specification, :there was a:
i,concern whether CRISP statements should ignore blanks (spaces) in input—

as does FORTRAN-or whether CRISP. .should promote code readability by
requiring spaces m. certain ,places as string delimiters. The final decision
was tliat. CRISP shall specify the use of spaces to delimit syntauctic elements . .r...
only in ,those places required :by,a ,preprocessor to .diseern: keywords. 	 i

The list Below is an ordered, set of concerns that. were congidere& in the-.
formation of this speciflcation The order shown displays the approximate
priority of thatconcem,

1. Minimum number of control: structures consistent with programming
eflAcieney:

2: Generality of application

3. Clarity,. readability, understandability of syntax;.

4. Ease in assessment of program correctness.

5: =Implicat'ions of automatic flowcharting.

Consistent form of syntactic elements:

7. Implementation ease {single vs: multiple-pass processing):

8. Ease of use, interactive and .batch:

9: Blank4ildeperdence of syntax':

413 Overview of CRISP-PDL

I The CRISM13L processor is princi ally -a text formatting; annotation,1 _

and cross-reference generating device Figure 4 .1.1 1) A procedure input
line consists of possibly thrce fields: a prefix, a cosmetic, and the text. The
prefix contains possibly a-ste	 number within the module (usually chosen top	 p	 Y	 P

,

correspond to a box on a flowchart) and any subroutine or function
flowchart, cross-references: The cosmetic .portion consists of spaces and

'	 gal :flowlines; so as to present an indented: listing, which then also	 ^	 •'vesti i -`

displays many of the 'features of a flowchart:
I

In procedural descri lions; #. he :tent field' of the input its of two varieties: 	
F

P	 1'	 i^^
either a conttol logic text, or else a 	 base-language" (non-control-logic)
text. The text'ield is distinguished as the field beginning with the first non-..	 s
cosmetic character following the first space encountered on a line. Control
logic 'text fields begin with a keyword, such as IF, LOOP, R PEAT, or a: left .
parenthesis

Keywords signal the processor to increase or .decrease the indenting level
and to add, delete,:.nr modify the: vestigial flowlines The headings of nested
structure's (e.;g., IF,. LOOP, . ELSE, etc:) increase- the indenting level and add

s-

i

E

SCAN
• Cosmetize Name TI	 CHARTER

SOURCE e Extract.names and Prepare tier j
CRISP >PDL nkageS. Linkage chartand stub
file.f si • . R ecord Tables summary

,.	 '.	 - siatiSt1CS..-

- DIRECTORY
MONITOR SCRATCH Sort module	 . .
Print error 4 Listing namesnames

a Outputdiagnostics a Contents directoryand run s Glossary
i.f.rmatiOfl

GLOSSARY
6 Sort identifiers i

CONFIGURE • Enter Cross-
CONTROL DATA •Set contra{ REINPUT References
e Mode data flf lags 'e COSme- a Output Glossa ry.
e Device data e Open 1/0 tized
e File names media

source
9

REPORT
e Title Page I
e Table of Contents .
e Listing

Control data to all processing functions a	 '

i

Figure 4.1:1.1. Functional data flow in thwCRISP =POL;p[ocessor

.a^ *

320`	 Append* G

flowlines; .endings of nested structures(e.g., FniniF, F.NOCnSEs, REP..En'r, etc:)
decroase . the indenting_ level and eradicate flowlines. Abnormal and.
paranormal exits (Fiat;,. n>TUm smP, and sysm) cause no change lm
indenting level, but do show a flowline exit of the current nest ir►g level
back to the appropriate level.

Since CRISP PDL "responds only to "keywords,. control structures of the
base ,language will ,not .produce extra , levels of indentation. or cosmetic
Bowlines.

CRISP-PDL also has features for cross-referencing procedure and data"
mames, generation .o f a table of contents and Her chart; a completion staters
report, and keyword° usage summary: i

461,2 Overview dUMSPFI OW

CRISPFLOW accepts.CRISP-PDL and::other CRISP processor inputs for
" Moot	 i	 text ann	 fromprocessing as control ogt 	 structures ' and as arbitrary t 	 gs; ;

which it then, generates flowcharts ('Figure 4.1..2.1.); The CRISP logic }	 '
structures determine the flowchart topology, and the text strings label the 1

3chart a	 ro riatel ..Comments (Section 4.3,3, below) are not Ignored in.PP P	 Y	 ^'
some statements fe:g., DO, CALL:, CALLX) but are transferred' Into flowchart
boxes or other chart anndtatio"s directly. Some comment fields, however,
are diseattiled; as detailed in Section 4.22, below:

Since .CRISPFLOW "responds only to keywords in plotting control flow;
use of base language control statements will not be detected, arid;
therefore, will not be floweharted properly,

Flowcharts

Control
Data

CHISPFLaW

• Check Syntax ..
• Layout and size
• Draw"Chart

`
f

Flowchart	 Monitor and
Source	 D.i"nosticS l

.	 :idata
.

_ Rgure 4.1.2.1. CRISPFLOW processor u

-r5

F

Appendix G	 321

Flowcharts are. drawn, to ANSI • standards and as otherwise stated in
Section 2 .1:

4.1.3 Uverview>of CRISP Translators

The philosophy for 'CRISP translators (Figure 4.1:3.1) 'presumes that all
comments, as detailed, in Section. 4:3.3, below, will first 'be'removed from
the source'. code, that the format of all CR19P constructs will then be
checked for syntactic correctness,. and that , as a minimum requirement, .
hase4anguage' statements and strings within CRISP statements will be
transferred. into direct target..otstput without further syntactic analysis and
without translation. Compilers. based on CRISP, however. will perform full.
syntax checking and translation for all statements..

4.1.4 Detection of and Recovery From System Failure"

System failure detection and recovery measures during CRISP operations
are not covered by this specification.

4

4.1.5 Detection of and Response to Source Input Errors

As a minimum requirement', all CRISP translators shall detect errors of
4the following types: (1) missing elements. in CRISP statements i (2) .improper

CRISP-PDL	 • Cosinet4ed'
Listings

Soune
Program Scan and . CrowReferences

• Di ..eectory, etcFormat Source
Text.

Monitor/
Diagnostics

CR fsp?x

Control
Data	 Translate Source Target

Code
into language X

i

Figure 4;1.11. The CRLSP translator	 neretes toS®	 rget caste, while CRISP »PD6 Is
I

^

pstirigs (see slao:Ffgure 12.2 :oi Reterenee 7.p 5) {

Appendix G	 323

there shall be no option. -that. can alter the syntactic or semantic value of t!ie
forms given herein.

Output. options are not distinguished as separate modes of operation in
the coming: descriptions, hui *merely as" variants of the three basic modes.

j

4:21.cIUSPTDL:Mode

Figure 4.1.1.1 is secorid4evel-of-detail HIM diagram that summarizes
the CRISP-PDL inputs, processing functions, and outputs, inputs are the
source file(s) being processed into a formatted listing and control data that
selects which of the outputs is to appear. Processing consists of cosmetizing
source lines, accumulation. of module names and cross-reference material,
and output of such material as directed by control data. Output consists of
(1) a title page; (2) a table of .contents (page order; (3) program directory
(alphabetic order}; (4°) tier chart; (5) a listing of all stuk^-status modules; (8).
an indented listing; (7) a glossary with procedure and identifier cross-
references; and (8) a statistical summary of the program structure.

4.2.1.1.Identifier Cross-Referencing

In order for cataloguing identifiers, other than procedure and subroutine
names; to occur, those identifiers must either appear first in a LET ... BE

f form, or else contain interspersed periods or underscores amid alphanu-
meric characters (the first of which is a letter), as, for example, "A. eL3".
Every occurrence. of such an identifier will. be catalogued according to page S
and line number, whether in procedure descriptions or intervening text.

i

1
4.2.1.2 Page Ejection	 I

The appearance of #n beginning a line causes the ejection of a page if the
remainder of the page contains fewer than n. lines, . when n 7 0; the
occurrence of 90 ejects to the next page unconditionally. 	 {

4.2.1.3 Internnodule Text

Text appearing between procedure modules (see Section 43.6: initiated
by the appearance of a ## line, terminated by ###) is copied directly to the 	 j
listing scratch file without cosmetintion or diagnostic checking. Each :line 	 €
is scanned, however, for identifiers being cross-referenced.

S..

li	 .I

i
32A AMadix G

I
if, a line appears between modules and begins . with.`*" then the text of

that line is added
.
to the table of contents.

4;233 Boxed Comments

Within a module {see: Section 4.3.5), .a. line containing only tho characters
-<+	 (except for cosmetics) causes the lines following .it to be turned into
"boxed" comments, up to the occurrence of aline with only "*>," on it.

The input
i.

This text forms

P . segment of
r

comments.
*

would= appear, on output as

I	 . ^rss«sss*»s***a.* fs*»>	 .,

<* Thl,s text forms +5.

s C♦ .a•, segment of	 •7 :

In converting text for "boxing," the first line and last Imes are-converted
to <**s. ... *** >, the width being appropriate to the boxed comments.
Boxed comments are indented to the .current .nested level. 'Since the entire
block of text must be processed .to: determine the box width, buffer size may
limit the number of lines that may be so boxed, in such cases, each buffer
load is boxed according to the maximum width of text in that buffer;

f4:2.1.5 Update Provisions .
f In an "unstar" option. the asterisk in column I within a module (see
f Section. 4,3;1) will be converted to a period. When this occurs, a comment
r is generated containing the current date, and affixed to the module ender

statement (replacing any previous comment). In this way; the date of last
approved update is recorded. The module header comment often contains

s
the original design date.

4.2.1.6 Itight•Justifiled Text.

The appearance of a backslash on a Line causes both the backslash and
the text to its right to be right-justified: This is a convenience in recording

forrevision numbers to statements, or indices	 . ease. in Locating certain
features, If. the backslash appears inside a block of statements being

'-AW,

Appendix G	 325

scanned for "boxing," initiated- 'by linen containing "Cs" and "s>,"
respectively, then only the text left of the ba,+slash is used to determine
the appropriate box width. The "+" Is, omitted on such right-justified
lines:

4:2.1.7 Output Listing -

Source limes input between a module header and module ender are
transferred to a listing scratch .file indented and cosmetized according to
the type of structure in which nesting occurs. These are illustrated in
Section 4.3. The statement-continuation signal (a) at the end of a line is not
printed on the output listing, but is placed on the cosmetized reinput file,

"	 . in case :that file is saved for use as a .future source input;. continued lines are
indented so as to distinguish them from the first line in the continued .d s,

statement.

Each . line of a module is counted. and used to aid the generationof page
numbers for the directory and table of contents. Each module will begin a
newpage, as will any narrative that follows a module end and a new

' module header. (Each module end signals a page advance,) The output #
report starts the CRISP-PDL . listing at .page 1 (the table of contents and

j front matter are given Roman numeral page numbers). Record numbers of
the source Ale(s) are affixed to each corresponding listing line; at the left.
The format of the listing is shown in 7.7.2.6.

i
4:2.1.8 Program Tier Chart'

The program tier chart is a listing of the program structure and
E hierarchy. Within each module, all modules invoked by that module are

listed indented to show subordination. The tier.chart is prepared from data
saved . during statement scan processing and written onto a report scratch
Me. in the format given in 7.7.2.4.

4.2.1.9 Stub Status Report

After the tier chart is written; the .saved cross-reference data is queried
for missing procedures and subroutines, for modules identified currently as
stubs, and for modules given for which no invocation has appeared. A
listing of these is also written onto the report file, annotated by that current.

' status. The format is shown in 7.7;2.5.
t

Each page of the tier chart and stub report is given the next consecutive
Roman numeral. The tier chart follows the table of contents/directory in

j the output report listing,f
4.2,1.14 Table of Contents and Directory

E
The only significant difference between a table of contents and a program 	 .

directory is the key on . which the module identifiers are sorted. When

F
f

'	 -	 l

326 Appendix G

sorted by page number, the report listing is the table of , contents; when.
sorted alphabetically by module dame, the directory results, When both are
generated, the table of contents .precedes the: directory.. The formats for
these appear in 7.7..2.2 and 7,7.2.3. Both of these will. appear Before the tier
chart. Pagination of this material will tw Roman numerals.

442.1,:11 Module and Identifier Crass-References and Glossary

Once the entire source program has been scanned, then all of the cross-
references have been accumulated: At this point, the listing(s), glossary, and
cross-references are generated. The formats for the glossary and cross-
references are:shown in 7.7.2.7.

4.2.1,12 CRISP•PDL Report Output

The output report, in its fullest form, consists of the following sections or
parts, in order:

• Title page

a Table of contents

a Program directory

• Tier chart

a Stub status report

• Intermodule text

a Cosmetized source listing, first module

a Intermodule text

! Cosmetized source listing, second module

f	 a	 .

f	 0 Cross-references and_glossary

i Usage statistics summary

The first four items listed above are given Roman numeral page numbers,
and the rest, Arabic numbers. The formats for each of these sections or

a	 parts may be found in 7.7:2 of this specificats'on:

fi
4.2.2 CRISPFLOW Mode

The main thrust of the processing specification is already stated in the
preceding sections of this document. Simply said, CRISPFLOW produces
ANSI standard flowcharts. The flowcharts are drawn one to a page, with
boxes and textual material sized to fit on such a page. CRISPFLOW
produces structured flowcharts only, and does not recognize any r_ontrol-
logic directives except those prescribed in Section 4,3.

Appendix C 327

Flowlines connecting boxes conform to standards set forth in Section 2, 1,
in that decision collecting nodes are located directly under the vertex of
their corresponding predicate node, and all branches are labeled in case
order from the left. Loop-collecting nodes and decision-collecting nodes are
distinguishable (the latter being filled in, the former not). Loop-exit
flowlines lead to subsequent procedures in vertical alignment with loop
entry.

There are no off-page connectors drawn by this version of CRISPFLOW;
all chart symbols are thus scaled to fit on a single page, reducing the size of
chart symbols accordingly. No provision is made by this specification for
not charting unsuitably sizel modules, although a notification may appear
on the diagnostic display medium in such cases. Implementations may elect
to draw off-page connectors for CASES without violating this specification.

The flowchart symbols ("boxes") plotted by CRISPFLOW will have
variable dimensions, but the standard width:height aspect ratios required by
ANSI are satisfied. This allows for the potentially different lengths of text of
each statement to fit into its box most appropriately. The letters "T" and
"F" are drawn to annotate the true and false branches from every binary
decision box (which go to the left and right, respectively). The index of a
CASE clause appears to the left and below the intersection of the clause's
input flowline with the "distribution bus" flowline.

Comments are discarded by CRISPFLOW, except those following a Do,

CALL, or CAUX invocation, following IF or CASE predicates, in AT and FORK

structures, or appearing in a module header or ender. In invocation
statements, the text of the comment is inserted into the corresponding
striped box as additional annotation. The date is reproduced at the right
top of the flowchart page to aid in location of charts; this date is the text
string found in the comment field of the mo itile header or ender (both are
entered, if present). No analysis is made of this string to verify its correct
format as a date. Comments after IF and CASE predicates appear as
annotations to flowlines.

Identiflcation numbers and cross-reference information appear above the
right and left edges of tiicir box, respectively, as regulated by ANSI
standard conventions.

Text from all source lines continued using an ampersand (a) as the final
non-blank character is inserted into a single flowchart box on output
(cosmetics removed). Output will be separated into multiple lines within
the box, broken at appropriate spaces. The ampersand does not appear on
the output. The SAMPLE program charted in Figure 4.2.2.1 illustrates most
of these features. Other outputs of CRISPFLOW are shown in Section 4.3.

7.3.5

SF'P75
SFP3 75 (^GE

PFCE	 OF

m

3

AVAIIF	 E	
E

7

PROCEDURE: SAMPLE < A 18 SEPT 75*>	 MODE 1.3..5
-1	 IF (UNALLOCATED)
.2	 CASE .(MODE)

(1)
.3	 ST1

(2)
4	 ST2

.$	 ST3
(3)

.6	 ST4
ENDCASES

.7/S1	 CALL OPEN (MODE) <*CHANNEL IS MODE NUMBER.*>
(ELSE)

.8
	

LOOP WHILE (AVAILABLE}
.9/%52	 CALLS READICHR)<*READ CHARACTER'>
.19/S3	 CALL WHITE (CI(R)<*WR1TE CHARACTER•>

REPEAT
ENDIF

.11	 DO CLOSE<*MESSAGE SENT*>

.12	 DO RELEASE <*DISCONNECT CHANNEL*>
ENDPROCEDURE	 -

Figure 4.2.2.1. SAMPLE procedure illustrating flowcharti ng featuresS	 P	 9	 9

i

•	 E

Appendix C 329

4.2.3 CRISP Translation Mode

The CRISP translator accepts a source input stream, recognizes and
extracts elements of keyword-initiated statements and structures, and
outputs target-language code in replacement. Translators need not be
single-pass processors; in fact, REQUIRE and MACRO features require more
than one pass.

Base-language source statements are first stripped of comments and then
passed directly into target output. Some implementations may elect to
attach the comment in appropriate target syntax to the output statement. If
a base4anguage statement has been continued over many lines using the
CRISP convention, and if the target language permits line continuatAon,
then appropriate translation will be made. However, the user is considered
responsible for otherwise ensuring that base language elements will be
correctly interpreted by the target computer.

In some implementations (e.g., CRISP-assembly-language processors),
some elements within CRISP statements not recognized as part of this
specification may be parsed, so as to make effective use of the CRISP
formatting. Notable in this class are predicates in IF and LOOP structures,
and argument-passing devices for subroutines and functions.

However, in general, this specification only extends to implementations
where features can be reasonably accommodated. Implementation of
FORK...JOIN, for example, may not be implementabie on systems not
adaptable to concurrent processing.

Features in this specification may be, therefore, deleted to form CRISP
subsets. However, no translators may introduce alternate or additional
control forms and remain consistent with this specification.

Semantics and syntax of each CRISP form are contained in the detailed
language specifications in Section 4.3, below.

4.3 Detailed CRISP Language Specifications

This section specifies the CRISP structures, their syntax, and the semantic
value of each. Each construct is illustrated with a listing-source form
(which may also be used as reinput to CRISP processors) and a
corresponding flowchart. The listing forms show an indented format that
also contains vestigial control-flow lines to aid in readability. The notation
shown was dictated by the limitation of listing symbols to the ASCII set of
characters. Listing media with other character sets may well have alternate
cosmetics. The listing form shown is otherwise a part of this specification.

;.S

I

1

a

The structures specified in this document need not all he implemented in
any given processor at any one time. However, any processor implementing
a particular control structure herein covered must adhere to the details of
this specification for that structure, CRISP-PDL and CRISPFLOW
processors must, in addition, accommodate the superset of all CRISP
subsets implemented.

4.3.1 The CRISP Statement

A statement is normally a single physical source line or input record.
However, a statement may continue over more lines, if needed. Statement
continuation is signalled by the appearance of an ampersand (a) at the end
of a line, which indicates the next line is a part of the current statement.

Source lines may or may not be indented or have cosmetic annotations in
them; these are ignored by processor. In addition, source statements may
have a statement number and cross-reference designator specified, in the
format

statementnumbericrossreference cosmetics statementproper

Statement numbers are usually integers, and the cross-reference is usually
an integer or alphanumeric; no spaces are permitted with this format.
Either or both of these fields may be present or absent; if the statement
number is absent, the period may also be absent; if a statement number is
present, the period will appear in column 1; and if only the cross-reference
field is present, the virgule W will appear in column 1. An asterisk may
alternately be used for the period in column 1, when "change bars" are
used to indicate differences between current and previous versions of a
procedure. CRISP-PDL and translators do not process statementnumber or
Cosmetics fields, but recognize them so as to be compatible with
CRISPFLOW, Additionally, translators use the statement and module
numbers in REQUIRE and DISPLAY. See Section 4.2.2 for details on usage of
these fields by CRISPFLOW and Sections 4.3.11 and 4.3.26 for usage by
DISPLAY and REQUIRE.

The statementproper of an input statement begins either in column 1 or
with the first non-cosmetic character after the first space (or other cosmetic
on a line). Comments are not considered cosmetic. The characters that are
considered in this specification to be cosmetic are: space, ", "_",
"<" not followed by "*", ">" when not preceded by ".", and "." when
not in column 1. Implementations not having these characters may make
suitable substitutions. Characters " I ", "-", "c", and "." are not considered
cosmetic in continued litres.

.,

Appendix C 331

4.3.2 CRISP Keywords

The set of CRISP keywords (capitalized in the remainder of Section 4.3
for emphasis) are;

ABORT	 ENDCASES	 FUNCTION	 REPEAT

AT	 ENDFUNCTION	 IF	 REQUIRE

CALL	 ENDIF	 JOIN	 RETURN

CALLX	 ENDMACRO	 LEAVE	 STOP

CANCEL	 ENDPROCEDURE	 LET	 STUB

CASE	 ENDPROGRAM	 LOOP	 SUBROUTINE

CYCLE	 ENDSUBROUTINE	 MACRO	 SYSTEM

00	 ENDTO	 NORMAL	 TO

DISPLAY	 ENDWHEN	 OUTCOME	 WHEN

ELSE	 EXIT	 PROCEDURE	 Left parenthesis, i
ENABLE.	 FINISH	 PROGRAM	 Percent, %
ENDAT	 FORK

These specifications present keywords as capitals; however, on
implementations that permit lower case and/or underscoring, keywords
may appear on the output either in upper or lower case and, perhaps,
underscored or otherwise emphasized, depending on the implementation.
When available, upper and lower case characters have equal syntactic
value.

All keywords are terminated by space, left parenthesis, colon, or an end-
of-line. The statement keyword must appear as the first non-cosmetic entry
of a statement. Keywords may not be abbreviated.

4.3.3 Comment Delimiters

Comments in CRISP are denoted by the delimiters "4*" and
Comments may appear anywhere within a statement after the keyword, if
any.

The final "»>" need not appear if the comment extends to the end of a
statement. Comments may extend over any number of lines when the line-
continuation signal appears (see Section 4.3.3, below), The opening
delimiter	 may appear inside a comment.

An arbitrary number of input lines preceded by a line containing only
<»" followed by a line containing only "*>" will be recognized as a

comment block, and need not use line-continuation signals (a). See Section
4.2.1.4 for CRISP-PDT formatting of comment blocks.

332 Appendix G

Comments are scanned by CRISP-PDL for identifier references, and some
comment fields are used by CRISPFLOW. See Sections 4.2.1.1 and 4.2.2,
above, for details.

4.3.4 Non-CRISP Statements

Source input statements that do not begin with une of the above-named
keywords are permissible, and are processed directly into the output (wit],
cosmetics and indentation added in CRISP-PDL),

4.3.5 Program Modules

Several keywords (PROGRAM, PROCEDURE, TO, FUNCTION, MACRO, and
SUBROUTINE) initiate program segments, hereinafter called "modules,"
which extend to their corresponding END statement. The initiating
statements are herein called "module headers" and the closing statements,
"module enders."

A typical example of the header syntax is the following:
i

PROCEDURE:	 [MOD#riciuey] 1

Module-header statements may contain a cross-reference number following
the optional substring "MoD#", continuing to the end of the statement.
These are not used by the CRISP-PDL processor but by CRISPFLOW
(Section 4.2.2) and translators (Section 4.2.3). A typical module ender syntax
is the following:

ENDPRDCEDURE jC*da1e2*73 t

The header and ender date fields, being comments, are not used by CRISP
translators but by CRISPFLOW to label flowcharts and by CRISP-PDL to
record design and update times. The module flowchart format is defined in
Figure 4.2.2.1.

Modules may not be nested within other modules, but may be. linked to
via Do, CALL, cALLx, and function invocations discussed below.

The: general format of a module listed by CRISP-PDL is

mode ALader

structure

Structure

-	 -	 moduleender

i

Appendix G 333

The listing indentation shown is twelve spaces, to account for a .dda/aaaas
field at the left margin, where d represents a digit, a represents an
alphanumeric, and s denotes a space. The module header begins flush with
the left margin. On abnormal and paranormal exits from a module, column
12 will contain a colon (:), as in Section 4.3.7, below. The module ender
begins in column 13 except when abnormal or paranormal exits are present,
in which case it begins in column 12,

A structure is a body of CRISP consisting of one or more statements or
modular forms as detailed in the succeeding subsections of this section.
Output listing cosmetics for structures nested within structures retain the
cosmetics of the outer structures.

4.3.6 Intermodule Text

Textual material in the source input prior to the first module header, or
between a module ender and the next header, is permitted, provided such
text is preceded and followed by lines containing the characters ## and ###;
such lines are treated the same as comments, in that CRISP-PDL examines
this text for occurrences of LET —BEBE statements and identifiers containing
period and/or underscore as spacers, and for lines beginning with #
followed by text, Both CRISPFLOW and CRISP translators ignore such
text, See Section 4.2.1 for further information.

4.3.7 ABORT Statement

The ABORT statement may appear within a module:

moduleheader

C-------------- ABORT label .

moduleenrler

In the listing, the proper number of "-" to fill the indentation level at the
abort nesting level will appear past col-amn 15, All subsequent lines will-
have ":" to denote an exit flowline in column 12. T!h. m odule ender begins
in column 12 when an ABORT has appeared.

fl

334 Appendix G

CRISPFLOW draws the terminal symbol with label printed inside, as
below:

A80RT later!

CRISP translators generate program transfers to the labeled statement
elsewhere in the code, with proper subroutine/procedure linkage-recovery
as may be necessary. The label is not checked syntactically as part of this
specification.

4,3.8 AT Structure

The AT structure sets up linkages to procedural blocks' that may he
initiated by contingency events occurring within the first body of code.

AT (eventlist) [C*eontinen11*7]

Structure]

-i (NORMAL) [C*cutnmcnt?*>j

structtire)

->(event) jC*cnnunen1J*>]

structure,

ENDAT

i

Any number of structures may appear, introduced by events. Each event
appes:s in the eventlist, separated by commas if more than one event;
events may he restricted in some implementat:oms to appear in a particular
order.

In order for the AT structure to be nestable within other AT (and, perhaps,
WHEN) structures, it may he necessary for AT and ENDAT to save and restore
interrupt vectors at runtime, or such other mechanisms used in the target
language to assure program correctness in control.

i

r

Appendix G 335

CRISPFLOW produces the flowchart below for the AT stricture;

structure!	 I event list Nom.,; : eat

event eamment3

llommenQ

structure2	 I	 1	 structure3

t	 i	 I

The interruptible structureI is enclosed within a box as shown, drawn to
proper scale (Reference 7;2.3). Substnictures are drawn inside this box in a
normal manner, except when that structure is a single statement. In this
case, only the single box is drawn,

CRISP translators convert the eventlist into dedicated contingency
interrupt arming target code (or equivalent) for such conditions as endfile,
conversion error, overflow, etc. Execution of the NORMAL branch disables
these interrupts, as does entry into an)' one of the contingency event code
bodies. See Section 4.322 for further discussion of NORMAL.

4.3.9 CALL, CALLX, and DO Statements

CALL, CALLX, and OO statements involve local subroutines, external
subroutines, and singly occurring procedure bodies, The listing of such.
statements causes no indentation.

CALL snbname {C*eatntnan1*?l

CALLX xxtubnurne {C*c3mmen1*>}

DO nrtme i<*cwnT=an1*>j

The subname field must be in base language s yntax for local subroutines
(ones within this compilation); xsubnamc must likewise be convenient for
subroutines compiled separately or in libraries; both CALLX and CALL may

336 Appendix G

not be needed for a given implementation. The subname and xsubname
fields may have argument subfields in some implementations.

The name field may be any string of characters, but may not be used to
designate passing of arguments.

CRISPFLOW produces the flowcharts below:

subname	 xsubname	 name

comment	 comment	 comment

Translators encountering CALL and CALLx statements output appropriate
SUBROUTINE linkages. The Do statement may generate a linkage to To or
PROCEDURE modules named by name within this compilation, or may
substitute that module body directly inline into the target code stream
(translated as per these specifications).

4.3.10 CASE Structure .

The CASE structure implements a multiple branch on an index variable
(ter other discrete-valued variable).

CASE (index) [C*commcntO*>]

-> (value!) [C*comment]*>]

Anrcturel

-> (slue?) [C+comment2*>]

struclurc2

...ENDCASES

The naluci fields represent valid values of the index and may appear in any
order; several. values may appear, separated by commas, in one
parenthetical farm. ELSE may appear in lieu of the final value (see Section
4.3.12). The commenti fields are optional, and are used only by
CRISPFLOW to annotate flowcharts.

f

Appendix G 337

CRISPFLOW produces the following flowchart:

j	 lfi^eX^

commento

value 	 comment 	 value2	 coinment2

f .
	 r _ _.^

structural	 structure2

T__J ♦. r

CRISP translators generate code to branch to appropriate blocks of code
as specified by values of index. If an ELSE clause is present, all values of
index other than those cited invoke the ELSE clause; otherwise, such values
cause runtime error actions appropriate to the target fanguage.

The CASE structure permits the selection of any one of several specified
code bodies for execution, based on the value of a single scalar discrete-
valued variable. Each case entry is labeled with the scalar value of the
index required to cause execution of that case. These scalar labels need not
be in consecutive order, nor must all possible discrete values in a range be
present. Any discrete data type recognized by the target language as an
ordered set is permissible, such as integers and characters. However, the
pre-processor will not necessarily perform a check of the index data type
versus the case-label scalar type, nor will all discrete data types permissible
in a base language necessarily be supported by a CRISP translator,

The ELSE-case is a default specification, and is optional within the
structure, If an ELSE-case is specified, then any value of the index not
corresponding to a case label upon execution causes the ELSE code body
(which may be null) to be executed. If no ELSE-case appears within the
structure at all, then an index value outside the stated set of indices causes
a runtime error message to be output on the job nun stream and
appropriate recovery action for th-- target language.

,,.a

338 Appencftx G

Several case labels may appear in the same clause header, to cause
execution of the common case body for the specified values of the index.
Commas separate the case labels in such instances.

Duplicate case labels cause translator diagnostic error messages to be
printed.

4.3.11 DISPLAY, CANCEL, and ENABLE Statements

During the translation of a CRISP source into target statements, the
statement

ENABLE MODULE COUNT

causes a set of special trace execution counters to be declared, one for each
flowline. During execution of the target code, each traversal of a flowline
causes incrementation of the corresponding counter.

The CRISP statement

DISPLAY THRU LEVEL integer

outputs target code that, when executed, prints the values accumulated in
the counters. Each such count is tagged with the Dewey-decimal identifier
of the corresponding program step. The integer value selects the module
nesting depth of the display as determined by the decimal count in the
Dewey-decimal.

The statement

CANCEL MODULE COUNT

disables the creation of.flowline execution trace logic. The use of ENABLE-
CANCEL pairs permits probing of selected portions of the program during
development testing.

The default condition at the beginning of translation is the ENABLE mode.
For fully verified programs, the overhead setting gip and incrementing
counters must be removed by prefixing the source program with the CANCEL

statement.

4.3.12 ELSE Statement

The ELSE keyword may appear in IF or CASE strictures to introduce the-
default clause. Parentheses are optional:

ELSE [C<rrirnnrenf*7]

(ELSE) [Csrur7rorerrta^l

Appendix G 339

CRISPFLOW labels the ELSE flowline "F" in binary-IF structures and
"ELSE" in multiple-IF and CASE structures. The contntent yield annotates
this flowline additionally, if present.

Upon encountering ELSE, translators generate an unconditional transfer
to the structure end, followed by a transfer label for the ELSE-clause.

4.3.13 EXIT Statement

The paranormal EXIT statement may appear within the TO or PROCEDURE
structure and the MACRO structure. The CRISP-PIDL listing format is the
same w; for ABORT. In a To-module, for example,

TO xtrin-

C--------------EXIT[iritage'r]

ENDTO

The number of "-" which will appear is that required to fill the space from
the indenting level of EXIT back out to the procedure first level. All
subsequent lines have a colon (:) in column 12 and the final END will begin
in colunin 12 as shown above.

CRISPFL OW draws the terminal symbol with EXIT integer enclosed, as

=[Integgeri

Translators scat the OUTCOME flag to the value of integer and branch to the
code generated by the module ender. EXIT may appear at any level of
decision or loop nesting within the stricture; EXIT may not, however, be
used to escape from more than one nested macro or procedure module at a
time.

344 Appendix C

4.3.14 FINISH Statement

The FINISH statement appears as the last line in a CRISP source,
beginning in column I, as

FINISH

All clean-up and operations required to terminate processing are performed
in the program being processed as well as for the processor itself. No
symbol is drawn in CRISPFLOW.

4.3.15 FORK Structure

All structures within this syntax are hounded at the top by FORK and at
the bottom 1i*}' ,Ioim Within this construct, concurrent processes are
identified by clauses introduced by parenthesized strings:

FORK j<*cornrrtenKll>j

(stringl) [C;cornrntrntl.>j

strurt are l
.: -> {strin;;?1 (C wrorrtrncnl?•7j

strtirture'?

.,..JOIN

Any number of structures may appear, introduced by a parenthesized .string.

CRTSPFLOW produces the following flowchart:

commantO

stringl commentl string2 comnrent2

structure)	 l l	 structure2

e

Appendix C 341

FORK ... JOIN will only appear in translators for languages that permit
concurrent operations of the type inferred by the flowchart, Strings are
necessary to label tasks for concurrent execution. JOIN terminates the
concurrent mode for all of these tasks, and only when all have reached the
JOIN.

4.3,18 FUNCTION Structure

Ti,a FUNCTION structure permits definition of functional modules if
supportable by the target language. If local and external functions must
have different syntaxes, the keyword xFUNCTION may be added.

On input and listed output, FUNCTION begins in column 1 (see Section
4.3.5 for general header form): i

FUNCTIONC frame [<*datel*>]	 [MOD# deuwy]

,structure

ENDFUNCTION [<*datc2*>]

The ENDFUNCTION keyword normally appears listed in column 13, but moves
to column 12 if an extra-normal exit (RETURN) has occurred in the module.
The designator C denotes a colon (:) or space.

CRISPFLOW draws entry and exit terminal symbols labeled as shown
below:

day	 dewey
frame

frame	 date l
date2

page.--of—

structure

RETURN

Functions are entities that are potentially separately compilable.
Variables defined within a function are generally not accessible to the
invoking program. Thereiu,e, provisions for passing arguments or
parameter lists are hereby specified. Functions may invoke subprocedures
by using the DO statement as long as those procedures are defined as To- or
PROCEDURE-blocks within the-function compilable unit. Functions may also
invoke sumouTINEs and other FUNCTIONS.

Each function name is a (unique) name to be assigned to the function in
the target language syntax. Both the name and arguments are contained in
fname and passed directly without analysis by the translator to the target
language. The name and arguments must, therefore, conform to the
conventions of the target language.

See RETURN (Section 4.127) for paranormal exit. Control flow reverts to
the invoking; program upon encountering the RETURN statement in the
FUNCTION body, subject to the same rules as for subroutines.

Functions may be invoked by the .usual base-language provisions for
functions, if any, If none exists in the base language, then FUNCTIDN-block
capability may be omitted from the translator.

4.3.17 IF Structure

The generalized IF structure permits the logical selection for execution
of one among a number of specified code bodies within the structure:

IF (predicatel) [C*commentI*>]

stracturel

-> (predfcnte2) tC*cammenf2*?]
strurfure2

ENDIF

Any number of structures may appear, introduced by a parenthesized
predicate. One ELSE or (ELSE) can also be used to introduce the final
structure (see Section. 4.3.12).

The structure (or clause) selected for execution corresponds to the first-
encountered true condition in top-down order. All conditions tested have
logical values true or false. Any of the selections may lead to null clauses,
and the FUSE-clause is optional. If present; the ELSE-clause is executed as a
default case when all of the given predicates are false. The ELSE keyword
need not be stated when the code block following is null.

At the completion of execution of a given clause (as signalled by the
appearance of a new clause or ENDIF), control passes to the end of the
structure (designated by ENDIF).

There are no constraints on the number of predicates or on the size
(including null) and number of clauses. The optional parentheses around
ELSE are provided for consistency in appearance with other predicates, if
the programmer desires.

Appendix r 343

CRISPFLOW distinguishes between the simple single-predicate form and
the general form. The single predicate form (with. an optional camrnent2 on
an ELSE statement) is

	

T	 predicate	 F

	

camment l	 comment2

1	 structure t	 1	 1	 structure2 1
i	 1	 1	 1

F

The general IF-form appears as a multiple branch:

f

3	 predicatel commentl	 predicate2 Lcommenr2	 }
V

structure)	 structure2

	

L _ __J	 L___^ __4

4.3.18 IF Statement and Modifier

A special case of the IF-structure may be used in situations where there
is a single predicate, the default case is null, and the code body to be
executed when the predicate is true consists of a single statement. In such

i

344 Appendix C

cases, the single-line statement is placed on the same line as the IF
keyword, and ENDIF is omitted;

IF ()medicate) statement

The statement may be any single-line valid construction in the base
language, or it may be a DO, CALL, or CALLX statement. The statement may
not begin with a comment.

IF may also modify EXIT, LEAVE, CYCLE, and RETURN, as in the example

: C----EXIT integer IF (predicate)

Stich a form is equivalent to

IF (predicate)

EXIT

ENDIF

CRISPFLOW will produce the same flowchart as would be obtained
from the corresponding longer farm. If a box number and cross-reference
field are designated, the box number is put on both symbols, but the ^ross-
reference applies only to the statement box,

4.3.19 LET Statement

All identifiers signalled by the presence of periods and underscores are
automatically catalogued, as previously described (Section 4.2.1.1). Other
identifiers may be identified to the CRISP-PDL processor for subsequent
cross-referencing purposes, using the statement

LET Wentrfter BE string

The identifier is any alphanumeric (first character alphabetic), and string is
any arbitrary set of characters (or may be null); identifier may contain
periods and underscores, if desired.

Subsequent occurrences of identifier in the CRISP-PDL source program
are treated the same as identifiers using periods and underscores. The string
appears i:i the program glossary; it provides a means of defining variable
name mnemonics, data type, units, and other pertinent information for later
reference,

CRISPFLOW and CRISP translators ignore the LET ... BE statement
altogether. A LET statement without BE is always assumed by all processors
to be a base-language statement, and no error is noted.

Appendix C 345

4.3.20 LOOP Structures

All loops in this syntax are bounded at the top and bottor"r by the verbs
LOOP and REPEAT, respectively. Within this construct, the LEAVE verb may
be used to cease iteration and to continue execution at the statement
following REPEAT. Similarly, the CYCLE verb may be used to start the next
iteration; that is, to transfer control to the repeat statement. Multiple LEAVE

and CYCLE statements may appear within a given loop.

The format of the CRISP-PDL listing is

LOOP ...

!..REPEAT...

There are three forms of valid loop structures, and variants within each
form. There are two unindexed forms and one indexed form. These are

LOOP WHILE (prrdlcute)

!	 structure

!..REPEAT

LOOP

!	 stnrcaure

! .. REPEAT IF (predicure)

LOOP FOR index = expressdnnl (6Y expressinn2l TO expression3

!	 struchire
!..REPEAT WITH NEXT index

In the first of these, WHILE may be replaced by UNTIL, meaning WHILE NOT;

in the second, UNLESS may replace IF, meaning IF NOT; and, in the third, a
WHILE Or UNTIL phrase inay replace the To phrase. All expressions are
assumed to he in target syntax already. If expression2 is omitted, a value of
unity is assumed

The index parameters must match in the third form. The value of the
increment, expression2, is constant throughout the iteration, but may, not be
zero upon runtime entry into the loop; expression3 is re-evaluated on each
iteration of the loop only if WHILE (or UNTIL) is used.

Upon termination of indexed iteration, the value of the index variable
shall be the first such value encountered violating the loop predicate.

CRISPFLONAI draws these strictures as depicted in Figure. 4.3.20.1.

..r<

(d) LOOP .. REPEAT UNLESS

F -
Istructure

L—

(e) LOOP FOR. ..TO.. .
. . .REPEAT WITH NEXT

index =
expression 1	 TO

expression3
expression2.

fin range

Istructure

L-_-J

(c) LOOP.	 REPEAT IF

r—	
—,

a
structure	

I ^1

n
predicate

F

i
ii

(a) LOOP WHILE ... REPEAT	 (b) LOOP UNTIL. 	 REPEAT

predicate	 E	
T	

predicate

T
	 F

F_
	 r — --I

Istructure

	
Istructure

T

Figure 4 .3.20.1 _ CRISPFLOW format of LOOP -REPEAT structures

^^°`

Appendix C 347

The LEAVE statement may appear nested within a loop structure, as

LOOP ...

I

I	 . .

C-------------- LEAVE [integer]

'..REPEAT...

The number of dashes P which appear on CRISP-PDL listings is that
required to fill in from the current indentation level, back out to the LOOP
indentation level. Colons 6) appear on each subsequent line within the Loop
stricture at the LOOP indentation level. LEAVE may only he used to escape
iteration of the innermost loop structure containing it, and the LEAVE
directive cannot be imbedded within procedures invoked by Do or CALL
(unless LEAVE appears within appropriate LOOP-REPEAT structure boundaries
within the procedure). If an integer follows LEAVE, its value is assigned to
the OUTCOME flag when executed. When such is the case, normal loop
termination sets OUTCOME to zero.

CRISPFLOW charts the LEAVE situation using on-page connectors
labeled alphabetically (A, B, C, etc.) as shown below:

Ia) LEAVE	 (b) In LOOP WHILE and
LOOP FOR

OUTCOME
= 1ITtE'9Er

A

A

i

(d) LOOP... REPEAT IF
LOOP... REPEAT UNLESS

(0 In LOOP UNTIL

A	 A

_,r.

1

348 Appendix E

The CYCLE verb may also appear anywhere within the LOOP ... REPEAT
stn►cture, and at any level of decision nesting within that range. CYCLE may
only be used to control iteration of the innermost loop structure containing
it. CYCLE may not, however, be imbedded in procedures initiated by o or
CALL (unless CYCLE . appears within appropriate LOOP... REPEAT boundaries
within the procedure).

LOOP

!C--------CYCLE

r

!..REPEAT

The number of "-" which will appear is that required to fill the space from
the indenting level of CYCLE back out to the LOOP indenting level.

CRISPFLOW draws on-page connectors labeled alphabetically (A, 8, C,
etc.) for the CYCLE situation as shown below:

tai CYCLE	 M In LOOP WHILE	 (c) In LOOP UNTIL.

A	 A	 A

(d) In LOOP... REPEAT IF
and LOOP... REPEAT UNLESS

CRISP translators generate an unconditional branch to the beginning of
the REPEAT statement for the CYCLE statement.

r

Appendix G 349

4.3,21 MACRO Structure

The MACRO structure defines a module for direct insertion. The MACRO
keyword begins in column 1, as

MACROC lonplate

•s tn^c• tu n:

ENDMACRO

See Section 4.3.3 for further details concerning module header format.

CRISP translators have a minimal, but useful, compile-time text-
substitution macro capability. Macro invocations in the source program are
signalled by the appearance of an escape character (%) followed by a string
to be replaced:

... % trim;.. .

Stich occurrences of .string that "match" a macro template (matching
described below) will be replaced by structure prior to generation of any
code output.

The macro template consists of characters that mast match correspond-
ing characters in the input .string exactly, except in positions in the template
where markers for formal parameters occur. These markers take the form
%1, %2, ..., %e; they designate the place in the input string where groups of
characters are to be extracted and passed to the internal macro structure for
substitution in places correspondingly marked %1, %2, ..., %9. The numbers
of characters assigned to each parameter marker are determined so as to
make all other characters in the input string agree with template characters.
If no matching is possible, the %string is output directly as target syntax.
See References 7.2.1 and 7.2.2 for further details on template matching
based on the STAGE2 macro generator.

MACRO-defining modules and invocations may be used anywhere in the
CRISP source code. In particular, an invocation may precede its macro
module definition. Macro modules may contain other invocations, but may
not enclose other macro modules (nor any other module types, for that
matter).

Alternate forms of the macro module may be used to define macros
within procedures, subroutines, functions, and programs. These are

%template MEANS strin,%END

360 Appendix C

i and

i	 %template MEANS

.glrttrtrlrc

,END

In these forms, the template parameter markers are designated by only the
escape character (%, rather than %0; the ith such template marker is used
exactly the same as %i in the MACRO template; up to 9 may appear. The
structure (or string in the simple one-line form) uses the same conventions
as in the MACRO structure, viz., %i.

CRISP-PDL and CRISPFLOW operate as if the separate MACRO modules
were procedure modules, however, the alternate forms introduced by % are
treated by CRISP-PDL as follows: The single-line form is listed at the
current indentation level, and the multi-line form appears as

%template MEANS

stnrrftrrc

%END

CRISPFLOW generates a separate one-page flowchart for each such macro
definition.

See EXIT (see Section 4.3,13) for paranormal exit information.

4.3.22 NORMAL State;nent

The NORMAL keyword may appear ill AT or WHEN structures to introduce
the clause that executes when contingency or priority event interrupts have
not occurred. It may also occur in OUTCOME structures, in which case it
corresponds to a zero value of the OUTCOME flag. Parentheses are optional:

NORMAL [G*ramrnaat*>]

(NORMAL) [C*rommert*>]

For the AT structure, entry into any of its clauses (including NORMAL)
disconnects the contingencies. For the WHEN structure, each clause identifier
(including NORMAL) causes the translator to generate code to clear the
interrupt logic of the event structure above it to return to the point of
interruption, and to label the entry point to the current event clause.

The NORMAL clause need not appear in AT structures when it introduces a
null clause, but must always appear in the WHEN stnucture, even with a null
clause.

r

Appendix C 351

4.3.23 OUTCOME Flag and OUTCOME Structure

CRISP has a special internal flag which can he set only by RETURN, ExiT,
LEAVE, and the normal module ender. Each of the paranormal exits has an
optional integer field that is assigned to the OUTCOME flag on execution of
the escape. Translators emit code for the normal module ender to clear the
flag to zero if any paranormal escape has set the flag within the module.
Similarly, if other paranormal exits occur unlabeled by an integer,. they, too,
cause the flag to he cleared, In this way, the oUTCoME flag may be used to
record which of several paranormal escapes from a module or loop was
taken.

This flag can only le tested, using the OUTCOME structure
^	 4

OUTCOME [C*cammen10+>]	 e

-7 (unlue1) [C*ctnnment1*>1

I	 slrru;ttrrcl

stnirturc°

...	 J

...ENDCASES +I

The OUTCOME keyword is treated in all processors exactly as if CASE
(OUTCOME) had appeared, except that the internal flag variable is referenced.
NORMAL may replace a value of zero in a clause header.

4.3.24 PROCEDURE and TO Modules

The PROCEDURE and To keywords introduce modules invoked by the DO
verb. The two keywords are equivalent: ENDTO and ENDPRoc:EDURE are
likewise equivalent, and any combination of header and ender pairs is
permitted.

PROCEDUREC namc. [C*datel*7] 	 [MOD# dervey]

structure
ENDPROCEDURE [<*datc2*mi1

TO name [C*date1*i]	 [MOD# dewcry]
s1rurture

ENDTO [C*datc2*>]

Procedures, for the purposes of this specification, are bodies of code
whose scope of variables is that of the module which has invoked that body

7

f

$52 Appendix G

of code, In other words, the procedure has direct access to the set of
variables defined in its hierarchic ancestors with which that procedure was
compiled. No provision is made for passing parameters. (See Section 4,3,5
for generalized header information.) The string may consist of any input
characters, but may not be used to designate passing of arguments, The
name must be a valid identifier and must exactly match the field following
only one Do somewhere in the same compilable se.Aion of CRISP source
data in .order to be translated correctly. Name is converted by CRISP
translators to a unique program label.

CRISP-PDL identifies procedure modules unlinked to by Do and multiple
Dos invoking the same procedure (not permitted) in the status report.

Can execution, the ENDTO or ENDPROCEDURE statement signals a return of
control back to the invoking module, Additional returns (or escapes) from
procedures can also be effected by the use of the EnT statement, See EXIT

in Section 4.3,13 for paranormal exit information,

CRISPFLOW generates a ot%,4page flowchart as illustrated in Figure
4.12.1 in response to procedure module source input.

4.3.25 PROGRAM Structure

The main program is announced by the PROGRAM statement, In base
languages which require that this program have a named beginning, the
program name must follow the conventions of the base language. Where
naming is not required by the base language, the name may be ignored by
the translator (in such cases, however, the PROGRAM statement must usually
be the first executable statement),

The main program module continues until the ENDPROGRAM statement;
statements past ENDPROGRAM (compiled with the main program) are
generally subroutines, proce6urcy invoked by To and defined by TO (or
PROCEDURE) structures, or else are data declarations or intermodule text,

The format is, therefore, of the form (see Section 4.3.5)

PROGRAMG' prxime [<*date1* >1 	 [MOD# (lemcly]

.structure

ENDPROGRAM [<*aline:*>)

Upon runtime execration of ENDPROGRAM, control .flow returns to the
system or processor controlling the execution of the program, (For
example, batch FORTRAN probably returns to the operating system and
thence to the user's job control stream. For interactive systems, such .Ls

BASIC, control probably returns to the BASIC command mode,)

k	 __

3

is	 Appendix C 353

To control the type of program exit when a choice is available. two
directives, STOP and SYSTEM, are provided. STOP returns program control to
a supervisory program controlling the program being executed, such as the
BASIC processor mentioned above. SYSTEM returns control hack to the
operating system and to the user's job-control-language stream.

STOP and SYSTEM may only appear within the conf=ines of PROGRAM... END- .
PROGRAM statements, and may not appear in subroutines, macros, functions,
or procedures.

CRISP-PDL formats STOP and SYSTEM the same as ABORT (Section 4.3.7).
CRISPFLOW generates the flowchart elements below:

STOPD	 C SYSTEM

ifor END PROGRAM)

4.3.26 REQUIRE Statement

The REQUIRE statement is of the form

REQUIRE AT dewel: statement

This causes the CRISP translator to extract and save statement during the
first pass, L:nd to insert it during the second pass into the object code
immediately before the code for that statement whose detcey decimal
identifier is given. This identifier is determined from the Moo# field of the
appropriate module header and the step number .dd within that module.
See Section 7.2,4 of Reference 7.2.5 for further details.

4.3.27 RETURN Statement

The RETURN statement is a paranormal exit from a SUBROUTINE or
FUNCTION module. The listing format is identical to EXIT, except for the
Keywords.

SU13ROUTINE ...

C-------------- RETURN [integerl

ENDSUBROUTTINE

r

354 Appendix c

The action of RETURN is similar to that of EXIT. If an integer value is
specified, that value is assumed to be assigned to the OUTCOME flag (Section
4,3.23).

CRISP translators then generate code to make such assignments and
bray-wh to the ENDSUBROUTINE (or ENDFUNCTION) point, which redirects
control huv hack to the calling program. ENDSUBROUTINE additionally resets
OUTCOME to zero at a noint above the return collection node if a RETURN integer
has appeared,

RETURN may appear at any level of &::i4zion or loop nesting within the
module; RETURN may not, however, he used to escape from more than one
nested subroutine or function module at a time.

C:RISPFLOW generates she tF,;mlual symhol:

RETURN lirrregerl

4.3.28 STUB .Identification

The STUB keyword is used only by CRISP-PDT. and CRISPFLONV
processors to identify procedures, subroutines, and functions that represent
dummy structures to be removed later. The forma: is exemplified b y the
form

TO name

STUB starter

ENDTO

CRISP-PDL marks the narne of the procedure as being a stub for display
in the stub status report.

CRISPFLOW adds the word "sTUe" to the upper right-h:fnd module
identificat ion following the name and preceding the date fields:

dervalf

11(1111!

STUB

dr11eI

dutn-2

page- cf-

E

]F

iY

• 1,

r

t

Appendix G 355

4.3:29 SUBROUTINE Structure

The subroutine, invoked by the CALL (or perhaps CALLX) statement, is the
code body structure appearing between. SUBROUTINE-ENDSUBROUTINE
statements, Upon entry during execution, the first line after SUBROUTINE is
the first executed, upon reaching the ENDSUBROUTINE statement, control
returns to the calling program in the normal fashion.

Subroutines are potentially separately compiled entities. Local variables
defined within a subroutine must not be accessible to the invoking
program. Therefore, provisions for passing arguments or parameter lists are
assumed. Subroutines may invoke subprocedures by using the Do statement,
provided the invoke I procedures are defined by To or PROCEDURE structures
in the same compilable unit. Subroutines may also CALL (or GAL-LX) other
subroutines or invoke FUNCTIONS.

Except for the keywords, the listing structure of a SUBROUTINE is the same
as any other module:

SUBROUTINEC milmme [e*datr1*>] 	 [MOD# dalcep]

structure

ENDSUBROUTINE [C*djte2*>]

See Section 4.3.5 for format and 4.3.27 for .use of the RE-ruRN statement to
produce paranon'nal escape.

The subname contains the subroutine name and arguments passed to and
from the subroutine. Base language syntax applies to this subname. If local
and external subroutine definitions must have different syntaxes, the
keyword XSUBROUTINE may be added.

CRISPFLOW generates the flowchart format illustrated in Figure
4.2.2.1, except that RETURN appears in termination symbols.

4.3.30 WHEN Structure

The wHEN structure is a means for handling priority interrupts for. real-
time processes. The syntactic form is illustrated by its CRISP-PDL listing
form:

356 Appendix C

WHEN

..	 RttllGhir41

(ec4nt2) prinrih12
slructurc8

-> (!NORMAL)
sfrueturen

....ENDWHEN

The CRISP translator generates code to connect and arm all priority
interrupts for the events listed at the priority levels given (if permitted) and
proceeds to execution of the NORMAL structure, which must he the last
clause. Internipts occurring during the execution of 'he NORMAL clause pass
control to the corresponding event in order of priority, iv ° 4rnpletlon of an
event clause, control returns to the point of interr:ption. When the NORMAL
clause completes at ENDWHEN, all interrupts for the events in, , olved are
disabled.

The event syntax is that of the base language. See Section 4.3.22 for
further discussion of NORMAL.

In order for WHEN stnlctures to he nested within other WHEN structures
utilizing, perhaps, the same internipt assignments, it may he necessary for
WHEN—ENDWHEN to save and restore interrupt vectors or such other
mechanisms used in the target language to maintain proper control
correctness of program segmrants.

CRISPFLOW generates the following flowchart elements for the WHEN
stnrctnre:

eventl	 evenr2

Priority t	 pri'ority2

structure!	 structure2	 structuien

1

Appendix C 357

4.4 User/Operator Special Features
This specification does not address user/operator interfaces, procedures,

or protocols. Inasmuch as user/operator 1/0 devices have been left
3	 unspecified, the form and extent of option selection is left open for system-

dependent considerations.

However, users are assumed to be responsible for generating and editing
the CRISP source input programs prior to invocation of the CRISP
processors herein described.

In particular, CRISP program modules within a file are selectively
processed by control data given to a CRISP processor of this specification.
Users must first prepare alternate scratch files containing such selected
mod0eg if they wish to do so. The capability to extract and form such
scratch files is not included in this specification of CRISP processors;
however, such a capability is not proscribed by this document.

4.5 Data Base Specifications
CRISP-PDL and CRISP translators shall be designed in such a way that

they may share a program listing file for display purposes (Section 4.3.11) in
a future upgrade, so that target compiler error messages and execution
statistics can appear on the cosmetized program source listing.

All CRISP-PDL report material and CRISP translator output shall he
mai,otainahie in compatible formats so as to be useful as data base elements
in applications programs developments. Files shall be maintained in the
formats specified by this document. All files written for retention by users
shall be named by system-dependent standards *hat readily identify the file
type (listing, target code, etc.) and the applications program to which they
correspond.

5. PROGRAMMING SPECIFICATIONS
Programming specifications are not included in this version of this

document.

6. TEST AND VERIFICATION SPECIFICATIONS
Test and verification specifications are not included in this version of this

document.

i

358 Appendix G

7. APPENDICES

7.1 Glossary

ANSI. American National Standards Institute.

Base language. The language used in non-control statements in the source
program processed by CRISP. Normally the same as or related to the
target language,

CRISP. Control Restrictive Instructions for Structured Programming.

CRISP-1PDL. CRISP Program Description Language.

CRISPFLOW, CRISP FLO Wchart generating processor.

Dewey-decimal, A module identification scheme which concatenates, Busing
a period separator, the current module Dewey-decimal with the step
number within that module where a procedure is invoked. The Dewey-
decimal so formed becomes the procedure identifier,

HIPO. Hierarchic Input, Processing, and Output. A graphical method of
displaying functional. specifications.

Module ender. One of the keywords ENDTO, ENDPROGRAM, ENDPROCEDURE,
ENDFUNCTION, ENDSUBROUTINE, ENDMACRO, or %END.

Module header. The statement that introduces the definition of a
PROCEDURE, SUBROUTINE, FUNCTION; PROGRAM, or MACRO.

Paranormal exit. An unstructured escape from a module or loop.

STAGE2. A general purpose macro processor Based on tempia'e matching.

Target language. The language that a CRISP translator outputs in response
to source input. Normally the same as the base language.

7.2 References

This appendix lists documents containing explanatory material referred
to in other sections of this SSD.

.1 Waite, W., "The Mobile Programming System STAGE2," Canunun,
ACIV, Vol. .13, No, 7, pp, 415-421, July 1970.

.2 Waite, W., Implementing Soji:uare for on-Numeric Applications,
Appendix A, Prentice-Hail, Inc., Englewood Cliffs, NJ, 1973.

.? American \'ational Standard Flowchart Symbols and Their Usage In
Injt)rmatinn Proewssing, ANSI--h3.5-.1970, American National Standards
Institute, Inc., NY, Sept. 1, 1970,

J

``

Appendix C 359

.4 Tausworthe, R. C., Standardized Development of Computer Softuvare,

Part 11, Appendix B, this text.

.a Ibid , Part I, Chapter 7, 1976.

7.3 Program Analyses

(To be supplied during program design phase.)

7.4 Shareable Subroutine Identification
(To be supplied during program design phase.)

7.5 Provisions for Future Modification
(To be provided during program design phase.)

7,5 Error Messages and Diagnostics
(To be provided during program design phase.)

7.7 Detailed Formats

7.7.1 Detailed Control/Response Message Formats

These formats are not applicable to this implementation-independent
design, but will become applicable in an actual implementation. Standards
for interactive and batch-mode operation will be established for each such
application prior to such implementations.

7.7.2 Detailed Input/Output Formats

Input and output formats are permitted by this specification to be
implementation-dependent only when conformance to this specification
cannot he supported by the host system. Source input formats shall be
compatible with the forms in Section 4.3. Further, the cosmetized reinput
file output hy= CRISP-PDL shall also lie compatible source input for
CRISPFLOW anti CRISP translators.

The remainder of this section covers output report formats for the
CRISP-PDL processor as described in Section 4.2.1. All such ontpt+ts
presume the availability of a 132-character-per-lit,e output device.

7.7.2.1 CRISP•PDL Title Page Format

Figure 7.7.2.1.1 illustrates the format of the title page, information on
this page is taken from the first records input from the source medium
when these records are textual (not module; descriptions).

360 Appendix G

The first record is presumed to . be a document number or other
identifier; this record labels each remaining page of +he report (centered on
each page except the title page). The next set of source records, up to the
beginning of a module or the # # # signal, is copied directly onto the title
page. The text signals # # and # * # themselves are not printed on the
title page. Title text may extend over more than one page if there are too.
many records in the first text block.

Titular material occupies the rightmost $Q columns of the page, the
leftmost 32 being a CRISP logo, shown in Figure 7.7.2.1.2.

Source text records longer than SO characters will be truncated on the
right (an error will appear in such cases on the monitor device).

If the first block input from the source medium is a module, the title
page is left blank (except for the logo), and a null (blank) line .for the
document identifier appears on subsequent pages of the report.

7.7.2.2 Table of Contents Listing .Format

The table of contents is a listing of intermodule text lines signalled for
printing by a leading #-space, together with names following module
header keywords. These are printed in order of appearance and annotated
with page and line numbers of occurrence within the CRISP-PDL listing,
Each page of the table of contents contains a header with the program
name (if any) and "TABLE of CONTENTS" designation. Pages after the first add
`" (Conn-.)." The format is shown in Figure 7,722.1, Page and line nu!.mbers
may extend to four characters each, right-justified and zero-suppressed, No
decimal appears in either,

7.7.2.3 Program Directory Listing Format

The program directory contains an alphabetic-order listing of all module
names, status for each, and page and line of occurrence within the CRISP-
PDL, listing. The format is .shown in Figure 7.71.3.1. The designation
"` (CONT. > " follows "DIREGToRV" on all but the first page. Page and tine
number specifications are the same as given in 7.7.2.2, The status field is six
characters wide and contains the following:

"UNSEEN"	 Name appears after oo or CALL, but does not appear
on header

NO CON"	 Name appears on header, but does not appear after
a DO or CALL

"STUB"	 Module designated the name as a stub

Otherwise

DATE

ED
DATE

RED
DATE

SBORATORY	 y

OF TECHNOLOGY	 iy
FORNIA

Appendix G 361

SSD-DSNS5P-002
!$SUE DATE

SOFTWARE SPECIFICATION DOCUMENT

DSN PROGRAMMING SYSTEM

CRISP PROGRAM DESCRIPTION LANGUAGE

DESIGN ANALYSIS PROCESSOR

Figure 7.7.2.1.1. Typical title page output format

3W Appendix C

CCCCCCCC
CCCccCCCc
CCC
cc
CC
CCC
CCCCCCCCC

CCCCCCCC

RRRRRRRR
RRRRRRRRR
RR RRR
RRRRRRRRR
RRRRRRRR
RR	 RR
RR	 RR
RR	 TIRR

ITII
II
zz
II
II
II
II

IIIT

SSSSSSSS
SSSSSSSSS
S SS
SSSSSSSSS

SSSSSSSS
SSS

sSSsSSSSs
SSSSSSSS

PPPPPPPP
PPPPPPPPP
PP PPP
PPPPPPPPP
PPPPPPPP
PP
PP
PP

JET PROPULSION LAVORATORY
4800 OAK GROVE DRIVE

PASADENA, CA, 91104

Figure 7.7.2.1.2. CRISP-POL logo format

J

Appendix G 363

document number

Program name

T A E L E	 O F	 C O N T E N T S

fTEM	 LlNE:AAGE

text	 . . _		 line page
text	 line:page

text	 linvpage

roman numeral

Figure 7.7.2.2.1. Table of contents format

-'a

364 Appendix G

document number

program name

P R 0 G R A M	 0 1 R E C T 0 R Y

ITEM	 STATUS: Ll NE:PAGE

name	 	 s to t us, lin e:pd 9
a

name	 5 to f U v tin V;P q g e

name	 . sra tus: lino:p age

r

Appendix G 365

7.7.2.4 Tier Chart Listing Format

The tier chart lists module names in program invocation-tree (control
nesting) order, along with a status code followed by the line and page of
occurrence. Status and occurrence printing are covered by 7.7.2.3. Names
are indented as specified in Figure 7.7.23.1 to indicate the invocation level
of nesting within the program. The main program and all subroutines,
functions, and block macros appear at level 1. Procedures and subroutines
invoked by oo and CAUL (x) within a module are listed below the name of
that module, indented as shown.

Module names are truncated on the right if indentation interferes with
status printing (an error message also appears on the monitor device).

" (cow.) " is added after "TIER CHART" on all but the first tier chart page.

7.7.2.5 Module Status Report Format

This report contains a list of names, status, and locations of modules
having status "STUB" and "UNSEEN." The report format appears in Figure
7.7.2.5.1. "(cow.) appears on all pages but the first, Page and line
numbers are covered by 7.7.2.2. The fields nnnn and mm are zero-
suppressed, right-justified, with no decimal.

"Unseen" module names are counted and listed only once, even though
there may be multiple occurrences in the procedural listing; the page and
line numbers are, thus, only typical invocations. (The cross-reference
concordance contains all such occurrences, however.)

7.7.2.6 Cosmetics and .Indentation Format for CRISP-PDL

This section details the output procedural listing format of the CRISP-
PDL structures. Each page of the listing contains the document number,
program name, source file name, and current page number. Each line
begins with the source file line (record) number, up to four characters zero-
suppressed, no decimal, right-justified, and followed by two spaces, as
shown in Figure 7.7.2.6.1. The remaining 126 character positions on the
line are formatted as specified in Section 4.3. Column positions referred to
in Section 4.3 are relative to the first character of this 126-character format
(i.e., "column 1" or "left margin" in Section 4.3 refers to character position
7).

7.7.2.7 Glossary and Cross-Reference Table Listing Format

The glossary and cross-reference table reports each identifier used in the
program in lexicographic order in the format shown in Figure 7.7,2.7.1
"(CONT.) follows "GLOSSARY" on all but the first page. The page number
at the bottom is the page number of the current page of the report. The

__	 f

,,«

/I

s

,y

366 Appcnrlix C

document number

program name	 .

P R O G R A M	 T I E R C H A R T

NESTING	 STATUS: LINE:PAGF

program	 status:fine:page
tnodulertanra.	 status:Ilna:paye

module name. .	 sra rus:line;page
.	 modufe name •	 status:line:page

modulo name.	 status:lina:page
subroutine name	sta[us:line:page

.	 module name . status:line;page

r

t

roman numard!

Figure 7.7.2.4.1. Tier chart (Eating format

docurrrem number

pruyrem Herne

M n D U L E S T A T U S

SUMMARY:
TOTAL MODULES IDENTIFIED: rrnnn 10ft

NON-STUB MDDUL^S: rrnnn mn$
STUD-STATUS MODULES: rrnnn mm',Y.

IDENTIFIED, BUT NOT ;,£EN: rrnnn mm%

MODULES IN STUB STATUS:
rnndule name	 litre; pay?

module name line:paye

MODULES IDENTIFIED GUT NOT PROCESSED:
module name	 , line: /aye

moelo a name Rne:payc

r^
^f n

rornon rwmerel

Figure 7.7,2.5.1. The stub-status report

iii
rloturnew member

FILE: fife name	 P`

h
line	 C)
Jine
line

176 characrers —

Jine

Page

Figure 7.7.2.6.1. Page format of procedure and intermodule text listings

Appendix G 369

name Field extends to 32 characters for each identifier. The t ypt, designator
begins immediately (one space) after the name and is ore of the following:

(PROGRAM NAME) :

(PROCEDURE NAME):

(SUBSOUTINE NAME):

(FUNCTION NAME):

(MACRO NAME):

(IDENTIFIER):	 -

Afte.. one more space, the text dr finition, if any appears in a corresponding
LE',-_SE. ..statement, follows. The fine: page designation or, the name line
gives the line and page numbers of the LET ... BE ... s?atement (this is absent.
if the identifier had no LET. ..BE ...). Beneath each name line, the line: page
designators list all the locations of appearances of that identifier.

7.7.2.8. Statistical Summary Format

The statistical summary format sketched in Figure 7.7.2.8.1 permits
printing of the numbers of occurrences of keywords, module source lines,
intermodule text lines, histograms of module and text block lengths, and
ether statistical data, as specified below.

The statistics printed under "N0.18ER OF SOURCE LINES" are

IN MOD;ILES:

NO. OF MODULES: nnrrn
TOTAL LINES. nnrrn	 rnrn%

COMMENT STATEMENTS: nnnn	 rnrn%

UNCOMMENTED STATEMENTS: nnnn	 in
MIXED STATEMENTS: nnnn	 nrrn%
TOTAL STATEMENTF: nnnn=100%

CONTROL STATEMENTS: nnnn	 rnrn%
NON-CONTROL STATEMENTS: nnnn nun%

AVG LINES/STATEMENT: n.n
AVG STATEMENTS/MODULE: nn.n

AVG LINES/MODULE: nn.n

IN TEXT BLOCKS:

NO. OF BLOCKS: nnnn
TOTAL LINES: nnnn nnnn%

AVG LINES/BLOCK: nrr.n

Fields designated as nnrrn or mm, above, represent numeric 4- and
2-character width outputs, right-justified, zero-suppressed, no decimal.-
Other designations with decimal are as shown. Comment statements are
classified as any statement with '<*' in the keyword position.

w
n

k
n

document number

G L O S S A R Y

name	 type	 text deffid6on line:page
IN module name, PAGE page	 -

line	 lira	 fine

parne	 type	 texr detlnition	 .	 dne:page
IN module name. PAGE page

line . . .

1m9e

Figure 7.7.2.7.1. Glossary format

r

yt

n

WV1

dotuerrerrt number 	 .

prayraru name

5 i A T i S j I C A L S U M„ A K Y

NUMBER OF SOURCE LINES: nrnn-lGO%

L-NGTH STATIST ;CS:

KEYWORD, MODULE NAME, AND IDENTIFIER REFERENCES:

l;uye

I

Figure 7,7,2.$.1. Format of the statistical summary

_	 ^	 M1

372 Appenriix C

i	 Within the "LENGTH STATISTICS" entry are printed histograms of the
form

!	 MODUL93	 INTERMODULE TEXT

6 -10 :.rrr	 6 -10:.r

l i- 1 5 :.rrr	 1 1- f 5:.rr

16 - 20:x	 16-20:.rrr

21-25-,	 21 -23:.rr

26-30:	 26-30:.r

31-35:	 31-35:

36-40:	 36-40:

OVER 40:	 OVER 40:

The x designators in the histogram denote that characters will he printed,
nominally one for each five lines counted; ii fewer than five appear at the
last place, "A," "B," "C or `b" appears. The designations are

A =1 ^t

a=2
C=S
D=4
E=a

In computing; text block length statistics, # #, # # #, and # n signals
are not counted, but do acid to the total source line count.

Under "KEYWORD, etc.," the following statistics appear:

TOTAL REFERENCES: Yomn=100%

MODULE REFERENCES: nnnn omn%

IDENTIFIER REFERENCES: nrtrtn nine%

IN TEXT- nnnn mm%

IN STATEMENTS: rutrrn mm%

KEYWORD OCCURRENCES: nrrun=100%

A60RT	 nnnn rnrrr

Each of the CRISP keywords is printed in alphabetic order in columnar
format across the page.

END OF SPECIFICATION

APPENDIX H

DEVELOPMENT PROJECT NOTEBOOK
CONTENTS

The Project Notebook, described in outline form. in this appendix, is
primarily an administrative and management tool. Pertinent technical
information regarding software design, testing, operation, and use appears
principally in other documents outlined in this. set of appendices.. Instead,
the Project Notebook described heron provides a centralized record of
current and archived material related to the production of that software.

The Project !Notebook is an informal, working-level document:
handwritten notes, typewritten memos, etc. The arrangement of material
suggested below ranges through the most useful project management
information, in terms of aiding the project manager in his function. Figure
I•I-1 is a top-level view of the notebook organization.

The primary purpose of the notebook is visibility into the current
development status. However, shine of the items included in it ic.o., the
.work breakdown structure) are more directly related to estimations of
manpower, resottrees, and schedules; others (e.g., memos, minutes, decision
log) record data that may he needed for reference later in the project; still
others (e.g., change control log, slan&rds waivers) are project control
mechanisms.

At project completion, the archived material serves as a means for
assessing overall produ^Jivity figures, costs, and the utilization of resources;
it also provides useful information that can guide the formation of better
methodology standards and more acciurate scheduling and costing methods.

373

r

c,s
^	 I
a

r

m

K

it

Standards	 ,

Waivers

to
internal

Change

Control

Development
Project

Notebook

1	 5
Organization	 Progress / 	Development	 Project	 An
and	 Status	 Monitors	 Bulletins	 SV
Resources	 Reports

2	 4	 6	 8
Wnrk	 Minutes	 Decision

Schedule

	 il
	 Meetings

Figure H-1, Suggested organization of the Development Project Notebook

Appendix H 375

In lar a nro'ects the notebook ma well re uire several volumes
perhaps one topic below for each. In. smaller projects, a loose-leaf hi-ildee
with index-tabbed separators may suffice.

If facilities and resources are available, much of the material may he kept
and maintained in computer files (e.g., the tier chart and work breakdown
stru l-ture). In any case, the material must . be conveniently at hand for
viewability on demand by the project manager or others, and must record
the information in an easily usable form.

r

DEVELOPMENT PROJECT NOTEBOOK

Suggested' Contents

FRONT MATTER

Title Page. Provide a title page containing (1) project identification
number; (2) program, project, subsv,tem, and system titles; (3) PROJECT
NOTEBOOK; and (4) name and organization of custodian.

Directory, List the sections of the Project Notebook by volume number (or
file identifier). This directory is probably not necessary if the topics all fit in
one notebook (or file drawer) with appropriately tabbed indices.

CONTENTS OF PROJECT NOTEBOOK

1. ORGANIZATION A`.D RESOURCES

Provide an organizaton chart and role statements as needed. Identify the
manpower, dollars, and other resources available, and those needed to
complete the development. Display a profile of these resources as a
function of time.

2. SCHEDULE

2.1 Current Schedule

Provide a current high-level "master" schedule to show the committed
baseline, controlled milestones (e.g., project review dates), and supporting
major achievements during the development. Maintain current lower-level
schedules keyed to work breakdown structure tasks identified and described
in Section 4, below. Date each page of the schedule, For each line item,
show start of work and the period(s) thereafter until milestrwe achievement.
Distinguish unachieved from achieved milestones. For example, designate
original milestones as unfilled deltas, to be filled in when achieved.
Distinguish slipped milestones, say, as inverted deltas on the same schedule
line. Identify work periods as, for example, horizontal parallel lines from
start of work (broken, if there are periods of inactivity) to the delta. Darker
between These lines to indicate progress.

^,r

Appendix H 377

2.:R Significant Notes	 '

Record reasons for current slippages (unless contained in progress reports
archived in Section 3, below), assumed contingencies, and other schedule-
related matters as needed to indicate the current plan or to facilitate
project operations.

2.3 Schedule and Note Archives
Retain outdated project schedules and schedule notes for reference

needed later during this project, as well as for historical purposes.

3. PROGRESSISTATUS REPORTS

Insert the regular progress reports written by project members to project
management, or by project management to higher management, the
customer, or other organizations. Retain past reports for later reference
during this project, as well. as for historical purposes.

Such status reports should record (1) significant milestones achieved; (2)
change in development plan and rationale for change; (3) resource
expenditures; (4) activity; (5) forecast of activities; (6) computer utilization
figures, such as computation costs, numbers of debugging runs, etc.; (7)
progress monitors, such as percentage of total milestones achieved, pages of
documentation, lines of code, etc., generated; (8) problems and potential
problems; (9) other information "for the record.

4. WORK BREAKDOWN STRUCTURE

The work breakdown structure (WBS) contains necessary information to
provide visibility and control, using quantifiable relationships and
interdependencies of resources, schedule, and technical performances.

4.1 Task Hierarchy
Organize and display the software development effort as a tree hierarchy

of work packages Masks) that are significant, finite, and manageable, with
quantifiable inputs, outputs, resources, schedules, and assigned responsibili-
ties. Each task should ideally require the same effort.

4.2 'Cask Descriptions

Describe each task in the WBS in a uniform format. Include., as a
minimum, the following: (1) date the description form was completed; (2)
revision number of the description; (3) WBS task title and Dewey-decimal
identifier in the WBS hierarchy; (4) responsible individual; (5) duration,
planned and actual; (6) task description, or brief identification of what the
task is intended to accomplish, what the task is part of, etc.; (7) schedule
with start and Finish dates, including appropriate milestones for task

,F

378 Appendix H

elements; (8) task budget or time-phased manpower by skills categories
necessary for task accomplishment, including supervision, design, coding,
testing, documentation, and support services; (9) task scope, or estimate of
lines of code, number of flowcharts and narrative, etc.; (10) inputs required,
such as documentation, other task outputs, hardware, or other resources
that are necessary to accomplish task, including need dates for each; (11)
task outputs, interim and final, such as reports, supporting documentation,
design documentation, operating code, listings, etc., including output dates
for each; and (12) task interfaces, such as common software, interchange-
able modules, or other relati,anships between this and other tasks.

4.3 WBS Integration

Display task interdependencies in some suitable way, such as PERT or
schedule networks (cost or time). Identify critical-path tasks and float times.

4.4 WBS Archives

Retain previous WT).; task descriptions, etc., after updates for historical
purposes.

5. DEVELOPMENT MONITORS

5.1 Tier Chart

If not contained in Section 4, above, maintain a current Her chart of the
developing program. identify modules by category for status reporting.
Such . categories might include: (1) module approved into project change
control; (2) module completed, but pending project approval into internal
change control, or being reworked for reapproval; (3) module exists in
preliminary or look-ahead form in SDL; and (4) module identified in
program tree but not yet seen by SDL. These categories apply to design
items, documentation items, coding, and testing.

5.2 Production Log

Maintain a log or set of logs that summarize the current production
status and disposition of resources and materials. This part of the notebook
should record (1) the traffic and custodianship of documentation items,
data, program tapes, and disk files; (2) resources expended (manpower, CPU
usage, number of debugging runs, etc); (3) implementation statistics
(numbers of lines of code entered, altered, etc.); and (4) tests conducted.

Appendix H 379

5.3 Rate Charts
Maintain graphs of cumulative 'activities as a function of project day,

suitable for forecasting future accomplishments, identifying trouble spots,
calibrating productivity, etc. Such plots should display cumulative
milestones, modules completed, number of anomalies discovered and
repaired, schedule days, and manpower.

6. MINUTES OF PROJECT MEETINGS

6.i Project Meeting Notes
Record the minutes of all project meetings. Give the date, attendance,

agenda, and pertinent facts or issues discussed. Identify, action items and
responsibilities.

6.2 Action Item Log

Maintain a current list of all action items, the responsible parties,
assigned compliance dates, and disposition.

k
7. PROJECT BULLETINS

Retain all project bulletins and other pertinent memoranda needed for
project reference or historical purposes, issued within or received from
sources external to the project.

8. DECISION LOG

Record project decisions that hear on later project plans and for
historical purposes. Decisions which may be useful to or influence program
sustaining and maintenance may be recorded here for convenience;
however, these latter decisions should also be inserted eventually into
Appendix 7.10 of the SSD.

9. ANOMALY SYSTEM

9.9 Anomaly Status Log
Maintain a li-;t of all reported anomalies as described in 9.3, below, Give

for each: (1) anomaly number; (2) short problem description, (3) system/
subsystem/program identifier; (4) discovery date; (5) priority category; W
•ssignod responsibility; (7) required closure date; (8) actual closure date; (9)

disposition method and action.

Display graphs of the number of anomalies discovered and number of
anomalies cleared versus date or us..ge time (either here or in Section 5.3).

380 Appendix H

9.2 Anomaly Descriptions
Retain copies of all individual anomaly forms summarized in 9.1, above,

in this section.

9.3 Anomaly Definition

Identify or give a reference to criteria for anomaly detection and
reporting during the production phase (including acceptance testing).
Define priority categories, such as: (A) removal of anomaly is critical for
usage of the software as required; W anomaly degrades performance or
increases operational risks; and (C) anomaly does not prevent software from
being used successfully, but is undesirable in that it requires some user/
operator reorientation or wort:-around procedure.

9.4 Anomaly Reporting System
Describe (or reference) the anomaly reporting system, including roles of

individuals involved. with supervision, testing, correction, QA, etc. Also,
describe any pertinent interfaces and procedures that are used.

10. INTERNAL CHANGE CONTROL LOG

10.1 Change Status Log

Maintain a summary list of deliverable items (modules, documentation,
code, etc.) in conjunction with the tier chart in Section 5, above, or the
WBS in Section 4, above, that records the tr?. 1.1*'j c during development, so as
to keep track of development items among subcontractors, team members,
QA, etc.

10.2 Change Control Log
Retain copies of all development change-request/change-order forms in

this section. Such request forms should contain (1) name of requester; (2)
date; (3) system /suhsystem /program/ module identifier; (4) reason for
proposed change; (5) description of proposed change; (6) seriousness; (7)
method of change; (8) estimated resources required; (9) analysis and
remarks; (10) availability of required resources; (I 1) constraints on
resources; (12) related changes requested, implemented, or to come; (13)
need date; (14) priority; (15) approval or denial and reason.

10.3 Change Control System
Identify or give a reference to criteria for change control action during

the software development phase. Describe (or reference) policies and
procedures that effect such changes, and include roles and interfaces of

Appendix H 881

individuals involved with supervision, design, coding, testing, documenta-
tion, etc.

11. STANDARDS WAIVERS

11.1 Standards Waiver Policy and Procedure

Record (or reference) the policies and procedures regarding waiving of
standard practices during software development, including; requi, sd levels
of authorization for the various standards imposed.

11.2 Standard Waiver Log

Retain copies of all Standards 'Waiver Request forms in this section. Each
waiver request should contain (1) name of requester; (2) system/subsystem/
program /module name; (3) date; (4) standard to be waived; (5) scope of
waiver; (6) reason for request; (7) description of alternative to standard and
justification for use; (8) approval or denial.

.^e

1

1
5

ODA"

APPENDIX I

OPERATIONS MANUAL CONTENTS

This appendix contains an outline of topics typically considered for
incht.5ion in a Software Operations Manual (som). The items listed are not
exhaustive, nor are all cf those given necessarily applicable to a particular
given operator guide. Rather, the topics herein contained are those that
should be considered as candidates for inclusion in such a giiide.

As in all documentation, the preparer must address his material toward a
set of intended readers. For operational itse, this orientation should
primarily be toward the operator during an actual nin of the program,
Secondarily, the manual should serve as a training base for operators.
Finally, it should serve as an information medium to those who would read
the manual to survey the appropriateness and adegvacy of the program for
subsequent operational activity. The outline below is an attempt at
providing a logically and hierarchically arranged checklist.

This text has repeatedly recommended that manuals be written at least in
a skeletal form from the top clown (in detail hierarchy) concurrently with
the writing of the SSD hierarchy and with the construction of the program,
so as to provide timely information among developers, to permit the
operator manual to be tested concurrently with the prograin, and to avoid
last-minute efforts to complete the documentation prior to software
delivery. The emphasis in writing the operator manual is on providing
complete and effective information for exercising all of the options and
operational functions of the program. The timely gathering of information
and writing of technical material for the manu«l, however, must not be put
in series with the formal, more clerical aspects (such as typing and
reproductioij) of a documentation activity.

As the program construction proceeds in a top-down manner, operational
information in greater and greater detail typically becomes available. if

'4.1

383

384 Appendix !

compiled and written into the guide during this time, the information level
will tend to aid in assessing whether the emerging program falls within its
operational requirements implemented so far.

FiErgure 1-1. is a top-level view of the suggested document organization;
greater hierarchic detail is provided in the written outline that , follows. This
outline contains guidelines after each topical heading for the type of
material to he inserted at that point. in full, the topics constitute Class A
detail.

As presented here, the operator is not assumed to he the user of the
program; therefore, there are no sections devoted to applications. When
operations personnel are intended to perform some of the functions of
users, the topical outline in Appendix F can serve as a guide for selecting
such material as appropriate for inclusion in the manual.

The operator typically receives requests, instructions, data and
parameters for running the program and for performing other services
having to do with interfacing the program capabilities with applications
and system-level personnel. This often includes such things as scheduling of
runs and resources, maintenance of tapes and files, loading of program
elements and data, policing authorized use of the program and data,
monitoring execution, recording performance characteristics (e.g., costs,
number of users, anomalies, etc.), recognizing and reacting to alarms, and
routing of the program outputs.

In orienting the material toward the intended operators, use the
"robotic" instructional approach. Make the manual "stand-alone,"
extracting necessary operational procedures from existing references if
needed to guarantee stand-alone operation. Other references, supporting
narrative, examples, etc., may he included as necessary, and are e-tcouraged.

In generating an SOM to the outline attached, arrange material global to
a se, of subsections under the introductory superheading fcr those
subsections. Use short instructions with specific examples that actually run.
If syntactic variables are used to illustrate a generalized form of input or
output, clearly display and explain the syntactic convention and the valid
substitution values of each syntactic variable. Then give valid examples on
the use of the form being described.

Keep the manual as short as possible while making it say what needs to
be said. Strive for clarity and completeness in exposing the material, but
tempered by conciseness.

So +ces for the material in this appendix are [s] and [44] through [46].

Ir a

P
tfi

SOM

Figure i-Y. Graphical outline of the SOM

,.... ,....^_ ,tea.-,.ry« <.n^.r,ae::.s,.^z^•:J.^,iae^..^:`^'•, ,^...•';s, .,.._.^cue!^.^^:a^ ss...+a;':u:KGs'v.-^_.is.^'asors-.y3s:ae3u^.er_^L[:,3.spa.a
'+.d.Fr.^naw^=u,:z:^i,YC:ir 44

386	 rli ►pemli.r t

OPERATIONS MANUAL

Detailed Table of Contents

FRONT MATTER

`I'ille Page. Provide :a title Image contaitair ►1; (1) document nunallm (2)
progr:aar ► , St ►bsystem, and system titles,: (:3) SOFTWARE', OPE.11ATtONS
MANUAL: l•t) iiui ► lie,'icm ctate: (5) anthor and management :authority
Signatures, :i_S aptnollriatc, and (6) Iuh ► lishing organization. Signatrtre or
publication al)proy al should be silliplied Only at 5S13 couapletion. The cfato
reflects the time of latest eh:utge, to :am , item ill the manmal.

Abstract. Give a brief abstract that st ► nnnarfzcS the purpoSC and usage of
this marutai.

Charge Control Information. Provide ;a statement tint specifies the
current Ic1'CI of cha ► a ITe control :utthnrit y, and describe procedures for
Submittin;l chattga requests ;u ►d reporting :anomalies.

Distribution Information. Provide information that tells how copies of this
ducun ► eat may lie obtained.

'fable of Contents. Provide : ► detailed tal ►le of contents for the m auual,
which lists section number, title, and page of every item with a heading.
('Phis is probably the last-soj)plicd item ill gencrating the manual)

TEXT OF MANUAL

1. INTRODUCTION

1,1 General Description of the Manual and Its Use

Des, ribe the purpose of the mannai and the Salier ►t fcattn•es involved
with its operation. Stunnaarize the specific uses of the manual, to w1lom it
is addressed. why it is neecssary, ions • .and when it is intended to he used,
the necessary level of operator expertise, anti, finally, u > here one stray go to
obtain additional relevant material.

Also appro l)riate in this introduction are back-ground information,
history, relationship, to other programs or systern, awl other operational
matters.

: mu.-nrfix 1	 387

1.2 Orientation and Scope

Sit ill the extent of the material given, the (edge of ,ahplic"ation of
the program, the openitional I)ersonnel re ►luired, :ind major con traints in
operathig the prograan.

1.3 Applicable Documents

Identify ;all documents, controlling or informational, which a1.lply to,
ret;t ► l.Mv, or extend the operation of tl ►c. Iu •ogratll. Include a brief statenuvnt
of the content of each document, its ty 1 w (e.g., SSD), and InuLu►se.

1.4 Operational Overview

Introdnee the operational environra ► ent, the program fnnctio11, and the
1yI1e and content of data inp ►► t, processed, generated. or trar►sn ► itteci.
Describe tl ►e operator rr;tie „itf ► respect to usage of the pro grant, identify
the salient ch:arac •teristies of the 1 ► rogratn, such as: (1) real-tin ge, interactive
or hatch; (2) c..onlpnlaticmal or c!ata manipulative: (3) devviopmlental or
operational. Iclentify the ventral ivstcr ►► or snhsysteatt e ► tyil•onnwnt
(hardware anti software) in ►viaich the prograttl operates (a block cliagr;nn or-
(1:11.1-flow diagran ► is useful here). heave details. however. to ensuing
sections of, tl ►c7 rnanoal.

1.5 Guide to the Use of the Manual

I:^plain how this 4 -aride i.c to he lased in operatinti Tile program.

2, STANDARDS AND CONVENTIONS

This section describes stanrdards imposed on or by the olxrating
orpinixation, and con • entio ► :, (c.t;., notations and ternlinole>kw) a11111ied in
the nl;uural.

2.1 Operations Organization Standards

Identify or reference applicable existing organizational stanlard
operating procedures, state any exceptions to these standards necessitated
by operational considerations, :111(1 provide ;tn ► • special standards recptired
for effective operation of the program.

2.2 User Interface Standards

Identify or reference ;tpplieahlc existing 1wovechlr;11 or liaised standards
partainiiig to the nser/oller;ations interface, state a ► av exceptions to these
.r-t:lndardr• negot41ted as required for usage or operation, ;and llra ► ide any
special standards regoire d for operators to interface properl y with users.

388 Appendix I

2.3 System Standards
Identify or reference applicable existing system standards relative to

operational interfaces, state any exceptions to these standards, and Describe
any speciai standards pertaining to the system.

2.4 Manual Conventions
Define notations, terms, and other conventions or assumptions used

generally throughout the inanual. Include such items as ways of
distinguishing literal fields from syntactic variables in descriptions of
operator input and output formats, non-standard mathematical usage,
special acronyms, etc.

3. OPERATIONAL ENVIRONMENT AND INTERFACES

This section describes the operational aspects of the prograin that
highlights man (operator)/machine/system/software interfaces. 'Phis section
is not procedural but environmental.

3.1 Operational Data Flow
Descrihe the data flow from users) to operator(s), through the system

and the prograin, anc! hack to the user(s). Describe the role of operators in
effecting this flow, identify operational interfaces with users, the system,
and library and support facilities.

3.2 Operational Environment
Introduce the general environment within which operator: interface with

the users, the system, other software, and with the program, This section
should focus on the operational environment in both static and dvnamic
terms. The Static portion of the environment is defined by the relationships
between the program and its interfacing with the operator, the system in
which it is imbedded, and, perhaps, other systems with which it
communicates. Data flow and operational modes describing system/
subsystein/operator interactions in(] sequences define the dynamic
environment.

Identify (.I) interfaces aniong operators (if any); (2) the location of
operators; (3) the sources of operational data; (4) the media used by
operators to control exccntion, input data, and receive output; (5) nialwaI
tasks, etc. Describe operational interfaces with management, if appropriate.
Defer operational features and procedures, specific formats, units, etc.,
until later sections.

Appendix 1 389

3.3 User Interfaces
Identify and describe the interfaces between operational environment acid

the program user community. Discuss, as appropriate, forms, interfacing
procedures, offline storage media, data input metho(ls, modes of delivery of
output to users, niantuul tasks, etc. Identify those items that are unique to
this program anc.l trot covered by an overall s ystem description or governing
document (if this 111anual is not to he self-contained). Defer Deer
procedurcS. formats, units. etc., to the user manual (Appendix F), unless
user and operational guides are combined in one manual.

3.4 System Interfaces

Identify and describe interfaces Between the operational environment and
the hardware and software systems. DiSCLISS data and control input media
and devices, output devices, online and offline mass storage media, special
devices. systcm software interfaces, system software serv ices, etc. Identify
protocols with systems-level personnel required for operations, such as
private file assigmneots. assignment of jot) code~, billing, etc., but leave
procedures for Section 5.1.1.

3.5 Data Base and Library Interfaces

3.5.1 Data Base Interfaces

Describe all data files in the data hale that are referenced, supported, or
kept current by the program, itisofar as these are visible to the operator(s)
of the program, Include the nnme atul purpose of each Such file, but defer
detailed formats to an appropriate appenclix (if these are tueces.,ar y for
operation), If there are offline or manually maintained parts of the data
tease that interface with program operations, describe these elements.

:3,5.? Lihrary interfaces

Describe any appropriate operator interactions or interfaces with
document libraries, software (program, subprogram) libraries, or offline
storage Ifhraries. Reference source clocuntents for data preparation and
editing aids, output data monitors and diagnostic aicls, etc., as applicable to
operations.

4. OPERATIONAL FEATURES

This entire section documents the end-to-end operational characteristics
of the program to a level of detail required for stand-alone usage of the
manual. This section should describe each of the operator functions and
options foll y, giving examples of each. annotated and explained. Usage of
graphic material in explanations is encouraged.

i

390 Appendix 1

4.1 Operational Overview and Capabilities
Introc'uce the detailed operational ftmctional characteristics to he

discusse(l ill other subsections of this Section by giving all oven-iew of
oper;ttor functions. ccperationai concerns :utcl activities, and program
nperational char•acteristies. 'Typical coverage at this point might ackiress the
sh-twture, 1/0 atlrl clata flaw, operational categories, Hordes of operations,
security/protection me;ISUres. options, etc., as viewed by the opewttor(s).
Use gr;Iphics to aid reader co lit prehension,

4.2 Inputs, Operations, and Outputs

Describe each of the fcatnres of , the program. as visible, to or of interest
to, the ollerator(s); suppl y sufficient detail that the operator(s) may apply
the procedures ill 5. (Pertinent input, operations, aticl output
elulnicteristies will normally he integrated together ill a narrative fashion,
feature by feature. Ilcnvcyer, the outline below is set;rnented into three
Sep; ► rate subsections so as to delineate specific items to be c'ortsiclered for
cliscussinn,)

4.2.1 Operator Input Characteristics

Define the requirements of receiving and processing user requests, input
data, par: ► meters, ;uul controls, 'Ty pical consideraticrnS are (1) pttrprase or
conditions, e.g., to make needed revisions to data base: (?) fr •equenev. c.,r
perioclic;dh', r:anrlonll y, nr ,ts a ftnletion of an nperatinnal situation; (3)
origin of re(Iuest, e.g., neh york operations, program office, etc.: (-1) meditim.
e.g., punched card, manual keyboard, magnetic tape; (5) restrictions, e.g.,
amnuttt of data. priorit y, use authorizatiotl, sectar •ity limitations; (6, quality
control, e.,g., need for checking reasonableness of input chat, ► , etc.; (7}
disposition, e.g., requirements fur rct`cntinn, r•Vturn, r•cleztSC. or rlish•ibtition
(it' input data received.

4,2.1,1 input Fornmt

Proy icle the kwow lOrms and s yntax of operator hynts as necessmi.
lnclucle a clescr • iptktn of each entty, with micguate gra ill IImtical inks and
conventions used in each case. Distinguish literal illput from syntactic
varkible identifiers. Typic;tl ennsideratinns inclncle (1) hength. ;IS characters/
line or characrers/itcatt: (2) forrllat, as, for example, left-justifie(l five-form
with spaces between itculs; (:3) labels, tags. or- Hctltifiers; (•f) scgttence. or
the order of plac'crnetlt of items ill the input; (5) punctuation, of- Ilse of
spacing and .symbols to denote start g ild end of irlprlt, of lilies, of data
cyroups, of itculs, etc.; ((,)) rules governing tile. use of grnttps of par• tfcnlar-
char•acters or' cotlthin;ttintls of p; ► rameters -if input: (7) the vocabulary of
allowable combinatioils or codes that must be used to identify or compose
input items; (S) units and conversion factors; (9) optional clements and
repeated ciclnrWS; U 0) contrnls, such as headers or trailers.

Appertrlir 1 391

4.2.1.2 Sample Inputs

Provide specimens of each ty=pe of complete input form used by the
operator. Such specin ► cns should include, as applicable: (I) control or other
]reader information denoting class or type, date and rime origin, by the
program, (3) trailer. denoting the end of input and other control data; (4)
indication of ontissions, i.e., classes or types of clata that nTay he omitted, or
are optional; (5) indication of repeater) data, i c., classes or hypes of data
that n ► ay be repeated, and the extent of such repAitiom

4.2.2 Operational Characteristics

Detail tl ►c operational characteristics of the program, and identify inputs,
controls, and outputs associated +vith each. Typical coverage M IMI address
requirements to monitor indicators, devices, ctc., and to interact with the
program, special devices, Other operatorS. users, rt r11.

4.2.3 Output Characlerklics

Describe each of the output forms or other program responses to the
operator in sufficient detail for his effective interpretation in the started
situation. Typical considerations include (I) Ilse, e.g.. by whom and for
what purposes; (2) frequency. e.g., weekly, periodically, or rnt demand, (3)
variations, e. g., modifications that may appear oil the hasic output: (4)
destination, e.g., which users or wort: area; (5) meditrtn. e.g.. printout,
ptmclTCd cards. CRT display; (G) duality control, e,g., requirements for
identification, checks for reasonableness, authorization to edit or correct
errors; (7) (list Mint ion, e.g,. requirements for .etcntion or release,
distribution, transmission, priority, security handling, and privacy
considerations.

4.2.3.1 Output Formats

Provide a lavout of each operator-pertinent output, with C%planator•y
material keyed to the particular parts of the format illustrated. Include (0
header, e.g., title, identification, date, number of output parts, etc.; (2)
bode, c.:;., information that appears in the hods or test of the output,
colttninar hoardings in tabular cdisplays, and record layouts in machine
rearlable Outputs, noting which items tnav he omitted or repeated; (3) units
ana conversion factors for nuTUCric fields; (4) legends for abbreviated slat: ► ;
Q.0 ;tccuracya (C) trailer, e.g,, summar y totals, end-of-output labels, etc.

4.2.3.2 Sample Outputs

Provide illustrative examples of cac• h type of operational output. In each
case, discuss (1) the meaning and use of control data applied: (2) the source
and characteristics of the data processed; (3) pertinent facts about the

calculations n;acle by the software: (40 characteristics, suwh as the presence
or absense, of items under certain other conditions of the outpr ► t generation,
other ranges of input values, or different units of measure.

392 Aplp ► ewfix I

4.3 Performance Characteristics

Describe the performance characteristics of interest to the operator,
including where appropriate: (1) quantity of input and output: (2)
throughput rate; (3) cost of service; (4 l turn-around time; (5) reliability; (G)
duality of sew;uc.

4.4 Security and Privacy

Descrille security and privacy measures implemented in the program that
restrict operations or guard data integrity via ;ruthorization keys, priorities.
protocols, etc. Instruct the operator what features are operative within tile
several authorization levels, and identify penalties for inadvertent or
rnaI it: irrlts illisnse. Provi(Ic wanting and cautionary information. if

appI icrhle.

4.5 Operational Constraints

Describe specific restrictions that are placed on prograetll features and
Options by the program (internal) (resign or by the operational or system
environmctlt (external). Cive a brief statement of supporting rationale for
such cotlstruints and limitations, if deCmed to be of valrlc in operator
understuncling. Defer descriptions of procedural constraints to Section 5.5.

5. OPERATIONAL PROCEDURES

1'bis section of the clocillilcilt should prcvide a concise and complete
specification of the operation al procedures Yn be followerl by all operator
for initializing, running, and terminating program operations in a correct
a;lrl efficient. inantler. Adclitionall y, material should he proviclecl that will
allow in operator to recognize alarms or improper operating conclitions
,tttd to initiate recovery or reinitializatiorl proecdures wit l a tllillimunl
impact oil overall program operations,

Tlie material outlined here rllay be irltegratecl as appropriate, rattler than
se;rmeliterl as dehnc;ated ill the hierarchy below.

5.1 Setup and Initiation

5.1.1 Protocols

13escribe tilt; operations protocols necessary to initiate a run. suhmit
input. and receive outpui. Discuss, as appropriate: (1) opening a computer
wort: order; (2) assignment and use of passwords and account codes; (3)
authorization to rise wstein and/or data base files; (4) assiglln?ent of
permanent private files; (5) instructions for pickup or deliven' of I/O
interactive and butch protocols, etc.

Appendix I 393

5.1.2 Setup Procedures

Describe the setup procedures as a series of sequential steps or checklist
that must be perforated ill preparing for operation. Identify all egttiptltet1t
(computer, standard peripherals, special or unique hardware. etc.) and
software required for successful operation.

5.1.2.1 Hardware Setup

Provide complete instructions and procedures for connection (or
disconnection) of hardware Clements required for each given application.
Describe the hardware config*nration for each ill terms of modes,
operational controls, and data ► flow paths. Include annotated diagramniatie
representations where appropriate. Differentiate between ittpt ►t and outpnt
devices. Specifyattys pecial calibration procedures uecessar y to verify the
operational condition of individual equipment or of the total'systetu.

5 1.2.2 Software Setup

Provide complete instnuctions for program setup, loading, and initiation
of execution. Identify the software to be loaded and the medium on which
it resides. Identifv the peripheral from which the program is to be loaded.
Describe in detail any manual fill procedures to he followed in loading the
software into memory. List arty loader prompting messages that might be
directed to the operator, indicate the operator inputs required to respond
to prompting or to control the loading process. Identify loader responses to
operator input. Provide examples of the form and content of operator
inputs and system responses. Refer to appropriate appendices wherever
applicable.

If different operating enviroantent (system, equipment, or program)
configurations are needed for different types of nuts (such as pre-rum
checkout or calibration runs), then give setup and initialisation proc%dtues
for each. Identify critical operations. alarms, and error messages.

5.1.3 Initialization

As in the setup procedure, describe the initialization process in terms of
a ".'ries of sequential steps that mast be performed to properly initialize the
software for execution. Initialization should introduce the software to the
envirotuttent, identifying the control source, tite hardware/software
confiL,uratinn 1/0 constraints, etc. If system peripherals sttclt as c'.isks or
magnetic tapes mast he initialized, indicate the procedures nnm.; sary to
prepare them for program operation.

5.1.3.1 Parameters

Identify standard, nominal, or dcfanit values of parameters already
incorporated into the program. Specify parameter values that the operator

394 Appendix !

is required to initialize wid give instnictions for doing so. If initialization
can be performed from a remote source, reference the remote operations
manual, Idc litifv at ►y constraints placed on parameter va lt ►es with rggard to
any specific mode of operation, such as maintal or automatic operation.

5.1.3.2 Calihratinn

Initialization may also require the calibrating of special equipment that
can only he I ►erfonned in conjunction with the operating software. Specify
the procedures to b e, follom.,ml during such a calibration.

5.3,;3.3 Operational ITtteraciintt Dttrilig 1 ► litialiia6011

I..iSt prompting Messages that may he directed to the operator. Indicate
the operator inputs required to respond to prompting or to control the
initialization process. Identify the peripherals to which system output is

f	 directed and list the responses to operator inputs and program responses.

5.2 Input Handling

Describe the procedures for ,gathering input data and patting it in the
format recpiired for operating the program. Such procedures might include:
(I) the method of extracting data from source doctiments Or files; (2) usage
of data preparation and editing .lids or other software; (3) usage of special
cervices, such as keypunch operators; (4) a checklist to determine rapidly if
everything has been done; i5) special considerations for alternative inptit
media; (6) special considerations for hatch vs. interactive operation; (7)
duality control, e.g.. instructions for chLcking reasonableness of data,
actions to he taken when data appears to he received in error.
doctimentation of errors, etc.; (8) disposition, e.,., instructions for retention,
return, release, or distriln ►tion of input data received; etc.

5.3 Operational Control Procedures

5.3,1 Operational Control

Operational control denotes program control after settip, initiation, and
initialization have been cOnlplL'ted and prograin execution has hegiin.
During execution, especially in real-time operations, operator interaction
with the system may no longer he confined to a series of sequential inputs,
hut, 'Wstead, may he described as a reaction to system behavior.

If processing requires or permits interaction or monitoring by the
operator, prov ide instructions for terminal operations. Describe (1) data or
parameter input devices anti procedures; (2) control (1-vices and
instructions; (3) cassette/tape device operation; (4) not interrtiption/

5
ai
'wS

h^—

Appendix I 395

recovery ; (5) special terminal devices, e.g.. plotters; etc. Provide samples to
illustrate each.

5.3.2 Termination

Describe procedures for terminating operations as an orderl y, seque'dial
series of steps. Differenti ►te between normal teTll]illatiOn and abnormal or
emergency termination, and describe the conditions as^,oeiatecl with each
type. Describe briefly the effect of termination on 1/0 devices so that
peripherals are not dcailocatecl prematurely. If a summary of program
activity is available, specify the procedure for generating such an activity
report. If system prompting is provided, list the messages and identify the
operator inputs required to respond to each. Refer to appropriate
appendices if applicable. Give examples as appropriate.

5.4 Output Handling

Describe policies and procedures within the operational eltvironitt.:.t fcr
handling the output data. Typical instructions cover (1) hanthing. disposing,
disseminating, and routing of the various forms of output, (2) storing or
archiving of output items for their later retrieval; (3) status reporting based
on output parameters; (4) extracting and suinniarizing of information; and
(5) checking, ancliting, or inspecting the output Plata.

5.5 Operational Restrictions and Limitations

Identify and explain exceptions and restrictions in the procedures for
receiving or preparing or entering input, operating the program, or
I t:►ndling the output. SUCK] Material Wright address (1) limited availability of
input devices; (2) security considerations; (3) processing cost vs. time-of-clay
limitations; (4) restrictions on amount of input or output; etc. The
restrictions and exceptions discussed here are restrictions in operational
procedures, rather than in the program applications.

5.6 Interrupt, Recovery, and Restart Procedures

If not adequately covered in other parts of the manual, describe (1)
detection criteria and procedures for at ►ontalous prograin behavior; (2)
meanings of error messages, codes, or indicators; (3) prescribed emergency
actions b ' v the operator; (4) procedures for correcting input errors.. i5)
Procedures for restart/ recovery. etc.

Describe the type and form of status and performance parameters
displayed by the program. Identify the peripherals to which such
information is directed. Include tables or charts that list and deflue status
and performance output. Include examples of actual display output, if
available.

396 Appendix I

Provide t ► convenient nnethod, such as a decision table, for identifying
single and multiple points of failure, and state what operator action should
he performer) +with each type of' failure. List the steps to be taken b y the
operator for each methorl of recover, and reinitialization. Provide a list of
operator inputs and expected systen ► responses. Include examples of each
type of recover, and reinitialization procedure. Refer to appropriate
ai pendices where applicable.

6. OPERATIONS SUPPORT

This section of the operator manual contains instructiotns for providing
the support functions necessan , to the clay-to-day operation of the sofhvare,
not covered by stanchird procedures or by environmental considerations
previousl y described.

6.1 Operational Utilities
Describe operational utilities used for suppori'ing program operations,

and give procedures for using them (or references to such niannals, if
;;encral-purpose and readily available), as applicable. Such).utilities might
inchtcle: (t.) file nunnaye it) cfit and maintenance facilities; (2) clata conversion
software; (3) program test benchmarks. test aids, test generators, etc.; (A)
hardware-calibration programs: (a) diagnostic or debug aids; (6) perform-
atice and utilization mDilitors: (!) data editors; etc,

6.2 Management Information Reporting
Describe requirements and procedures for management information

reporting incurred by program operations. Topics in this section might
include such things as (1.) requirements for reporting, e.g.. frequency,
conditions, report type, etc.; (?) accounting procedures; (3) operations
schedules; (4) resource ianagement; (5) utilization statistics; (G) anonnaly
status; etc.

6.3 Logistics
Insofar as it is the responsihility of the readers of the manual to supply

expendable materials for the operation of the program. provide procedures
or references that describe how such materials are to he obtained, stocked,
distributer), etc., unless these are items covered by operational standards
cited earlier.

6.4 Anomaly Reporting
Descrihe requirements and procedures for submitting operational

problem/failure reports to the proper prol;ram maintenance personnel, or
for notifying marnagennent, users, or others of anonialies detected and
repairer! (as art 	 service).

Appendix I 397

7. APPENDICES

Appended material may include, but are not limited to, explanatory
material and references of --in auxiliary nature, inserted directly or hound
separately for convenience. The following suggested topics are typical.
Appendices may be designated as "Appendix A," etc.. if desired, rather than
by the Dewey-decimal system given here.

7.1 Glossary

Give a list of mnemonics, acronyms, and unfamiliar or specially used
terms appearing in the manual; provide definitions for each.

7.2 References

Provide a bibliography of references to other documents appearing in
this inannal. Give a brief indication or abstract of what is being referred to
in each work.

7.3 Input and Output Formats

Provide detailed formats and syntax for operator inputs and outputs,
together with associated response(s) as supplementary material to Section
4.2. Define, as appropriate: () data base 1/0 formats, parameters, and
control characteristics; (2) communications device 1/0 formats, parameters,
and control characteristics; etc.

7.4 Auxiliary Tables

Assemble in tabular form auxiliary reference material needed for
program operations that is better located in an appendix rather than in the
text proper. Display each table in a separate subsection (7.4.0 and

introduce or explain the use of each table narratively.

7.5 Summary of Operations

Provide an abbreviated description of each of the operational features for
the knowledgeable operator. This summary should lie devoid of tutorial
explanations, containing, instead, only technical descriptions or definitive
examples for quick reference. Such material may be annotated to index the
summary forms to pertinent sections of the manual containing cetailed
information.

7.6 Detailed Examples

Display the operation of the program via sample runs from beginning to
end. Show all input, indicate all interactions in a timely sequence, and
display all operator-pertinent output. Give examples of normal and
abnormal rims, and illustrate the procedures followed in each case.

g

'i
^r
j

p

FF

'e`

i

PAGE SLANK WT

APPENDIX J
SOFTWARE TEST REPORT

CONTENTS

This appendix contains an outline of topics typically considered for
inclusion in the Software Test Report (STR). The items listed are not
exhaustive nor are all those given necessarily applicable to a particular
development. Bather, the topics contained herein should be considered as
candidates for ;:overage in software test plans and test reporting.

The STR is a summary of test plans and test results; but it may, in some
cases, also include the test archives (by attachment or separate volumes), if
these are deemed to he of value for historical purposes or for reference in
later maintenance activities. Insofar as test requirements are contained in
the SRD, test plans are included in the SDD, and test specifications are part
of the SSD, the STR need not repeat such material but merely reference it
(when in compliance).

The STR contains the reviewable proof that delivery and acceptance
criteria have been met, that the development phase can properly terminate,
and that the program and its documentation are ready for a formal transfer
into maintenance and operations activities. The outline below, therefore,
covers the major items needed for technical and management review. The
SRD may identify exactly what items of an optional nature should appear in
the STR. However, at a minimum, the STR should he sufficient for
verifying the duality, accuracy, and completeness of the software
deliverables in meeting SRD requirement,;,

Figure 3-1 is a top-level graphical outline of the document organization;
greater detail is provided in the detailed outline that follows.

399

4h
STR
	

O
0

ti.

c;

a

`-4

1

2

3

1
4

Figure J-1. Graphical outline of the STR

Appendix J 401

SOF rWARE TEST REPORT

Detailed Table of Contents

FRONT MATTER

Title Page. Provide a title page containing (1) document number; (2)
SOFTWARE TEST RLPOivr, (3) program, subsystem, and system titles; (4)
publication date; (5) signature block with nm1 ►e of preparer and others, as
required. Signatures are to he supplied at STR completion, bate reflects
time of last change to any item in the STR.

Abstract. Give a brief abstract that summarizes the program test and
acceptance-readiness status.

Change Control Infornurtion. Provide a statement that relates the level of
change control and authority exercised on this document, and procechires
for update.

Distribution List. Provide a distribution list of all parties with need-to-
know statmq of the software acceptance readiness who arcs to receive copies.

Distribution Infor ►►wtion. Provide a statement that tells how additional
copies miry he obtained.

Table of Contents, Provide the detailed table of contents for the STR,
which lists section number, title, and page of every item with a heading.

TEXT OF REPORT

1. INTRODUCTION

1.1 Purpose
Provide a brief statement of the purpose of this document.

1.2 Scope
Define the configuration(s) tested and the extent to which this document

reports on test plans, test results, QA audit findings, exception identifica-
tion, etc.

ff'r.

k

402 Appetie ix J

1.3 Applicable Documents
List all cont.rollir►g documents, applicable standards, etc., governing the

prochiction of the results reported herein.

1.4 Test Overview, Goals, and Criteria
Briefly describe tilt objectives, general philosopin', approach, atld overall

strategy of test activities. Highlight the program futictions, test plans and
goals. operational interfaces, testit ►g etivirmumnit, accepta ► lce criteria, and
QA involveu ►ent. Correlate this material with ret1iiii-cillents stater! in file
SRI]. Identify (Iiiferences between test aild operltiolls interfaces alld
envirt ninietlts that could affect program o1wration or assessmetlt of its
acceptability.

1.5 Test Result Summary
DiSCUSS the various test runs, the extent of these tests, and the results of

the testing activity. Identify major discrep,tllt items or problems, : ► nd give a
brief summary, of the QA audit. Assess the effects that differonces between
the test enwirorinletit :Ill(] file aett ►al operational ellvirtltlilletlt play, have Il.ul
oil the demonstration of c:.11);111ilities. gt,LtL' the degree to which the results
colnpfy with SIID requirements. Summarize resource t ► tilization and
schedule performance, as appropriate to the reviewing authority.

2. TEST PLANS AND CONFIGURATIONS

2.1 Schedule and Resources
Show the acceptance teat schedule wits ► events, milestones, resource

(nl;ulpower, computer, (, fe.) Ittiliz, ► tion, and tiulc-pll;tsed loading of
resources as actltall y inctirred.

2.2 System Configuration
Identify the system configurations t ►sed in testing and QA. State:

differences hetveeu test mid operational configuration~. :tad assess the
impact of these differences oil software aecelatubility.

2.3 Operational Configuration
Identify the operatinmll configurations tired during testing awl QA. State

difl'ererlces between test ,lad operational cc)Ilfigt ► rations, atld assess the
impact of talese differences oil software, acceptabiiit%.

2.4 Facilities, Materials, Support, and Training
Identify the locations and dates of tests, participating organizations,

special test equipment or software, personnel ,kills (user, operator,
developer, clerical), and materials mgtiirecl for test activities (e.g„

hti	 Ne

F.

Appendix] 403

documentation, loadahle program, test data, sample output, expendable
supplies, etc.). Discuss training of test personnel type and level, the use of
inttlti-shift operation, etc., as appropriate to report pertinent support-level
activities.

2.5 Test Criteria and Evaluation
Describe the riles used to evaluate test results, prioritize anomalies,

register QA faults, etc. Reference or restate such criteria given in the SRD,
Cite existing standard testing criteria and SSD test specifications, as
appropriate, identify standard tests and benchmarks. State and describe
exceptions to test standards and standard. tests. Describe how these criteria
fttlfill SI1D requirements, if necessary..

Describe the techniques used for manipulating the test data (manual,
automatic) into a form suitable for evaluation, or for comparison of actual
results with predicted results.

3. INTERFACE TESTS
-.

3.1 System Interface Tests
Describe the system interfaces tested (including 1/0), the software

functions that exercise these interfaces, the tests that verify these interfaces,
and the progression of tests, one to the next, if pertinent. In top-down
development, these interfaces are normally checked early, but informally,
during developmental (correctness) testing. .Citation of the results of
developmental tests may be sufficient here, in some cases.

3.2 Operational Interface Tests
Describe the operational interfaces tested, the software and human

functions that exercise these interfaces, the procedures and test data that
verify these interfaces, and the manner in which progression was inade from
one test to another, if pertinent. Although these tests may have been
simulated during development testing, it is unlikely that the actual
operational environment was verified. These tests, therefore, will probably
require separate demonstration during the acceptance test phase.

3.3 Program Interface Tests
Describe the program interfaces with libraries, data bases, and other

programs, the tests that verify these interfaces, the results of such tests, etc.
In top-down development, these interfaces are normall y checked early in
development testing; separate demonstration for acceptance may not he
necessary in such cases.

404 Ajipenfdix J

4. FUNCTIONAL TESTS

4.1 Operator Control Tests

Describe acceptatice tests exec:'tite:d to ^'urify operator controls and
responses, and (fie extent ;std results of these tests. Assess tile ciegree of
c•ompli.uiee rvil11 software requirenieiits cloctiment and operations nminial.

4.2 Operational Verification Tests

1)escrihc accept<trice tests executed to vvrifv end-to-abet funetiowd
v,tpaitilitics, dia<urnostic features, and Crrcir responses of the prograrti, ;Ind
tilt, extent and restifts of these tests.

4.3 Performance Measurement Tests

ti s ` [di.nttE'v tilt: performance_ llaranwters calibrated or ine.:isured by tests, mid
00111p:1re the results with the t •eclitirec! ear sllex ifiecl ('clines (Sill] orSSI]1.
Assess the degree to wh ich per't'cirrnalice meets lirciyram requirenients au(i
^ 11c('ifiCa l tCit1^.

4.4 Security/ Privacy Tests

If there arc reduirenielits (Sill)) or speeificatioils (SSI)) to demonstrate.
sc+cln'it) /pri g> ac^' I'Vatrtres of the pro"ratri, theta cicscribe the tests wad test
results. Assess the Cegree cif complianev with require?clients ,ind spci'ifica-
tions inililied by this ckwoustration.

4.5 interrupt, Recovery, and Restart Tests

Describe tests and test resttlts that demonstrate cap:lliifities felt' program
interruption and recovery or restart, ;ts recluireci (Slll)1 or spoc'iGc(l tSSl-)1.
Assess the clea rty of conil)hauce with rc'quircitierits and specifications.

5. DEVELOPMENT TEST'S

5.1 Normal Data and Conditions Testis

Snimnarize tile results, extent, and scope of clUVefopnlent (production)
tests performed to verily the processing aigorit.tlrns, Chita structitritt ,g, and
1/0 1111de r ntir •illal input cl;tt;t and norru;tl operating conditions.

5.2 Limit and Overload Tests

Snnlmarire the results, extent, and scope of clevelopnie ► it (praducHoll)
tests performc(l to verify or calihrate; the program response to fitniting-vase
and out-of-range itiptit data, real-tittle olierationat c}verloads, and heyowi-
nornial c0tiditions that reflect on the input ck'namic ra11go of the pro ;raril.

F.

Appendix J 405

5.3 Erroneous Data and Pathological Conditions Tests
Summarize the results, extent, and scope cif development (production)

tests performed to verify or calibrate the abilit y of the progrartt to detect
and recover frcatn errouco ► ts input, real-time operational failures, and
abnormal o1wratintg conditions.

S. DELIVERY READINESS

6.1 Deliverables
Cave ;► t ► imcntory list of deliverable software items that identifies for

each: (1) item; (2) identification nutuber; aatd (3) release date:

6.2 (Exceptions and Liens
Describe deficiencies of the sofhvare as demonstrated by tests,

inspections, QA audit, or other means, and prioritize these into categories,
such its (A) critical to successful pra};ratn operation as required, (B)
degrades laerform;trtce or increases operational risk; i_C) does not prevcait
software from operating; and satisfying reyLiremetits, but is operationalh
undesirable; wark-around necess.trv. In addition, indicate those discrepant
items that c;u ► he nugoti;ited for acceptability, those that call lic accepted
under lien for removal by a specified date after deliver y, and those that
c;mnot be accepted it ► software transferred to operatiotaal status.

6.3 Quality Assurance Audit Report
Summarize the QA activities ill certifying the program for acceptance.

Report the results of audits and reaudits of the SSI) documentation against
the code, as well as other materials audited. Identify= deficient or marginal
itettts (coda, ta5ts, and doeunact ►tatiot ►i.

6.4 Confidence Measurement
Discuss the niethod used to calibrate Cite acceptance tests and the level

of confidence planned ill Calibration testing;. Summarize the results of such
tests, and state the t,eon ►puted level of confidence in the program and ill the
ability of acceptance tests to uncover anonialic y , if present (e. g., see
Chapter 9).

7. APPENDICES

Appendices may include, btit are not limited to, :utxilian, material
inserted directly or bound separately for convenience. The following tonics
are typical. Appendices may be designated as " 1ppcndix :1," ate., if desired,
rather than by the Dewey-clecirnal system given here.

406 Appendix J

7.1 Glossary
List the mnemonics, acronyms, and specialty used terms appearing in this

document, and give a short definition of each,

7.2 References
Provide a list of source documents, standards, procedures, manuals, etc.,

referenced in this document. Indicate the Subject matter and purpose of
each such item in the list.

7,3 Anomaly Summary
Provide a summary list of all discrepancies in the software package. For

each, give the anomaly number, the program version, the reported date, a
brief description, the priority categor y (e.g., see 6.2, ahove), the urgency for
correction, parties responsible for correction, present status, the means of
disposition, and other pertinent information. Provide, then, as appropriate,
a detailed breakdown or backup description and history of each of the
individual discrepancies (probably a compendium of anomaly report forms,
sht.us forms, statistics forms, etc.).

7.4 Detailed Test Summary

When appropriate to include summary results of individual tests or more
detailed descriptions of the tests performed, do so in this appendix. Discuss
the general method or strateg of the testing, and describe; (t) the type,
voltnne, frequency of input etsed, (2) the extent of testing performed (total
or partial) with rationale for choice; (3) method of recording results and
other information about the tests; (4) limitations on tests due to conditions,
Such as interfaces, equipment, personnel, and data hales; (5) controls, such
as manual, semi-atttomatic, or automatic insertion of inputs, etc.; (6)
sequence of operations or progre-Won from one test to another so that the
entire test cycle was complete; etc.

7.5 Test. Archive

'This appendix, if present, may contain the entire collection of test
outputs over the entire project lifetime (probably as separate volumes); or
may contain only material selected as supportive to this document or as
necessary for future historical or reference purposes.

APPENDIX K
SOFTWARE MAINTENANCE MANUAL

CONTENTS

The purpose of the Software Maintenance Manual is to provide the
sustaining and maintenance personnel with information necessar y to
understand a program in its operating environment, and to list the
procedures for correcting errors, updating documentation, making program
modifications, etc. This monograph has always assumed that the SSD and
user/operator matin is farm the primary sustaining and maintenance source
documents.

The maintenance manual, therefore, does not repeat this information.
Instead, it gives procedural instructiomv for performing the sustaining and
Imn.intenance activities. As with others manuals described in those
appendices, maintenance procedures should he acc ►tmulatal and written
concurrently with the other program production activities. Even when the
maintenance and operations organization has different configurations and
standards than implementors (and will, therefore, write this manual
themselves), the skeleton of procedures used during development can be of
tremendous benefit as the basis of the manual to he written. Figure K-1 is a
top-level view of the suggested organization for a Mabitenance Manual.
The remainder of this appendix is a detailed outline with guidelines for
writing the material suggested. As with the user and operator manuals.
topics described in this appendix are presented in checklist hierarchs;
actual writing of the mamiai may well integrate maintenance functions
with interfaces and laracedures, so as to form a set of monolithic
descriptions of the subjects covered.

r.

407

r	 F,

smm

Figure K-1. Top-level view of the SMM table of contents

to
ao

Appendix K 409

SOFTWARE MAINTENANCE MANUAL
Detailed Table of Contents

FRONT MATTER

Title Page, Provide a title page containing: (1) document'; number; (2)
SOFTWARE MAINTENANCE, MANUAL; (3) program, subsystem, and
system titles; (=l) publication date; (5) author and authorization signatures,
cis appropriate; and (G) releasing organization,

Abstract. Give a brief abstract that summarizes the purpose and usage of
the manual.

Change Control Informaticm. Provide a statement that specifies the level
of change-control authority for the manual, and state procedures for
submitting change requests and reporting of errors.

Distribution Information. Provid:: information that fells how copies of this
document may he obtained.

Table of Content~. Provide a detailed table of contents for the manual,
listing section number, title, and page of every item with a heading.

TEXT OF MANUAL

1. INTRODUCTION

1.1 General Description
Provide a brief statement that identifies the program, system, and

environment Covered by this ma _mal. Give the program title, tag or label,
and programming latignage(s). Perhaps also appropriate in this descriptirnl
are relationships to other maintenance activities, alternate environments,
organizational responsibilities, and maintenance programmer responsibili-
ties.

1.2 Orientation and Scope
Identifv the intended users of this ii-mmial, their assumed backgrounds,

the level of skill required, and the extent to which this manual is self-
contained. Describe the scope of this manual. as it pertains to the

410 Appendix K

completeness with which it covers maintenance matter.;, identify any
significant limitations in the program maintenance as levied by this manual.

1.3 Applicable Documents

Identify all documents, controlling or informational, which apply to or
regulate the maintenance activities associated with the program.

1.4 Maintenance Overview

Provide a brief overview of the maintenance functions and the general
policies and procedures that apply to each. Identify salient characteristics
of the maintenance activities, such as: (1) change control; (2) resource
estimation; (3) reporting; (4) operations/user liaison; (5) developer liaison;
(6) division of labor; (7) support requirements; etc.

1.5 Guide to the Use of the Manual

Explain how this guide is to be used by maintenance personnel.

2. STANDARDS AND CONVENTIONS

This section describes standards imposed on the maintenance organiza-
tion (or used by them) and conventions (e,g,, notations and terminology)
applied in this manual.

2.1 Maintenance Organization Standards

Identify or reference applicable existing organizational maintenance
standards, state any exceptions to these standards necessitated by this
program, and describe the alternate practices to be used.

2.2 Maintenance Programming Standards

Identify or reference applicable existing programming documentation
and testing standards to he applied in program maintenance, state any
exceptions to these standards necessitated by this program, and describe the
alternate practices to be used. State the langt ► age(s) to be used for program
modifications.

2.3 Maintenance Conventions

Define notations, terms, and other conventions or assumptions used
generally throughout the manual, include such items as ways of
distinguishing literal field:; from syntactic variables in descriptions of input
and output formats, means for differentiating inputs and outputs in
interactive examples of procedures, non-standard mathematical usage,
special acronyms, etc. Describe maintenance conventions, such as file
naming of scratch, update, and test files.

Appendix k 411

3. MAINTENANCE ENVIRONMENT AND INTERFACES

3.1 Organizational Interfaces and Support

^. Describe the maintenance organizational environment, responsibilities as
appropriate to perform maintenance, liaison activities with others, support
required for or available to maintenance activities, and other matters of an
organizational nature, as beneficial to the readers of this manual.

3.2 Hardware Interfaces

Identify (by reference to system documentation if possible) the
equipment required for operation and maintenance of the program.
Describe any unusual features used. Include such information as (1) size of
processor and internal storage; (2) online and offiine storage media and
devices; (3) online and ofiiine 1/0 devices; (4) data transmission devices.

	

r	 3.3 Software Tools and interfaces

Identify, the system support software needed for program maintenance,
and describe the interfaces in enongh detail so as to prepare the reader for
the functions and procedures in sections to come. Include, as needed: (1)
operating system; (2) compiler(s) or assembler(s); (3) debug facilities; (4) test
data generators; (6) text editors; (6) data management systems; (7) report
generators, etc. Include the version or release number of each and any
unusual features used.

3.4 Data Base and Library Interfaces

3.43 Data Base Interfaces

Describe or reference documentation on the data bases required or
typically used for maintenance, if any. Include, as appropriate, information
such as keys, units of measurement, format, range of valves, names of files,
location of the data element dictionary, etc.

3.4,2 Library Interfaces

Identify programs, subprograms, or other materials in libraries that are
used in program maintenance, and give appropriate references to detailed
usage information, Give a brief description of the usage and interfaces
pertinent to this manual.

4. MAINTENANCE FUNCTIONS

f his section describes functions performed in maintaining the software,
not the procedures for performing these functions.

412 Appendix K

4.1 Maintenance Overview
Describe the maintenance tasks in summary fashion as an introduction to

the remainder of Section 4. If already covered in Section 1.4, so state, and
omit duplication. Identify such functions as (1) anomaly detection; (2)
anomaly correction; (3) anomaly report custodianship activities; (4)
sofhvare modification acti ► ities; (5) engineering change control activities;
(6) liaison activities; (7) o perations, support; (8) user support; (9) special
maintenance funci.ions.

4.2 Description of Maintenance Functions
Detail each of the maintenance functions introduced in Section 4.1,

above, as separate subsections 42.i), Use a level of detail sufficient to
c	 describe the functions to the degree required to apply the procedures in

Section 5,

4.3 Documentation Maintenance
Identify the program documents in the custody of maintenance, and

describe the role and responsibility of maintenance personnel for keeping
these documents current. Identify resource availability or limitations for
such maintenance, if appropriate. List (or reference) criteria and approvals
for slaking documentation modifications, duality requirements for
redoctimented items, requirements for QA audit or recertification, etc,

4.4 Maintenance Restrictions
Identify and describe or reference restrictions placed on maintenance

functions and activities by the host system by stipporting services, by
change control require111ents, by the, nlaintenance organization, and by
available resources.

S. MAINTENANCE PROCEDURES

This section describes, in robotic sequence detail, the steps that are used
to perform the functions described in Section 4.

5.1 Program Generation and Linkage -Edit Procedures
Identify and describe each of the symbolic, relocatable, and absolute

elements required to generate the program. Detail the method and steps
used to install the program into its operational environment (ready for
operations and use). Describe tot) control code, linkage-edit (map) code,
etc., and the sequencitlg required. Cite references to appropriate manuals,
detailing the various program generation toois used. Give specific end-to-
end r 11111dtg examples of each case (e.g., backup tape, symbolic system files,
rciocatable system files, absolute elements, ete.).

V.

:t,PP(Il lia' ti 	 413

5.2 Program Alteration Procedures
f)etail tilt . luothod, stc psi and prottwols used to vol•rect :ulorualits or

male other cli:uiges ill 0w pr •ogratl1 code. Describe the use of text editors,
assanlblcr(s1 or eonlpilersls), dahut~ luict c ► tllc t clle±ekottt tilcililiers, hin; ► t^' or
symboiit., patch capabilities, Ov. Care rt t,orences Io Inanirals de serihing the
det.ailr' of tilt , Software tools used. Give specifir mid-to-end rtu ►nitlg
exan ► ltic•s of eacil alteration iru+thc d, complete , with all of tilt , job control
code ncexitA for vwvlttiollt

5.3 Anomaly and Status Reporting Procedures

State prorednres fill' Flancltitio ancnntil y reports, such as to oit ► g, regillar
st:itrrs rt'lunt ;veneration, User/oller;itor' nnlifiCILtion, tdetermitrttiorl of
priorit y awl rrtethcicl for r'cluoval, etc•.

5.+4 Special Maintenance Procedures

De?scril,e :ulN. spt.c • ial illaintenane proctAtives, such as sc •hednling of
activitic+.. reeiniltntentafiou proc •cduivs, prot;r;ull hacknp (In;tsterr) Ilanclling,
sec ► nits/into:+dril y monitcarill'o , clatu bast rec•overv, and hint~ for Irsing Stir
awl otilt'1' tllantl;il 's 111 II ► ail ► tc`Ilanee ;10tivitivs,

5.5 Engineering Change Request/Order Action

Give prncoIttrus fol . iIIst.ltaIIIiII ol . ev;tlllatiIIq t'llarloe tv IIvsIS. fol•
1'espon(lilig to ch;ulc'e orders 111)tatl receilA, and for notifvinti upon
conlltliallec.

6. PROGRAM VERIFICATION PROCEDURES

6.1 Testing and Reporting Procedures

Dc"tcribc the procechires for settil- up tt"sts :Intl rccel•tilication of dw
software, eill ►er general or following nuatlifit ations. Include rei'e1 ,011i •t's to
test SIMI(Lir'dS, trst speciGraticlus, and bellehmm • k teat data, is appr'opriale.
(;ive sincilic ericd-to-vii d running e\amples of srtril testing, inc • lucling all of
tilt' joh cotitrol coc:le rtallliret'.i.

6.2 OA Certification Procedures

Present file prncedure:s to be follow-ml in obtaining QA re vertiGration of
all changes, as ret,litirod cinder change control restrictions.

6.3 Special Verification Procedures

Iclel ► tiN all(] "ive proce dllros for special activitieti associatod with
1'eccr'tiiicritiott cif, tilt, software, slant ;is o1)c1-ation;Il denaonstr; ► titan,
appt'cav;ils, 5e'tlialli; of materials to tilt, [vograill lilwarv, si.rcci:ll mistvill
hremessor re>;istrilfiotl prolncols, etc,

:. .,^„n.^_	 -	 --	 ^ ..	 -.	 _....	 . tv:.. 	 _,.w-•.^.,.,:.wro.+.^:a^aita`,.tfai^'^+^^Etii4.3s_s.- e._	 -	 ^	 _. _ -, _	 -...	 - - ^ -- . _		 _

414 Appenrfix h

7. APPENDICES

AI)l1c:ndievs 111.1%. include• 11tit are not limited to, egAttl ►toly material ;ind
prove(lurcs of :ill auxiliary nature, inscriml r[irectly or hotitid separately for
coinv en it'll cc, The following topi" are typical. Ap1midicPs may he
designated as "Appendix A,' et.c., if (lesirerl, rather than by the Ilewcw-
clecimal s ystcin given here.

7.1 Glossary

List file acrorlvnis. tnnenuonics, ahim-eviat-icros, awl silvdalh y tvw(l terms
that appear in IN matittal, and give a short clefinition of cac•I ► .

7.2 References

Proviciv a list of ali sotn•cc doctunents, stanrlurcis, procxdtircs. ;ind
reference material iiscscl for program maintenance. hlclicate the siil^jeet
niattor :tilt[prirhose of each refererlev.

7.3 Input/Output Formats

Provide (10.0 61 formats ancf svw-.%x txir input ancf 0 ►1t:pnt data used
spc 'if u':illy in soflwar0 n1.011tt;rlance. Define, as ;tppropriat.c: 0) data base
1/0 formals, 1mranteters, an(l control eharactcristivs: i? l comutnnications
device 1/0 formats, paramelers, ,111(1 control eliar •acteristics; et.c.

7.4 Auxiliary Tables

Assemble ill 	 form ail ;mxiliary r•efercncc d;tt;t neerlecl fc:n• software
nlaintenanc:e• which arc hcttvi- locateri in an appeticlix rather than ill
text prol.wr. Display each as a soparale subsection (7.4.i), and introduce or
explain tilt.+ list, of each table narrati ,ely.

7.5 Summary of Procedures

Provi(le :in 116reviated scat of procedures for etch of the: maintenance
fillictions stiitahle for use by Ihr knowlcdgealt le riser. This snlnnutn , shcntld
he clevoicl of lengthy tutorial expl,uiations, corit.tirling, instewl, only
tee°hnical ilesc •ripticlns or definitivo examl.11es for clitick wforencc,

7.6 Detailed Examples

Display the appiivatiotz of maintenance procedures via samples from
beginning to end: Show all input, indicate all interactions in tilneh,
sc,^ncncc, ;ind display all rc^spoilsc;. ancf rzutprlt.

APPENDIX L

SAMPLE PROGRAMS FOR PROJECT
MANAGEMENT

M y original intent for this; appendix, while 1 was writing Part f of this
work, was to present end-to-end detailed program examples in which the
standards of this text would he applied. Stich programs could then he used
as examples of Software Specification Documents illustrative of Class A
an(] B levels of detail. I had hoped to enter more than the four examples
you see here, but a compromise was necessary for reasons of space. The
programs f envisioned were principally management-oriented, such is
Examples L-1 and L-4; but design aids, such as Example L-2, and useful
subroutines, such as Example L-3, were not to be left out altogether.

The programs of this appendix are rather small and based on well-known
algorithms. Neither are they grandiose in range of application, but inerely
scratch the surface of project management and development needs. More
extensive requirements for software management information systems
appear in 1471. Useful programs for grading project performance, status
reporting, data sorting, and linear programming appear in 1481.

Small programs tend to have limited utility, unless the y Can easily be
generalized to wider applications than usually dictated by their size. I
certainly hope, therefore, that the standardize(] developments presented
herein are bath sufficient, structured, modular, and understandable as to
permit such extensions to be easily forthcoming. I3owever, the main henefit
of this appendix more probably ties in using the given examples as models
for documenting programmitig.specifications.

415

416 Appendix L.

Each of tiie examples follows the SSD outline given III
	 1:;

however, aaaly Example L-I goes through ,I consideration
of topics. In Cad) case, headings that clid not apply %%,ere omitted; in some
c;cticS, where a theoretical background needed to he established for
readability, other headings were invented.

Because the program descriptions are not directly ox- ultimately coupled
to an unaanhignious conlpiiter language. 1 realize that some reactors may
possibly intc1pret what thev read here slightly differently than do others.
Nevertheless, I have tried to make the desigas as free of I.tnl,►tiage or
ma0liine characteristics as 1 GonSC'innSIN , could, .held 1 hope the intent; it' not
the detail, is clear in each.

The first example (1.,-I) is what I consider to be formal Cross A detail
with respect to the pro;lyr-miming specifications and fairl y strict acfhererace
to Appendix I`., within the scope of the hest-indeprnidencc sought far. Some
areas are not quite Class A in detail and need to lie worked ail before one
could term the whole SSD as "Class A." In this sense, the SSD is seen in ;III

embi'voni0 sta ge of development, before touch of the detailed test
specifications, etc.; have been written. The level presented nlay tieenl
..overkill" for such ;a short program. For a lat,p program, howevct •, such
detail allay be essential for unclerstanding.

1' xanlr;le I.,-2 is a 1111101 shorter program, Nit the cletail level in the
progrc.inining spec

'
-ifacaltion is still Class A, xvithin host-dependent

eonsichrations. Stanrhal •CIS, WSWID envirnnrlacnt atld interfaces, test and
verific.lion details, and other lower-level considerations are not covered, so
the dot'mnent may fall into the Class 11 category, in that "qualified
personnct (ectgiueer or equivaieart) using documented techniques and
approved programming practices ina y he required to Satist;actorily produce
that itam entirely from information supplied."

Example L:3 is evert shorter, yet Class -1 detail prevails in the
programming specifications.

The final example, LA, is Class 11; the level of detail in the programming
specification wvtiou relies oil t1c progr hauteur's abil-ity to design the code
effectively, with discretion permitted if there is satisfaction of the program
requireitients with respect. to performance and quality Withaact lulreason-
able risk.

Example L-1 417

EXAMPLE L-1

GENERATING SCHEDULES USING
THE CRITICAL PATH METHOD

1. INTRODUCTION

1.1 Purpose and Scope

This specification covers the design of a program to accept items from a
project Work Breakdown Structure (WBS) to compute, schedule informa-
tion, such as critical path status, earliest starting time, latest start time,
earliest finish time, latest finish time, and float (or slack) time for each task,
and to print a schedule based on these computations.

The program, in the form specified here, does not recognize precedence
of tasks based on resource availability, nor does it allow expli.. 4 Usage of
lag times, starting dates, or ending dates to be input by the user, as sonic
PERT/CPM systems do. Lag times may he simulated, however, as separate
tasks appropriately inserted into the network.

1.2 General Description

The basic critical-path method of schedule network analysis employed
here is discussed in several sources; References 7.21 and 7.2.2 are
recommended to the interested reader. Extensions to th e basic method
appear in many PERT-like systems, such as the IBM Projec -t Control System
(Reference 7.23).

The capability described herein assumes that work task identification,
task duration, and task precedence-successor relationships are input from an
unspecified medium into memory for access by the computation modules.
Results of computations are printed on a line-oriented, paged-outplit
device.

Further details regarding the function of the program are contained in
Section 4, and programming specifications appear in Section 5.

2. STANDARDS AND CONVENTIONS

2.1 Specification Standards and Conventions
Specifications contained herein shall, on completion of this document,

reflect A-i documentation quality, as defined in Reference 714. Flowcharts

Fr

_ +.,.c......	'	 _	 ^_.-,.. _.	 _ .,. .,	 - r..	 x. ..+^,: :v,.A^ •^`'.._:.*_:i	 _ 'h.t ^+g.^,V!t^+^'£i'mk^s:riC.'- .̂.r..+_.

418 Apperi tix 1

and acco fit laam inn narratives are used to def nt , tale programming
specific atiollr (5ex'tiott)); these are governed by Reference 7.15.

2.2 Programming Standards

Progranlrnirtg standards as specffied in fieferenct, 7.2,6 Atall appl y to all
i ill pletltentatiolls cNet pt its otilenvise disponsed by waivers stated herein,

2.3 Test and Verification Standards

Tests and verification activities are ^t rtwvr •ned by Reference 7.2.7.

2.4 Quality Assurance Standards

QA standards is defined by Rtc(creuc•c 7.2.8 attd ftLrt:her refilled iu Sec'tiall
6.:3 shall apply its condition for detiyety.

3. ENVIRONMENT AND INTERFACES

`t'l'hi,4 specification is tneaut to bet systcrul-ittdc:pencielit in tike scn::e that it
places few restriction", on peripheral deyieLs and atetuon-, except that (t}
-ill input medilutl trust lie available to input the 11'l3S nc;twork; W
, ► lflicient stor:tt;e is available for holding, the nett.-ctrk and the progran ► : and
(3) aul otttpttt device is available for displa ying the schedule informatiot ►. If
arsnflivicitt fast stol-alze is htyailatble for the network, but tundnm-access
mass Storage is available, then sltit.lbie :llte:r,:tion ill the pr •ogranl t;ul he
nhttcfe to au'cnnlluoclate suet a conftf;uratiotl.

'I'lte- coding lanyna^ge is also nnspecifed; however, rite procechtr:tl
descriptions used presume that st.rintis of characters call he input and
outlntt, and that sltch sirinp;s call be specified 1)v Hanle, or by mule at icl
itldex yalnc., if arrayed, Coding in iowt,r-level 1:tn;;lt:lge not isessing
string ollcratiolls ttlttst sir ► ntlate these features as sithroutitics or functions.

4. SOFTWARE FUNCTIONAL SPECIFICATION

4.1 Functional Organization and Overview

A task ill Work l3reakdoxvtt Strnc,turv. is ar-sumccl b y this pro-yram. is
specified by W it task code, (2') it task description, (;31 a duratinal, ,uld (-,) it
list of codes of tasks that must Ierntitlate before the current task ntay
initiate tfor reasons decided ht• tile: user). No task nim , initiate until all of its
tr► rtled preceding tasks have terrllinated. Spaciat tusks .with zero duration
may he inserted (these are called " milestones") so as to enable the
dc,filliticm of schedule networks in which tasks ma y start .ynclunnottsb tat
start-to-start relationship) or terminate synchronottsh• at a milestone (stn
end-to-canel relationship). il l addition to the nornal pre:ra(ienecs Wild-to-st:lt't
relationships).

F.ea ► ph , L-1 419

The earliest start of :► task. is defined as the maximum earliest fit ► isle of q If
the listed reydred prior tasks. the varliest finish of :I task is defined as its
earliest start plus its duration. The latest finish of :I task is defined as the
minimum latest start of all listed re(luired s11hSC(ILICtlt tasks; the latcst start
is the latest finish lass the task duration.

One special milestone (zero-duration task) must he identified as the
"starting" task, having no list of preceding task cartes; this task also has : ►
"starting (lute" defined. A "project termination - milestone is optional,
supplied by the program, if omitted, the earliest start and latest finish of
this task are set equal.

The flcuil, or slack fiate, of a task is defined as the difference between its
latest and earliest start A task with zero .float is said to lie :I crilical task.
There assays exists at least nine sat of critical tasks that. span. etid-to-cmd,
the entire project: these tasks are said to form a critival lath in the project
workload. Critical path tusks are indicated on the printout by :ua asterisk

If a critical-path task slips in schedule, the project to ntination (late slips
an equal amount. Any noncritical task may slip b y an amount up to its
float without causing end-(late slippage,

The input unit of all durations is u;hvk! starts. Owput schedules then
account for normal work week and holidays b y way of a calendar data hose
residing in an unspecified segttcntial file medium (e.g.. disk or cards). The
output. schedule consists of a list of tasks sorted in topological order, giving
early and late start and finish (fates, plus the float time, In addition, early
and late start and finish days of work since project start are displayed on the
printout, with critical tasks identified.

4.1.1 Detection of and Recovery From System Failure

This specification does not. address system-dependent feature, of the host
CI ivi roll Inent.

4.1.2 Detection of and Response to Data Input Errors

This specification sloes not cover syntactic checking of data elements
read from the work breakdown stntcture or calendar file, Such checking,
however, sliall lie incorporated into the it ►pt ►t functions of the program that
react the pertinent data described herein, Such functions shall chit
diagnostic error messages that describe the syntactic violation, and shall
then operate as if att end-of-file had appeared.

420 Aj peridix L

4.2 Configurations and Modes

The program described herein has only a single mode of operation,
without options. Consult Section 7.3 for suggested future options.

Input, Processing, Output Specifications
May of the formats for input clata, as well as other matters, are left

somewhat open, to permit flexibility in implementations on host systems
with differing characteristics. Such matters may he resolved arbitrarily, so
long as the results do not conflict with other specifications contained
herein.

Inputs to the program are as follows:

a. For the project start (the first-received task, with no prcdect^ssors):

milestone code	 string of characters
milestone title	 stririg of characters
start (late	 clay of year

The input fornua, date format., and string ILngths are not covered by
this specification. The output format specified in 7.5 provides space
for displaying tip to .10 and 32 characters, respectively.

h. For each task, from the same medium as (a), above:

task code
task title
duration, in days
list of precedent-

task axles

string of characters
string of characters
integer

task codes. above

'File input n ►edium, mode of entry, and format of these items are not
covered by this SST . Milestones (except start) are input as tasks with
zero duration.

c. I" rota the calendar file. for each day in sequence, extetuiing over the
entire project lifetime:

workday	 booleatt
elate	 month, day, year

The actual detailed configuration and format of these data are not
covered by this specification.

Although precise input details have been excluded from the above items,
the programming specifications of Section 5 do show definitive require-
ments for order of input and data type.

-	 - -	 -	 -	 •.sur	 1x71.'}3,='r2A..^fr.a	 ,^

Example L-1 421

Two task codes are reserved. These are:

END
FINISH

"rChc END task code is a signal to the program that there are no further tasks;
the network clata is complete. The END record is, therefore, the last in the
WBE. file. An attempted read resulting in endfile shall return "END" as the
item.

The FINISH task code is used internally within the program to name the
project termination milestone. No title is supplied for this milestone by the
progmin. The user. may use FINISH as a task code and supply a title;
however, any task naming FINISH as a predecessor will be flagged as ati
error. Successor linkages to FINISH will he erased by the program.

Processing sp4cifications for the progr:un are as follows:

a. Accept start milestone and task descriptions, as above, The first task
encountered is assumed to be the start.

1.). Topologically sort the tasks (Reference 7.2.9) into a list in which all
precedent tasks for a given task precede that task in the list.

c. Scan this list (it begins with the start milestone), computing; start and
finish times (defined in Section 4.1, above) for each. Identify critical
tasks.

d. Detect and display errors in improperly formatted input, insufficient
calendar input, and circular or disconnected networks.

C. !Tint the schedule.

Output from the program consists of the schedule report and error
diagnostics. The output schedule takes the form of a report which lists the
tasks in topologically sorted order, showing early/late start ! finish elates,
float values, and tin ►es past project start. The output format is shown in
Figure 7.5.1.

5. PROGRAMMING SPECIFICATIONS

5.0 Program Overview

The SCHEDULER program consists of four subprograms that erccutc in
sequence:

r

422 Appendix L

BUILD NETWORK (BUILD)

TOPOLOGICAL SORT (TCOPOSORT)

CALCULATE DATES (DATES)

DISPLAY SCHEDULE (DISPLAY)

The representation of the schedule network within the design is the chief
item required for understanding the procedures in the remainder of this
section. There is a certain set of information that is input or calculated for
each task, represented by a node, in the network:

information identifier type

TASK Cu^E CODE string
TASK TITLE TITLE string
TASK DURATION OUR integer
EARLIEST START EST integer
EARLIEST FINISH EF.IN i:iteger
LATEST START LST intege►
LATEST FINISH LFIN integer
FLOAT TIME R.OAT integer
NUMBER OF PREDECESSORS COUNT integer
POINTER TO LIST OF TOP "pointer"

SUCCESSORS

The first three items are input directly, the next six are calculated after
sorting, and the final is supplied as a result of building the network. The
node data structure and network relationships are organized into a
simulated list using arrays named with the identifiers listed above, along
with the two arrays:

information	 identifier	 type

SUCCESSOR NODE	 Suc	 "node"
NEXT LIST ITEM[NEXT	 "pointer"

The "pointer" data type in the two tables above is an integer index into
the SUC: NE XT arrays; the "node" data type is an integer index into the
CODE: TITLE: DVR:...: Top arrays. In this way, information about a node
(task) is locatable via the node index, and its successor nodes can he found
following the node Top painter to Suc, for the first, and thence via NE=XT

pointers to the remainder. This representation is discussed further in Knuth
(Reference 7.2.8). The apparent node representation is shown in Figure
5.0.1; the network is implicit, then, in COUNT and Suc relationships.

Languages that have "ARRAY OF RECORD" syntax may code each node
as an indexed record.

32index	 I

CODE

TITLE

OUR

EST

EFIN

LST

LFIN

FLOAT

COUNT

TOP

SUC

NEXT

SUC

NEXT

4

2

NIL

3

4

Figure 5.0.1. A simple precedence graph and its structural representation

n

p
W

424 Appendix L

5,0.1 Building and Sorting the Network

The process of building the network consists of reading the MIS File and
storing task information in the node arrays. As tasks are react, each task
index is recorded in all integer topological-sort list array, TSORT. Indexes of
nodes having a zero predecessor COUNT are duetted into TSORT from the
front; these are already in sorted order. The others are clitetted at the rear of
TSORT. Stich a list. permits the processing of tasks independently of the way tile
search algorithm has entered tine nodes into memory. ' hereafter, the
topological sort procedure considers, in turn, each ttocle in the front
segnicnt of TSORT, "removing its edges" in the network l.w reducing the
COUNT of nodes identified as successors. Whets a COUNT field of a node hits
zero, that node index is inserted at the rear of the front segment Of TSORT. If
some: nodes still have non-zero COUNTS after all of the front segnicnt of
TSORT has been processed, -I in the network exists (identified as an
error).

5.0,0 Calculating Schedule Times

Earl}' start and finish timer are calculated by scanning the nodes listed in
TSORT in forward order; then late start, late finish, and float valties, by
Scanning TSORT in reverse order.

Dates are assigned to the project tinies by way of the CAIotiDaR array,
filled from the calendar file. The CALDR arras' is ati ordered set of strings
indexes] by work clay. More precisely, whets filled, the value Of CALDR (0) is
the starting (late (month/clay/yea.) corresponding to START, read in from
the project start milestone. START is tun integer that defines the clay of year
for beginning the calendar file read-in. The size of tine CALDR array permits
entries indexed 0 through MAXDATE. If tine project Saes Iieyoncl MAXDATE days,
Only the first MAXDATE days appear in the array. If the calendar file sloes not
extend far enough into the future to provide dates for the project tithes,
then "DAY ri where n is the project work day, is entered into the CALDR

array.

Further details are contained in the programming specifications in the
remainder of this section.

a

Csnmpla L-.1 425

5.0.3 Program Tier Chart

The list below presents the modular nesting of program elements:

1	 SCHEDULER

.1	 INITIALIZE

.3 HEADER-DATA

.2	 BUILD

.6 REGISTER

_1/S1	 SEARCH

8 CONNECT

.3/S1	 SEARCH

.7/E1	 ERROR

.8 TERMINATOR

.1/S1	 SEARCH

.3 CHECK-SUCCESSORS

.3/E1	 ERROR

' G LINK-TO_FINISH

.4/E1	 ERROR

.5 TOPOSORT

.4 ERASE-EDGES

.7 DIAGNOSE

_1/E1	 ERROR

.7 DATES

.1 EARLY-DATES

.4 SUCCESSOR-DATES

.3 LATE-AND-FLOAT

.4 TASK--LATE-DATE

.8 DISPLAY

.1	 CALENDAR

.1,2,10/E1	 ERROR

.$/F1	 STR

E1	 ERROR

F1	 sTR (integer-tO-string conversion)
S1	 SEARCH

10/E1	 ERROR

Indentation in this list denotes procedural nesting of the modules named.
Numbers are .Dewey-decimal module codes (e.g., TERMINATOR is found.as
module 1.2.$).

x
'x
W

r

I^.

426 Appendix L

Chart Number 1
Module Name SCHEDULER

Date	 4/1/77

5.(1) Critical-path SCHEDULER program
1. Declare global schedule network arrays and set all numeric items

to zero, all string items to null. Prepare the HEADER data for the
report in step S.

	.2	 In building the network, if either the task node arrays or the
successor linkage arrays become filled prematurely, print an error
message. Add	 project termination milestone to the schedule
network. Refitm ;: flag OVFLOW with false value if the 11'BS input did
not exhaust the network arrays; true, otherwise. NTASKS records the

number of tasks entered.

	.3	 A true value of OVFLOW terminates the scheditler,

	

.4	 printing a message before the program terminates.

	

.5	 if the network was input without overflow, then the TSORT list
contains the topological sort. If the network contains a loop, print
"WSS IS CIRCULAR AMONG ITEMS" and give the list of task codes. identify
one such loop. T records the number of sorted items entered into
TSORT.

	.6	 If all tasks are not in the list, the WBS is circular, so terminate.

.7 Otherwise, scan the list forward for early times (see definitions in
Section 4. 1), and in reverse for late times (Section 4.1). Calculate float
titres during the second scan as well.

	

.S	 See Sections 4.3 and 7.5 for details of output format and content

	

.J	 Perform any cleanttp necessary in the coding language (e.g., closing
files) before program termination.

Y

I ^

^GG
;S

Example 1,-1 427

S

SCHEDULER

SCHEDULER
	

I APR 77'

INITIALIZE

DECLARE AND
EMPTY NETWORK

AKKAYS

2

BUILD

INPUT WBS.
OVFLOW=TRUE IF

TOO BIG

3

OVFLOW
a

7OPOSORT
PRINT

SCHEDULER
TERMINATED'
	

MAKE
 LIST

ORT

T,NTASKS

DATES

EARLY, LATE
START, FINISH,

AND FLOAT

8

DISPLAY

PRI.'iT SCHEDULE

S

D: _ 14'P/

"_: 'sl
-i I J/ N /a

428 Appendix L

Chart Number 1A
Module Name INITIALIZE

	Date	 4/4/77

5.(1.1) INITIALIZE the scheduler program

Oil 	 no data declarations have been Made.

This procedure declares all data for the entire program, clears the
schcc}►tle network by setting all numeric values to zero, all strings to mill,
:u ►d stares the information necessary to gene ► •ate the top of the schedltle
report. itl HEADER for later access by DISPLAY/ I.S.

Oil exit, the program is read y for execution.

	

I	 All clata declared is specified here is assumed globally available to
all modt ► les ill progr;un. '1'hcsc are placed all together so :ts to be
statically allocated at conilAc titrtc, Should the ending language
demand it; these are placed first, in case declarations arc executabic,
In assembly 1,111;nage, it may lie necessan, or desirable to locate the
code for sttch declarations elsewhere.

Strictly Speaking, only EST, COUNT, attcl TOP must. be cleared: CODE,
TITLE, and OUR are later input, EFIN, EST, LST, LFIN, and FLOAT :Ire
contlatatCcl. SUC and NEXT nerd not be Cleared, either, however, later
modifications may change Sallie caf these asStl Ill ptiolls. 'I'tterefore,
clear them all.

	

.3	 ► +FADER information prepared at this point is used Fa y the DISPLAY

::tell) 1.8.7 to achieve the format ill

	

A	 Initialize 1/0 media as required to input 111 13S and calendar data in
Etter parts of the program.

p •

I :ru r,,;,(c r_- r	 429

S.1
INIl3Al_1ZE

i APR 77

INITIALIZE

DECLARE DATA
STRUCTURES IN
SECTION 5.

CI_EAP SCHEDULE
NETWORK

I	 HEADER DATA	 1

RETURN HEADER

OPEN I/O MEDIA

'46	 rl!,Q
11 JAN B

• ..,	 ---	 ,s.: .,,^.^<^._,.-^--^^ ,^w.;».:M^.^3.^LnL`!iddt^'97,^L'i^.w_^+r SW 	 -	 _.		 _s.

430 Appendix L

Chart Number	 1.1.:3
Module Nallle	 HEADER-DATA

Date	 4/4/77

5.(1.1.3) Generate HEADER DATA

The module described here at present. is a STUB,

On entry, data structures have been declared.

This procedure obtains information front an input nlediunl for use in
printing the output: header.

On exit, the tiring HEADER contains the tltle to Ile IISeCI ill the first ihic of
the schedule report (sce 7.5).

Rationale: DCCisions regarding exact input format have not licen made.
These decisions will be influenced by choice of programming language and
possible interactive/batch opmatinw modes. '.These decisions affect on1v the
DYSPLAY step .1..8.7, and nlay, therefore, be postponed until the other
algorithms herein arc. verified.

Eva inple 1_-1 431

I I -A
ir.ADI- tl DA I A

4 APB'

Fh: A DE R N T A

INPUT HFADER

THIS [S A

STUB.

A

L I J- I.

432 Appcndir r_

Chart Number	 1.2
Module Name	 BUILD
Date	 4/4/77

5.(12) Procedure to BUILD schedule network

On entry, the scl ►edttic network has been declared, but cleared.

This procedure inputs the WHS information and builds the schedule
network as descrihxd in Section 5.0.

On exit, the nchvork has hen formed. CODE, TITLE, DUR, COUNT, and TOP
arrays contain the ;appropriate values, and suc and NEXT arrays register
successors, so as to sinllllate list format, NTASKS contains the number of
tasks identified in the NAT&

i.	 AVAIL	 points	 to	 the	 next	 available	 SUC_ NEXT	 pair	 to	 record
successors. NTASKE is the ATllmber of TASKS input. MORE is a boolcan
to control lonping in steps 2 through 6, below. T is the integer index
Of the TSORT list (empty). s locates the Bottom of the unsorted List in
TSORT (also note empty). OVFLCW indicates that the network is not full,

.2	 MORE remains true while there are tasks to be input. 4

.3	 TASKCODE is the first field on the input line.

.4	 An "END" signals then; are no more tasks,

.a	 thus, terminate the iteration when "END" appears.
3
a

.6	 As long ,ts there :ire t.,irks, however, put these into the network. if
there is no room in the node (i.e., task) arrays, Signal "TASK OVERFLOW"
error. if this task causes overflow of the successor linkage arrays,
signal "LINKAGE OVERFLOW" error,

.7	 If there was no overflow,

.8	 add a terminatioc milestone to the schedule network, if needed,
linked as the successor to all tasks not having an explicit successor
identified.

Example L-1 433

Sul
Rult-D	

♦ APW

SET "" I
IN Iz

F 	 tE^S ì̀ -,60 -mo	 I-

H= MAXT ASKS I

;OEAD '•SKCODE

AGKCO[),

LSE	 BUILD NODE. SET

Mrjk^

--F Âkl -SE AND
-OW lrlu(-- ON
ERPOR

NOT OVFLOh

TERMINATOR

R— ADD FINAL
MTLESTONE

o —^ — —1 /// iR

A:

c I	 Vit 7^Y^

434 Appendix L

Chart Number	 1.2.6
Modt►le Name REGISTER
Date	 4/1 1/77

5,0.2.6) REGISTER tasks into network

Oil TASKCODE (stria;) contains the first field of the input record
corresponding to a task. TASK (integer) alxl MOREPRED (hoolean) have been
declared, but do not eolttain pertinent information. The schedule t ►etvork is
either empty or partially completed. OVFLOW is global and false, The input
medium is positioned just past the TASKCODE field of the current record.

This procedure enters the task described oil 	 fnptit current record into
the schedule network, if possible.

Orly exit, the task has been recorded into the network. If any tasks have
beep input with no predecessors named, these tasks are entered into the
TSORT list (the first is prestimed to be the project start milestone). OVFLOW
and MORE will be toggled oil and "TASK OVERFLOW" printed. T is the
maximum index of tasks put into the TSORT list that are already ill sort (no
predecessors). The remainder of task indexes is inserted into TSORT from e
to MAxTASKS, to aid in later scatming for the terminator.

i SEARCH the network for the illpt ► t TASKCODE identifier. If found,
return its index ill TASK; if not found, insert it into CODE at a blank
location, and return the index ill TASK, Set NTASKS to record the
current \umber of registered TASKS. Set OVFLOW true, MORE false on
nverf3ow, and print the err.7r message "TASK OVERFLOW".

.2	 When there is room for the task,

.3	 input the title and duration, and

,4	 prepare to react Iist of predecessors by Setting the MOREPRED flag true,

.5	 Then while there are predecessors oil 	 record,

.6

	

	 CONNECT these into the network by attaching a. Successor identifying
this TASK to each named predecessor. If the Successor array is
depleted, Set OVFLOW true and print "LINKAGE OVERFLOW". Set MORE and
MOREPRED false to terminate processing. Increment the COUNT for this
TASK for each predecessor.

.7	 However, if no predecessor %vas indicated, then

.$

	

	 enter this task into bottom of the TSORT list, as these tasks are alread%
sorted.

.fl	 The other task; are inserted at the top of the TSORT List to keep tract:
of them for TERMINATOR (module 12.$),

REGISTER

SEARCW(TA64CODE,IhSK)

SET DYFLOW-TRUE,
MORE=FALSE ON

OYERFLDW

NOT YFLOW

READ
TITLETTTSKI,
DURCTASKT

SET
NOREPRED=TRUE

5

MOREpRET?	
F

7

T	 S

CONNECT

SET OYPLOW-TRUE,
MORE=FhLSE ON

ERROR.;
hOREPRED=FALSE Al

END

^7
(TASK

19>? /

SET T=T+i.I
	

'ET 6=8-1.
TSORT Mt -TASK	 1 TSORTCe3=TREK

Example L-1 435

1.^.6
REtiIST6k
11 APR 77

f .

P119 Ih
A!

!'

i4

436 Appendix L

Chart Nut-aher	 1.2.6.6
Module Na ►ne CONNECT

Date	 4111/77

5.(1.2.6.6) CONNECT task Into schedule network

On entry, the TASK has been located, and its title, duration, and code
have been entered into their corresponding array elements; re ►naining fields
in the input record are predecessor task codes. MOREPRED is true, expecting
such predecessors.

This procedure extracts these task codes, looks them up Onserting them
into the network if not previously there), and causes a linkage between
predecessor tasks and the current task by SUC: NEXT pairs. Error messages
appear and OVFLow and MORE are toggled on overflow.

On exit, all nained predecessors will have been linked to the current
TASK, and the number of predecessors will appear in the COUNT for that
TASK. MOREPRED will be false when the list of predecessors hw; beet)
exhausted.

I.	 Try to read a predecessor task code into tile, PAED string; however,
f no predecessor is there, set MOREPRED false to terminate.

,2	 If there is a predecessor code mimed,

.3	 took tip its index F'TASK (responding to overflow if necessary).

.4	 If there was no overflow,

.5	 and if there is still room in SUC: NEXT arrays,

.6	 then link the current task as a successor to the predecessor task.

.7	 If there is no room in-SUC: NEXT, emit the error message, and

,8	 set flags necessary to terminate operations.

.9	 If there is a task overflow, its message will have been printed by
SEARCH. flence, merely reset. MORURED to terminate operations.

:p

F

I

v.

Example L-1 437

t.2.6.b
CONNECT

11 APR 77

[.2.6.6
CONNECT

READ FRED; SET
MOREPRED=FALSE

IF NONE

2

<MOREPRED F

I	 3
SEARCH(PREP,PTASK3

SET OVFLDW=TRUE,
MORE =FALSE ON

OVERFLOW

9

T NOT OVFL^
11a

^	 5

IL t=MAXSUC E
P"

SET
MORE PRED=FALSE

ERROR

1,NCREMENT COUNTtTASK)
SET SUC(AVAIL)=TASK,	 LINKAGE

NEXT(AVAIL)= TDPITASK),	 OVERFLOW

TOPIPTASKI=AVAIL,
INCREMENT AVAIL

SET
OVFLOW=TRUE,
MORE=FALSE,

MOREPRED=FALSE

o---

-^^ vll JAN 7B—'

g.

438 Appendix I

Chart Number 1.2.8
Module Name TERMINATOR
Date	 4/11/77

5,(1.2.8) Attach project TERMINATOR to network

On entry, the schedule network has been built, except that no project
termination may have been provided. TSORT from 1 to T contains sorted
task indices; from B to MAXTASKS. TSORT has recorded the other tasks. AVAIL
points to the next available SUC: NEXT pair.

This procedure creates SUC: NEXT (.lairs and attaches them to every task
not having any identified successors. if this causes all overflow, the
appropriate error message appears. By sequencing through tasks as listed in
TSORT, this algorithm is independent of the assignment of indices to task5 by
SEAARCH /S1.

On exit, the schedule network is complete, unless OVFLow has been set
true+. The only task with no st ►ccessor is the added termination node.

I bind the "FINISH" task as TASK, or enter it into the network
(responding to overflow if necessary), returning TASK. Set OVFLOW true
and print "TASK OVERFLOW" if unsuccessful.

.2	 If !there is no overflow (OVFLOW false),

.3

	

	 assure that this TASK has no successors named by user. Inform user of
erroneous usage, if detected, by printing the successor task code list.

.4 Make a milestone of TASK. The TITLE is not altered (null if no title
supplied). Save the finish milestone successor list TOP pointer (it
should be nil), and change it to a non-nil value to prevent a SUCcessor
linkage from being attached in step 6, below. (TOP (TASK) will he
restored later in step 8). Initialize x to range through all tasks.

.5

	

	 Loop through all tasks: first, the ones already i:, sort, and then the
remainder. These are listed in the TSoRT array from 1 to T and B to
MAXTASKS.

,6 Examine each task; if its TOP is nil, it has no successors, so get a
SUC: NEXT pair and link this task to the FINISH milestone. Set OVFLOw
true if no such linkage can he made. If TOP is non-nil, take no action.

.7

	

	 Setting I to the "next" value is incrementing by 1 except when I
goes heyond T, whereupon the "next" value is G. See step 5.

.8 Reset the ,-oP of the termination milestone to indicate it has its
previous succ,ssors (it was changed in step 4). In the anomalous case
where this milestone has successors, this procedure will have created
a cycle of tasks, which will then he detected by DIAGNOSE /1.5.7.
Restoring TOP is necessary for correct diagnostic operation.

`s.

Example L-1 439

1.2.8
TERMINATOR

TERNSNATgR
	

II APR 77

Q

SEARCH('FINISW .7 ASK;

SET OVFLOM-TRITE ON
OVERFLON

2

T NOT D4FLDH

CHVOC SVCCESSORS

PRINT ERROR
MESSAGE IF

THERE ARE ANY I

SET D T IT
t
ASKr W,

TSF;=OP TnsXr.,
'.DPfTnSK 1^NpNHIL,

I^l

l TO T,B TO MAXTASK

T

LINK TO FINISH

LINK ISORTIII NODE
TO FINISH IF IT

HAS NO
SUCCESSORS. ERROR
IF AVAIL EMPTY.

7

ADVANCE. TO NEXT
I vALtiE

TOpiTAASSK)=T.

_^	 Lr
A;

II JAN 7B

^..	 ^.a.	 :^.^;.:,	 ...-... . v,.,.. -r.,..o::....^..•-;,:.. .,	 -^_-=^....d..-ss^'_Ml'.?la.:nrrcu'^a^'.^.t4^zis.Sr'+c 4w,.... ^..,_..^._ 	-^ ... __,. _..,.-... _.._... ._.. -. ._. 		 _	 _

440 Appendix L

Chart Number 1.2.8.3
Module Name CHECK-SUCCESSORS
Date	 4/11/77

5.(1.2.8.3) CHECK SUCCESSORS of finish milestone

On entry, the FINISH task has been identified as TASK.

This procedure prints a list of task codes that listed the FINISH task code
as a predecessor.

On exit, the data space is not altered.

	

.1	 The Pointer P, if non-nil, indicates that FINISH has appeared as a
predecessor code of at least one task.

	

.2	 While there is a list of successors,

	

.3	 inform the user of the erroneous usage,

	

.4	 advance to the NEXT successor, and repeat.

Y.

It:

SET P=TOPtT AS41 I

P*,NTL	
P

a	 i'

ERROR

CODEtSUCtP1r.
'CANNOT FOLLOW

FINIS14 '

.	 x	 ^r	 ^	 r Xrr	 r,

Example L-1 441

,3.6,3
Cr+[Q* SUCCESSaR6

l; APR)f

CHECK SUCCESSORS

4

442 Appendix L

Chart Number 1.2.8.6
Module Name LINILTO_FINISH

Date	 4/12/77

S.(1.2.8:S) UNK a task without successors TO the FINISH task

On entry, I is the index. of the TSOOT list of tasks Where a task Top is to
be examined.

This procedure attaches a SUC:NEXT token to the Top of the TSORT(I)

task, if TOP is tail (or emits an error message and sets OVFLOW true if AVAIL

has been exhausted), pointing to the FINISH task.

On exit, the TSORT (I) task is linked to the FINISH milestone if it had no
successor, or else OVFLOW has been set. true,

	

.1	 TSORT(I) is a task, so its Top; if nil, indicates that the task had no
stated successors:

	.2	 Therefore, if there is a SUC: NEXT Pair available,

	

.3	 attach the termination milestone as the successor to the TSORT(I)

task.

	.4	 But if there is no more room, output the error .message, and

	

.5	 indicate that overflow has occurred.

;i

Example L-1	 443

LINK	 FINISH

12 APR

d,	
?	 LINK TO F!N S

1

T-	 TOP(TSORT(l))=NIL	 ^

2

T ,AV:AIL<=MAXSU.	 F

r	 3	 E14

ERROR

INCREMENT COUNT(TASK),.
SET SUC(AVAIL)^TASK, LINKAGE

NrXf(AV'AIL) =NIL ,	 OVERFLOW
(ITOP(TSORT))=AVAIL,

INCREMENT AVAIL

r	 5

SET OVFLOW=TRUE

C.

YYYY	 `^

— 4zl
...	

_.	 ' 	

..	 IsI	 Jot":

x

i

TASKS , followed by a. list of I codes not in the TSORT hst. Then
determine and print one such cycle of tasks.

A

F

444 Appendix L

Chart Number 1.5
Module Name TOPOSORT

Date	 4/12/77

5.(1.5) TOPOlogleal SORTing of tasks

On entry, the network has been built: The TSORT list, which will contain
the sorted tasks, has all tasks with no predecessors already in the list, in
positions 1 through T (the Tail of the list .

This procedure adds the remaining tasks to Tsew in topologically sorted
order, unless the schedule network contains erroneous circular task
requirements. In this latter case, the set of tasks not in the List and one
schedule circular path are identified.

On exit, the couNT array will have been destroyed. If an error was
present in the schedule, the value of T will be Tess than NTASKS, which will
cause SCHEDULER/1 to bypass the generation of the schedule.

..1	 F indexes the TSOnT array from the Front

.2	 Iterate while there are tasks in the T$oRT list which have not had
their successor edges "removed:"

.3 P after this step Points to the SUC: NEXT list for a task which has no
predecessors, or has had its predecessors "removed" in a previous
iteration.

.4	 Reduce the couNF field of all successor nodes of this Front task.

.5 Having exhausted the successor list for a given task, advance the
t=rout of the TSOar list to ungueue the next zero-predecessor task
during the next iteration (step 2, above). Cycling does not occur when
F goes beyond T.

.6	 If the nu rriber of tasks deposited in TsORT is not equal to the
number of tasks entered into the program, then

.7	 print a diagnostic message, "WBS HAS AT 'LEAST ONE CYCLE AMONG

4

vy
^4

.'1ĝ
5

h
^^

h
p
a^

..
,.
^z

.^
,,
,^

n
^.

 ,
a
,^

^
-.

t
.,

,,
:e

 .
..

 .
..

::
.

..
..

 .
.^

 >
•^

„
 ,

^
-,

 .
,,

.:
-

,^
- 	

-
.^

..
 r

 ,
 '
 .

 ^
	

^-
r^

>,
 e

m
s.

: 	
^^

,^
_
-,

rt
e
- 	

^^
r	

..,
n

S^
- .

^,
^^

-^
.v

-^
	

,^
r^

^
 z

 ^
'1

T
r-

 ^
'i
 ^

'^
^
^
'[

1

A:,
v s

y
a

1a
..	

ro
in
	

{i
^
<

.
m

e
n

 i

	m
	

n
u^

:n
3
:C

 o
	

R
	
o
i

m
m
	

m
r
n

c
'
s
	

v
	

m
	

o
	

-
r
	

Z
im

m
m

 m
	

m
	

o i
n

u	
' 	

H
	
m
;
o
	

u
	

'
`

m
'
	

1	
a

446 Appendix L

Chart Number 1.5:4
Module Name ERASE_EDGES

Date	 4/1.2/77

S.(1.5.4) ERASE EDGES to successor nodes

On entry, F has been set to the Top field of the TSORT(F) task, F being
the index into the Front of the TSORT list of node indices:

This procedure iterates through the successor list of the TSORT (F) task,
reducing the count? field of each successor node.

On exit, the county fields of all successor nodes of the F-indexed TsoRT
will have been reduced by one.

	

.1	 Initiate an iteration for the current front task, and maintain this
iteration while this task has successors (indicated by a valid Pointer w):

	

.2	 suc-(P) is a successor task; hence reducing the COUNT for this task-
constitutes "erasing" the edge, because

	

.3	 when all edges into a task have been erased, its COUNT will be zero; so
	.4 	 insert this task into the TsoRt' list, and adjust the Tail t accordingly.

	

.5	 Follow the successor list to the NEXT .item, and repeat (as long as
there are valid successors).

.I

Example L,- 1 	 447

- ERASE E	
5

DGES
12 APR 77TSEEDGES

f F

9

COUNT(SOC(P))
DECREMENT II y

1

u`

T	 COUNT(SUC(PI) =D	 F

f

9

ISET	 T=T+I,

TSORT(T)=SUC(P) li

SET P=NEXT(P)

D:

c.'	 -

A :	 .
I^

id

z

T.

Chart Number	 1.5.7
Module Name	 DIAMOSE

{ Date	 4/12/77 !

5:(1:6.7) DIAGNOSE the WBS network

The module described: here is at present a STUB.

On entry, only T E WASKS have been entered into the TSORT list. Those .
tasks not listed in TSORT have non-zero COUNT entries. a

#{This procedure currently only emits a diagnostic message and
j

notification that this feature is not yet implemented.

On exit, then, there is no change in the data space.

k On completion, this module will. print the task codes for all tasks having
a non-zero CouNT. Not all: of these are necessarily in a loop; but there .is at
least one loop among them. This module will then print "ONE SUCH LOOP

",is followed by. the task codes of a circular path in the WBS, as
determined by the algorithm on page 543 of `Knuth (Reference 7.2:9).

Rationale: The features of this stub represent user enhancements in the
form of exception handling. The mainline program features can be checked
using a stub at this point. 6 j

`'rr

r

I ! 5
4

E

i

E

f

.- f

a

1.5..7

DIAGN05E

Example L-I 449

1.5.7
DIAGNOSE

L2 AN 77

ERROR

WBS HAS AT
LEAST ONE

CYCLE AMONG
TASKS:

PRINT "CYCLE
LISTING

FEATURE NOT
YET

IMPLEMENTED'

i

Ci

JAW 79

a<

Y

Y

if

f

450 Appendix L

Chart. Number 1.7
Module Name OATE5
Date	 4/14/77

5.(1.7) Compute schedule DATES

On entry, the schedule network has been built (COUNT is no longer used).
The topological sort of tasks is in TsoRT; with beginning task as task.
TSORT (i) , and completion as TSORT (NTASKS) . The starting task date (day of
year) is contained in the OURation field, All start, finish, and float times are
zero.

This procedure scans TSORT in the forward direction to compute early
start and finish times, then in reverse, to compute late start and finish
times, plus the float.

On exit, the task attributes EST, EFIN; LST, t-FIN; and FLOAT have been
computed; and OUR of the starting milestone has been corrected (to zero).
START contains the start milestone day of year. All other times are days past
START.

	.1	 Set START to the start milestone DURation and zero this OUR. Then_
compute EST and EFIN for all tasks.

.2 Now equate the Latest. STart and Latest 'FINish times to the
Earliest STart time (equal also to the earliest finish time) of the
completion milestone. This is necessary for the reverse scan in the
next step.

	

.3	 Finally, compute the LST, LFIN, and FLOAT times for all tasks.

ti

£̂î 7.^^ _

r
0

I	 .
i`

Example L-1 451

t.' I.7
aA7E5

C]4 APR 77

DATE5	 >}

1

EARLY DATES

SET START,
CORRECT DUR

i

SET
F=TSORT(NTASKS),
LST(F)=EST(F),
LFIN(F)=ESTtF

3

LATE AND FLOAT

SET REMAINDER
OF DATES

1

D:	
61z_..:.^

A:

V. 1 1 JAN 78

452 Appendix L

Chart Number 1.7.1
Module Name EARLY-DATES

Date	 4/14/77

6.(1.7.1) Compote EARLY start and finish DATES

On entry, the state is identical with'DATES/1.7, i.e:, the network is built;
TSORT contains the topologically sorted list, and all schedule dates are
missing. The DUR attribute of the start milestone contains the starting date
(day of year).	 a

This procedure computes the early dates and corrects the ou, R of the start
milestone.

On exit, the DURation of the start :milestone is zero, and EST and EFIN for
each task have been computed. sTARt contains the start milestone day of
.year.

.1 Transfer the start date to START and correct. the wiation. The
procedure uses T to index through Tasks in the TSoRT list in forward
order.. Begin the iteration at T=1,

.2	 and continue through T= TASKS (the number of tasks).

:3 For the current TASK, Point to the successor list, and. fill in the
Earliest FINish time. The Earliest STart time for this task will have
already been computed, either by initialization (starting task) or by
step 4, below.

.4	 For each of the successors of the current TASK, record its earliest

	

start time as the early finish time of the current task when. less than
	 I

that previously recorded.

.5

	

	 Then advance t to pick up the next task in the Ts CRT list, and
repeat until all tasks have been processed:

1 '4
g

f

tV

^
X63

^Y y

^^ t

may.

VY

f

'-M

Example L-1 453

	

t .. 7 t
--	 EAPLV DATES

1 4 APR 77
EARLY DATES

j

t
'S
.j

SET TASK=TSORT(t),
START=DURETASK),
DUR(TASK)=L1, T=I

n

a

2T — NTASKS	 F
a

	r 	 ^

.^SET TASK—TSGRT(T7,	 +
P=TOP(TASK),

EFEN(TASK)=EST(TASK)
+DUQ(TASK)

SUCCESSOR DATES

CALC,ULArE EARLY
DArE5 FOR

SUCCESSORS OF
THIS TASK.

SET T=T.t

D:

A.

	A-iI JAN 3

i+ A

A

I

I

454 Appendix L

Chart Number 1.7,1:4:
Module Name SUMESSOR—DATES

Date	 4/15/77

5.(1:7.1 .4) Record SUCCESSOR early start DATES for current task

On entry, P points to the TOP of the current TASK, and the EFIN of this
task has been computed.

This procedure sequences through the successor 'list (if any) of the
current TASK, and enters EFIN as the earliest start (EST) of successor tasks
whenever this FFIN is larger than the EST of that successor node.

On ex. it; all successors of the current TASK have been notified of the
schedule constraints placed by that TASK.

.1:	 Begin a loop to sequence through the successor list. During this
iteration.

.2	 let F be a successor of the current task.

.3 The Earliest STart time of the successor must not precede the
Earliest TlNish of this TASK, so if such a requirement had pir-Wously
been entered (it was initially zero),

.4	 update the successor Earliest Snrt appropriately,

.5	 Advance to the next successor in the list, if any, and repeat until
the list of successors is exhausted:

Y^
r^
him

edt

Example L-1 455

L .7. t 4
Successok DATES

15 APR 77

O

456 appendix L

Chart Number 1.7.3
Module Name LATE-AND-FLOAT

Date	 4/14/77

5.(1.7.3) Compute. LATE AND FLOAT dates

On entry, the early start and finish times for each task have been
computed, and the starting milestone DU, Ration reset to zero. TSORT contains
the topologically sorted list of NTASKS items.

This Procedure scans the TSoRT list in reverse to compute late start/
finish elates and the float time.

On exit, these quantities have been deposited in LST, LFIN; and FLOAT.

1	 Set T to locate the next-to-last item in the TSCRT list (whose
successor list mast be the project completion).

.2	 initiate an iteration backward through the TSORT fist (indexed lay T%

and continue until the list has been processed.

.3 rick tip the current TASK, preset its Latest T'Mili. to machine
infinity, and point to the lisi of successors. Since LFIN for this TASK is
to take the minimum value of the latest start time of its successors,
the initial value of infinity .is needed,

A iterate through the fist of successors of this TASK (if any) and record
the LFIN of this task as the LST of the successor task when this LST is
smaller than the LFIN so far recorded.

.5 After LFIN has been found, compute the Latest STart by
subtracting the ouhation; and compute the float as shown: Finally,
decrement T to Trick up the next element in TSORT, and repeat until
TSORT'has been completely processed.

71

Example L-1	 467
AI

1.7- 3 LATE AND FLO AT

(LAT
E AP B OA T̂

14	 PR 77A

A

-I

SET TASK^TSQ R 2M.LFINC
TASK),=INFINITY,

TASK LATE DATE

CALCULATE LFIN
7 VHI.g T.Wk

.%¢M .

£I T=NTASKS-1

2

20

p >

4

.
SET

LST(TASK)=LF.IN C TASK)
"buR(USIQ ,

FLONT (TASK) =LST(TASK)
ES ,T (tMk) b Tai

? . \	 / 	 .. 	 ^
 ~	 ^	 {

LIA

%

r

458 Appendix L

Chart Number 1.7.3.4
Module Name TASK-LATE-DATE

Gate	 4/15/77

&(1.7.3.4) Aeccrd current TASK LATE starting DATE from
Successors

On entry, P points to the list of Successor packets of the current TASK.

LFIN of the current task has been ihitialiuA to infinity. The LST values of
all successor nodes have already been computed due to the in-process
reverse scan through the TSORT list:

-This procedure sequences through the successor list (if any) of the
current TASK, and sets the LFIN of this TASK to the LST of successor tasks
whenever that LST is smaller than the current LFIN.

On e%it, the LFIN for the current task has been established.

1	 Prepare to iterate through. the list of successors.

.2	 Pick up a Successor task F.

.3	 The Latest F"IATish time for the current TASK must not exceed the
Latest STart of a successor; hence, if it does,

.4	 correct that situation as shown.

.5	 Then pick up the index of the next successor and repeat until the
successor list is exhausted.

f	 F

^	
l

F
P:

9
F

F

t

F	
JAN 7g

Example L-I 469

r

w

460 Appendix L
^t

Chart Number 1.8
Module Name DISPLAY
Date	 4/14/77

i
U.t1m) Lime- A .V Schedule report

On entry, T w contains a list of tasks in topologically sorted order, and
the task early/late start/finish times have been computed. 8TAMT contains
the day of year of the start milestone. HEADER contains the top -of page text
to be used.

This procedure prints the schedule specified in format 7.5.

On exit, the entire data space is no longer required.

.1 Read in the calendar data base so that the sTi mr date appears as
GALDR , (o,) and CALDR(m) contains the date of the nth workday
following START. If the project finish goes beyond the calendar or
beyond MAxDATE elements, print an error message, but do not abort; in
the former case, insert a "DAY n" designator into CALM

.2

	

	 LINEs will count the number of tasks out 	 on a page; and T will
index through the TSORT list Preset these for later steps.

.3	 For each of the tasks 1,...;NTASKS,

A	 test whether the end^of-page is near. If so; advance to the top of the
. next page. If a top-of-forrn character is available, that can be used; if

not, print line feeds to space correctly. Indicate that no tasks have yet
been printed on this new page, advance the PAGE count, and print the
header at the top of the new page, using the data prepared in
HEADER_DATA/ 1.1.3.

.5	 Print the task CODE, TITLE, DuRation, EST, EFIN, LST, LFIN; and the
corresponding dates via the CALDR array. Print the FLOAT time. If dates
exceed the calendar, or if the project exceeds MAXDATE in duration,
print "DAY n". Print "s" in column t if the float of this task is zero.
See 7 .5 for format details.

A Then indicate that a line on the report has been used; advance T
forward in the TsoRT list, and repeat until. the tasks have all been
printed.

s=
.7	 Print the final cosmetic lines across the repL t and terminate.

Note: Some impiementations of this procedure may elect to sort the TSORT
r	 list on CODE, TITLE, EST, LST, EFIN, or LFIN as a step 0 prior to the

procedure as .given above. A suitable algorithm is given asExample 7.3.3.1
in Chapter 7 of Reference 7:2.10, but the definition of "elements out of
order" must be reversed.

ft

Chart Number 1.8.1
Module Name CALENDAR
Date	 4/15/77

462 Appendix L

Read in CAL E - WAR file

On entry, START contains the integer daymof-yeajr on which the project
starts. The calendar file contains a set of records beginning with the current
year. The nth record corresponds to the nth day of the year ., and contains
two fields: The first is a boolean value (true if that day is a workday, false
otherwise), and the second is a string denoting the date.

This procedure fills CALOR with LFIU(NTASKS) dates having a true
workday flag. If the calendar file is too short, fill with "DAY in", where in is
the project day, and print an error message. If the project goes beyond
mmoATiE, also signal an error.

On exit, CALDR has been prepared, and, possibly, error messages have
been emitted:

.1 Set the integer variable NDAYS to the Number of project DAYS
requiretL i.e., LF1-Ni(1NTASKS), or to MAMATE, whichever is smaller. If
LFIUI TA. SKS).7 MAXDATE, print the. message "PROJECT Too LONG".

.2 Advance the calendar file and read the sT,,ART,-date record. Set the
ENDFILE flag false if this can be done; otherwise set ENDFILE true and
print the error message "CALENDAR TOO SHORT".

.3	 Set up to read the calendar file, starting at DAY ;tero,

.4	 and iterate through NDAYS.

.3-;6 The project day number converted to a sTmning becomes the CALDR
entry after the endfile condition occurs.

.7-.8	 The DATEFIELD string read in from the calendar file becomes the
CALDR entry if the day has. a true WORKDAY fla_g.

.9 If not a workday, decrement the day count to counterbalance the
later incrementation in step 11, so as not to advance the project day
count.

.10 Read the next calendar file record; prifit the error message
CALENDAR TOO SHORT" and set ENDFILE true if reading hits an endfile

condition on the attempted read.

.11	 Advance the day count, and iterate until. CALOR contains the
required number of days.

4

A

^a

464 Appendix L

Chart Number E1
module Narne ERROR

Date	 4/18177

6:(E1) ERROR handling routine

On entry, some error condition has been detected, and a message has
been passed to this routine as the sole parameter. The parameter is herein

	

treated as a string; however, the parameter may be coded as the integer 	 j
index into an error message array, if all calls are properly annotated.

	

This routine prints "* ** *E iRORssrs" followed by carriage return; line	 }
feed; and the parameter message.

On return, there has been no change in the program data space state.

No flowchart of this procedure is. given.

Called from:

1.2:8,6.7

1.2:8.3.3

1.2.8.6.4
1.5.7.1
1.8.1.1 (implicit)
1.8.1.2 (implicit)
1.8.1.10 (implicit)
51.10

T ^'

d

H

-.^^.^ N'l^ —	 __	 - --'--•.+ice"'^++ ."^m°^iu+^+/.^Smfet ^w-t1r ^ 1a^^^w^iei^^.-:9: Yli^-. - 	 _

:;N

F.

I,

Example L-I 465

Chart. Number F1
Module Name STR

Date	 4/18/77

&(Fi) STRing function

This function converts its integer argument value to a string value. The
returned stribig is the character representation of the integer, left and right
justified (i.e., no spaces). No decimal or commas appear in the format. If
the input value is .positive, the output stri p.:g is unsigned; if negative, the
output is preceded by a minus sign.

No flowchart of this procedure is given. x

Called frnn::

1.8.1.6

f

s
s

466 Appcndix L

Chart Number S1
Module Name SEARCH

Date	 4/18/77

5.(511) SEARCH for task giver} task code

I On entry, two arguments have appeared. The first is the task code TCODE,

and the other is the corresponding task number TSK to be returned. The
current number of tasks is NTASKS, and this number of task codes appears in
#. he schedule network. The overflow flag OVFLOW is false; all data except the
parameters are global:

F
This routine searches through the task codes already entered. If TCODE is

found; the corresponding number is set into TSK. If not found, but room
exists; then NTASKS is advanced one, and TCODE is .made the task code of a
new network node. If not .found and there is no room, the OVFLOW flag is set
true, MORE is set false, and the diagnostic message, "TASK OVERFLOW" is
printed:

?	 On return; either TSK has been set to the asked-for task number and
OVFtoW is false or else ovFt ow has been set true, in which case TSK is notr,	 +
meaningful. MORE will have been set false on overflow.

Stub rationale: Although slow and probably unsuitable for full
operational use, the linear search 3insert procedure is sufficient for checking
the algorithms in the remainder of the program. On completion; this
routine may well take the form of a hash table lookup of TeobE in the CODE

.:

	

	 array, as the :program is not sensitive to the order in which tasks appear in
the network.

Example L-I 487

•

Ii
Called from:	 st

SEARCH(TOODE TSK)
10 Aid 77

SET TSK01
4

1	
1	

WT-NTASK	

I

t I

2

TSK;=NT
p

T
9

SET NT--tL TSX.TSX+l

.

7

SET	 ^TSK	 OVF OW^TRUF.
T NTDE 110

KE Qo^	
MO'RE=FALSE

:10

ERROR

TASK OVERFCON

A

.
nj

A;

AN

Y^

w

t

`	 468 Appendix LF;

U

6.2 Data Structure Definitlons
Data structures defined in this specification are considered by this design

to be globally accessible, so as to promote codability in almost any host 	 a
language. Coding in languages that 'permit localized scoping and limited

E

	

	 accessibility to data may arrange such declarations so as to contribute to
more reliable programming practice.

Variables and constants used in this program; are defined in the glossary
f	 (71). Amalgamation of arrays to form the schedule network is discussed in

Section 10.

6. TEST AND VERIFICATION SPECIFICATIONS

V"I

&1 Production Testing

During the coding activity that implements this program, input data shall
be used to drive the program through every "flow line" of the procedures
at least once. WBS networks shall be input to (singly) violate each of the
network boundary conditions. Such data shall include:

a; Empty WBS.

h, WBS consisting only of "Ewa" record.

c. WBS not ending with "EYED" record.

d. More than MAXTASKS tasks in the WBS.

e. More than MAxsuc linkages (predecessors) in the WBS.

f Tasks with no predecessors.

g: Tasks with no successors.

h. FINfiSH task with. successors.

is WBS has a circular set of tasks.

j: WBS of moderate size (more than one output page) formatted.
correctly and within boundary constraints:

U Acceptance Test Specifications
The program described herein shall be deemed suitable for operations,

provided acceptance tests demonstrate:

a. Proper response to the tests. in Section 6.1.

b. Error=free performance on several WBSs ran in in size over the

s

acceptable :limits.
g ,g

A
''

r

r	
Example L-1 469

c. The detection of all of nine calibration errors of a random nature
inserted into the program using the test data in (ar) and (b), above, in a
special test version for assessing test adequacy.

&3 Duality Assurance Measures

Quality Assurance personnel shall audit the code resulting from this
specification and attest that such code is a faithful translation of the
clocltmented procedures, that programming standarcks have been adhered to,
and that all machine4lepwident considerations conform within the limits
specified herein; Such personnel shall then conduct or closely monitor the
acceptance tests specified in Section 6.2, above,

7 APPENDICES

7.1 Glossary

This appendix contains the manes of program modules, variables,
constants, textual acronyms, and special terms used in this document.

AVAIL: AV111Lable HA pointer. A "pointer" into SuC: NEXT arrays. It
contains the integer index of next availai.tle pair to lie attached to the
network. Value C mxsuc.

B: Bottom of unsorted list. An integer index into the TORT array. 'fit
REGISTER/ 1.2.6, the tasks from n to MAXTASKS are tut;ortecl.

BUILD/ 1:2: .Procedure dame of the module that builds the schedule
network.

CALDR: 0WcaniR array. Array () ... MA'XDATE of date, where elate is either
a string such aLs I SAPR77 or integer such ,is 150477, which converts to a
date in the form 15ARR77 in 1.$.I.$.

CALENDAR/I.$,1: Procedure name of module that reads calendar file into
CALDR array.

CIIECK,SUCCESSORS/1,2.8,3: Procedure name of module that. prints a
list of task codes which have Fl sM as a successor,

CODE: Task CODE array. The string array, ten characters by MAxTASKS,

indexed by TASK, which contains task-code identifiers stipplierl to each
task in WBS, Size 5 MAXTASKS.

CONNECT/1,2;6:6 : Procedure name of the module that links predecessor
tasks to the current tall: in the sehedel'e netavork.

COUNT: The integer array indexed by TASK as part of the schedule
network, which rcoorris the number of predecessors for the given task
node, Size 25 MAXTASKS.

k

.i'i3r^^^lzesa'.•re....ri-cS^... as4i.^:k'«,n`:^t:.weMrarve:s.4vssex.^ ...^.zcww...e:.me. 	 - -....^xv._.u..^.ti.,^.,_.^,..«ms.,^-xv.^;-«xn::^..: a'-^?we.mt.':-.,r^

470 Appendix L

CPM: Critical Path Method. An algorithm for locating those tasks iii a.
schedule whose slippage will cause the project termination date to slip
also

DATEFIELD: String variable to hold the calendar file work date read into
the program.

DATES/1.7: Procedure name of module that computes late and early start
and finish dates, and the float times for the schedule network.

DAY. An integer index denoting the .project day beyond sTanr. Day 0 is the
project start.

DIAGNOSE/ 1.5.7- Procedure name of module to diagnose a schedule
network having a loop.

DISPLAY/'1,8: Procedure name of module that prints the schedule.

DUR: DURation: The integer array, indexed by TASK, which contains the
durations of the referenced tasks in the schLAttle network, in days. Size 5
MAXTASkS.

EARLY-DATES/1;73: Procedure name of module that computes early
start and finish dates for the schedule network.

E. FIN`: Early F NTish :time. The :integer array, indexed by TASK as part of the
schedule network, which contains the earliest finish times of tasks,
reckoned in days from start. Size :5, MAXTASKS.

ENDFILE: Boolean flag set true when an endfile is found while attempting
to read calendar file record.

;. ERASE-EDGES/1.54: Procedure name of module that "erases" edges to
successor nodes by reducing the coma field of those nodes.

?

	

	 ERROR/EL Subroutine that prints th..e string parameter passed to it as. an
error message.

f

EST: Early STart. time. The integer array, indexed by TASK as part of the
s	 schedule network, which records the earliest start time of tasks, reckoned

in days from start. Site : MAXTASKS.
i

F: An integer index that locates the Front of the TS0nT queue in TomsoRT/
1.5. It is Also used to prneess DATES/1.7.

Floats The difference 'between latest and earliest start of a task in a
schedule network.

FLOAT: An integer array indexed by TASK as part of the schedule network,
to record float times;

in
days. Size :5 MAicTASKS.

HEADER: String information necessar y for Schedule header. See Section

Example L-1 471

INITIALIZE/1.1: The procedure name of the module that declares all data
stnictures and constants.

LATF,ANLLFLOAT/ 1.7.3: Procedure name of module that computes late
start and finish dates, and the float time -for a schedule network.

LEIN: Latest f IATish tune: Ali integer array, indexed by TASK as part of
schedule network, which records latest finish tithes of tasks, reckoned in
days past start. Size :5 MAXTASKS.

LINES: All integer variable used to count the numhcr of LINES put out on
the current page.

LINK—TOLFINISH/1.2.8.6.: The procedure name of a module that links a
given node to the FINISH node if it has no successors.

LST:.Latest ST'art tome. Ail 	 array, indexed by TASK, as part of the
schc Bide network, which -records the latest start times of tasks, reckoned
in days from start. Size 5 MA'XTASKS.

MANDATE: An integer program parameter. The nuainnun length of Crime
that can he scheduled in a project. A compile-time constant.

MAISUC. M 1 Nilnum number of SUONEXT pairs to be allowed in network.
A compile-time integer constant.

MAXTASKS: iMA Imrun number of TASKS. A compile-tine integer
Constant.

Milestone: An achievement signalled by the accomplishment of a task. or
set of tasks. In this program ; a milestone is a zeroAuration task linked to
predecessor tasks in order to show achievement of all preceding tasks
before advancing ,to a next set of tasks.

MORE: A hoolean used for 'loop control ... Set false by SEARCH /Si if task
overflow occurs.

MO.REPRED: A hoolean loo} flag, true while iterating upon predecessors
of a node in REGISTER/1.2.6.

NDAYS: The integer z\3nrnher of project DA YS, total duration or Iirnitcci by
MAXDATE in CALENDAR/ I.S. L

NEXT: A "Pointer" array indexed by "pointers." Ali element contains the
index of the next SUC: NEXT pair for successor nodes of the current task in
the schedule network. Size S MAXSUC.

NIL: A compiler constant equaf to zero, to represent the mill pointer. The
invalid integer index into SUC: NEXT arrays that indicates no further
successors are present.

NON!NIL: Any non-nil value cif "Pointer into SUC: NEXT arrays. Used in
TERMINATOR /.L2.8..A compile-tame constant.

s

i^:

472 Appendix L

NT: An integer variable local to the stub SEARCH /Si, used to control the
search. initially set to the Number of Tasks, but reset to —1 if the sought
task code is found.

NTASKS: An integer, the current Number of TASKS input into the
schedule network. Value :5 MAXTASKS.

OVFLOW: A boolean variable, false unless task or successor linkage
overflows occur;

P: Pointer. A "pointer" into sue: NEXT arrays, used in various localized
procedures:

PAGE: An .integer value used..by DISPLAY/1.8 to record the page number of
the WSS report.

PERT: Program Evaluation and Review Technique. A method that aids in
the planning, scheduling, monitoring, utilization, and reporting of project
resources by means of task definition, work breakdown structures,
resource constraints, and schedule networks.

Pointer: The index of sur,: NEx,r array elements.

PRED: PREpecessor task code. A string, which is a task code read in from
a WBS record. Local to CaNNEcr;'1.2:8 6.

PTASK: Predecessor TASK. An integer, the index of a predecessor task.
Local: to WNNELYWL .6.6.

REGISTER 1.16: Procedure name of the module that enters tasks into the
schedule network.

SCHEDULER/1: The name of the main program.

SEARCH/51: Subroutine to search for a :given task code and return the
task number.; It -inserts the task code, if not found, into the network, and
sets ovFLow as appropriate.

START: An integer variable that contains the project-:start-milestone day-
of-year read-in.

STH/Fl: The STR,ing function, which converts- an integer variable to a
string variable. Used in CALENDAR/1.5.1.

SU, Q SUCcessor. A "node" array indexed by "pointers" to denote ed ges in
the schedule network.. The "node" value is an index into task information
arrays. Size 5 MAXSUC.

i

SUCCESSO"ATES /1.7.1:4:''Procedure name of a module that calculates
g	 the EST restrictions placed on successors. of. the current TASK.

1
T: An integer index of the TsaRT list. During sorting, the tasks in TsaRT	 w

indexed 1,...,T are in sort: Tasks beyond are probably not. T :5- nrrASKS. 	 R

^r	 F

x^...

is

I

Example L-1 473

Task: An item in a Work Breakdown Structure (WBS) characterized by
wort; with definable inputs and outputs, predecessor and successor work
constraints, probable or estimated duration, and assigned responsibilities,

TASK: An integer index into the task information arrays in the schedule
network, TASK 5- NTASKS,

TASK, LAT"ATE /1.7.3.4: Procedure name of a module that calculates
the LFIN of the current TASK from the L.ST of all .its successors.

TASKCODE: A string, recording the task code input in BUILD/ 1.2. If "END"

appears as a task code, then no more tasks will be input,

TCODE: A string parameter passed into the stub SEARCH/S1 having the
value of the sought-for Task CODE.

TERMINATOR/ 1.2.8. Procedure name of the module that adds the
,.,v	 "FINISH" milestone to the schedule network.

TITLE:. A string array, 32 characters X MAXTASKS, indexed by TASK, which
contains the task title; as part of the schedule network. Size :5- MAXTASKS.

TOP: A "pointer" array indexed by -TASK as part of the schedule network,
Top ". points" to SUC: NEXT array elements to give successor information,
Size C MAXTASKS:

TOPOSORT/1.5: Procedure name of module to sort the WORT list

topologically.:

TSORT: Topological SORT list, An integer array indexed by T, which
contains the topologically sorted list. The first element is the task
number of the start milestone. While being constructed, items up to T
are sorted. Items from a to MAX-TASKs are tasks held for later query by
-riERMINATOR/ 1.2.8. Site :15 MAXTASKS.

TSK: An integer parameter passed from stub SEARCH/S] having the value of
the TaSK number corresponding, to an input task code.

Wi3S: IVotk Breakdown Structure, or hierarchy of tasks refined into
suhtasks until subtasks are finite, manageable units.

WORKDAY: A boolean variable to hold the calendar. file .workday Rag,
true if the corresponding day is a workday, false otherwise.

7.2 Refierences

.1 Prather, R:.E., Discrete Aathematical Structures for Computer Science,
I-Ioughton Mifflin Company, Boston, MA; pp. 220—.278, 192f3; 	

i
Mathematical background for schedule networks and the
critical path method:

t

vi

i

474 Appendix L

.2 DoD anti r\TASA Guide, PLNTICost Systems Design, Office of the
Secretary of Defense and the National Aeronautics and Space
Administration; U.S. Government Printing Office, Washington, 0C,
June 1962.

I

A description of the PERT system .application.

.3 Aplilication -Description Manual, 1130 Project Control System, ISM
Corp., White Plains, NY, 1968: 	 ! ,

Introductory guide to the ase of the IBM program, with
some theory and examples.

.4 Tausworthe, Robert C,, Standardized Development of Computer
Softweire; Part Il: Standards, Chapter 16, this text.

Defines documentation revels.

.5 Ibid., Chapter 12,

Contains documentation standards and guidelines.

.6 Ibid., Chapter .13;

Contains coding standards and guidelines.

.7 Ibid:, Chapter 14_

Contains testing standards and guidelines,

.8 Ibid,, Chapter 15.

Contains QA standards and guidelines.

.9 Knuth, D. E., The Art of Computer Programming, Vol, 1: Fundamental
Algorithms, Addisrtn-Wesley Publishing Co., .Reading, MA, pp. 262-
265, 1969,

Gives the topological sorting algorithm used here.

,1O Tausworthe, Robe rt C., Standardised Development of Computer
Snf hvarc, Part 1: Methods, Prentice-Hall Publishing Cojn,pany,
Englewood Cliffs, NJ, 1:977.

Gives the general methodology for top-down, modular,
structured development of programs.

a

Exarnhle L-1 475

7.3 Potential Future Modifications

1r

The extension of the program specified here into a full project planning,
evaluation, and reporting tool is not covered by this specification.
However, several: candidate features are deemed nee;ssary in such a tool.
These are• i

a Data-base o cration inclttdin a date ca ahilitp	 :	 g p	 ,p	 y.

h; Capalaility to assign resources (manpower, dollars) and to allocate
facilities to individual tasks.

c. Access to alternate calendars.

d; Capability to enter required or actual dates for milestones.

e. Options to print other t,)>pes of reports, such as schedule (GANTT)
chart, milestone data only, cumulative duration rate chart, resource
expenditure profile, sorted schedule according to completion or start
date, etc.

7.4 Error Messages and Diagnostics

This appendix contains a list of the error messages and conditions under
which these are invoked; as specified l v Sections 4 and 5 of this document.
Other error messages may a.ppcar ii host-dependent considerations dictate.

All error messages output by ERROR/El will appear preceded by

****ERROR****

Overflow errors terminate processing, whereupon the following message
appears appended to the prefix ahove:

SCHEDULER TERMINATED

The detected errors are as follows:

CALENDAR TOO SHORT

Calendar file does not cover the number of clays in the project.

frrsk Lade CANNOT FOLLOW "FINISH"

The WBS has a FINISH task with a successor task identified. by task

LINKAGE OVERFLOW

The schedule network has too man y successor relationships (.edges). 	 j

TASK OVERFLOW r1

The WBS has too m :uiy tasks (nodes).
s

r^

476 Appendix L

WBS HAS AT LEAST ONE CYCLE AMONG TASKS

The schedule network contains a circular set of predecessor-
successor relationships.

7.5 Output Report Format

The output report format is defined in Figure 7.5.1. The top line, giving
the project name, is the iHEApER record input by HEAOER_DATA /1.1.3. The
report date is assumed available via the operating system. The format
displays the various fold widths ., and gives a typical example. Asterisks
signal critical-path items.

END OF SPECIFICATION

x..
^_
c^

-•	 _•__•	 _ .^_., ^^	 ^ ^.^ _.:mss«.	 .r, ^:	 ..a.. ...^,_..,	 ^-.	 _ -
	

.. ._	 .,

------------------------ -------------------'---------------------------- --------------------------------------- - ----------------
PACE I

f. .. WIDGET PROJECT

N 0 R ' K 	 B ft E 4: -K D 0 W N	 S T R U C T U H E
DATE. 12 MAR T7

- — --------— ----------- -----

-------------- ---
START FINISH FLOAT

CODE TITLE DURATION EARLY
DATEDAY

LATE
DAY	 DATE

EARLY
DATEDAY DAY

LATE
DATE

TIME
DAYS-_

------------- -
START
-------------- --------------- ----°---------------------

0

0	 ITAPR77 :

0

11APR7.7 0 1 11AFR77 0 1IAPH77

ORDER PACKAGING MATERIALS 10 :*	 0	 11APR 7 7 35 31 HA17-1 10 25APR.-77. 45 14JUN77 35

.3
. FAMIGATE . Utlft PARTS 09 HANI) 26. 0	 1IAPR77 10 25AP IR-77 20 9MAY 77 30 23MAY77 10

0
si *2 PROCURE	 PARTS.NBlEbb go 0	 11AFR71 0 14AFR77 30 23MA-V77 30 23MAY77 •

•5 FABRICATE USING PROCURED PARTS 15 3	 23MAY77 30 23HA177 45 14JON-77 45
65

14AN77
144UL7 .7

0	 :
0

INTEGRATE AND TEST AWkMBi.Y 20 45	 14Jt0l 4 14JUN77 65 14JUL77
14JUL77 0

•7 PRODUCT COMPLETION 0 65	 14JtrL77 65 14adL77 65 14JOL77 : 65
• 0 PACKAGE

AND
DELIVER ASSEMBLY 10 65	 14JUL77 65 JUL77 75 28JUL77 : 75 28JqL77 0

w i ll TRk-IN PERSONNEL. 15 75	 28JUL77 75 MUL77 90 18AUG77 90 18AUG77 z . 0

1.0 ASSEMIX TEST GEAR 5 75	 28juL77 80 4AUG77 00 4AUG77 85 11AUG17 5
.9 .

INSTALL AT. C
.
USTOMER FACILITY 5 75 	28JUL77 80 4A00777 So 4AUG77 85 t1AUG77 13

12 PERF. OR	 ADIHESS TESTS
-

5 80	 4AUG77
IBAUG7

7

85
90

11AUG !T7
18AU677

85
95

TlATjGT7
25AU07T :

90
95

18AUG77
25AUG77

5
0

y . 3:1
'4f "IN	

496E TESTSC^ 5
a

90
95	 25AUG77 95 25AUG77 95 25AUG77: 95 25AUG77 0

,Y 40^INISH 0 95	 25AUG77 95 25AUG77 95 25AUG77 : 95 25AUG77 0- ------------------

- ------ -- --	 --	 ---------- -----------------------------— ----------
4 CRITICAL - ITEM

F

PATH

, gum 7.546 Outputf T1 tomcat of tike SCHEDtiLER pmqrwn Illustrated 1by-aftpath0cm ad

of tasks representing "Mdpt Pmjacr

4. 4 L.,

^Y

y..

478 Appendix L.

EXAMPLE L-2

DECISION TABLE CONVERSION
USING THE POLLACK PROCEDURE

1.	 INTRODUCTION

1. 1 Purp.0

This program converts a limited entry decision table .(x;EflT)
input by a user to a CRISP program using the Pollack
"optimization" procedure, based on a least-decision-time cost
criterion.

1. 2
scope

This specification covers only machine-independent
considerations relative to implementation. standards and
conventions, system environmOit and interfaces, test and
verification details", and other lower-level consider s ions are
not covered.

1.3 Ayolicable Document

Robert C. Tausworthe, standardized Development of Camauter
Software., Part 1, standards, C2iapeer 8., Section 8.3.3 through
8.3.5., pages"25'8=271:, Prentice-Ha11, Enghewood Cliffs., N.J., 11477
(Reference 5.1) .

1.4 General .Description

The application of SEVrOs to generation of flowcharts, and
therefore CRISP programs, is covered by the applicable docdw ftt
named above. The Pollack procedure herein described is a
recursive algorithm for processing an LEaT composed of conditions
stubs and entries * action stubs and entries, costs associated
with each condition, and probabilities associated with each rule.
No I+donft-car-eff entries are permitted in the LE¢T input. The
basic procedure, due to Pollack (Reference 5.2.), converts an
unambiguous LEaT into a flowchart (or CRisp program.) as follows:

a. Select one raw of the original LWT by a suitable
criterion C (,to be discussed later). The condition in
that row becomes the first comparison of the flowchart.

1

.

_4	 _ .

ti.

i

Example L-2	 419

sb. Decompose the table into two subtables having one less
row -• either subtable may perhaps only contain one
action - and associate each subtable with a branch of
the flaachart decision.	 That is., one subtable consists
of all the remaining conditions and the set of rules B
for which the condition selected in (a) above is true.;
the other is similar, except that the condition is a

' false,

C.	 if a subtable has more than one action, select one of
its rows by criterion C and .attach the condition for
that row to the proper branch of the previously
selected condition producing that subtablei,

i d.	 Continue (b) and (c) above on each subtable. until each4.
rule of the original LEnT	 is represented in a branch
of a condition (or untila subtable indicates that the
original table contained redundant or contradictory

frules).

The criterion C., above, Lan, among other things, check for j
redundancy or contradiction among rules.	 rf,. at any stage, two
rude columns exist without containing at least one Y-N pair in
some row, redundancy or contradiction exists. 	 if the actions for

_ both rules arethe same, the rules are redundant and one can be
eliminated; if the actions are different, the. rules are !
contradictory, and the table is in error.

The criterion C applied In this program (denoted as
. criterion C1 in the documentreferenced in section 1.3 above) .

-' computes, for each condition to be tested in a given (sub)table.,
the decision-time cost for that. decision multiplied by the sum of

1 probabilities of all rules r L and rz in the (sub)table such that
r; < re, whose action entries are the same, and whose condition

--- f entries permit a "don"t care" condit -ion to replace a Y-N pair.
This value for a given condition is known to be the expected
exara time contributed to the execution of a program if that
condition becomes the one selected in step (a) above..	 The
criterion C used here chooses the condition so as to minimize

s this expected extra time.

The reader is referr-ed to the cited applicable document for
further information: regarding the general method.

F 2.	 THE METHOD

The condition stub in an LEDT may be eliminated from
processing if each of the condition entry Y o e and N ils can be
tagged with the number of the condition to which it applies.
Thus, a Y2 in the table would make it clear that a Y tesponee to

is condition 2 applied at that point.	 The program described in E
section 5 uses +i and -i to record Y and N answers to condition
i, .respectively,	 such tagging is .necessary in order to

a^

2

z^.

-Z^

ŷ̂ ^-
•	 -	 -	

-	
w ^. s".i ^.,e.+ . 5.:3 Vie. ..s in	 ,.. n..,h^ ..--

•

4$0 Appendix L

interchange condition rows and rearrange rule columns in
subtables of the LEDT.

Starting with the complete table, let the best condition be
found according to the criterion C above, suppose this were
condition 3. Then interchanging condition rows 3 and i brings
the best condition to the top of the table. Next, by exchanging
columns of the LEDT appropriately, all columns with Y responses
to the top condition can be made to appear to the heft of a11
columns with fit in the top row. The sabtable with a Y answer to
the top condition extends from column i an the left to the middle
of the table on the right, and from condition raw 2 an down. The
same procedure may new be applied to each of the two subtables
just formed.

In general, then, the method is the recursive application,
starting at a TOP=i, LEFT-1, and RIGHT-2++n, of the following
steps: (1) for each subtable, determine the best condition row
between TOP and n, based on the rules from LEFT to R ,%GHT, (x)
exehange this condition row with the TOP row between LEFT and
RIGHT limits, (3) permute columns to arrange all Y answers on the
TOP row to be left of all N answers ., (4) determine the MID column
as the first N response in the TOP row., and, finally., (5)
initiate the optimization of two subtables with a new TOP of
TOP*l., and boundaries (LEFT, MID-t) and (MID, RIGHT),
respectively. Note that permuting columns of a subtable never
changes the condition entries above TOP.

Each time a best condition is found, it is printed in an IF
statement, the value of TOP indicates the level of nesting, and,
thus, the indentation to be used; The left subtable corresponds
to the THEN clause, and . the right sobtable to the 9LSE clause.
Hence., upon returning from processing the left table, ,an (ELSE)
is printed. After processing_ the right sabtable, an ENDIP
completes the processing of that subtable.

Whenever a subtable possesses rules that all invoke the same
action, then no condition needs to be tested, hence, a text which
indicates the action is printed at t=hat point, and no further
processing of the sabtabe takes place.

3. EUNCT-TONAL SPECIFICATIONS

This program as specified here accepts an Lt OT, from an
unspecified medium itp an unspeci=fied format; however., the
information input shall be equivalent to that shown in.Fi,l+ire
8-10 of the cited applicable document. These entries inc=lude the
following-

4

w

3

w-

,a

Example L-.2 481

a. Number of conditions: an integer, n in section 2,
a ve.

b. Condition tgrt. • strings which state the conditions
appear g n—the condition stub, one string per
condition. These will appear in IF statements.

C. Action text: strings which identify action sets
evoked- yam► rule6. These will appear in -MIEN and ELSE
clauses,

d. An action assignment list, which matches indices of
action texts to "their proper rules, listed in a
standard order.

e. A arobabilityust, which matches execution frequencies
to the rproper rules., listed in the same standard.
order of rules.

f. Condition test times, which state the times required to
test each of the given conditions.

Processing this input as described in the cited document
produces an indented CRISP listing of the program consisting of
nested EFTHMELRE structures. The condition text strings ate
placed in fiF statements. when a rule is Finally resolved by
nested condition outcomes, the clause corresponding to that rule
is the action text string given on input for that rule.

The following example serves to illustrate the application
of this program and specify the output format. The example. shown
in Figure 8-10 of the cited document has

a. The number of conditions (integer): 3

b. Condition text {strings).: C1, C2, C3

C.	 Action text (strings): AT, A2, A3

d. Assignment list (integers): 1, 1, 3, 2, 1, 2, 2, 2

e. Probability list (seals): .1, .15, .15, .2, .25, .05,
.05, .05

La	 Condition test times (reals)s 50..; 68., 25.

In (c), and (d) note that the act-ion assignments and probabilities
are not given

in the same order of rules as shown in the
referenced figure. so as to avoid having to input individual X-N
entries into the csndit#on stub, the program assumes a standard
cgndition stub, ranging from allmY as rule 1, to all=N as rule
2**C progressing in binary radix form With the bottom condition
toggling every mile, etc..

9

482 Appendix L

F
4

k

The output for this example, corresponding to Figure 8-11 in
the reference, is

IF (C2)
IF (C3)

Al
('ELSE)

.	 IF (C1)
Al

->'(ELSE)
A2

. ENDIF
ENDIF

.-> (ELSE)
IF :(C3)

s	 IF (C'1.)
A3

(ELSE)
A2

. ENDIF
.->(.ELSE)

A2
.ENDIF

...ENDIF

4.	 PROGRAMMING SPECIFICATIONS

4.0 Overview

The major data structures required by the program are those
required to form the elements of the decision table. In the
specifications below, these table structures will be considered
as global to all modules within the program,. but only for
convenience in describing the algorithms. Data declarations are
not covered by the program descriptions, but acre, of course,
necessary once the programming language is chosen..

Subroutine and function argument parameters are assumed here
to be local to a subroutine and available as global within that
subroutine (i.e.., available to subprograms). Thus, a parameter,
say TOP, passed as an argument to the POLLACK subroutine at the
main program level., is not the same location as the argument
parameter, TOP, local to that subroutine and accessed by.
subprograms PRINT-ELSE and PRINT ENDIF. Local variables are
identified in the narrative discussions of each program module.

Input of the LEDT is handled by a subprogram ENTER_LEDT,
which accepts information, as described in Section 3., above, from
an arbitrary medium and formats it for the recursive subroutine
POLLACK, which optimizes the table and prints the cosme.tized
translation into CRISP.

*F{^

^I

5

Example L-2 483

The global data structures are

N integer number of conditions in the LEDT.

CONDITION String array holding condition stub textual
descriptions, in order 1 1 ... ,.N.

PROB _-teal array holding rule probabilities, for rules
in standard order 1,....,2**N.

A Integer number of distinct action combinations.

ACTION string array holding textual descriptions of the
action. combinations which apply to the various
rules,	 1,...,A.

RULE Integer array holding indices of the action
strings which apply to each of the various
.rules, r=f,...,:2**N, in standard order.

LEDT Integer array, N x 2**N holding the Y-N (or T-F)
condition entries.	 The i,j thelement is ic,
where +c corresponds to a true outcome of
condition c, and -c corresponds to the false
outcome.	 initially, LEDT:(i,j .)	 = t.i.; i.e., the
ith row records theY-N entries fo,r the ith
condition, for each rule j = 1,...,-,2**N. 	 since
subtables are permuted by the program, the
Condition correspondences are traceable by the
entry values.

ti

TIMECOST Real array of times required fox making
decisions, for each condition. I,...,N.

Subtables of LEDT required by the f•OTMACR subroutine are
defined by local parameters TOP, LEFT, and RIGHT..

i

I j

6

i

484 Appendix L

Chart Number 1
module Name LEM CONVERSION
Date	 5/27777

4. (Ij	 Main Program, LEDT CONVERSION

PrgqrAm: LEDT CONVERSION <*27 May 77*>	 MOU I
FNTrR LEDT <*&.Iso set N to number of conditions*>

.2/S1	 calk POLMACK(l, 1, 2**N) <*Optimize LEDT from
<*TOP=1 to bottom, LEff=1 to RIGHT=2**N*>

endprogram

on.entsv, a file of data exists containing the LEM data.

This r 	 reads the file into a structure modelling the
LEDT, dotimiz6s it using the Pollack procedure based on minimized
execution time, and prints a CRISP listing of the LEDT
translation.

.1	 Initialize the data structures LEDT, RVLE, ACTION, A,
PROS, CONDITION, and N with data input as directed by the
user.

.2	 Optimize the entire table, bounded at the top by
condition row 1, on the left by rule column 1, and

on
the

right by rule column 2**M Print a CRISP coametized listing
of the translation. If there is

an err-or in the input which

results in an ambiguous stibtabie, print an error message.,
"tabie entered in error%

4,

10

Example L-2 485

Module Number 1:.1
Module Name ENTER LEDT
Date	 6/15/77

4.(1.11	 Table entry subprogram, ENTER LEDT

On entry, the program is unini-tialized.

This Procedure. declares and fills the global data structures
A, ACT—ION, N, CONDITION, RULE, and PROS with data input from a
user-.specified source. The LEIYr array is sized using N and then
filled with the standard initialization described in Sections 3
and

On exit, all of the above data structures are initialized as
requiNd.

The procedure for this module is not covered by this
specification. it may conceivably accommodate a user at an
interactive terminal, input frarr. & file or deck of cards in batch
mode, or a combination of the two. For this reason, such
procedure is not defined here. However, in any case, having
executed, this module performs the indicated initializations so
that the remainder of the program is insensitive to the input
mode.

486 Appendix L

+	 Module Number S1
Module Name POLLACK
Date	 5/27/77

4. (.91)	 Table nrocessinv subroutine, P.OLLACK

Suhroutine: POLLACK(TOP, LEFT, RIGHT) <*27 May 77 *>	 Moo$ S1
.1'	 if (:LEFT = RIGHT)
.2/Sa	 call PRINT_ACTION ,%EFT, TOP)
.3	 :->(TOP <= N AND LEFT C RIGHT)
..4/G	 call CHECK_RULFS(I EFT, RIGHT, SAME)
.5	 if (SAME)
.6/S2.	 call PRINT ACTION(LEFT, TOP)

.	 .-){else}
.7/F1	 Idt B=BEST(TOP, LEFT, RIGHT)
.S/SA	 call EXCHANGE CONDITIONS(TOP, B., LEFT, RIGHT),
.9/$5	 call PARTITION RULES (TOP. , LRFT, RlGHT, MID)
.10/S6	 call PRINT CONDITION(TOP., LEFT)
.I1/S')	 call POLLACK(TO.P4- 1, LEFT, MID-1:)
.1.2	 do	 PRINT ELSE
.13/91	 call POLLACK(TOP+1, MID, RIGHT)
.1A	 da PRINT ENDIF

.endif
. -> (,e:lse)

.15	 print .error message "table entered in error"
:..end-if
endsu routine

On entry , the TOP condition row and LEFT and RIGHT rules
whichxiound the subtable have been specified. The LEDT contains
entries as described in Section 4.0.

This recursive subroutine processes the subtable of LEUr
bounded by TOP and N (glottal.) condition rows, and LEFT and RIGHT
rule columns, and then prints the CRISP program for that subtable
using the proper cosmetic nesting indicators.

2n exit,, the subtable program has been printed and the LEDT
optimized.

Note: This subroutine is recursive in its description here;
however, if the intended programming language does not support
recursion, then an appropriate translation to iterative form
using a stack may be substituted,

.1	 if LEFT and RIGHT coincide., only one action is
possible, so

.2 print the action text corresponding to LEFT, using TOP to
i	 compute the indentation level and cosmetics.

.3	 If TOP is not beyond N and more than one rule is in the
table, then

9

Example L-2 487

4

l
..	 f

Module Number S1
Module Name POILACK
Date	 5'/27/77

.4 examine the rules to see if they all involve the same action:;
if so', set SAME true (otherwise, SAME is false).

	

.5	 When all actions are the same,

.6 print that action, as in step .1, above.

	

.7	 Otherwise', the subtable requires refinement. Hence,
find the best condition B in this subtable according to the
coat criterion.

	.0	 Exchange condition rows B and TOP between LEFT and
RIGHT

.9 and collect all rules with Y in the top row occurring
between LEFT and RIGHT an the left. Set MID to the leftmost
rule with an N entry in the top row, or to RIGHT+1, if none
occurs.

	

.10	 Print "IF" followed by the condition text of the TOP
LEFT entry in the table. If this is not a positive
condition number, there is an error in the table, and will
eventually cause an error message at step .1:5 below:
Nevertheless, if negative, print "NOT" before the condition.

	

.11	 Perform the optimization of the "THEN'" subtable and
print the "THEN" clause..

. 1 .2 Separate with 10 ('ELSE) " properly cosmetized using TOP to
compute nesting level. (,Note: the scope of variable of a
do is the same as the module in which it appears.)

	

.13	 Perform optimization for the "ELSE" subtable, print the
"ELSE" clause,

.14 and close with 41ENDIFIT cosmetized using TOP to compute
nesting level. (see note in step .12., above).

	

.15	 The cases LEFT 0 RIGHT with TOP > C and LEFT > RIGHT
Are errors caused by improper table entry..

Called from:

1,:2
S1: 1 1
51.13

t

10
i,

^F

i

'i

488 Appendix L

Module Number 51.12
Module Name PRINT ELSE
Date	 5/27/77

i
4.(S1.1.2)	 PRINT the ELSE keyword

i

To PRINT_ELSE <*27 May 77 *> 	MOD# S1.12
.1	 print +1 :" and four spaces for TOP- 1 times; then

follow by " r-> (ELSE)'@
endto

On entr.., the current value of TOP is the nesting level of
the condition to which the ETSE corresponds.

I is procedure prints the cosmetics and then „ (ELSE)^.

.1	 If TOP were 1 then no cosmetics would precede the "IF",
so the number of colon-plus- four-space repetitions is TOP-f.

1{

t^, r	 f '	 1

Example L-2 489

Module Number S1.14
Module Name PRINT ENDTF
Date	 5/27/7-7

4. {51. 1 '4)	 PRINT the ENDIF ke^Mrd

To PRINT.-ENDIF <*27 May 77*>	 MOD# 91. 14
.1	 print ":" plus four spaces for TOP-1 times: then follow

by ":..ENDIF"
endto

On entry, the current value of TOP is the nesting level of
the condition to which the ENDIF corresponds.

This procedure prints the cosmetics and then '} ENDIF".

.1	 TOP-1 is the number of repetitions of the colon-plus-
four-space field needed to reach the corresponding "W'.

12

JJ

0,

490	 Appendix L

Module Number S2
Module Name	 PRINT ACTION
Date	 5/27/77

i
4.(S2:)	 PRINT the ACTION .text

Subroutine:	 PRINT ACTION (LEFT, TOP) <*27 May 77 *> 	MOD# S2
.1	 print 71 : 11 followed by 4 spaces, TOP-1 times; then

follow by the string ACTION-(RULE(LEFT))
endsubroutne.

on entry, the applicable rule has been determined to be the
value of LEFT.	 RULE translates LEFT to an ACTION index. 	 TOP
indicates the nesting level of the IF structure to which this
action applies.

T is subroutine cosmetizes and prints the ACTION text for
the LEFT RULE using TOP to determine indentation.

.1	 LEFT is a column number, and RULE(LEFT) is the action
index which applies. 	 ACTION of this index is the string
describing the action.

Called from:

51.2

i

,I

13

'	 y

_ ^	 -..^-TH-.^•.. x. __5,.:__.z 3 r._.,«it^:•iti^..:.:..f.S:. r11.,:: -.._

.-

Example iL-2 491

s

E
c:

r

i

r
i
3

Module Number S3
Module Name CHECI`RULES
Data	 5/31/77

4.(83)	 Subroutine to CHECK RULES for ident ica l..actions

Subroutine; CHECR_RULE(LEFT, RIGHT, SAME) <*31 May 77*> M00# 53 	 a
.1	 Set SAME = true
.2	 1'OP for i	 LEFT by 1 while ('i 5 RIGHT AND SAME)
.3	 1 if (-RULE(i) * RULE(LEff))
.4	 1	 set SAME = false

1	 .endif
.5	 1— reheat with next i

endsubioutine.

On end, LEFT and RIGHT indicate the boundary of columns of
a subtable. RULE contains the action indices for the subtable.

This subroutine examines each of the actions called for by
the subtable.

On exit, if the subtable has only one action called for,
SAME will be set to true; false otherwise.

.7	 Preset SAME to a true value to serve as a structure
flag.

.2-.5	 iterate through the subtable from LEFT to RIGHT until
ended or until it has been found.to have more than one
action.

.3	 Test each rule against a fixed one (the LEPTmost),

r

.4 and indicate failure when it occurs.

Called from:

S1..4 i

i

1.4.

r

492 Appendix L

Module Number S4
Module Name EXCHANGE_

Date	 5/31/77

4.(S4)	 Subroutine to EXCHANGE CONDITION rows

Subroutine.: EXCHANGE CONDITIONS (TOP, B, LEFT, RIGHT)
<*31 May 77*>	 MOD# S4

.1	 19op for i = LEFT by 1 to RIGHT

.2	 1 exchange LEDT(TOP,-T) == LEDT(Sr. i)
l..r£neat with next i

endsubkoutine

On entry., TOP. LEFT, and RIGHT bound a subtabie of LEDT, and
8 indicates the raw chosen as best.

This subroutine interchanges the LEDT entries in the TOP and
H rows between LEFT and RIGHT.

On exit, the LEDT subtable has the best row on TOR.

.1-.3	 From LEFT to RIGHT

.9a s. vP^e9ar-ix-,^;v:en^v,a+!^i•':`.!fC"'^y ;t*f'?i±'m?'i,. fra?r .. ,-::'"Y'a ^.»Prz: 	 7a;-^a		 "!rpss-^«3; tEk; '%'E*y"";"'^-•r:'",'M?

4

Example L-2 493

Module Number s5
Module Name. PARTITION RULE

	

Date	 5/31/77

4.(S5)	 subroutine-to PARTITION RULES

subroutine: PARTITION RULES(TOP, LEFT, RIGHT, MID)
<031 May 77 *> 	Mont S5

.1	 let MI,D = LEFT, r = RIGHT

.2	 1.40p While (MID 5 r)

.3	 I	 (LEDT (TOP, MID) > 4)
x	 .4	 1	 let MID = MID+1

.5	 I : -> (LEDT (TOP, r) < 0.)

.5	 I	 let r = r-1
I	 >{else)

.7	 1	 loop for i = TOP by 1 to N

.8	 I	 1 exchange LEDT4i, MID) _- LEDT(.i, r)
I	 !. . repeat with next I

.9	 S	 exchange PROB (MID) _= PROB(r),
I	 RULE(MID) == RULE(r)

10	 I	 let MID = M°ID+1, r = r-1
I :..endif
I..rmaZ t

endsubrbutitine

On entry, the LEDT subtable bounded by TOP, LEFT, and RIGHT
has the beat row on TOP.

This subroutine exchanges columns until all true (positive)
entries of the TOP row are on the left of false (negative)
values.

On exit, the subtable has been partitioned, and MID conta"ins
the index of the first false (r_egative) TOP row entry (or
RIGHT+1 0 if none exist).

.1	 This subroutine begins by presetting MTD to the LEFT
column and r to the RIGHT column of the current subtable,

..2 and .then iterates until all columns having true entries in
the TOP raw lie to the left of columns with false entries,
as signalled by MID exceeding r.

.3	 During this iteration. , if the TOP entry in the MICA
column is already true,

.4 increment MID to the right., and repeat. This will continue
until the MID column has a false TOP entry (or else until
MID goes beyond r).

.5	 If column r now has a false entry,

1.5

494 Appendix L

Module Number S5
Module Name PARTITION_RU1.ES
Date	 5/31/77

.6 decrement r to the left in search of a positive entry, until
a true column r is found (or r goes beyond MID).

	

.7	 when MIA and r columns have thus been found, iterate
from the TOP of the subtable column to the bottom (row N).
(Exchange from TOP to N is all that is needed since entries
above TOP are identical in the two columns.)

	

.8	 Then exchange LEDT elements between columns MID and. r.

	.9	 Complete the column interchange by interchanging
PROBabilities and RULES.

	

.14	 Advance MID and r to the next candidates for
interchange, and repeat.

Called from:

S1.9

17

r'

18

Example L-2 495

Module Number S6
Module Name PRINT CONDITION
Date	 5/31/77

;1.(56)	 Subroutine to PRINT the CONDITION string

Subroutine, PRINT CONDITION (TOP, LEFT) <*31 May 77*• 	 MOD# S6
.1	 if %EDT(7TOP, LEFT) >0)
.2	 print 11,0 followed by four spaces., TOP-1 times; then

follow by WIF ("+CONDIT1ON 7(1EDT (TOP, LEFT))
* ->(else)

.3	 print 10 : 0 followed by four spaces, TOP-1 times; then
follow by WIF (NOT" +CONDITION (-LF DT (TOP # LEFT))0')"

:—endif
enddubedutine

On ent 0 the value in the TOP LEFT position of LEDT is a +
or - condition index into the CONDITION array. If there has been
no table entry error, this index will be true (,positive).

This subroutine normally, then., prints the corresponding
CONDITION entry preceded by KIF (it and followed by ") U , indented
(using TOP) to the proper level. If in

error

has
occurred and

the index is negativO, a "NOT" is inserted before the predicate.
An error message will result later, a consequence of reaching
S,1. 0.

On exit, the IF statement will always have been printed.

.1	 Check the index for a true value (positive).

.2	 If so, then print the predicate string in an IF
statement. Plus indicates concatenation o.f strings.

.3	 if not, print it anyway, preceded by "NOV.

Called from:

S1.10

4

496 Appendix L

^1 u'

Module Number FI
Module Name BEST
Date	 5/3'1/77

4.(Fq	 Function to .pink the BEST row

Function; BESTITOP, LEFT, RIGHT) <* 31 May 77*> 	MOD• F1
.1	 let DELTA T MIN = infinity
.2	 loop for c - TOP by 1 do N
.3	 1 let DISCRIM = 1, DELTA T 0
.4	 I Poop for rj = IE-FT-0 ^j 1 to RIGHT
.5	 1	 1 loop for ri = LEFT bbyrI to rj-1
. 6	 1	 1	 1 loon for k = TOP 1̂ to c-1, c+1 to N
.7	 1	 1	 1	 I let 0TSCRIM=D3SCRTR*

1	 1	 1	 1	 (LEDT (k, r i) =LEDT (! k, rj))
1	 1	 1	 1—repeat with next k

.8	 1	 1	 1 let DELTAT i=DELTA T t
1	 1	 1	 (:?ROB (J) E PRO (r J) I *DZSCR.IM

1	 I.. repeat with next ri
I	 1— repeat with next sj

.9	 1 let DELTA T = DELTA T * TIME-COST(c)

.10	 1 if (:DELTA
-

T < DELTA--T-MIN)
.11	 1	 let QELTAT_MIN DELTA T, B = c

1	 ... :endi.f
!.. .repeat with next c

.12	 let BEST = 8 <*returned value*>
end unction

On entry., TOP, LEFT and RIGHT bound the LEDT suitable for
wh -ic. 07The BEST row is sought.

Thi'a integer-valued funciion computes the extra expected
times contributed to program execution by each Condition in the
subt .able, and returns the value of the index of the row
corresponding to the cond ition with least cost..

On ex-it, the LEDT is unaltered.

In this rocedure , local variables correspond to values
named in the c t.ed reference text:

c	 index of condition being considered.; integer

ri, rj 	rule indices ri , rj ; integers

OISCRIM	 Dc (ri, rj); real

DELTA-T	 AT-c; real

DELTA—T--MIN minimum AT.; real

The integer local variable B in steps .11 and .12 records the
current Best index candidate.

19

^
f 3

20

;A -`N	 Vr"- 7

Example L-2 497

Module Number F1
Module Name BEST
Date	 5/31/77

.1

	

	 Preset the minimum cost metric to machine inif inity, to
permit lesser values to be considered.

.2	 Iterate through all conditions c left in the subtable.

.3	 For each new condition, preset the ltdoW:t care"
DISCRIMinant to indicate a I'don"t care" is possible so far,
and set the cost accumulator to zero.

.4-.5	 For each pair of rules ri and rj with ri < rj in the
subtable,

f.
.6	 and for all conditions k 0 c in the subtable.,

.7 compute the DISCRIMinant for rules ri and rj over all such
conditions k. The relational expression in this equation
takes a value I if true, 0 if false..

.8	 Accumulate the probability-weighted 01-SCRIMinant into
fthe cost function or condition c, over all rule. pairs ri,

.9

	

	 Then weight by the TIME COST for that decision, to give
the final cost figure.

.10	 Compare this cost with the minimum cost found so far.

.11

	

	 if less, replace the old value with the new, and record
the condition index c as the Best candidate.

.12	 After all conditions have been checked, return B as the
BEST condition:

498 Appendix L

S. REFERENCES

.1 Tausworthe, Robert. C., standardized Development of Computer

SoftwaCeNJpa
 Part
	

Chapter a, Prentice =Hall, Inc., EngieWdi5d
€	 r	 r	 7'•

.2 Pollack, S. L., "Conversion of LEM O s to Computer Programs,"
Commun. ACM ., Vql. S. No. 11, pp. 677-662, Nov. 1965.

1

END OF SPECIFICATION

i

t

i

21

Example L-3 499

EXAMPLE L-3

STANDARD RANDOM NUMBER
GENERATOR FOR MBASICTm

I

1. INTRODUCTION

1.1 Purpose

This document presents and analyzes amachine-independent algorithm
for generating pseudorandom. numbers suitable for the standard MBASICTM
system; The algorithm used is the "polynomial congruential" or "linear
recurrence modulo 2" method devised by the author in 1965. Numbers,
forayed as nonoverl'appi lng, adjacent 28-;bit words taken from the bit stream
produced by the formula a,,,. 5,32 = a,+37 + a.. (modulo 2), will not repeat
within the projected age of the solar system, will show no ensemble
correlation, will exhibit uniform distribution of adjacent numbers up to 19
dimensions, and will not deviate from random runs-up and runs4lown
behavior.

1.2 Scope

The specifications herein contained address only machine-independent
aspects of implementation. Standards and conventions, system environment
and interfaces, test and verification details and other lower-level
considerations are not covered.

1.3 General Descriptlan

The first MBAI SICT111 random number generator (Reference 6.1),
implemented on the Univac 1108, used a linear congruential method
(Reference 6.2), x j+ 1 = 5 15x,, modulo 235, followed by normalization to the
range (Oil). This generator was used prohably because it was already
available in the U1108 statistics package. Empirical tests by users, however,
later proved that the generator possessed very nonrandom correlation
properties, indeed, especially if great care were not taken in specifying the
initial "start." value.

This document describes an alternate generator of a type whose
randomness has been theoretically shown to be vastly superior and which
can he implemented on any computer, despite word length restrictions (the
U1108 algorithm was tailored to 36 bit words). It -is a macbine-independ.ent
algorithm.

.i

i
500 Appendix L

The generation method is almost as fast as the linear congruential
method, but not quite. The ratio of speeds is about 1L

In 1965, the author (Reference 6.3) showed that numbers produced as
successive binary words of length s taken L bits apart (s :5, L) from a linear
(shift-register) bit-stream recursion of the foram

an = cI an- 1 +.. + cp-lan--p+1 + a„_ p (modulo 2)

foram a pseudorandom sequence whenever the polynomial Ox) = xP +
cP_ 10 1 +... + c px + I is primitive over GF(2). The algebraic structure
of these pseudorandom numbers provided a way of proving that, over
randomly chosen starting values ai},• ..,a^ _:1 in the numeric sequence, the
correlation between numbers is essentially zero; being ostensibly equal to
-2--P, :for all numbers in the sequence separated by less than
(2P - s - l)/L, subject to the restriction (L,2P - 1) = i. The author
further showed that adjacent k-tuples of such numbers were uniformly
distributed for 1 : k E (p/'L).

The algorithm for computing the numbers is simple, especially wh.:n f(x)
is a primitive trinomial, say, xP + xg + 1, where q C p/2. An even greater
simplification is possible, and ;ised in this generator, when p is an even
multiple of L, as is the case for the trinomial x532 + x37 + 1 (from Zieder
and Brillhard, Reference 6.4'). The generator based on this polynomial has
period 1.4 X 10 160, has virtually no .(average) correlation between any
numbers separated: by distances less than 5 X 10 1 , has Mfait precision
numbers available, and has adjacencies up to 19 dimensions uniformly
distributed. Runs-up and runs-down statistics up to length lib are
impeccable. The period and maximum correlation distance are, in fact, so
great that the .generator would. have to produce numbers at a nano second
rate for more than 1.0142 years before nonrandom distribution or correlation
effects would be noticeable as nonrandom. Almost 4 X 10 14 numbers
would have to be examined to detect deviations in runs-up and runs-down
statistics as nonrandom.

These pseudorandom number generators have been widely studied
(References 6.5-6.8') since 1965, both theoretically and empirically, and
have been "promoted to pride of place in the field ofpseudorandom
number generation (Reference 6.7).”

Tootill (Reference 60 .has . even discovered generators of this type for
which "there can exist no purely empirical tests of the sequence as it stands
capable of distinguishing between: it and [truly random sequences]." For
reasons having to do with computer storage and precision, the generator of
this article is; unfortunately, not one of these. Nevertheless, the generator

f

ii

I

i

1 ^'Y

go

y

f	 !k

'	 Example L-3 501
a	 ^

^	 M

I

E

described is vastly superior to any linear congruential generator in
existence,

The trinomial 032 + x37 + I (having p 532, q = 37) has several
things to recommend it: (1) 532 is factorable into 28 times 19, which means
that 19 words each having 28 bits precision can be generated all at once by
the algorithm; (2) up to and including 19-tuples of adjacently produced
random numbers will be uniformly distributed; (3) 28 and 19 are both
relatively prime to the period (032 1), so no ill effects occur as a result of
beginning new words every 28 bits; (4) the period and correlation distance
are so great as never to be witnessed in the lifetime of the universe; and {5)
the q = 37 value produces good runs-up and runs-down statistics
(Reference 6.8), up to runs of length I'B,

2. THE METHOD

The algorithm for producing the succeeding 532 bits from the current set
of 532 bits in the generator is:

(1) Left-shift the current 532-bit string by 37 bits, inserting 37 zeros on
right, dropping 37 bits on the left.

(2) Add modulo 2 (exclusive-or), the original and shifted 532 bits:

(3) Right-shift this result by 532 - 37 = 495 bits, supplying 495 zeros on
the left, and dropping 495 bits on the right.

(4) Add the results of (2) and (3), above, modulo 2, to give the next 532
bits,

The proof that this algorithm works is very simple, and the reader is
invited to apply the algorithm to the bit string a; Ea2 ... ap and use the
reduction formula A +m = aq+m + am (try it with at324344a; with a;+m
a2+m + am to see Zat is happening).

The RANDOMIZE; function that initializes the generator uses a multiplica-
tive linear corigruential algorithm to generate the first 19-number "seed,"
from which the rest of the generated numbers grow. The particular value
for the multiplier a in the algorithm

w„+.E = aw„ (modulo 2L)

was chosen as 41,475;557 for the L = 28 case from theoretical results
published in Ahrens and Dieter (Reference 8.9).

7

3. FUNCTIONAL SPECIFECATIOIVS

The random number generator will consist of one subroutine,
RANDOMIZE (starter) , and a parameterless function RANooM: The starter
parameter is a real number. Tf the starter is zero, the initial word 'wo is set

z

k

T

h

502 Appendix L

to 41,475,557 (the linear congruential multiplier); if starter is greater than
zero, it is converted to its nearest integer equivalent, which then becomes
wo; if starter is less than zero, the computer clocktime is read and used as
wo, a more or less random and unrepeatable starting value for the
generator. RANDOMIZE then generates 1S more integer random words;
wl,...,wis using the linear congruential method discussed in Section 2,
above.

The RANDOM function returns a new real value at each invocation, the first
19 of which are generated by RANDOMIZE above, and the remainder using the
linear recurrence algorithm. Integer values used within RANDOMIZE and

RANDOM retain 28 bits precision. Values returned by RANDOM convert these to
real numbers in the range (0, 1).

On converting 28-bit fixed-point mantissas to real numbers; 8-digit
precision results. Some machines, such as the Univac 1108, may have to
reduce this precision in order to fit the floating -point exponent field into
the word (the U1108 has only a 27-hit inantissa precision). In such cases,
the most significant bits of the generated words shall always be retained so
that all implementations produce essentially identical results, within
machine precision. This philosophy is present_ in the algorithm that follows
in Section 4.

Two values of the RANDOMIZE starter that round to the same internal
fixed-point representation will produce the same random sequence;
conversely, every unique fixed,poiht representation of the argument
produces a unique random sequence. In addition, so long as the value of the
argument is the same and stays within the precisions of two differing
machines, the sequences produced on each will be the same, within
machine precision.

4. PROGRAMMING SPECIFICATION

4.0 Overview

Managing the 532-bit shift -register is the main trick in implementing the
method. The algorithm given in this section utilizes an array wj,
i -- 0,...,18 of b-bit computer words (b ? 28) sufficient to encompass the
532 span of bits to be operated on (and retained), and delivered in 28-bit
chunks whenever the RANDOM function is invoked.

On machines having word. sizes smaller than 28 bits; double (or multiple)
words will have to be used for each word in the algorithm below. xoFt in
the RANDOM function below signifies an "eXclusive^OR" of the operand
binary words.

9 ..

1

1

Example E-3 503

i
Module Number 1
Module Name	 RANDOMIZE
Date	 6/15/77

4.(1) The RANDOMIZE Subroutine

Subroutine: RANDOMIZE ('starter: real)

-:;+ this function declares and initializes a 19-element
c+ array, w [0) , , , . , w [18] with random numbers generated
c• by a linear congruential method... An integer 1. is

cs sat to zero to enable RANDOM to select w[0) as the

c* first random number_ 1 and w are permanent data

C+ structures, accessed only by RANDOMIZE and RANDOM.

.1	 constant multi.plier:integor - 41475557

.2	 vari:abls J: iinteger, 1: integer,

w: arr • a.y j0.. 1 181 of universal integer
.3	 if (starter<0)
.4	 start: ac Locktimecrreturns current time of

<*da,y as integer+>
.5	 : -> (starter-ft)
.8	 start:-multiplier

-> (ehse) <*starter^;.o+>
.7	 start:=fix(start !er) <*floating- to - integer

¢+conversion*>
end-if

e	 w [0] : -start
:8	 Loop for 3 = 1 to 18

1-0	 ! w[,j] Q (w [j --1'1 *multiplier) mudu3o 2*w 28

11	 !. . repeat with next ,j

1.2	 I	 0 C *se:t up to pick w [0] as first random number*>

endsubrouti;ne

.^1	
F	

x

Y

504 Appendix L

Module Number 2
Module Name	 RANDOM

Date	 6/15/77

4-(2) The RANDOM Function

Function: RANDOM: real

Q* This algorithm makes use of a 19-word array,

<* w [0] , ..	 w [1 ! 8] ,	 each with	 b 2!28 bins.
C* each word contains precisely

<,* 28 bits of the generator, 	 right justified.	 A local

<* integer variable I on entry contains the index of

C* the word next to be returned as the random value.

C* Both w and I are permanent data structures,	 accessed

c* only by RANDOM and RANDOMIZE.	 The latter of :these

C* initializes I to zero and w to the seed.

.1 variable j:integer

.2 if	 (.I=19)	 C*a.l.l words have been used up*>

.3 I := 0 <*reset to first element in array*>

.4 loop for J-0 to 1$ C*exclude last two words.*>

.5 1	 load w [j+1] ,	 w [j+2]	 into registers A0,	 Al

8 I	 left shift Al by b-28 c*join bits in st:reamo

.7 1	 left shift A0,A1 by 9 <*q-37 is 28+9*>

.8 1	 w,[j]	 : =	 pw [j;] XOR AO)	 <*the recursion

1	 C*formula*>

.9 :	 1.. re.pea•t	 with	 nax",t	 j

__	 TO load w [I8] ,	 w [0]	 into A0, Al	 C*now compute w [1'7] : *>

11 left shift Al by b-28 <*join w [18] ,	 w[0]

C *b'it streams*>

.12 left shift A0,A1	 by 9
i

<*AO now has final 19 bits of w {18] *>

.13 w [171	 : = w [i 7] 	 XOR A0

<*and first 9 bits of stream shifted 495*>

.14 load w[0],	 w[1]	 Into A0,A1	 <!da .similarly

<*for w [:t8] N>

.15 left shift Al by b-28

16 left shift AO.	 Al	 by 9

.17 W [18] .: _	 (`w (1:8)	 XOR A0)

j endi:f

to RANDOM = float (w[I])i2**28 C*conv:ert to real*

' 1-9
F

I : Q 1+1

end;function

a

y

{
1

r..r	 ,	 ^.,R^	 ,:'°t", ^ '^.!^n;Me,,,,.nr^.^gi ,S1 :u,nasi rY'::'i°f't'"• v,;:

Example L-3 $05

5. ANALYSIS AND EVALUATION

Note in the method that the number of computations required for
generating the next p bits grows at most linearly in p. Assuming p >> L,
then partitioning the p generator hits into words of length L produces a
number of words that also increases in proportion to p. Therefore, the
number of computations for L-hit precision random numbers, to first-order
effects, is independent of the recursion degree p. Making p large, however,
has advantages in increasing randomness properties.

It is true that, as p increases, more and more registers are required to
compute each new set of p bits, and shifting many registers at once presents
a small inconvenience in most computer languages. 'These factors .place a
small speed and storage overhead on the generation process; but even this
is not extreme due to the particular trinomial chosen.

Counting the number of elemental operations (lead; store shift, etc..) for
the algorithm, one finds about 10 + f operations per number generated,
where f is the number of operations in "floating" the fixed-point number.
The linear congruential algorithm requires only about 3 + f such
operations, so the ratio of speeds is less than 3:3,

The RANDOM function is about 23 + f operations long, as car► oz d to
3 + f for its linear congruential form, and data storage is 21 words versus
2. However, even though the program requires . perhaps 7 times as much
storage as the linear congruential foram, the total is still probably under 50
locations, of negligible concern in most installations. The asymptotically
random sequence of Tootill (Reference 6:8) requires 607 words to store the
w-array alone. (This, coupled with the fact that only 23-bit .precision was
available in that generator, is why it was not considered here.)

The algorithm given has been implemented as the RANDOM function in the
MBASIC`i'M processor currently on the Caltech PDP- 0 and the JPL Univac
1108 computers, All tests run on it so far validate the randomness
properties claimed by the theory. to that theory, by the way, the only factor
left to chance is the specification of the initial "seed," The stated..
uniformity, zero-correlation., and runs statistics are all based on the single
assumption that the seed be chosen randomly. Of course, the default. value
canned in was not randomly chosen, but chosen specifically to look random
except for the first word and, certainly, to the extent of the tests run, this
appears to have worked beautifully.

It was also demonstrated that the generator is also capable (as i- every
known random number generator) of producing numbers with 3-sigma
variations from randomness over a few thousand samples when. the wrong
seed is supplied:

i

a^

t

506 Appendix L

s

As a coding check on the algorithm, the following 40 numbers suffice to
establish probable correctness:

.1545055 1,.6206040 .2185256 s.7161612

.6887654 .6988667 :3544603 .9263908

.7998630 .3691845 .6903309 .9220639

.19060'13 .8255893 .064:1.026 .9966978

.7919956 .4282176 .3321068 .6469416
,8004964 5929163 6594358 .9405825
.9601586 .8871027 .6285133 .6677605
.1921166 .3302294 .4858374 .8933217
.9015029 .287.0978 .2324675 .3779590
.5168044 5091386 .3086822 .2973689

The first 19 of these are the generated "seed.," and the remaining 21 are the
results of combining the stored numbers according to the method given.

6. REFERENCES

.1 MBASIC`rM, Vol. I; Fundamentals, Jet Propulsion Laboratory,
Pasadena, CA, p. 188, Aug. 1975.

.2 Knuth, D. E„ The Art of Computer Programming, Vol. 2: Seminumeri.
cal Algorithms, Addison -Wesley Publishing Co., Reading, NIA, 1969.

.3 Tausworthe, Robert C., "Random Numbers Generated by Linear
Recurrence Modulo Two," Math, Comp., Vol. XIX, No. 90, pp. 201-
208, Apr. 1965:

.4 Zierler, N,, and Brillhart, J., "On Primitive Trinomials (Mod 2), II;"
Inform. Contra, Vol. 14, No. 6., pp. 566-569j June 1559.

.5 Whittlesey, J. R. B., ".A Comparison of the Correlational Behavior of
Random Number Generators for the IBM 360," Comm. ACM, Vol. 11,
N'o. 9, pp. 641-644, Sept. 1968. •

,6 Neuman, F., and Martin, C. F., "The Autocorrelation Structure of
Tausworthe Pseudorandom. Number Generators;" IELE Trans. Comp.,
Vol. C25, No. 5, pp: 460-464, May 1976.

.7 Tootill, J. P. R., et al., "The Runs-Up and -Down Performance of
Tausworthe Pseudorandom Number Generators," ACM J., Vol. 18, No:
3, pp, 381-399, July, 1971.

.8 Tootill, J. P. R., et al.., "An Asymptotically Random Tausworthe
Sequence," ACV J., Vol. 20, No. 3, pp. 469--481, July, 1.973.

.9 Ahrens, J. H.,. et al., "Pseudorandom Numbers: A New Proposal for the
Choice of Multiplicators," Computing, No. 6, pp 121-138, 1970.

END OF SPECIFICATION

^'r's^i.^u^7ef-:..Y:^^.'^^. .. ,: _v'... 	 :..'..:-	 ,...^:'._r.c-:-'c.,:.;.c ec",n.es ^.a,^.:':--. ...r^s^s,Lr-^.---.N^_ 	 :_.^.1n..^,... 	 .__.._r..^,.	 _ - fit	 ._.._ ..	 _..,•,	 .._._.._r._.._..- ... 	 _..._ .r_„ _..	 ._. __...	_..	 .5.`_
3

F

s

I
r

Y.

.q.

i
f

Example L-4. 50.7
i
i

EXAMPLE L-4
RANKING COMPETING FACTORS BY

WEIGHTED DOMINANCES

1. INTRODUCTION

1.1 Purpose

This program rates a set of competing factors using weighted first- and
second=order dominance scores derived from pairwise comparisons and
weights input interactively by the user, and then prints a ranked list of the
factors with scores.

1.2 Scope

The descriptions contained herein address only machine-independent
aspects of implementation. Standards and conventions, environment and
interfaces, test and verification details, and other lower-level considerations
are not covered.

1.3 General Description

Given N factors that are to be ranked in order of importance, a pairwise
judgment of the importance of one factor over another is called a first-order
dominance. The number of times a particular factor dominates among the
N — I other factors is the first-order dominance score for that factor.

A second-order dominance between two factors, say; i and k, is said to
exist if there exists another factor j such that i dominates j, and j dominates
k (in this case i exhihits a second -order dominance over W. Second-order
dominance strength is defined as the number of such j that can be found for
given i and k. The second-order dominance score for factor i is the sum of
the strengths of all second-order dominanices of i over other factors.

The above definitions make it impossible . for a factor to exhibit either
first- or second -order dominance over itself. Third. and higher-order
dominances can similarly be defined and computed, however, they are of
questionable utility, since they raise a philosophical problem, namely, that
it is possible for a factor to exhibit a third- or higher-order dominance over
itself. Although such calculations are straightforward, computation of third-
and higher-order dominances are not included in the program capability
described here.

w

^^i.i,.^a^4_.e :^:_..	_^^... -.._._.,,; -_.^-^ ^s.,.w.:,<7, ^^"<.,.,._.:e_^: _.r: ,2 rl^?3.tic`i'..an.^...^ia.;.a.>,1sa.:^,. 3 _::. .. r^_^._ _-^:^_^_ ^_..._. ,.^._.:, .<...^ 	 ., e_..._-.. ^....	 ... _._ _,_,._	 ,_.^.._.	 _.. _...:a., .il...:

i

508 .Appendix L

First- and second-order scores can then be weighted and summed to
compute weighted dominances for various purposes. The proper weighting
factors for decision making are probably best determined by experimenta-
tion. Generally, first-order dominance scores provide a very reliable
ranking, and second-order scores can be used to add weight to this ranking,
or to break ties, or possibly to check the validity of the .first-order results. If
second-order dominances cause the rankings to change, the results may be
suspect with regard to the rigor or true priorities that apply among
competing factors.

An elementary discussion of dominance methods and their applications to
behavioral science problems is given by Kemeny, J. G., Snell, J. L., and
Thompson, G. L., in Introduction to Finite Mathematics, Second Edition,

i	 Prentice-Hall, Inc., 1966.

2. THE METHOD

Let N denote the number of factors to be ranked, and let First-order
dominances he recorded in an N X N matrix F by setting fi, k = 1 if factor
i is preferred over factor k, and fi,k = 0 otherwise. The sum of the entries
in the ith row is then the first-order dominance score for factor i.

In the matrix S = F2, the element si,k will be equal to the number of
times that a Second-order dominance of i over k exists, and is hence the
strength of that dominance. The sum of the entries in the ith row of S is

`	 then the second-order dominance score- for factor i.

If w and w2 are scalar weights input by the user and U is a .1 X N all-
ones vector, then the Resultant weighted score vector R is governed by the
matrix equation

R = (w1F + w2S)U

3. FUNCTIONAL. SPECIFICATIONS

The RANKING program operates in an interactive mode as presumed by
this specification; suitable translation may be made to accommodate batch
operation.

The user is prompted to input the number of factors to he ranked,
followed by a request to input an equal number of short descriptive strings
that identify these factors. Then, the program prompts the user to enter a.
judgment between pairwise alternatives for each pertinent pair of factors.
The program names the factors to be judged before each judgment entry is
made.

I
ti:^

,^.r.,.,wrt.-+w	 `w4 I.`!^	 . , ry 	a ::^e*-s7v4sa Ft;^ ^'gt>rrrie 2 	r#,^ek ^"-^,`"-„^"^',,^°'."'^'^J,. ,^ fr, .^^ +.?^'^'!'	 ; xrt `T^ ,•Sy 	,

Example L-4 509

When all dominanees have been registered, the program asks for
weighting factors to he entered and, upon receiving these, prints the first-
order, second-order, and weighted dominance scores.

The following example specifies the format of input and output dialogue.
User entries are distinguished by the lighter type .; the character di F,cr”
denotes a carriage return. A ">" signals that a user entry is required.

s

s

ENTER THE NUMBER OF FACTORS TO BE. RANKED: >4 t—cr

NOW NAME THESE 4 FACTORS:

>RELIABILITY,—,, r

> SPF=D i— er

> STORAGE for

>DOCUMENTATION —cr

NOW RANK PAIRS AS FOLLOWS:

ENTER THE NUMBER (1 OR 2) OF FACTOR PREFERRED.

RELIABILITY OR SPEED?

>3 4 -cr

RELIABILITY OR STORAGE?

> 1 t— cr

RELIABILITY OR DOCUMENTATION?

> 1 t—cr

SPEED OR STORAGE?

>1 +-cr ^<
SPEED OR DOCUMENTATION?

>2 *--or
STORAGE OR DOCUMENTATION?

> 2 r-cr
NOW ENTER TWO WEIGHTS SEPARATED BY COMMA.

> 1 . 0, 0. 5 <-or
RANKING OF FACTORS IS AS FOLLOWS-

FACTOR	 FIRST	 SECOND	 WEIGHTED

RELIABILITY	 3	 3 4.5

DOCUMENTATION	 .2.	 1 2.8

SPEED	 1	 0 1.0

STORAGE	 0	 0 0.0

DO YOU WANT TO TRY ANDTHER WEIGHTING? >NOEcr

(program terminates)

510 Appendix L

The program shall accept up to 20 characters for each factor name. The
number of factors and preferences must be integers. Weights are real
numbers: The request for another weighting shall be answered either YES or

NO.

If a YES is entered, the resulting program dialogue shall appear as above
from the "NOW ENTER Two WEIGHTS..." line on down:

Data type errors in user input are not checked by this program; recovery
from such errors shall be configured, as can be best accommodated in the
implementation language, so as to reprompt the user for correct entry.

4. PROGRAMMING SPECIFICATION

4.0 OverView

On execution, the program records the number of factors to be ranked in
G	 an integer variable N and the factor names in a string array FACTOR, which

can hold N 20-character entries. Dominance values are recorded in the N X

N matrix FIRST, squaring .FIRST yields SECOND. Three N 'X I arrays AcCUM1-,

ACCUM2, and ACC Umw hold evaluations of first-order, second-order, and
weighted dominances, respectively.

Another N X I array, INDEX, holds the indices that match entries in the
ACCUMw array to the FACTOR names and ACCUMI and ACCUM2 values. Then the
ACCuRn? and INOFx arrays are sorted in decreasing order using AMUMw as a
key. Printing of names and dominances proceeds in this sorted order
(ACCUMI, ACCUM2, and FAcToR are addressed via INDEX in this printing).

Note: In programming languages that permit record data structures, then
an array of N records m-th FACTOR, ACCUMI, ACCUM2, and ACCUM fields on each
record can be sorted on the AccuMw field, in which case, INDEX is not
required,

k

a

i

S

i

F

4

_ u

Example L-4 511

Module Number 1
Module Name	 RANKING
Date	 6/15/77

4.(7) The RANKING Program

Program: RANKING

1 prompt_and.input-N

.2	 deciare_storage_arraya

.3	 en.ter_facxor_names

.4	 enter_dominances

5	 compute-first_and-second_order_domiman ce-scores

.8	 loop

.7	 I compute_wei^ghted_dominancas

.8	 1 print-report

.9	 1 p romp t_for_another_weigh:ting-and_accep.t—ANSWER

.1:0

	

	 I.. repea:t if (,ANSWER - 'YES')

end.program

A Declare an integer variable N, print the message "ENTER THE NUMBER
OF FACTORS TO 1 BE RANKED: >", accept the value of N, and check to assure
N > 2^(the,highest order of dominance), Reprompt and reaccept N if N

2)ovas entered.

12 I LX Tare the rest of the data structures used in the program, In
languages that permit .dynamic dimensioning of arrays, these arrays
can be dimensioned to N in size. Otherwise, an array dimension larger
than the envisioned range of N must be chosen.. The declarations are:
FACTOR

'

NJ: string of 20 characters; INDEX [N], ACCUMI [:N'], Af:CUM2 [NJ,
FIRST [!;E, N], SECOND-[:N, N] are integer arrays; ACCUMW [N, N] is a real
array; i and j denote integer indices for these arrays; wi and w2 are
real variables; and ANSWER is a string variable capable of holding up
to three characters. Initialize INDEX .[i] = i for i = 1 to N, so as to
record index-to-position. information for later sorting.

.3

	

	 Prompt with the message "NOW NAME THESE " + STR (N) +
" FACTORS: ", where STR is an integer-to-string conversion; and accept
entry of N strings from the user into the FACTOR name arrays
prompting by 	 >" before:each+ "+" above is string concatenation,

.4 Print the message " NOW RANK PAIRS AS FOLLOWS: " followed by
"ENTER THE NUMBER (1 OR 2) OF FACTOR PREFERRED. " Then for each pair
of indices i, j with i > j, prompt with the message .FACTOR [il ±

OR " + FACTOR:[]] + ,?", then a carriage return and and
accept 1. or 2 (reprompt if entry is not I or 211. Set FIRST [i, j;] and
FIRST [j, i] to 0 and 1 to record dominance properly.

i

i
i

I

572 Appendix L

Module Number	 1
Module Name	 RANKING
Date	 6/15/77

.5 Square the matrix FIRST and store result in SECOND: Sum the rows
of each and insert results in AccuMi and ACCUM2 arrays, respectively.

.6 Then, to Accommodate several weighting factors, if desired,

.7 prompt user with the message "NOW ENTER TWO WEIGHTS SEPARATED BY

COMMA. " followed by a carriage return and	 . Then accept real
weights Wt and W2, compute weighted dominances, and store these in

i
ACCUMW:

:$ Sort the ACCuMW array in descending order of value from ACCUMW [t]
to ACCUMW'[N].. Use the Bubble-sort technique (of. Example 7.3.3.1 in
Part 1 of this text, but replace ">" by "<" in the "ELEMENTS. ..OUT OF
ORDER" macro). Then print the report header shown in Section 3,
followed by FACTOR [INDEX [i]`] , ACCUM [INDEX [i.]] , ACCUM2 [INDEX [i]i]
and ACCUMW [i]. for i = 1 to N.

.9 Print the message "DO YOU WANT To TRY ANOTHER WEIGHTING? >
And accept ANSWER as "YES" or "NO". Reprompt if anything else is
entered.

.10 Repeat from step B if another weighting was desired; otherwise
terminate execution.

END OF SPECIFICATION

.°	 i s	 in	 ^, w a	 s

7

t	 ;

3

APPENDIX M

r
USEFUL STANDARD FORMS

4
j

f

F	 The 23 forms contained in this final appendix are typical among those
4 commonly in use in medium- and larger-scale software projects. These are

forms for praject planning and management, functional design, status
reporting, configuration management, and duality assurance, The use of
such materials constitutes what some have termed a "forms. approach" to
software development, which mirrors practices used in almost every
successful engineering and Business endeavor. Depending on the size and
intended lifecycle of the software, the need for the information such forms
contain is real, not the mere whim of an administrator whose lust tends
toward rigid formal measures and banal routine procedures. Properly done;
the use of forms in software development tends to standardize interfaces
among people and ac:ess organizational lines, and can; at the same time;
serve to turn "paper work" into "working paper," Most of the forams shown
in this appendix can most assuredly be computerized, both in the process of
collecting the data required to fill them out, as well as in the processing,.
output, and distributicn of those data to their intended ends,

However, whether such forms as these are eventually computerized or,
not for project usage will depend largely on how each of -the selected forms
seems to interface most effectively with the conglomerate of human
activities for which it is irtended. Forms are viewed as .media of expression
in the design process, of working documentation during software
construction and test, of communication among team members, of status
monitoring and project control during implementation, and of historical
value for the future. New forms may be added with the same goals.

The .forms here are presented without explanation as to their exact
recommended usage; the specific meaning of the blanks requiring .entry by
the user, the criteria for use or interpretation, standards for nomenclature

513

514 Appendix M

and coding of Identifiers, or the procedures to be followed to make the
forms effective. I do not mean to imply by this omission that lbelleve the
forms areself-explanatory (even though strived for), not needing such
accompanying documentation for fully effective and non-ambiguous use,
Nor. do I contend that the set of forms given is a complete and sufficient set
of such materials needed by a project. Some projects may need more, some
less,.

Rather., the forms represent examples upon which project, organization,
or industry standards are or can be built. They further illustrate the types of
information required by programmers, managers, QA personnel, and others
associated with the software being developed in coping with their own
various and diversified' tasks.

The forms of this appendix find their origins, both in format and content,
in several]PL, Military/DOD, and industry sources. I have extended some
of these forms, simplified others, and merely translated or rearranged still
others, so that all of the exhibited foinis bear a hoped-for family
resemblance.

Work Breakdown - Structuro
betalled Task Description

Title:

Task Mgr: phone;

Task:

Identifier:

Date:

DuratIon;	 to
d.

Task DescriIptfon

Tim&Phased 'Manpower
PAM days	 function	 support

Task Scope
(estimated)	 Text Flowcharts	 rigums	 Code

: ,ssk Needs

Task Deliverables

Precedent tasks Interfacing tasks

i
4

JI

L 's

I

Dedsidn Table

Description:	 Title:

Identifier:

Prepared-by:	 Phone:	 ' Date:

Rule	 1 2 3 4 5 6 7 8 9 14 11 12 13 14 ELSE

Conditions	 COST
Prob

i

f

Actions	 Rule	 7 4 3" 4 5 6 7 8 9 '1Q 11 ' 12 13 14 .ELSE

Sequential Test Promidure

Slgnature	 Date	 Signature	 Date

^i

a	
..	

^^r

Software

Interlaces

System/Subsystem

Interfaces I

If

nature	 Date

a71N ̂k-, 4-5 V 7 TO ZV M

Appendix M 517

r

Input — Processing ,— Output Table

Description:	 Mode;

Identifier:

Prepared by:	 Phone:	
I .

Date;

518 Appendix M

r

1

f
1

Software Technical Rrogtau Report

Title:

Task Mgr: Phone:

talk:

Identifier.:

Date:

Period:	 to

Status:Summary

Problems

Forecast

% complete:

Effort to complete:
Remaining Resources:

Schedule,impact:

Resources:
Name Function

Effort/other
expenditure

Accomplishments

text

flowcharts

figures

tables

code

test

this report cumulative final Pest? pore" lest)

units effort units effort 1.	 units effort, units effort

... '.	 ".. .: ..

Scheduled completion date. Prepared,by Date

l

i

i

i

1
i

g;

T

1
3

1

!y

1

i

l

SofWam Anomaly Report

Saftware ' Item"

Initlated!bV:	 Phone:

Anomaly No.:

SIN 10:

Dole:
cgnflgffis Cat-prior betect. Date kwonse Date Log bate

References

Problem Dawripitan I .svmptorns : andvanditionsof omurrencO

Data	 Test.Procedum	 Test

FAttachment: 	 Ye2 ,q 	 N. El

SusMied,Causo, Comments, and-Recommendation

A

f.

;^ i

i
	

u ^s

Ji

............
i

s
520 Appendix M

E

r

Software Anomaly Correction Report

Software Item: Anomaly No.:

SW ID:

Elosa&by: Phone: Pate:

Corr Vers Config/DS Control date Retest Date Master Tape Backup Tape

Correction Summary

- Retest Data Retest- Procedure Retest Version

Attachment:	 Yes q 	 No q

Affected items

Problem-Category; Test
procedure	 q Hardware	 q 	 User manual q

Fur¢tionalspec pesignerror	 q Cps _system	 q -	 Cps manual	 q .

Programming spec	 q Coding error q Human error q

i

t

Appendix M 521

Software Anomaly Status Report

Software Item:
SW ID:

Date;

Cognizant individual: 	 Phone:

Action -Cat-	 Clogs Inil	 Due	 Close	 Dura•

No.	 Anomaly Description 	 Atsiamd Prior	 Vers	 Date	 Date	 Date	 tion

F_F_	 I	 I	 I	 I	 I	 I	 I

522 Appendix M

^l

i

Software Change Request

Software Item: Req, No.:

SW ID:

Date:

Attachment:	 Yes q No qSubmitted By:	 Phone:

Version Genfigl^S hapiy Uate Need Dete Anomaly No. Cat•Prior

Change Description

Justilication

Other items Affected

Action	 Disapproved	 q Grounds

Analysis recommended Q
Approved	 q Proviso

Comments

Signature	 'Date Signature Dale ^^

•1

ti

Softwar&Change Analysis Report

Software ftemi Req. No—

SW ID:

Date.,

Prep& red , by; Phone: Attachment: Yes El Na

WrIIEM I:CDnfig/OS Temporary q

I
Lifetime fyrd AriornalyNo. Cat -Prier

Permanent

AnalVsl%Sumipjery

man!hrs	 oDmptr hn; doc hrs other total

S $ $

lvems7Aifected

Recommer ied Action/Alternatives

Action
Disapproved q Grounds

Approved	 q Proviso

Comments

Palo	 Signature Date

ro

Appendix M 523

Aw

Software Item: C.0, No-

SIN 10:

Date-

Attachment.	 Yes q 	 NmOAssign&d,to:	 Phone:

Version con D/Os	 Temporary C3fI Due Date AemrnreDiite Cat-Prior
Permanent

0

Work Description

Task start date comp) date manpower
cost. cost

account
rildes;

Design

Procurement

Hardwa yd fablmod.

Software coding

Documentation

Testing

Training

mod'kils;

Spares

Other

Totals

SiVriature Date t9nature Date

Iii

iE

Specification Change Notice

SAwareAtem:	 SW ID:

Date:

Version	 ConfgJOS
Issued by:	 Phone:

Recipients of this notice are,herebv informed that.the specitications
referenced above have been changed. Descriptions of the changes are
togge&below and materials for effecting saifthang8s are turnished:herewhh.

Item
No.

SSD Se. alon Pages

.

in Instructions Change Order
No.

Effective
Date

k.

pN

V

4.

i.
	

....	
.

Appendix M 625

I I

x'

I

r
i
a

i

i

I

j

i

Software Change Control!iiistary/Log

Software Item:	 SW'ID:

Page:

Log Custodian:	 Phone:

Ch. Req, Ch. Order Analysis	 CCU	 Ch, Order Due	 Glove	 Description/C6mments
No,	 No,	 Date	 Dote	 Date	 Date	 Data

Software.Audit Report

r

E

k
• 5

t

{i
i

4

i

r

- f

c

a

Scftv+arr,ltem:

Audited;by: Phone:

SW ID:

Date_

Version	 ConfiglOS Caritrnl pate Audit paie Audit Type	 ^ Audif Method

References

Items Audited

D isc r ep e n c ies7 E xcep b o n s

Status Summary -

'Signature bate Signature Date

f

•!Y.'AtY+fwpYn+.r^•e.^	 +IwnHi4r.^.+RY.^'^^SYP.,E

Appendix M 527

:yw

k	 .'

i

f

i

:
z

t

f

a

f

5

Appendix M 529

Software Configuration keg

SoftwareAtern, 	 l og:No::

SW ID:

Lagged6y:	 Phone:	 Page:

GantcoFMaster	 Batkup	 P.rev
Na.. identifier 	 date	 Description	 Version	 Tape ID	 ''ape ID	 No.

Configuration Status, Report

Systom/Subsyslarn:

Prepared 1 by.	 Phone:

Systern/Subsys I D:

Date:

I	
Page,

Program
Mnemonic

convol
Date

Previom Version CurreAl'VerSO

ID Manor Backup lb Master Backup

630 Appendix M

.- Y

..4'

t:
d
s
Y'

fi}

d

r=
is
r,

F,

r;

a,

YI

T	 '

Appendix M SMi

Software Sundard'Weivef

t.

Software Item:

Requested= by; -	Phone:

Waiver No.:

SW ID:

bate:

Description of Standard to-be:Waived

. Scope of Waiver {items.to which waiver appliesf

Justification and Analysis

Proposed Altemate3aStandard

Action	 Disapproved	 Grounds

Approved	 Proviso	 _	 ..

Comments

Signature Date Signature	 Date

^ 4

is

Project. Task:

IdentifiCT:

Date.,

MILESTONES

la

It

17

In

tl

legend joarken when , appqrn	 -d j :	 6	 Work	 1PREPAREDAMplishq.

6111putdue	 Rescheduledmiiestone	 Work 'I..nL-d
original , Fnifestone	 Delivered Item	 R"h,,dured work	

I APPROVED VIV7

ul

krr

I

OMDAITHISCHODULE

Project : Task:

Identifier.

Dow.,

MILESTONES

Legend (daTken . when awom.plished);	
n	 Work force	

PREPARED OV

0.1hput due	 7 Rescheduled milestone	^ work planned	 JAPPROVEDB Y:
Original milestone 0 DeRivred Item	 =Ii= Rescheduled work

ct

Ul

ra

F

vr

r

!

Project:
Task:

Identifier:

Date:

MJUSTONES

1

^

I i

_ _ 11 I I —^

11 j

^

I
I

II C —

I11

I

IrIr {^I

'^ I —

! iI

^o I

71

Legend (darken when accomplished): 	 n	 Work force
Q Input due	 p Rescheduled milestone 	 Work planned

	

JAPPFOVEDBY:
p Or iginal milestone (> Delivered Item	 Rescheduled work

PREPA RED f`Fly. DATE:

dATi i

od l1

ry c

Project: Task:

Identifier:

Date:

MMSTONES -
f	 -!. ^'	 'i i r	 f !	 -a 1	 '9 :M	 D l	 ! '^' ;4 'w a', '1.	 :O N 0 1	 f ^ ^ J. -	 a 5	 O' rJ	 '>7:

1

J--

_^
l

r. ^ ^
IT

Ifs
^

II

i4

If

F I Lr
N I

la.

u

p

al.

Legend (darken when accomplished): 	 n	 Work force	
PREPARED

d Input due	 Rescheduled milestone 	 Work planned_--	 APPROVEDBY:
Q Original milestone 0 Delivered item	 ♦̀ 	 `	 Reschedulcd:work

BV r DATE;

GATE;

a
td

k

C"

r ^
F

t'9	 :}y.^' 	 r.- P-wa^r n'^^. 1k:?-'"'	 ,^;	 .I	 ..	 •°rr-	ter•'.	 _..	 ;.^:'r*.	 .,	 _...	 +. ^f 4^	 "''"'x"	 '. ^.r: w^.^	 ,.^^sr,,.T,.n: ^-•^^,+u"^?..'[+-"-1^.^'^6>`T:̂ Cl.'S^:^.E?:"

5
i	 tt((

a YOM SCHEDULr

i,

f

Project:

ib

m

y	 ^

-_
IF

I ^ ^
fi i

-_
i I I

--___
1 1 1 i I ^^ I

W- 11 _ ! I I i 1 I

1- Ilf TF ^

--- - I i If

- FT i -

I Legend ;darken when accamplishedl: 	 n	 Work fcxe
Q Input due	 17 Rescheduled milestone D Work planned aevRDV^DSr:	 oATE:
LN Original milestone Q Delivered I lem 	 ^^^ ^^ Resc heduled work

4 YEAR SCHEDULE

F .

Project:	 Task:

Identifier:

Date.

MUSTONES
Jr	 1J.so p l y	 +^l lASOep li	 JJa 50 p JF	 1J i0 p lf	 11A3

R

s

e

..	

Ja

u'

14:

Fl.

It
J..

^n.

ro:

op'

it	
..

Legand. ft*ken when accompfishedl:n	 Work force	 FiiEYARED Bv:	 D iTE:

Q input due	 Q Rescheduledtriilestone 	 Work planned	 Avraoveo er:	 DtiT
0 Original milesmne Q Delivered Item	 C=	 Reschednlec! w

6'KEAn SCHEDULE
V

^	

J

.	 A	 -	 . .

..	 it

S

1
t

4

{

REFERENCES

1. Software Implementation Guidelines and Practices, DSN Standard
Practice 8110-13, Jet Propulsion Laboratory, Pasadena, CA, .Aug. 1975.::

2. Preparation of Software Requirements Documents, DSN Standard
Practice 810-16, Jet Propulsion Laboratory, Pasadena, CA, Dec. 1975.

3. Preparation of Software Definition Documents, DSN Standard Practice
81047, jet Propulsion Laboratory, Pasadena, CA, July 1976.

4. Preparation of Software Specification Documents, DSN Standard
Practice 810-19, Jet Propulsion Laboratory, Pasadena, CA, Mar. 1977.

5. Preparation of Software Operator's Manuals, DSN Standard Practice
810-20, Jet Propulsion Laboratory, Pasadena, CA, Feb. 1977.

& Preparation of Software Transfer to Operations Documents, DSN
Standard Practice 810 .21, Jet Propulsion Laboratory, Pasadena, CA,
Nov. 1976.

7. Tausworthe, R. C., "Stochastic Models for Software Project Manage-
ment," Deep Space Network Progress Report 42-37,. pp. 118-126, _Jet
Propulsion Laboratory, Pasadena, CA, Feb. 1977.

S. Boehm, B. W., et al., Software Development and configuration
Management Manual, TRW Systems Group, Santa Monica, CA, Dec.
1.7, 19:73.

9. Royce, W. W., "Managing the Development of Large Software
Systems: Concepts and Techniques," 'Western Electronics Conference,
Hollywood Park, CA, Aug. 1976.

10. Musa, J. D., and Woomer, F. N., Jr., "Software Project Management,"
Bell System Technical Journal (Safeguard Supplement), pp. 5245-5259,
1975.	 s

540 References

11. Fundamentals of MBASICrm, Vols. 1 and .2, let Propulsion
Laboratory, Pasadena, CA, Feb. 19, 1974,

12. Foster, % A., Introduction to Software Quality Assurance, Space
Systems Division; Lockheed Missiles and Space Co., Sunnyvale; .CA,
1973;

13. Tate, K., `'DSN Software Quality Assurance Statement of Work,"
Internal Memorandum, jet Propulsion Laboratory, Pasadena, CA, Aug.
1973.

14. Buxton, J. N., et al., Software Engineering Techniques, Report on a
Conference sponsored by the NATO Science Committee, Rome, Italy,
October 27-31, 1969 (available through Scientific Affairs Division,
NATO, Brussels, 39, Belgium):

15: Wolverton, G., and Schick, R,, "Assessment of Software Reliability,"
Proc. I-Ith Meeting, German Operations Research Society, Hamburg;
Sept. 1972.

16. Musa, J. D., "A Theory of Software Reliability and Its Application,"
IEEE Trans. Software Eng., Vol. SE-I, No. 3., pp. 312-327, Sept. 1975.

17. Jelinski, Z., and Moranda, P. B., "Software Reliability Research,"
Conference on Statistical Methods for the Evaluation of Computer
Systems, Brown University, Providence, RI, Nov. 1971.

IS. "Improvement Needed in Documenting Computer Systems" Report to
the Congress, by the Comptroller General of the United States,
Washington, DC, Oct. S, 1974.

19: Gray, M., and Landon, K., Documentation Standards, Brandon/Systems
Press, Inc., Princeton, NJ, 1969.

20. Weinberg, G., The Psychology of Computer Programming; D. Van
Nostrancl Reinhold Co., NJ, 1971.

21. NASA Guideline, Computer Program Documentation Guidelines, NIIB
2411.1, National Aeronautics and Space Administration, Washington,
DC, July 1971.

22. JPL Drafting Manual, Document JPL-STD00001A, Jet Propulsion
Laboratory, Pasadena, CA, Sept. 15, 1969.

23. Military Standard Engineering Drawing Practices, MIL-STD-100A,
Department of Defense, Washington; DC, Oct. 1, 1967.

24. Barry, B. S., and Naughton, J. J., "Chief. Programmer Team
Operations," Structured Programining Series, Vol. X, Rome Air
Development Center, Griffiss Air Force Base, NY, Jan. 22, 1975.

iw.

V'

References 541

25. Tinanoff, N.,. and .Luppino i F. M, "Programming Support Library
Program Specifications," Structured Programming Series; Vol. VI,
RADC-TR-74-300, Rome Air Development Center, Griiliss Air Force
Base, NY, Nov. 22, 1974.

26. Branch-Hansen, P;, The Solo Operating System; Information Science
Department, California Institute of Technology, Pasadena, CA, July.
1975.

27. Wegbreit, B.., Multiple Evaluators in an: Extensible Programming
System, Harvard University Center for Research in Computing
Technology, Cambridge, MA, Mar. 1973.

28, Luppino, F. M.,. and Smith, R. L., "Programming Support Library
Functional. Requirements," Structured Programming Series., Vol. V,
RADC-TR-74-300; Rome Air Development Center, Grif{iss Air Force

j	 Base, NY, July 24, 1974.

29. Department of Defense Requirements for Higher-Order Languages;
Defense Advanced Research Projects Agency, Arlington, VA, Apr, 1,
1976.

30: Goodenough, J. B., and Shaffer, L. H., A Study, of High Level
Languages„ Vals. I and 11, U. S. Army Electronics Command, EOM-
75-073-F KD/A-021-206, Fort Monmouth, NJ, Feb. 1976.

0
31. Enslow, P. H,, et al., Implementation Languages for Real-Time

Systems, Part I—Its Irnplementaion and Acceptance, ERO-2-75,
European Research Office, London, England; Apr. 1975 (NTIS No.

`	 AD/A-008 977, U. S. Department Commerce, Springfield, VA).

32: Endow, P. H., et al., Implementation Languages for Beal.-Time

f
Systems; Part !L—Language Design, ERO-2-75, European Research

E	 Office, London, England, Apr. 1975 (NTIS No. AD/A-008 978, U. S.
Department Commerce, Springfield, VA).

33. Nicholls, J. E.,. The Structure and Design of Programming Languages,
Addison-Wesley Publishing Co., Inc,, Reading, MA, 1975.

34. Knuth, D. E., The Art of Computer Programming., Vol. I, Fundamental
Algorithms, pp. 78=85, Addison-Wesley Publisling Co., Inc., Reading,
MA, 1969.

35: Torment, R. D., A Proposed Generalization of Pascal, Technical
Report. No. 75-32.. Department of Computing and Information
Science, Queen's University, Kingston, Ontario, Canada, Feb. 1975:

36. Liskov, B. H., and Zilles, S. N., "Specification Techniques for Data
Abstractions," IEEE Transactions on Software Engineering, Vol. S. E-1,
No. 1, pp. 7-18, Mar. 1975.

C5 ^^ I
—Y(l e

P'
1.

549 References
It
f

i

37. Hoare, C. A. R., "Data Reliability," Proc. I975 International	 I

Coq,L-eerice on Reliable Software, Los Angeles, CA, Apr. 21-23,1975. i

38. AUTOFLOW Computer Documentation System, Applied Data
Research, Inc., Princeton, NJ, June 1970.

39. Pardee, S., "The BELLFLOW System; in Automated Methods of
Computer Program Documentation, NASA-TM-X-66-1-.96, Goddard
Space Flight Center, Greenbelt, MD, Nov. 1970.

40. BrinchwHansen, P., Concurrent Pascal Report, Information. Science	 !
Department, California Institute of Technology, Pasadena, CA, June
1975.

41. LefkovltS, H. C., et al;,. A Progress Report on the Activities of the
CODASYL End Use Facility Task Group, CODASYL End User
Facility Task Group Report, P. O. Box 297, Harvard, 'MA, June 1975.

42. American .National Standard Vocabulary for Information Processing,
ANSI X312-1970, American National Standards Institute, Inc., New
York, Feb. 18, 1970.

43. Webster's New Intercollegiate Dictionary, G. and C. Merriam Co.,
Springfield, Mass. 1961.

4'4. Guidelines for Documentation of Computer Programs and Automated
Data Systems; Federal Information Processing Standards Publication,
FIPS PUB #38, U. S. Department of Commerce, National Bureau of
Standards; Feb. 15, 19:78.

45. Walsh, D., A Guide for Software Documentation, Advanced Computer
Techniques Corp., New York, 1969.

46. Guidelines for Preparation of Mark III Data System Software, Deep
Space Network Data Systems Development Section, Jet Propulsion
Laboratory, Pasadena, CA, (internal working document).

47.. Smith, R. L.,. "Management Data Collection and Reporting," Final
Report, Structured Programming Series, Vol. IX, RADC-TR-74300,.
Air Force Systems Coin-mand, Rome Air Development Center, Gri$iss
AFB, New York, and Army Computer Systems Command, Fort
Belvoir, Va., Oct. 1974.

48, MBASICTM,. Vol. II: Appendices, Jet Propulsion Laboratory, Pasadena,
CA, Aug. 1975.

>f

.t

t

pry.

S

p

`c

INDEX

NOTE; Page numbers that appear in boldface type indicate the reference
for the primary discussion or definition of an item.

Abnormal terminations, 53, 92	 Base language, 187, 200, 312
Abort, 3.3:3	 Block diagram, 38
Abstraction, 40
Abstract data type, 1.96 CALL, 335, 355
Acceptance testing, 104,129, 13`7 CALLX, 33`5, 3`55
Access rights, 1, 96 Cancel, 338
Access time, 45 Canonic structures, 53
Accuracy, 12 Cascaded testing; 128
Action entries (Decision Table), 31 CASE, 336
Action items (Decision Table), 84 Change control, 33, 113, 141, 189
Algorithm, 24, 60., 79 Changes in priorities, schedules, etc.,

table driven, 4-4 13
Annotation, 70, 82, 195 Chart, 40, 71
Anomaly discovery, repair, 112, 119, Checkout, 1.03	 i

124 Chief Programmer Team, 84
Anomaly reporting, 396 Clarity, 6.1•

ANSI, 27, 65, 205, 224, 237, 313, 321 Class A documentation, 50, 65, 158,
Arbitration, 56, 94 416
Architectural design. , 4, 7, 30, 45, 65, Class B documentation, 159, 416

220; 225,263 Class : C documentation, 80, 160
Archiving, 101, 112, 117 Class D documentation, 80., 162
As-built, 4, 58, 10.1 Code auditing,135
ASCII, 329 Code module, 86
AT, 334, 3-50 Code submodule, 86
Audit, 60, 84,103, 117, 13.2 Coding conventions, 95

code; 135 Coding standards, 85
requirements, 159 Collecting node, 70

Automated tools; 17:1 Comments, 202, 320,,.32.1, 327, 331
Common definition, 18

Backslash, 324 Competing characteristics, 6

543	 ?

^^1

h.

i

i
i

i

i

i

}

i

S44 Index

Competing method's, 36	 structure, 39, 63., 77, 90, 194
Compile module, 86 structure definition table, 77, 134
Compilers, 32:1 type, 195
Compile-time option; 90 Deadline, 55, 107
Complexity, 221 Deadlock, 55, 107
Concurrent documentation, 77 Decision box, 70
Concurrent processes, 54, 94, 107,114 Decision collecting nodes, 327
Confidence measurement, 106, 405 Decision table, 24, 31, 32, 3.9
Configuration control, 71, 79, 137 Declaration, 195
Configuration management, 137, 21-6, Default values, 58

513 Definition standards, 1
Connections, 16 Deliverables, 256, 405
Consistency, 55, 107, 113, 186, 231 Delivery readiness, 405
Contingencies, 10 Department of Defense, 196
Control copy, 98 Design, 223
Control definitions, 18 aids, 311
Control flags, 6.3, 104 definition, 46
Control flow, 238 feasibility study, 7
Control logic, 27, 50, 58, 61, 103 phase, 46
Control sublanguage, 187 philosophy, 87
Control structures, 49 practices, 57
Core-swapping; 90 tradeoff. criteria, 36
Correctness, 4:3, 93, 103, 114, 222 verification, 118
Correctness assertions, 90 Detail class, 156
Cosmetics, 330 Development support, 257
Cost and schedule drivers; 4 Development testing, 103, 1.36

estimation, 13 Dewey-decimal, 20, 65, 79, 100, 134
Cost bounds, 6 Diagnostic procedures, 113
Coupling modes. , 39 Discrepancy report, 112 ; 113, 1.19
Cousin modules, 82 Display, 338
CRISP, 40, 91, 187, 222, 309 DO., 335, 352

FLOW:, 81, 205, 310, 3.20 Documentation, 19, 33, 58, 9.4, 111,
PDL, 24, 36, 78, 86, 134, 1.51, 190, 1.38, 147, 172

201, 310, 318 Documentation levels, 156
translators, 321 Class A, 58., 65, 158, 416

Criteria, 2, 8, 1`5, 57, 317 Class S; 1.59, 416
Critical path inethed, 417 Class C, 80, 160
Critical task, 419 Class D, 80, 162
Cross-reference, 65, 68., 83, 96, 247, Concurrent, 77

320; 321, 3'44, 365 Format 1, 16.3
CYCLE, 345 Format-2,164

Format 3, 165
Data base, 177, 223, 260 Format 4, 165

interfaces, 389, 411 Document Iibrary, 174
specification, 286 Dominances, 6, 507

Data, 222 DSDT, 77
flow, 151, 177, 238
interface, 34 Earliest finish, 419
packing, 45 Earliest start, 419

i.

I
Index 645

Editing, 210
ELSE, 336, 338, 342
ELSE-rule, 57
ENABLE, 3 38
Engineering, 224
Environment, 16; 181, 282, 314

operational; 128
Estimation, cost, schedule, 1.3
Examples, 415
Exit, 339, 351, 352
External characteristics, 3, 15, 19
External data bases, 37

Fail safe, 19
Fail soft, 19
Fatal errors, 53
Feasibility, 3, 4:5
Field name, 45	 r
File naming, 101
Finish, 340
Flag stack, 52
Float, 419
Flowchart, 45, 65, 134, 151, 177, 201,

237, 311, 320
Flow-line, 105
Fork, 239, 340
FORK-JOIN, 94
Format 1 documentation; 163
Format 2 documentation, 164
Format 3 documentation, 165
Format 4 documentation, 1.65
Fermat category, 156
Format quality, 163
Forms, 213., 51.3
FORTRAN, 95, 195
FRO (Functional Requirements

Document), 225; 232, 251
Function., 21, 39, 341, 353
Functional correctness, 6.3
Functional testing, 131
Function calls, 82
Fundamental scalar, 195

Garbage collection, 45
Glossary, 31, 34, 98,134, 219, 326,

344,365
Goals, program, 13
Grade; project, 7
Graphics, 24, 174, 202

Hierarchical design, 49
Hierarchic input-processing- output

(HiPO), 23, 225., 259
Hierarchic refinement, 251
Hierarchy, 225
H1PO, 23., 225, 259
Horizontal striping, 27
Human factors, 13,19, 1.48, 1 s 1,

176,513

Identifiers, 323
IF, 342
IF modifier, 343
Imperative mood, 76, 82
Indenting, 96
Information, 20,.226

flow, 24, 2.1, 28
reporting, 396

Initialization, 70
In-line procedures,, 90
Input/output, 199

requirements, 64
subianguage, 189, 200
type, 199

Input-processing-output table, 29
Integrity, 143
Interactive, 184; 211, 191
Interfaces, 16, 49, 61, 104, 109, 226,

256, 268, 280., 314, 388
Intermodule text, 333
Internal data interfaces, 24
Internal specification, 58
Interpreters, 44
Interrupt, 226, 239, 334
Interrupt-driven modules, 55
Interrupt handling, 98
110 (see Input/output).

JOIN, 239, 340

Keywords, 3 31

Languages, 1.74, 187
Latest finish, 41.9
Latest start, 419
LEAVE, 345; 3:51
Let, 344
Level of abstraction, 40
Levels of access, 39; 45

Levels of detail, 46 Pascal, 1:83, 195
Lien, 227 Passive voice, 76
Life cycle costs, 34 Path monitors, 106 	 r
Literal values, 93 Peer corroboration, 116
Logo, 360 Perception forms, 213
Look-ahead, 33, 39, 45, 80 Performance measurement, 212
Loop-collecting nodes, 327 PERT, 215, 253., 417

Loop structure, 345 Phase, project, 4`8, 229, 258
Lust, 513 Planning, 513

Portability , 177, 189
Macro, 87, 91, 349 Post-order traverse, 208, 229
Magic numbers, 93 Pre=order traverse, 27, 91, 229
Maintenance, 154,407 Procedure, 351
Management, 3, 20, 58, 101, 232, 513 description language, 311

data, 2.12 Productivity. 184
information, 251 Program, 352
visibility, 34 data base, 177

Master copies, 83, 113 design language, 201., 311
MBASICTM, 25, 26, 86, 95 design standards, 35
Memory usage, 93 labels, 93
Methodology, 172 modes, 16
Milestones, 8, 111 modules, 332
Mnemonic, 31, 63, 76, 82 real-time, 53, 93., 1.07, 135
Mode, 24 segmentation, 47
Module, 60 specification, 58, 134, 230, 232,

cohesion, 13, 39 275,286
coupling, 39 standards, 279, 410
identifier, 227 structure, 36

Monitor, progress, 11 utility, 18
Mobility, 177 Programming language, 39, 63, 174, 1:87
Multi-stage testing, 128 Progress monitor, 11

Project archives, 117
Nained constants, 93 Project control, 83.
!Naming and referencing, 27 Project management, 47, 154,165
Narrative, 16, 60, 69, 7'1, 86, 151, Project notebook, 36, .77, 11.2, 113,

202 118, 141, 1.54, 166, 373
Negotiations of requirements, 7 Project status, 83
Normal, 350 PS (Programming Specification), 230,
Normal tcrminations, 3.3, 53 232,275

One-sigina event, 11 QA (Quality assurance), 114, 115,
Operational environment, 128 154, 165, 513
Operations manual, 383 Quality, 57
Operator manual, 106 Qualit;: assurance, 114, 11.5, 154,
Opossum, 228 165, 513
Optimization, 87
OUTCOME, 3.39, 347, 350, 3'51, 3 .54 Random number, 499

Rate chart, 10, 279
Paranormal exits, 53, 92 Reat=time programs, 53, 93, 107, 133

i

t

4

- i

i

i

h .,

J!

546 Index

i

Recursive subroutine, 49
Refined costs and schedules, 13
Reliability,186
Repair effort, 124
REPEAT, 345
REQUIRE, 353
Requirements, 14, 82, 251

negotiation, 7
standards, 1

Resource access ., 39, 77
Resource access hierarchies, 49
Resource protection, 55
Resource, shared, 55
RETURN, 342, 351., 353
Review, 3, 8

Sample programs, 415
Scalar. types, 1`95
Schedule, 6, 8, 216, 376
Scope of activity, 63
Scope of variables, 93
Scoping, 114
SDL (Software Development

Library), 33, 77, 83, 98, 107,
1.1.2., 117, 143, 154, 165, 168,
178,2.32

Search, 192
Secretariat, 174, 178
Security and privacy, 143, 392
Semantic, 310
Sequential testing procedure (STP), 33
SFS (Software Functional

Specification), 14, 58, 134,
2.32, 275, 283., 309

Shared resource, 55
Shared subspecifications, 18
Side-effect, 231
Signatures, 7, 33
SIMU'LA, 196
Simulation, 1.07, 114, 131, 184
SJR (Software Justification Report)

31251
Slack .time, 419
Software, 2.32
Software acquisition plan, 3
Software Definition Document (SDD),

263
Software Development Library (SDL),

33, 77, 83; 98, 1.07, 112, 117,

Index 547

143, 154; 165, 168, 179, 232
Software development plan, 46
Software functional requirement.,

3,46
Software Functional Specification (SFS),

14, 58, 134., 232, 283, 309
Software justification report, 3., 2'53
Software Requirements Document

(SRD), 2, 5, 1.54, 232, 251
Software Specification Document

(SSD), 7, 9, 15, 17, 45, 46, 58,
77, 85, 94, 111, 134, 154, 232,
263, 275, 309, 416

Software Test Report (STR), 111, 113,
143., 3"

Software tools, 411
SOM (Software Operation Manual),.

383
Speed, 93, 1.58
SRD (Software Requirement

Document), 2, 5, 154, 232, 251
SSD (Software Specification

Document), 7, 9, 15, 17, 45, 46,
58, 77, 85, 94,111, 13'4, 154,
2 32, 263, 275, 309, 416

Stack, 44, 50
Standard forms, 141
Standards waivers, 83., 381
Statement-continuation, 325, 330
Status report, 352

monitors, 11
Step numbers, 91
Stepwise refinements, 40
STOP, 353
STR (Software Test Report), 143.,

232,399
Striped module, 61, 66, 79, 85, 104,

134,233
interfaces. , 47, 61

Striping conventions, 30, 67, 248
Structural design, 36
Structure flag, 50
Structured programming, 45, 3.13
Structure types, 195
Stubs, 94, 1:00, .105, 109, 191, 354
Suave, 233
Subprogram, 66, 79, 33.5 ., 351
Subroutine, 79, 353, 355

function, 67

548	 Index

recursive, 49 TO, 351
Sustaining, 234 Tolerances, 13
Surviving documents, 20 Tools, 171
Synchronization, 53, 114 Top-down readability, 50
Syntax, 310 Topological sorting, 27, 235, 419

Training, 257
Table-driven algorithms, 44 Trap, 235
Team interfaces, 13 Type attributes, 63, 195
Team performance, productivity,

6,10 Understanding, 76
Template, 349 Unstriped modules, 61, 67, 85
Testability, 19 User, I54, 184, 213, 235
Test, 118, 234 Ustr forms, 213

arc-hives, 137 User manual, 1.54, 295
acceptance, 104, 124, 129, 137
correctness, 103, 114, 222 Validation, 1.03, 131
criteria, 1.36, 403 Variances, 13
driver, 118, 234 Verification, 54, 113
multi-stage, 128 Vertically striped modules, 27, 63
philosophy, 107 Visibility, 61, 373
plan, 1.29, 402
policy, 104 WBS (see Work Breakdown Structure)
specification, 129 WHEN, 94, 35C, 355
stubs, 105 Work Assignments, 13
validation, 1.03, 131 Work Breakdown Structure (WBS), 8,
verification, 54 10, 12, 46, 216, 236, 267, 377,

'Thrashing, 107 417
Tier chart, 40, 46, 76, 82, 83, 203, Work level profile, 127

216, 320, 325, 365
Tier number, 4.6 'Zero defeats, 124

1
F

^	

III

i

`I

