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SUMMARY 

A close-coupled  canard-wing model w a s  t e s t e d   i n   t h e  Langley  8-foot t ran-  
sonic   pressure  tunnel  at Mach numbers from 0.70 t o  1.20 t o  determine  the 
canard-wing in t e r f e rence   e f f ec t s  on canard  and  wing  loadings. The canard  had 
an exposed area of 28.0 percent   of   the  wing reference  area  and was l o c a t e d   i n  
the   chord   phne  of t h e  wing or i n  a pos i t i on  18.5 percent  of  the wing mean 
geometric  chord above or below t h e  wing  chord  plane. The canard  leading-edge 
sweep w a s  51. 7 O ,  and t h e  wing  leading-edge sweep w a s  60°. 

The resu l t s   ind ica ted   tha t   the   d i rec t   canard  downwash e f f e c t s  on t h e  wing 
loading are l imited  to   the  forward  half   of   the  wing direct ly   behind  the  canard.  
The wing leading-edge  vortex i s  loca ted   fa r ther   forward   for   the  wing i n   t h e  
presence  of  the  canard  than  for  the wing-alone  configuration. 

The  wake , from the  canard  located below the  wing  chord  plane,  physically 
in te rac ts   wi th   the  wing inboard  surface and  produces a s u b s t a n t i a l  loss of 
wing lift. For t h e  Mach number 0.70 case,   the  presence  of  the wing increased 
the  loading on the  canard  for  the  higher  angles  of  at tack. However, a t  Mach 
numbers of 0.95 and 1 .20 ,  the  presence of  t h e  wing  had t h e  unexpected r e s u l t  
of  unloading  the  canard. 

INTRODUCTION 

Pas t   inves t iga t ions   ( re fs .  1 t o  13) have  indicated  that   the   proper   use  of  
canard  surfaces on maneuvering a i r c r a f t  can o f fe r   s eve ra l   a t t r ac t ive   f ea tu re s  
such as potent ia l ly   higher   t r immed-l i f%  capabi l i ty ,  improved  pitching-moment 
c h a r a c t e r i s t i c s ,  and  reduced  trimmed  drag;  these  attractive  features  are 
manifested t o  a higher  degree when used i n  conjunction  with an unstable air- 
craf t .   In   addi t ion,   the   geometr ic   character is t ics   of   c lose-coupled  canard 
configurat ions  offer  a p o t e n t i a l   f o r  improved longitudinal  progression  of 
cross-sectional  area which could  result   in  reduced wave drag a t  low supersonic 
speeds, and  would allow  placement  of  the  horizontal  control  surfaces  out  of  the 
wing downwash and j e t  exhaust.   Flow-visualization  studies  (ref.  14) and 
a n a l y t i c a l   s t u d i e s   ( r e f s .  1 5  and 1 6 )  have ind ica ted   tha t   the   favorable   in te r -  
ference  of  the  canard on t h e  wing flow f i e l d  can  produce a complex flow f i e l d  
on the  wing sur face .  Although t h e r e  have  been several   papers   publ ished  that  
d i scuss   t he   t o t a l   fo rces  and moments produced by close-coupled  canard-wing 
conf igu ra t ions ,   ve ry   l i t t l e   da t a   a r e   ava i l ab le  on t h e   l o a d   d i s t r i b u t i o n  on t h e  
canard  and  wing  surfaces  for  close-coupled  canard-wing  configurations;  refer- 
ences 17 and 18 discuss some o f   t he   ava i l ab le   l oad   d i s t r ibu t ion   da t a .  

This  paper  reports on a continuation  of  the work presented i n  reference 4. 
This  wind-tunnel  investigation  obtained  aerodynamic  load  distributions , at  
transonic  speeds , on both  the  canard and  wing surfaces  of a model t h a t  i s  
geometr ical ly   ident ical   to   that   used  in   reference 4. The primary  purpose  of 
t h i s   pape r  i s  t o  improve the  understanding  of  the  cause and e f f ec t s   o f   t he  



canard-wing in te r fe rence .  The present   inves t iga t ion  was conducted i n   t h e  
Langley  8-foot  transonic  pressure  tunnel;  the Mach numbers ranged  from 0.70 
t o  1.20 and data  were  taken  for  angles  of  at tack from Oo t o  approximately 16O 
at Oo sidesl ip .   Tabulated results from th is   s tudy   a re   p resented   in   re fe rence  19. 

SYMBOLS 

The phys ica l   quant i t ies   used   in   th i s   paper   a re   g iven   in   the   In te rna t iona l  
System  of  Units ( S I ) .  Measurements  and ca lcu la t ions  were made i n  U.S.  Customary 
Units.  

A 

b '  

bW 

bC 

cP 

AcP 

C 

- 
C 

av 

Ma3 

s, 
S 

sC  

va3 
W 

X 

Y 

z 

2 

aspect  ratio,   bw2/S 

dis tance from wing-fuselage  juncture   to  wing t i p  

wing span, cm 

canard  span, cm 

pressure   coef f ic ien t  , Sta t i c   p re s su re  - Refe rence   s t a t i c   p re - s sxe  
s, 

pressure   coef f ic ien t  on lower  surface minus pressure   coef f ic ien t  on 
upper  surface 

local   chord  length,  cm 

wing mean geometric  chord, cm 

average  chord  length, cm 

section  normal-force  coefficient,  

free-stream Mach number 

Section  normal  force 
Qoc 

free-stream dynamic pressure,  Pa 

reference  area  of wing with  leading and t r a i l i n g  edges  extended t o  
plane of  s y m e t r y ,  cm 2 

exposed  canard  area, cm2 

free-stream  velocity,  cm/sec 

downwash velocity  induced by canard, cm/sec 

chordwise  coordinate  measured from wing leading  edge, cm 

spanwise  coordinate  measured  from  wing-fuselage  juncture, cm 

vertical   coordinate  measured from mid plane  of  fuselage,  cm 



a angle  of  at tack, deg 

rl nondimensional  spanwise  coordinate , y/b '  

A leading-edge sweep , deg 

Subscripts : 

C canard 

W wing 

MODEL DESCRIPTION 

A sketch  of  the model used i n   t h i s  wind-tunnel  investigation i s  presented 
i n   f i g u r e  1. This model w a s  designed s o  tha t   var ious  wing  and canard  planforms 
could  be  attached t o   t h e  common fuse lage   and   the   pos i t iona l   re la t ionship   o f   the  
l i f t ing   sur faces   (canards  and  wings)  could  also  be  varied. The wings  and 
canards  were  instrumented  with  pressure  orifices  located as shown i n   f i g u r e  1. 
Tables I and I1 g ive   t he   o r i f i ce   l oca t ions   fo r   t he  wing  and  canard,  respectively. 
Both the  instrumented  canards  and  instrumented wings could  not  be  tested s i m u l -  
taneously  because  of  space  restriction  in  the model caused by the  pressure  tube 
i n s t a l l a t i o n ;   t h u s  , when both  the  canards and  wings  were on t h e  model at t h e  
same t ime ,   e i t he r   t he  wings or canards  are  uninstrumented.  Figure 2 i s  a 
photograph  of  the model w i t h  instrumented  and  uninstrumented  canards  and  wings 
shown. Table I11 presents  the  pertinent  geometric  parameters  associated  with 
t h i s  model. 

The 60° swept,  untwisted wing had uncambered c i r c u l a r - a r c   a i r f o i l   s e c t i o n s  
and a maximum th ickness   d i s t r ibu t ion  which va r i ed   l i nea r ly  from 6 percent  of  the 
chord at t he   roo t   ( t he   roo t   i n   t h i s   pape r  i s  the  wing-fuselage  intersect ion)  
t o  4 percent  of  the  chord at the t i p .  

The canard  had a leading-edge sweep angle  of 51.7' and an exposed a rea  
of 28.0  percent of t h e  wing reference area S. The canard w a s  t e s t e d   i n   t h e  
wing chord  plane ( z / C  = 0.0) and in   pos i t i ons  18.5 percent  of  the wing mean 
geometric  chord above and below t h e  wing chord  plane ( z / S  = 0.185  and  -0.185). 
To obtain  the  configuration  with  the  canard  located below t h e  wing  chord  plane, 
t h e  model with  the  canard  in   the  high  posi t ion was r o l l e d  180' on t h e   s t i n g ;  
thus,   the   resul t ing  configurat ions  had  canard-fuselage  fa i r ings on the  bottom 
of the  fuselage and  had a d i f f e ren t   fu se l age   shape   i n   t he   v i c in i ty   o f   t he  
canard. The canard w a s  untwisted and had uncambered c i r c u l a r - a r c   a i r f o i l  
sec t ions .  The m a x i m u m  th ickness   var ied   l inear ly  from 6 percent  of  the  chord a t  
t h e  root (canard- fuse lage   in te rsec t ion)   to  4 percent at t h e   t i p .  

APPARATUS,  TESTS, AND CORFUXTIONS 

This   invest igat ion w a s  conducted i n   t h e  Langley  8-foot  transonic  pressure 
tunnel  which i s  a continuous-flow f a c i l i t y .  Tests were made at Mach numbers 
of 0.70, 0 .90,  0.95, 1.03, and 1.20 corresponding t o  Reynolds  numbers, based on 
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t h e  wing mean geometric  chord,  of 1.35 X l o 6 ,  1.52 X l o 6 ,  1.54 X lo6 ,  1.58 x 10 , 
and 1.61 x l o6 ,  respec t ive ly .  Because  of  flow  separation at the  sharp  leading 
edges  of the  canard and  wing, t h e  Reynolds number effect   should  be small. (See 
ref. 20. ) Tests were made at angles  of  attack  from  approximately Oo t o  1 6 O  
at 00 s i d e s l i p .  Angles  of a t t ack  were c o r r e c t e d   f o r   e f f e c t s   o f   s t i n g   d e f l e c t i o n  
due t o  aerodynamic  load. A l l  t e s t s  were made with  boundary-layer  transit ion 
f ixed  on t h e  model  by means of  narrow s t r i p s   o f  carborundum g r i t   p l a c e d  on t h e  
body,  wings,  and  canards by us ing   the  methods out l ined   in   re fe rence  21. 

6 

b PRESENTATION  OF  RESULTS 

Reference 19 presents  all the  data   obtained  in   this   wind-tunnel  t es t  i n  
tabula ted  form; se l ec t ed   po r t ions   o f   t hese   da t a   a r e   p re sen ted   i n   t h i s   pape r   i n  
p l o t t e d  form. An o u t l i n e  of the  contents   of   these  data   plots   fol lows:  

Figure 

Effect  of  canard  flow 
z / c  = 0 .0 :  
M, = 0.70 . . . . 
M, = 0.95 . . . . 
M, = 1.20 . . . . 

z/E = 0.185: 
M, = 0.70 . . . . 
M, = 0.95 . . . . 
M, = 1.20 . . . . 

z/E = -0.185: 
M, = 0.70 . . . . 
M, = 1.20 . . . . M, = 0.95 . . . . 

f i e l d  on wing surface  pressures  

. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . . . .. . . . . . . . 

f o r  - 
. . . . . . . . . .  3 . . . . . . . . . .  .4 . . . . . . . . . .  5 

. . . . . . . . . .  6 . . . . . . . . . .  7 . . . . . . . . . .  8 

. . . . . . . . . .  9 . . . . . . . . . .  10 . . . . . . . . . .  11 

Effect  of  canard  location on wing l i f t i n g   p r e s s u r e s  ACp . . . . . . . . 12 

Computedocanard downwash along wing leading  edge. M, = 0.70; 
a - 1 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

Effect of  canard  location on span  load  dis t r ibut ion . . . . . . . , . . . 14 

Effect  of  canard  location on wing sectional  center-of-pressure 
loca t ions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  

Effect  of  canard  location on wing center-of-pressure  location . . . . . . 16 

Effect  of wing flow f i e l d  on canard  surface  pressures a t  - 
z / c  = 0 . 0 :  

~ , = 0 . 7 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
% = 0 . 9 5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 
M m = 1 . 2 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 
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RESULTS AND DISCUSSION 

When comparisons  are made between  configurations  with  the wing-on and t h e  
wing-off o r  between  canard-on  and  canard-off  configurations, it should  be  noted 
t h a t   t h e  two configurations  are  not  exactly at t h e  same angle  of  attack  because 
of  st ing  bending. Based on t h e   d a t a  shown i n   t h i s   r e p o r t ,   t h e s e   d i f f e r e n c e s   i n  
angle  of  at tack do not  appear t o   a f f e c t   t h e   d i s c u s s i o n s  made here in .  

Reference 19 conta ins   the   t abula ted  results p resen ted   i n   t h i s   pape r   p lus  
o ther  data not   included  herein.   In   this   paper ,   the   phrase  high  canard refers 
t o   t h e  canard  being  located above t h e  wing  chord  plane ( z / c  = 0.185) ; mid 
canard  refers   to   the  canard  being  located  in   the  chord  plane ( z / c  = 0 . 0 ) ;  and 
low canard   re fers   to   the   canard   be ing   loca ted  below t h e  wing  chord  plane 
(z/S = -0.185). 

Effect  of Canard on  Wing Flow F i e l d  

The d a t a   i n   f i g u r e s  3 t o  11 show t h e   e f f e c t  of the canard  flow f i e l d  on 
the  wing p res su re   f i s t r i bu t ions   fo r  all three  canard  configurations.  

Mid canard.- For t h e  mid canard  the  direct   effects  of  the  canard  f low 
f i e l d  on the  wing m e   l i m i t e d   t o  a region  directly  behind  the  canard.   (See 
f i g s .  3 t o  5 . )  The spanwise  location  of  the  canard t i p  i s  between  wing sta- 
t i o n s  5 and 6. A t  span   s ta t ions  1 and 2 ,  i n   pa r t i cu la r ,   r a the r   d ra s t i c   r educ -  
t i o n   i n  leading-edge  vortex  strength  ( the  leading-edge  vortex  strength and 
posi t ion  are   qual i ta t ively  determined by the  pressure  peaks shown i n   t h e  
f igu res )  i s  noted   for   the  wing in  the  presence  of  the  canard.  

The wing lower-surface  pressure  distribution m a y  be a more r e l i a b l e   i n d i -  
ca to r  of the  canard downwash e f f e c t s  on t h e  wing,  since  there i s  no leading- 
edge vor tex   there   to   compl ica te   the   f low  f ie ld .  The canard downwash i s  seen t o  
a f f e c t   t h e  wing  lower  surface  out t o  span s t a t i o n  4. The ef fec ts   o f   the   canard  
downwash tend   to   be   concent ra ted   in   the   forward  50 percent  of  the wing a t  span 
s t a t i o n s  1 t o  4; t h i s  observation can be  noted a l i t t l e   e a s i e r   i n   t h e  data 
shown i n   f i g u r e  12 ,  where a p l o t  of ACp against  x/c i s  presented. Also,  
t h e   d i r e c t  downwash e f f e c t s  decay rather   quickly  in   going from  span s t a t i o n s  1 
t o  4. (See  f igs .  3 t o  5. ) This  deca;y, both  chordwise  and  spanwise,  of  the 
canard downwash e f f e c t s  i s  not   surpr is ing  s ince  the downwash from the  canard 
will decay inverse ly  w i t h  d i s tance  from the  canard and the  canard wake. When 
at angle  of  at tack it should   be   no ted   tha t   t ravers ing   e i ther  downstream  chord- 
wise or outboard  spanwise  along  constant  percent  chord  lines  has  the  net  effect 
of moving away from the  canard wake i n   t h e   v e r t i c a l   d i r e c t i o n .  Lower surface 
pressure   d i s t r ibu t ions  show no  evidence  of  canard upwash at wing s t a t i o n s  6 
t o  8. 

By use  of an at tached-f low  vortex-lat t ice  computer  program, the  canard 
downwash w a s  ca l cu la t ed  at t h e  wing leading edge  and  wing  40-percent-chord 
locat ions.   (See  f ig .  13.) This p a r t i c u l a r  computer  program  does not  account 
f o r  wake rol lup.   Since  the  canard  has  no camber and  has a sharp  leading edge , 
t he re  w i l l  be a leading-edge  vortex  and  the  shed  vorticity i s  more d i f fuse   than  
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fo r  a wing with  attached  flow. Thus , t h e  results i n   f i g u r e  13 are not m e a n t  t o  
be   quan t i t a t ive   bu t   r a the r   qua l i t a t ive ;   t hese   r e su l t s  , however, do ind ica t e  a 
chordwise  and  spanwise  decay  of  canard-induced downwash, and s u b s t a n t i a t e   t h e  
ea r l i e r   d i scuss ion .  

The upper-surface  pressure  distributions from span   s t a t ion  3 and  outboard 
( f i g s .  3 t o  5 )  i l l u s t r a t e  a secondary  effect   of  the  canard downwash  on t h e  wing. 
The loca t ion  of the  leading-edge  vortex i s  f a r t h e r  aft  on t h e  wing f o r   t h e  wing- 
a lone  configurat ion  than  for   the canard-wing configuration. The a l t e r ing   o f   t he  
leading-edge  vortex  strength  and growth rates inboard by the  canard downwash 
delays  the  leading-edge  vortex a f t  movement. 

The e f f e c t s  of  canard downwash  on t h e  wing pressure  dis t r ibut ion  discussed 
hold  in  general   with  angle-of-attack change  and Mach number change. However, 
t h e   d a t a   f o r  Mach number 1.20 show t h a t   t h e  downwash e f f e c t s  on the  lower sur- 
face  extend t o   l a r g e r  q values   than  those  for   the  other  Mach numbers. 

A t  span s t a t i o n s  5, 6,  and 7 depending on the  configuration  (canard on or 
o f f )  , angle   of   a t tack,  and Mach number, the  Kutta   condi t ion may appear t o  be 
unsa t i s f i ed ;  as a result, t he re  i s  a pressure  discont inui ty  a t  t h e   t r a i l i n g  
edge.  For many of  these  cases,   the  leading-edge  vortex  passes  over  the wing i n  
t h e   v i c i n i t y   o f   t h e   t r a i l i n g  edge  and  causes t h e   r e a t t a c h m e n t   l i n e   t o   f a l l  aft  
of t h e  wing t r a i l i n g   e d g e ;   t h i s   t h e n  does not  al low  the  Kutta  condition a t  t h e  
wing t r a i l i n g  edge t o  be s a t i s f i e d .  

For Mach numbers 0.70 and 0.95 ( f i g s .  3 and 4) at span  s ta t ions 1 and 2 ,  
and c1 = bo, there   appears   to  be  evidence  from the  upper  surface  pressure dis- 
t r i b u t i o n   t h a t   t h e  wake from the  canard i s  in t e r f e r ing   w i th   t he  wing.  Note i n  
the  leading-edge  region  of  the wing tha t   t he   p re s su re   coe f f i c i en t s  are pos i t i ve .  
From the  f low-visualization  photographs  in  reference 1 4 ,  it i s  not   surpr i s ing  
t o   f i n d   t h e   c a n a r d  wake i n t e r f e r i n g   w i t h   t h e  wing f o r  low angles  of  at tack. 

High canard.- Downwash effects   induced by the  high  canard on t h e  wing a re  
similar in   nature   but   substant ia l ly   less   than  those  induced by t h e  mid canard. 
(See  f igs .  6 t o  8. ) This  result   should  be  expected  since  the  canard wake i s  
l o c a t e d   f a r t h e r  above t h e  wing. In   add i t ion ,   t he re  i s  no  evidence  of  canard 
wake in te r fe rence   wi th   the  wing sur face ;   th i s   condi t ion  i s  subs t an t i a t ed  by t h e  
flow  photographs shown in   re fe rence  14 .  

Low canard.-  Figures 9 t o  11 present   the   e f fec t   o f   the  low canard on t h e  
wing pressure  dis t r ibut ion.  The pr imary  dis t inguishing  difference between t h e  
low- and  mid-canard configurations i s  tha t   t he re   appea r s   t o   be   subs t an t i a l  
canard wake in te r fe rence   wi th   the  wing. The da ta   i nd ica t e  wake in t e r f e rence  
f o r  all Mach numbers and angles  of  at tack  presented at t h e  wing  inboard  stations.  
The  wake interference  appears more severe at an angle  of  at tack  of 12' than  for  
any other  angle  of  at tack. The flow-visualization  photographs  of  reference 1 4  
show the  canard wake in te r fe rence  w i t h  t h e  wing at low speeds.   In  general ,   with 
the  exception  of  the wake interference  problem,  the  discussion made f o r   t h e  
mid-canard configurat ion  holds   for   the low-canard configuration. 
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The previous  discussion on the   e f fec t   o f   canard   loca t ion  on t h e  wing 
pressure   d i s t r ibu t ion  i s  fo r   t he   pa r t i cu la r   con f igu ra t ion   desc r ibed   i n   t h i s  
report.  Configurational  changes  such as rounding  the  canard  leading edge s o  
the re  i s  attached  flow or cambering the  canard  could  substant ia l ly  change t h e  
canard downwash at a given  angle  of  attack. The data i n d i c a t e   t h a t   t h e  down- 
wash from the  canard and the  canard  shed  vort ic i ty  are t h e  mechanisms t h a t  
cause  the  canard wing in t e r f e rence ;   t hus ,   a l t e r ing   t he   cana rd  downwash o r  
s p a t i a l   d i s t r i b u t i o n  of   shed  vort ic i ty  will a f fec t   t he   p re s su re   d i s t r ibu t ion  on 
the  wing. 

The e f f e c t  of  canard  location on wing  span load   d i s t r ibu t ion  i s  shown i n  
f igure  14 f o r  two angles  of  attack;  nominal  values  of a a r e  4' and 12O. 
These da ta  show t h a t   t h e   e f f e c t  of the  canard i s  pr imar i ly   l imi ted   to   the   reg ion  
direct ly   behind  the  canard,  and t h a t   t h e  low-canard w a k e  i n t e r f e rence   w i th   t he  
wing at a 12O has  caused  substant ia l  loss of  inboard wing lift beyond  even 
that  caused by t h e  downwash from t h e  mid canard. The e f fec ts   o f   the   loca t ion   of  
the  canard on t h e  wing sec t iona l   cen te r  of  pressure  are shown i n   f i g u r e  15. The 
changes i n  wing sectional  center-of-pressure  location due t o  canard  locat ion i s  
r e s t r i c t e d   t o   t h a t   r e g i o n  of t h e  wing  inboard  of  the  canard t i p .  The d a t a   i n  
f igu re  16 show t h e   e f f e c t  of  canard  location on wing center-of-pressure  location 
and, as would be  expected,  the  center  of  pressure moves outboard  because  of  the 
previously  discussed  induced  effects.  

The data   in   reference 6 show t h a t   f o r  low Mach numbers up t o  an angle  of 
a t t ack  of  approximately 32O, t he re  i s  no favorable  canard  interference w i t h  t h e  
wing  and t h i s  r e s u l t  i s  subs tan t ia ted   for   angles  of a t tack  of  bo and 12O by t h e  
data i n   f i g u r e  15 .  (The model d i scussed   in  ref. 6 i s  geometr ical ly   ident ical  
with  the  present  model.) However, reference 6 shows t h a t  a 44' swept  wing i n  
the  presence  of a canard has l a rge  lift gains when compared with  the wing-alone 
configuration  for  higher  angles  of  at tack. It i s  f e l t  that  the  data   presented 
i n   t h i s   p a p e r  and in   re fe rence  6 ind ica t e  tha t  the   favorable   in te r fe rence   o f  
the  canard with moderately  swept  wings ( A  = 44') must be   t he   r e su l t  of t h e  
canard downwash reducing  the  effective  angle  of  at tack  of  the wing at inboard 
sec t ions  where the  leading-edge  vortex  originates , and t h i s  then  delays  the 
wing leading-edge  vortex  bursting.  Further  wind-tunnel  testing i s  needed f o r  
t h i s   e f f e c t   t o  be d e f i n i t i v e .  

Effect  of Wing  on Canard Flow F ie ld  

The e f f e c t  of  wing  flow f i e l d  on the  canard  pressure  dis t r ibut ion i s  pre- 
s en ted   i n   f i gu res  17 t o  1 9 ;  all the   da ta   p resented   a re   for  the mid-canard 
configuration. The subsonic   data   ( f ig .  17) show t h a t   f o r   t h e  non-dnal angles  of 
a t t ack  of 8O and 12O, t he re  i s  very l i t t l e   e f f e c t  of t h e  wing on the  canard 
flow f i e l d .  However, a t  a nominal  angle of a t tack  of  16O, t h e  upwash from t h e  
wing  produces a measurable  increase  in  canard  loading. 

A t  Mach numbers of 0.95 and 1.20 ( f i g s .  18 and 1 9 ) ,  the  inboard  pressure 
d i s t r ibu t ions  show no  effect   of  the  presence  of  the wing for   the  lower  angles  
of  at tack. However, the  presence  of  the wing  produced a loss i n  canard  load on 
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the   ou tboard   sec t ions .   In   fac t ,   fo r   the   da ta  at an angle of a t tack   of  16O, t h i s  
wing in t e r f e rence   e f f ec t  is obseked  inboard as w e l l  as outboard. .Careful 
examination of the   da ta   p resented   in   re fe rence  4 shows t h a t   t h e   t o t a l  lift on 
the  canard  in   the  presence  of   the wing i s  less   than   tha t   for   the 'canard-a lone  
conf igura t ion   for   the  Mach numbers and angle-of-attack  range  discussed.herein. 
(The  model t e s t e d   i n  ref. 4 i s  geometr ical ly   ident ical   wi th   the model discussed 
herein.  ) No explanation for t h i s  unexpected phenomena i s  given  here;   further 
tests are needed f o r  a bet ter   understanding  of   this   f low phenomena. 

SUMMARY OF RESULTS 

A close-coupled  canard-wing model was t e s t e d   i n   t h e  Langley  8-foot tran- 
sonic   pressure  tunnel  at Mach numbers from 0.70 to 1.20 t o  determine  the 
canard-wing in t e r f e rence   e f f ec t s  on canard  and  wing  loadings. The primary 
r e s u l t s  of t h i s   i n v e s t i g a t i o n  may be  summarized as follows: 

1. The direct   canard downwash e f f e c t s  on t h e  wing  loading are in   genera l  
pr imari ly   l imited  to   the  forward  half   of   the  wing direct ly   behind  the  canard.  

2. The wing  leading-edge  vortex is  loca ted   fa r ther   forward   for   the  wing 
in  the  presence  of  the  canard  than  for  the  wing-alone  configuration. 

3. The  wake fYom the   canard  located below t h e  wing  chord  plane  physically 
in te rac ts   wi th   the  wing surface and causes   substant ia l  l o s s  of  wing lift. 

4. For t h e  Mach number 0.70 case,   the   presence  of   the wing increased  the 
loading on the  canard  for   the  higher   angles   of   a t tack.  However, at Mach num- 
bers  of 0.95 and 1.20, the  presence  of  the wing  had t h e  unexpected  result  of 
unloading  the  canard. 

Langley  Research  Center 
National  Aeronautics  and Space Administration 
Hampton, VA 23665 
October 25 ,  1978 
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TABLE I.- WING PFiESSURE ORIFICE  LOCATIONS 

Span s t a t ion  . . . 

y (upper and lower 
surfaces ) , cm . . . 

+,Cm . . . . . . .  

1 

i 
2.54 

0.0125 
.0250 
.0500 
.loo0 
,1500 

.3000 

.4500 

.7500 

.2250 

.6000 

,9000 
9500 

27.09 

2 

5.08 

0.0125 
.0250 
.0500 
.loo0 
.1500 
.2250 
.3000 
,4500 

.7500 

.9000 
-9500 

,6000 

24.38 

Wing pressure  or i f ice   locat ions 

3 

7.62 

0.0125 
.0250 
.0500 
,1000 
,1500 
.2250 
.3000 
,4500 

.7500 

.9000 

.9500 

,6000 

21.67 

4 

10.16 

0.0125 
.0250 
.0500 
.loo0 
.1500 
.2250 
.3000 
,4500 

.7500 

.9000 

.9500 

.6000 

18.97 

5 

12.70 

0.0250 
.0500 
. loo0  
.1500 
,2250 
.3000 
,4500 
.6000 
.7500 
.9000 
.9500 

16.26 

6 

15.24 

0.0250 
,0500 

.1500 

.2250 

.6000 

.go00 

. loo0 

.3000 
,4500 

* 7500 

9500 

13.56 

7 

17.78 

0.0250 
.0500 

.1500 
. .2250 
,3000 
,4500 
.6000 
7500 

.go00 

. loo0 

10.84 8.13 

8 

20.32 

0.0500 

.1500 

.2250 

.6000 
7500 . goo0 

. loo0 

.3000 

.4500 



TABLE 11.- CANARD PRESSURE ORIFICE  LOCATIONS 

Canard pressure   o r i f ice   loca t ions  

4 6 8 ?pan station . . . . 5 7 2 

3.81 

0.0250 
.0500 

,1500 
.loo0 

.2250 

.3000 

.4500 

.6000 
7500 

.goo0 
* 9500 
.9750 

13.85 

3 

5.08 

0.0250 
,0500 
.lo00 
,1500 
.2250 
.3000 
.4500 
,6000 
7500 . gooo 
9500 
9750 

12.50 

9 1 

2.54 

0..0250 
.0500 
,1000 
.1500 
.2250 
.3000 
.4500 
,6000 
. 7 5 O O  
.goo0 
9500 

. .9750 

15.21 

(upper and lower 
su r faces ) ,  cm . . 6.35 7.62 8.89 10.16 11.'43 12.40 

0.1000 
,1500 
.2250 

,6000 
7500 . gooo 

.3000 

.4500 

4.38 

0.0250 
.0500 

,1500 
,2250 

. loo0 

.3000 

.4500 

.6000 

.7500 . gooo 
9500 

0.0250 
,0500 

. loo0 

.1500 

.2250 

.3000 
,4500 
.6000 
,7590 . gooo 
* 9500 

0.0500 
,1000 
,1500 
,2250 
.3000 
.4500 
.6000 
7500 . gooo 

.9500 

0.0500 

.1500 

. loo0 

.2250 

.3000. 

.4500 

.6000 
7500 . gooo 

0.0500 
,1000 
.1500 
,2250 
,3000 
,4500 I 

.6000 

.7500 . gooo 

x/cc  (upper and 
lower  surfaces . . 

8.44 7.08 11.15 9.79 5.73 cc,  cm . . . . . . 



TABLE 111.- GEOMETRIC  CHARACTERISTICS 

Body length ,  cm . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96.52 

Wing (wings I and I1 except when spec i f i ed ) :  
A ( % 2 / S )  . . . . . . . . . . . . . . . . .  
b,/2, cm . . . . . . . . . . . . . . . . . .  
ffw, aeg . . . . . . . . . . . . . . . . . . .  
c , m  . . . . . . . . . . . . . . . . . . . .  
A i r f o i l   s e c t i o n  . . . . . . . . . . . . .  
s (area  extended  to  plane  of  symmetry), cm '2 '  
Root chord, cm . . . . . . . . . . . . . . .  
T i p c h o r d , c m  . . . . . . . . . . . . . . . .  
Maximum thickness at - 

Root,  percent  chord . . . . . . . . . . . .  
Tip,  percent  chord . . . . . . . . . . . .  

Canard : 
A (bc2/Sc) . . . . . .  
A c ,  deg . . . . . . . .  
c ,  cm . . . . . . . .  
A i r f o i l   s e c t i o n  . . 
S, (exposed a r e a ) ,  cm - 5  
bc/2,  cm . . . . . . .  
Root chord, cm . . . .  
Tip  chord, cm . . . . .  
Maximum thickness at - 

Root,  percent  chord . 
Tip,  percent  chord . 

- 

. . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  

. . . . . . . . .  

. . .  2.5 . . .  25.4 . . .  60 . . .  23.31 
Ci rcu lar   a rc  . . .  1032.2 . . .  29.80 . . .  6.77 

. . .  b . . . . . . . . . . . .  4 

. . . . . . . . . . . . . . . . . . . . . . .  4.12 . . . . . . . . . . . . . . . . . . . . . . .  51.7 . . . . . . . . . . . . . . . . . . . . . . .  14.83 . . . . . . . . . . . . . . . . . . . .  Circu la r   a r c  . . . . . . . . . . . . . . . . . . . . . . .  288.73 . . . . . . . . . . . . . . . . . . . . . . .  17.25 . . . . . . . . . . . . . . . . . . . . . . .  17.92 . . . . . . . . . . . . . . . . . . . . . . .  3.59 
. . . . . . . . . . . . . . . . . . . . . . . .  b . . . . . . . . . . . . . . . . . . . . . . .  4 
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. 9b.52 

Figure 1.- Sketch of model. All l i n e a r  dimensions are in   cent imeters .  (Upper  and lower surface 
pressure   o r i f ices   a re   no t   loca ted   in  same lif ' t ing  panel.  ) 



L-77-3463 
Figure 2 .  - Photograph of close-coupled canard-wing model, 
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Figure 3.- Effect  of canard. f low  f ie ld  on wing pressures  
f o r '  z / E  = 0.0;  M, = 0.70. 
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Figure 4.- E f fec t -o f  c'anard  flow f i e l d  on wing pressures  
f o r  z / C  = 0.0 ;  M, = 0.95. 
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Figure 5.- Effect  of  canard  f low  field on  wing pressures 
f o r  z / E  = 0 . 0 ;  M, = 1.20. 
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