General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

156791

FINAL REPORT
GEOS 2 REFRACTION PROGRAM
SUMMARY DOCUMENT

```
(NASA-CR-156791) GEOS-2 REFRACTION PROGRAM


\begin{abstract}
The Wallops Island Collocation Experiment consisted of an intensive 3-month period (April - June, 1968) of tracking and data collection from collocated tracking instrumentation at Wallops Island, using the GEOS-2 sateliite as target vehicle.
\end{abstract}

The experiment resulted in a wealth of data regarding the ionospheric and tropospheric propagation errors, the theoretical and data analysis of which has been documented in some 30 separate reports over the last 6 years.

This report presents a self-sufficient unifying overview of the entire project results with references to the underlying reports for details.

TABLE OF GONTENTS
Page
ABSTRACT ..... i
TABLE OF CONTENTS ..... ii
LIST OF FIGURES ..... iv
LIST OF TABLES ..... vii
LIST OF SYMBOLS ..... vizi
1. DESCRIPTION OF EXPERIMENT ..... 1.1
1.1 Background ..... 1.1
1.2 Objectives ..... 1.2
1.3 Organization ..... 1.2
2. DATA DESCRIPTION ..... 2.1
2.1 General ..... 2.1
2.2 Laser ..... 2.3
2.2.1 Laser Data Preprocessing ..... 2.3
2.2.2 Laser System Calibration ..... 2.4
2.2.3 Laser System Timing ..... 2.5
2.2.4 Laser System Tracking Constraints ..... 2.5
2.3 SECOR ..... 2.6
2.3.1 SECOR Data Preprocessing ..... 2.6
2.3.2 SECOR System Calibration ..... 2.7
2.3.3 SECOR System Timina ..... 2.8
2.4 TRANET ..... 2.8
2.4.1 TRANET Data Preprocessing ..... 2.9
2.4.2 TRANET System Calibration ..... 2.11
2.4.3 TRANET System Timing ..... 2.11
2.4.4 Three Frequency Data ..... 2, 12
2.5 C-Band ..... 2.12
2.5.1 C-Band Data Preprocessing ..... 2.13
2.5.2 C-Band System Calibration ..... 2.14
2.5.3 C-Band System Timing ..... 2.14
2.6 Cameras ..... 2.15
2.7 Meteorological Instrumentation ..... 2.15
2. 8 Ionospheric Soundings ..... 2.15

TABLE OF CONTENTS, Cont'd.
Page
3.1
3.1
3.1 REEK Program
3.2 Straight Path Approximation 3.4
3.3 Group vs Phase Effects 3.11
3.4 Superposition 3.19
4. ANALYTIC CORRECTIONS 4.I
4.1 Troposphere 4.1
4.2 Analytic Corrections for the Ionosphere 4.14
5. MOMENT EXPANSIONS 5.1
5.1 Introduction 5.1.
5.2 Moment Expansion Derivation 5.2
5.3 Moment Expansion for Angle 5.4
5.4 Moment Expansion for Range Rate 5.6
5.6 Tests of the Moment Expansion for Range 5.7
5.6.1 Ionosphere 5.7
5.6.2 Troposphere 5.10
6. PROFILE DETERVINATIONS 6.1
6.1 Jackson's Composite Profiles 6.1
6.2 ESSA Bottomside Profiles 6.2
6.3 Predictions from Radio Propagation Predictions 6.2
6.4 ESSA Predictions 6.4
6.5 Comparisons in Terms of Moments 6.4
6.6 Geographical Gradients 6.11
7. MLLTIPLE FREQUENCY IONOSPHERIC MEASUREMENTS
COMPARISONS
8. SECOR-ORBIT COMPARISONS 8.i
9. SUMMARY CONCLUSIONS O.I
REFERENCES R-I

\section*{LIST OF FIGURES}
\begin{tabular}{|c|c|c|}
\hline Fig.
No. & & \begin{tabular}{l}
Page \\
No.
\end{tabular} \\
\hline 3.1-1 & Ray Tracing Geometry & 3.2 \\
\hline 3.2-1 & Idealized Ionosphere Straight and Bent Paths & 3.5 \\
\hline 4.1 & Range Error Due to Tropospheric Refraction & 4.6 \\
\hline 4.2 & Elevation Error Due to Tropospheric Refraction & 4.7 \\
\hline 4.3 & Range Rate Exror Due To Tropospheri Refraction & 4.8 \\
\hline 4.4 & Range Error Due To Ionospheric Refraction & 4.19 \\
\hline 4.5 & Elevation Error Due To Ionospheric Refraction & 4.20 \\
\hline 4.6 & Range Rate Error Due to Ionsoperhic Refraction & 4.21 \\
\hline 5.1 & Geometry of the Straight Line Path Angle & 5.3 \\
\hline 5.2 & Convergence Exror of the Ionospleric Moment Expansion for Range vs Expansion Center \(h_{c}\) for Various Orders of Expansion \(N_{t}\) & 5.8 \\
\hline 5.3 & Moment Expansion Error DIF (N) at \(\mathrm{E}=10^{\circ}\) & 5.9 \\
\hline 5.4 & Range Error Due to Ionospheric Refraction & 5.11 \\
\hline 5.5 & Elevation Error Due to Ionospheric Refraction & 5.12 \\
\hline 5.6 & Range Rate Error Due to Ionospheric Refraction & 5.13 \\
\hline 5.7 & Range Error Due to Tropospheric Refraction & 5.15 \\
\hline 5.8 & Elevation Error Due to Tropospheric Refraction & 5.16 \\
\hline 5.9 & Range Rate Error Due to Tropospheric Refraction & 5.17 \\
\hline 6.1 & Geometric Coefficients of the Moment Expansion & 6.6 \\
\hline 6.2 & Std. Dev. of Difference Between Jackson Composite and ESSA Bottomside Extrapolations. Moment Series Components & 6.8 \\
\hline 7.1 & Vertical Profile for Electron Density Distribution & 7.4 \\
\hline 7.2 & Variations in the Difference Between SECOR and Integrated TRANET Ionospheric Range Error Measurements (4/5,10/68) & 7.10 \\
\hline 7.3 & Difference in Variations as Observed in SECOR Data and Integrated TRANET Data ( \(4 / 11,12 / 68\) ) & 7.11 \\
\hline 7.4 & Difference in Variations as Observed in SECOR Data and Integrated TRANET Data (4/16,17/68) & 7.12 \\
\hline 7.5 & Difference in Variations as Observed in SECOR Data and Integrated TRANET Data ( \(4 / 18,22 / 68\) ) & 7.13 \\
\hline 7.6 & Difference in Variations as Observed in SECOR Data and Integrated TRANET Data ( \(4 / 23,26 / 68\) ) & 7.14 \\
\hline
\end{tabular}

\section*{LIST OF FIGURES, Cont'd.}
Fig. Page
No. No.
7.7 Difference in Variations as Observed in SECOR Data and Integrated TRANET Data (4/29,30/68) ..... 7.15
7.8 Difference in Variations as Observed in SECOR Data and Integrated TRANET Data ( \(5 / 1,2 / 68\) ) ..... 7.16
7.9 Difference in Variations as Observed in SECOR and Integrated TRANET Data ( \(5 / 3,4 / 68\) ) ..... 7.I7
7.10 . Difference in Variations as Observed in SECOR and Integrated TRANET Data ( \(5 / 7,8 / 68\) ) ..... 7.18
7.11 Difference in Variations as Observed in SECOR and Integrated TRANET Data (5/25/68 ..... 7.19
8.1 SECOR-ORBIT Comparisons Date 4/05/68 ..... 8.4
8.2 SECOR-ORBIT Comparisons Date 4/10/68 ..... 8.5
8. 3 SECOR-ORBIT Comparisons Date 4/12/68 ..... 8.6
8.4 SECOR-ORBET Comparisons Date 4/17/68 ..... 8.7
8.5 SECOR-ORBIT Comparisons Date 4/30/68 ..... 8.8
8.6 SECOR-ORBIT Comparisons Date 5/24/68 ..... 8.9
8.7 SECOR-ORBIT Comparisous Date 5/25/68 ..... 8.10
8. 8 SECOR-ORBIT Comparisons Date 5/29/68 ..... 8.11
8.9 SECOR-ORBIT Comparisons Date 5/30/68 ..... 8.12
8.10 SECOR-ORBIT Comparisons Date 6/04/68 ..... 8.13
8.11 SECOR-ORBIT Comparisons Date 6/05/68 ..... 8.14
8.12 SECOR-ORBIT Comparisons Date 6/11/68 ..... 8. I5
8.13 SECOR-ORBIT Comparisons Date 6/13/68 ..... 8.16

\section*{Communications Research Laboratories}

\section*{LIST OF FIGURES, Cont'd.}
\begin{tabular}{lcc}
\begin{tabular}{l} 
Fig. \\
No.
\end{tabular} & & \begin{tabular}{c} 
Page \\
No.
\end{tabular} \\
8.14 & \begin{tabular}{c} 
SECOR-ORBIT Comparisons \\
Date 6/21/68
\end{tabular} & \begin{tabular}{c}
8.17. \\
8.15
\end{tabular} \\
\begin{tabular}{c} 
SECOR-ORBIT Comparisons \\
Date 6/25/68
\end{tabular} & 8.18.
\end{tabular}

\section*{LIST OF TABLES}

\section*{\(I\)}
Table Page
No. No.
2.1 GEOS II Characteristics ..... 2.2
2.2 Alouette-GEOS II Coincidences ..... 2.17
3.2-I Difference Between Straight Line Raytrace \(\left(\Delta R_{g}\right)\) ..... 3.103.3-1 Group-Phase Comparisous3.19
3.4-1 Superposition Tests ..... 3.21
4.1-1 Tropospheric Corrections ..... 4.2
4.1-2 Range Refraction Correction Equations ..... 4.3
4.1-3 Elevation Angle Refraction Correction Equations ..... 4.4
4.1-4 Range Rate Refraction Correction Equalion ..... 4.5
4.5 Standard Ẹror of Regression Fit, Meters ..... 4.12
4.6 Regression Coefficients at \(\mathrm{E}=12.173^{\circ}\) ..... 4.13
4.7 Comparison of Tropospheric Refraction Correctors on 85 WICE Profiles. ..... 4.13
4.8 Iopospheric Correction Algorithms ..... 4.15
A. 9 Range Refraction Gorrection Formulas ..... 4.16
4.10 Range Rate Refraction Correction Formulas ..... 4.17
4.11 Elevation Refraction Correction Formulas ..... 4.18
5.I Geometrical Factors ..... 5.5
5.2 Tropospheric Comparison ..... 5.34
6.1 Comparison of ESSA Bottomside Profile Extrapolations and Jackson Composite Profiles in Terms of Moments ..... 6.7
6.2a) Comparison of Ionospheric Profile Predictors in Terms of \(\mathrm{M}_{0}\) (Total Refractivity Integral ..... 6.10
6.2b) RMS Difference Matrix (Meters) ..... 6.10
6.3 Range Corrections (Meters), Various Geographic Scalings ..... 6.14
6.4 Geographic Scal ing Factors, G(X, Y) ..... 6.16
7.1 SECOR Bias Regressions ..... 7.6
7.2 Least-Squares Solution Using TRANET Data ..... 7.8
8.1 Bias Adjustments; SECOR-ORBIT Fits ..... 8.3

\section*{LIST OF SYMBOLS}
Definedin Sec.
a = radius of earth, 6378 km5.2
B (Subscript) \(=\) pertaining to bent path ..... 3.2
\(c=\) velocity of light, \(2.99795 \times 10^{8} \mathrm{~m} / \mathrm{sec}\) ..... 2.4 .1
d (Subscript) \(=\) day ..... 4.1
\(\mathrm{e}=\) electron charge, \(1.60207 \times 10^{-19}\) Coulombs ..... 3.3
\(\mathrm{E}=\) elevation angle of geometric line-of-sight ..... 3.2
\(E=\) partial pressure of water vapor, mb ..... 4.1
\(\mathrm{E}_{\mathrm{O}}=\) elevation measured at ground level
\(\mathrm{f}=\mathrm{fr}\) equency, Hz ..... 3.2
\(f_{\mathrm{H}}=\) magneto-gyro frequency \(=\frac{\mathrm{eB}}{2 \pi \mathrm{JII}}\) ..... 6.3
\(£_{c}=\) ionospheric plasma frequency \(=\left(80.614 N_{e}\right)^{1 / 2}\) ..... 3.3
\(G_{m}=\) geometrical coefficient of \(\mathrm{m}^{\text {th }}\) moment ..... 5.2
\(=\frac{I}{m!} \frac{d^{m}}{d h^{m}} \sec (\Phi(h))\)\(G_{m}^{\prime}=\frac{\partial G_{m}}{\partial E}\)5.2
\(\mathrm{h}=\mathrm{height}\)
\(h_{c}=\) expansion center height for moment expansion ..... 5.2
\(h_{m}=\) height of ionosphieric layer maximum ..... 7
\(\mathrm{h}_{\mathrm{S}}=\) satellite height
\(h_{t}=\) tropospheric scale ht. ..... 4.1
\(\mathrm{H}=\) relative humidity, \% ..... 4.1
\(\mathrm{H}_{\mathrm{S}}=\) scale height
i. (Subscript) \(=\) ionosphere\(\mathrm{m}=\) electron mass, \(9.1085 \times 10^{-31} \mathrm{Kg}\)3.3
\(M_{m}=m^{\text {th }}\) refractivity moment \(=\int_{0}^{h_{S}}\left(h-h_{c}\right)^{m} N(h) d h\) ..... 5.2
\(\mathrm{n}=\mathrm{n}_{\mathrm{p}}=\) reiactive index (phase) ..... 3.1

LIST OF SYMBOLS, Cont'd.
Definedin Sec.
\(u_{g}=\) group refractive index \(=\frac{d}{d f}\left(f_{p}(f)\right)\)
    3.3
\(\mathrm{N} \triangleq{ }^{\triangle}\) refractivity \(\triangleq \mathrm{n}-1\)5.2
\(\mathrm{N}_{\mathrm{e}}\) electron density, e/m \({ }^{3}\) ..... 3.3
\(N_{s}=N_{0}=\) surface refractivity ..... 2.4.1
\(P=\) ray path ..... 3.3
P = pressure, millibars ..... 4.1
\(r=a+h=\) geocentric radius
\(R=\) true range ..... 3.1
\(s=\) geometric path length ..... 3.1
S (Subscript) = pertaining to straight path ..... 3.2
t (Subscript) \(=\) troposphere
\(t_{\text {pca }}=\) time of point-of-closest-approach ..... 6.5
\(T=\) temperature, \({ }^{0_{K}}\) ..... 4.1
w (Subscript) \(=\) wet ..... 4.1
\(\mathbf{Y}=\) transfer function \(z=\) normalized ionospheric height \(=\frac{h^{-} h_{m}}{H_{S}}\)
\(\alpha=\) bending angle defined on Figure 3.2-1 ..... 3.2
\(\beta=\) bending angle defined on Figure 3.2-1 ..... 3.2
\(\delta=\) elevation angle of a ray relative to the initial horizontal direction ..... 3.1
\(\Delta r_{y}=\varepsilon_{X}=\) range error \(=\rho_{X}-R\) ..... 3.3
\(\Delta R=\) range exror \(=\rho-R=\varepsilon_{\rho}\) ..... 3.1
\(\varepsilon_{\mathrm{B}}=\) bending error ..... 3.1
\(\epsilon_{0}=\) dielectric constant of free space, \(\approx \frac{10^{-9}}{36 \pi}\) farad \(/ \mathrm{m}\) ..... 3.3 ..... 3.1
\(\varepsilon_{R}=\) retardation error
\(\theta=\) earth central angle ..... 3.1
\(\rho=\) Alouette-GEOS coincidence parameter ..... 2.8

\section*{LIST OF SYMBOLS, Cont'd}
Definedin Sec.
\(\rho_{x}=\) apparent radio range ..... 3.3
where \(\mathrm{x}=\mathrm{g}\) (Subscript) groupp (Subscript) phase
\(\mathrm{T}=\) ionospheric slab thickness ..... 3.2
\(\tau_{g}=\) group time delay ..... 3.3
\(\tau_{p}=\) phase time delay ..... 3.3
\(\varphi=\) local elevation angle of ray ..... 3.1
\(\Phi=\) zenith angle ..... 3.2

\section*{1. DESCRIPTION OF EXPERIMENT}

\subsection*{1.1 Background}

The Wallops Island Collocation Experiment (WICE) (also known as the GEOS-II Gollocation Experiment) was performed during April, May, and June 1968 as a part of the Observation Systems Intercomparison Investigation (OSII), a subtask of the National Geodetic Satellite Program (NGSP). The general objective of the OSII program is to improve the accuracy and the estimates of accuracy of the geodetic tracking systems through systematic intercomperisons of the data afforded by the several tracking systems involved. The WICE Experiment in particular was designed to perform certain significant comparisons among an extensive array of collocated instrumentation at the Wallops Island Test Facility thus effectively avoiding a number of external error sources in the comparison due to survey errors, gravitational perturbations, orbital perturbations and timing errors.

The wide frequency range covered ly the assembled instrumentation along with the availability of various refraction measuring instruments also afforded a unique opportunity for separation and analysis of refraction errors, and a considerable effort was devoted to the analysis, development, and testing through these means of various proposed algorithms for improved, higher-accuracy refraction corrections.

As the program developed the continuing quest for improved refraction correction accuracy led to reanalyses of a number of finer points of the usual assumptions of refraction analysis which are believed to be of some interest for their own sake.

References 5-13 and 16-21 summarize much of the work done on individuai tasks under the WICE analysis program. This document is intended to serve as an overall guide to the program by explaining the interrelationships, the principal assumptions, -approach and results of the various tasks, referring generally to the task reports where possible for details.

\subsection*{1.2 Objectives}

The principal objectives of the WICE were:
- Determination by theoretical and experimental intercomparisons of the practical achievable accuracy limitations of various tropospheric and ionospheric correction techniques.
- Careful examination of the theoretical bases and derivation of improved refraction correction techniques as appropriate.
- Estimation of internal sysiematic and random error levels of the various tracking systems.

\section*{1. 3 Organization}

The WICE experiment and its subsequent analyses were performed under the overall direction of Mr. John Berbert of NASA, GSFC, Experiment Chairman and NASA Principal Investigator for the OSII. Other personnel instrumental in the final results include

\section*{Experiment}
H.R.Stanley - NASA Wallops - Wallops Project Coordinator and C-Band Radar Project Manager
Dr. H. Plotkin and T. Johnson - NASA Goddard - Laser Representatives
D. Harris - NASA Goddard - PTH 100 Camera Representative
P. Kuldell - Naval Air Systems Command - Tranet Doppler Representative
R.Vitek, F.Varnum, Dr. F.Rhode, M.Warden - Army Map Service Secor Representatives
G.Godwin - NASA Wallops - Wallops Project Engineer
C. Leitar - NASA Wallops - C-Band Radar and BC-4 Camera Data Engineer
T. Savage - NASA Wallops - Timing Engineer
J.Spurling - NASA Wallops - Meteorological Engineer
C. Nichols and C.Myers - NASA Goddard - Survey Engineers
Data Reduction and Analysis
H. Parker - RCA - Project Engineer and Technical Information Coordinator Dr. A.J.Mallinckrodt - Communications Research Laboratories Refraction Analysis
Dr. A.Tucker - University of Texas Applied Research Laboratuzy Tranet Data Analysis

Reference 5 contains details of the WICE experiment organization and operations.

\section*{2. DATA DESCRIPTION}

\subsection*{2.1 Geperal}

The vehicle for these studies was the GEOS -II satellite whose principal relevant characteristics are compiled in Table 2.1.

The principal data sources utilized in the WICE analysis include
NASA Laser Tracker
BC-4 and PTh 100 Cameras
C-Band Radars - FPQ-6 and FPS-16
SECOR Ranging System
TRANET System (Including the 3-frequency TRANET)
Ground Meteorological Instrumentation
Balloon Sondes
Bottomside Ionospheric Soundings
(Wallops, Grand Bahama and Ottowa)
Topside Ionospheric Soundings
(Allouette)

TABLE 2.1

\section*{GEOS II CHARACTERISTICS}
```

Orbit: Altitude \approx 1291 km
Eccentricity \approx . 03
Inclination \approx 105
R.A.Asc Node }\approx27\mp@subsup{5}{}{\circ
Avg. Perigee 260.3
Mean Anomaly 83.6
As of Epoch L゙;25/1968
Satellite Instrumentation
C-Band Transponders (2)
C-Band Passive Reflector (Retrodirective Array)
U.S. Navy Doppler Beacon
Corner-Cube Optical Reflectors
Optical Beacon
NASA Minitrack Beacon
NASA Range and Range-Rate Beacon
U.S.Army SECOR Beacon

```

\subsection*{2.2 Laser}

The laser tracking system, which was moved to Wallops Island for the duration of this test, was built and operated by the Optical Systems Branch (OSB) of Goddard. This system uses an intense, highly collimated, short-duration beam of Iight for illuminating the spacecraft being tracked. At the spacecraft, the beam is reflected back towards the ground station by an array of cube corner reffectors. The returning light is detected photoelectrically, and its transit time is measured to yield the range data. The actual laser transmitter is mounted on a radar pedestal along with a Cassegranian telescope used for receiving the reflected laser beam. When the laser system is tracking, the transmitter is flashed at I pulse/sec. Each transmitter pulse starts a time-interval-measuring unit necessary for range measurement. During the pass, the mount, equipped with digital encoders, is directed toward the expected position of the spacecraft by a programmer fed with punched paper tape. By using a telescope, the operator can see the spacecraft and make corrections to keep it within the illuminating beam, which is only about 1.2 milliradians wide. Along with a range measurement, both the azimuth and elevation of the spacecraft are recorded from the position mount. At the time of these tests, in 1968, the laser tracking system was probably unbiased to 0.15 meter in range, with a random noise component of about 1.2 meters, and could produce range rates through an orbital fit to the range data which were good to about \(1 \mathrm{~cm} / \mathrm{sec}\). Now, in 1975, the laser bias and random noise have both been reduced by an order of magnitude. These estimates include all known error sources except the scaling error of 1 part in \(10^{6}\) due to the uncertainty in the velocity of light, which affects all systems. Mount angular measurements are recorded but are considered as a secondary measurement since they are dependent on manual tracking.

\subsection*{2.2.1 Laser Data Preprocessing}

The OSB personneI were responsible for laser data preprocessing. The preprocessor program accomplishes the following functions:
- Gonverts the recorded time of observation to the time when the laser pulse was at the spacecraft.
- Computes the range to the satellite from the round-trip time incerval values and calibration values.
- Corrects the measured elevation angle for refraction.
- Corrects the computed range for refraction.
- Edits the data based on a five-sigma rejection criterion.
- Reformats the acceptable data points into the required Geodetic Satellite Data Service (GSDS) format and outputs the data on a magnetic tape, with a density of \(I\) observation per second.

Preprocessing details are contained in Reference 14 and Reference 15. The authors received the WICE laser data from GSDS and conducted this intercomparison study with no additional preprocessing.

\subsection*{222.2 Laser System Calibration}

For angle calibrations, a special boresight feature is incorporated in the collimating optics for the transmitted beam, which allows the laser transmitter to be aligned parallel to the opt-mechanical axis of the tracking pedestal. Boresighting is accompished by firing the laser through a separately attached focusing lens onto a piece of aluminum foil in its focal plane. The reflex viewer, which forms the boresight function on the collimating optics, is then inserted in the optical path, and its cross-hairs are adjusted to coincide with the hole formed in the foil by the focused laser beam. With the focusing lens removed, the reflex viewer is directed along the laser beam and can be used to bring the laser optical axis parallel to the other optical systems on the tracking pedestal.

For range calibrations, the total delay in sigaal due to telescope optical path Jength and delay through the photomultiplier tube is measured over a geodimeter calibrated range ( 3274.98 meters at Wallops) before and after each pass. See Reference 14.

\subsection*{2.2.3 Laser System Timing}

The laser data control unit generates all the control signals for operation of the laser and receiver systems. In addition, the unit maintains system time with respect to an external time source such as WWV or, as in the case of WICE, to the Wallops station master clock. This is accomplished by setting the laser control unit. A \(1-\mathrm{MIIz}\) oscillator, acting as a secondary time standard, is counted to one pulse per second through phase shift and delay circuits for symchronization with the external timing standard. At WICE the laser I-pps signal is syuchronized to about \(\pm 0.05\) millisecond prior te each pass with the master clock cable signals adjusted fox a cable delay bias and the current delay between the Ce standard and the TODG.

The I-pps sigual is then used as the on-time generated pulse throughout the entire data control unit and operates a binary coded decimal (BCD) time code generator whose output is displayed visually as well as recorded through the data select gates for correction with measured range. The rotation prism Q-switch cannot maintain exact synchronism with the on-time pulse, and therefore, the laser may fire from 8.5 to 11 mills seconds after the command time. An uncertainty of this magnitude in the time of cbservation is not compatible with the accuracy requirements, so a delay time interval counter was incorporated in the data control unit to accurately measure the time of firing with respect to on-time. This counter is started by the on-time and stoppef by a signal from the laser beam sample unit, giving the absolute time at which the laser fires to within 100 microseconds. The output of the delay counter is stored and transferred to the data select gates in parallel with the range-time-interval measurement for recording. This value is used in the preprocesser to correct the data time tag.

\subsection*{2.2.4 Laser System Tracking Constraints}

The GSFC laser located at Wallops had the following tracking constraints:
- Nighttime at the station (sun \(10^{\circ}\) below the horizon).
- Satellite maximum elevation angle above \(30^{\circ}\).
- Satellite sunlit or lamp flashing for visual acquisition.
- One safety operator at laser station to make visual observation for low-flying aircraft.
- An operational surveillance radar to verify that there were no aircraft within a 14-nautical-mile range.

\subsection*{2.3 SECOR}

The SECOR system, developed by the CUBIC Corporation provides a highly accurate modulation ranging multi-lateration system with inherent ionospheric range error estimation and correction. SECOR was operated for WICE and the data preprocessed by the Army Map Service (AMS).

The system utilizes carrier frequencies of 420.9 MHz up and 224.5 and 449.0 MHz down. The difference in measured range on the two ( \(2: 1\) related) down frequencies provides the ionospheric error estimate. Range is measured by a series of sine wave modulation tones starting with 585.533 KHz and ranging down to 20 Hz for ambiguity resolution. System resolution is 0.25 meter. The geometry is pure ranging multilateration, each ground station interrogating the transponder sequentially and utilizing; only tise downcoming response to its own interrogation.

\subsection*{2.3.I SECOR Data Preprocessing}

AMS personnel were responsible for SECOR data preprocessing. The preprocessor program accomplishes the following functions:
- Computes the time of ovservation, which is defined as the time when the pulse was at the spacecraft.
- Makes ambiguity corrections to the edited range measurements.
- Applies calibration values to the edited range measurements.
- Applies tropospheric refraction to the range measurements.
- Uses the difference between ranges measured on the low-and high-frequency carriers from the spacecraft to compute a correction for retardation due to the ionosphere. If
\(M_{1}=\) measured range at \(f_{I}=224.5 \mathrm{MHz}\)
\(M_{2}=\) measured range at \(f_{2}=449.0 \mathrm{MHz}\)
then, since the ionospheric range errors are to first order proportional to \(\mathrm{Kf}^{-2}\)
\[
\begin{aligned}
M_{1} & =\mathrm{R}+\mathrm{Kf}_{1}^{-2} \\
\mathrm{M}_{2} & =\mathrm{R}+\mathrm{Kf}_{2}^{-2}
\end{aligned}
\]
which can be solved for
\[
\mathrm{R}=\frac{\mathrm{f}_{1}^{2} \mathrm{M}_{1}-\mathrm{f}_{2}^{2} \mathrm{M}_{2}}{\mathrm{f}_{\mathrm{L}}^{2}-\mathrm{f}_{2}^{2}}
\]
and
\[
K=\frac{M_{1}-M_{2}}{f_{1}^{-2}-f_{2}^{-2}}
\]
or
\[
\begin{aligned}
\Delta R_{2} & =\text { ionospheric error on } f_{2} \\
& =M_{2}-R \\
& =\mathrm{Kf}_{2}^{-2} \\
& =\frac{M_{1}-M_{2}}{\frac{\mathrm{f}_{2}^{2}}{f_{1}^{2}}-1}
\end{aligned}
\]

The range is corrected for this value, and the ionospheric correction value is included in the output.
- Reformats the data into the required GSDS format and outputs the data on a magnetic tape, with a density of 1 observation per 4 seconds.

\subsection*{2.3.2 SECOR System Calibration}

In the calibrate mode, the calibration oscillator generates 196.4 MHz . This is fed to a mixer mounted above the vertical axis of the WICE station dualreflector antenaa system and between the up-link and down-link reflectors. A 420.9 MHz ground station up-link carrier frequency is radiated, from the up-link antenna to the mixer, to produce 224.5 MHz and its second harmonic, 449.0 MHz , which are the spacecraft down-link carrier frequencies. These are reradiated to the down-link antenna, providing a closed-loop method of determining approximatie
zero-set of the range servos prior to each pass. All components in the ground station are inside the calibration loop.

A refinement of the zero-set is made by air link calibration prior to each tracking pass and immediately after each tracking pass. This utilizes a mixer as above and a discone antenna which is 28 meters from the SECOR survey reference mark, and is fed through a cable connected to the ground station.

The difference between the 28 -meter surveyed range to the discone and the measured range is recorded on calibration sheets, for both the high- and lowfrequency channels, for both precalibration and postcalibration measurements. These calibration numbers are used in the preprocessor to correct the range data.

\subsection*{2.3.3 SECOR System Timing}

The WICE SECOR station has a rubidium clock. The rubidium clock was used to operate the time code generators which record UTC time on the magnetic tape with a resolution of 1 millisecond each time the digital servos record the range on the tape.

The Wallops Island range time was derived from an HP 5060A cesium clock, set to UTC (NAVOBS). This clock was periodically transported to the SECOR site in order to check the rubidium clock. The offset between the rubidium clock and UTC (NAVOBS), as recorded on the data logs, was always between 5 and 15 microseconds during the WICE operation.

\subsection*{2.4 TRANET}

The TRANET system transmits a set of accurately determined frequencies from the spacecraft and provides one-way doppler measurements to the ground station. TRANET utilizes three harmonically related transmitted frequencies of approximately 162,324 , and 972 MHz to provide ionospheric corrections and, as well,
corrected data (doppler frequency) from any two of the three. TRANET was operated during WICE by University of Texas personnel under the direction of the Johns Hopkins Applied Physics Laboratony (APL) and the Naval Air Systems Command. The quantity measured by a TRANET tracking system is the doppler frequency as a function of time.

\subsection*{2.4.1 TRANET Data Preprocessing}

The Naval Weapons Laboratory (NWL) personnel weye responsible for the TRANET data preprocessing after collection of the data by APL. The TRANET data underwent the following preprocessing: (Ref.I5)
- First-order ionospheric refraction error estimates and corrections are made by analog techniques, using equipment at the tracking station. This correction is based on the assumption that the ionospheric doppler error varies inversely with the carrier frequency so that the corrected doppler shift and the doppler error seferred to \(f_{1}\) are given by
\[
\begin{aligned}
f_{D_{1}} & =\frac{f_{1} f_{2} f_{D_{2}}-f_{1}^{2} f_{D_{2}}}{f_{2}^{2}-f_{1}^{2}} \\
\Delta f_{I} & =\frac{f_{2}^{2} f_{D_{1}}-f_{1} f_{2} f_{D_{2}}}{f_{2}^{2}-f_{1}^{2}}
\end{aligned}
\]
- The time of observation is computed. This is defined as the observed time, at the station, of the midpoint of the doppler integration interval. The calibration value (offset of the TRANET station clock from the Wallops Island cesium clock) is used to correct the observation time to UTC (NAVOBS).
- The observation frequency is corrected for the exror in the station frequency standard determined from VLF comparisons.
- A spacecraft reference frequency (base frequency) is computed for the pass.
- The data are edited based on a 2.5 -sigma rejection criterion.
- The remaining observations are aggregated in groups of eight, covering a 32 -second interval. A smoothed frequency value is calculated by fitting a straight line to the residuals in the 32 -second interval and evaluating the fit at the central time of the interval. The residual corresponding to the fit at the central time is then added to the computed frequency for that time. These data are run through a reformat pregram which arranges the filtered data into the format required by the GSDS. All smoothed frequency values and the base frequency for each pass are scaled to 108 megacycles by multiplying by \(\frac{108 \times 106}{f e}\), where fe is the nominal equivalent frequency obtained from a table and approximates the frequency out of the station refraction corrector unit.

The TRANET are the only type of data which undergo mathematical smoothing in these intercomparisons.

The WICE TRANET data was further processed at Goddard through the following additional preprocessing steps prior to intercomparisons with the other systems.
- Conversion of the recorded time of the observation from observed time at the station to the time the signal was at the satellite by subtracting one-half of the round trip time.
- Conversion to range rate values in meters/sec by the following
\[
\dot{\mathrm{R}}=\frac{\mathrm{c}\left(\mathrm{~F}_{\mathrm{B}}-\mathrm{F}_{\mathrm{M}}\right)}{\mathrm{F}_{\mathrm{M}}}
\]
where
\[
F_{B}=\text { Base frequency received from NWL }
\]
\[
\begin{aligned}
\mathrm{F}_{\mathrm{M}} & =\text { Smoothed measured frequency received from NWL } \\
\mathrm{c} & =\text { Velocity of } 1 \mathrm{ight} \\
& =2.997925 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
\]
- Correction for tropospheric refraction, using the formula
\[
\Delta \dot{R}_{T}=-\frac{8432.336 \mathrm{~N}_{\mathrm{S}} \dot{\mathrm{E}} \operatorname{Cos} \mathrm{E}}{(\operatorname{Sin} \mathrm{E}+.026)^{2}}
\]
\[
\begin{aligned}
\Delta \dot{R}_{\mathrm{T}} & =\text { correction }(\mathrm{cm} / \mathrm{sec}) \text { to add to } \dot{\mathrm{R}} \\
\mathrm{~N}_{\mathrm{S}} & =\text { ground refractivity, }(\mu-1) \\
\mathrm{E}_{\mathrm{E}} & =\text { elevation angle } \\
\dot{E} & =\text { elevation angle rate (radians } / \mathrm{sec})
\end{aligned}
\]

\subsection*{2.4.2 TRANET System Calibration}

The station frequency error which appears in the doppler data header in the teletype to APL is the departure of the frequency of the station standard as determined from a known (VLF) reference frequency. This known correction is applied, in the NWL preprocessing program, to the frequency measurements.

A nominal value of the satellite oscillator frequency is associated with each spacerraft but is modified for each pass as follows. First, NWL computes O-G's by comparing the VLF corrected doppler frequency measurements with the doppler frequencies predicted from a reference orbit. The reference orbit is determined with previous doppler data from the entire TRAT The O-C's aie then used to compute an estimated frequency bin, for each pass. The spacecraft oscillator nominal frequency corrected for this bias is called the base frequency and is included, as an additional number, with the frequency measurements submitted to the GSDS for each pass.

Since the determination of the base frequency involves the entire TRANET network, the WICE TRANET data are influenced by this network. Data submitted from the other WICE systems are not influenced by any other stations.

\subsection*{2.4.3 TRANET System Timing}

The station clock error accompanying the doppler data in the teletype to APE combines the station clock offset from the received WaIIops Island pulse, the cable delay, and offset of the Wallops Island working clock (TODG) from the cesium clock. The doppler data submitted to GSDS are referenced to the Wallops Island cesium clock which is set to UTC (NAVOBS).

\subsection*{2.4.4 Three-Frequency Data}

In addition to the above described "standard" TRANET data there were made available through the University of Texas, separatcly received and recorded three-frequency "Geoceiver" data. From this data it is possible to derive explicitly both the ionospheric corrected data and the ionospheric correction, per se, by the equations given above.

\subsection*{2.5 G -Band}

Data were received from wo C -band radars operated by Wallops Island, the AN/FPQ-6 and the AN/FPS-16. Both are pulsed radars capable of nonambiguous range measurements of up to 32,000 nautical miles, and each provides azimuth and elevation angle measurements to the target. The FPQ-6 radar can also measure range rate ( \(\dot{R}\) ) if used with a coherant transponder or if the reflected sigaal from the spacecraft is strong erough for skin tracking. A passive retro-directive Van Atta array on GEOS-2 makes it possible for the FPQ-6 radar to skin-track this spacecraft.

Two C-band beacons were installed in GEOS-2. Beacon \#1 has a \(0.7-\mu \mathrm{sec}\) fixed nominal delay, and beacon \#2 has a \(5 \%\) asec fixed nominal delay.

The FPQ-6 radar's subsystems may be functionally grouped under signal detection (transmitter, antenna, and receiver), target acquisition, target tracking (range and angle servos), data processing, and system control. An ultrastable frequency-synthesizer-multiplier chain, power amplifier, and hard-tube modulator form the C -band transmitter. The antenna comprises a solid-surface 29 -foot parabolic reflector illuminated by a monopulse, polari-zation-diversity cassegrainian feed. This structure is supported by a 2 -axis (azimuth-elevation) pedestal featuring a low-friction hydrostatic azimuth bearing, anti-backlash drive gearing, and precision single-space 20 -bit-angle-shaft encoding subsystem. The angle, or antenna-positioning, subsystems are high torque-to-inertia electrohydraulic servo loops. Tracking signals are supplied to the antenna-positioning and ranging servos by a low-noise, broadband, 3 -channel receiver subsystem. An all-electronic digital ranging subsystem affords unambiguous range coverage to 32,000 nautical miles at high-pulse-repetition rates, with a granularity of 2 yards. The data system contains a 4096-word coincident-core, bus-organized, stored-program, militarized computer ( \(\mathrm{RCA}, \mathrm{FC}-410 \mathrm{i}\) ).

The FPS-16 radar is very similar to the FPQ-6 except that it has a 17-bit angle encoder and a 12 -foot parabolic reflector and does not have a computer and skin track capability.

\subsection*{2.5.1 C-Band Data Preprocessing}

The following preliminary preprocessing is done by Wallops Isiand:

The on-site RCA 4101 computer program for the AN/FPQ-6 was used to apply the static corrections (pedestal mislevel, droop, nonorthogonality, encoder bias, encoder nonlinearity, and skew) to the raw FPQ-6 data, but not to the FPS-16 data. Dynamic lag corrections calculated by the 4101 program are recorded, but are not applied to the data. The 4101 FPS-16 raw data tapes were processed through the Wallops preprocessing program which applies a time tag correction to the data \({ }_{9}\), converts the data from radar bits to range in feet and azimuth and eievation in decimal degrees, and reformats the data from 4101 format to the standard GEOS-B radar data format, sometimes calied the modified Calsat format.

WICE C-band data in the modified Calsat format were sent to the Principal Investigatox, GEOS OSII. These data were then additionally preprocessed by the WICE-C-band preprocessor program at Goddard, which does the following:
- Computes the time of observation, which is defined as the time when the pulse was at the spacecraft.
- Applies tropospheric refraction corrections to both the range and angle measurements.
- Reformats the data to a format compatible with the GEOS data adjustment program (GDAP). (Editing is done by hand after residuals are obtained with GDAP against the laser reference orbit.)
- Selects every Nth point (one per second).
- Applies range bias correcions derived from the appropriate nominal beacon delay and from the pre- and post-pass range target measurements.

\subsection*{2.5.2 C-Band System Calibration}

For pre- and postmission calibration, data tape recorders are run for approximately 10 seconds (at 10 samples/second, this gives approximately 100 samples), recording each of the following:
- Selected AGC values.
- Boresight tower (BST) normal - Antenna electrically locked to the BST in azimuth and elevation.
- Boresight tower plunged - Same set-up as for BST normal, except the antenna is in the plunged mode.
- Range target, skin gate - (If transponder track is planned, the proper delay compensation should be set into range system prior to this step.) Lock on range target in skin gate. Range displays and recordings should read the surveyed range to the range target.
- Range terget, beacon gate - Range displays and recordings should read the surveyed range to the range target minus the proper delay compensation.

\subsection*{2.5.3 C-Band System Timing}

The received pulse from the Wallops master clock is used by the C -band systems to time-tag the range, azimuth, and elevation data. The circuitry and cable transmission delays bias the time tag by +5.90 milliseconds for the FPQ -6 and +1.05 milliseconds for the FPS-16. These known biases are accounted for in the Wallops program by adding them to the recorded data time tags to give UTC time.

The delay between the Wallops Ce Standard and TODG ( \(200 \pm 100 \mu \mathrm{sec}\) ) has not been included thus far in the C -band data time tag corrections. However, these Fariations are measured and recorded daily at the master site by direct comparison of the TODG oscillator and the cesium beam standard, so the proper correction to the time tag can be applied at some future date.

\subsection*{2.6 Cameras}

Data were taken on GEOS -2 flashes from four \(\mathrm{BC}-4\) cameras operated by Wallops Island and one PTH-100 camera operated by Goddard. These data were utilized in addition to the laser cata as a primary reference in the derivation of GEOS reference orbits.

\subsection*{2.7 Meteorological Instrumentation}

Ground measurements consisting of Temperature, Pressure, and Relative Humidity were recorded from measurements at the FPQ-6 radar site for each pass. Estimated accuracy of these measurements is
- Pressure \(\pm .01{ }^{*} \mathrm{Hg}\)
- Temperature \(\quad \pm 1.0^{\circ} \mathrm{F}\)
- Relative Humidity \(\pm I \%\) to \(\pm 3 \%\)

Radiosondes were released for \(\mathrm{P}, \mathrm{T}\), and RH profiles within 10 minutes of the start of each pass. Altogether some 93 such profiles and associated ground Ievel measurements are available. These have been reduced to refractivity, ray traced, and utilized as the basis for various comparative studies discussed in section 4 .

\subsection*{2.8 Ionospheric Soundings}

Routine periodic (generally 15 minute) bottomside ionospheric soundings were available throughout the WICE experiment from stations at Wallops Island, Ottowa, and Grand Bahama.

In addition, near coincident Alouette 1 and 2 topside soundings were available for some passes at randomly related time and positional (Point-of-ClosestApproach) differences relative to the GEOS-2 passes. In order to select reason-
ably "coincident" passes a somewhat arbitrary meas ure of correlation was defined in terms of the expected time and positional correlation scales and discrepancies as follows:
\[
\rho=\exp (-\Delta T / 2) \exp (-\Delta R / 3000)
\]

Where \(\quad A T=\) time difference of POCA, hours
\(\Delta R=\) distance between POCA's, miles advanced or retardedto common time at sun tine rate. Differences are between GEOS-2 and either Alouette I or Alouette 2.

17 passes were thus identified having \(\rho>0.4\) and these were taken as the standard ionospheric test cases for future analyses. These are identified in Table 2-2.

\section*{TABLE 2-2}

ALOUETTE-GEOS 2 COINCIDENCES


\section*{3. RAY TRACING}

\subsection*{3.1 REEK Program}

Since it is used as a standard in many of the refraction comparisons to be used in ensuing sections we describe in this section the basic ray-trace program, REEK (Ref. Trimble 1970), used in these studies and later some investigations of fine points with regard to its use.

The problem addressed is that of determining the phase path, its bending, and phase path length in a spherically symmetrical refractive medium with arbitrarily specified refractive index vs height profile (assumed isotropic).

REEK solves the differential equations for the phase path (wavefront normals) in the form:
\[
\begin{align*}
& \begin{aligned}
\frac{d \theta}{d s} & =\frac{\cos \varphi}{I+h} \\
\frac{d h}{d s} & =\sin \varphi \\
\frac{d \delta}{d s} & =\frac{1}{n_{p}} \frac{d n_{p}}{d h} \cos \varphi \\
\frac{d p}{d s} & =u_{p} \\
\varphi & =\theta+\delta
\end{aligned}  \tag{3.1-1}\\
& \text { where (see Figure }  \tag{3.1-2}\\
& \qquad \begin{aligned}
s & =\text { geometric path length } \\
\theta & =\text { earth central angle subtended by path } \\
\rho & =\text { effective radio phase path length } \\
h & =\text { height } \\
\delta & =\text { elevation angle of ray relative to horizontal at takeoff point } \\
n_{p} & =\text { phase refractive index } \\
\varphi & =\text { local elevation angle of ray }
\end{aligned} \tag{3.1-3}
\end{align*}
\]

These equations are solved by numerical methods, subject to the following boundary conditions:
\(\left.\begin{array}{rl}\theta(0) & =0 \\ h(0) & =0 \\ \rho(0) & =0\end{array}\right\}\).
starting at ground receive r


FIGURE 3.I-1
RAY TRACING GEOMETRY
\[
\left.\begin{array}{l}
\theta\left(s_{1}\right)=\theta_{t}  \tag{3.1-5}\\
h\left(s_{1}\right)=h_{t}
\end{array}\right\}
\]
target coordinates

The last two are equivalent to saying that for some \(s_{1}\), initially unspecified, the ray should pass through the prescribed target coordinates. REEK inputs are in terms of either true or apparent elevation angle or range. In the case of apparent inputs the solution is straightforward starting the ray with initial conditions corresponding to apparent elevation angle and integrating until apparent range is reached. In the case of true inputs, the program uses a fast converging iterative method to find the initial ray angle corresponding to the specified end point coordinates.

To achieve maximum numerical accuracy, the equation for \(\rho\), given in eq. 3.1-4 is decomposed by defining
\[
\begin{equation*}
\varepsilon_{p} \triangleq \rho-R \tag{3.1-6}
\end{equation*}
\]
where \(\quad \varepsilon_{\rho}=\) total phase path error
\(R=\) true range
\[
\begin{equation*}
\varepsilon_{\rho}=\underbrace{(s-R)}_{\varepsilon_{B}}+\underbrace{(p-s)}_{\varepsilon_{R}} \tag{3.1-7}
\end{equation*}
\]
where the first term is defined as
\(\varepsilon_{B} \triangleq \mathrm{~s}-\mathrm{R}=\) phase path bending error
\(\varepsilon_{\mathrm{R}} \triangleq \mathrm{p}-\mathrm{s}=\) phase path retardation error
and both \(\epsilon_{B}\) and \(\varepsilon_{R}\) are small quantities and can therefore be numerically integrated more accurately. Note that the solutions for the bending and retardation terms could be written, once the path (P) is found, by solution of eqs.3.1-1) -(3.1-3)
\[
\begin{align*}
& \varepsilon_{B}=\int_{p} d s-R  \tag{3.1-8}\\
& \varepsilon_{R}=\int_{P}\left(n_{p}-1\right) d s \tag{3.1-9}
\end{align*}
\]

One minor modification was incorporated in the REEK subroutine for the present program. In the original version, refractivity in or above the ionosphere was extrapolated linearly which in some cases resulted in refractivity going through zero to the opposite sign. In order to improve the accuracy and eliminate any such problem, the routine was changed to use exponential interpolation or extrapolation above the top of the ionosphere (Ref. 21).

\subsection*{3.2 Straight Path Approximation}

For some purposes it is reasonably accurate to ignore bending and approximate the ray path by the geometrical straight line.from transmitter to receiver. The computations under this approximation are greatly simplified. In order to gain some understanding of the limitations of this approximation and for other uses to be developed later it is useful to consider a simplified ionospheric model for which the exact and straight line approximate solutions can be written analytically.

For this purpose the ionosphere is modelled as a simple planar uniform slab as shown in Figure 3.2-1' where
\[
\begin{aligned}
\mathrm{h} & =\text { height of satellite } \\
\mathrm{T} & =\text { thickness of ionosphere slab } \\
\mathrm{N} & =\text { refractivity (phase) of ionospheric slab }=\mathrm{n}-1 \\
\mathrm{E} & =90^{\circ}-\varphi=\text { elevation angle geometric line-of-sight. }
\end{aligned}
\]

The exact analytic solution for bending and range errors can be developed for this model (Ref. 6). If we let
\(\mathrm{R}_{\mathrm{x}}\) denote geometrical path length of some path x
\(\rho_{\mathrm{x}}\) denote refractivity integral along some path x
S subscript, denotes straight path
B subscript, denotes bent path
p,g subscript, denote phase or group respectively.
Then we can define four types of "range" of interest


FIGURE 3.2-1
IDEALIZED IONOSPHERE
STRAIGHT AND BENT PATHS
\[
\begin{align*}
& R=\int_{S} \mathrm{ds}=\text { true geometrical range } \\
& \rho_{p}=\iint_{S} n_{p} d s=\frac{\text { radio range using the phase refractivity }}{\text { integral along the straight path }} \\
& R_{B_{p}}=\int_{B_{p}} d s=\text { Geometrical length of the bent phase path } \\
& \begin{aligned}
\rho_{\mathrm{p}}= & P_{\mathrm{P}} \mathrm{~B}_{\mathrm{p}}= \\
\int_{\mathrm{B}_{\mathrm{p}}} \mathrm{n}_{\mathrm{p}} \mathrm{ds}= & \text { radio-range using the phase refractivity } \\
& \text { integral along the bent phase path. This is } \\
& \text { what the measuring system actually senses. }
\end{aligned}  \tag{3.2-I}\\
& \rho_{p_{p}} \text { is, of course, the actual measured radio range while } \rho_{D_{S}} \text { is an often } \\
& \text { used approximation. } R_{B_{p}} \text { is equivalent to } s \text {, the variable of integration in }
\end{align*}
\] the REEK formulation

\section*{Phase Path}

From Snell's law and the geometry, approximate solutions for the bending angles defined in Figure 3.2-1 may be developed as power series in N :
\[
\begin{align*}
& \beta=-N \tan \Phi+N^{2} \tan \Phi\left[1-\frac{\tan ^{2} \Phi}{2}-\frac{T}{h}\left(1+\tan ^{2} \Phi\right)\right]+O_{3}  \tag{3.2-2}\\
& \alpha=-\frac{T}{h} N \tan \Phi+N^{2} \frac{T}{h} \tan \Phi\left[1+\frac{3}{2} \tan \Phi-\frac{T}{h}\left(1+2 \tan ^{2} \Phi\right)\right]+O_{3} \tag{3.2-3}
\end{align*}
\]
where \(\quad O_{j}=O\left(N^{j}\right)\) denotes neglected terms of order \(N^{j}\) and higher.
Then for the various path integrals as defined
\[
\begin{array}{rl}
R & =h \sec \Phi \\
\rho_{p} & =R+N_{p} T \sec \Phi \\
R_{B} & =R \\
\rho_{p} & =R-\frac{N_{p}^{2}}{2}\left(1-\frac{T}{H}\right) \tan ^{2} \Phi \sec \Phi+O_{3}  \tag{3.2-7}\\
\rho_{p} & R+N_{p} T \sec \Phi-\frac{N_{p}^{2}}{2}\left(1-\frac{T}{H}\right) \tan ^{2} \Phi \sec \Phi+O_{3}
\end{array}
\]
\[
(3.2-4)
\]

It is interesting to note that the error due to ignoring bending is
\[
\begin{align*}
\left(\rho_{\mathrm{p}} \mathrm{~B}_{\mathrm{p}}-\rho_{\mathrm{P}} \mathrm{~S}\right) & =-\left(\mathrm{R}_{\mathrm{B}_{\mathrm{p}}}-\mathrm{R}\right) \\
& =-\frac{\mathrm{N}_{\mathrm{p}}^{2}}{2}\left(1-\frac{\tau}{\mathrm{H}}\right) \tan ^{2}{ }^{2} \sec \Phi \tag{3.2-8}
\end{align*}
\]
i.e., the bending reduces the measured radio path length, \({ }_{\rho_{p}}{ }_{p}\), relative to the straight path integral by just the same amount that it increases the geometrical path length, and this reduction or increase is strictly a second order, \(\mathrm{N}^{2}\), term. The \(\mathrm{N}^{2}\) dependent term may legitimately be called a bending term since it occurs only in connection with the bent paths and reduces to zero for a case of normal incidence ( \(\mathbf{X}=0\) ) where there is no bending.

\section*{Group Effects}

It is possible to carry one interesting step further and examine group effects in the same model for, quite generally, the group measured range is related to the phase measured range by
\[
\begin{equation*}
\rho_{g}=\frac{d}{d f}\left(f \rho_{p}\right) \tag{3.2-9}
\end{equation*}
\]

For the purposes of this example we will assume that the ionospheric refractivity follows a perfect \(f^{-2}\) dispersion law. Accordingly
\[
\begin{equation*}
N_{p}=-K f^{-2} \tag{3.2-10}
\end{equation*}
\]
and from (3.2-7), recognizing that \(\rho_{p} \equiv \rho_{p} B_{p}\)
\[
\begin{equation*}
\rho_{g}=R-N_{p} \tau \sec +\frac{3}{2} N_{p}^{2} \tau\left(I-\frac{T}{h}\right) \tan ^{2} \sec \Phi+O_{3} \tag{3.2-12}
\end{equation*}
\]

Note, interestingly, the same result is obtained if we were to integrate the group refractivity along the phase bent path, as is commonly done, for examnle in REEK, i.e.,
\[
\begin{align*}
\rho_{g_{g}} B_{p} & =\int_{B_{p}} n_{g} d s \\
& =\int_{B_{p}}\left(1+N_{g}\right) d s \\
& =\int_{B_{p}}\left(I-N_{p}\right) d s \\
& =R-N_{p} \tau \sec \Phi+\frac{3}{2} N_{p}^{2} T\left(I-\frac{T}{1}\right) \tan ^{2} \sec \Phi+O_{3} \tag{3.2-13}
\end{align*}
\]
which is identical to (3.2-12).

Similarly we can derive
\[
\begin{align*}
P_{g} S & =\frac{d}{d f}\left(f_{p} S^{S}\right) \\
& =R-N_{p} T \sec \Phi \tag{3.2-14}
\end{align*}
\]
and thus the difference between the straight and bent path computations is

This difference is so small that it can often be ignored for practical purposes. In terms of the ratio of errors computed in the two ways
\[
\frac{\Delta R g_{g}}{\frac{\Delta R}{g} S^{\prime}}=\frac{\rho_{g^{B}}-R}{\rho_{g} S^{-R}}
\]
\[
\begin{equation*}
=1-\frac{3 N_{p}}{2}\left(1-\frac{\tau}{h}\right) \tan ^{2}= \tag{3.2-16}
\end{equation*}
\]

To illustrate the error in the straight path assumption with a numerical example for the ionosphere, consider a case where
so
\[
\begin{aligned}
T & =293.57 \mathrm{~km} \\
\mathrm{~h} & =1333 \mathrm{~km} \\
\mathbf{f} & =434 \mathrm{MHz} \text { (SECOR effective two-way frequency) } \\
\mathrm{f}_{\mathrm{O}} & =5.653 \mathrm{MHz}=\text { vertical incidence critical frequency }
\end{aligned}
\]
\[
\begin{aligned}
N & =-\frac{1}{2}\left(\frac{f_{0}^{2}}{f^{2}}\right) \\
& =-84.84 \times 10^{-6}
\end{aligned}
\]

Then as a function of \(\$\), we have from equation (3.2-16)
\begin{tabular}{cc}
\begin{tabular}{c} 
Elevation Angle \\
at Ionosphere \\
\(E_{i}\), Degrees
\end{tabular} & \begin{tabular}{c}
\(\Delta R_{B} / \Delta R_{S}\) \\
90
\end{tabular} \\
45 & 1.000099 \\
20 & 1.000749
\end{tabular}

There is no need to consider \(E_{i}\) less than \(20^{\circ}\), since the elevation angies in the real spherical ionosphere cannot be much less.

As a further check of the straight path assumption in a less idealized case a numerical comparison of the straight and bent path integrals for a spherical earth was carried out for a Chapman ionosphere with a maximum refractivity \(\left(N_{\max }=-84.84 \times 10^{-6}\right)\) and the satellite at 1333 km . The straight path integral was carried out by a specially developed straight line raytrace program using a simple trapezoidal integrator and the bent path integral was carried out by the REEK raytrace program, modified for group range errors. The resulting differences between the outputs of these two programs are presented in Table 1. The difference, at most, is 0.11 meter out of 73 meters total refraction, or \(0.15 \%\), and is in reasonable agreement with the simple theory of the difference, equations (3.2-15,16), at low elevation angles, but is dominated at the higher elevation angles by a bias of about 0.04 m , presumably due to difference in the REEK and straight line integration formulas. These results are taken as
confirming the approximate equations (3.2-15 and (3.2-16).

Table 3.2-1. Difference Between Straight Line Raytrace ( \(\Delta R_{g}\) ) and REEK Raytrace ( \(\triangle \mathrm{R}_{\mathrm{g}}{ }^{\mathrm{B}}\) )
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Elevation (degrees)
\[
(E=90-4)
\]} & \multirow[t]{2}{*}{\[
\underset{\substack{\mathrm{B} \\ \text { (meters) }}}{\Delta \mathrm{R}^{2}}
\]} & \multicolumn{2}{|c|}{\[
\underset{{ }_{\text {( meters }} S^{\Delta R}}{ }
\]} \\
\hline & & Numerical & Theoretical (eq. 3.2-15) \\
\hline 0.1 & 73.336 & -0.1140 & -0.0621 \\
\hline 1 & 73.245 & -0.1122 & -0.0618 \\
\hline 10 & 65.812 & -0.0715 & -.0.0432 \\
\hline 20 & 52.960 & -0.0424 & -0.0199 \\
\hline 40 & 35.911 & -0.0355 & -0.0039 \\
\hline 60 & 28.311 & -0.0395 & - 0.0008 \\
\hline 80 & 25.360 & -0.0428 & -0.000069 \\
\hline 89 & 25.027 & -0.0434 & -0.0000006 \\
\hline
\end{tabular}

The above is based on a spherical earth and a Chapman profile where
\[
\begin{aligned}
\mathrm{N} & =\mathrm{N}_{\max } \exp \left(1-z-\mathrm{e}^{-\mathrm{z}}\right) \\
\mathrm{z} & =\frac{\mathrm{h}-\mathrm{h}_{\max }}{\mathrm{H}_{\mathrm{S}}} \\
\mathrm{~N}_{\max } & =-84.84 \times 10^{-6} \\
\mathrm{~h}_{\max } & =375 \mathrm{~km} \\
\mathrm{H}_{\mathrm{s}} & =108 \mathrm{~km} \\
\mathrm{~h}_{\text {sat }} & =1333 \mathrm{~km}
\end{aligned}
\]

The figures in the theoretical column are based on equation (3.2-15) corrected for angle of incidence at 375 km , and using
\[
\tau=108 \mathrm{e}=293.57 \mathrm{~km}
\]

For the troposphere with
\[
\begin{aligned}
\mathrm{T} & =7 \mathrm{~km} \\
\mathbf{h}_{\mathrm{S}} & =1333 \mathrm{~km} \\
\mathrm{~N} & =350 \times 10^{-6}
\end{aligned}
\]


Thus for accuracy of the order of \(2 \%\) or .2 m which is near the limit of correction accuracy for the troposphere the straight line assumption is limited to elevation angles of \(10^{\circ}\) or greater. This is a severe limitation on the applicability of any approach jgnoring bending in the troposphere.

\subsection*{3.3 Group vs Phase Effects}

\section*{Basic Relations}

In the ionosphere, the index of refraction is a function of frequency, i.e., dispersive and modulation or group effects travel at a different velocity and are subject to different overall delays than phase effects.

In general, betweeu any two points in a linear network, the group and phase delays are related by the classical relation
\[
\begin{equation*}
\tau_{g}=\frac{d}{d f}\left(\tau_{p}\right) \tag{3.3-1}
\end{equation*}
\]
which may be taken as defining the group delay.

Since inferred range (group or phase) is proportional to \(\tau(p=\tau c)\), then, irrespective of the inhomogeneity or path taken in the intervening medium, the same relation holds between group and phase range
\[
\begin{equation*}
\rho_{g}=\frac{d}{d f}\left(f_{p}\right) \tag{3.3-2}
\end{equation*}
\]

In principal, this provides a precise basic means of determining group range error from any accurate ray tracing program by pumerical differentiation of the terminal, i.e., end-to-end phase range error results as a function of frequency. In practice, however, this involves several times as much computation as a single ray trace and is subject to the numerical problems characteristic of numerical differentiation so a more direct means is desirable for routine work.

For the ionosphere at UHF and higher frequencies it is a fair approximation (with error to be discussed later) to ignore magneto ionic and collision effects and take the refractive index in the form
\[
\begin{equation*}
n_{p} \approx \sqrt{1-\frac{f_{0}^{2}}{f^{2}}} \tag{3.3-3}
\end{equation*}
\]
where \(\quad f_{0}^{2}=\) local plasma frequency
\[
=\frac{e^{2}}{4 \pi^{2} m \varepsilon_{0}} N_{e}
\]
\[
=\frac{10^{-7} c^{2} e^{2}}{\pi \mathrm{ml}} \mathrm{~N}_{\mathrm{e}}
\]
\[
\begin{equation*}
=80.614 \mathrm{~N}_{\mathrm{e}} \tag{3.3-4}
\end{equation*}
\]

Consequently
\[
\begin{align*}
n_{g} & \approx \frac{d}{d f}\left(f n_{p}\right) \\
& \approx \frac{1}{n_{p}} \tag{3.3-5}
\end{align*}
\]

But since \(n_{g}=1+N_{g}, n_{p}=1+N_{p}\) with \(N_{g}, N_{p}\) small in the region of interest,
\[
\begin{align*}
\mathbb{N}_{g} & \approx-\frac{N_{p}}{1+N_{p}}  \tag{3.3-6}\\
& \approx-N_{p}  \tag{3.3-7}\\
& \approx \frac{f_{o}^{2}}{2 f^{2}}
\end{align*}
\]

The difference between these alternative approximations is in any case significantly less than the error in either of them due to neglect of the longitudinal magneto-ionic term.

The deviations from these simple approximate relationships may be significant in at least two respects:
1) The \(1 / f^{2}\) term is subject to higher order corrections the most significant of which adds an \(f^{-3}\) dependence proportional to the main term times the ratio of longitudinal gyro frequency to carrier frequency, or as much as \(2 \%\) correction at 100 MHz (Ref. 6).
2) Bending, ignored in the above analysis, introduces an \(f^{-4}\) dependence which may amount to \(\approx 0.8 \%\) of the main term at 100 MHz (Ref.6).

It is estimated that the simple relation
\[
\begin{equation*}
\varepsilon_{g}=-\varepsilon_{p} \tag{3.3-9}
\end{equation*}
\]
is accurate to within a fraction ( \(2 / \mathrm{f}_{\mathrm{MHz}}\) ) for frequencies above 100 MHz which is useful for many purposes.

It is worthy of note that while ray tracing programs such as REEK are capable of taking into account the \(f^{-4}\) beuding term quite accurately, the much more significant \(f^{-3}\) term ( \(\approx 2 \%\) at 100 MHz ) cannot be treated by any of the known operationally practical ray trace programs because that term is inherently anisotropic and birefringent, i.e., allows two, generally coupled, magnetoionic modes, and requires a considerably more complex treatment dependent on antenna polarizations among other things.

\section*{REEK Group Option}

The REEK ray trace program includes an option for group range error computed as follows: Recall from section 3.I that REEK computes the total retardation on the basis
\[
\begin{equation*}
\varepsilon_{p}=\varepsilon_{R_{p}}+\varepsilon_{B_{p}} \tag{3.3-10}
\end{equation*}
\]
where \(\quad{ }^{\varepsilon} R_{p}=\) phase retardation error
\[
\begin{equation*}
=\int_{\mathrm{p}}\left(n_{\mathrm{p}}-1\right) \mathrm{ds} \tag{3.3-11}
\end{equation*}
\]
\(\varepsilon_{B_{p}}=\) phase bending error
\[
\begin{equation*}
=\int_{\mathrm{p}} 1 \mathrm{ds}-\mathrm{R} \tag{3,3-12}
\end{equation*}
\]
\[
\mathrm{p}=\text { the phase path. }
\]

For the group option REEK takes
\[
\begin{equation*}
\varepsilon_{g}=\varepsilon_{R_{g}}+\varepsilon_{b_{g}} \tag{3.3-1.3}
\end{equation*}
\]
where \(\quad \varepsilon_{R_{g}}=\int_{p}\left(\mathrm{n}_{\mathrm{g}}-1\right) \mathrm{ds}\)
\[
\begin{gather*}
\epsilon_{B_{g}} \triangleq \epsilon_{B_{p}}=\int_{p} I d s-R  \tag{3.3-14}\\
n_{g}-I=N_{g}=-\frac{N_{p}}{I+N_{p}} \tag{3.3-15}
\end{gather*}
\]
whereas
\[
\epsilon_{B_{g}}=\varepsilon_{B_{p}}
\]

That is the group retardation is computed by integration along the phase path, in effect REEK computes
\[
\begin{equation*}
\rho_{\mathrm{B}}=\int_{\mathrm{p}} \mathrm{n} \mathrm{~g} \mathrm{ds} \tag{3.3-16}
\end{equation*}
\]

\section*{Proof of the Group Option Procedure}

This can be justified hueristically on the following basis:
Starting with the phase range as a function of frequency
\[
\begin{equation*}
p_{p}(f)=\int_{\widetilde{P}(f)} n_{p}(f) d s \tag{3.3-17}
\end{equation*}
\]
where \(\quad \bar{P}(f)\) the path, is, by Fermat's principle, an extremal. In other words, considering an arbitrary path deformation, \(\bar{\delta}(\mathrm{s})\) (subject to the constraint that the deformed path still passes through transmitter and receiver) then if \(\overline{\mathrm{P}}^{r}=\overline{\mathrm{P}}+\lambda \bar{\delta}\). where \(\lambda\) is an arbitrary multipliex, then the integral over the deformed path
\[
\begin{equation*}
\rho^{2}=\int_{\bar{P}+\lambda \bar{\delta}} n_{p} d s \tag{3.3-18}
\end{equation*}
\]
must satisfy
\[
\begin{equation*}
\left.\frac{\partial \rho}{\partial \lambda}\right|_{\lambda=0}=0 \tag{3.3-19}
\end{equation*}
\]
for any \(\bar{\delta}\) satisfying the end constraints (i.e., \(\bar{\delta}=0\) at the ends).

Now the group range is given exactly from (3.3-17) by the general relation
\[
\begin{equation*}
\rho_{g}\left(f_{0}\right)=\frac{d}{d f}\left(f \rho_{p}(f)\right) \tag{3.3-20}
\end{equation*}
\]

Expanding the path \(\left(\overrightarrow{\mathrm{P}}(\mathrm{f})\right.\) about \(\mathrm{f}_{\mathrm{o}}\) we can write
\[
\begin{equation*}
\bar{P}(f)=\bar{P}\left(f_{0}\right)+\left(f-f_{0}\right) \frac{\overline{\mathrm{P}}(\mathbf{f})}{d \bar{f}}+O\left(f-f_{0}\right)^{2} \tag{3.3-21}
\end{equation*}
\]
whence, denoting \(f-f_{0}\) by \(\lambda\),
\[
\begin{equation*}
\rho_{g}\left(f_{o}\right)=\left.\int_{\bar{P}\left(f_{o}\right)} \frac{d}{d f}\left(f_{p}(f)\right)\right|_{f_{0}} d s+\frac{d}{d \lambda} \overbrace{\bar{P}\left(f_{o}\right)+\lambda \frac{d \bar{P}(f)}{d f}+O\left(\lambda^{2}\right)}^{\int} f_{n_{p}\left(f_{o}\right) d s}^{\left.\right|_{\lambda=0}} \tag{3.3-22}
\end{equation*}
\]
but since the path variation \(\frac{\mathrm{d} \overrightarrow{\mathrm{P}}(\mathrm{f})}{\mathrm{df}}\) inherently satisfies the end conditions, that is, it is an allowed variation of the form \(\bar{\delta}(s)\), the path variation of the integral, i.e., the second term above must vanish identically by the extremal principal (eq. \(3.3-19\) ) and we have just
\[
\begin{equation*}
\rho_{g}\left(f_{0}\right)=\int_{\bar{P}\left(f_{0}\right)} n_{g}\left(f_{0}\right) d s \tag{3.3-23}
\end{equation*}
\]
i.e., we have the interesting result that the group range is given by the integral of the group refractivity along the phase path. This may be taken as a definition of the group path and in this sense it may be said that the group path is identical to the phase path in any such arbitrarily inhomogeneous dispersive (but isotropic) medium.

\section*{Numerical Tests of the Group Option}

As a check on these group-phase relationships a numerical comparison was carried out (Ref. 6) between the REEK derived group range correction as described previously and the theoretically exact procedure of deriving group range error by numerical differentiation of REEK derived phase range error as a function of frequency. For these tests a hypothetical Chapman ionosphere was assumed leading to an assumed refractivity profile of the form
\[
\begin{align*}
& N(h)=N_{\max } \exp (I-z-\exp (-z))  \tag{3.3-25}\\
& \text { where } \quad N_{\max }=-\frac{16 \times 10^{-6}}{f_{\mathrm{GHz}}^{2}} \\
& z=\left(h-h_{\mathrm{m}}\right) / \mathrm{H}_{\mathrm{s}} \\
& \mathrm{~h}_{\mathrm{m}}=375 \mathrm{~km} \\
& \mathrm{H}_{\mathrm{S}}=108.333 \mathrm{~km}
\end{align*}
\]

The REEK phase range error was evaluated at \(\mathrm{f}=.136, .434\), and 2.0 GHz at various elevation angles,

In view of the assumed \(f^{-2}\) refractivity dependence it can be shown by the Poincare expansion theorem (Ref. 4, Lefschetz) that any integro-differential function thereof such as \(\varepsilon_{p}\) has an expansion in powers of \(f^{-2}\) :
\[
\begin{align*}
\varepsilon_{p}(f) & =a_{1} f^{-2}+a_{2} f^{-4} \cdots \\
& \triangleq A_{2}+B_{4} \cdots \tag{3.3-26}
\end{align*}
\]
where we define
\[
\begin{aligned}
& A_{2} \triangleq a_{1} f^{-2} \\
& B_{4} \triangleq a_{2} f^{-4}
\end{aligned}
\]

In principle then we can solve for the phase ranging error, \(\varepsilon_{p}\), in a ray tracing program such as REEK at several frequencies, then carry out a numerical fit to identify the frequency coefficients \(a_{1}, a_{2}\) or \(A_{2}\) and \(B_{4}\) above, then differentiate by 3.3-2 to give the corresponding derived group error
\[
\begin{equation*}
\varepsilon_{\mathrm{g}_{\mathrm{der}}}=-\mathrm{A}_{2}-3 \mathrm{~B}_{4} \tag{3.3-27}
\end{equation*}
\]

For precise comparison with REEK group option results, however, it is necessary to take into account that REEK uses the approximation (3.3-15) or (3.3-6) for \(N_{g}\left(N_{g_{a}} \approx-\frac{N_{p}}{I+N_{p}}\right)\) while for the \(f^{-2}\) three frequency REEK results the basic refractivities were scaled in the ratio \(\mathrm{f}^{\mathbf{- 2}}\), i.e., \(\mathrm{N}_{\mathrm{p}}=\mathrm{Kf}^{\mathbf{- 2}}\), corresponding to the approximation (3.3-7) \(\left(\mathrm{N}_{\mathrm{g}_{\mathrm{b}}} \approx-\mathrm{N}_{\mathrm{p}}\right)\). Expanding (3.3-6)
\[
\begin{aligned}
N_{g_{a}} & \approx-N_{p}\left(1-N_{p} \ldots\right) \\
& \approx N_{g_{b}}+N_{p}^{2}=-N_{p}+N_{p}^{2}
\end{aligned}
\]

So the range error difference on this account is equivalent to a term \(N_{p}^{2}\) integrated over the path. That is
\[
\varepsilon_{R_{g_{a}}}=\varepsilon_{R_{g_{b}}}+H_{4}
\]
where for the Chapman profilo as defined above this is approximately (plane earth approximation)
\[
\begin{align*}
\mathrm{H}_{4} & \approx \int_{\mathrm{p}} \mathrm{~N}_{\mathrm{p}}^{2} \mathrm{ds} \\
& \approx \mathrm{~N}_{\max }^{2} \frac{e^{2}}{4} \mathrm{H}_{\mathrm{s}} \operatorname{Csc} \mathrm{E} \tag{3.3-28}
\end{align*}
\]

This is an \(f^{-4}\) term as it depends on \(N_{\text {max }}^{2}\).

The corresponding derived group error is then
\[
\begin{align*}
\varepsilon_{g_{\text {dex }}} & =-A_{2}-3 B_{4}-3 H_{4} \\
& =-\varepsilon_{p}-2 B_{4}-2 H_{4} \tag{3.3-29}
\end{align*}
\]

Which may be compared directly with the group option computed result. The comparison is shown in Table 3.3-1 in which the columns have the following significance
(A) \(\epsilon_{p}=\) REEK phase ranging error, meters
(B) \(2 \mathrm{~B}_{4}=2 \times\) quadratic fit component of (A)
(C) \(2 \mathrm{H}_{4}=2 \mathrm{x}\) refractivity approximation correction, per eqtn. (3.3-28)
(D) \(\varepsilon_{g_{\text {der }}}=\) derived group error, eqta. (3.3-29)
(E) REEK group option error, meters. Compare column (D).
(F), (G) REEK phase retardation and bending terms. In principle these should correspond to \(\mathrm{A}_{2}+\mathrm{H}_{4}\) and \(\mathrm{B}_{4}\) respectively.
The check between the multi-frequency derived group error (D) and the REEK group option error (E) is very close (better than \(0.06 \%\) ) which would appear to be more than adequate for most applications. The difference though small appears to be systematic and numerically significant. Simple modifications of the REEK group option have been devised which reduce this error by about another order of magnitude in this case but the rationale and generality of such modifications is not clear and it is questionable whether they should be proposed for general use.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Elev. \\
Deg.
\end{tabular} & (A) \(\stackrel{\varepsilon_{p}}{\text { REEK Phase }}\) & (B)
\[
\begin{aligned}
& 2 \mathrm{~B}_{4} \\
&= \text { Bending } \\
& \text { Correction }
\end{aligned}
\] & \[
\begin{aligned}
& \text { C) } \\
&= 2 \mathrm{H}_{4} \\
&= \text { Refractivity } \\
& \text { Correction }
\end{aligned}
\] & (D)
\[
\left.\begin{array}{|c|}
\text { Derived } \\
\text { Group } \\
=-(A)-(B)-(C)
\end{array} \right\rvert\,
\] & \begin{tabular}{l}
(E) \\
REEK \\
Group
\end{tabular} & (F)
REEK
Phase
Retard
\({ }^{\varepsilon_{R}}\) & \begin{tabular}{l}
REEK \\
Phase \\
Bend \\
\(\epsilon_{B}\)
\end{tabular} \\
\hline 0.1 & -747.178 & -3.250 & -0.439 & 750.867 & 751.299 & -749.014 & 1.836 \\
\hline 1.0 & \(-746.213\) & -3.143 & -0.439 & 749.794 & 750.222 & -747.993 & 1.780 \\
\hline 2.5 & -741. 331 & -2.921 & -0.436 & 744.688 & 745.098 & -742.992 & 1.661 \\
\hline 6.0 & -715.839 & -2.298 & -0.42I & 718.558 & 718.891 & -717.150 & 1.311 \\
\hline 10.0 & -669.932 & \(-1.626\) & -0.394 & 671.952 & 672.181 & -670.855 & 0.923 \\
\hline 15.0 & -603.126 & -1.024 & -0.355 & 604.505 & 604.631 & -603.698 & 0.572 \\
\hline 20.0 & -538.671 & -0.656 & -0.317 & 539.644 & 539.705 & -539.027 & 0.356 \\
\hline 30.0 & -435.220 & -0.287 & -0.256 & 435.763 & 435.774 & -435.368 & 0.148 \\
\hline 40.0 & -364.859 & -0.134 & -0.214 & 365.208 & 365.208 & \(-364.926\) & 0.066 \\
\hline 50.0 & -318.131 & -0.064 & -0.187 & 318.382 & 318.380 & -318.161 & 0.031 \\
\hline 60.0 & -287.435 & -0.030 & -0.169 & 287.634 & 287.632 & -287.448 & 0.014 \\
\hline 70.0 & -268.078 & -0.013 & -0.158 & 268.248 & 268.246 & -268.083 & 0.005 \\
\hline 80.0 & -257. 372 & -0.006 & -0.151 & 257. 529 & 257.526 & -257.373 & 0.001 \\
\hline 85.0 & -254.794 & -0.003 & -0.150 & 254.947 & 254.945 & -254.794 & 0.000 \\
\hline 87.0 & -254.249 & -0.002 & -0.149 & 254.401 & 254.390 & -254.249 & 0.000 \\
\hline 89.0 & -253.977 & 0.000 & -0.149 & 254.127 & 254.127 & -253.977 & 0.000 \\
\hline
\end{tabular}

In this table, errors are in meters and the following relations apply
\[
\begin{aligned}
f & =136 \mathrm{MHz} & \mathrm{~N}_{\max } & =0.865 \times 10^{-3} \\
\mathrm{~h}_{\max } & =375 \mathrm{~km} & H_{\mathrm{S}} & =108.333 \mathrm{~km}
\end{aligned}
\]

TABLE 3.3-1

\section*{GROUP-PHASE COMPARISONS}

\subsection*{3.4 Superposition}

For analytic corrections the tropospheric and ionospheric corrections are generally treated as independent. In actuality the incidence angle for one is affected by the refraction error due to the other so that superposition should not be expected to hold, i.e.,
\[
\begin{equation*}
\Delta R_{\text {total }}=\Delta R_{\text {trop }}+\Delta R_{\text {ion }}+\varepsilon_{\text {interaction }} \tag{3.4-1}
\end{equation*}
\]

A short study was carried out to investigate the magnitude of the interaction error, \(\varepsilon_{\text {interaction }}\). This was done for two different values of ionospheric refractivity, -.001 and -.0001 . Even with the rather large maximum refractivity of -.001 , corresponding to say, 100 to 400 MHz frequency, the interaction error is at most of the order of \(2 \times 10^{-3}\) of the total error at low elevation angles as can be seen in Table 3.4-1, where
\[
\varepsilon_{\text {int }}=\Delta R_{\text {tot }}-\left(\Delta R_{\text {ion }}+\Delta R_{\text {trop }}\right)
\]

The same thing done for range rate errors yields somewhat higher relative interaction terms ( \(\approx 3 \%\) ), apparently resulting from the fact that the tropospheric and ionospheric errors are of more nearly comparable magnitude in range rate.

TABLE 3.4-1
SUPERPOSITION TESTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\underset{(\mathrm{DEG})}{\mathrm{EL}}
\]} & \multicolumn{3}{|c|}{NS \(=.000313\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathrm{NL}(\mathrm{MAX})=-.00 \mathrm{I}\)}} & & & \\
\hline & & NGE & RORS & & & \multicolumn{2}{|l|}{RANGE RATE ERRORS} & \\
\hline & \[
\begin{gathered}
\Delta \mathrm{R}_{\text {ion }} \\
\text { (Meters) }
\end{gathered}
\] & \begin{tabular}{l}
\(\Delta R_{\text {trop }}\) \\
(Meters)
\end{tabular} & \[
\begin{gathered}
\Delta R_{\text {tot }} \\
\text { (Meters) }
\end{gathered}
\] & \(\varepsilon_{\text {int }}\) DIFR (M) & \[
\begin{gathered}
\wedge R R_{\text {ion }} \\
(\mathrm{CM} / \mathrm{SEC})
\end{gathered}
\] & \[
\begin{aligned}
& \Delta \mathrm{RR}_{\text {trop }} \\
& (\mathrm{CM} / \mathrm{SEC})
\end{aligned}
\] & \[
\begin{gathered}
\triangle R R_{\text {tot }} \\
(\mathrm{CM} / \mathrm{SEC})
\end{gathered}
\] & \[
\begin{gathered}
\varepsilon_{\text {int }} \\
\text { DIFRR } \\
(\mathrm{CM} / \mathrm{SEC})
\end{gathered}
\] \\
\hline 0.10 & 829.8126 & 74.3268 & 905.8979 & 1.7584 & 00.0000 & 00.0000 & 00.0000 & 0.0000 \\
\hline 0.15 & 829.7876 & 72.9693 & 904.4672 & 1.7102 & 0.2871 & 15.5816 & 16.4216 & 0.5529 \\
\hline 0.25 & 829.7206 & 70.3416 & 901.6891 & 1.6268 & 0.3852 & 15.1146 & 15.9795 & 0.4797 \\
\hline 0.40 & 829.5779 & 66.6763 & 897.7588 & 1. 5046 & 0.5494 & 14.1084 & 15.1284 & 0.4706 \\
\hline 0.60 & 829.3088 & 62.2213 & 892.8895 & 1.3594 & 0.7809 & 12.9296 & 14.1320 & 0.4214 \\
\hline 1.00 & 828.5021 & 54.6030 & 884.2277 & 1.1226 & 1.1815 & 11.1572 & 12.6854 & 0.3467 \\
\hline 1.50 & 826.9954 & 47.0038 & 874.8901 & 0.8910 & 1.7900 & 9.0281 & 11.0932 & 0.2751 \\
\hline 2.50 & 822.3672 & 36.2022 & 859.1487 & 0.5793 & 2.8147 & 6.5692 & 9.5735 & 0.1895 \\
\hline 4.00 & 811.6519 & 26.3918 & 838.3770 & 0.3333 & 4.5231 & 4.1411 & 8.7680 & 0.1038 \\
\hline 6.00 & 791.3192 & 19.0849 & 810.5842 & 0.1801 & 6.8235 & 2.452 J & 9.3270 & 0.0514 \\
\hline 10.00 & 736.7049 & 12.1096 & 748.8829 & 0.0684 & 10.1691 & 1.298, & II. 4887 & 0.0208 \\
\hline 15.00 & 658.9755 & 8.2814 & 667.2837 & 0.0266 & 13.6325 & 0.6714 & 14.3112 & 0.0073 \\
\hline 20.00 & 585.4201 & 6.3113 & 591.7438 & 0.0123 & 15.5324 & 0.4160 & 15.9515 & 0.0030 \\
\hline 30.00 & 469.6238 & 4.3405 & 473.9679 & 0.0036 & 15.8325 & 0.2371 & 16.0704 & 0.0008 \\
\hline 25.00 & 522.0697 & 5.1257 & 527.2018 & 0.0064 & 16.0610 & 0.3006 & 16.3631 & 0.0015 \\
\hline 40.00 & 392.1420 & 3.3828 & 395.526I & 0.0013 & 14.7871 & 0.1828 & 14.9703 & 0.0004 \\
\hline 50.00 & 341.1470 & 2.8410 & 343.9886 & 0.0006 & 12.7464 & 0.1354 & 12.8820 & 0.0002 \\
\hline 60.00 & 307.8225 & 2.5143 & 310.3370 & 0.0002 & 10.2844 & 0.1008 & 10.3853 & 0.0001 \\
\hline 80.00 & 275.3038 & 2.2119 & 277.5157 & 0.0000 & 6.1480 & 0.0572 & 6.2052 & 0.0000 \\
\hline 89.00 & 271.6392 & 2.1787 & 273.8179 & 0,0000 & 1.7021 & 0.0154 & 1.7175 & 0.0000 \\
\hline
\end{tabular}
\(\mathrm{NS}=.000313 \quad \mathrm{NL}(\mathrm{MAX})=-.0001\)
\begin{tabular}{rrrrrrrrr}
0.10 & 82.2783 & 74.3268 & 156.7865 & 0.1814 & 0.0000 & 00.0000 & 00.0000 & 0.0000 \\
0.15 & 8.2768 & 72.9693 & 155.4190 & 0.1729 & 0.0169 & 15.5816 & 15.6963 & 0.0978 \\
0.25 & 82.2722 & 70.3416 & 152.7801 & 0.1663 & 0.0264 & 15.1146 & 15.1788 & 0.0378 \\
0.40 & 82.2612 & 66.6763 & 149.0884 & 0.1809 & 0.0423 & 14.1084 & 14.2098 & 0.0591 \\
0.60 & 82.2389 & 62.2213 & 144.6006 & 0.1404 & 0.0647 & 12.9296 & 13.0250 & 0.0306 \\
1.00 & 82.1683 & 54.6030 & 136.8867 & 0.1155 & 0.1035 & 11.1572 & 11.2971 & 0.0364 \\
1.50 & 82.0314 & 47.0038 & 129.1265 & 0.0913 & 0.1626 & 9.0281 & 9.2194 & 0.0288 \\
2.50 & 81.6000 & 36.2022 & 117.8598 & 0.0576 & 0.2624 & 6.5692 & 6.8521 & 0.0205 \\
4.00 & 80.5822 & 26.3918 & 107.0677 & 0.0337 & 0.4296 & 4.1411 & 4.5808 & 0.0101 \\
6.00 & 78.6257 & 19.0849 & 97.7287 & 0.0181 & 0.6566 & 2.4521 & 3.1140 & 0.0052 \\
10.00 & 73.3061 & 12.1096 & 85.4225 & 0.0069 & 0.9905 & 1.2988 & 2.2914 & 0.0021 \\
15.00 & 65.6604 & 8.2814 & 73.9445 & 0.0027 & 1.3409 & 0.6714 & 2.0131 & 0.0007 \\
20.00 & 58.3836 & 6.3113 & 64.6962 & 0.0012 & 1.5366 & 0.4160 & 1.9529 & 0.0003 \\
25.00 & 52.0969 & 5.1257 & 57.2232 & 0.0006 & 1.5939 & 0.3006 & 1.8946 & 0.0002 \\
30.00 & 46.8824 & 4.3405 & 51.2233 & 0.0004 & 1.5741 & 0.2371 & 1.8113 & 0.0001 \\
40.00 & 39.1670 & 3.3828 & 42.5499 & 0.0001 & 1.4725 & 0.1828 & 1.6553 & 0.0000 \\
50.00 & 34.0830 & 2.8410 & 36.9241 & 0.0001 & 1.2708 & 0.1354 & 1.4062 & 0.0000 \\
60.00 & 30.7586 & 2.5143 & 33.2729 & 0.0000 & 1.0260 & 0.1008 & 1.1268 & 0.0000 \\
80.00 & 27.5131 & 2.2119 & 29.7250 & 0.0000 & 0.6136 & 0.0572 & 0.6708 & 0.0000 \\
89.00 & 27.1473 & 2.1787 & 29.3260 & 0.0000 & 0.1699 & 0.0154 & 0.1853 & 0.0000
\end{tabular}

\section*{4. ANALYTIC CORRECTIONS}

This section summarizes the results of a series of studies of the relative accuracy and limitations of several proposed and operational analytic and semi-analytic refraction corrections.

\section*{4. 1 Troposphere}

Table 4.1-1 gives the principal characteristics of the various corrections considered here in terms of layer shape assumptions, measurements utilized, approximations to the integral, and correction quantities computed ( \(\mathrm{R}, \mathrm{E}, \overrightarrow{\mathrm{R}}\) ). For the troposphere rougbly 90 to \(95 \%\) of the day-to-day variability is accounted for by the variation of Ns, the surface value of refractive index. Since this is readily measured in terms of pressure, temperature, and humidity it is not surprising to find that many of the practical formulations depend on Ns.

For long range prediction, worldwide statistics of \(N(z)\) are available (Ref. 22).

Reference 18 compared the results of the formulations Iisted in Tables 4.1.2, 4.1.3, 4.1.4 for elevation angle, range, and range rate with the corresponding results from REEK ray trace, assuming an exponential model atmosphere with surface refractivity \(N_{S}=313 \times 10^{-6}\) and scale height \(H_{s}=6951.25\) meters as per the CRPL standard troposphere.

The results of these comparisons are plotted in Figures 4.1, 4.2, and 4.3.

Each of the corrections for either angle, range or range rate is asymptoticaily of the same form at high elevation angles, namely,
\[
\begin{aligned}
& \Delta E_{\text {to }}=N_{s} \operatorname{cta} \mathrm{E} \\
& \Delta R_{\text {to }}=\mathrm{HN}_{\mathrm{S}} \csc \mathrm{E} \\
& \Delta \dot{R}_{\text {to }}=-\mathrm{HN}_{\mathrm{S}} \dot{\mathrm{E}} \csc \mathrm{E} \operatorname{ctn} \mathrm{E}
\end{aligned}
\]

TABLE 4.1-1
TROPOSPHERIC CORRECTIONS


TABLE 4.1-2
RANGE REFRACTION CORRECTION EQUATIONS


TABLE 4.1-3
ELEVATION ANGLE REFRAGTION GORREGTION EQUATIONS
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Refraction \\
Formulation
\end{tabular} & Elevation Angle Refraction Correction \(\Delta E\) \(\Delta E \quad\) (radians) \(=\) Obs - Corr. \\
\hline GSFC DC & \(\Delta E_{\text {to }}\) \\
\hline GSFC Freeman & \(\Delta E_{\text {to }}\) \\
\hline GSFC NONAME & \(\Delta \mathrm{E}_{\text {to }}\left(\frac{1}{0.93+0.0164 \operatorname{ctn} E}\right)\) \\
\hline GSFC GDAP & \[
\Delta E_{t o}\left(\frac{2}{I^{\prime}+\sqrt{I+0.0045154 \csc ^{2} E}}\right)
\] \\
\hline GSFC NAP-I & \[
\Delta E_{t o}\left[\frac{0.000350}{N_{S}}\left(\frac{2}{I+\sqrt{I+0.004 \csc ^{2} E}}\right)\right]
\] \\
\hline Wallops C-band & \(\Delta E_{\text {to }}\) \\
\hline
\end{tabular}

TABLE 4.1-4
RANGE RATE REFRACTION CORRECTION EQUATION
\begin{tabular}{|c|c|}
\hline Refraction Formulation & Range Rate Refraction Correction, \(\Delta \dot{R}\) \(\Delta \dot{R}\) (meters \(/ \mathrm{sec}\) ) \(=\) Obs - Corr. \\
\hline GSFC DC & \(\Delta \dot{R}_{\text {to }}\left[\frac{8743.25}{H} \frac{I}{\left(I+0.000772 \operatorname{ctn}^{2} E\right)^{3 / 2}}\right]\) \\
\hline GSFC DC & \(\Delta \mathrm{m}_{\text {to }}\left(\frac{8750}{H}\right)\) \\
\hline NSFC Freeman & \(\Delta \dot{R}_{\text {so }}\left[1+\frac{H}{R_{s}}\left(1-3 \csc ^{2} E\right)\right]\) \\
\hline GSEC NONAME & \[
\Delta \dot{R}_{\text {to }}\left[\frac{8432.336}{H} \frac{I}{(1+0.026 \operatorname{cscE})^{2}}\right]
\] \\
\hline GSFE GDAP & \[
\Delta \dot{\mathrm{R}}_{\text {to }}\left[\frac{7200}{\mathrm{H}} \frac{2}{\sqrt{\mathrm{I}+0.0045154 \csc ^{2} \mathrm{E}}+\left(1+0.0045154 \mathrm{csc}^{2} \mathrm{E}\right)}\right]
\] \\
\hline GSFC NAP-I & \[
\Delta \dot{R}_{\text {to }}\left[\frac{2.7432}{H N_{S}} \frac{2}{\sqrt{I+0.004 \csc ^{2} E}+\left(1+0.004 \csc ^{2} E\right)}\right]
\] \\
\hline APL TRANET & \[
\Delta \dot{R}_{\text {to }} \frac{\mathrm{R}_{\mathrm{s}}}{\mathrm{H}} \sin ^{2} \mathrm{E}[\mathrm{f}(\mathrm{E})]
\] \\
\hline NWL TRANET & \[
\Delta \dot{R}_{\text {to }} \frac{2.3}{\mathrm{HN}_{\mathrm{S}}}
\] \\
\hline
\end{tabular}
where
\(f(E)=1+\frac{2 R_{s}}{H_{t}^{2}} \sin E\left[\sqrt{H_{t}^{2}+2 R_{s} H_{t}+R_{s}^{2} \sin ^{2} E}-R_{s} \sin E\right.\)
\[
\left.+\left(R_{s}+H_{t}\right) \ln \frac{R_{s}(1+\sin \mathrm{E})}{\left(R_{s}+H_{t}\right)+\sqrt{H_{t}^{2}+2 R_{s} H_{t}+R_{s}^{2} \sin ^{2} \mathrm{E}}}\right]
\]
\(\Delta \dot{R}_{\text {to }}=-\mathrm{HN}_{\mathrm{S}} \dot{\mathrm{E}} \operatorname{cscE} \operatorname{ctn} \mathrm{E}=-\Delta \mathrm{R}_{\mathrm{to}} \dot{\mathrm{E}} \operatorname{ctn} \mathrm{E}=-\mathrm{H} \Delta \mathrm{E}_{\mathrm{to}} \dot{\mathrm{E}} \operatorname{cscE}=\underset{\text { correction }}{\text { first order }}\)


FIGURE 4.1
RANGE ERROR DUE TO TROPOSPHERIC REFRA TION

Commmications Research Lahoratories


EIGURE 4.2
ELEVATION ERROR DUE TO TROPOSPHERIC REERACTION


FIGURE 4.3
RANGE RATE ERROR DUE TO TROPOSPHERIC REFRACIION
so it is as expected that all of the various corrections approach a quite accurate match to the REEK reference at high elevation angles, or at least could be brought into very close agreement by choice of scale factor, H. Significant differences appear below about \(5^{\circ}\), however. GDAP and NAP-I (which are essentially identical) appear to offer consistently good approximations down to the lowest angles.

References 7, 8, and 19 as smamarized in section 5 of this report derive series expansions of the elevation, angle, and range errors in terms of the successive moments of the distribution of refractivity vs height. It turns out that for range errors all the way to the horizon and for elevation and range rates errors down to about \(2^{\circ}\) elevation, the moment expansion utilizing the first three ( \(0^{\text {th }}, 1^{\text {st }}, 2^{\text {nd }}\) ) moments provides quite a good analytic correction, midway in accuracy between those corrections depending only on \(\mathrm{N}_{\mathrm{s}}\) and the REEK correction based on the entire profile. This is plotted for comparison in chapter 5, Figures 5.7, 5.8, 5.9.

Hopfield (Ref. 31 ) has proposed a bi-quartic model for the tropospheric refractivity:
\[
N(h)=N_{o_{d}}\left(\frac{h_{t_{d}}-h}{h_{t_{d}}}\right)^{4}+N_{o_{w}}\left(\frac{h_{t_{w}}-h}{h_{t_{w}}}\right)^{4}
\]
where \(\quad N_{o_{d}}=\) surface value of the "dry" terms of refractivity
\[
=\frac{77.6 \mathrm{P}_{\mathrm{o}}}{\mathrm{~T}_{\mathrm{o}}}
\]
\(h_{t_{d}}=\) associated dry term scaile height
\[
N_{o_{w}}=\text { surface value of "wet" term of refractivity }
\]
\[
=\frac{77.6(4810 \mathrm{e})}{T^{2}}
\]
\(h_{t_{w}}=\) associated wet term scale height
Both limited to zero above where they go to zero at \(h_{t_{d}}\) and \(h_{t_{w}}\)
This bi-quartic form fits experimental cata quite well over the most important part of the troposphere (obviously not around \(h_{t_{d}}\) or \(h_{t_{w}}\) ) and the resulting
straight-line refraction integral can be carried out analytically (Ref. 31) yielding:
\[
\begin{aligned}
& \Delta p_{i}=\sum_{i=1}^{2} 10^{-6} N_{o_{i}}\left[-\ell_{I}+\frac{4}{h_{t_{i}}^{4}}\left\{\frac{1}{3} r_{0}^{2} \ell_{I}^{3}-\frac{2}{15} \ell_{I}^{5}-\frac{3}{4} x_{o} I_{t_{i}} \ell_{I}\left(\ell_{I}^{2}+\frac{1}{2} \ell_{2}^{2}\right)\right.\right. \\
& +x_{t_{i}}^{2} \ell_{I}^{3}-\frac{1}{2} x_{t_{i}}^{3} r_{0} \ell_{1}-\frac{I}{3} r_{t_{i}}^{2} e_{3_{i}}^{3}+\frac{2}{I 5} \ell_{3_{i}}^{5} \\
& +\frac{3}{4} r_{t_{i}}^{2}\left(l_{3_{i}}^{3}+\frac{1}{2} e_{3_{i}} \ell_{2}^{2}\right)-r_{t_{i}}^{2} \ell_{3_{i}}\left(l_{3_{i}}^{2}-\frac{1}{2} r_{t_{i}}^{2}\right) \\
& \left.\left.+\frac{1}{2} r_{t_{i}} \ell_{2}^{2}\left(\frac{3}{4} \ell_{2}^{2}+r_{t_{i}}^{2}\right) \ln \frac{r_{0}+\ell_{i}}{r_{t_{i}}+\ell_{3_{i}}}\right\}\right]
\end{aligned}
\]
\[
\text { where } \quad \begin{aligned}
x_{0} & =\text { radius of earth } \\
h_{t_{i}} & =\text { height of top of layer } \\
r_{t_{i}} & =r_{0}+h_{t_{i}}=\text { radius of top of layer } \\
l_{1} & =r_{0} \sin E \\
l_{2} & =r_{0} \cos E \\
\ell_{3_{i}} & =\left(r_{t_{i}}^{2}-\ell_{2}^{2}\right) \\
E & =\text { elevation angle of ray at } h=0, r=r_{0} \\
i & = \begin{cases}1 & \text { dry term } \\
2 & \text { wet term }\end{cases}
\end{aligned}
\]

Actually this closed form is difficult to compute since the individual terms in brackets are of order \(\left(r_{0} / h_{t}\right)^{5}\), typically \(10^{14}\), larger than their sum! While this is well within capabilities of some computers in double precision, it would be highly desirable to find simplifications of this formula which would make it more readily availabie on more modest computing equipment. Reference 11
treats the problem of alternate ways of computing this including two very efficient series expansions derived by Yionoulis (Ref. 32 ) and straightforward numerical integration. Best results were obtained with simple
numerical integration; using a Simpson formula gave 5-place accuracy with 20 points for \(\mathrm{E}>2^{\circ}, 80\) points down to \(0.6^{\circ}\) and 160 points below \(0.6^{\circ}\).

Finally a series of comparisons was carried out with 85 actual radiosonde profiles measured during WICE. 5 methods were compared
- REEK raytracing (including bending) of the actual profiles (taken as the standard of comparison
- Hopfield's model
- The NBS "Standard Sample" regression model
- The NBS "Cape Canaveral Sample" regression model
- A special regression model based on \(\mathrm{P}_{\mathrm{o}}, \mathrm{T}_{\mathrm{o}}, \mathrm{H}_{\mathrm{c}}\) derived for the WICE sample.

A few words of explanation of the latter three models will be in order. The NBS regression models are those derived by Thayer and Bean (Ref. 33 ) and are of the form
\[
\Delta R=A(E)+B(E) \Delta N
\]
where \(A(E)\) and \(B(E)\) coefficients are functions of elevation angle, E, established by least-squares regression fit to a sample of actual data and published in Ref. 33
\(\Delta N=N_{o}-\bar{N}_{0}\)
\(N_{0}=\) ground level measured refractivity
\(\bar{N}_{0}=\) average value of \(N_{0}\) over the sample
\(\Delta R=\) predicted range refraction error.
Two sets of coefficients were found, one the so-called "standard sample", from a worldwide sample of 77 profiles; the second from 84 profiles all taken at Cape Canaveral.

These regression models were extended for the 85 profile WICE sample by considering various possible regressors of the form
\[
\Delta R=\sum_{i} A_{i} f_{i}(P, T, H, E)
\]
where \(\quad H=\) Relative Humidity
\(E=\) partial pressure of water vapor
\(f_{i}(\cdot)=\) various tentative functional combinations and transformations of the basic \(\mathrm{P}, \mathrm{T}, \mathrm{H}, \mathrm{E}\) measurements.

The various combinations tried and the resulting standard error of the regression fit for each case are given in Table 4-5.

TABLE 4-5

\section*{STANDARD ERROR OF REGRESSION FIT, METERS}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Independent Variables ( \(\mathrm{F}_{\mathrm{i}}\) )} & \multicolumn{2}{|l|}{Dependent Variables} \\
\hline & \(\triangle \mathrm{R}\left(\mathrm{E}=12.173^{\circ}\right.\) ) & \(\triangle \mathrm{R}\left(\mathrm{E}=90^{\circ}\right)\) \\
\hline \(\Delta \mathrm{R}\left(\mathrm{E}=90^{\circ}\right)\) & . 032 & --- \\
\hline T & . 216 & . 046 \\
\hline E & . 162 & . 035 \\
\hline \(\mathbb{N}(\mathrm{P}, \mathrm{T}, \mathrm{H})\) & . 149 & . 032 \\
\hline E, P & . 154 & . 035 \\
\hline E, P, H & . 147 & . 031 \\
\hline T, H & . 159 & . 035 \\
\hline T, H, P & . 148 & . 052 \\
\hline \(\mathrm{P} / \mathrm{T}, \mathrm{E} / \mathrm{T}^{2}\) & . 148 & . 032 \\
\hline
\end{tabular}

The particular case where \(\Delta R\left(E=90^{\circ}\right.\) ) was used as the regressor (for lower elevation angle) is of some interest in indicating the possible residual error at other than vertical incidence if the integrated refractivity content (equivalent to \(\Delta R\left(E=90^{\circ}\right)\) could be measured by some other means; the indication is clearly very encouraging to such a development. The upshot of these studies was to indicate that given the several ground level measurements ( \(\mathrm{P}, \mathrm{T}, \mathrm{H}\) or E ) about the best and simplest predictor is \(N(P, T, H)\) alone, \(\mathrm{i}_{\mathrm{e}} \mathrm{e}\), just the form of the NBS model, and this was the form used in the comparison. The coefficients resulting from the three regressions are compared in Table 4-6.

TABLE 4-6

REGRESSION COEFFICIENTS AT E \(=12.173^{\circ}\)
\begin{tabular}{|c|c|c|}
\hline & \({ }^{\text {A }}\) (m) & \({ }^{B}(\mathrm{~m} / \mathrm{N})\) \\
\hline NBS Standard Sample & 3.8929 & . 02149 \\
\hline NBS Cape Canaveral Sample & 6.6595 & . 01377 \\
\hline WICE Sample & 7.3483 & . 01100 \\
\hline
\end{tabular}
\[
\Delta R^{*}=A+B \Delta N
\]

Finally the results of these various regression models along with the Hopfield bi-quartic model were compared with REEK ray tracings for the 85 WICE radiosonde samples. For this purpose the scale heights of the bi-quartic modeI were taken as \(h_{d r y}=41.17 \mathrm{~km}\) and \(h_{\text {wet }}=12.0 \mathrm{~km}\) as recommended by Hopfield for the latitude of Wallops. The wet, dry, and total refractivity terms in all cases were taken from the ground level readings of the radiosonde.

The results are summarized in Table 4-7 for the case of \(E=12^{\circ}\).

TABLE 4-7

\section*{COMPARISON OF TROPOSPHERIC REFRACTION CORRECTORS VS REEK RAY TRACINGS ON 85 WICE PROFILES}
\begin{tabular}{|c|c|}
\hline Predictor - Std. & Std. Dev. of Prediction Errors (Meters) \\
\hline Hopfield & . 223 \\
\hline NBS "Standard Sample" Coefficients & . 281 \\
\hline NBS "Cape Canaveral Sample" Coefficients & . 258 \\
\hline Special Wallops Regression on \(\mathrm{N}(\mathrm{P}, \mathrm{T} ; \mathrm{H})\) & . 149 \\
\hline
\end{tabular}

It should be pointed out that the Special Wallops Regression is undoubtedly optimistic in its estimate of its own prediction error since, among other things, it was developed and tested on only a three-month segment of data (April, May, June 1968). In comparison with the NBS predictions it will be seen that the Hopfield formula is generally comparable, but slightly better in accuracy.

\subsection*{4.2 Analytic Corrections for the Ionosphere}

Reference 20 presented a comparison of several commonly used analytic corrections for the ionosphere with REEK ray trace taken as a standard. The external characteristics of these algorithms are given in Table 4-8 in terms of layer model assumplioas: input parameters, integral approximations and outputs.

Tables 4.9-4.11 give the actual formulations of the analytic corrections and the moment correction is discussed in section 5. For the comparisons shown in Figures 4.4-4.6 a Chapman-type ionosphere was assumed with \(N_{\max }=10.67 \times 10^{-6}\), \(h_{\mathrm{m}}=364 \mathrm{~km}\) and \(\mathrm{H}_{\mathrm{s}}=104.667 \mathrm{~km}\), typical of daytime near solar maximum at \(\mathrm{f}=2 \mathrm{GHz}\). The GEOVAP and Freeman formulations are not useful at low elevation angles and are in fact relatively poor at angles as high as \(40^{\circ}-50^{\circ}\). Ail the other formulations listed in Tables 4.9-4.11 except NAP-3 act similarly at low angles in \(R, E\) and \(\dot{R}\) and what differences do appear can largely be ascribed to the necessarily somewhat arbitrary choices involved in fitting the parameters of the various models to the particular Chapman model used as the basis of comparison.

In other words, a slightly different choice of \(h_{m}\) and \(H_{s}\) paramerers would in these cases yield vary close agreement with the REEK ray trace results. The ionosphere is significantly different than the troposphere in that the minimum elevation angle in the ionosphere is of the order of \(18^{\circ}-20^{\circ}\) even for horizontal takeoff from the earth ( \(\mathrm{E}=0\) ), consequently the very low angle problem is never encountered in the ionosphere for the cases with which we are concerned.

Consequently the main difference between approaches is related simply to how much information about the actual ionosphere is actually input to the algorithm, or how well the modelled ionosphere matches the real.

Moment series comparisons with idealized and actual ionospheres are given in section 5 . The match is very close as would be expected from the fact that the moments themselves approach a complete description of the actual layer and the very low angle convergence question is moot for the ionosphere for the reasons discussed above.

TABLE 4.8
IONOSPHERIC CORRECTION ALGORLTHMS
\begin{tabular}{ccc} 
METHOD & LAYER & INPUT \\
MODEL & PARAMETERS \\
& (MEASUREMENTS)
\end{tabular}\(\quad\) INTEGRAIS \(R, E, \dot{R}\)
\begin{tabular}{|c|c|c|c|c|}
\hline RAYTRACE & & & & \\
\hline REEK & NONE & \(N(\mathrm{~h})\) & FULI RAYTRACE & R, E \\
\hline SEMI-ANALYTIC & & & & \\
\hline MOMENTS & NONE & MOMENTS & ANALYTIC SERTES & R, \(\mathrm{E}, \mathrm{L} \mathrm{R}\) \\
\hline \multicolumn{5}{|l|}{ANALYTIC} \\
\hline DC & CHAPMAN & \(\mathrm{N}_{\max }, \mathrm{H}_{\mathrm{S}}, \mathrm{h}_{\text {max }}\) & ANALYTIC & \(R, E, \dot{R}\) \\
\hline DODS & &  & &  \\
\hline Freeman & 1 & & & \\
\hline GEOVAP & & & & \\
\hline GPRO (GDAP) & PARABOLIC & & & \\
\hline \multirow[t]{3}{*}{NAP-3} & \(\left\{\begin{array}{l}\text { Parabolic Bottom } \\ \text { Exponential Top }\end{array}\right.\) & \[
\left\{\begin{aligned}
\mathrm{y}_{\mathrm{m}} & =\text { bottom scale } \mathrm{ht} \\
\mathrm{k} & =\text { topside scale }
\end{aligned}\right.
\] & 1 & 1 \\
\hline & & \(I^{\prime} \mathrm{m}=\) height of max & & \\
\hline & & \[
\mathrm{N}_{\max }
\] & & \\
\hline
\end{tabular}

TABIE 4.9
RANGE REFRACTION CORRECTION FORMUILAS
\begin{tabular}{cc} 
Refraction & Range \begin{tabular}{l} 
Refraction Correction \\
Formulation
\end{tabular} \\
\(\Delta R(\) meters \()=R-R_{c}\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline GSFC DC \(\not \subset\) DODS
\[
\left(E<I 0^{\circ}\right)
\] & \[
\frac{4}{5} \Delta R_{i o}\left\{\frac{\sin E}{\left[I-\left(\frac{R_{e} \cos E}{R_{e}+h_{m}}\right)^{2}\right]^{I / 2}}\right\}
\] \\
\hline GSFC DC \(\neq\) DODS
\[
\left(E>10^{\circ}\right)
\] & \[
\frac{4}{5} \Delta R_{\text {io }}
\] \\
\hline GSFG Freeman & \[
\Delta R_{i o}\left[1-\left(\frac{H+h_{m}}{R_{e}}\right) \operatorname{ctn}^{2} E\right]
\] \\
\hline GSFC GPRO (GDAP) & \[
\frac{-8 \mathrm{H}_{\mathrm{N}_{\mathrm{im}} \csc \mathrm{E}_{I}}^{I+\left[1+\frac{25 \mathrm{H}_{\mathrm{g}} \operatorname{ctn}^{2} \mathrm{E}_{1}}{3\left(\mathrm{R}_{\mathrm{e}}+\mathrm{h}_{\mathrm{m}}-3 \mathrm{H}_{\mathrm{g}}\right.}\right]^{1 / 2}}}{\frac{1}{}}
\] \\
\hline NAP-3 & \[
\frac{-N_{i m}\left[\frac{9}{16 K}\left(1-e^{-\left(h_{s}-h_{m}-\frac{y_{m}}{2}\right) K}\right)+\frac{459}{480} y_{m}\right]}{\left[I-\left(\frac{R_{e}}{R_{e}+R_{h}}\right)^{2} \cos ^{2} E\right]^{1 / 2}}
\] \\
\hline GEOVAP & \(\Delta R_{\text {io }}\) \\
\hline
\end{tabular}
\(\Delta R_{i o}=-N_{i m} \mathrm{He}^{\mathrm{I}} \csc \mathrm{E}=-\mathrm{M}_{\mathrm{o}} \csc E\)

TABLE 4.10
fange fate refraction correction formulas

Refraction Formulation

Range Rate Refraction Correction \(\Delta \dot{\mathrm{R}}\) \(\Delta \dot{\mathrm{R}}\) (meters \(/ \mathrm{sec}\) ) \(=\dot{\mathrm{R}}-\dot{\mathrm{R}}_{\mathrm{c}}\)
\begin{tabular}{|c|c|}
\hline GSFC DC \(\neq\) DODS
\[
\left(E<10^{\circ}\right)
\] & \(\frac{4}{5} \Delta \dot{R}_{i 0}\left(\frac{R_{e}}{R_{e}+h_{m}}\right)^{2} \sin ^{3} \mathrm{E}\left[1-\left(\frac{R_{e} \cos \mathrm{E}}{\mathrm{R}_{\mathrm{e}+\mathrm{h}}{ }_{\mathrm{m}}}\right)^{2}\right]^{-3 / 2}\) \\
\hline GSFC DC \(\not \subset\) DODS
\[
\left(E>10^{\circ}\right)
\] & \[
\frac{4}{5} \Delta \dot{R}_{\text {io }}
\] \\
\hline GSFC Freeman & \[
\begin{aligned}
& \Delta \dot{\mathrm{R}}_{\mathrm{io}}\left[1+\left(1-\frac{3}{\sin ^{2} \mathrm{E}}\right)\left(\frac{\mathrm{H}+\mathrm{h}_{\mathrm{m}}}{\mathrm{R}_{\mathrm{e}}}\right)\right] \\
& -8 \mathrm{~N}_{\mathrm{im}} H_{\mathrm{g}} \dot{E}_{1} \operatorname{cta} \mathrm{E}_{1} \csc \mathrm{E}_{1}\left[1+\frac{1-4 \beta_{2}^{2}}{\left(1+4 \beta_{2}^{2} \operatorname{ctn}^{2} \mathrm{E}_{1}\right)^{1 / 2}}\right.
\end{aligned}
\] \\
\hline GSFC GPRO (GDAP) & \[
\left[1+\left(1+4 \beta_{2}^{2} \operatorname{cta}^{2} E_{1}\right)^{1 / 2}\right]^{2}
\] \\
\hline NAP-3 & \[
-\frac{\dot{E}(\Delta R)\left(\frac{R_{e}}{R_{e}+R_{h}}\right)^{2} \sin E \cos E}{I-\left(\frac{R_{e} \cos E}{R_{e}+R_{h}}\right)^{2}}
\] \\
\hline GEOVAP & \(\Delta \dot{R}_{\text {io }}\) \\
\hline \[
\Delta \dot{\mathrm{R}}_{\mathrm{io}}=\mathrm{N}_{\mathrm{im}} \mathrm{He} \dot{\mathrm{E}}
\] & \(E \csc E=M_{0} \frac{d(\csc E)}{d t}\) \\
\hline
\end{tabular}

TABLE 4.11

\section*{ELEVATION REFRAGTION CORRECTION FORMULAS}

Refraction Elevation Angle Refraction Correction \(\Delta E\)
Formulation \(\Delta E\) (radians) \(=E \cdots E_{c}\)
\begin{tabular}{|c|c|}
\hline GSFC DC \(\not ¢\) DODS & \(\frac{4}{5} \Delta \mathrm{E}_{\text {io }}\) \\
\hline GSFC Freeman & \(\Delta E_{\text {io }}\) \\
\hline NAP-3 & \(\cos ^{-1}\left[\frac{\mathrm{X}_{1} \cos \alpha-\mathrm{X}_{2}}{\left(\mathrm{X}_{1}^{2}+\mathrm{X}_{2}^{2}-2 \mathrm{X}_{\mathrm{I}} \mathrm{X}_{2} \cos \alpha\right)^{1 / 2}}\right]\) \\
\hline \[
\Delta E_{i o}=\frac{-\mathrm{N}_{\mathrm{im}} H e^{1}}{h_{t}}
\] & \[
-\frac{\mathrm{M}_{\mathrm{o}}}{\mathrm{~h}_{\mathrm{t}}} \operatorname{ctn} \mathrm{E}
\] \\
\hline
\end{tabular}


FIGURE 4.4
RANGE ERROR DUE TO IONOSPHERIC REFRACTION


FIGURE 4.5
ELEVATION ERROR DUE TO IONOSPHERIC REFRACTION


FIGURE 4.6
RANGE RATE ERROR DUE TO IONOSPHERIC REFRAGTION

\section*{5. MOMENT EXPANSIONS}

\subsection*{5.1 Introduction}

The refractive range errors at a given frequency - (to a zero order approximation valid for plane earth) - are directly proportional to the total columnar refractivity content or zeroth order moment of the density profile and a simple function, csc \(E\), of the elevation angle. For spherical earth, a first-order correction is available which depends only on the effective height, or firstorder moment of the electron density profile.

These considerations lead one to consider the possibility of an expansion of the range error correction in terms of successive moments of the profile distribution, and in which the coefficients are elevation angle functions. If such a formulation is capable of providing sufficient accuracy in a reasonably small number of terms, it would have siguificant computational advantages over straightforward raytracing for the case where corrections at a large number of points (i.e., elevation angles) must be computed for the same ionosphere.

Freeman (Ref. 26) made a start in this direction for ionospheric range errors, but found relatively slow convergence. His expansion was in terms of momenrs about the ground level, \(h=0\). It can be reasoned that the expansion would necessarily be more rapidly convergent if moments were taken about a point in the ionosphere, such as the ceutroid. For example, it is clear, to the extent that the ionospheric density profile can be approximated by a thin shell at its centroid, that a single term in the moment expansion (the zeroth moment) would give an ewact answer for the case of moments about the centroid, since all higher order moments are already zero for moments about the centroid, but not for moments about any other point.

This section summarizes further results on the moment expansion first derived under this project and reported in Refs. 7,8, and 19.

\subsection*{5.2 Moment Expansion Derivation}

Based on the straight path assumption, discussed in section 3.2, the range exror is approximated simply as
\[
\begin{align*}
\Delta R & =\int_{\substack{\text { straight } \\
\text { path }}}(\square-1) d s \\
& =\int \sec \Phi_{0} N(h) d h \tag{5.2-I}
\end{align*}
\]

On a spherical earth (See Figure 5.I) this becomes
\[
\begin{equation*}
\Delta R=\int_{0}^{h} \sec (\Phi(h)) N(h) d h \tag{5.2-2}
\end{equation*}
\]
where \(\quad N(h)=n(h)-I\)
\(X(\mathrm{~h})\) is the angle the straight line ray makes with the local vertical as it passes through height h.

From the spherical geometry shown in Figure 5.1, sec (h) is given by
\[
\begin{equation*}
\sec \Phi(h)=\left[I-\left(\frac{a}{a+h} \sin \bar{\Phi}_{0}\right)^{2}\right]^{-1 / 2} \tag{5.2-3}
\end{equation*}
\]

Now, following the motivation discussed previously, we expand \(\sec (\mathrm{g}(\mathrm{h})\) ) in a Taylor series in \(h\) about some arbitrary reference height, \(h_{c}\), which will normally be chosen somewhere near the center of the refractive layer, thus
\[
\begin{align*}
\sec (\Phi(h)) & =\sec \left(\Phi\left(h_{c}\right)\right)+\left(h-h_{c}\right)\left[\frac{d}{d h} \sec ((h))\right] \ldots \\
& =\sum_{m=0}^{\infty} \frac{\left(h-h_{c}\right)^{m}}{m!} \frac{d^{m}}{d^{m}}(\sec ⿱(h)) \tag{5.2-4}
\end{align*}
\]
where the derivatives are to be evaluated at \(h=h_{c}\).

Note that the geometrical factor is independent of h . This means that when we carry out the integral, equation (5.2-2), interchanging integral and


O

FIGURE 5.1
summation, the geometrical factors come out of the integrals and we have
\[
\begin{equation*}
\Delta R=\sum_{m=0}^{\infty} G_{m}\left(E_{0}\right) M_{m} \tag{5.2-5}
\end{equation*}
\]
where \(\quad G_{m}=\left.\frac{1}{m!} \frac{d^{m}}{d h^{m}} \sec (\$(h))\right|_{h=h_{c}}\) are geometrical factors
depending only on \(\varphi\left(\mathrm{h}=\mathrm{h}_{\mathrm{c}}\right)\), i.e., on \(\varphi_{0}\) and \(h_{c}\).
\(h_{s}\)
\(M_{m}=\int_{0}^{s}\left(h-h_{c}\right)^{m} N(h) d h\)
\(=\) mth moment about \(h_{c}\) of refractivity distribution.
The moments adequately characterize the ionosphere or troposphere for refraction correction purposes, as will _-....-..... .- be shown.

\subsection*{5.3 Moment Expansion for Angle}

The corresponding moment series for elevation angie errors can be derived from that for range from the general relation between range and angle errors derived in Ref. 13, namely
\[
\begin{equation*}
\Delta E=N_{o} \operatorname{ctn} E+\left(\frac{I}{a}+\frac{\sin E}{R}\right) \csc E \frac{\partial}{\partial E} \Delta R(E, h) \tag{5.3-1}
\end{equation*}
\]
where
\[
\begin{aligned}
a= & \text { radius of earth } \\
R= & \text { range to target } \\
& =\sqrt{\left(a+h_{t}\right)^{2}-(a \cos E)^{2}}-a \sin E \\
h_{t}= & \text { target height } \\
N_{o}= & \text { ground level refractivity. }
\end{aligned}
\]

Using eq. (5.2-5) in eq. (5.3-1) gives the moment series for angle
\[
\begin{equation*}
\Delta E \approx N \operatorname{ctn} E+\left(\frac{1}{a}+\frac{\sin E}{R}\right) \csc E \sum_{m=0}^{\infty} G_{m}^{\prime}(E) M_{m}\left(h_{c}\right) \tag{5.3-2}
\end{equation*}
\]
where \(G_{m}^{\prime}(E)=\frac{d}{d E} G_{m}(E)\)
The first few \(G^{\prime}\) and \(G\) are given in Table 5.1.

TABLE 5.1

\section*{GEOMETRICAL FACTORS}
\[
\begin{aligned}
& G=(a \cos E)^{2} \\
& I=a+h_{c}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline 프 & \(\mathrm{G}_{\mathrm{m}}\) & \(\mathrm{G}_{\mathrm{m}}^{*}\) \\
\hline 0 & \(\left(1-\frac{\mathrm{C}}{\mathrm{r}^{2}}\right)^{-1 / 2}\) & \[
-C G_{o}^{3} \tan E / r^{2}
\] \\
\hline 1 & \[
-C G_{o}^{3} / r^{3}
\] & \[
-\frac{G_{o}^{2}}{x}\left[2+\frac{3 G_{o}^{2}}{x^{2}}\right]
\] \\
\hline 2 & \(3 / 2 \mathrm{CG}_{0}^{5} / \mathrm{r}^{4}\) & \[
\frac{3}{2} \frac{G_{o}^{*}}{x^{2}}\left[2 G_{o}^{2}+\frac{5 \mathrm{CG}_{o}^{4}}{x^{2}}\right]
\] \\
\hline 3 & \[
\frac{I}{2 r^{5}} C\left(-5 G_{o}^{7}+G_{o}^{5}\right)
\] & \[
\frac{1}{2} \frac{G_{o}^{+}}{r^{3}}\left[2 t-5 G_{o}^{4}+G_{o}^{2}\right)+\frac{\mathrm{C}}{r^{2}}\left(-35 G_{o}^{6}+5 G_{o}^{4}\right)
\] \\
\hline 4 & \[
\frac{5 C}{8 x^{6}}\left(7 G_{o}^{9}-3 G_{o}^{7}\right)
\] & \[
\frac{5}{8} \frac{G_{o}^{\prime}}{r^{4}}\left[2\left(7 G_{0}^{6}-3 G_{o}^{4}\right)+\frac{C}{r^{2}}\left(63 G_{0}^{8}-21 G_{0}^{6}\right)\right]
\] \\
\hline 5 & \[
\frac{3 C}{8 x^{7}}\left(-21 G_{o}^{11}+14 G_{o}^{9}-G_{o}^{7}\right)
\] & \[
\begin{aligned}
\frac{3}{8} \frac{G_{o}^{1}}{r^{5}}\left[2 \left(-21 G_{o}^{8}\right.\right. & \left.+14 G_{o}^{6}-G_{o}^{4}\right) \\
& \left.+\frac{C}{r^{2}}\left(-231 G_{o}^{10}+126 G_{o}^{8}-7 G_{o}^{6}\right)\right]
\end{aligned}
\] \\
\hline 6 & \[
\frac{7 \mathrm{C}}{16 x^{8}}\left(33 \mathrm{G}_{0}^{13}-30 \mathrm{G}_{0}^{11}+5 G_{o}^{9}\right)
\] & \[
\begin{aligned}
& \frac{7}{16} \frac{G_{o}^{r}}{r^{6}}\left[2\left(33 G_{o}^{10}-30 G_{o}^{8}+5 G_{o}^{6}\right)\right. \\
& \\
& \left.\quad+\frac{C}{r^{2}}\left(429 G_{o}^{12}-330 G_{o}^{10}+45 G_{o}^{8}\right)\right]
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{5.4 Moment Expansion for Range Rate}

The moment series for range rate is given simply by differentiating eq. (5.2~5)
\[
\begin{equation*}
\Delta \dot{R}=\dot{E} \sum_{\mathfrak{m}=0}^{\infty} G_{m}^{\prime}(E) M_{m}\left(h_{c}\right) \tag{5.4-I}
\end{equation*}
\]

This assumes that the moments themselves are not changing, i.e., that the target is either well above the ionosphere or traveling at a constant level in the ionosphere and that the horizontal variations are negligible. This assur ption also underlies the other refraction correction analytic cleveloprents discussed in this report. Note that the series here is identical to that for the elevation angle so the convergence behaviour is identical.
5.5 Gonvergence

Convergence of the moment series was considered in Ref. 8 for the specific case of tropospheric elevation angle where convergence difficulties had been noted. The general result gives a sufficient condition for convergence as
\[
\cos \mathrm{E}<\frac{a+h_{c}}{a} \sqrt{1-\frac{H_{s}}{a+h_{c}}}
\]

For example:
\[
\begin{aligned}
\frac{\text { Ionosphere }}{\text { assuming }} & \\
\mathrm{a} & =6380 \mathrm{~km} \\
\mathrm{~h}_{\mathrm{c}} & =375 . \mathrm{km} \\
\mathrm{H}_{\mathrm{s}} & =108 \mathrm{~km}
\end{aligned}
\]
we find \(\cos E<1.05\)
which is of course always satisfied, i.e., the series should always converge for the ionosphere.

Troposphere
using \(\quad a=6380 \mathrm{~km}\)
\(h_{c}=0\)
\(\mathrm{H}_{\mathrm{s}}=6.95 \mathrm{~km}\)
we find \(E>1.89^{\circ}\) for convergence.
We shall show examples indicating that the suries does, in fact, diverge below about this value.

\subsection*{5.6 Tests of the Moment Expansion for Range}

\subsection*{5.6.1 Ionosphere}

Three types of test of the moment expansion have been carried out. Each involves comparison of the moment expansion against raytrace calculations by the REEK program for various ionospheric density profiles at the SECOR effective frequency of \(434,2696 \mathrm{MHz}\).

In the first test (Ref. 7) a model ionosphere was postulated as a modified Chapman layer of reasonably representative thickness, height, and density. This was used mainly to explore the convergence properties of the range error expansion as functions of the expansion height, \(h_{c}\), and order \(N\). Figure
\[
N_{t}
\]
5.2 shows the residual error of the partial sum \(\sum_{m=0} G_{m}\left(E_{0}\right) M_{m}\) to terms of order \(N_{t}\) for various \(N_{t}\) as a function of the expansion center \(h_{c}\). Clearly the convergence is best for \(h_{c}\) at or slightly above the centroid height.

Figure 5.3 shows the residual range error as a function of the order \(N_{t}\) for expansion at the centroid compared to REEK ray traces through the first 4 of the 17 WICE ionospheric profiles described in section 6 . This makes it clear that the convergence is far from uniform and that the expansion should be stopped on even order with \(\mathrm{N}=2\) adequate.
Convergence Errox, meters


Expansion Center, \(h_{c}, \mathrm{~km}\)
- 5.8 -


FIGURE 5.3
MOMENT EXPANSION ERROR DIF (N) at \(\mathrm{E}=10^{\circ}\)

680410 - ----
80412 .........................

The remaining test cases detailed in Ref. 7 were based on real profile data for 16 of the 17 WICE ionospheric data sets. These were analyzed in the same way with respect to partial sum convergence. The results were completely in consouance with the above findings for the Chapman layer and need not be repeatert here.

Figures \(5.4,5.5\) and 5.6 show the moment series range, elevation, and range-rate corrections for the same standard ionosphere used in Ref. 20 for comparison with other commonly used analytic approximations and the REEK raytrace as a standard. It can be concluded that the moment series to \(\mathrm{N}=2\) provides a convenient and more accurate analytic approximate correction than any of the other commonly used analytic forms for ionospheric range, elevation, or range-rate tested here.

\subsection*{5.6.2 Troposphere}

Tests of the moment expansion for tropospheric refraction error were carried out on an exponential tropospheric model using REEK Raytrace as a reference.

The results shown in Table 5.2 as a function of expansion order confirm the conclusion previously derived that the series for the troposphere becomes civergent for larger orders below about \(E=2.5^{\circ}\). The partial sum to 2 terms, frowever, privides a simple and reasona!ly accurate represeṇtation.

As additional tests the series to \(N_{t}=2\) for range, elevation and range-rate mere calculated for the same standard troposphere used as a basis for comparing karious analytic approximations in Ref. 18. The comparative results are plotted in Figures 5.7, 5.8, and 5.9. Agreement with the REEK ray tru as is better far the moment expansion corrections than for the other commonly used analytic approximate correction forms tested here, at least down to about \(2^{\circ}\) elevation angle. Some of the analytic expressions are better than the moment expansions trelow \(2^{\circ}\) for tropospheric refraction corrections for elevation and range rate.


FIGURE 5.4
RANGE ERROR DUE TO IONOSPHERIC REFRACTION


FIGURE 5.5
ELEVATION ERROR DUE TO IONOSPHERIC REFRACTION


FIGURE 5.6
RANGE RATE ERROR DUE TO IONOSPHERIC REFRACTION

TABLE 5.2
TROPOSPHERIC RANGE ERROR
\[
\Delta R_{T}(\mathrm{~m})
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ELEV. } \\
& \text { Degs. }
\end{aligned}
\]} & \multicolumn{6}{|c|}{MOMENT EXPANSIONS TO ORDER:} & \multirow[t]{2}{*}{REEK} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & \\
\hline 0.1 & 46.609 & 46.609 & 64.023 & 35.035 & 149.033 & 351.920 & --- \\
\hline 0.5 & 45.842 & 45.842 & 61.868 & 36.062 & 134.230 & 283.065 & 63.6367 \\
\hline 1.0 & 43.684 & 43.684 & 56.273 & 37.865 & 101. 450 & 143.975 & 54.1222 \\
\hline 2.0 & 37.359 & 37.359 & 43.113 & 36.961 & 52.501 & 8.640 & 40.7921 \\
\hline 4.0 & 25.946 & 25.946 & 26.872 & 26.395 & 26.976 & 26.185 & 26.3309 \\
\hline 5.0 & 22.028 & 22.028 & 22.435 & 22.284 & 22.417 & 22.287 & 22.1553 \\
\hline 7.0 & 16.689 & 16.689 & 16.789 & 16.768 & 16.779 & 16.773 & --- \\
\hline 10.0 & 12.112 & 12.112 & 12.132 & 12.130 & 12.131 & 12.131 & 12.1028 \\
\hline 20.0 & 6.310 & 6.310 & 6.310 & 6.310 & 6.310 & 6.310 & 6.3105 \\
\hline 40.0 & 3.380 & 3.380 & 3.380 & 3.380 & 3.380 & 3.380 & 3.3811 \\
\hline 80.0 & 2.209 & 2.209 & 2.209 & 2.209 & 2.209 & 2.209 & 2.2092 \\
\hline 90.0 & 2.176 & 2.176 & 2.176 & 2.176 & 2.176 & 2.176 & 2.1756 \\
\hline
\end{tabular}

TROPOSPHERIC ME JEL: EXPONENTIAL
\[
\begin{aligned}
& \mathrm{N}_{\mathrm{S}}=313 \cdot 10^{-6} \\
& \mathrm{H}_{\mathrm{c}}=\mathrm{H}_{\mathrm{S}}=6951 \mathrm{~m}
\end{aligned}
\]


FIGURE 5.7
RANGE ERROR DUE TO TROPOSPHERIC REFRACTION

Gommunications Research Laboratories


FIGURE 5.8
ELEVATION ERROR DUE TO TROPOSPHERIC REFRACTION
- Commmications Research Laboratories


FIGURE 5.9
RANGE RATE ERROR DUE TO TROPOSPHERIC REFRACTION

\section*{6. PROFILE DETERMINATIONS}

Because of the predominant role of iouospheric errors in the systems under consideration, a considerable effoxt was devoted to a study of how well the ionospheric profile could be predicted or measured by available techniques, including bottomside and topside sounders and predictions. This section describes the techniques used for these predictions and their comparisons.

\subsection*{6.1 Jackson's Composite Profiles}

The principal source of ionospheric profile data was that provided by John E. Jackson of GSFC fox 16 of the 17 Alouette coincidences identified in Table 6.2a). These consisted of composite bottomside and topside profiles, based on true height reductions of bottomside ionosonde and topside Alouette data. In some cases these involved both Alouette 1 and Alouette 2 passes and in some cases both Ottowa and Grand Bahama Island bottomside soundings which provided a basis for estimation and incorporation of Latitudeinal gradients. Alouette 2 data by itself was of limited usefulness because of its low altitude ( \(\approx 530 \mathrm{~km}\) ), only slightly above \(h_{\max }{ }^{F_{2}}\). Also some adjustment was necessary to the topside heights to account for the observations discussed elsewhere (Ref. 24) that topside ionosonde reduction apparently tends normally to estimate true heights that are too low and bottomside-topside composite profiles meshed straightforwardly tend to predict a total ionospheric content (or effective thickness) \(2 \%\) to \(15 \%\), averaging about \(5 \%\) too low. The details of how these various complications were handled are recorded in a series of GSFG memoranda and documents (Refs. 24 and 25). Suffice it to day here that these "Jackson composite" profiles represent what is believed to be the best product of skilled judgement based on available topside and bottomside soundings.

\subsection*{6.2 ESSA Bottomside Profiles}

For comparison with these "Jackson composites" ESSA was asked to do an independent reduction of the associated bottomside-only profiles for six days for which good ionosonde data was available. ESSA further provided estimates of the entire ionospheric profile based on extrapolations of the bottom-side-only data us ing a modified Chapman layer fit.

\subsection*{6.3 Predictions from Radio Propagation Predictions}

A method that has been in use at GSFC for some time utilizes radio propagation predictions as an indirect basis for estimating ionization density profiles. The origin of the method is unknown but it is discissed and refined in terms of its 口umerical parameters in Ref. 26, which is the form adopted for this sutdy. As a starting point the quantities
```

 f}\mp@subsup{0}{0}{}\mp@subsup{F}{2}{}=\mp@subsup{F}{2}{}\mathrm{ layer ordinary critical frequency
 and
M(3000)F }\mp@subsup{\mp@code{2}}{2}{=}3000\textrm{km}\mathrm{ MUF factor
or
BJF (0)F 2 = MUF (0)F F = Estimated Junction Frequency or "Standard"
Maximum Usable Frequency reflected
from F}\mp@subsup{F}{2}{}\mathrm{ layer at vertical incidence
and

```
\(\operatorname{EJF}(4000) \mathrm{F}_{2}=\operatorname{MUF}(4000) \mathrm{F}_{2}=\) same thing at 4000 km range
are obtainable from predictions, e.g., Ref. 27, either numerically or graphically.
In the latter case, the EJF quantities are normally given in which case these are
transformed to the former two quantities by (Ref. 27)
\[
\begin{aligned}
& f_{0} F_{2}=\operatorname{MUF}(0) F_{2}-\frac{f_{H}}{2} \\
& \text { and } \\
& \mathrm{M}(3000) \mathrm{F}_{2}=\frac{\mathrm{EJF}(4000) \mathrm{F}_{2}}{\mathrm{I} . \mathrm{I} \times \mathrm{f}_{\mathrm{o}} \mathrm{~F}_{2}} \\
& \text { where } \quad f_{H}=\text { local magneto-gyro frequency } \\
& =\frac{\mathrm{eB}}{2 \pi \mathrm{~m}} \\
& \approx 1.5 \mathrm{MHz} \text { at Wallops Island. }
\end{aligned}
\]

In terms of these available predicted quantities, then, the layer refractivity is modelled by a modified Chapman shape
\[
\begin{aligned}
& N(h)=N_{m} \exp \left(1-z-e^{-z}\right) \\
& \text { where } \quad z=\frac{h-h_{m}}{H_{s}}
\end{aligned}
\]
with [acrameters related to the predicted quantities by
\[
\begin{aligned}
N_{\mathrm{m}}= & -\frac{1}{2}\left(\frac{f_{0} F_{2}}{\frac{1}{2}}\right)^{2} \\
\mathrm{~h}_{\mathrm{m}}= & 1393.1 \exp \left(-0.5014 \times \mathrm{M}(3000) \mathrm{F}_{2}\right) \\
& (=\text { height of layer maximum }) \\
\mathrm{H}_{\mathrm{s}}= & \frac{5}{3}\left[30+.2\left(\mathrm{~h}_{\mathrm{m}}-200\right)\right] \\
= & \frac{h_{m}-50}{3}
\end{aligned}
\]

For future reference these equations will be called the Freeman prediction.

Note that under this raodel the total refractivity integral or zeroeth order moment is given by
\[
\begin{aligned}
\int \mathrm{Ndh}= & \mathrm{M}_{0} \\
= & \mathrm{N}_{\mathrm{m}} \mathrm{H}_{\mathrm{s}} \mathrm{e} \\
& \mathrm{e}=2.71828 \ldots
\end{aligned}
\]

Two different sets of basic ionospheric predictions were compared under Freeman's method, the first using the "Basic Radio Propagation Predictions Three Months in Advance", published for the period of the tests by CRPL (now ESSA) and the second based on CCIR report \#340, "Atlas of Ionospheric Characteristics", (Oslo 1966), using the relevant sunspot number \(R=112\). Both provide the same type of data but with slightly different numerical results.

\subsection*{6.4 ESSA Predictions}

For some time ESSA has provided to GSFC monthly predictions of maximum refractivity \(\mathbb{N}_{\mathrm{m}}\) and \(h_{\mathrm{m}}\) which are then used in a form equivalent to the above equations for minitrack corrections. The predictions are valid for the month but for simplicity are given at ouly 4 times during the day which are then interpolated linearly to the time of interest.

\subsection*{6.5 Comparisons in Terms of Moments}

A convenient mode for comparison was available in terms of the moment expansion technique developed in section 5 whereby
\[
\Delta R=\sum_{m=0}^{N} G_{m}\left(E_{o}\right) M_{m}
\]
whexe \(M_{m}=m^{\text {th }}\) moment of refractivity profile distribution in height
\[
=\int_{0}^{s}\left(h-h_{c}\right)^{m} N(h) d h
\]
\[
h_{s}=\text { satellite height, taken as infinite for these comparisons }
\]
\[
\mathrm{N}=\text { expansion order. }
\]

From section 5 it was found that the expansion to \(N=2\) suffices so that only the \(N=0, \therefore, 2\) terms need be considered.

The moment expansion has the merit for these purposes of explicitly separating the angular dependence from the profile shape dependence in the \(G_{m}\left(E_{0}\right)\) and \(M_{m}\) terms, so makes possible a comparison of fundamental Iayer parameters independent of particular ray geometry, in terms of the first three moments, \(M_{0}, M_{1}\), and \(M_{2}\). Note that the dominant term, \(M_{0_{0}}\), corresponds simply to the range error on a vertical ray or total refractivity integral. The first three geometrical coefficients, \(G_{0}(E), G_{1}(E), G_{2}(E)\) are plotted in Figure 6.1.

The moment series comparison was carried out in detail for the "Jackson Composite" and "ESSA Bottomside" profiles in Ref. 28 for 6 days.

The ESSA profiles were given at 3 to 515 minute intervals, about the reference time taken as \({ }^{t_{\text {PCA }}}\), time of point-of-closest-approach.

The first 3 moments \(M_{0}, M_{1}\), and \(M_{2}\) were found by numerical integration for each adjacent time for each day, giving
\[
\begin{aligned}
& M_{n, t, d} \\
& n=\text { order }=0,1,2 . \\
& t=\text { record index for day }=1,2, \ldots T_{d} \\
& T_{d}=3 \text { to } 5 \\
& d= \text { day }=1, \ldots 6
\end{aligned}
\]

For the purpose of this analysis the 3 to 5 data within \(\pm 45\) min of TCA for each day were averaged giving
\[
\bar{M}_{D, d}
\]
which were then compared with the corresponding moments for the Jackson composite profiles, denoted \(\mathrm{M}^{\mathrm{j}}\), yielding the differences
\[
D D_{n, d}=\bar{M}_{n, d}-M_{n, d}^{j}
\]

The mean and standard deviation statistics of \(D D_{n, d}\) were computed yielding the data of Table 6.1.

It is notable from the Table that the sample bias term is only of the order of \(I / 3\) of the estimated standard deviation, in other words, the discrepancies between the two types of data do not appear to be significantly biased.

The significance of the various orders of moments in terms of the total range error discrepancy is shown in Figure 6.2 where the standard deviations above


TABLE 6.1

\section*{COMPARISON OF ESSA BOTTOMSIDE PROFILE} EXTRAPOLATIONS AND JACKSON COMPOSITE

PROFILES IN TERMS OF MOMENTS
\[
f=434 \mathrm{MHz}
\]

"

Communications Research Laboratories

- 6.8 -
are multiplied with their corresponding coefficients and plotted as the terms
\[
\sigma_{0} G_{o}(E), \sigma_{1} G_{1}(E), \sigma_{2} G_{2}(E)
\]

It is immediately evident from Figure 6.2 that the zero order term predominates by more than an order of magnitude and accounts for better than \(99 \%\) of the total variance even in the worst case of low elevation angles and fully correlated moment discrepancies. The analysis of Ref. 28 considered the actual correlation effects between the various orders of moments by computing the full moment discrepancy covariance matrix and propagating the resulting covariance in the correct manner through the moment series summation to compute the total rance variance; the results reconfirm the above general conclusion as to the dominance of the zero order term.

The first and second order moments add significantly to the accuracy of the zero order term for actual data correction. For the purpose of profile accuracy comparisons, however, the above analysis indicates that essentially all the significant difference is in the zeroeth order term and further comparisons can be made most efficiently in terms of \(M_{o}\) alone, independent of elevation angle.

This somparison is carried out in Table 6.2 for the 17 Alouette-GEOS coincidence passes, and for the four predictions discussed above. In addition, as a point of comparison, Table 6.2 includes the actual ionospheric total content measured by the SECOR two-frequency data at the point of GEOS closest approach and adjusted from measured slant path to vertical path by the geometrical coefficient \(G_{0}(E)\) evaluated at the elevation angle corresponding to the point of closest approach ( 50 degrees or greater in all cases) and using, in this case, expansion center \(h_{c}=350 \mathrm{~km}\).

The rms differences of the various predictors (columns) in Table 6.2 a) are shown in Table 6.2 b ). The rms discrepancies lie generally in the range 4 to 11 meters or roughly 15 to \(35 \%\) of the total error. It is tempting to utilize the matrix of rms discrepancies as a basis of estimation of the absolute errors of each of the columns in a modified Grubbs variance analysis. This is probably not legitimate because of correlations between the errors of various predictors; for example, columns 2 and 4 (Freeman predictions based on different ionospheric radio predictions) should be expected to be highly correlated.

TABLE 6．2a）
COMPARISON OF IONOSPHERIC PROFILE PREDICTORS IN TERMS OF \(\mathrm{M}_{\mathrm{o}}\)（TOTAL REFRACTIVITY INTEGRAL）
（METERS）AT F \(=434 \mathrm{MHz}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 \\
\hline \[
\begin{gathered}
\text { GMT } \\
\text { 号会安安定 }
\end{gathered}
\] &  &  &  &  &  \\
\hline 4030143 & 49.14 & 32.51 & 43.30 & 35.80 & 47.49 \\
\hline 4050221 & 33.49 & 29.60 & 29.75 & 33.00 & 28.69 \\
\hline 4100207 & 36.12 & 30.21 & 33.21 & 33.60 & 31.61 \\
\hline 4120245 & 27.44 & 28.55 & 28.86 & 32.10 & 30.37 \\
\hline 4170231 & 35.27 & 29.16 & 32.31 & 32.60 & 38.69 \\
\hline 4221743 & \＃\＃．\＃\＃ & 58.13 & \＃\＃．\＃\＃ & 73.30 & \＃\＃．\＃\＃ \\
\hline 5240320 & 51.40 & 26.95 & 46.58 & 29.20 & 47.22 \\
\hline 5250339 & 31.47 & 26.09 & 27.26 & 27.97 & \＃\＃．\＃\＃ \\
\hline 5290306 & 42.08 & \＃\＃．\＃\＃ & 33.11 & 30.11 & \＃\＃．\＃\＃ \\
\hline 5300325 & 36.45 & 26.70 & 28.64 & 28.88 & \＃\＃．\＃\＃ \\
\hline 6040312 & 34.06 & 26.12 & 27.60 & 27.90 & \＃\＃．\＃\＃ \\
\hline 6050331 & 37.47 & 25.04 & 35.19 & 27.63 & \＃\＃．\＃\＃ \\
\hline 6111715 & 29.03 & \＃\＃．\＃\＃ & 26.78 & 33.83 & \＃\＃．\＃\＃ \\
\hline 6131753 & 33.34 & \＃\＃．\＃\＃ & 30.53 & 35.91 & \＃\＃．\＃\＃ \\
\hline 6181739 & \＃\＃．\＃\＃ & \＃\＃．\＃\＃ & 42.15 & 35.15 & \＃\＃．\＃\＃ \\
\hline 6210458 & 23.07 & \＃\＃．\＃\＃ & 19.30 & 21.55 & \＃\＃．\＃\＃ \\
\hline 6250425 & 33.09 & \＃\＃．\＃\＃ & 28.73 & 24.76 & \＃\＃．\＃\＃ \\
\hline
\end{tabular}

TABLE 6．b）
RMS DIFFERENCE MATRIX（METERS）
PREDICTION \＃
\begin{tabular}{l|ccccc|}
\hline & 1 & 2 & 3 & 4 & 5 \\
\cline { 2 - 6 } 1 & 0 & 11.42 & 4.78 & 8.77 & 3.74 \\
2 & 11.42 & 0 & 7.94 & 5.32 & 11.04 \\
3 & 4.78 & 7.94 & 0 & 6.09 & 3.28 \\
4 & 8.77 & 5.32 & 6.09 & 0 & 9.34 \\
5 & 3.74 & 11.04 & 3.28 & 9.34 & 0 \\
\hline
\end{tabular}

Probably a more meaningful interpretation is to take the SECOR as a reference standard on the basis that its error is believed to be well under the 3 or 4 meters rms discrepancy between SECOR and the best of the predictors. Interpreted in this way, rough upper limits on the absolute error of the various predictions
are as follows
\begin{tabular}{|c|c|c|c|c|}
\hline Profile Measurements & meters & meters & meters & \% of \(\overline{\mathrm{m}}\) \\
\hline Jackson Composite & -4.1 & 4.8 & 2.5 & 13 \\
\hline ESSA Bottomside Extrapolation (only 6 cases) & -1.5 & 3.7 & 3.4 & 10 \\
\hline \multicolumn{5}{|l|}{Profile Predictions} \\
\hline CCIR Report 340 & -5.2 & 8.8 & 7.1 & 24 \\
\hline 3 Mos. Advance Predictions & -9.1 & 11.4 & 6.9 & 32 \\
\hline
\end{tabular}

The assessment of the ESSA bottomside profile extrapolations is of questionable validity as it only includes 6 cases. The Profile measurements clearly provide a better basis than the predictions with errors something less than \(10-15 \%\). The Freeman predictions based on the CCIR \#340 radio predictions show about \(24 \%\) residual error, remarkably consistent with the original claim of Freeman (Ref.26) of \(25 \%\) but notably on a completely independent data set. It may be marginally significant that all the mean biases are of a negative sense.

\subsection*{6.6 Geographical Gradients}

The visibility period of the GEOS satellite during WICE typically was such that the line-of-sight ray swept over some 20 degrees of latitude through the ionosphere. Naturally, the ionospheric changes over this distance are often significant, occasionally as much as \(2: 1\) in terms of total electron content or \(M_{0}\).

Considerable effort had been expended on defining the Jackson composite topsidebottomside ionospheric profiles at Wallops Island with considerable success when compared to SECOR measurements at the point-of-closest approach to Wallops as reported in the previous section. An investigation was then undertaken of various
proposed methods of scaling the Wallops predicted profile for its geographic variation based on either predicted or observed (bottomside sounder) geographical variations.

Define
\[
\begin{aligned}
\mathrm{N}^{\mathrm{j}}(\mathrm{~W}, \mathrm{~h})= & \text { Jackson composite refractivity at Wallops at Height } \mathrm{h}, \\
& \text { applicable at time of closest approach. }
\end{aligned}, \begin{aligned}
\mathrm{p}(\mathrm{e}, \mathrm{~h})= & \text { geographical position (lat, long) of height } \mathrm{h} \text { along ray at elevation e. } \\
\mathrm{N}^{\mathrm{p}}(\mathrm{p}, \mathrm{~h})= & \text { predicted (Freeman-CRPL Radio predictions) refractivity at } \\
& \text { position } \mathrm{p}, \text { height } \mathrm{h} .
\end{aligned},
\]

Definition of scaling methods:
\[
\begin{aligned}
& N_{4}(h)=N^{j}(W, h)\left[\frac{N^{p}(p(e, h), h)}{N^{p}(w, h)}\right] \\
& N_{5}(h)=N^{i}(N, h)\left[\frac{N_{\max }^{\mathrm{P}}(\mathrm{p}(\mathrm{e}, \mathrm{~h}))}{\mathrm{N}_{\max }^{\mathrm{P}}(\mathrm{w})} \quad \begin{array}{l}
\text { (Scaling by predicted ratio of } \\
\left.\left(\mathrm{f}_{\mathrm{o}} \mathrm{~F}_{2}\right)^{2} \text { at } \mathrm{p}(\mathrm{e}, \mathrm{~h})\right)
\end{array}\right. \\
& N_{7}(h)=N^{j}(\mathrm{~W}, \mathrm{~h}) \quad\left[\frac{N_{\max }^{\mathrm{p}}\left(\mathrm{p}\left(\mathrm{e}, \mathrm{~h}_{\mathrm{o}}\right)\right)}{\mathrm{N}_{\max }^{\mathrm{p}}(\mathrm{w})}\right] \quad \begin{array}{l}
\text { (Scaling by predicted ratio of } \\
\left.\left(\mathrm{f}_{\mathrm{o}} \mathrm{~F}_{2}\right)^{2} \text { at } \mathrm{p}\left(\mathrm{e}, \mathrm{~h}_{\mathrm{o}}\right)\right)
\end{array} \\
& N_{8}(h)=N^{j}(W, h)\left[I+\frac{\left(N_{\max }^{m}\left(L_{2}\right)-N_{\max }^{m}\left(L_{1}\right)\right)}{N_{\max }^{m}\left(L_{w}\right)} \frac{\left(L\left(p\left(e, h_{0}\right)\right)-L_{w}\right)}{\left(L_{2}-L_{1}\right)}\right]
\end{aligned}
\]
(Scaling by Latitudinal Interpolation between observed \(\left(f_{0} F_{2}\right)^{2}\) )
Note that in \(N_{7}\) and \(N_{8}\) the scaling factors are not functions of height so that the ray tracing can be done on \(\mathrm{N}^{\mathrm{j}}(\mathrm{W}, \mathrm{h})\) and the result scaled by the factors \(\mathrm{F}_{7}\) or \(\mathrm{F}_{8}\) in brackets. For \(\# 8\), the scaling was based on linear Latitude interpolation in terms of refractivity (or \(f_{0}^{2}\) ) between the Ottowa and Grand Bahama \(\mathrm{f}_{\mathrm{o}} \mathrm{F}_{2}\) 's.

Each of the corrections:
\[
\begin{aligned}
& \mathrm{R}_{\mathrm{o}}=\text { SECOR measurement } \\
& \mathrm{R}_{\mathrm{c}}=\text { Ray trace on local composite profile } \cdots \text { not scaled geographically } \\
& \mathrm{R}_{5}=\text { Ray trace on } \mathrm{N}_{5} \\
& \mathrm{R}_{7}=\mathrm{R}_{\mathrm{c}} \times \mathrm{F}_{7} \\
& \mathrm{R}_{8}=\mathrm{R}_{\mathrm{c}} \times \mathrm{F}_{8}
\end{aligned}
\]
were computed at the southerly and northerly points of \(25^{\circ}\) elevation and point-of-closest approach, denoted by: EL \(=25^{\circ}\) South, (25 S), Point of Closest approach to Wallops ( W ) and \(E L=25^{\circ}\) North ( 25 N ). The corrections are given in Table 6.3 in this order.

The overall scaling factor including geographic and elevation angle dependence is defined by the ratios
\[
\mathrm{G}_{\mathrm{i}}(\mathrm{~S} / \mathrm{W})=\mathrm{R}_{\mathrm{i}}(25 \mathrm{~S}) / \mathrm{R}_{\mathrm{i}}(\mathrm{~W})
\]
and
\[
\begin{aligned}
& \mathrm{G}_{\mathrm{i}}(\mathrm{~W} / \mathrm{N})=\mathrm{R}_{\mathrm{i}}(\mathrm{~W}) / \mathrm{R}_{\mathrm{i}}(25 \mathrm{~N}) \\
& \mathrm{G}_{\mathrm{i}}(\mathrm{~S} / \mathrm{N})=\mathrm{R}_{\mathrm{i}}(25 \mathrm{~S}) / \mathrm{R}_{\mathrm{i}}(25 \mathrm{~N}) \\
& \text { where }
\end{aligned} \mathrm{i}=0, \mathrm{c}, 4,5,7,8 .
\]

For the \(R_{c}\) data, which is based on the assumption of non-geographically scal ed profile equal to the locai composite, this ratio represents only the elevation angle scaling. This is then used as a basis to remove the first-order elevation angle dependence by forming the geographic scaling factors
\[
\begin{aligned}
F_{i}(S / W) & =G_{i}(S / W) / G_{c}(S / W) \\
F_{i}(W / N) & =G_{i}(W / N) / G_{c}(W / N) \\
F_{i}(S / N) & =G_{i}\left(S / N / / G_{c}(S / N)\right.
\end{aligned}
\]
tabulated in Table 6.4.

Finally, using the actual measurements as given by the SECOR data, ( \(F_{o}\) ) the

TABLE 6.3
RANGE CORRECTIONS (METERS)
VARIOUS GEOGRAPHIC SCALINGS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Date & \[
\underset{(\mathrm{deg})}{\mathrm{EL}}
\] & RO & RC & F7 & F8 & R5 & R7 & R8 \\
\hline \multirow[t]{3}{*}{403} & 25.01 S & 104.61 & 83.28 & 1.030 & 1.090 & 86.41 & 85.78 & 90.75 \\
\hline & 67.80 & 52.86 & 46.90 & 0.978 & 1.000 & 45.83 & 45.87 & 46.90 \\
\hline & 25.03 N & 77.03 & 83.35 & 0.946 & 0.910 & 78.95 & 78.85 & 75.82 \\
\hline \multirow[t]{3}{*}{405} & 25.07 S & 65.20 & 57.54 & 1.112 & 1.056 & 64.07 & 62.25 & 60.76 \\
\hline & 69.49 & 36.69 & 32.41 & 1.013 & 1.000 & 32.85 & 32.73 & 32.41 \\
\hline & 25.03 N & 50.77 & 57.64 & 0.961 & 0.945 & 55.56 & 55.69 & 54.46 \\
\hline \multirow[t]{3}{*}{410} & 24.98 S & 66.93 & 64.19 & 1.067 & 0.944 & 68.75 & 68.49 & 60.58 \\
\hline & 82.53 & 37.26 & 33.73 & 0.995 & 1.000 & 33.55 & 33.56 & 33.73 \\
\hline & 25.03 N & 72.83 & 64.24 & 0.954 & 1.060 & 61.36 & 61.29 & 67.95 \\
\hline \multirow[t]{3}{*}{412} & 24.99 S & 54.50 & 55.06 & 1.115 & 1.038 & 61.79 & 61.39 & 57.19 \\
\hline & 56.19 & 32.24 & 34.12 & 1.011 & 1.000 & 34.52 & 34.49 & 34.12 \\
\hline & 25.04 N & 51.80 & 55.11 & 0.948 & 0.962 & 52.37 & 52.24 & 53.05 \\
\hline \multirow[t]{3}{*}{417} & 25.07 S & 70.95 & 62.03 & 1.106 & 1.103 & 68.75 & 68.60 & 68.44 \\
\hline & 81.74 & 35.59 & 32.90 & 1.003 & 1.000 & 33.10 & 33.09 & 32.99 \\
\hline & 25.00 N & 60.05 & 62.34 & 0.945 & 0.899 & 59.04 & 58.91 & 56.06 \\
\hline \multirow[t]{3}{*}{524} & 25.24 S & 125.04 & 88.24 & 1.190 & 1.088 & 106.37 & 105.01 & 96.01 \\
\hline & 84.28 & 51.44 & 48.69 & 0.977 & 1.000 & 47.45 & 47.57 & 48.69 \\
\hline & 30.20 N & 42.25 & 81.03 & 0.920 & 0.752 & 74.79 & 74.55 & 60.93 \\
\hline \multirow[t]{3}{*}{525} & 30.30 S & 52.90 & 47.12 & 1.334 & 1.016 & 62.95 & 62.86 & 47.86 \\
\hline & 76.49 & 31.31 & 28.42 & 1.105 & 1.000 & 31.66 & 31.40 & 28.42 \\
\hline & 34.88 N & 48.77 & 43.44 & 1.103 & 1.008 & 48.30 & 47.91 & 43.79 \\
\hline \multirow[t]{3}{*}{529} & 25.33 S & 83.72 & 62.83 & I. 115 & 0.975 & 70.92 & 70.06 & 61.26 \\
\hline & 62.18 & 46.67 & 37.42 & 0.960 & 1.000 & 35.40 & 35.92 & 37.42 \\
\hline & 25.22 N & 77.09 & 62.23 & 0.848 & 0.951 & 53.85 & 53.62 & 60.14 \\
\hline \multirow[t]{3}{*}{530} & 25.11 S & 85.14 & 54.82 & 1.170 & 0.893 & 64.35 & 64.14 & 48.95 \\
\hline & 79.51 & 37.62 & 29.81 & 0.948 & 1.000 & 28.25 & 28.26 & 29.81 \\
\hline & 34.94 N & 54.15 & 45.61 & 0.897 & 0.924 & 41.16 & 40.91 & 42.14 \\
\hline \multirow[t]{3}{*}{604} & 32.26 S & 62.31 & 46. Cl & 1.125 & 1.037 & 52.09 & 51.76 & 47.71 \\
\hline & 59.61 & 39.50 & 32.01 & 0.938 & 1.000 & 30.20 & 30.03 & 32.01 \\
\hline & 25.18 N & 59.10 & 52.96 & 0.807 & 0.950 & 43.15 & 42.74 & 50.31 \\
\hline \multirow[t]{3}{*}{605} & 25.38 S & 93.34 & 67.26 & 1.375 & 1.008 & 90.93 & 92.48 & 67.80 \\
\hline & 75.16 & 39.40 & 36.88 & 0.974 & 1.000 & 35.96 & 35.92 & 36.88 \\
\hline & 35.18 N & 56.29 & 55.81 & 0.809 & 0.916 & 45.82 & 45.15 & 51.12 \\
\hline \multirow[t]{3}{*}{611} & 39.96 S & 41.18 & 43.40 & 1.123 & 0.995 & 47.98 & 48.74 & 43.08 \\
\hline & 68.99 & 31.35 & 31.87 & 1.061 & 1.000 & 33.60 & 33.81 & 31.87 \\
\hline & 25.13 N & 65.55 & 57.78 & 1.076 & 1.050 & 62.14 & 62.17 & 60.67 \\
\hline \multirow[t]{3}{*}{613} & 39.88 S & 46.49 & 48.57 & 1.021 & 1.002 & 49.60 & 49.59 & 48.67 \\
\hline & 77.97 & 32.74 & 34.25 & 0.979 & 1.000 & 33.57 & 33.53 & 34.25 \\
\hline & 25.33 N & 76.42 & 63.72 & 1.021 & 1.186 & 65.65 & 65.06 & 75,57 \\
\hline \multirow[t]{3}{*}{621} & 30.18 S & 47.20 & 33.71 & 1.771 & 0.993 & 56.69 & 59.70 & 33.47 \\
\hline & 49.68 & 30.82 & 24.71 & 1.117 & 1.000 & 27.23 & 27.60 & 24.71 \\
\hline & 45.13 N & 30.82 & 26.25 & 0.951 & 0.978 & 25.12 & 24.96 & 25.67 \\
\hline \multirow[t]{3}{*}{625} & 29.82 S & 65.19 & 50.69 & 1.657 & 0.981 & 81.98 & 83.99 & 49.73 \\
\hline & 83.98 & 33.84 & 29.52 & 1.020 & 1.000 & 29.95 & 30.11 & 29.52 \\
\hline & 39.99 N & 44.39 & 42.46 & 0.751 & 0.957 & 32.69 & 31.89 & 40.63 \\
\hline
\end{tabular}

\section*{Communications Research Laboratories}
fractional error is taken as
\[
\begin{aligned}
\varepsilon_{i}(X) & =\frac{F_{i}(X)-F_{0}(X)}{F_{0}(X)} \\
X & =\left\{\begin{array}{l}
S / W \\
W / N \\
S / N
\end{array}\right.
\end{aligned}
\]

The mean and estimated standard deviation of these errors are given in Table 6.4.

Within the limitation of the small data sample here represented, the following conclusions emerge.
1) In all cases - even unscaled, the mean scaling factor errors are relatively small compared to the random part. There is no significant indication of bias.
2) Without any scaling at all the standard deviation of the error is of the order of \(13 \%(\mathrm{~S} / \mathrm{W}), 28 \%(\mathrm{~W} / \mathrm{N}), 24 \%(\mathrm{~S} / \mathrm{N})\).
3) The 5, 7 corrections which are based on the predictions are no significant improvement over no geographic scaling at all.
4) The best scaling is \#8 which is the linear scaling in latitude based on bottomside \(f_{0} F_{2}\) measurement.

This conclusion should be further qualified by noting that these passes were all essentially South-North and represent only two times of day.

Communications Research Laboratories

TABLE 6.4
GEOGRAPHIC SCALING FACTORS, F (X, Y)

DATE - 1968
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4-03 & 4-05 & 4-10 & 4-12 & 4-17 & 5-24 & 5-25 & 5-29 & 5-30 & 6-04 & 6-05 & 6-11 & \(6-13\) & 6-21 & 6-25 & MEAN & \[
\begin{aligned}
& \text { STD. } \\
& \text { DEV. }
\end{aligned}
\] \\
\hline \multicolumn{18}{|c|}{F(S/W)} \\
\hline SECOR & 1.114 & 1.000 & 0.943 & 1.047 & 1.055 & 1.341 & 1.019 & 1.068 & 1.231 & 1.097 & 1.299 & 1.153 & 1.255 & 1.123 & 1.122 & 0 & 0 \\
\hline RC & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & -0.102 & 0.133 \\
\hline R5 & 1.062 & 1.098 & 1.076 & 1.109 & 1.105 & 1.239 & 1.199 & 1.193 & 1.239 & 1.200 & 1.387 & 1.020 & 1.051 & 1.526 & 1.594 & 0.079 & 0.173 \\
\hline R7 & 1. 053 & 1.071 & 1.076 & 1.102 & 1.103 & 1.218 & 1.207 & 1.162 & 1.234 & 1.199 & 1.412 & 1.014 & 1.043 & 1.586 & 1.624 & 0.079 & 0.185 \\
\hline R8 & 1.090 & 1.055 & 0.943 & 1.038 & 1.103 & 1.088 & 1.016 & 0.975 & 0.893 & 1.037 & 1.008 & 1.050 & 1.186 & 0.993 & 0.981 & -0.076 & 0.120 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{18}{|c|}{\(\mathrm{F}(\mathrm{W} / \mathrm{N})\)} \\
\hline SECOR & 1.222 & 1.284 & 0.974 & 1.005 & 1.120 & 0.494 & 1.019 & 0.978 & 0.941 & 0.904 & 0.944 & 0.965 & 1.001 & 0.941 & 0.912 & 0 & 0 \\
\hline RC & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1. 000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.064 & 0.280 \\
\hline R5 & 1.031 & 1.051 & 1.041 & 1.064 & 1.059 & 0.947 & 0.998 & 0.900 & 0.952 & 0.864 & 0.842 & 1.049 & 1.042 & 0.868 & 0.759 & 0.020 & 0.255 \\
\hline \(1: 7\) & 1.034 & 1.045 & 1.043 & 1.066 & 1.062 & 0.942 & 0.998 & 0.883 & 0.946 & 0.860 & 0.831 & 1.059 & 1.043 & 0.851 & 0.736 & 0.014 & 0.255 \\
\hline R8 & 1.099 & 1.058 & 0.945 & 1.038 & 1.112 & 0.752 & 1.008 & 0.951 & 0.924 & 0.950 & 0.915 & 0.995 & 1.002 & 0.978 & 0.957 & 0.022 & 0.147 \\
\hline \multicolumn{18}{|c|}{\(\mathrm{F}(\mathrm{S} / \mathrm{N})\)} \\
\hline SECOR & 1.359 & 1.286 & 0.919 & 1.053 & 1.187 & 2.718 & 1. 000 & 1.093 & 1.308 & 1.214 & 1.376 & 1.196 & 1.253 & 1. 193 & 1.230 & 0 & 0 \\
\hline RC & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & I. 000 & 1.000 & -0.182 & 0.238 \\
\hline R5 & 1.095 & 1.155 & 1.121 & 1.181 & 1.170 & 1.308 & 1.202 & 1.325 & 1.301 & 1.390 & 1.647 & 0.973 & 1.009 & 1.757 & 2.101 & 0.071 & 0.297 \\
\hline R7 & 1.089 & 1.119 & 1.118 & 1.176 & 1.170 & 1.293 & 1.210 & 1.315 & 1.304 & 1.394 & 1.700 & 0.958 & 1.000 & 1.863 & 2.206 & 0.081 & 0.325 \\
\hline R8 & 1.198 & 1.117 & 0.892 & 1.079 & 1.226 & 1.337 & 1.008 & 1.025 & 0.966 & 1.092 & 1.101 & 1.058 & 1.184 & 1.015 & 1.025 & -0.119 & 0.172 \\
\hline
\end{tabular}

Page 6.16

\section*{7. MULTIPLE FREQUENCY IONOSPHERIC MEASUREMENTS COMPARISONS}

Two of the systems used in the WICE made multiple frequency measurements of the ionosphere to provide their own corrections, but incidentally provided a valuable basis of intercomparison and reference for other external ionospheric corrections.

The SECOR system utilizes a pair of 2:1 coherently related carriers on the down-Iink at 224.5 and 449.0 MHz . Group range is measured on each and the difference provides an absolute measurement of the ionosphexic exror as explained in section 2.3.1.

The TRANET system transmits from the satellite pure CW frequencies of 162 , 324 and 972 MHz in a coherent \(1: 2: 6\) relationship. Processing of the data as explained in 2.4 .4 yields an estimate of the ionospheric doppler or phase rate error \(\Delta f_{I}\).

The SECOR and TRANET measurements can be scaled to any reference frequency using the \(f^{-2}\) law; the standard frequency for these comparisons has been the SECOR equivalent frequency, i.e., the single frequency equivaient on which would be observed the same errors as are seen on the actual primary up and down link frequencies defined by
\[
\begin{equation*}
\frac{2}{f_{\mathrm{eq}}^{2}}=\frac{1}{f_{\mathrm{up}}^{2}}+\frac{1}{\mathrm{f}_{\text {down }}^{2}} \tag{7.1}
\end{equation*}
\]
or
\[
\begin{align*}
f_{\mathrm{eq}} & =\frac{1}{\left[\frac{1}{2}\left(\frac{1}{f_{\mathrm{up}}^{2}}+\frac{1}{f_{\text {down }}^{2}}\right)\right]^{1 / 2}}  \tag{7.2}\\
& =\frac{1}{\left[\frac{1}{2}\left(\frac{1}{(420.9)^{2}}+\frac{1}{(449.0)^{2}}\right)\right]^{1 / 2}}  \tag{7.3}\\
& =434.26 \mathrm{ML-Iz} . \tag{7.4}
\end{align*}
\]

The SECOR measurements are referred to \(f_{e q}\) by
\[
\begin{equation*}
\Delta R_{\text {eq }}^{\text {secor }}<{ }=\Delta R_{2} \times\left(\frac{f_{2}}{t_{e q}}\right)^{2} \tag{7.5}
\end{equation*}
\]
and the TRANET measurements are referred to \(\mathfrak{f}_{\text {eq }}\) by
\[
\begin{equation*}
\Delta \dot{R}_{\text {eq }}^{\text {tranet }}=\frac{c}{f_{1}}\left(\Delta f_{I_{1}}\right)\left(\frac{f_{1}}{f_{e q}}\right)^{2} \tag{7.6}
\end{equation*}
\]
where \(\Delta R_{2}\) and \(\Delta f_{I_{1}}\) are as defined in sections 2.3.1 and 2.4.1.
The fundamental problem remains that the TRANET measurements are basically range-rate error while the SECOR measurements are in range. In principle the comparison could be made either in the rate domain by differentiating SECOR data or in the range domain by integrating TRANE'T, but with the complication of an undetermined constant of integration. Both have been tried and it has emerged that the range comparison is more instructive, and that the undetermined constant can be resolved by a suitable regression procedure.

The general approach to this regression may be described as follows and is described in more detail in Refs. 29 and 30.

The measured ionospheric error is modelled as
\[
\begin{equation*}
\Delta R^{*}(t)=\Delta R^{c}(t)+B+\varepsilon \tag{7.7}
\end{equation*}
\]
where \(\quad \varepsilon\) is a randomfitcing error to be minimized
\(B\) is a bias term to be recovered
\(\Delta R^{C}(t)\) is the computed range error at time \(t\) modelled as either
1) 'Time Gradient" model
\[
\begin{equation*}
\Delta R^{c}(t)=\left[N_{m}+\dot{N}_{m}\left(t-t_{0}\right)\right] \Delta R_{1}(t) \tag{7.8}
\end{equation*}
\]
or
2) "Latitudinal Gradient" model
\[
\begin{equation*}
\Delta R^{c}(t)=\left[N_{m}+\hat{N}_{m}\left(L(t)-L\left(t_{0}\right)\right)\right] \Delta R_{I}(t) \tag{7.9}
\end{equation*}
\]
where \(\quad N_{m}=\) maximum ionization density \(\left(\mathrm{e} / \mathrm{m}^{3}\right)\)
\[
\begin{align*}
\stackrel{N}{\mathrm{~N}}_{\mathrm{m}} & =\text { time gradient of max. ionization density, }\left(\mathrm{e} / \mathrm{m}^{3} / \mathrm{sec}\right) \\
\widehat{\mathrm{N}}_{\mathrm{m}} & =\text { latitudinal gradient of max. electron density }\left(\mathrm{e} / \mathrm{m}^{3} / \mathrm{deg}\right) \\
\mathrm{t}_{0} & =\text { time of closest approach } \\
\mathrm{L} & =\text { latitude } \\
\Delta R_{1}(t) & =\text { per unit maximum density range errox at time } t \\
& =\int_{0}^{R_{s a t}}(\mathrm{n}(\mathrm{~h}(\mathrm{~s}))-\mathrm{I}) \mathrm{ds} \tag{7.10}
\end{align*}
\]
where
\(h(s)\) is taken as the straight path
\[
\begin{align*}
\mathrm{h}(\mathrm{~s}) & =\sqrt{\mathrm{a}^{2}+\mathrm{s}^{2}+2 a s \sin E(\mathrm{t})}-\mathrm{a}  \tag{7.11}\\
\mathrm{a} & =\text { radius of earth } \\
\mathrm{n}(\mathrm{~h})-1 & =-40.25 \mathrm{~N}_{\mathrm{L}}(\mathrm{~h}) / \mathrm{f}_{\mathrm{Hz}}^{2} \tag{7.12}
\end{align*}
\]
\(N_{1}(h)\) is the per unit maximum density ionospheric model taken in various cases as either "Chapman" or "empirical"
"Empirical" model defined by Figure 7.1
"Chapman" model defined by
\[
\begin{align*}
N_{1}(\mathrm{~h})= & \exp \left(1-\mathrm{z}-\mathrm{e}^{-\mathrm{z}}\right) \quad\left(\mathrm{e} / \mathrm{m}^{3}\right)  \tag{7.13}\\
\mathrm{z}= & \frac{\mathrm{h}-\mathrm{h}_{\mathrm{m}}}{\mathrm{H}_{\mathrm{s}}}  \tag{7.14}\\
\mathrm{~h}_{\mathrm{m}}= & 375 \mathrm{~km} \quad \text { (nominal) }  \tag{7.15}\\
\mathrm{H}_{\mathrm{s}}= & \frac{5}{3}\left[30+0.2\left(\mathrm{~h}_{\mathrm{m}}-200\right)\right] \quad \text { (or in some experiments }  \tag{7.16}\\
& \\
& \left.H_{\mathrm{s}}=\frac{k_{\mathrm{s}}}{3}\left[30+0.2\left(\mathrm{~h}_{\mathrm{m}}-200\right)\right] \quad \mathrm{km}\right) \tag{7.17}
\end{align*}
\]

\section*{Communications Research Laboratories}


FIGURE 7.1
VERTICAL PROFILE
FOR ELECTRON DENSTTY DISTRIBUTION

As a first test of this regression procedure it was excercised on the problem of determining bias if any in the SECOR two-frequency ionospheric data (ICOR) (Ref, 30).

Several preliminary runs with variations in the model by adding an \(\ddot{\mathrm{N}}\) term showed that the regression was badly unstable in this case (overmodelled). Similarly several runs eliminating the \(\dot{N}\) term showed that the gradient term was necessary in general to avoid badly biased results. Essentially all the succeeding \(x \times 1 s\) then were with the three unknown terms as described, \(B\), \(\mathrm{N}_{\mathrm{m}}\) and \(\dot{\mathrm{N}}_{\mathrm{m}}\) (ox \(\hat{\mathrm{N}}_{\mathrm{m}}\) ).

Next a series of runs were made to test the sensitivity of the resuits to the ionospheric modelling. parameters, \(\mathrm{k}_{\mathrm{s}}\) and \(h_{\mathrm{m}}\) (in eqs. 7.14 and 7.17). The results are shown in Table 7.1. In interpreting these results it would be hoped that the recovered bias, \(B\), would be relatively insensitive to the modeling. In fact, it is found that over the reasonable range of variation of the ionospheric layer shape parameters, the recovered bias varies by as much as 3:4 meters but generally less than \(I / 2\) meter. The recovered \(N_{m}\) and \(\dot{N}_{m}\) on the other hand should be expected to vary directly with the modelling parameters in such a way as to tend to hold the total ionospheric content more or less fixed. From equations(7.13) to (7.17) the total layer refractivity content, \(\mathrm{M}_{\mathrm{o}}\), which is just the range exror on a vertical ray is given for the 434.26 MHz SECOR equivalent frequency by
\[
\begin{aligned}
& M_{0}\left(k_{s}, h_{m}, N_{m}\right)=\int_{0}^{\infty}(n-1) d h \\
& =-\frac{40.3}{\mathrm{f}^{2}} \mathrm{H}_{\mathrm{s}} \mathrm{e} \mathrm{~N}_{\mathrm{m}} \\
& =-\frac{40.3 \mathrm{e} 200}{(434.26)^{2} 10^{12} 3} \mathrm{~N}_{\mathrm{e} / \mathrm{m}} \mathrm{k}_{\mathrm{s}}\left[\mathrm{~h}_{\mathrm{mm}}-50\right] \\
& =3.873 \cdot 10^{-8} N_{\mathrm{m}_{\mathrm{e} / \mathrm{cc}}} \mathrm{k}_{\mathrm{s}}\left[\mathrm{~h}_{\mathrm{m}_{\mathrm{km}}}-50\right] \quad \text { meters } \\
& \text { Similarly } \\
& \dot{M}_{0}\left(k_{s}, h_{m}, N_{m}\right)=3.873 \cdot 10^{-8} \dot{N}_{\mathrm{m}_{\mathrm{e}} / \mathrm{cc} / \mathrm{min}} \mathrm{k}_{\mathrm{s}}\left[\mathrm{~h}_{\mathrm{m}_{\mathrm{km}}}-50\right] \text { meters } / \mathrm{min} .
\end{aligned}
\]

TABLE 7.1
SECOR BIAS REGRESSIONS
TESTS OF SENSITIVITY TO LAYER SHAPE PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
FIXED \\
LAYER \\
SHAPE \\
PARAMETERS
\end{tabular}} & \multicolumn{3}{|c|}{\begin{tabular}{l}
RECOVERED \\
PARAMETERS
\end{tabular}} & \multicolumn{2}{|l|}{INFERRED MOMENTS (Should be Invariant to Model for Date)} & \[
\begin{aligned}
& \text { SECOR } \\
& \text { (RAW) } \\
& \text { (Adj. to } \\
& \text { Vertical) }
\end{aligned}
\] \\
\hline Date &  & \[
\begin{gathered}
\mathrm{h}_{\mathrm{m}} \\
\text { Used }
\end{gathered}
\] & \[
\begin{gathered}
\text { SECOR } \\
\text { Bias, B } \\
\text { (meters) } \\
\hline
\end{gathered}
\] & \(\mathrm{N}_{\mathrm{m}}(\mathrm{el} / \mathrm{cc})\) & \[
\underset{(\mathrm{el} / \mathrm{cc} / \mathrm{min})}{\dot{\mathrm{N}}_{\mathrm{m}}}
\] & \[
\underset{\text { (meters) }}{\mathrm{M}_{\mathrm{o}}}
\] & \[
\begin{gathered}
\dot{\mathrm{M}}_{\mathrm{o}} \\
\text { (meters/min) }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{M}_{\mathrm{o}} \\
\text { (meters) }
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& 04 / 10 / 68 \\
& 04 / 10 / \epsilon \hat{0}
\end{aligned}
\] & \[
\begin{aligned}
& 5.24 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 350 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& -2.3 \\
& -2.1
\end{aligned}
\] & \[
\begin{aligned}
& 0.6216 \times 10^{6} \\
& 0.6603
\end{aligned}
\] & \[
\begin{aligned}
& 6574 \\
& 6858
\end{aligned}
\] & \[
\begin{aligned}
& 37.79 \\
& 38.31
\end{aligned}
\] & \[
\begin{aligned}
& .40 \\
& .40
\end{aligned}
\] & 36.12 \\
\hline \[
\begin{aligned}
& 04 / 12 / 68 \\
& 04 / 12 / 68
\end{aligned}
\] & \[
\begin{aligned}
& 5.24 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 350 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& -3.9 \\
& -3.8
\end{aligned}
\] & \[
\begin{aligned}
& 0.4998 \\
& 0.5196
\end{aligned}
\] & \[
\begin{aligned}
& -3502 \\
& -3640
\end{aligned}
\] & \[
\begin{aligned}
& 30.39 \\
& 30.15
\end{aligned}
\] & -.21
-.21 & 27.44 \\
\hline \[
\begin{aligned}
& 04 / 17 / 68 \\
& 04 / 17 / 68
\end{aligned}
\] & \[
\begin{aligned}
& 5.24 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 350 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& -2.1 \\
& -2.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.5990 \\
& 0.6194
\end{aligned}
\] & \[
\begin{aligned}
& -12919 \\
& -13450
\end{aligned}
\] & \[
\begin{aligned}
& 36.42 \\
& 35.94
\end{aligned}
\] & \[
\begin{array}{r}
-.79 \\
-.78
\end{array}
\] & 35.27 \\
\hline 04/05/68 & 5.24 & 350 & +3.9 & 0.4892 & -12980 & 29.74 & -. 79 & 33.49 \\
\hline \[
\begin{aligned}
& 05 / 24 / 68 \\
& 05 / 24 / 68 \\
& 05 / 24 / 68
\end{aligned}
\] & \[
\begin{aligned}
& 5.24 \\
& 5.24 \\
& 5.24
\end{aligned}
\] & \[
\begin{aligned}
& 375 \\
& 350 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& +8.3 \\
& +9.7 \\
& +6.3
\end{aligned}
\] & \[
\begin{aligned}
& 0.6415 \\
& 0.6720 \\
& 0.6222
\end{aligned}
\] & \[
\begin{aligned}
& -72301 \\
& -77540 \\
& -67813
\end{aligned}
\] & \[
\begin{aligned}
& 42.26 \\
& 40.86 \\
& 44.14
\end{aligned}
\] & \[
\begin{aligned}
& -4.76 \\
& -4.71 \\
& -4.81
\end{aligned}
\] & 51.40 \\
\hline \[
\begin{aligned}
& 05 / 25 / 68 \\
& 05 / 25 / 68 \\
& 05 / 25 / 68 \\
& 05 / 25 / 68
\end{aligned}
\] & \[
\begin{aligned}
& 5.24 \\
& 5.24 \\
& 5.24 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 375 \\
& 350 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& -2.0 \\
& -1.3 \\
& -0.5 \\
& -0.4
\end{aligned}
\] & \[
\begin{aligned}
& 0.4618 \\
& 0.4869 \\
& 0.5163 \\
& 0.5368
\end{aligned}
\] & \[
\begin{aligned}
& -\quad 3135 \\
& -\quad 3307 \\
& =3507 \\
& -\quad 3664
\end{aligned}
\] & \[
\begin{aligned}
& 32.76 \\
& 32.07 \\
& 31.39 \\
& 31.14
\end{aligned}
\] & \[
\begin{aligned}
& -.22 \\
& =.22 \\
& -.21 \\
& -.21
\end{aligned}
\] & 31.47 \\
\hline \[
\begin{aligned}
& 05 / 30 / 68 \\
& 05 / 30 / 68
\end{aligned}
\] & \[
\begin{aligned}
& 5.24 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 350 \\
& 350
\end{aligned}
\] & -4.3 & \[
\begin{aligned}
& 0.6280 \\
& 0.6575
\end{aligned}
\] & \[
\begin{aligned}
& -12539 \\
& -13145
\end{aligned}
\] & \[
\begin{aligned}
& 38.18 \\
& 38.15
\end{aligned}
\] & -.76
-.76 & 36.45 \\
\hline \[
\begin{aligned}
& 04 / 03 / 68 \\
& 04 / 03 / 68
\end{aligned}
\] & 5.24
5.0 & 350
350 & +2.4
+2.7 & 0.7813 & \[
\begin{aligned}
& -26620 \\
& -27821
\end{aligned}
\] & \[
\begin{aligned}
& 47.51 \\
& 47.21
\end{aligned}
\] & \[
\begin{aligned}
& -1.62 \\
& -1.61
\end{aligned}
\] & 49.14 \\
\hline
\end{tabular}

The results of these calculations are given under the columns "inferred moments". Note that except for the anomolous date of \(5 / 24 / 68\) where extremely large gradients were observed, the results of the \(M_{0}\) and \(\dot{M}_{0}\) calcuiations are indeed reasonably invariant ( \(<5 \%\) ) to the assumed layer shape parameter variations. Finally in the last column are listed the SECOR (ICOR) measurements of \(\mathrm{M}_{\mathrm{o}}\), adjusted to the vertical as in Table 6.2. These can be compared to the inferred \(\mathrm{M}_{0}\) and the inferred ICOR bias.

Table 7.2 shows the results of a corresponding adjustment of the integrated TRANET data in column (B), and the comparison to the SECOR data in terms of the quantity
\[
\varepsilon_{4}=\Delta R_{\text {secor }}-\frac{f_{\text {tranet }}^{2}}{f_{\text {secor }}^{2}} \times \Delta R_{\text {tranet }}
\]
in column (C) . This can be compared to the SECOR bias adjustment defined from (7.7) as
\[
B=\Delta R_{\text {secor }}-\Delta R^{c}-\varepsilon
\]
where \(\Delta R^{C}\) is the computed, modelled range error.
Five cases in the two sets of data overlapped and these are listed in column (D). While there may be some hint of a constant bias difference of several meters between \(\varepsilon_{4}\) and \(B\) the small data sample precludes ascribing too much significance to it.

Column (E) lists the standard deviation of the difference between \(\Delta R(t)_{\text {secor }}\) and \(\Delta R_{\text {tranet }} x \frac{f_{\text {tranet }}^{2}}{f_{\text {secor }}^{2}}\) over the duration of the common track after removing the mean difference. The differences run in the area of \(I / 2\) to \(I\) meter and when plotted appear to show no consistent systematic trends.

The nature of these differences is further indicated in Figures 7.2-7.Il which show the variation over the observed pass of the difference between the SECOR and the TRANET observed ionospheric range error, referred to SECOR equi-

TABLE 7.2
LEAST-SQUARES SOLUTION USING TRANET DATA

B
C
D

E
(1) TRANET Data is self adjusted for Bias, \(N_{m}, \dot{N}_{m}\) and scaled to \(f_{\text {secor }}\)
(2) SECOR Unadjusted, at \(f_{\text {secor }}\)
(3) \(\varepsilon_{4}=\Delta R\left(t_{o}\right)_{\text {secor }}-\Delta R\left(t_{o}\right)_{\text {tranet }}\), all adjusted to \(f_{\text {secor }}\)
(4) From Table 7.1 , using \(\mathrm{k}_{\mathrm{s}}=5.24, \mathrm{~h}_{\mathrm{m}}=350 \mathrm{~km}\)
(5) \(\mathrm{t}_{\mathrm{o}}=\) time of closest approach
valent frequency and adjusted for the mean difference. For the purpose of this comparison it was found necessary to smooth the SECOR Ionospheric data rather heavily, by two successive passes through a 36 -second span filter, with rejection of all points more than \(1.5 \sigma\) off the curve, between passes. There do not appear to be any consistent systematic trends in these differences.

It is of interest to compare the results of these SECOR-TRANET Comparisons with the SECOR vs Profile-Ray-Trace results in Table 6.2a), which indicate comparable RMS differences of the order of \(3-4 \mathrm{~m}\). It is significant then that the TRANET data can be integrated with the integration constant resolved internally by absolute ionospheric error estimates to at least the same order of accuracy as the best profile determinations.

a)

b)

FIGURE 7.2
VARIATIONS IN THE DIFFERENCE
BETWEEN SECOR AND INTEGRATED
TRANET IONOSPHERIC RANGE ERROR MEASUREMFNTS

a)

Day 103

b)

FIGURE 7.3
DIFFERENCE IN VARIATIONS AS
OBSERVED IN SECOR DATA AND
INTEGRATED TRANET DATA

Communications Research Laboratories

a)

b)

FIGURE 7.4


b)

FIGURE 7.5
DIFFERENCE IN VARIATIONS AS
OBSERVED IN SECOR DATA AND INTEGRATED TRANET DATA

a)

b)

FIGURE 7.6
DIFFERENGE IN VARIATIONS AS OBSERVED IN SECOR DATA AND INTEGRATED TRANET DATA

Day 120
Rise 0232Z April 29, 1968

a)

Day 121
Rise 0251Z

b)

FIGURE 7.7
DIFFERENCE IN VARIATIONS AS OBSERVED IN SECOR DATA AND INTEGRATED TRANET DATA

a)

b)

FIGURE 7.8
DIFFERENGE IN VARIATIONS AS OBSERVED IN SECOR DATA AND INTEGRATED TRANET DATA

Day 124
Rise 01592
May 3, 1968

a)

b)

FIGURE 7.9
DIFFERENCE IN VARIATIONS AS
OBSERVED IN SECOR DATA AND
INTGGRATED TRANET DATA

a)

b)

FIGURE 7.10
DIFFERENCE IN VARIATIONS AS OBSERVED IN SECOR DATA AND INTEGRATED TRANET DATA

a)

FIGURE 7.11
DIFFERENCE IN VARIATIONS AS OBSERVED IN SECOR DATA AND INTEGRATED TRANET DATA

\section*{8. SECOR-ORBIT COMPARISONS}

Reference orbits were available for the 17 ionospheric test case passes. These reference orbits were derived from short arc orbital fits to observed Laser, C-Band Radar, and optics data. Over the Wallops observation span the orbital data is believed to be accurate to roughly \(\pm 1\) meter in the range component and \(\pm 1\) arcsecond in the angular components.

The SECOR Data, corrected for Tropospheric errors as described in section 2 and for Ionospheric errors by its own two-frequency determination was compared to the orbital data. The residual data was further adjusted for SECOR range bias and time bias to best fit the orbital data. The adjusted residuals are plotted in Figures 8.1-8.15, and the adjustment noted.

On the same plots for each day and to the same scale are plotted for comparison the ionospheric error corrections as determined by
a) SECOR itself, 2 frequency unadjusted
b) Raytracing of the local (Wallops) WICE composite ionospheric profile
c) Raytracing of the geographically-scaled composite profile, using the type 8 gradient scaling discussed in section 6.6 , i.e., scaling proportional to \(\mathbf{f}_{\mathbf{o}} \mathrm{F}_{2}\) measured at the latitudes of Grand Bahama, Wallops, and Ottowa, with linear interpolation for intermediate latitudes.

Comparing the geographically scaled versus the unscaled composite raytrace computations to the SECOR ionospheric measurement confirms the general conclusion of section 6.6, namely that the best of the predicted latitudinal gradient modifications is not very good, in fact, hardly worth while.

Comparing the measured ionospheric correction with the orbital residuals after correction, plotted to the same scale, indicates the high degree of correction achieved for the SECOR data.

The recovered biases in range and time for the various passes are listed together in Table 8.1. While the overall bias trends are clearly persistent and statistically significant, it cannot necessarily be inferred that the discrepancies

\section*{Communications Research Laboratories}
noted are in fact correctly attributed to SECOR range error or timing error. The recovered timing biases are in fact one or two orders of magnitude larger than should be considered reasonable and can probably be ascribed to aliasing of second-order (i.e., non-linear) latitudinal variations into recovered time bias.

TABLE 8.1
BIAS ADJUSTMENTS; SECOR-ORBIT FITS
\begin{tabular}{cccc} 
Date & \multicolumn{2}{c}{\begin{tabular}{c} 
Recovered \\
Bias \\
Adjustments
\end{tabular}} & \\
\cline { 2 - 3 } & \begin{tabular}{c} 
Range \\
Bias
\end{tabular} & \begin{tabular}{c} 
Time \\
Bias \\
(Milli-
\end{tabular} & \begin{tabular}{c} 
RMS \\
Adjusted \\
Fit Error
\end{tabular} \\
(Meters) & Seconds) & (Meters) \\
\hline \(4 / 03\) & -11.12 & -1.06 & 1.85 \\
\(4 / 05\) & -16.15 & -1.16 & 2.41 \\
\(4 / 10\) & -10.19 & -0.82 & 2.05 \\
\(4 / 12\) & -14.30 & -0.41 & 2.00 \\
\(4 / 17\) & -13.21 & -0.92 & 1.81 \\
\(5 / 24\) & -20.8 & -2.31 & 1.81 \\
\(5 / 25\) & -13.5 & -1.76 & 1.79 \\
\(5 / 29\) & & -1.16 & 1.67 \\
\(5 / 30\) & -15.1 & -0.87 & 1.50 \\
\(6 / 04\) & -19.4 & -0.44 & 1.85 \\
\(6 / 05\) & -17.7 & -0.87 & 2.16 \\
\(6 / 11\) & -19.4 & -0.96 & 1.58 \\
\(6 / 13\) & -19.1 & -1.39 & \\
\(6 / 21\) & -22.7 & -1.37 & \\
\(6 / 25\) & -10.1 & & \\
& & & \\
\hline Mean & -15.91 & -1.11 & \\
RMS & 4.05 & .50 &
\end{tabular}

\section*{Communications Research Laboratories}



FIGURE 8.1
SECOR-ORBIT COMPARISONS DATE 4/05/68



FIGURE 8.2
SECOR-ORBIT COMPARISONS DATE 4/10/68


\section*{SECOR ADJUSTMENTS}

RANGE BIAS \(=-14.30 \pm .33 \mathrm{METERS}\)
TIME BIAS \(=-0.41 \pm .08\) MILLISEC
RMS RESIDUAL \(=2\) METERS
\[
\begin{aligned}
& \text { A COMPOSITE PROFILE (RISE AND SET) } \\
& \text { A MODIFIED COMPOSITE PROFILE (SET) } \\
& \text { A MODIFIED COMPOSITE PROFILE (RISE) }\}\}_{0} \mathrm{~F}_{2} \\
& \text { SCALING }
\end{aligned}
\]

FIGURE 8.3
SECOR-ORBIT COMPARISONS DATE 4/12/68


OFILE (RISE AND SET)

FIGURE 8.4
SECOR-ORBIT COMPARISONS DATE 4/17/68

\[
\begin{aligned}
\text { RANGE BIAS } & =-11.12 \pm .32 \text { METERS } \\
\text { TIME BIAS } & =-1.07 \pm .07 \text { MLLLISEC } \\
\text { RMS RESIDUAL } & =1.85 \text { METERS }
\end{aligned}
\]

FIGURE 8.5
SECOR-ORBIT COMPARISONS
DATE 4/30/68

EE AND SET) OFILE (RISE) OFILE (SET)
\(f_{0} F_{2}\) SCALING



\section*{ORIGINAI PAGE IS}


AND SET)
FILE (RISE) \(\} \mathrm{f}_{\mathrm{o}} \mathrm{F}_{2}\)
FILE (SET) SCALING

FIGURE 8.7 SECOR-ORBIT COMPARISONS DATE 5/25/68


Communications Research Laboratories



FIGURE 8.9

\section*{SECOR-ORBIT COMPARISONS DATE 5/30/68}

\section*{Communications Research Laboratories}


\(\left.\begin{array}{l}\text { ROFILE (RISE) } \\ \text { ROFILE (SET) }\end{array}\right\} \begin{aligned} & \mathrm{f}_{\mathrm{o}} \mathrm{F}_{2} \\ & \text { SCA }\end{aligned}\)
SCALING

FIGURE 8.10
SECOR-ORBIT COMPARISONS
DATE 6/04/68


Communications Research Laboratories




AND SET FILE (RISE) \(\} \quad \mathrm{f}_{\mathrm{o}} \mathrm{F}_{2}\)

SCALING
FIGURE 8.11
SECOR-ORBIT COMPARISONS DATE 6/05/68

Communications Research Laboratories

```

OFILE (RISE)} foror
IOFILE(SET)}}\stackrel{O}{\mathrm{ SCALING}

```

FIGURE 8.12
SECOR-ORBIT COMPARISONS DATE 6/11/68


\section*{Communications Research Laboratories}


RANGE BIAS \(=-19.13 \pm .33 \mathrm{METERS}\)
TIME BIAS \(=-0.96 \pm .09\) MILLISEC

RMS RESIDUAL \(=\$ .58\) METERS
\(\left.\begin{array}{l}\text { FILE (RISE) } \\ \text { FILE (SET) }\end{array}\right\} \begin{aligned} & \mathrm{f}_{\mathrm{o}} \mathrm{F}_{2} \\ & \text { SCALING }\end{aligned}\)

FIGURE 8.13
SECOR-ORBIT COMPARISONS
DATE 6/13/68

Communications Research Laboratories


SECOR ADJUSTMENTS
CAL DETERMINED ORBIT

RANGE BIAS \(=-22.67 \pm .51\) METERS
TIME BIAS \(=-1.39 \pm .20\) MILLISEC
RMS RESIDUAL \(=\) METERS


FIGURE 8.14
SECOR-ORBIT COMPARISONS
DATE 6/21/68

\section*{Communications Research Laboratories}

FOLDOUT FRA


FIGURE 8.15

\section*{SECOR-ORBIT COMPARISONS \\ DATE 6/25/68}


\section*{9. SUMMARY CONCLUSIONS}

\section*{Ray Trace (Section 3)}
3.1) After minor modification of the density extrapolation routine above the top of the ionosphere the REEK Program was found to be an extremely and consistently accurate basis for ray trace comparisons.
3.2) For certain purposes it is a reasonable approximation to ignore bending in the path integrals. For a simple slab model ionosphere the error in so doing is approximately
\[
\begin{aligned}
& \frac{\mathrm{N}^{2} \tau}{2}\left(1-\frac{\tau}{\mathrm{h}}\right) \tan ^{2} \Phi \sec \Phi \\
& \text { where } \quad \begin{aligned}
\mathrm{N} & =\text { (average) refractivity } \\
\tau & =\text { layer thickness } \\
\mathrm{h} & =\text { satellite height } \\
\Phi & =\text { zenith angle }
\end{aligned}
\end{aligned}
\]

The error is quadratic in N and vanishes at vertical incidence.
3.3) For the same slab model it is shown that the group range error is given exactly by the integral of group refractivity along the phase path.
3.4) Numerical comparisons of REEK and straight line raytrace on actual layers confirm the above general relationship.
3.5) For a representative ionospheric case of \(f_{o_{0}}=5.6 \mathrm{MHz}\), \(\mathrm{f}=434 \mathrm{MHz}(\mathrm{SECOR}), \mathrm{N}_{\max } \approx 84 \cdot 10^{-6}\), the maximum error in the straight line assumption is 0.11 meters out of 73 meters.
3.6) For the troposphere, the range error in ignoring bending becomes significant, i.e., equal to or greater than \(2 \%\) for elevation angles less than about \(10^{\circ}\). This is a significant limitation of any troposphere correction method which ignores bending.
3.7) The neglect of \(f^{-3}\) (gyromagnetic) terms in the ionospheric refractivity can result in errors as great as \(2 \%\) at frequencies of the order of 100 MHz . As this can be compared to the neglect of bending error, which varies as \(\mathbf{f}^{-4}\), and is typically \(0.2 \%\) at 100 MHz . Thus above 100 MHz the neglect of bending error is generally less than \(1 / 10\) that due to neglect of \(f^{-3}\) terms in the refractivity.
3.8) It is proven analytically in Section 3.3 that the ionospheric group range error is given exactly by the integral of group refractivity along the phase path.
3.9) The error in the use of the superposition principal to determine ionospheric and tropospheric errors separately was studied numerically. With typical values at 100 to 400 MHz the error is less than \(10^{-3}\) of the range error at low elevation angles.

\section*{Analytic Corrections (Section 4)}
4.1) All of the tropospheric analytic forms considered are of essentially identical form above \(10^{\circ}\) elevation.
4.2) Below \(10^{\circ}\) elevation angle the NAP-1 and GDAP formulations are a good approximation to the correct variation down to the lowest angles. These corrections are of the general form
\[
\begin{aligned}
& \Delta R(E)=\Delta R\left(90^{\circ}\right) \csc E\left[\frac{2}{1+\sqrt{1+.004 \csc ^{2} E}}\right] \\
& \Delta \mathrm{E}(\mathrm{E})=\mathrm{N}_{\mathrm{s}} \operatorname{ctn} \mathrm{E}\left[\frac{2}{1+\sqrt{1+.004 \csc ^{2} \mathrm{E}}}\right]
\end{aligned}
\]
4.3) A special regression study was conducted, based on 85 days of actual radiosonde profile data taken during WICE and considering various possible models for the total range error in terms of measured values
of pressure, temperature, and humidity at ground level. The best model was found to be the one which depended on \(\left.\mathrm{N}_{( } \mathrm{P}, \mathrm{T}, \mathrm{H}\right)\), i.e., the ground level refractivity alone. This is the same in form as the NBS regression model.
4.4) The predictive capability of this special regression for the 85 day data from which it was derived was compared to that of the \(t\) vo NBS regression models established on Cape Canaveral data and on a widespread US data base, and to the Hopfield bi-quartic prediction. The standard of comparison was REEK raytracing of the radiosonde measured profiles.

The special Wallops regression was of course best (. 149 m rms ) followed by Hopfield (. 223 m rms ) NBS "Cape Canaveral" regression (. 258 m rms ), and NBS "Standard Sample regression" (. 281 m rms ).
- 4.5) For the Ionosphere the minimum elevation angles are never less than about \(18^{\circ}\) in the ionosphere even for horizontal takeoff at the ground. For this reason, most of the analytic forms studies, with the exception of the Freeman and GEOVAP fcrmulations provide reasonably good models down to the lowest ground elevation angles.

\section*{Moment Expansions (Section 5)}
5.1) A moment series expansion, useful for ionospheric and tropospheric range, elevation angle, and range rate errors is devel oped in the form

where \(\quad M_{m}=m^{\text {th }}\) moment of the profile refractivity distribution
\[
=\int_{0}^{\infty} N(h)(h-h c)^{m} d h
\]
\[
\begin{aligned}
& G_{m}(E)=\text { geometrical coefficient } \\
&=\frac{1}{m!} \frac{d^{m}}{d h^{m}} \sec (\Phi(h)) \\
& h=h_{c}
\end{aligned}
\]

The utility of the expansion derives from the fact that the layer characteristics are totally characterized by the moments \(M_{m}\) (independent of \(E\) ) while the elevation angle dependence is totally characterized by the coefficients \(G_{m}(E)\) (independent of the layer characteristics).
5.2) For most purposes the expansion need be carried only to the \(M=2\) term for full accuracy.
5.3) The series is always convergent for the ionosphere but is convergently beginning but ultimately diverges for the troposphere below about \(2^{\circ}\) elevation angle.
5.4) For both the ioncsphere and the troposphere the moment series expansion corrections for \(\Delta R, \Delta E\), and \(\Delta \dot{R}\) agreed better with the REEK raytraces than did any of the other analytic corrections tested.

\section*{Profile Determinations (Section 6)}
6.1) Four different met hods of profile prediction were available for comparison, the Jackson composite bottomside-topside sounder reductions, the ESSA bottomside sounder extrapolations, the Freeman model based on 3-month predictions (no longer published) and based on long-time predictions (CCIR Report 340) of \(\mathrm{f}_{\mathrm{o}} \mathrm{F}_{2}\) and f 3000 MUF .
6.2) It was found that the discrepancies between the various profile estimates could be expressed efficiently in terms of the moment series particularly since only the zeroeth order moment differences are significant. The first and second order moment differences are responsible for less than \(1 / 10\) of the range error differences (in meters) of that due to the zeroeth order moment even for the worst case of lowest elevation angles
(Figure 6.2).
6.3) The four predictions listed above were compared in terms of \(M_{0}\) 'th the SECOR measurements as a reference (Table 6.2). The rms differences
relative to SECOR and therefore rough estimates of the absolute error of the various predictions were
\begin{tabular}{cccccc} 
& \(\overline{\mathrm{m}}\) & & \(\bar{\sigma}\) & \begin{tabular}{c}
\(\overline{\mathrm{rms}}\) \\
Profile Measurements \\
Jackson Composite
\end{tabular} & -4.1 \\
& & 2.5 & & 4.8 & 13 \\
\begin{tabular}{c} 
ESSA Bottomside
\end{tabular} & & \(\%\) \\
\begin{tabular}{c} 
Extrapolation \\
(only 6 cases)
\end{tabular} & -1.5 & 3.4 & 3.7 & 10 \\
\begin{tabular}{c} 
Profile Predictions \\
CCIR Report 340
\end{tabular} & -5.2 & 7.1 & 8.8 & 24 \\
\begin{tabular}{c} 
3 Mos. Advance \\
Predictions
\end{tabular} & -9.1 & 6.9 & 11.4 & 32
\end{tabular}
6.4) The SBCOR measurements demonstrated significant north-south gradient effects. Several methods were studied to estimate these geographical gradients in terms of both measured and predicted profiles. From measured profiles, gradients were inferred from the measured differences between Ottowa, Wallops andGrand Bahama. From the predicted profiles, gradients were inferred from the differences of predicted densities at each point along the ray, as a function of the actual geographical coordinates of the point on the ray.

None of the geographical scalings were particularly effective in predicting the actual (SECOR) north-south gradient effects. The most effective was that based on linear scaling in latitude based on bottomside \(f_{0} F_{2}\) measurements from Ottowa, Wallops and Grand Bahama. For the 17 WICE ionosphere sample days the average south/north assymetry factor was 1.29: 1 . Application of the bottomside \(\mathrm{f}_{\mathrm{o}} \mathrm{F}_{2}\) scaling predicted the assymetry with an rms residual of .17 which represents a \(60 \%\) unpredictable residual.

\section*{Multiple Frequency Comparisons (Section 7)}
7.1) The SECOR and TRANET systems both made internal measurements of ionospheric error, the former in terms of range and the latter in terms of range-rate. In order to compare the two, either SECOR data had to be differentiated or TRANET had to be integrated, with the resulting constant
of integration determined by other means. Regression methods were developed for the estimation of that constant of integration and applied to both SECOR and TRANET.
7.2) The first series of tests of the regression procedure were in an attempt to determine whether there was any systematic bias in the SECOR ionospheric measurements .

The ionosphere was modelled as of a given shape (Chapman or other) with fixed thickness parameter and undetermined maximum density at point of closest approach \(\left(\mathrm{N}_{\mathrm{m}}\right)\) and undetermined north-south (or time) gradient \(\left(\dot{N}_{\mathrm{m}}\right)\).

The recovered biases (Table 7.1) ranged from about -4 to +9 meters (at 434 MHz ). On any particular day the biases were reasonably insensitive to modelling assumptions (thickness and height of maximum) but from day to day there was no significant persistence of bias. It can probably be concluded that the recovered biases do not represent real SECOR errors but regression modelling errors due to the fact that the ionosphere departed significantly from a simple linear north-south gradient.
7.3) The TRANET data were integrated and a similar regression performed to fix the constant of integration. The results were compared to SECOR in terms of range error at point of closest approach \(\left(\epsilon_{4}\right)\). The mean difference (Table 7.2) was 0.232 m with a standard deviation of 3.93 m or about \(10 \%\) (at 434 MHz ) which is closely comparable to the differences between SECOR and the best profile determination ray trace results. This provides a valid measure of accuracy with which absolute ionospheric measurements can be recovered from integrated TRANET by regression for the constant of integration. Point by point comparison of SECOR vs integrated TRANET yielded a standard deviation of 0.59 m which is a measure of the random instrumental disagreement of the two systems without regard to the constant of integration.

\section*{SECOR-ORBIT Comparisons (Section 8)}
8.1) SECOR range data was compared to the best short arc orbital data as defined by LASER, Camera, and C-Band radar. Also in the same comparisons, the SECOR ionospheric data was compared to ray tracing ionospheric corrections based on the Jackson composite data and based on the geographically scaled Jackson composite data utilizing the scaling method previously found best, i.e., linear scaling in latitude based on bottomside \(f_{0} F_{2}\) measurements at Ottowa, Wallops and Grand Bahama.
8.2) The ionospheric data comparisons reiterate the same conclusion found previously that the best geographic scaling is not very good at accounting for actual observed variations of ionosphere along the trajectory since the latter do not usually fit a constant gradient model very well.
8.3) The SECOR vs ORBIT range data comparisons yielded a statistically significant mean bias of -15.9 meters with a day-to-day standard deviation of 4.05 meters and a much larger than expected time bias of -1.11 milliseconds with \(\sigma=.5\) milliseconds. These biases are probably largely a result of aliasing of non-linear variations of actual ionospheric cont ent into the recovered time bias term.

\section*{REFERENCES}
1. Davies, Kennetl , "Ionos pheric Radio Propagation", NBS Monograph 80, U.S.Gov't. Prini ing Office, 1965.
2. Gabor, D., "Theory of Communication", JIEE, V.93, Pt.3, p.429, November 1946.
3. Trimble, G.D., "REEK-REEK 2, Spherically Stratified and TwoDimensional Profile Refraction Corrections for Range and Elevation', RCA Math. Services, Tech. Memo 5350-70-4, April 1970.
4. Lefschetz, S.,"Lectures on Differential Equations", Princeton Press, 1948.
5. Parker, Zegulia, Berbert, "Wallops Island Collocation Experiment Support Plan", NASA Goddard, April 1968.
6. Mallinckrodt, A.J.,"Group and Phase Phenomena in an Inhomogeneous Ionosphere, CRL \#567, October 21, 1970.
7. Mallinckrodt, Reich, Parker and Berbert, "Moment Expansion for Ionospheric Range Error', NASA GSFC, X-550-72-298, August 1972, CRL \#577, 13 July, 1971.
8. Mallinckrodt, A.J.,"Moment Series Extens ion for Angle, Range Rate, and More Rapid Convergence", CRL \#595, 9 November, 1972.
9. Mallinckrodt, A.J., "Profile Shape Parameters", Communications Research Laboratories, CRL Report No. 579, 3 September, 1971.
10. Mallinckrodt, A.J.,"Tropospheric Correction", Communications Research Labs., CRL Report \#591, 31 July, 1972.
11. Mallinckrodt, A.J., "Refraction Formula Comparison", Communications Research Labs., CRL Report No. 594, 28 September, 1972.
12. Mallinckrodt, A.J., "Moment Series for Angle, Range Rate, and More Rapid Convergence", Communications Research Labs., CRL Report No. 595, 9 November, 1972.
13. Mallinckrodt, A.J.,"Refraction Errors of Short Horizontal Interferometers", Communications Research Labs., CRL Report No. 560, 22 April, 1970.
14. Moss, S.J. and Wells, W.T. ,"An Analysis of the GSFC Laser Ranging Data", submitted to Goddard Space Flight Center in fulfillment of Contract NAS5-9756-42, June 16, 1967.
15. Gross, J. W. ,III, "Preprocessing Electronic Satellite Observations", NASA CR-1183, Contract No. NGR 36-008-093, Ohio State University, November 1968.
16. Berbert, J.H., Reich, R., Maresca, P. ,Norris, P.,'Intercomparison of Collocated Laser Optical and GRARR Radio Ranging System Tracks on GEOS-A", GSFC Document X-514-67-447, September 1967.
17. Berbert, J.H. and Parker, H.C.,"Comparison of C-Band, SECOR, and TRANET with a Collocated Laser on 10 Tracks of GEOS 2", GSFC Report No. X-514-68-458, November 1968.
18. Berbert, J.H. and Parker, H.C., "GEOS Satellite Tracking' Corrections for Refraction in the Troposphere", GSFC X-514-70-55, February 1970.

REFERENCES, Cont'd.
19. Mallinckrodt, A.J., Parker, H.C. and Berbert, J.H., "Refraction Corrections by Moment Expansions", 1974 URSI-IEEE Meeting, Boulder, Colo., 14-17 October,1974.
20. Berbert, J.H. and Parker, H.C.,"GEOS Satellite Tracking Corrections for Refraction in the Ionosphere", GSFC X-514-70-467, December 1970.
21. Mallinckrodt, A.J.,"REEK Modifications", CRL \#570, 8 February, 1971.
22. Bean, Cahoon, Samson, and Thayer,"A Worldwide Atlas of Atmospheric Radio Refractivity", ESSA Monograph \#1, USGPS, 1966.
23. Bean, Cahoon, and Thayer,"'Tables for the Statistical Prediction of Radio Ray Bending and Elevation Angle Error Using Surface Values of the Refractive Index", NBS Tech.Note No.44, U.S.Dept. of Commerce, National Bureau of Standards, March 16,1960.
24. Jackson, John E., "Comparisons Between Topside and Ground-Based Soundings", Proc.IEEE, V.57, No.6, p.976, June 1969.
25. GSFC Memoranda from John E. Jackson to John Berbert, October 9, 15, 21 and November 21,1969 ; July 24 and November 4,1970; May 20, February 3, \(22,23,24,1971\); all on the sulject of composite bottomside-topside ionospheric profile estimates. Also, Jackson, John E., 'The \(\mathrm{P}^{\prime}(\mathrm{f})\) to \(\mathrm{N}(\mathrm{h})\) Inversion Problem in Ionospheric Soundings', GSFC X-625-71-186, May 1971.
26. Freeman, J.J., "Final Report on Ionospheric Correction to Tracking Parameters", J.J. Freeman Associates, Cont. NAS 5-9782, 3 November, 1965.
27. "CCIR Atlas of Ionospheric Charactenistics", Report 340, CCIR, Oslo,1966.
28. Parker, H.C., "Comparison of the Jackson Profile Composites on Six Days to the ESSA Profiles", RCA Service Co. , 3 February, 1971.
29. Tucker, A.J., "Comparison of Ionospheric Corrections made by TRANET and SECOR Systems", University of Texas, Applied Research Laboratories, RSD-TL-74-6, 30 September, 1974.
30. Reich, R.F. and Parker, H.C.,"A Method for Determination of the SECOR Ionospheric Range Correction (ICOR) Bias", RCA Service Corp., Lanham, Md., 23 September, 1970.
31. Hopfield, H.S.,"A Two-Quartic Refractivity Profile for the Troposphere, For Correcting Satellite Data", TG 1024, Johns Hopkins University, APL, September 1968.
32. Yionoulis, S.M., "Algorithm to Compute Tropospheric Refraction Effects on Range Measurements", TG 1125, Johns Hopkins University, APL, July 1970.
33. Thayer, G.D. and Bean, B. R., "An Analysis of Atmospheric Refraction Errors of Phase Measuring Radio Tracking Systems", Part 1, NBS Report 7254, NBS Boulder Labs., 5 June,1962.```

