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FAR-FIELD RADIATION PATTERNS OF APERTURE ANTENNAS
BY THIE WINOGRAD FOURIER TRANSFORM ALGORITHM

Rodney Heisler
School of Engineering

Walla Walla College

ABSTRACT

The far-ficld radiation pattern of an antenna may be determined as the fast Fourier transform
(FFT) of the aperture distribution. When the antenna is clectrically large and a detailed pattern in
two dimensions is required, computer run-times exceeding an hour may result, A more time-
efficient algorithm for computing the discrete Fourier transform (DFT) may result in a more effec-
tive analysis and design process, Significant savings in cpu time will improve the computer turn-
around time and circumvent the need to resort to weekend runs.

A FORTRAN program to cialculate the DFT using the Winograd Fourier transform algorithm
was adapted to the 1BM 360/91 computer and extended to handie complex input data vectors up to
length N = 5040, Transforms may be computed for any data length given by the product of four
mutually prime numbers selected ['rorm the integers 16,9, 8,7,5,4, 3, and 2 (e.g.,, N=9-8:7-5=
2520). The WFT was used to compuie antenna patierns for cophase and linear phase gradient
apertures. The results were essentially identical to those previously computed with a conventional
rf.ldix-2 FFT,

Significant time savings were realized with the WFT program. Run-lime comparisons were
made between WFT lengths of 1008, 2520 and 5040 and FFT lengths of 1024, 2048, and 4096,
respectively, A minimum 4.6 to 1 speed adv;mt_agc was demonstrated over this range. On the basis _
of the WFT timings it was eslimated that two-dimensional transforms would require about one min-

ute, ten minutes, and 40 minutes for the 1008, 2520, and 5040 point transforms, respectively. This
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is sufficient to make two-dimensional transforms up to N = 2520 feasible within reasonable com-

puter run-time limitations,
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FAR-FIELD RADIATION PATTERNS OF APERTURE ANTENNAS
BY THE WINOGRAD FOURIER TRANSFORM ALGORITHM

INTRODUCTION

The computation of far-field radiation patterns of aperture antennas using the Fourier trans-
form is well documented in the literature (Ref, 1 and 2) and in current use, The fast Fourier trans-
form (FFT) algorithm is used in this application because of its computational speed advantage over
the conventional discrete Fourier transform (DFT). Even so, com p'uter run times exceeding one
hour are expecled as analysis techniques are extended to two-dimensional problems. A significant
reduction in epu run time would allow more effective analysis and design as computer runs may not
be so time consuming as to be relegated to weckend runs only, Furthermore, the financial savings
may be significant,

Recent studies (Ref. 3 and 4) have explored the feasibility of using the fast Walsh transform
(FWT) for this application. Whilae time savings on the order of ten to one were reported, the FWT
pave only marginally satisfactory results for real data and failed to produce the normal squint associ-
ated with o linear phase gradient on the aperture distribution. Additionally, there were serious diffi-
culties in ealibrating the sequency axis,

Other investigators (Ref. 5, 6, 7, 8, 9, and 10) have reported on a new algorithin for computing
the DET, The Winograd Fourier transform algorithm (WFT) requires substantially fewer multiplica-
tions than the FET while the number of additions, for some cases, remains near FFT levels. The
WET may be used effectively on short data sequences where the number of elements is prime. For
long transform lengths, however, the number of additions becomes excessive and a direct applica-
tion of the WFT becomes impractical. In this case it is useful to employ a combination of “small-N""/
WIET algorithms with a multidimensional expansion to extend the range .of application to data

lengths in excess of several thousand.

FROM DISCRETE FOQURIER TRANSFORM TO DISCRETE CONVOLUTION
The DFT of a data vector x(n) = {x(O), (1), - x(N- I)} is defined as:



)
X(k)=‘-2x(n)eJ N/™k=0,1,2,-+ N-1 (0
nu(t
N-1
= E x(nywhk
n=0

wlhere

The DFT is to discrete-time signals what the Fourier transform

~ [k
X(iw) = f x(t)e’('l“)'”dt )
0

is to continuous-time signals. The extension of equation (2) to the DFT of equation (1) #2n be

viewed Intuitively.,

Equation (1) describes the gencration of N equations from which the elements in the DFT

X{0), X(1), -+ + X(N~ 1) may be computed:

X)) ] 1 ! o 1 Txo ]
X(1 I wh w? coo Nl x(1)
X(2 1 w2 4 oo wAN-T) 2
2 . W W W x(2) 3)
| X(N-1) | L1owNTT 2N N-DONED || gD

Using the FFT algorithm to evaluate this matrix product results in a very substantial computational
reduction over a direct calculation. The complexity of computation arises from the (N - 1) by

(N - 1) lower right-hand section of the transform matrix:
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N-1
R(k)=2 x(wk?  k=1,2,.+ N1 4
n=l

From X(k) we can retrieve X(k) by

N-1
XM= z x(n)

n=0
()
X(k) = x(0) +X(k) k=1,2,---N~-1]
Consider the case where N = 5, Equation (4) then becomes:
(X1 | wl w2 w3 wh] _x(l)-I
X(2) w2 owt owl oWl x(2)
- = (6)
X(3) w3 owl owt ow? x(3)
| X(4) wt oW ow?owl] x4

where the exponents of w are written modulo 5, i.c., wl=wd. wi= w3, as wi = 1. A simple per-
mutation of rows and columns in (6) will demonstrate how the DFT process may be converted to

eyclic convolution. First interchange the last two columns and then the last two rows:

‘5(-(1)- ﬂwl w? owh w3u _x(’i)1
X(2) we wt owd oWl x(2)
X(4) i wh owd owl o w? x(4) ?
| X(3) | | w? wl w2 owt] | x(3)]
Next reverse the order of the input data x(2), x(3), x(4):
(%cn) | (whowd wt w2] [xon]
X2 w2 oW oW W x(3)
@ | | w2 oWl W x(4) “
HX(B)_ _w3 wh w2 wl_ | %(2) |




Careful examination reveals that the above matrix product conforms to the definition of dis-

crete circular convolution:

N1
y(k) = x(n) * h{n) = Z x(mh(k - n) 9
n=0
k=1,2,-++N

Convolution is more casily understood from a graphical description as the mathematical process
of equation (9) may not be clear. Figure | demonsirates graphically the convolution of x(n) and
h(n), Both x(n) and h(n) are depicted as periodic discrete data series of length four, For the case of
k = 0,h(-n) is seen to be the mirror image of i(n), h(1 - n) is simply h(-n) shifted right one sam-
pling interval, y(1) may then be computed as the sum of products of x and h as shown. The other
y(k) terms may be similarly found as demonstrated in the figure,

Equation (8) describes the convolution:
{X(1), X(2), X(4), X3} ={x(1), x(3), x(4), x@)} * {w!, w2, wh, w3} (10)

The graphical details of this convolution may be studied in Figure 2. Note that upon convolving the
two data sets of equation (10), the ¢lements X(1), X(2), X(4), X(3) respectively are computed. Sig-
nificantly, the elements X(k) of the DFT arc now to be computed from a convolution operation.
This transition was accomplished by a mapping of the matrix indices and is always possible for N
equal to a prime or a prime power, For a mathematical deseription df the mapping process sce

Kolba and Parks (Ref, 9).

FAST DISCRETE CIRCULAR CONVOLUTION

Winograd (Ref. 6 and 7) has demonstrated an operational advantage to computing the DFT by
changing to a discrete circular convolution operation. He prcéents an algorithm for performing
short length cyclic convolution in a minimum number of multiplies. The concept employs polyno-

mial multiplication modulo a third polynomial,
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Figure 1. Graphical Convolution of the Periodic Data Sets x(n) and h(n}
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R(1) = wix(1) + wx{3) + wx(4) + w?x(2)

R(2) = w2x(1) + wix(3) + wix{4) + wix(2)

R(4) = whx(1) + w2x(3) + w'x(4) + wix(2)

R(3) = wix(1) + whx(3) + w?x{4} + w1x(2)

Figure 2. Graphical Convolution of {5('(1), X(2), X(4), '}7{"(3)}

={x(1), x(3), x(4), x(2) } *

{wh, w2, wh, w3}



The cyclic convolution h(n) * x(n) can be evaluated from the N coefficlents of:
Y(z) = H(z) * X(z) mod zN - 1)
wlere

N-1
HE = ) Iy =hg Fiyz! +hg 4y g N (n
k=0
N~1
X(z) = Z xp 2K = xg Fxpal # xpu? 4L A xge N
k=0

Winograd states that the minimum number of required multiplies is equal to 2N - K where K is the

number of irreducible polynomials into which Ny may be fuctored, i.c.,
N K
MN-1= 1 Q) (12)
=1

To demonstrate this theorem consider the convolution {hg, hy, hg, g} * {xg, %1, x5, xa} 8

presented carlier in Figure 1,

y(1) = xghg + X hy + x5 + x50

y(2) = xghy +x;ho + Xahz +x3h,

(13)
}’(3) = XOhZ + Xl hl + x:;.h",o + X3h3
Y(4) = Xohs + X] h2 + J‘:z.h] + XS lio
The y(k) may be evaluated from the polynomial multiplication:
Y (@) = (xg + X 2+ %522 +x32%) + (hg + hyz+hyz? +hy2d)
= (xghg) + (xgh; +x hglz +(xghy + x4 hy + x2l10)22 +(xghy +x Iy + x50 + .\;3110)2,3
+(xyhy t Xahy + x50, )z4 +(xyhq +xg 112)25 + (:-:3113)z6
-"—'yo-i-ylz-i-y.zzz + y37,3 +y4z4 +y525 -I-y6z6 (14)

It is now required to find Y(z) =Y (2) mod (% - 1).



The notion of modulo arithmetic is from the coneept ol congrueney. Two integers a and b

are said to be congruent mod M if
a=b-+ kM (15)
where K is an integer and M is the modulus, This may be written as:
#=Dbmod (M)

The integer b may be found as the remainder of the quotient a/M as may be easily demonstrated,

From equation (15) we have
a-kM=b

and hence:

gives b as a remainder,
Extending this concept to polynomials we compute Y(z) = Y, (z) mod (z% - 1) as the

remainder 1 thie synthetic division Yl('f.)/(:a4 = 1), This resulis in
Y(z) = (yg +y4) +(yy Hys)z+ (yp +ye)nd +yy2° (16)
Note that there are N = 4 cocfficients resulting from
Y(z) = H(z} * X(z) mod (z* ~ 1)
and that upon close observation they are found to be y(1), y(2), y(3), and y(4) of equation ( 13), i.e.,

Yo T ¥q =xXghg t X113 + x50y + x50 =y(1)

y] +y5 = xOhj +X]ho +X2’]3 +XB!]2 = y(2)

*



) o+ Vg = xohz +xllll +x2h° +X3h3 =y(3)

Y3 = xOhB + xlh2 + x2111 + X3I|0 = y(4)

The above example has demonstrated the logistics of performing the multiplication of two
polynomials modulo another polynomial and specifically how the convolution results are recovered,
This process may be accomplished in a more computationally efficient manner using the polynomial
version of the Chinese remainder theorem (Ref. 9), We may first evaluate H(z) and X(z) modulo

the irreducible polynomial factors of No e, Q;() and then find Y(z) as

k
Y(z) = }: Y(2)s | mod (N - 1) (17)

=1

where

Yi(2) = Hy(@)X(z) mod (Q(2)

H,(2) = H(z) mod (Q(z))
Xi(z) = X(z) mod (Q;(z})
Sz 8 mod (Q(2) i=1,2,+,K

To demonstrate the operations described by equation (17) we muy continue with the convolu-

tion example {ho, hy, o 113} 4 { Xgs %11 X9, X3 } as presented earlier. For this case N = 4, hence

H(z) = hg +hyz+ 22 + by

X(z) = x, +xlz+x222 + x3z3

as before.

The irreducibie real factors of z% - 1 are
@t~ D=@E+DeE- DE2+1)

Note that the number of irreducible factors K = 3, and hence the number of required muitiplies to

compute the convolution is 2N - K= 5.



The X;(z) and Hi(z) polynomials are determined next, X 1{z) is found by;
Xi@= Xgtx2 +x2z2 +x3z3 mod (z+ 1)

Computationally X (z) is computed as the remainder in X(2)/(z + 1), Similarly X, (z) and X;(z)
may be found and we have:
Xy (z)=X(z) mod(z+ D=xg-x;+x9~%3= xol
Xq(e)= Xz mod(z-—l)=xo+x]+x.3+x3=x02 (18)
X3(@)=X@2) mod (2% +1)= (x; - X3)z + (x5 = X9) = x5 +xPz

Since H{z) has the same form as X(z), the I-I{(z) polynomials will have the same form as the

Xi(z} polynomials:
Hy(z)=H(z) mod (z+1)=hg~-h; +hy-hs=n4

Hy(z)=H(z) mod (z- 1)=hy + by +hy +hy = 1102 (19)

Ma(z)=H(z} mod (224 1)=(h) - hg)z+ (hg - hy)=hg + 07z
We may now find the Y;(z) polynomials as

Y@ =H @)X, (z) mod(z+1)=hdxd =y
Yo = Hy(m)Xo(z)  mod (2= 1) =hfxd =y (20)
Y3(z) = Hy(2)X5(z)  mod (22 + 1)

=1’13x137-2 + (hgxl3 + hf’x@)z+ h'gxg mod (2% + 1)

= (héfxf’ +hf’x,§’)z +(h§’x€ - hl?’xlg)

=vp ¥z



The Y;(z) polynomials may be written as

Y (z)= hol Xg = yol

Y, (z) = hg"xé" = yé" (21)

Yq(2) = (1103x3 - hlsxf‘) + [(hg - 1113)(x]3 - x&) + h&xg‘ + 1113){13’]2

= y03 + y132
Next let
mp = hol xol my = I103x3
my = hogxo2 mg = hl3xl3 (22)

my = (!103 - !1]3)(};13 - xg')

These are the five multiplies that will be required to complete the convolution in this example. The

Yi(z) polynomials may be rewritten in the form

Y, ()= m
Y, (2)=m, (23}

Y5(2) = (my -~ mg) +(my + my + ms)z
We need yet to express Y(z) in terms of the Y,(z) factors as per equation (16):
Y(2) = Y (2)5,(2) + Y,(2)Sy(z) + Y3(2)S5(z) mod (z* - 1)

To do 50, however, we must first determine the §;(z) polynomials. These are found in accordance
with equation (16) to be:

8;()=-Y%(z - 22 +2- 1)

Sy() =Yz +22 +2+ 1) (24)

S4(z) = 4h(z* - 222 + 1)

11



These may be checked by verifying that Si(z}=1 mod (Q;(2)) us

-%(z3~:r.2+z-l)=l mod (z+ 1)
-%(z3+22+z+1)=l mod (z- 1)

Wz - 22+ 1) =1 mod (22 + 1)
Now Y(z} is lound to be:
Y(z) = my [~Ya(z3 - 22 44 - 13]

Ty 3 + 52 + 2+ 1)) (25)

+ [(my - ng) + (m3 +my +mg)a) (Y24 - 222 + D] mod (24 - D

4Y(z) = ('"l + iy o+ my ~ mg)
+(-ml tmy +my+ My +mg)z

+ (mI + my - 2m4 + 21115)22

(26)
+ ("'“I +m, - 21113 = 2my - '21115)23
-+ (:114 - ms)z‘jr
+{mg +my + me)zd mod (z4 ~ D
3 4 5
4Y(z2) = (m + my +2m, - 2mg)

+ (—ml i, + 2m3 +2my + 2me)z

27

+(my + my = 2m, + 21115)7,2
+ (—ml tm,y - 2m3 - 2m4 - 2m5)z3
Recalling the method of determining one polynomial modulo another, equation (27) was found as

the remainder in the synthetic division 4\’(2)/(2_4 = 1), As with equation (I 6), the coeflicients of z

are the clements of the convolution example, Le.:

[2

o



y(1) = %(m, +my +2my - 2mg) Xghg T xhy + %y o+ x3hy

y(2) = %(=my +mqy + 2mg + 2my + 2mg) = xghy + X hg +xohy + x3hy

(28)

y(3) = Y%(m| +m,y - 2my + 2ms) Xgly +xhy +x9hg + x3h5

It

y(4) =Y(-m; +m, - 2my - 2my - 2mg) = xghg +x hy +x9hy +x3Ng

This last result may be verified by performing the indicated multiplications and additions.

COMPUTING THE DISCRETE FOURIER TRANSFORM WITH FAST
CONVOLUTION TECHNIQUES

The fast convolution algorithm may now be applied to the task of computing the discrete
Fourier transform, This is done by performing the indicated convolution in equation (8) to find
X(1), X(2), X(4), and X(3). In this application hg, hy, h,, and hy are wl, w2, w?, and w3, respec-
tively, as seen by comparing Figures 1 and 2. Similarly, xg, X|, X4, and x5 are x(1), x(3), x(4), and
x(2), the _inp__ut data vector,

The terms hol, hg', hg, ]113, xol , x&, xg and x13 of equations (18) and (19) may be found as;

1101-= wh-w2+wt-wd=2236
h& =wl + w2+ w4 + w3 = 1.0
=wl - w4 =-§1.902

=w2 - w3 =-j1.176

From these results the m; tenns in equation (22) may be computed and subsequently the con-
volution results of equation (28) found. This results in the intermediate transform values X(k). ‘The
DFT is then calculated from equation (5). The process is now complete and the results foran N =35

computational algorithm are summarized in Table 1 [from Kolba and Parks (Ref. 9) and Winograd

13



Table |
Computational Algorithm for an N = 5 DFT Using Fast Discrete Convolution

[from Kwlba and Parks (Ref, 9) and Winograd (Ref, 7)]

ay =x(1) + x(4) 45 =0y + 0y
4y = x(1) - x(4) g =0y - 43
a3 = x(2) +x(3) ag =a; tag
ay = x(2) - x(3) ag = x(0) + a4
my = 0,951 a4 ¢y = x(0) - ms
m, = 1,539 a, Cy=cptmy
ms = 0363 a4 C3=Cp =My
my = 0.559 a5 Cq =My - My
mg =Yg Cz =My = My

X(0) = ag

X(1Y=cy - jcy

X(2) = ¢4 - jeg
X(3) = ¢z +ics

X(4) = 02 +jC4

(Ref. 7)]. The number of calculations required is observed to be 17 additions and 5 multiplications
(the multiplication by ¥ may be accomplished by two word shifts on some FORTRAN compilers).
The x(n) input data vector may be complex in which caée these are complex adds and multiplies,
Computational algorithms for other short length transforms may be found in Winograd (Ref. 73,
Silverman (Refl. 8 and 10}, and Kolba and Parks (Ref. 9). The number of computations required for
these several short-length WFT algorithms is compared with radix-2 FFT requirements in Table 2,

The computational advantage of the WFET is clearly seen.

14



Table 2
Nu:nbef of Calculations for Short-Length WFT und FFT

WFT ! FFT
N ,
Multiplies Adds Multinliag Adds
2 0 2 ] 2
3 2% 6
4 0 8 4 8
5 5* 17
7 8 36
8 2 26 24 48
9 10* 49
16 10 68 32 64

*The number of multiplies may be reduced by using word shifts,

For Jarge N the WFT afgorithin for fast convolution gets out of control, Furthermore, the
number of additions becomes excessive and the WFT loses its computational advantage. Conse-
quently it is necessary to use a cumbination of short-length transforms to realize the speed advantage

of the WFT for transform Jengths of practical importance.

LONG-LENGTH TRANSFORMS

Winograd Fourier transforms of practical lengths in the several thousands may be computed as
a combination of short-length transforms. This is accomplished by convertingan N=M; M, --+ M,
(where the M; are mutually prime integers) length transform into £ shorter transforms of lengths M;
fori=1,2, -2 Thisisequivalent to a mapping from one to 2 dimensions.

The DFT of equation (1)

N-1
X(k) = Z x(nyWnk

n=0

15



incorporates an index n which orders the input data veetor gnd an index k ordering the transform
output results, A mapping from one to two dimensions requires that each index map to two

indices, i.e.,

n=>{n;, ny}

With this mapping the DET may be written as

Miy-1 Ma-1
, Z . E sk mk
)\(k]:k?’): x(l][.":)“';:l: 2 WIMIJ ! I\'l = 0, l,""Ml - | 2n

ny=0 n230 )
kq=0,l,""Mq- ]
A -
wlere

o oiCn/My)

W = oi@niM)

Mo

N=MM,

and My and M, are relatively prime.
The two-dimensional DFT of equation (29) is found by first computing M| transforms of

length M,

M3-1
nak
y(ny k)= )y x(ng, ny) Wyt
na=0
and then M, transforms of length M,
Mi-1
nk
X(kl ' kz) = E Y(“lp kz) WMI1 1
. ny=0

16



The above mapping follows the method of Kolbu and Parks (Ref, 9) and is referred to as a
prime factor FFT nigorithm, Winograd (Ref, 6 and 7) presents another method of structuring short-
length transforms to accomplish the same end. This technique is referred to as the nested algorithm,

From an implementation point of view the major consideration between the two algorithms is
the amount of computational effort, The computational requirements of these algorithms for
several values of N are compared in Table 3. In general, the nested algorithm requires fewer multi-
plies, while the prime factor algorithm requires substantially fewer adds. The total number of ealcu-

lations is substantially fewer for the prime factored algorithm,

Table 3

Comparison of Prime Factor and Nested Algorithms

Prime Factor Algorithm Nested Algorithm
N Factors T
Multiplies Adds Total Multiplies Adds Total
252 9+7+4 1024 6344 7368 848 7128 7976
504 9:7+8 2300 13948 16248 1704 15516 17220
1260 0+¢5¢7+4 7136 40288 47424 5168 50184 55352
2520 9+5+7-8 15532 86876 102408 10344 106667 117011

The particular computer available and the relative timings for floating-point multiplication and
acldition would dictate which algorithm would be more time efficient in any application. The com-
puter used in ihis study was the IBM 360/91 at Goddard Space Flight Center, The 360/91 is a very
fast system utilizing a high-speed *“cashe-pipeline”, Floating-point multiplication and addition
require essentially the same execution time, Hence, the nested algorithm was judged faster and

selected for application oni this system,

APPLICATION TO APERTURE ANTENNAS
As discussed earlier, the far-field radiation pattern of an aperture antenna can be determined to

a good approximation as the DFT of the aperture field distribution, In this application it appears

LTS

Hn
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desirable to replace the FFT, which is currently used, with the faster WFT algorithm, Perhaps the
savings in cpu run time would permit extension of the analysis program to two-dimensional geo-
metries with several thousand data clements along each axls. At this time a reasonable estimate of the
maximum input data vector size is about five thousand, This would allow analysis of a one meter
antenna at 180 GHz with half wavelength sampling,

A FORTRAN IV program to calculate the WFT was adapted to run on the 1BM 360/91 com-
puter and extended to handle data vectors up to 5040 points with double precision arfthmetic (See
Appendix), Transforms may be computed for any data length given by the product of four mutually
prime numbers selected from the integers 2, 3,4, 5,7,8,9, and 16 (e.g.,, N=9 X 8 X 7 X 5=2520).
As a basis for compuring the performance of this WFT program with the conventional FFT, a
benehmark aperture distribution of special interest was sclected, The distribution specified is sine
cn a pedestal with a 20 db edge taper and is representative of focal-point fed parabolic tntennas
exhibiting axial symmetry. This distribution is described by 0.0909 + 0.9091 sin Nillr—l- ), m=0,
1,2, +N= l;where N is the number of samples in the aperture, The antenna diameter is speci-
fied as 20 feet and the wavelength as 0.44973 feet.

A 2520 and 5040 point WFT analysis were perfornied on this antenna and the results com-
pared with a 4096 point FFT computation. Theoretically the WET and FFET algorithms give
exactly the same results so this comparison is intended as a verification of the correctness of the
WFT program. Figure 3 presents the 5040 point WET and 4096 point FFT results, The two
patterns are essentially identical except for minor differences in the higher order lobes, This differ-
ence is on the order of half 2 db and is eatirely the result of differences in precision in the two
programs. The WFT was run in double precision (8 byte data length) and the FFT in quartic preci-
sion (16 byte data length).

A 2520 and 5040. point WFT are compared in Figure 4, The results are very nearly identical.
The only significant difference is the amount of detail produced. Understandably, the 5040 point

transform yields twice as much detail as the 2520 point transform.
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Figure 5 demonstrates the new algorithm’s ability to handle complex input data, A 360° lincar

phase gradient was imposed on the benchmark aperture, resulting in the expected squint, The differ-

ence in results as computed by the FFT and WFT is again due to the greatly extended precision

specified in the FFT program.

The interval timer available on the 360/91 system library at GSFC was used (o time the WFT

and FFT subroutines, For this comparison the FFT subroutine was rewritten in double precision

math so that both transform algorithms would be judged on the same basis, The interval timer is

represented as accurate to the nearest 0,01 second, The results of this test are presented in Table 4,

WET and FFT timings are comparzd for values of N that are as numerically close as possible given

the different constraints on N for the two algorithms, The adjusted time ratio is determined by

scaling the time ratio by the ratio of the number of data sumples for the two algorithms,

Table 4

WFT and FFT Timing Results

Number of Data
Samples CPU Time Time Adjusted
{Sec) Ratio Time Ratio
WEFT FIFT
1008 0.06
7.2 7.0
1024 0.43
2048 0.90
3.8 4.6
2520 0,24
4096 1,90
4.0 4.9
5040 0.48

Clearly the WFT shows & minimum 4.6 to | speed advantage over the FFT for the range of N

considered, This is considered a significant improvement in speed. On the basis of these timings it

is estimated that two-dimensional WFT computations would require about one minute, {en minutes,

and 40 minutes for the 1008, 2520, and 5040 point transforms, respectively.  Using the conventional
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FET program, approximutely seven minutes, 31 minutes, and 130 minutes would be required for
the 1024, 2048, and 4096 point transforms,

To achieve the large N capability of the WFT program it was necessary to nest the summations
described by equation (29) three and four deep. The limits on these summations are the prime
composites which make up N (e.g,, N=2 X 5 X 7 X 9=630), The ordering of these factors greatly
affects tie run time for a given N, Minimum cpu time is realized when the composite transforms
are ordered in some optimum way, Table 5 presents the optimum ordering for N = 504, 1008,
2520, and 5040, Any departurc from this ordering will result in an increase in run time by as much

as 100 percent.

Table 5
Optimum Ordering of Composite Transforms

for Large N WFT

N Order

504 g:9-71

1008 716941
2520 7-9-5-8
5040 16-5+79

OTHER ALGORITEIMS

Other possibilities exist for fast DT computations. Morris (Ref, 11) reports that & radix-4
FFT algorithm outpertorms the WFT on some computer systems (DEC PDP-11 /55 and the 1BM-
370/168). His work indicates that in this comparison the WFT execution times were about 20 to
40 percent longer,

Reed and Truong (Ref, 12) have suggested that replacing the convolution operation in equa-
tion (8) with a complex integer transform operation will result in fewer multiplications than either
the FFT or the WFT. Several papers by these authors have demonstrated the feasibility of perform-

ing cyclic convolution by a combination of two N X N integer transforms, a multiplication of two
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I X N matrices, and an N X N inverse integer transform, The transforms and the inverse transform
are performed with word shifts und integer additions. This results i a rather significant reduction
in the total number of multiplications and converts them from {loating-point to integer operations.
However, the number of required additions is approximately tripied; consequently, the total num-
ber of mathematical operations is increased, On the basis of these observations it appears that the
use of integer transforms offers no advantage over either the FFT or the WET for systems like the
IBM 360/91 where floating-point multiplication and addition require about the same time, A clear
advantage can be demonstrated for micro-processor based systems for which the ratio of multipli-

cation to addition times may be several orders of magnitude,

CONCLUSION

Use of the WFT algorithm in antenna analysis appears to be a very successful application, The
radix-2 FET as used in computing far-ficld radiation patterns of aperture antennas may be replaced
by the WFT with no degradation in performance and with a considerable improvement in speed.
Over the range of N fram about 1000 to 5000 the WFT demonstrated a minimum 4.6 to 1 speed
advantage over the presently used FFT. This is sufficicnt to make two-dimensional transforms up
to N = 2520 feasible within reasonable computer run time limitations,

As new algorithms and transforms are introduced into the study of antennas, more power{ul

analysis and design techniques will become available to the design engineer.
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APPENDIX
FORTRAN PROGRAM FOR COMPUTING THE FAR-FIELD RADIATION PATTERN
USING THE WFT ALGORITHM

This section presents two FORTRAN subroutines. The first (GOODFT) uses the WFT algo-
rithm to compute the DFT for complex input data up to length N = 5040, The second (PATOUT)
computes the far-field radiation pattern from the fransform resulfs, The WFT subroutine is an en-
hancement of a program contributed by Dean Kolba (Ref, 9) from Rice University. AnN=16
WFT ang{ithm was added to the original program structure to extend the maximum range from
N= 252.010 N = 5040, In addition, the program was rewritten in double precision,

The length of the DFT, N, must be a product of no more than four mutually prime factors
chosen from the integers 2, 3, 4, 5, 7, 8, 9, and 16. These factors are named M1, M2, M3, and M4,
If not all four factors are used the unused factors are set equal to 1, The factors of one must be Jast

in the sequence of M’s in the program. The other I/O variables used in the subroutine are:

NFT = number of nonunity factors
KOUT = output indexing constant
= K1+ K2+ K3 +K4 (mod N)
where

Kil=M2-M3'M4 or =0forMl=1|
K2=MI1'M3*M4 or =0forM2=1
K3=M1*M2:M4 or =0forM3=1}
K4=M1*M2M3 or =0forMd=1

XR(N) = r~al part of input data
XI(N) = imaginary part of input data
A{N) = real part of transform resulis

B(N) = imaginary part of transform results
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To illustrate the above, consider the case N = 5-3+2+] = 30, The above input variables are:

O . N=30
NFT=3
Ml=5 Ki=6
M2=3 xa=
‘M3=2 K3=15
Md="1 K4=0

.

- KOUT =31 '(‘mod 30)=1

The ordering of the M’s is not 51gn1F cant with respect to the quallty of the transform results,
but does have a vcry 1mp0rtant affect on the run- tlme ‘for the subroutine. Table 5 presented the
' optnnum ordenn;, for “the four cases N = 504 1008 2520 and 5040 Departui‘e from these orders
‘ may increase the cpu tunmgs by more than 100 percent . | '

' The DFT is cychc in naturc and hencc to compute the transform of a hbﬁ-é)‘}clic, 'ﬁn"i'fé data
set {x(n)}i it is neéessary to append .a relativély 'largc number of zér‘os to both ends of thé aperture
distribution. About 75 to 90 percent of the input data should be made up of these embedded
zeros. This will establish an adequate ground plane about the aparture and reduce the effects of
folding or aliasing.

The subroutine PATOUT requires as input the length of the DFT (N), the transform results
from GOODFT (A&B), and the sampling interval (T) in wavelengths. To preverit aliasing T < A/2.
The output of the subroutine is the magnitude (in db) and the phase (in degrees) of the antenna
gain as a function of polar angle starting at a line drawn broadside to the antenna and through its
center. [For this statement to be true it is necessary that the inﬁut apertﬁr.ca distribution to
GOODFT be specified according to the same geometry. The aperture data must be input starting
at the antenna midpoint and proceéding to the edge. The zeros are imbedded next, followed by the

other half of the aperture data starting at the edge and ending at the center.
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COoODa0O0OON000

SURRNUTINE GOODFT(XR+XIsNoML M2y M3 4 M4 NFT+KOUTAB)
THE SUBRNUTINE GOONFT COMPUTES A LENGTH N DFET OF THE INPUT DATA WHICH 15 IN
TWN VECTNRS, XR THE REAL PART AND XI THE IMAGINAGY PART. BOTH XK AND X1 ARE
LENGTH N VECTORS. THE LENGTH OF THE DFT. Ny MUST RE A PRONUGCT OF AT MOST
FOUR MUTUALLY PRIME FACTORS. THE POSSIBLE FACTORS ARE 243,445474+8.9 AND 16.
THESE FAGTORS ARE M1, M2, M3, AND M4&. IF THE FDUR FACTORS ARE NOT ALL USED,
THE UNUSED FACTDRS ARE SET ENUAL TO l. FOR EXAMPLE WITH N=30, WE HAVE
Ml=5, M2=3, M3=2, AND M4=1, THE FACTORS OF ONE MUST BE THE LAST OF THE M'S§.
THE NUMBER DF NONUNITY FAGTNRS IS NFT. KOUT IS AN OQUTPUT INDEXING CONSTANT
WHICH IS PRECOMPUTEN, KOUT={(K1+K2+K3+K4)MOD N WHERE K1=M24M3%M4,
K2sMLAM3%MG, K3=M1=M2%M4&, K4=M1HM24M3, AND K2=0 [F M2=l, K3=0 IF M3=]l, AND
K4=0 IF M4=1, FOR FXAMPLE, N=30, Kl=b&, K2=10y K3=15,4 K&4=0 AND KOUT=31MOD 30
=1, THE TRANSFORMED RESULTS ARE STORED IN TWO LENGTH N VECTORS, A AND R. 4
CONTAINS THE REAL PART ANN B CONTAINS THE IMAGINARY PART OF THE -RESULTS.

IMPLICIT REAL#B (A-H.0-=2)

DIMENSION XR{5040) XT{5040) yUR(LAI+UTIL1A)1{1A)4A{5040) B(5040)

REAL%8 MR1,MR2,MR3,MR4,MR5 MROEsMRT+MRAIMRI¢MRLIOMRIL,MR12,4R1 2

REAL#8 MR14,MR15,MR1&6,MR17¢MR1B+MR19,MR20+MRZLsMR22¢4MR23,MR 24

REAL*B MR25,MR26,MR2THR2ZByMR2ZOyMRIOMILMIZ MI24MIG MISIMIAMIT

REAL®AR  MIS,MIO, MILI0MI11MILZyMIL3¢MI G, MILE MT1aMI1T4MI1AMILS

REAL®A  MI204MI2L,MI22,MI23,MI24,MI25H]I26.MI274yMI28,M129,4M]130D

NE=NFT
ORDER FACTORS FOR TRANSFORHMS OF LENGTH M1

MM 1=l

MM2=M2

MM3 =43

MM4=M4

Go TO 20
10 GO TH{12413,14)4NF
NRDER FACTORS FOR THRANSFDRMS OF LENGTH M2
12 MM1=M2

MM2=M}

MM3=M3

MM & =M

50 TN 20
DRDER FACTORS FOR TRANSFORMS OF LENGTH M3
13 MM1=M3

MM2=M1

MMa=]M2

MR & =M

G TN 20
ORDER FACTMRS FOR TRANSFORMS OF LENGTH M4
14 MM1=Ma4

MM2=M1

MM3=M2

ORIGINAL PAGE I‘E‘:
OF PCOR CUALITY
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MM b=M3
INDEXING - INITIALIZATION FOR THE TRANSFORWMS
20 N2=0
N3=0
N&=0
K1=MMZ2%MMARMM4
K2sMMLEMM3EMM4
K3sMM1sMM2RMMG
KasMM1eMM2%MM3
1{11)=0 :
INPUT INDEXING ALONG ONE DIMENSTON
21 DO 22 J=2,MML
TJI=T{J~1)+K1
IF{I{J).LT.N} GO TO 22
T(d¥=I1{J}=N
22 CONTINUE
TRANSFERRING DATA TO TEMPORARY VECTORS UR AND VI
n 0N 31 J=1,MM1
Td=TiJ)+1
UR(JY=XR{IJ}
AV UT{Y=XT(Td)
TRANSFORM UR,UT

GO TO(5045200,300+,4004,5004504700+800+900+50+50150,50+50:+50+1600) MM

21
PLACE RESULTS OF TRANSFORM BACK IN XR AND XI
40 DO 41 J=1,MM1
Td=1(J)+1
XR(TJ)=UR(J]
41 XI{1JY=UT{d)
TESTING FOR COMPLETION OF THIS FACTOR'S TRANSFORMS
IF (N2, NE.MM2~1) GO TO 51
N2=0
IFIN3.NE.MM3=~1) GO TO 52
N3=0
IF (N4, NE.MM4~1) GO TO 53
50 NF=NF-1
IF(NF,EN,0) GO TO 1000
60 T 10 -
INPUT INDEXING ALONG OTHER DIMENSIONS
51 N2=N2+1
DD 54 J=1,MM]
1) =T{J)+K2
IF{T1(J).LT.N) 6O TO 54
L) =1(J)=N
54 CONT INUE

30
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52

53

oAl PAGE IS
ORI 2 (ALY

OP D

6N TN 30

N3=N3+1

Tl ) =K3xN3+K4%NG
ITFLTILYLLT.NY 60 T 21
T{1i=1{1)=-N

Gn TN 21

N&=NG 4]

TI1)=K4uNg

GN TN 21

C  UNSCRAMRLING TRANSFORM RESULTS

1000

‘1002
1nna

1001

r
200

Il=1

J=1

60 TH 1001

IFLJ.ATLN) GO TO 1003
[T=11+KOUT
IF{IT.LE.N} GO TO 1001
IT=]F=N

GO TN 1004
AlJI=XR{IT)
BlJI==XI{I1}

J=d+l

60 TO 1002

2 POINT TRANSFORM

URX=URIL)+URL(2)
UIX=UL(1)1+UT{2)
UR{2}=UR(1)-UR(2Z}
U1t2)y=Uu1{1)-uIf2)
UR{1)=URX
Urtl)y=uyx

GN TN 40

C 3 POINT TRANSFORM

300

AR=UR{2)+UR{3)

Al=UT(2)+U1{3}

MR1=-1,5D0%AR

HMil==1.500%A]
MR2=N.866025403AD0%{UR(2)1~-UR(3))
MIZ=0.R660254038N0%{UI(2)-UI(3})
UR(1}=AR+UR{ L) '
UT(l)=aT+Ul{1)

MR1=UR(1)+MR1

MIT=UT{1}+MI1

UR{Z)=MR]1-MI?

UI(2)=MI1+MR2

CUR(3)=MR1+MIZ

UI{3)=M[1-MR2
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GN TH 40

C 4 PDINT TRANSFORM

400 ARI=UR{L}I+URLI)

ATI=UT(1)+UI(3)
ARZ=UR(LI-UR{3)
A12=U1(1}-UTI(3)
ARA=URI(2Y+UR(4)
AT3=UI{274U114}
ARL=UR{Z2)~-UR {4}
A14=UTI2)-U1(4)
UR{1¥=ARL1+AR3
WIi{1)=A11+A13
WRI{Z2)=AR2=AT4
UI(?)=A12+ARS
UR(3)=AR1-AR3
UF{3)=A11-A13
UR(4Y=ARZ2+ATH
Ul t4)=AT2~-ARL
GO TN &40

C 5 POINT TRANSEQRM

500 AR1=UR[Z}+UR(5)

AT1=UL(P)+UT(5)
AR2=UR([Z2}1-UR(S)
Alz=UT{?)-UI{5)
ARI=UR{31+UR(4)
AlB=UT({3)Y4U1(4)
AR&G=URIZY-UR(4)
ALa=sUT{3Y~-Ul{4)
ARS=AR1+AR3
AlS=AT1+AI3
MR1=0,951056516300%{ ARZ+ARN)
MI1=0.95105A5163D0%{AT2+A14)
MR2=1,53RA8417690ND0N%ARZ
#]12=1.538R41769N0%A127
MR3=0,3632T12640N0%ARL
MI3=0,3632712640D0%A14
MR&=0,5590169944D0%{ AR1~AR3)
Mi4=0,.5590169944D0%(A11-A)3)
MRA==1,25N0%ARS
Mifi==1,2500%A15
UR (1)=UR{1)+ARS
UT{1Y=UI{1)+AIS
MR5=UR(1}+HR5
MIS=UT(1)+MI]5
AR1=MR5+MR4
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ORIGTNAL PAGE O
AT1=MI5+M14 Y n QUALTE
AR2=MRE=MR4 AR
AT2=MIB-MT4
AR3=MR1-MR3
AI3=MI1-MI3
AR4SMR L -MR 2
AT4=MI1=M12
UR(2)=AR1=AT3
{17 (2 ) =AT1+AR3
UR(3)=AR2+AT4
WIS )=A12=-AR4
UR(4)=AR2-AT4
UT(4)=A12+ARS
DR{5)=AR1+AT3
U1(5)=A11=AR3
&0 TN 40
C 7 PDINT TRANSFORM
700 ARL=UR(2)+UR(T)
ATI=UT(2)+01(7)
AR2=UR(2)-UR(T)
AT2=01(2)=UL(T)
AR3=UR(3)+UR(6)
A13=U1{3)+UT(h)
AR4=UR (31-UR(6)
AL4=UT(3)-UI(6)
ARS=UR(4)+UR(S)
ATS=UI{4)+UT(5)
ARG=UR (4} =UR(5)
ATA=UT(4)=-UT(5)
ART=AR1+4R3+ARSE
ATT=ATL+AT3+AIS
WR1==1.16666A66TDO%ART
MIl=—1,16666666TN0%ALT
MR220,7901564AB8D0% ( AR1~ARS )
MI2=0.79015646R8N0% (A11~A15)
MR3=0.05585426AD0% | ARG=AR3)
MI320,055A5426AN0%(AT5~A13)
MR4=0,734302201N0% (AR3=AR] )
MI4=0.73430220100%(AT3-AT1)
MR5=0.44095R55 2D 0% { ARZ+AR4=ARS)
M1520.44095855200%  AT2+AT4=A16)
MR&=0, 340872931004 AR2+ARA)
MI6=0.340872931N0%(A12+A16)
MR7=~0,5339A936 100 ~ARA~ARS)
MI7==0,533969361N0%(~alA=AT4)
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MRA=0,A8T74842291N0% [ AR4~AR2)
MIR=0,RT74842291D0%AT4&-AT2)
UR{1)=UR{1)+ART
Urily=uril)+al?
ARL1=UR(}1)1+MR]
Al1=UT(1)+MI1
AR?2=AR1+MR2+MR3
AJ2=AT1+M]I24+M]13
AR3I=AR1-MR2Z=MR4
Al3=A11-MI2=M]4
AR4=AR1-MRI+MRE
Ala=AT1-MI3+M]4
ARG =MR5+MRA+MRT
AlS=M]S+MIA+M]T
AR 6=MR5=MR A-MRA
Alp=M]5=-M]H=-MIR
AR T=MRH-MR7+MRA
Al 7=MIO=-MIT+M]H
(RI2)=pAR2=~AIS5
Ul{21inA]2+ARS
LUR{3)=AR3=p10
UI{3)=A]3+ARSG
IIR{&4)=AR4G+AIT
UT{4})=Al4~ART
UR{S)=AR4~ATTF
U1{5)=Al4+ART
R A)=ARI+ATA
Ulis)=A13-ARA
UIR{7)=8R2+A15
UIi7)=AI2~ARS
GO TO 40

C R PNINT TRANSFORM

AND AR1=UR{2)=UR(R)

all=ur{2y-uIr(a;
ARZ2=UR(2)+UR{R)
AlP=UT(2)+UI{R)
AR3=UR(4)-UR{A)
AT3=UT{4)=-UI(6}
AR4=UR(&)+UR(H)
Al4=UT(4)+UT{A)
ARS=URI[]1)=URI(5]}
ATS=UI{1)=UI(5)
ARG=URIL)+URIS5)
Al6=sUL{1)+UILB}
ART=UR(3)1=UR{T)



C
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SINAL PAGE ]
%Ir{}(%& % QUALITY

AlTsUL{3)=-UICT)
ARA=UX {3 5UR(T)
AlR=UT (3 4+UILT)
MAL1=0,T071067R12D0%{ ART+ART)
MIl=0,7TO7L06TALZDON{ATL+413)
MR2=0, TOTLI0AETRLZDO%{ AR2=-AR4L)
MIZ2=0,T07L067812000(A12~A14)
HRA=ARZ+ARS
MI3=Al2+414
MR4=hRA+ARA
Ml4=ATh+018
MR5=ARA~ARR
MIG=ATA-ALR
MRE=ARL=ARS
Mlh=ATL1=AI3
MRT=ARS+MR?
MIT=ALS+MYP
MRE=ARS-MRZ
MIR=A]5=M12
MRG=ART+MR1
MI9=ATT+MIL
MB10=ART7-MP]
MI10=A17-MI1
UR(1)=MR4+MR3
UTELli=Mia+MT3
UR(2)=MRT-M]Y
Ul {?)=M]T74+MRO
UR(3)=MR5~M1A
UI(3)=MI5+MRS
UR{ &) =MRA+MI LA
1] {&)=M]A=MR1D
UR( &) =MR4=MR3
UI{5)=M]4=-M13
UR{&)=NRAR=-MTIN
UILaY=MTB+MR10
UR{ TY=MRG+MIA
UF(T)=M15-MRA
UR({R)=sMRT7+M]G
Ul (8)=MT7=MRG
GO TO 40
G PNINT TRANSFORM

900 AR1=UR{2)+Un{9)
AlL=UT(2)1+UT19)
ARP=UR(2)-UR(9)
Af2=l1(2y=U1{9)

35
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ARZ=LR{Z)I+UR(R)

Al3=UT {31400 ( 8]
ARA=IIR{3)~UR(IA)
Ala=liI13)-UT(R)
ARG=UR{S)+URIA)
AlG=UT{B5)+0}(4])
ARA=UR(S)-UR([A)
Alasll{5)=U]{4A)
ARTeUR(AH)+UR(T)
ATT=UT (Y +UILT)
ARR=UR(&)=UR(T)
ATA=LIT(4)=UILT)
ARzZARL+AR3+ARSG
Al=AT1+A]3+4A]5
MRY==-N,5N0%ART
MIl==n.500%417
MR2=N,RA6N25403RDD%ARA
MI2=0,RG6H075403RDORAIR
MR3-D,19T7T4A54PN0%{ -AR1+AKS}
MIAcN., 19744854 2D0% (=AlL+A15)
HR4=0,86R5TOINPNOX[ ARI~-ART)
M4eD, SARSTON2NN(A]]1~-A]T)
HRG=0,3711136D05(=AH3+ARS)
MI5=0,371113ADN0%{=A]13+A15)
MRA=N_.542531T79N0%( ARP=ARA)
MIA=N R4253179N0%[Af2~A14)
MRT=0,10075579N0% [ AR+ AR4 )
MIT=0,10025579DN0%( AT 2+AT4)
MRA=N, 44272759 7N0O%{ ~AR4~AR/
MIA=O, 4422759 N0 =Ath=p:4)
MRG==]1.500%AR

Ml9==1.5nnN%A]
MR1N=0,BAAO2G540IRMBOM{ AR =ARG+ARA)
MILO=N,RAANZELDIADNN{ A 2~AT4+A16)
ARLI=UR({1)+MR]

ATl=UE(1 48T

UR (1) =AR+ARTHURI L)

UL sAL+ATT+UL( L)
AR=UR{1}+MRO

Al=UT (L} +MI9 .

AR2=1RA~-MR S

Al2=M]4=-MT5

AR3=MR3+MR4

Al3=MI3+M4

AR4=1RT~MRA

36



ORIGINAL PAGE I8
OF PCOR QUALITY

Al4=M1T7-MIR
ARG =MRAG-MRT
AlG=M]6~MTT
ARH=AR2-MR5-MR3+AR1
AlheAT2-MI5-M[3+4AT11
ART=AR3+MRB+MRS+AR]
AI7=AI3+MI3+MIS+A]}
ARR=—-AR3~AR2+AR}
AlB==AT3-AT24A1)
MR1=MRA-MRRA
M11=MIA-MIB
MR3IcAR4+MR1+MR 2
MI3=AT4+MI1+M]2
MR4=ARS+MR1-MR 2
MI4=ATG+MI1=M]2
MRG=ARG-ARA+MR 2
MIS=AIS-AT4+M]2
UR{?)=ARA-MI3
LUI1{2)=A1H+MR3
UR(3)=4RT-M14
UI(3)=ATT+MR4
UR{4)=AR~-MI1D
UI(4)}=sAT+MRLD
UR{5}=ARB-~-MIS
UIL5)1=A184KR5
UR{&)=ARB+MIS
UIta)=AIR~MRS
URIT7)=AR+MIL10O
UT{7)=A1~MR1D
URIAR}=DRT+M 4
UI{8)=A]T7=MHR4
UR{9)=ARG+MT 3
UI{2)=A]6=-MR3
GO TN 40
C 16 PDINT TRANSFORM
1400 AR1=UR([1)+UR({9)
ATL=UT(1)+UI{9)
ARZ2=UR{S5}+UR(1
AT2=0F{51+UI(}
AR3=UR(3)+URI{1
AlZ3=UT(31+UT11
AR4=UR{3)1-URI(1]
Al4=UI{3)-=UI(1
ARB=UR{T7}+UR(1]
1

3)
3]
1)
1)
1)
1)
5}
ATS=Ul{7)1+U1(15)
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ARG=UR(T)=UR(15)
AL&=UT(T)=UT{15)
ART=UR (2)+UR(10)
ATT=UT(2)+01(10)
ARB=UR(2)-UR{10)
ATR=UT(2)=U1(10)
ARG=UR{4)+UR(12)
AL9=UT{4}+UT112)
ARLO=UR(4)=UR( 12)
ATLO0=UT(4)=UI(12)
AR11=UR{ &) +UR{ 14)

ATLl=UF{AY+ULL14).

AR1?7=UR(&)-UR(14)
Al1Z2=UL(A)=UT(L14)
AR13=UR(R)+UR( 1A}

AT13=UT(B)+U](16).
AR14=URIR}=-UR{1A)

ATla=UT{A}=-Ul{16)
AR15=2ARL1+AR?2
AT1S=AT1+AI2
AR16=AR3+ARS5
All6=AT3+AlS
AR17=4AR15+AR1A
AlLT=4a115+A]16
ARIR=ART+ARLL
AILASATIT+ATLL
AR19=AR7-ARI1
All9=A17-Al11
AR2N=AR9+AR13
Al20=A19+AT13
ARZ1=ARO-AR13
ATZ1=A19=A7113%
ARZ2=AB1B+ARZN
Al22=A11R+4120
ARZ23I=ARB+ARLG
A123=A1R+AIl4
ARZA=ARR=ARL4
A124=ATR-A114
AR25=AR1D+AR12
AI2S5=ATIO+ATLY
AR26=AR12-ARL0
AT26=A112-A110
AR31=UR{1)-URI[T)
AT3L=UT{1)-UT19)
UR{11=AR1T+AR22Z
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UILL)=AT1T7+A]122
UR{9}=ARLT=AR2Z22
UEl9)Y=AILT~Al22

AR29=AR15=-AR1A

Al29=A]15-A11hA

AR3ZD=AR1=-ARZ

AI30=AI1=-AI?
MR1=0G,TNTLOGTALZNO*{ AR19=-4ARZ2Y)
MI1=0,70T10ATRI2NOM(ATLIO-ATZ])
MR2=N,.T0T7106TRL2NDNH{ AR4~ARA)
MI2=0,707106TRI2NDOH(AT4=A16)
MR3=0, AR2HRIL324D0% ([ AR24+ARZ6)
MI3=0,3R26834324ND00{ ATP4+A12A)
MR4=1,3NASAHZ96BNN0RAR2S
MI4=1.30A562965NNKAT24
MRE==N,54119A1001NN%AR2A
MIG=-0,541196100100%A1264
AR3AP=ARIR-ARZO

Al32=~AT18+A1P0

AR33=AR3=-ARS

Al33=-A13+A15
ARF4=R(G)~UR(13)

4] 34==UH1(5)+UT{13)

MRA=N, IN?LIOATRIPNOHR{ AR IIH+ARZ))
Mla==N,7NTIDATHRL2NDAR{ATILIG+A]2])
MRT=0,T0T1046TR12DO%{ ARA+ARA)
MIT==0,7TOT7TID6TRIZNOX(AT4+ATR)
MRB=0,923R795325N0x{ AR?3+AR?5)
MIA=-0,023R795325N0x{A123+A125)
MRY==0.,5411961001N0%AR23
MIG=0.5411961001L00%AT23
MR10=1,3065A29A5ND0%ARZS
MI1D=~1,306562965N0%A125
MR11=AR3O+MR1]

MIL1=A[30+MI1

MR12=AR30-MR1

MI12=A130~-MI1

MR13=AR3IZ+MRA

MI13=A1334+M]b

MR14=MRA-AR33

MIla=M16=-8]33

MR15=AR31+MR2

MI165=A]31+M]2

MR16=ARA1~HMRZ

MIlA=AT31~MI?
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MR17=MR&=MR3
MILT7=M14~MI3
MRL1A=MR5=MR3
MI1R=M]E=-M]3
MR19=MR15+MR17
MI19=M]154M]117
MRP2N=MRL5-MR17
MIZ20=MT15=MI17
MR21sMR1A+MR LA
MI21=MT16+M] 18
MR22=MR1A-~MR1H
MI22=M11A=M[1R
ME23=AR34+MRT
MI23=A]344M]17
MR24=0R34=-MR7
MIZ4=AT34-M1T
MRZ25=MRR+MRQ
M126=M]B+M]9

MR 2 A=HRA~MR10
MIPHh=MIA~KI10
MR2T=MRZ?3+MR25
MI27=MI23+M]25
MRZR=MR23~MR25
MIZA=MIZ23=-M[25
MR29=MR24+MR2H
MI29=MT24+M]126
MR3INO=MRZ4~-MR2A
M130=M]24~M126
UR(Z2Y=MR19+MI[27
UI(21=MI19+MR27
UR({3)=MR11+MI13
UI{3)=sMIL11+MR13
R{4)Y=MR22-M130
Ul{4)=ME22-MR3D
URES5)=AR29+A132
UIis)=sAT29+8R32
UR(A)=MRZ21+M]I29
tHI{Aa)=MI2]1+MR29
UUR{T)I=MR124+M]14
UN{71=MI12+MR 14
UR{R)=MR20-M128
UI{R)=MIZ20-MR2A
UR({10)=MR20D+MIZ2R
UITi10)y=MI204+MR28A
IIR{11)=MR12-MI14



ORIGINAL PAGE 18
OF POOR QUALITY

UI{11)=MT12~MR14
UR{1?)=MRZ1-M]29
Hi{12)=M]21-MR?9
UR{13)=ARZ29~A]32
UI{13)=A129-4AR32
UR({14)=MR224+M13N
LI{14)=MI272+MR30
UR{15)=MRI1~H]113
Ur{rs)=MIr11-mMr13a
UR({1A)=MR1I9-MI2T
UIL{1A)=MT19-MR27
GN 70 40
1003 RETURMN

FnD
SUHRNUTINE RATOUT(N,T)
IMPLICIT REAL#8 (AwH,Nn7)
COMMAN/NET/ALS040), R{5040)
WRITR(h,45)

45 FORMAT(1IH1443%X,25HFAR FIFELD"ANTEMNA PATTERM/TX,5HANGLE ,4X,THMAG (DR
2) 55X RHPHASE )
C12=A{1)%a2+R(1)%x%7
NFG=5T.2957785131hN0
DO 50 [=14N
S={1-11/(N%T)
CP2=AlT1%24R{1)=n?
COB=10.0D0%NLOGINI(C2/C12})
PHA=DATAN(B{TI/A(1) ) DEG
TF{R{1).LT.0.0} PHA=PHA+1AD.NNO
AMG=NARSINIS}*NEG
WRITE(A,TD)ANG,CNB,PHA

50 CONTINUE

A0 CONTINUE

T0 FORMAT{Z(3X,F10.4,FLD.4,F10.4))
RETURH
END

41
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