General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

FAR-FIELD RADIATION PATTERNS OF APERTURE ANTENNAS BY THE WINOGRAD FOURIER TRANSFORM ALGORITHM

Rodney Heisler
School of Engineering
Willa Willa College
(NASA-CR-159911) FAR-FIELD RADIATION
N79-16171
patterns of aperture antennas by the
WINOGRAD FOURIER TRANSFORM ALGORITHM (Falla Wall College, College Place) 46 p MC \quad Uncles $\mathrm{A} 03 / \mathrm{MF} \mathrm{A} 01$

NAS 5-25063

October 1978

FAR-FIELD RADIATION PATTEERNS OF APERTURE ANTENNAS BY THE WINOGRAD FOURIER TRANSFORM ALGORITHM

Rodney Heisler
School of Engineering
Walla Walla College

Abstract

The farffied radiation pattern of an antenna may be determined as the fast Fourier transform (FFT) of the aperture distribution. When the antema is electrically large and a detailed pattern in two dimensions is required, computer run-times exceeding an hour may result. A more timieefficient algorithm for computing the discrete Fourier transform (DFT) may result in a more effective analysis and design process. Significiant savings in cpu time will improve the computer turnaround time and cireumvent the need to resort to weekend runs.

A FORTRAN program to calculate the DFT using the Winograd Fourier transform algorithm was adiapted to the IBM $360 / 91$ computer and extended to handle complex input data vectors up to length $\mathrm{N}=5040$. Transforms may be computed for any data length given by the product of four mutually prime numbers selected from the integers $16,9,8,7,5,4,3$, and 2 (e.g., $\mathrm{N}=9 \cdot 8 \cdot 7 \cdot 5=$ 2520). The WFTT was used to compute antenna patterns for cophase and linear phase gradient apertures. The results were essentially identical to those previously computed with a conventional radix-2 FFT.

Significant time savings were realized with the WFT program. Run-time comparisons were made between WFT lengths of 1008, 2520 and 5040 and FFT lengths of 1024, 2048, and 4096, respectively. A minimum 4.6 to 1 speed advantage was demonstrated over this range. On the basis of the WFT timings it was estimated that two-dimensional transforms would require about one minute, ten minutes, and 40 minutes for the 1008, 2520, and 5040 point transforms, respectively. This

PRECEDING paCE DLAEM NOT Fuy
is sufficient to make two-dimensional transforms up to $\mathrm{N}=2520$ feasible within reasonable computer run-time limitations.

CONTENTS

Page
Abstract iii
Introduction 1
From Discrete Fourier Transform to Discrete Convolution 1
Fast Discrete Circular Convolution 4
Computing the Diserete Fourier Transform with Fast Convolution Techniques 13
Long-Length Transforms 15
Application to Aperture Antennas 17
Other Algoritinms 23
Conclusion 24
Acknowledgments 24
References 25
Appendix 27
ILLUSTRATIONS
Figure
1 Graphical Convolution of the Periodic Data Sets $x(n)$ and $h(n)$ 5
2 Graphical Convolution of $\{\bar{X}(1), \bar{X}(2), \bar{X}(4), \bar{X}(3)\}$
$=\{x(1), x(3), x(4), x(2)\} *\left\{w^{1}, w^{2}, w^{4}, w^{3}\right\}$ 6
3 Far-field Radiation Pattern for Benchmark Aperture by 5040 Point WFT and 4096 Point FFT 19
4 Far-fied Radiation Pattern for Benchmark Aperture by 5040 Point and 2520 Point WFT 20
5 Far-field Radiation Pattern for Benchmark Aperture with Negative 360°
Linear Phase Gradient by 5040 Point WFT and 4096 Point FFT 22

TABLES

Table Page
1 Computational Algorithm for an $\mathrm{N}=5 \mathrm{DFT}$ Using Fast Discrete Convolution 14
2 Number of Calculations for Short-Length WFT and FFT 15
3 Comparison of Prime Factor and Nested Algorithms 17
4 WFT and FFT Timing Results 21
5 Optimum Ordering of Composite Transforms for Large N WFT 23

FAR-FIELD RADIATION PATTERNS OF APERTURE ANTENNAS BY THE WINOGRAD FOURIER TRANSFORM ALGORITHM

INTRODUCTION

The computation of far-field radiation patterns of aperture antennas using the Fourier transform is well documented in the literature (Ref. 1 and 2) and in current use. The fast Fourier transform (FFT) algorithm is used in this application because of its computational speed advantage over the conventional discrete Fourier transform (DFT). Even so, computer run times exceeding one hour are expected as analysis techniques are extended to two-dimensional problems. A significant reduction in cpu run time would allow more effective analysis and design as computer runs may not be so time consuming as to be relegated to weekend runs only. Furthermore, the financial savings may be significant.

Recent studies (Ref. 3 and 4) have explored the feasibility of using the fast Walsh transform (FWT) for this application. While time savings on the order of ten to one were reported, the FWT gave only marginally satisfactory results for real data and failed to produce the normal squint associated with a linear phase gradient on the aperture distribution. Additionally, there were serious difficulties in calibrating the sequency axis.

Other investigators (Ref. 5, 6, 7, 8,9, and 10) have reported on a new algorithm for computing the DFT. The Winograd Fourier transform algorithm (WFT) requires substantially fewer multiplications than the FFT while the number of additions, for some cases, remains near FFT levels. The WFT may be used effectively on short data sequences where the number of elements is prime. For long transform lengths, however, the number of additions becomes excessive and a direct application of the WFT becomes impractical. In this case it is useful to employ a combination of "small-N") WFT algorithms with a multidimensional expansion to extend the range of application to data lengths in excess of several thousand.

FROM DISCRETE FOURIER TRANSFORM TO DISCRETE CONVOLUTION

The DFT of a data vector $x(n)=\{x(0), x(1), \cdots x(N-1)\}$ is defined as:

$$
\begin{align*}
X(k) & =\sum_{n=0}^{N-1} x(n) e^{-j\left(\frac{2 \pi}{N}\right) n k} k=0,1,2, \cdots N-1 \tag{1}\\
& =\sum_{n=0}^{N-1} x(n) w^{n k}
\end{align*}
$$

where

$$
w=e^{-j\left(\frac{2 \pi}{N}\right)}
$$

The DFT is to discrete-time signals what the Fourier transform

$$
\begin{equation*}
X(j w)=\int_{0}^{\infty} x(t) e^{-j\left(\frac{2 \pi}{T}\right) n t} d t \tag{2}
\end{equation*}
$$

is to continuous-time signals. The extension of equation (2) to the DFT of equation (1) ean be viewed intuitively.

Equation (1) describes the generation of N equations from which the elements in the DFT $X(0), X(1), \cdots X(N-1)$ may be computed:

$$
\left[\begin{array}{c}
X(0) \tag{3}\\
X(1) \\
X(2) \\
\cdot \\
\cdot \\
X(N-1)
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & w^{1} & w^{2} & \cdots & w^{N-1} \\
1 & w^{2} & w^{4} & \cdots & w^{2(N-1)} \\
\cdot & \cdot & \cdot & & \\
\cdot & \cdot & \cdot & & \\
1 & \cdot & w^{N-1} & w^{2(N-1)} & \cdots \\
w^{(N-1)(N-1)}
\end{array}\right]\left[\begin{array}{l}
x(0) \\
x(1) \\
x(2) \\
\cdot \\
\cdot \\
x(N-1)
\end{array}\right]
$$

Using the FFT algorithm to evaluate this matrix product results in a very substantial computational reduction over a direct calculation. The complexity of computation arises from the ($\mathrm{N}-1$) by $(\mathrm{N}-1)$ lower tight-land section of the transform matrix:

$$
\begin{equation*}
\bar{X}(k)=\sum_{n=1}^{N-1} x(n) w^{k n} \quad k=1,2, \cdots N-1 \tag{4}
\end{equation*}
$$

From $\bar{X}(k)$ we can retrieve $X(k)$ by

$$
\begin{align*}
& X(0)=\sum_{n=0}^{N-1} x(n) \tag{5}\\
& X(k)=x(0)+\bar{X}(k) \quad k=1,2, \cdots N-1
\end{align*}
$$

Consider the case where $\mathrm{N}=5$. Equation (4) then becomes:

$$
\left[\begin{array}{l}
\bar{X}(1) \tag{6}\\
\bar{X}(2) \\
\bar{X}(3) \\
\bar{X}(4)
\end{array}\right]=\left[\begin{array}{cccc}
w^{1} & w^{2} & w^{3} & w^{4} \\
w^{2} & w^{4} & w^{1} & w^{3} \\
w^{3} & w^{1} & w^{4} & w^{2} \\
w^{4} & w^{3} & w^{2} & w^{1}
\end{array}\right]\left[\begin{array}{l}
x(1) \\
x(2) \\
x(3) \\
x(4)
\end{array}\right]
$$

where the exponents of w are written modulo 5 , i.e., $w^{8}=w^{5} \cdot w^{3}=w^{3}$, as $w^{5}=1$. A simple permutation of rows and columns in (6) will demonstrate how the DFT process may be converted to cyclic convolution. First interchange the last two columns and then the last two rows:

$$
\left[\begin{array}{l}
\bar{X}(1) \tag{7}\\
\bar{X}(2) \\
\bar{X}(4) \\
\bar{X}(3)
\end{array}\right]=\left[\begin{array}{cccc}
w^{1} & w^{2} & w^{4} & w^{3} \\
w^{2} & w^{4} & w^{3} & w^{1} \\
w^{4} & w^{3} & w^{1} & w^{2} \\
w^{3} & w^{1} & w^{2} & w^{4}
\end{array}\right]\left[\begin{array}{l}
x(1) \\
x(2) \\
x(4) \\
x(3)
\end{array}\right]
$$

Next reverse the order of the input data $x(2), x(3), x(4)$:

$$
\left[\begin{array}{l}
\bar{X}(1) \tag{8}\\
\bar{X}(2) \\
\bar{X}(4) \\
\bar{X}(3)
\end{array}\right]=\left[\begin{array}{cccc}
w^{1} & w^{3} & w^{4} & w^{2} \\
w^{2} & w^{1} & w^{3} & w^{4} \\
w^{4} & w^{2} & w^{1} & w^{3} \\
w^{3} & w^{4} & w^{2} & w^{1}
\end{array}\right]\left[\begin{array}{l}
x(1) \\
x(3) \\
x(4) \\
x(2)
\end{array}\right]
$$

Careful examination reveals that the above matrix product conforms to the definition of discrete circular convolution:

$$
\begin{align*}
y(k)=x(n) * h(n) & =\sum_{n=0}^{N-1} x(n) h(k-n) \tag{9}\\
k & =1,2, \cdots N
\end{align*}
$$

Convolution is more easily understood from a graphical description as the mathematical process of equation (9) may not be clear. Figure 1 demonsirates graphically the convolution of $x(n)$ and $h(n)$. Both $x(n)$ and $h(n)$ are depicted as periodic discrete data series of length four. For the case of $\mathrm{k}=0, \mathrm{~h}(-\mathrm{n})$ is seen to be the mirror image of $\mathrm{h}(\mathrm{n}), \mathrm{h}(\mathrm{l}-\mathrm{n})$ is simply $\mathrm{h}(-\mathrm{n})$ shifted right one sampling interval. $y(1)$ may then be computed as the sum of products of x and h as shown. The other $y(k)$ terms may be similarly found as demonstrated in the figure.

Equation (8) describes the convolution:

$$
\begin{equation*}
\{\overline{\mathrm{X}}(1), \overline{\mathrm{X}}(2), \overline{\mathrm{X}}(4), \overline{\mathrm{X}}(3)\}=\{\mathrm{x}(1), \mathrm{x}(3), \mathrm{x}(4), \mathrm{x}(2)\} *\left\{w^{1}, w^{2}, w^{4}, w^{3}\right\} \tag{10}
\end{equation*}
$$

The graphical details of this convolution may be studied in Figure 2. Note that upon convolving the two data sets of equation (10), the elements $\bar{X}(1), \bar{X}(2), \bar{X}(4), \bar{X}(3)$ respectively are computed. Significantly, the elements $\bar{X}(k)$ of the DFT are now to be computed from a convolution operation. This transition was accomplished by a mapping of the matrix indices and is always possible for N equal to a prime or a prime power. For a mathematical description of the mapping process see Kolba and Parks (Ref. 9).

FAST DISCRETE CIRCULAR CONVOLUTION

Winograd (Ref. 6 and 7) has demonstrated an operational advantage to computing the DFT by changing to a discrete circular convolution operation. He presents an algorithm for performing short length cyclic convolution in a minimum number of multiplies. The concept employs polynomial multiplication modulo a third polynomial.

Figure 1. Graphical Convolution of the Periodic Data Sets $x(n)$ and $h(n)$

Figure 2. Graphical Convolution of $\{\overline{\mathrm{X}}(1), \overline{\mathrm{X}}(2), \overline{\mathrm{X}}(4), \overline{\mathrm{X}}(3)\}$

$$
=\{x(1), x(3), x(4), x(2)\} *\left\{w^{1}, w^{2}, w^{4}, w^{3}\right\}
$$

The cyelic convolution $h(n) * x(n)$ can be evaluated from the N coefficients of:

$$
Y(z)=H(z) \cdot X(z) \bmod \left(z^{N}-1\right)
$$

where

$$
\begin{align*}
& H(z)=\sum_{k=0}^{N-1} h_{k} z^{k}=h_{0}+h_{1} z^{\prime}+h_{2} z^{2}+\ldots+h_{N-1} z^{N-1} \tag{11}\\
& X(z)=\sum_{k=0}^{N-1} x_{k} z^{k}=x_{0}+x_{1} z^{1}+x_{2} z^{2}+\ldots .+x_{N-1} z^{N-1}
\end{align*}
$$

Winograd states that the minimum number of required multiplies is equal to $2 \mathrm{~N}-\mathrm{K}$ where K is the number of irreducible polynomials into which $z^{N}-1$ may be factored, i.e.,

$$
\begin{equation*}
z^{N}-1=\prod_{i=1}^{K} Q_{i}(z) \tag{12}
\end{equation*}
$$

To demonstrate this theorem consider the convolution $\left\{h_{0}, h_{1}, h_{2}, h_{3}\right\} *\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ as presented earlier in Figure 1.

$$
\begin{align*}
& y(1)=x_{0} h_{0}+x_{1} h_{3}+x_{2} h_{2}+x_{3} h_{1} \\
& y(2)=x_{0} h_{1}+x_{1} h_{0}+x_{2} h_{3}+x_{3} h_{2} \tag{13}\\
& y(3)=x_{0} h_{2}+x_{1} h_{1}+x_{2} h_{0}+x_{3} h_{3} \\
& y(4)=x_{0} h_{3}+x_{1} h_{2}+x_{2} h_{1}+x_{3} h_{0}
\end{align*}
$$

The $y(k)$ may be evaluated from the polynomial multiplication:

$$
\begin{align*}
Y_{1}^{\prime}(z)= & \left(x_{0}+x_{1} z+x_{2} z^{2}+x_{3} z^{3}\right) \cdot\left(h_{0}+h_{1} z+h_{2} z^{2}+h_{3} z^{3}\right) \\
= & \left(x_{0} h_{0}\right)+\left(x_{0} h_{1}+x_{1} h_{0}\right) z+\left(x_{0} h_{2}+x_{1} h_{1}+x_{2} h_{0}\right) z^{2}+\left(x_{0} h_{3}+x_{1} h_{2}+x_{2} h_{1}+x_{3} h_{0}\right) z^{3} \\
& +\left(x_{1} h_{3}+x_{2} h_{2}+x_{3} h_{1}\right) z^{4}+\left(x_{2} h_{3}+x_{3} h_{2}\right) z^{5}+\left(x_{3} h_{3}\right) z^{6} \\
= & y_{0}+y_{1} z+y_{2} z^{2}+y_{3} z^{3}+y_{4} z^{4}+y_{5} z^{5}+y_{6} z^{6} \tag{14}
\end{align*}
$$

It is now required to find $Y(z)=Y_{1}(z) \bmod \left(z^{4}-1\right)$.

The notion of modulo arithmetic is from the concept of congruency. Two integers a and b are said to be congruent mod M if

$$
\begin{equation*}
a=b+k M \tag{15}
\end{equation*}
$$

where k is in integer and M is the modulus. This may be written as:

$$
a=b \bmod (M)
$$

The integer b may be found as the remainder of the quotient a / M as may be ensily demonstrated. From equation (15) we have

$$
a-k M=b
$$

and bence:

$$
M \begin{gathered}
\mathrm{k} \\
\frac{\mathrm{AM}}{\mathrm{~b}}
\end{gathered}
$$

gives b as a remainder.
Extending this concept to polynomials we compute $Y(z)=Y_{1}(\%) \bmod \left(z^{4}-1\right)$ as the remainder m the synthetic division $Y_{1}(z) /\left(z^{4}-1\right)$. This results in

$$
\begin{equation*}
Y(z)=\left(y_{0}+y_{4}\right)+\left(y_{1}+y_{5}\right) z+\left(y_{2}+y_{6}\right) z^{2}+y_{3} z^{3} \tag{16}
\end{equation*}
$$

Note that there are $\mathrm{N}=4$ coefficients resulting from

$$
Y(z)=H(z) \cdot X(z) \bmod \left(z^{4}-1\right)
$$

and that upon close observation they are found to be $y(1), y(2), y(3)$, and $y(4)$ of equation (13), i.e.,

$$
\begin{aligned}
& y_{0}+y_{4}=x_{0} h_{0}+x_{1} h_{3}+x_{2} h_{2}+x_{3} h_{1}=y(1) \\
& y_{1}+y_{5}=x_{0} h_{1}+x_{1} h_{0}+x_{2} h_{3}+x_{3} h_{2}=y(2)
\end{aligned}
$$

$$
\begin{aligned}
y_{2}+y_{6} & =x_{0} h_{2}+x_{1} h_{1}+x_{2} h_{0}+x_{3} h_{3}=y(3) \\
y_{3} & =x_{0} h_{3}+x_{1} h_{2}+x_{2} h_{1}+x_{3} h_{0}=y(4)
\end{aligned}
$$

The above example has demonstrated the logistics of performing the multiplication of two polynomials modulo another polynomial and specifically !ow the convolution results are recovered. This process may be accomplished in a more computationally efficient manner using the polynomial version of the Chinese remainder theorem (Ref. 9), We may first cyaluate $H(z)$ and $X(z)$ modulo the irreducible polynomial factors of $z^{N}-1$, i.e., $Q_{i}(z)$ and then find $Y(z)$ as

$$
\begin{equation*}
Y(z)=\left[\sum_{i=1}^{k} Y_{1}(z) S_{i}(z)\right] \quad \bmod \left(z^{N}-1\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{array}{ll}
Y_{i}(z)=H_{i}(z) X_{i}(z) & \bmod \left(Q_{i}(z)\right) \\
H_{i}(z)=H(z) & \bmod \left(Q_{i}(z)\right) \\
X_{i}(z)=X(z) & \bmod \left(Q_{i}(z)\right) \\
S_{i}(z) \triangleq{ }_{1} & \bmod \left(Q_{i}(z)\right) \quad i=i, 2, \cdots, K
\end{array}
$$

To demonstrate the operations described by equation (17) we may continue with the convolution example $\left\{h_{0}, h_{1}, h_{2}, h_{3}\right\} *\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ as presented earlier. For this case $N=4$, hence

$$
\begin{aligned}
& H(z)=h_{0}+h_{1} z+h_{2} z^{2}+h_{3} z^{3} \\
& X(z)=x_{0}+x_{1} z+x_{2} z^{2}+x_{3} z^{3}
\end{aligned}
$$

as before.
The irreducible real factors of $z^{4}-1$ are

$$
\left(z^{4}-1\right)=(z+1)(z-1)\left(z^{2}+1\right)
$$

Note that the number of irreducible factors $K=3$, and hence the number of required multiplies to compute the convolution is $2 \mathrm{~N}-\mathrm{K}=5$.

The $X_{i}(z)$ and $H_{1}(z)$ polynomials are determined next. $X_{1}(z)$ is found by:

$$
x_{1}(z)=x_{0}+x_{1} z+x_{2} z^{2}+x_{3} z^{3} \quad \bmod (z+1)
$$

Computationally $X_{1}(z)$ is computed as the remainder in $X(z) /(z+1)$. Similarly $X_{2}(z)$ and $X_{3}(z)$ may be found and we have:

$$
\begin{align*}
& X_{1}(z)=X(z) \quad \bmod (z+1)=x_{0}-x_{1}+x_{2}-x_{3}=x_{0}^{1} \\
& X_{2}(z)=X(z) \quad \bmod (z-1)=x_{0}+x_{1}+x_{2}+x_{3}=x_{0}^{2} \tag{18}\\
& X_{3}(z)=X(z) \quad \bmod \left(z^{2}+1\right)=\left(x_{1}-x_{3}\right) z+\left(x_{0}-x_{2}\right)=x_{0}^{3}+x_{1}^{3} z
\end{align*}
$$

Since $H(z)$ has the same form as $X(z)$, the $H_{1}(z)$ polynomials will have the same form as the $X_{i}(z)$ polynomials:

$$
\begin{align*}
& H_{1}(z)=H(z) \quad \bmod (z+1)=h_{0}-h_{1}+h_{2}-h_{3}=h_{0}^{1} \\
& H_{2}(z)=H(z) \bmod (z-1)=h_{0}+h_{1}+h_{2}+h_{3}=h_{0}^{2} \tag{19}\\
& H_{3}(z)=H(z) \bmod \left(z^{2}+1\right)=\left(h_{1}-h_{3}\right) z+\left(h_{0}-h_{2}\right)=h_{0}^{3}+h_{1}^{3} z
\end{align*}
$$

We may now find the $Y_{1}(z)$ polynomials as

$$
\begin{align*}
& Y_{1}(z)=H_{1}(z) X_{1}(z) \quad \bmod (z+1)=h_{0}^{1} x_{0}^{1}=y_{0}^{1} \\
& Y_{2}(z)=H_{2}(z) X_{2}(z) \quad \bmod (z-1)=h_{0}^{2} x_{0}^{2}=y_{0}^{2} \tag{20}\\
& \begin{aligned}
& Y_{3}(z)=H_{3}(z) X_{3}(z) \quad \bmod \left(z^{2}+1\right) \\
&=h_{1}^{3} x_{1}^{3} z^{2}+\left(h_{0}^{3} x_{1}^{3}+h_{1}^{3} x_{0}^{3}\right) z+h_{0}^{3} x_{0}^{3} \bmod \left(z^{2}+1\right) \\
&=\left(h_{0}^{3} x_{1}^{3}+h_{1}^{3} x_{0}^{3}\right) z+\left(h_{0}^{3} x_{0}^{3}-h_{1}^{3} x_{1}^{3}\right) \\
&=y_{0}^{3}+y_{1}^{3} z
\end{aligned}
\end{align*}
$$

The $Y_{1}(z)$ polynomials may be written as

$$
\begin{align*}
Y_{1}(z) & =h_{0}^{1} x_{0}^{1}=y_{0}^{1} \\
Y_{2}(z) & =h_{0}^{2} x_{0}^{2}=y_{0}^{2} \tag{21}\\
Y_{3}(z) & =\left(h_{0}^{3} x_{0}^{3}-h_{1}^{3} x_{1}^{3}\right)+\left[\left(h_{0}^{3}-h_{1}^{3}\right)\left(x_{1}^{3}-x_{0}^{3}\right)+h_{0}^{3} x_{0}^{3}+h_{1}^{3} x_{1}^{3}\right] z \\
& =y_{0}^{3}+y_{1}^{3} z
\end{align*}
$$

Next let

$$
\begin{array}{ll}
m_{1}=h_{0}^{1} x_{0}^{1} & m_{4}=h_{0}^{3} x_{0}^{3} \\
m_{2}=h_{0}^{2} x_{0}^{2} & m_{5}=h_{1}^{3} x_{1}^{3} \tag{22}\\
m_{3}=\left(h_{0}^{3}-h_{1}^{3}\right)\left(x_{1}^{3}-x_{0}^{3}\right) &
\end{array}
$$

These are the five multiplies that will be required to complete the convolution in this example. The $Y_{i}(z)$ polynomials may be rewritten in the form

$$
\begin{align*}
& Y_{1}(z)=m_{1} \\
& Y_{2}(z)=m_{2} \tag{23}\\
& Y_{3}(z)=\left(m_{4}-m_{5}\right)+\left(m_{3}+m_{4}+m_{5}\right) z
\end{align*}
$$

We need yet to express $Y(z)$ in terms of the $Y_{i}(z)$ factors as per equation (16):

$$
Y(z)=Y_{1}(z) S_{1}(z)+Y_{2}(z) S_{2}(z)+Y_{3}(z) S_{3}(z) \quad \bmod \left(z^{4}-1\right)
$$

To do so, however, we must first determine the $\mathrm{S}_{\mathrm{i}}(\mathrm{z})$ polynomials. These are found in accordance with equation (16) to be:

$$
\begin{align*}
& S_{1}(z)=-1 / 4\left(z^{3}-z^{2}+z-1\right) \\
& S_{2}(z)=1 / 4\left(z^{3}+z^{2}+z+1\right) \tag{24}\\
& S_{3}(z)=1 / 4\left(z^{4}-2 z^{2}+1\right)
\end{align*}
$$

These may be checked by verifying that $S_{i}(z)=1 \bmod \left(Q_{i}(z)\right)$ as

$$
\begin{aligned}
-1 / 4\left(z^{3}-z^{2}+z-1\right)=1 & \bmod (z+1) \\
1 / 4\left(z^{3}+z^{2}+z+1\right)=1 & \bmod (z-1) \\
1 / 4\left(z^{4}-2 z^{2}+1\right)=1 & \bmod \left(z^{2}+1\right)
\end{aligned}
$$

Now $Y(\%)$ is found to be:

$$
\begin{align*}
Y(z) & =m_{1}\left[-1 / 4\left(z^{3}-z^{2}+z-1\right)\right] \\
& +m_{2}\left[1 / 4\left(z^{3}+z^{2}+z+1\right)\right] \tag{25}\\
& +\left[\left(m_{4}-m_{5}\right)+\left(m_{3}+m_{4}+m_{5}\right) z\right]\left[1 / 4\left(z^{4}-2 z^{2}+1\right)\right] \bmod \left(z^{4}-1\right) \\
4 Y(z) & =\left(m_{1}+m_{2}+m_{4}-m_{5}\right) \\
& +\left(-m_{1}+m_{2}+m_{3}+m_{4}+m_{5}\right) z \\
& +\left(m_{1}+m_{2}-2 m_{4}+2 m_{5}\right) z^{2} \\
& +\left(-m_{1}+m_{2}-2 m_{3}-2 m_{4}-2 m_{5}\right) z^{3} \tag{26}\\
& +\left(m_{4}-m_{5}\right) z^{4} \\
& +\left(m_{3}+m_{4}+m_{5}\right) z^{5} \\
4 Y(z) & =\left(m_{1}+m_{2}+2 m_{4}-2 m_{5}\right) \\
& +\left(-m_{1}+m_{2}+2 m_{3}+2 m_{4}+2 m_{5}\right) z \\
& +\left(m_{1}+m_{2}-2 m_{4}+2 m_{5}\right) z^{2} \tag{27}\\
& +\left(-m_{1}+m_{2}-2 m_{3}-2 m_{4}-2 m_{5}\right) z^{3}
\end{align*}
$$

Recalling the method of determining one polynomial modulo another, equation (27) was found as the remainder in the synthetic division $4 \mathrm{Y}(\mathrm{z}) /\left(\mathrm{z}^{4}-1\right)$. As with equation (16), the coefficients of z are the clements of the convolution example, i.e.:

$$
\begin{array}{ll}
y(1)=1 / 4\left(m_{1}+m_{2}+2 m_{4}-2 m_{5}\right) & =x_{0} h_{0}+x_{1} h_{3}+x_{2} h_{2}+x_{3} h_{1} \\
y(2)=1 / 4\left(-m_{1}+m_{2}+2 m_{3}+2 m_{4}+2 m_{5}\right) & =x_{0} h_{1}+x_{1} h_{0}+x_{2} h_{3}+x_{3} h_{2} \tag{28}\\
y(3)=1 / 4\left(m_{1}+m_{2}-2 m_{4}+2 m_{5}\right) & =x_{0} h_{2}+x_{1} h_{1}+x_{2} h_{0}+x_{3} h_{3} \\
y(4)=1 / 4\left(-m_{1}+m_{2}-2 m_{3}-2 m_{4}-2 m_{5}\right) & =x_{0} h_{3}+x_{1} h_{2}+x_{2} h_{1}+x_{3} h_{0}
\end{array}
$$

This last result may be verified by performing the indicated multiplications and additions.

COMPUTING THE DISCRETE FOURIER TRANSFORM WITH FAST

CONVOLUTION TECHNIQYES

The fast convolution algorithm may now be applied to the task of computing the discrete Fourier transform. This is done by performing the indicated convolution in equation (8) to find $\bar{X}(1), \bar{X}(2), \bar{X}(4)$, and $\bar{X}(3)$. In this application h_{0}, h_{1}, h_{2}, and h_{3} are w^{1}, w^{2}, w^{4}, and w^{3}, respectively, as seen by comparing Figures 1 and 2. Similarly, x_{0}, x_{1}, x_{2}, and x_{3} are $x(1), x(3), x(4)$, and $x(2)$, the input data vector.

The terms $h_{0}^{1}, h_{0}^{2}, h_{0}^{3}, h_{1}^{3}, x_{0}^{1}, x_{0}^{2}, x_{0}^{3}$ and x_{1}^{3} of equations (18) and (19) may be found as:

$$
\begin{aligned}
& h_{0}^{1}=w^{1}-w^{2}+w^{4}-w^{3}=2.236 \\
& h_{0}^{2}=w^{1}+w^{2}+w^{4}+w^{3}=1.0 \\
& h_{0}^{3}=w^{1}-w^{4}=-j 1.902 \\
& h_{1}^{3}=w^{2}-w^{3}=-j 1.176 \\
& x_{0}^{1}=x(1)-x(3)+x(4)-x(2) \\
& x_{0}^{2}=x(1)+x(3)+x(4)+x(2) \\
& x_{0}^{3}=x(1)-x(4) \\
& x_{1}^{3}=x(3)-x(2)
\end{aligned}
$$

From these results the m_{i} terms in equation (22) may be computed and subsequently the convolution results of equation (28) found. This results in the intermediate transform values $\overline{\mathrm{X}}(\mathrm{k})$. The DFT is then calculated from equation (5). The process is now complete and the results for an $\mathrm{N}=5$ computational algorithm are summarized in Table 1 (from Kolba and Parks (Ref. 9) and Winograd

Table I

Computational Algorithm for an $\mathrm{N}=5$ DFT Using Fast Discrete Convolution

[from Kilba and Parks (Ref. 9) and Winograd (Ref, 7)]

$$
\begin{array}{ll}
a_{1}=x(1)+x(4) & a_{5}=a_{2}+a_{4} \\
a_{2}=x(1)-x(4) & a_{6}=a_{1}-a_{3} \\
a_{3}=x(2)+x(3) & a_{7}=a_{1}+a_{3} \\
a_{4}=x(2)-x(3) & a_{8}=x(0)+a_{7} \\
m_{1}=0.951 a_{5} & c_{1}=x(0)-m_{5} \\
m_{2}=1.539 a_{2} & c_{2}=c_{1}+m_{4} \\
m_{3}=0.363 a_{4} & c_{3}=c_{1}-m_{4} \\
m_{4}=0.559 a_{6} & c_{4}=m_{1}-m_{3} \\
m_{5}=1 / 4 a_{7} & c_{5}=m_{2}-m_{1}
\end{array}
$$

$$
\begin{aligned}
& X(0)=\mathrm{a}_{8} \\
& X(1)=c_{2}-j c_{4} \\
& X(2)=c_{3}-j c_{5} \\
& X(3)=c_{3}+j c_{5} \\
& X(4)=c_{2}+j c_{4}
\end{aligned}
$$

(Ref. 7)]. The number of calculations required is observed to be 17 additions and 5 multiplications (the multiplication by $1 / 4$ may be accomplished by two word shifts on some FORTRAN compilers). The $x(n)$ input data vector may be complex in which case these are complex adds and multiplies,

Computational algorithms for other short length transforms may be found in Winograd (Ref. 7), Silverman (Ref. 8 and 10), and Kolba and Parks (Ref. 9). The number of computations required for these several short-length WFT algorithms is compared with radix-2 FFT requirements in Table 2. The computational advantage of the WFT is clearly seen.

Table 2
Number of Calculations for Short-Length WFT and FFT

N	WFT		FFT	
	Multiplies	Adds	Min!tiplies	Adds
2	0	2	1	2
3	2^{*}	6		
4	0	8	4	8
5	5^{*}	17		
7	8	36	24	48
8	2	26		
9	10^{*}	49	32	64

*The number of multiplies may be reduced by using word sinifts,

For farge N the WFT algorithin for fast convolution gets out of control. Furthermore, the number of additions becomes excessive and the WFT loses its computational advantage. Consequently it is necessary to use a zumbination of short-length transforms to realize the speed advantage of the WFT for transform jengths of practical importance.

LONG-LENGTH TRANSFORMS

Winograd Fourier transforms of practical lengths in the several thousands may be computed as a combination of short-length transforms. This is accomplished by converting an $N=M_{1} M_{2} \cdots M_{\ell}$ (where the M_{i} are mutually prime integers) length transform into ℓ shorter transforms of lengths M_{i} for $\mathrm{i}=1,2, \cdots \ell$. This is equivalent to a mapping from one to ℓ dimensions.

The DFT of equation (1)

$$
X(k)=\sum_{n=0}^{N-1} x(n) W^{n k}
$$

incorporates an index n which orders the input data vector and an index k ordering the transform output results. A mapping from one to two dimensions requires that each index map to two indices, i.e.,

$$
\begin{aligned}
& n \rightarrow\left(n_{1}, n_{2}\right) \\
& k \rightarrow\left(k_{1}, k_{2}\right)
\end{aligned}
$$

With this mapping the DFT may be written ats

$$
X\left(k_{1}, k_{2}\right)=\sum_{n_{1}=0}^{M_{1}-1}\left(\sum_{n_{2}=0}^{M_{2}-1} x\left(n_{1}, n_{2}\right) w_{M_{2}}^{n_{2} k_{2}}\right) w_{M_{1}}^{n_{1} k_{1}} \quad \begin{align*}
& k_{1}=0,1, \cdots M_{1}-1 \tag{29}\\
& k_{2}=0,1, \cdots M_{2}-1
\end{align*}
$$

where

$$
\begin{aligned}
W_{M_{1}} & =e^{-j\left(2 \pi / M_{1}\right)} \\
W_{M_{2}} & =e^{-j\left(2 \pi / M_{2}\right)} \\
N & =M_{1} M_{2}
\end{aligned}
$$

and M_{1} and M_{2} are relatively prime.
The two-dimensional DFT of equation (29) is found by first computing M_{1} transforms of length M_{2}

$$
y\left(n_{1}, k_{2}\right)=\sum_{n_{2}=0}^{M_{2}-1} x\left(n_{1}, n_{2}\right) w_{M_{2}}^{n_{2} k_{2}}
$$

and then M_{2} transforms of length M_{1}

$$
x\left(k_{1}, k_{2}\right)=\sum_{n_{1}=0}^{M_{1}-1} y\left(n_{1}, k_{2}\right) w_{M_{1}}^{n_{1} k_{1}}
$$

The above mapping follows the method of Kolba and Parks (Ref. 9) and is referred to as a prime factor FFT algorilhm, Winograd (Ref. 6 and 7) presents another method of structuring shortlength transforms to accomplish the same end. This technique is referred to as the nested algorithm,

From an implementation point of view the major consideration between the two algorithms is the amount of computational effort. The computational requirements of these algorithms for several values of N are compared in Table 3. In general, the nested algorithm requires fewer multiplies, while the prime factor algorithm requires substantially fewer adds. The total number of calculations is substantially fewer for the prime factored algorithm.

Table 3
Comparison of Prime Factor and Nested Algorithms

N	Factors	Prime Factor Algorithm			Nested Algorithm		
		Multiplies	Adds	Total	Multiplics	Adds	Total
252	$9 \cdot 7 \cdot 4$	1024	6344	7368	848	7128	7976
504	$9 \cdot 7 \cdot 8$	2300	13948	16248	1704	15516	17220
1260	$9.5 \cdot 7 \cdot 4$	7136	40288	47424	5168	50184	55352
2520	$9.5 \cdot 7 \cdot 8$	15532	86876	102408	10344	106667	117011

The particular computer available and the relative timings for floating-point multiplication and addition would dictate which algorithm would be more time efficient in any application. The computer used in this study was the IBM 360/91 at Goddard Space Flight Center. The 360/91 is a very fast system utilizing a high-speed "cashe-pipeline". Floating-point multiplication and addition require essentially the same execution time. Hence, the nested algorithm was judged faster and selected for application on this system.

APPLICATION TO APERTURE ANTENNAS

As discussed earlier, the far-field radiation pattern of an aperture antenna can be determined to a good approximation as the DFT of the aperture field distribution. In this application it appears
desirable to replace the FFT, which is currently used, with the faster WFT algorithm, Perhaps the savings in cpur run time would permit extension of the analysis program to two-dimensional geometries with several thousand data elements along each axis. At this time a reasonable estimate of the maximum input data vector size is about five thousand. This would allow analysis of a one meter antema at 180 GHz with half wavelength sampling.

A FORTRAN IV program to calculate the WFT was adapted to rum on the IBM 360/91 computer and extended to handle data vectors up to 5040 points with double precision arithmetic (See Appendix). Transforms may be computed for any data length given by the product of four mutually prime numbers selected from the integers $2,3,4,5,7,8,9$, and 16 (e.g., $\mathrm{N}=9 \times 8 \times 7 \times 5=2520$). As a basis for comparing the performance of this WFT program with the conventional FFT, a benchmark aperture distribution of special interest was selected. The distribution specified is sine cn a pedestal with a 20 db edge taper and is representative of focal-point fed parabolic antennas exhibiting axial symmetry. This distribution is deseribed by $0.0909+0.9091 \sin \left(\frac{m \pi}{N-1}\right), \mathrm{m}=0$, $1,2, \cdots, \mathrm{~N}=1$; where N is the number of samples in the aperture. The antenna diameter is specified as 20 feet and the wavelength as 0.44973 feet.

A 2520 and 5040 point WFT analysis were performed on this antenna and the results compared with a 4096 point FFT computation. Theoretically the VFT and FFT algorithms give exactly the same results so this comparison is intended as a ver:fication of the correctness of the WFT program. Figure 3 presents the 5040 point WFT and 4096 point FFT results. The two patterns are essentially identical except for minor differences in the higher order lobes. This difference is on the order of half adb and is entirely the result of differences in precision in the two programs. The WFFT was run in double precision (8 byte data length) and the FFT in quartic precision (16 byte data length).

A 2520 and 5040 point WFT are compared in Figure 4 . The results are very nearly identical. The only significant difference is the amount of detail produced. Understandably, the 5040 point transform yields twice as much detail as the 2520 point transform.

Figure 3. Far-field Radiation Pattern for Benchmark Aperture by 5040 Point WFT and 4096 Point FFT

Figure 4. Far-field Radiation Pattern for Benchmark Aperture by 5040 Point and 2520 Point WFT

Figure 5 demonstrates the new algorithm's ability to handle complex input data. A 360° linear phase gradient was imposed on the benchmark aperture, resulting in the expected squint. The difference in results as computed by the FFT and WFT is again due to the greatly extended precision specified in the FFT program.

The interval timer avaitable on the $360 / 91$ system library at GSFC was used to time the WFT and FFT subroutines. For this comparison the FFT subroutine was rewritten in double precision math so that both transform algorithms would be judged on the same basis. The interval timer is represented as accurate to the nearest 0.01 second. The results of this test are presented in Table 4. WFT and FFT timings are compared for values of N that are as numerically close as possible given the different constraints on N for the two algorithms. The adjusted time ratio is determined by scaling the time ratio by the ratio of the number of data samples for the two algorithms.

Table 4
WFT and FFT Timing Results

Number of Data Samples		CPU Time (Sec)	Time Ratio	Adjusted Time Ratio
WFT	FFT	0.06	7.2	7.0
1008	1024	0.43		
	2520	2048	0.90	3.8
		0.24	4.6	
		1.90	4.0	4.9

Clearly the WFT shows a minimum 4.6 to 1 speed advantage over the FFT for the range of N considered. This is considered a significant improvement in speed. On the basis of these timings it is estimated that two-dimensional WFT computations would require about one minute, ten minutes, and 40 minutes for the 1008,2520 , and 5040 point transforms, respectively. Using the conventional

IFFT program, approximately seven minutes, 31 minutes, and 130 minutes would be required for the 1024, 2048, and 4096 point transforms,

To achieve the large N capability of the WFT program it was necessary to nest the summations described by equation (29) three and four deep. The limits on these summations are the prime composites which make up N (e.g., $N=2 \times 5 \times 7 \times 9=630$). The ordering of these factors greatly affects the run time for a given N. Minimum cpu time is realized when the composite transforms are ordered in some optimum way. Table 5 presents the optimum ordering for $\mathrm{N}=504,1008$, 2520, and 5040. Any departure from this ordering will result in an increase in run time by as much as 100 percent.

Table 5
Optimum Ordering of Composite Transforms
for Large N WFT

N	Order
504	$8 \cdot 9 \cdot 7 \cdot 1$
1008	$7 \cdot 16 \cdot 9 \cdot 1$
2520	$7 \cdot 9 \cdot 5 \cdot 8$
5040	$16 \cdot 5 \cdot 7 \cdot 9$

OTHER ALGORITHMS

Other possibilities exist for fast DFT computations. Morris (Ref. 11) reports that a radix-4 FFT algoritlum outpertorms the WFT on some computer systems (DEC PDP-11/55 and the IBM$370 / 168$). His work indicates that in this comparison the WFT execution times were about 20 to 40 percent longer.

Reed and Truong (Ref. 12) have suggested that replacing the convolution operation in equation (8) with a complex integer transform operation will result in fewer multiplications than either the FFT or the WFT. Several papers by these authors have demonstrated the feasibility of performing cyclic convolution by a combination of two $\mathrm{N} \times \mathrm{N}$ integer transforms, a multiplication of two
$1 \times N$ matrices, and an $N \times N$ inverse integer transform. The transforms and the inverse transform are performed with word shifts and integer additions. This results mather significant reduction in the total number of multiplications and converts them from floating-point to integer operations. However, the number of required additions is approximately tripled; consequently, the total number of mathematical operations is increased. On the basis of these observations it appears that the use of integer transforms offers no advantage over either the FFT or the WFT for systems like the IBM 360/91 where floating-point multiplication and addition require about the same time. A clear advantage can be demonstrated for micro-processor based systems for which the ratio of multiplication to addition times may be several orders of magnitude.

CONCLUSION

Use of the WFT algorithm in antema analysis appears to be a very successful application. The radix-2 FFT as used in computing far-field radiation patterns of aperture antennas may be replaced by the WFT with no degradation in performance and with a considerable improvement in speed. Over the range of N from about 1000 to 5000 the WFT demonstrated a minimum 4.6 to 1 speed advantage over the presently used FFT. This is sufficient to make two-dimensional transforms up to $N=2520$ feasible within reasonable computer run time limitations.

As new algorithms and transforms are introduced into the study of antennas, more powerful analysis and design techniques will become available to the design engineer.

ACKNOWLEDGMENTS

This work was supported in part by a NASA-ASEE Summer Faculty Fellowship and for this the author wishes to thank Professor Dan Fan of Howard University. Additional support came from the GSFC Contract No. NAS5-25063. The author also wishes to thank Mr. Richard Schmidt of GSFC for his support and encouragement.

REFERENCES

1. Bracewell, Ronald N.: The Fourier Transform and Its Applications, McGraw-Hill Book Co., 1978.
2. Collin, Robert E., and Zucker, Francis J.: Antenna Theory, Part One, McGraw-Hill Book Co., 1969.
3. Heisler, R.: Feasibility Study-Application of Walsh Transforms To Far-Field Antenna Pattern Computations, NASA Research Report X-811-77-215, GSFC, August 1977.
4. Ko, W.L., and Mittra, R.: On the Use of Walsh-Hadamard Transforms for the Computation of Radiation Patterns of Aperture Antennas, 1978 International IEEE/AP-S Symposium, USNC/ URSI Spring Mecting, May 1978, University of Maryland.
5. Reed, I.S., Liu, K.Y., and Truong, T.K.: A New Fast Algorithm for Computing a Complex Number-Theoretic Transform, The Deep Space Progress Report 42-39, NASA-JPL, March and April 1977.
6. Winograd, Shmucl: On Computing the Discrete Fourier Transform, Proccedings National Academy of Science, USA, vol. 73, no. 4, pp. 1005-1006, April 1976.
7. Winograd, Shmuel: On Computing the Discrete Fourier Transform, IBM Research Report, RC6291, November 1976.
8. Silverman, Harvey F.: An Introduction to Programming the Winograd Fourier Transform Algorithm (WFTA), IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-25, no. 2, pp. 152-165, April 1977.
9. Kolba, Dean P., and Parks, Thomas W.: A Prime Factor FFT Algorithm Using High-Speed Convolution, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-25, no. 4, pp. 281-294, August 1977.
10. Silverman, Harvey F.: Corrections and Addendum to "An Introduction to Programming the Winograd Fourier Transform Algorithm (WFTA), IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-26, no. 3, June 1978.
11. Morris, L, Robert: A Comparative Study of Time Efficient FFT and WFT Programs for General Purpose Computers, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-26, no. 2, pp. 141-150, April 1978.
12. Reed, I.S., and Truong, T.K.: A Fast DFT Algorithm Using Complex Integer Transforms, Electronics Lerters, vol. 14, no. 6, pp. 191-193, March 1978.

APPENDIX

FORTRAN PROGRAM FOR COMPUTING THE FAR-FIELD RADIATION PATTERN USING THE WFT ALGORITHM

This section presents two FORTRAN subroutines. The first (GOODFT) uses the WFT algorithm to compute the DFT for complex input data up to length $\mathrm{N}=5040$. The second (PATOUT) computes the far-ficld radiation pattern from the transform results. The WFT subroutine is an enhancement of a program contributed by Dean Kolba (Ref. 9) from Rice University. An N=16 WFT algorithm was added to the original program structure to extend the maximum range from $\mathrm{N}=2520$ to $\mathrm{N}=5040$. In addition, the program was rewritten in double precision,

The length of the DFT, N, must be a product of no more than four mutually prime factors chosen from the integers $2,3,4,5,7,8,9$, and 16 . These factors are named M1, M2, M3, and M4. If not all four factors are used the unused factors are set equal to 1 . The factors of one must be last in the sequence of M's in the program. The other I/O variables used in the subroutine are:

$$
\begin{aligned}
\text { NFT } & =\text { number of nonunity factors } \\
\text { KOUT } & =\text { output indexing constant } \\
& =K 1+K 2+K 3+K 4(\bmod N)
\end{aligned}
$$

where

$$
\begin{array}{ll}
\mathrm{K} 1=\mathrm{M} 2 \cdot \mathrm{M} 3 \cdot \mathrm{M} 4 & \text { or }=0 \text { for } \mathrm{M} 1=1 \\
\mathrm{~K} 2=\mathrm{M} 1 \cdot \mathrm{M} 3 \cdot \mathrm{M} 4 & \text { or }=0 \text { for } \mathrm{M} 2=1 \\
\mathrm{~K} 3=\mathrm{M} 1 \cdot \mathrm{M} 2 \cdot \mathrm{M} 4 & \text { or }=0 \text { for } \mathrm{M} 3=1 \\
\mathrm{~K} 4=\mathrm{M} 1 \cdot \mathrm{M} 2 \cdot \mathrm{M} 3 & \text { or }=0 \text { for M4 }=1
\end{array}
$$

$$
X R(N)=r^{\wedge} a l \text { part of input data }
$$

$$
\mathrm{XI}(\mathrm{~N})=\text { imaginary part of input data }
$$

$$
A(N)=\text { real part of transform results }
$$

$$
\mathrm{B}(\mathrm{~N})=\text { imaginary part of transform results }
$$

To illustrate the above, consider the case $N=5 \cdot 3 \cdot 2 \cdot 1=30$. The above input variables are:

$$
\begin{aligned}
\mathrm{N} & =30 \\
\mathrm{NFT} & =3 \\
\mathrm{MI} & =5 \\
\mathrm{M} 2 & =3 \\
\mathrm{M} 3 & =2
\end{aligned}
$$

The ordering of the M's is not significant with respect to the quality of the transform results, but does have a very important affect on the run-time for the subroutine. Table 5 presented the optimum ordering for the four cases $N=504,1008,2520$, and 5040 . Departure from these orders may increase the cpu timings by more than 100 percent.

The DFT is cyclic in nature and hence to compute the transform of a non-cyclic, finite data set $\{x(n)\}$ it is necessary to append a relatively large number of zeros to both ends of the aperture distribution. About 75 to 90 percent of the input data should be made up of these embedded zeros. This will establish an adequate ground plane about the aparture and reduce the effects of folding or aliasing.

The subroutine PATOUT requires as input the length of the DFT (N), the transform results from GOODFT (A\&B), and the sampling interval (T) in wavelengths. To prevent aliasing $T \leqslant \lambda / 2$. The output of the subroutine is the magnitude (in db) and the phase (in degrees) of the antenna gain as a function of polar angle starting at a line drawn broadside to the antenna and through its center. For this statement to be true it is necessary that the input aperture distribution to GOODFT be specified according to the same geometry. The aperture data must be input starting at the antenna midpoint and proceeding to the edge. The zeros are imbedded next, followed by the other half of the aperture data starting at the edge and ending at the center.

SUAROUTINE GOODFT(XR,XI,N,M1,M2,M3,M4,NFT,KDUT, A,B)
C THE SUBROUTINE GOODFT COMPUTES A LENGTH N DFT OF THE INPUT DATA WHICH IS IN
C TWO VECTORS, XR THE REAL PART AND XI THE IMAGINAGY PART. BOTH XR AND XI ARE
C GENGTH N VECTORS. THE LENGTH OF THE DFT. N, MUST BE A PRODUCT OF AT MOST
c. FDUR MUTUALLY PRIME FACTORS. THE POSSIBLE FACTORS ARE 2,3,4,5,7,8,9 AND 16.

C THFSE FACTORS ARE M1, M2, M3, AND M4. IF THE FOUR FACTORS ARE NOT ALL USED,
C THE UNUSED FACTORS ARE SET ENUAL TO 1. FOR EXAMPLE WITH N=30, WE HAVE
C $M 1=5, M 2=3, M 3=2$, AND $M 4=1$. THE FACTORS OF ONE MUST BE THE LAST OF THE MIS.
C THF NUMBER OF NONUNITY FACTORS IS NFT. KOUT IS AN OUTPUT INDEXING CONSTANT

C. $K 4=0$ IF $M 4=1$. FOR EXAMPLE, $N=30, K 1=6, \mathrm{~K} 2=10, \mathrm{~K} 3=15, \mathrm{~K} 4=0$ ANO KOUT $=31 \mathrm{MOD} 30$
C = 1 . THE TRANSFORMED RESULTS ARE STORED IN TWO LENGTH N VECTORS, A AND R. a
C CONTAINS THE REAL PART AND B CONTAINS THE IMAGINARY PART DF THE RESULTS.
IMPLICIT REAL*B (A-H, O-2)
DIMENSION XR(5040),XI(5040),UR(16),UI(16),!(16),A(5040),B(5040)
REAL*R MR1,MR2,MR3,MR4,MR5,MRG,MR7,MRR,MR9,MR10,MR11,MR12,MR13
REAL*8 MR14,MR15,MR16.MR17,MR18,MR19,MR20.MR21,MR22,MR23,MR24
REAL*8 MR25,MR26,MR27,HR28,MR29,MR30,MII,MI2,MI2,MI4,MIS,MI6,MI7
REAL*R MIR,MI9,MILO,MIIL,MI12,MI13,MI14,MII5,MII6,MII7,MIIR,MII9
REAL* M MI20,MI21,MI22,MI23,MI24,MI25,MI26.MI27,MI28,MI29,MI30
$N F=N F T$
C GRDER FACTORS FOR TRANSFORMS OF LENGTH MI
$M M 1=141$
$M M 2=M 2$
MM $3=143$
$M M 4=M 4$
GO TO 20
10 G $\operatorname{TO}(12,13,14), N F$
C ORDER FACTORS FOR TRANSFORMS OF LENGTH M2 $12 M M 1=M 2$
$M M 2=M 1$
MM3 $=$ M3
MM $4=M 4$
Gก Tn 20
C ORDER FACTORS FOR TRANSFORMS OF LENGTH M3 $13 \mathrm{MML}=\mathrm{M} 3$
$M M 2=M 1$
$M M 3=112$
$M N 4=M 4$
60 TO 20
C QRDER FACTORS FOR TRANSFORMS OF LENGTH M4 $14 M M 1=M 4$

MM2=M1
$M M 3=M 2$

MN4 $=$ M3
C INDEXING INITIALIZATION FOR THE TRANSFDRMS $20 \mathrm{~N} 2=0$
$N 3=0$
N4 $=0$
$\mathrm{Kl}=\mathrm{MM} 2 *$ MM 3 *NM 4
K $2=$ MM $1 *$ MM $3 *$ MM 2
$K 3=M M 1 * M M 2 * M M 4$
K $4=$ MM1*MM2*MM3
$1(1)=0$
C INPUT INDEXING ALONG ONE DIMENSION
21 DO $22 \mathrm{~J}=2, \mathrm{MAPL}$
$1(J)=I(J-1)+K 1$
IF(IIJ).LT.N) GO TO 22
$I(J)=I(J)-N$
22 GONTINUE
C TRANSFERRING DATA TO TEMPORARY VECTORS UR ANO UI
30 DO $31 \mathrm{~J}=1$, MMI
$I J=I(J)+1$
$U R(J)=X R(I J)$
3I'UI(J) $=X I(I J)$
C TRANSFORM UR,UI
GOTO(50,200,300,400,500,50,700, $800,900,50,50,50,50,50,50,1600), \mathrm{MM}$
2.1
C. PI_ACF RESIUTS OF TRANSFORM BACK IN XR AND XI
$400041 \mathrm{~J}=1$, MM1
$I J=I(J)+1$
XR(IJ)=UR(J)
$41 \times 1(I J)=U 1(d)$
C TESTING FOR COMPLETION OF THIS FACTORIS TRANSFORMS
IF(N2.NE.MM2-1) GO TO 51
$\mathrm{N} 2=0$
IF(N3.NE.MM3-1) GO TO 52
N3=0
IF(N4.NE.MM4-1) GO TO 53
$50 \mathrm{NF}=\mathrm{NF}-1$
IF(NF.EO.O) GO TO 1000
GO TD 10
C INPUT INDEXING ALONG OTHER DIMENSIONS
51 N2 $=\mathrm{N} 2+1$
DO $54 \mathrm{~J}=\mathrm{I}, \mathrm{MMI}$
$I(J)=I(J)+K 2$
IF(I(J).LT.N) GO TO 54
$1(J)=1(J)-N$
54 CONTINUE
fin $7 n 30$
52 N3 $=$ N3 +1
[(1) $=\mathrm{K} 3 * \mathrm{~N} 3+\mathrm{K} 4 * \mathrm{~N} 4$
IF(I) 1).LT.N) GO TO 21
$I(1)=1(1)-N$
con Tn 21
$53 \mathrm{~N} 4=\mathrm{N} 4+1$
J(1) $=\mathrm{K} 4 * N 4$
GOTO 21
C IINSCRAMRI ING TRANSFORM RESULTS
1000 IJ=1
$\mathrm{J}=1$
fon TO 1001
100? IF(J.FTT.N) GO TO 1003
$I I=I I+K \cap U T$
1004 IF(II.EE.N) GO TO 1001
$I I=I I-N$
Gก Tח 1004
$1001 \mathrm{~A}(\mathrm{~J})=X R(I I)$
$B(J)=-X I(I I)$
$J=J+1$
GO TO 1002
C. 2 POINT TRANSFORM

200 URX $=U R(1)+U R(2)$
UI $X=U I(1)+U I(2)$
$\operatorname{IJR}(2)=\operatorname{UR}(1)-U R(2)$
III(2) $=\mathrm{U}(1)-\mathrm{U}(2)$
UR(1) $=$ URX
UI (1) =U|X
Gก TO 40
C 3 POINT TRANSFORM
$300 \Delta R=U R(2)+U R(3)$
$A I=(J I(?)+U I(3)$
MR $1=-1.500 * A R$
MII $=-1.500 * A I$
MR2 $=0.86602540 .3800 *(U R(2)-$ UR (3) $)$
$M 12=0$. BG6025403800\%(UI(2)-UI (3))
$\operatorname{UR}(1)=A R+U R(1)$
UI(1) $=\Delta I+U 1(1)$
$M R 1=U R(1)+M R 1$
MII $=1 \mathrm{I}(1)+$ MII
UR $(2)=M R 1-M I 2$
UI (2) $=$ MII $1+M R 2$
$\operatorname{UR}(3)=M R 1+M I 2$.
UI $(3)=M I 1-M R 2$

Gn Tn 40

```
C 4 POINT TRANSFORM
    400 ARI=UR(1)+UR(3)
        AII=UI(1)+UI(3)
        AR?=UR(1)-UR(3)
        AI2=U!(1)-UI(3)
        AR3=UR(2)+UR(4)
        AI3=U1(2)+U1(4)
        AR4=(IR(?)-UR(4)
        AI4=U1(?)-UI(4)
        UR(1)=AR1+AR3
        UI(1)=A11+A13
        IN(?)=AR2-A14
        II(2)=A!2+AR4
        IJR(3)=AR1-AR3
        UI(3)=A11-A13
        |R(4)=AR2+A14
        UI(4)=AI2-AR4
        G0 TO 40)
        C }5\mathrm{ POINT TRANSFORM
        50) AR1=UR(2)+UR(5)
        \DeltaII=UI(2)+UI(5)
        AR2=\JR(2)-UR(5)
        AI2=UI(7)-U1(5)
        AR3=UR(3)+UR(4)
        AI3=UI(3)+UI(4)
        AR4=(IR(3)-UR(4)
        AI4=|I(3)-UI(4)
        AR5=AR1+AR3
        AI5=A!1+A!3
        MR 1=0.951056516300*(AR2+ARG)
        MI1=0.951056516300)*(AI2+AI4)
        MR2 =1.538841769D0*AR ?
        A12=1.53884176900*A12
        MR3 =0.363271264000%AR4
        MI 3=0.36.3271264000*AI 4
        MR4=0.559016994400%(AR1-AR 3)
        M14=0.559016994400*(AII-N13)
        MR5=-1.25DO*AR5
        M15 =-1.2500*AI5
        UR(1)=UR(1)+AR5
        JI{I}=UI(1)+AI5
        MR 5 =UR(1)+MR5
        MI5=U1(1)+MI5
        AR1=MR5+MR4
```



```
    MRA=0.87484229100*(AR4-AR2)
    M1R=0.R74842291DO*(A14-A12)
    UR(1)=|JR(1)+AR7
    UI(1)=|!(1)+AI7
    AR1=UR(!)+MR1
    AII=UI(1)+MII
    AR? =AR1+MR2+MR3
    AI2=A11+MI2+MI3
    AR3=AR1-MR2-MR4
    A13=A11-MI2-M14
    AR4=ARI-MR3+MR4
    A14=AII-MI3+M14
    AR 5=MR5+MRG+MR7
    AI5=MI5+MI6+MI7
    ARG=MR5-MRG-MRH
    AIG=MI5-MIG-MIH
    AR 7=MR5-NR 7+MR8
    A!7=MI5-MI7+MIM
    UR(?)=AR2-A15
    UI(2)=AI2+\triangleR5
    UR(3)=AR3-A16
    UI(3)=AI3+ARG
    UR(4)=AR4+AI7
    U|(4)=A[4-\DeltaR7
    UR(5)=AR4-AI7
    UI(5)=AI4+AR7
    IJR(G)=AR3+AIG
    UI(G)=A!3-ARG
    (JR(7)=AR2+AI5
    U1(7)=AI2--AR5
    GO TO 40
C R POINT TRANSFORM
    ROO ARI=UR(7)-UR(R)
        AII=UI(2)-UI(R)
        AR2=UR(2)+UR(A)
        AI?=UI(2)+UI(B)
        AR3=UR(4)-UR(6)
        AI 3=UI(4)-UI(6)
        AR4=IJR(4)+UR(t)
        AI4=UI(4)+UI(6)
        AR5=UR(1)-UR(5)
        AI5=UI(1)-UI(5)
        ARG=UR(1)+UR(5)
        AIG=UI(1)+UI(5)
        AR7=UR(3)-UR(7)
```


ORIGINAL PAGE IS

or poria cuality
 $A R A=U \&(3) \div U\{(7)$ $A!R=U 1(3)+U 1(7)$ $M R 1=0.707106781$ 2DO ${ }^{2}(A R 1+A R 3)$ $M I 1=0.7071067$ A1 $200 \times(A \mid 1+\Delta I 3)$ $M R 2=0.707106781200 *(\Delta R 2-A R 4)$ MI2 $=0.707106781200 \%(A 12-A 14)$ MR3=AR? + AR4 MI3=AI2+AI4 $M R 4=A R G+A R R$ M14=AI $A+\Delta I A$ MR5 $=A R A-A R R$ $M|5=\triangle| h-A I R$ $M R G=A R 1-A R 3$ $M I 6=A I I-M I 3$ $M R 7=A R 5+M R 2$ $M 17=A 15+M 1$? $M R B=A R 5-M R 2$ $M 1 R=A I 5-M 12$ $M R 9=\triangle R 7+M R 1$ $M I 9=A I 7+M I L$ $M R 10=A R 7-M P 1$ $\mathrm{MI} 10=A 17-1 \mathrm{II}$ $\operatorname{UR}(1)=M R 4+M R 3$ U1(1) $=\mathrm{M14+M13}$
 III (2) $=M I 7+$ MR9 $\operatorname{UR}(3)=M R 5-M 15$ (1! (3) $=\mathrm{M} 15+M R 6$ $\operatorname{UR}(4)=M R 8+M I 10$ III $(4)=$ M18-MR10 $\operatorname{UR}(5)=M R 4-M R 3$ UI (5) $=$ MI4-MI3 $\operatorname{UR}(\mathrm{A})=\mathrm{NR} 8-M 110$ $U I(6)=M I 8+M R 10$ UR $\langle 7$) $=$ MR $5+M I 6$ $U(7)=M 15-M R G$ UR (R) $=4 \mathrm{AR} 7+\mathrm{MI} 9$ U1(8) $=\mathrm{M} 17$-MRQ GO TO 40
$\Delta R 2=1 / 2(2)-U R(9)$
AI2=才1(ว)-UI(9)

```
AR3=UR(3)+(IR(B)
A[3=0!(3)+U|(R)
AR4=1JR(3)-UR(R)
A|4EU|(3)-(1)(R)
\DeltaK5=\1R(5)+UR(6)
AJ5=U1(5)+|!(6)
ARG=UR(5)-UR(G)
Alfall(5)-(1)(6)
AR7口UR(4)+UR(7)
A17=(1)(4)+(1)(7)
ARR=UR(4)-UR(7)
AIH=(1I(4)-(1)(7)
AR=AR1+AR3+AR5
A!=A! 2+A!3+A\5
MR1=-0.500wAR7
M11=-n.500)
MR2=0.RG6O25403RDO*ARH
MI2=0.N66075403RNO*AIR
MR 3=0.19746547D0*(-AR1+AR5)
M13=0.1974654?NON*(-A11+N15)
MR4=0.56R57907DO*(AR1-\DeltaR3)
MI4=0,5AR5790?nN*(AII-NI3)
MR5=0.3711136DO#(-AR3+AR5)
MI5=0.3711113600%(-AI3+A15)
MRA=0.54253179DO%(ART-ARG)
MIG=n.5425317900*(A1?-A16)
MR7=0.10025579nN*(AR7+\DeltaK4)
M17=0.1002557900**(A12+A14)
MRR=0.442?7597DO*(-AR4-AR/4:
MIA=0.4422.759700*(-A|4-0:6)
MRQ =-1.5DO#AR
MIG=-1.5n\mAI
MR1O=0.AGGO25403HDO:(AKP-AR4+ARA)
MILO=O.RG6O254O3ADO#(AI2-A!4+AIG)
ARI=UR(1)+MRI
\Delta|l=U|(l)+M||
UR(1)=AR+AR7+UR(1)
UI(1)=AI+AI7+U!(1)
AR=UR(1)+MR9
AI=UI(1)+MI9
AR2=MR/4-MR5
A12=M14-MI5
AR3 =MR3+MR4
AI 3=M[3+M14
AR4=MR7-MRB
```

AI4=MI7-MIB
ARSEMRK-MR7
Al5=MJ6-MI7
$A R G=A R 2-M R 5-M R 3+A R I$
$A I f=A 12-1115-M[3+A I 1$
AR7=AR3+MR3+in $125+A R 1$
$\Delta I 7=A I 3+M I 3+M I 5+A I I$
$A R R=-A R 3-A R 2+A R 1$
$A I R=-A I 3-A I 2+A I I$
$M R 1=M R G-M R R$
MIL=MIK-MIB
$M R 3=A R 4+M R 1+M R 2$?
$M I 3=A I 4+M I l+M I 2$
$M R 4=A R 5+M R 1-M R 2$.
$M 14=\Delta 15+$ MII $-M I 2$
$M R 5=A R .5-A R 4+M R 2$
MI5=AI5-AI4+MI2
UR(?)=ARG-MI3
$\mathrm{UI}(2)=A 16+\mathrm{MR} 3$
$\operatorname{UR}(3)=A R 7-M 14$
$U I(3)=A I 7+M R 4$
$\operatorname{UR}(4)=A R-M 110$
$\mathrm{Ul}(4)=A I+M R 10$
$\operatorname{UR}\{5\}=A R B-M 15$
U! $(5)=A 18+$ MR 5
IJR $(6)=A R B+M I 5$
(II $(6)=A 1 B-M R 5$
$\operatorname{UR}(7)=A R+M I 10$
$U I(7)=A I-M R 10$
UR $(R)=A R 7+M 14$
UI $(8)=A I 7-M R 4$
$\operatorname{UR}(9)=A R G+M I 3$
HI (9) =AI 6 -MR3
GOTO 40
C IG POINT TRANSFORM
1 AOO AR1 $=$ UR(1) + UR(9$)$
AII=UI(1)+UI(9)
$\Delta R ?=U R(5)+U R(13)$ $A 12=U(15)+U(1.3)$ $A R 3=U R(3)+U R(11)$ $\Delta I 3=11(3)+U I(11)$ $A R 4=1 J R(3)-U R(11)$ $A 14=U 1(3)-U 1(11)$ $\Delta R 5=(J R(7)+U R(15)$ $A I 5=U 1(7)+U 1(15)$

```
ARG=UR(7)-UR(15)
AIt=UI(7)-UI(15)
AR7=UR(2)+UR(10)
AI7=UI(2)+UI(10)
ARB=UN(2)-UR(10)
AIR=U(12)-UI(10)
AR9=UR(4)+UR(12)
AIg=1II(4)+UI(12.)
AR10=UR(4)-UR(12)
AI10=UI(4)-UI(12)
AR11=UR(6)+UR(14)
AI111=|!(6)+U1(14)
AR1?=UR(6)-UR(14)
AI12=UI(6)-UI(14)
AR13=UR(R)+UR(16)
A113=UI(8)+U|(16)
AR14=UR(R)-UR(1G)
AI14=UI(R)-UI(16)
\DeltaR15=AR1+\DeltaR2
AI\5=AII+AI2
AR16=AR3+AR5
AI1G=AI3+AIS
AR17=AR15+AR16
AI17=A115+A11G
AR18=AR7+AR11
AI1H=AI7+A!11
AR19=AR7-AR11
AI19=AI7-AIIII
AR20=AR9+\DeltaR13
AI20=A19+AI13
AR21=AR9-AR13
A121=A19-A113
AR22=AR1R+AR20
AI22=A118+\DeltaI20
AR23=\triangleR8+AR14
AI23=AIR+AII4
AR24=ARR-AR14
AI24=AIR-A114
AR25=AR10+AR12
AI?5=AI10+AII?
AR2G=AR12-AR10
AI2G=AI12-AIIO
AR31=UR(1)-UR(9)
AI31=UI(1)-UJ(9)
|R(1)=AR17+AR22
```

```
U!(1)=A117+A12?
IR(4)=AR17-AR22
II(9)=A117-AI22
AR29=AR15-AR1G
AI29=A115-AI16
AR30=AR1-AR2.
AI30=AIl-AI?
MR1=0.707106781200*(AR19-AR21)
MI =0.7071067R12DO*(A119-A!?1)
MR2=0.7071067A12DO*(AR4-ARG)
M12=0.7071067R1200*(AI4-AIG)
MR 3 =0.382683432400%(AR24+AR26)
M13=0.3R26834.324D0*(AIT4+AI2G)
MN4=1.30656?96500%AR24
MI4=1.306556296500)*\I74
MR5=-0.541194100100*AR2h
MI5=-0.5411961001DO*AI?6
AR3?=AR18-AR20
AI32=-4I18+4IT0
AR33=AR3-AR5
AI33=-A13+A15
AR34=IR(5)-IN(13)
A134=-11((5)+1)I(13)
MRG=0.70710h7R1700*(AR14+AR21)
MIG=-0.7071067H1200*(A119+AI21)
MR7=0.7071067812DO*{\DeltaR4+\DeltaRG}
MI7=-0.707106781200)(AI4+AIG)
MR R=0.923A79532500%(AR23+AR25)
MIR }=-0.9238795325n0*(\Delta123+A125
MR9=-0.54119610010()
MI9=0.541196100100*AI23
MR10=1.30656296500%AR25
MI10=-1.30656296500*A125
MRII=AR30+MRI
MI1I=A130+NII
MR12=AR30-MR1
MI12=A130-MII
MR1.3=AR33+MRR
MI13=A133+MI6
MR14=NR6-AR33
M114=M16-A133
MR15=AR31+MR?
MJI5=AI3I+MI2
MR16=AR31-MR?
MILG=AT31-MI?
```

MR17=MR4-MR3
M117=M14-M13
MR1R=MR5-MR3
MI1R=MI5-MI3
MR19=MR15+MR17
MJ19 =MI15+M117
MR R O $=$ MRI $5-$ MR 17
MI20=MJ15-M117
$M R 21=M R 16+M R 1 R$
MIP1=MI16+M118
MR22=MR1 - -MR18
MI22=MI16-M11A
$M R 23=A R 34+M R 7$
M123 $=$ A $134+$ MI7
MR24 $=$ AR $34-$ MR 7
MI $24=\mathrm{AI} 34-\mathrm{MI7}$
MR25=MRR+MR9
MI25=M18+MI9
MR2 $=$ =MRR-MR1O
MITA二MIR-MIIO
MR27=MRP3+MR25
M127=MI23+M125
MR2R $=$ MR $23-M R 25$
MI2R=MI23-MI25
MR2G=MR24+MR26
MI29=MI24+MI26
MR3O=MR24-MR2h
MI30 =MI 24-MI26
UR (2) $=$ MR19+M127
UI (2) $=$ MI 19+MR27
$\operatorname{UR}(3)=M R 11+M 113$
UI $(3)=$ MI 11 $1+$ MR 13
UR (4) =NR22-M130
UI (4) =MI22-MR30
UR $(5)=A R 29+A 132$
UI (5) $=\Delta 129+A R 32$
$\operatorname{UR}(6)=M R 21+M I 29$
UI (6) $=$ MI $21+$ MR 29
$\operatorname{UR}(7)=M R 12+M 114$
UI (7)=MJ12+NR14
$\operatorname{UR}(8)=M R 20-M 128$
HI $(R)=M I 20-M R 2 R$
$\operatorname{UR}(10)=M R 20+M 128$ $U I(10)=M I 20+M R 2 R$ UR(11)=MR12-MI14

ORIGINAL PAGE IS OF POOR QUALII'Y

```
    UJ(11)=MI12-MR14
    IIR(1P)=MR21-MI29
    |I(12)=M121-MR7G
    IJR(13)=AR29-A132
    U1(13)=A129-4R3?
    IIR(14)=MR22+NT3n
    H!(14)=M127+MR30
    UR(15)=MR11-M113
    II(15)=M111-MR13
    IJR(lh)=MR19-MI27
    (JI(1A)=MI19-MR27
    GO TO 40
1003 RETURN
    FND
    SIJHRIUTINE pATOUT(N,T)
    IMPIICIT REAL*R (A~H,R-Z)
    COMMMON/DFT/A(5040),R(5040)
    WRITF(6,45)
    45 FIIRMATIIHL,43X,25HFAK FIFLD'ANTENNA PATTERN/7X,5HANGLF,4X,7HMAGIOR
    2).5X,5HPHASE)
        C12=A(1)市*2+R(1) #&?
        DFG=57.?O57745131nn
        DO 50 I=1,N
        S=(I-1)/(N:T T)
        IF(S.GT.1:O) GO TO AO
```



```
        CDB=10.ODO*nLOGIO(C2/C12)
        PHA=DATAN(B(I)/A(I))*DEG
        IF(B(I).LT.O.0) PHA=PHA+180.ODO
        ANG=OARSIN(S)*DEG
        WRITE(G,70)ANG,CDH,PHA
    5 0 ~ C I N T I N I I E ~
60 CONTINUE
70 FORNAT(3(3X,F10.4,F10.4,F10.4))
    RFTURN
    FND
```

