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SIMPLE MODELS FOR THE SHUTTLE REMOTE MANIPULATOR SYSTEM

Introduction

One of the fundamental objectives of the NASA Space Shuttle Mission
is to develop the capability to launch and retrieve payloads from near-earth
orbit us'ing the reusable shuttle orbiter vehicle. One of the more.demanding
of the early space shuttle missions will be the deployment of the
Interium Upper Stage (IUS) which is currently under development for the
Department of Defense. The primary function of the IUS will be to place
a single large spacecraft or multiple smaller spacecraft in earth orbits
which differ from the shuttle orbit or to place planetary spacecraft on
earth-escape trajectories. The IUS-vehicle will be approximately sixty feet
long and cylindrical in shape with a diameter of about fourteen feet.

The overall weight of the IUS can be as much as 60,000 1b, which will be
about one third of the overall shuttle-orbiter weight. The IUS will rely
on a three-axis stabilized propulsion and avionic system for trajectory and
attitude control. As a consequence, it is critical that the IUS spacecraft
module be deployed in a stable attitude for check-out and launch. 1In the
event of malfunction during the deployment stage, it will be necessary

that the IUS module be recovered and returned to the shuttle payload bay.
Hence, the RMS must be able to éccomodate each of these operations.

The requifement that these manuevers be conducted while the shuttle
and IUS are in close proximity without disturbing the attitude of the IUS
vehicle, lead to several critical operational requirements. One of the
primary problems associated with this close proximity operation arises
from the IUS interactions with the shuttle RCS thruster plume. Any

translational motion required by the shuttle for station-keeping and/or



rendezvous purposes must be performed using the 900 1b RCS thrusters.
Since the projected area of the 60 feet long by 14 foot diameter IUS
module will be on the order of 840 square feet, a substantial force can

be generated by the pressure of the RCS jet plume. Since, in general,

the center of pressure will not coincide with the center of mass, this
interaction will lead to significant moments on the IUS. Tumbling.and/or
severe disturbances in the IUS attitude may occur. If these moments

are Introduced during the retrieve stage, severe forces and moments may be
introduced in the rémote manipulation system RMS/arm. Such moments may
lead to structural failure of the RMS arm.

In addition; a careful study of the effects of the shuttle RCS thruster
actuation during any of the closé proximity maneuvers must be made. The
primary questions of concern are those related to the effects of the moments
on the IUS‘module.‘ the forces generated on the RMS arm, control strategies
and limitations on the RMS arm movement to prevent damage and, finally,
thruster firing limitations to prevént unacceptable moments on the IUS.

The basic RMS design éalls for two manipulator arms and the supporting
eyuipment for the opération éf the arms., One manipulator arm will be mounted
on the port side of the payload bay on all missions. The second arm will
be installed on the starboard side of the payload bay and will be removable,
if it is not requiréd dﬁring a given mission. The RMS will be composed of
the following major components: (a) two manipulator armé,‘(b) the RMS dis-
plays and control, and (c) the manipulator control interféce unit. These
comﬁonents will belsupported by the associated RMS software as well as the
RMS ground control equipment. As with all space rated systems, weight and

power requirement must be kept to a minimum. This leads to severe design



requirements which can be met if all pertinent factors are included in the
design process.

While the state-of-art in the design and utiliéation of fixed-based
remote manipulator systems has achieved a comparatively high degree of
sophistication through medical and industrial applications, the specific
applications of this technology to the shuttle remote manipulator ;ystem is
not a direct extension of the current practice. The fundamental difference
between the shuttle problem and those previously treated lies in the fact
that the shuttle will be operating in an orbiting enviromment. As a
consequence, the shuttle and the associated payload, which is either to be
deployed or retrieved, will be interacting in an essentially zero-gravity
environment. In this situation, unbalanced forces developed due to the mutual
shuttle-payload interactions will cause rotational motions about the center
of mass of both the shuttle and the payload. Since the RMS arm will be required
either to move to accomodate these relative motionms or to counter the motion
by elastic deformation, severe design restraints are placed on the operation
and control of both thé shuttle and the RMS in the payload deployment/retrieval
mode. ?re-launch study of the IUS operation can be accomplished only through
numerically simulated studies. The simulation models will be complex since
a number of factors will contribute to the phenomena under study. However,
the models and the associated computer simulation program will serve as basic
mission analysis tools. Consequently, it is mandatory that NASA develop
a comprehensive understanding of the characteristics, accuracy, and limitations
of the compu;er program simulations.

Computer programs which give reasoﬁable complete»descriptions of the
motion are described in Refs. 2 and 3. The computing effort required to

simulate motions of the arm with these models is quite severe and hence



case studies cannot be made in real time. In addition, there is significant
computation costs associated with exercising computer programs based on complete
mathematicél models. As a consequence, simple models which contain the
essential characteristics of the dynamic motion are of interest for pre-mission
design studies. The models would be useful for performing a number of case
studies rapidly with mirimal computer costs. The conclusions reached after
study with such models would then lead to a limited number of special cases
which would be studied in detail by the more precise mathematical models.
With.this objective in mind, this investigation is aimed at establishing a
series of simple models which can be used to study the forces and moments
which occur due to the RCS jet plume firings during a deployment or retrieval
of an IUS type payload. The models considered ih this investigation are
primarily planar in nature. The extension to three-dimensional motion is
straightforward and will be addressed in subsequent studies. In this study
primary attention is given to the roles thé payload play in determining the

overall moments on the arm,



In order to gain insight into the overall dynamics, the planar model
of the space shuttle/RMS/payload system shown in Fig., 1.1 is considered.
As stated previously, the primary objective of the analysis will be to
characterize the forces and moments at the shoulder of the RMS (point a) as
a function of the thruster force, T. The analysis will be developed in
several stages. In the first stage, the shuttle/RMS/payload combination
will be assumed to be totally rigid. After considering the equations of
motion for this model, a model with a linear spring at the shoulder, a,
will be developed. The model will then be extended to include linear springs
at both a and b. In each analysis, force and loading moments at a will
be identified. Following a complete study of the single joint model, similar
studies will be made of a two-joint model in which the arm is separated into

two segments connected by linear spring at the midpoint C.

L}
X

T

Figure I.1: Shuttle/RMS/Payload Model

The analysis will be developed in several steps. In the first step, the
Shuttle/RMS/Péyload combination will be assumed to be totally rigid. Next,
a model with a linear spring at A will be developed. Then a model with linear

springs at A and B will be considered. In each analysis, forces and bending

moments at A will be sought.



I. RIGID BODY MODEL

In this model, the shuttle, arm, and payload are assumed to be a

single rigid body. The geometry is shown below in Figure I.2.

Figure I.2: Rigid Body Model

The point C is the center of mass of the shuttle, the point D is the
center of mass of the payload, and the thruster applies a thrust T and a torque
ﬁT about the shuttle center of mass.

The equations of motion for the system can be written in terms of the
overall system center of mass G defined by

r_ = fﬁfﬁ_t;fﬂfﬂ T (1.1)

G m_ + mp : ‘
or, in terms of the motion of the center of mass, C, of the shuttle., Analyses
based on G and C will be presented for comparison and to lay the groundwork

for the more complex models to follow.



Motion Referenced to System c¢.m,,G:

The free-body diagram for the system is shown in Figure I.3.

Figure 1.3: Rigid Body Model Coordinates

The overall goal of the analysis is, as stated earlier, to derive
forces and bending moments at the shoulder, point A. The pertinent equations

are.

o1
rrf
"
]
=]
]

(m_+m) a
s P Gx

ZF_ =T
z

(ms + mp) an (1.2)

Since the selection of a thruster gives the components of T, and the specified

shuttle-payload geometry gives T.., equations (I.2) form three equations in

GQ
, and a.

z -

The geometry needed to determine r

GQ

the three unknowns ag » 3
X

is simple since ;G’ ;C’ and r.. are

cQ

known



-r (1.3)

To find the forces and bending moments at A induced by the thruster firing,

a free body diagram of the shuttle alone is necessary (see Figure I.4).

Figure I.4: Shuttle Free Body Diagram

For the shuttle,

IF, =A +T =ma
b4 X X scx

IF =A +T =ma (I.4)
b4 2 2 scz

M = T A T =

o ’MA + rCA X A+ rCQ x T I a

The unknowns are Ax’ Az’ MA’ as s and a. - From kinematics, the acceleration of
X z

C is related to the acceleration of G by

a, = a, + wx (wx rGC) + a % Teo (1.5)



For the two-dimensional model, this vector equation results in two
scalar equations. One new unknown is introduced, w. However, w is related
toa by a = dw/dt. Thus, a value is needed only fof W, .

In scalar form, the equations necessary for this analysis are as follows.
Let the origin of the chosen coordinate system be located at the initial
location of the system center of mass and be translating along with it. When
a thruster is fired, of course, the center of mass, G, will move away from

the origin of the coordinates. Thus,

'EG = 01 + Ok

° (I.6)
Vo =01+ 0k

0

The analysis is much simplified if the thrust firing is represented by an

impulsive change. Equations (I.2) become, considering equations (I1.6)

Ve = +my T
s P

VGZ = w (szdt) (1-7)

w= wo +-]%- [rGQ x STdt]

In the third of equations (I.7),

but initially ;G = 0. Also
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T:Q = I-C + ;CQ
;Q = (x + xCQ)i + (z, + zCQ)E
= xQE + zQE
Also
T=T13+Tk
and
;GQ XT= (zQTx - xQTz)E (1.8)

Thus, if a constant thrust over a time of 0.1 is assumed, equations (I.7) become

0.1T
v = ——.—._-._}.{—_-
Gx (mS + mp)
0.1T7
vV, =-——2< ‘
Gz. (mS + mp) (1.9)

Zng - ngZ
w = wo + 10 IG

Equationé (I.9) determine the velocity of the system center of mass
and the angular velocity at the end of any given impulsive firing of the
thrusters. This information will be used to determine steady-state loads. For
dynamic loads, as the thruster is fired it is necessary to return to Equations
(1.2).

Equations (I.2) can be rewritten as

T
a _ X
Gx (m.p + ms)
TZ
8% " Fm) (1.10)
z P s



These three equations give a; » 4 and a explicitly. Considering w as a
X z

known parameter for the analysis which can be varied to determine its effects,

the acceleration of the shuttle center of mass, C, can be formed using

equation (I.5). For this purpose, let

Toe = *gc i+ Zac k
W= wj
o= aj

Thus, from equation (I.5)

a = a - w'x + z o

(1.11)

Equations (I.11) give a. and a, explicitly in terms of known quantities.

c
X z

Next, Ax and Az can be determined from equations (I.4) as

Ax = msaC - Tx
X
(1.12)
Az =ma, - Tz
z
Finally, MA can be determined from the third of equations (I.4) as
My = Iyys ~ ZcQTx t *colz T Zealx T *cals (1.13)

11



Equations (I.10), (I.11l), (I.12), and (I.13) form the computation sequence
for Ax, Az and MA in the rigid body case for any thruster. The parameters

which must be specified are:

Choice of Thruster: (Tx, Tz’ XCQ’ ZCQ)
Payload Location and Mass: (mp, Xor Zoo Iyyp)
Shuttle Parameters: (1 , M)
yys s
Overall System Parameters: IG is given by geometry, Iyys’ and Iyyp



II. SINGLE JOINT MODEL

The forces and torques acting on the shuttle are as shown below in

Figure II.1,

Figure II.l: Shuttle Free Body Diagram

0
T=T1T I ;/Z+

0
A=A 9/+

0
VC=uI+x/§+WE

=
1l

0 0
A Vf’LMAJ’L%{
0 _ 0
R A RS

where the quantities marked through are zero because of the assumption of planar

=i
ft

motion. The xyz coordinate system is centered at the shuttle center of mass, C,

13
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and rotates with the shuttle. The force A is the force exerted by the RMS
on the shuttle at the shoulder and the force T is the force exerted on the
shuttle by the firing of a thruster. 1In the current model, any thruster can
be selected to exert the force T. The torque about C produced by firing the
thruster is ﬁT' In this model, the torque exerted by the RMS on the shuttle
at A will have only one component (in the j direction).

The angular velocity of the shuttle at any time, W, can be written in

component form as

W =pi4+qi+rk

The force and moment equations for the shuttle in body~fixed coordinates

are (for the two-dimensional model)

IF_. =T _+ A
X X X

IF_ =T +A
z z

mx(ﬁ + qsw) (11.1)

) mx@; - q u) (I1.2)

IMy =M, + 1o, XA+ M =
MA + zCAAx - xCAAz.+’MT =
L[] - ( .
Ivysqs 11.3)

where mS is the mass of the shuttle and Iyys is the mass moment of inertia
of the shuttle about the y axis (through C).

From equations (II.1),(II.2), and (II.3), we get
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. T, + A

u = _qsw + - (II.[O)
S

. T, + A

w=qut+ — (I1.5)
S

e _ 1 :

q = Iyys {MA + oz A - XA+ MT} (1I1.6)

Equations (II.4), (II.5), and (II.6) would give the shuttle c.g. center
of mass velocity and pitch rate versus time if they could be intetrated. However,
Ax’ Az, and MA are unknown.

In order to determine Ax’ Az,' and MA’ it is necessary to consider the
payload/RMS as a second rigid body and look at its motion. Let D be the center

of mass of the payload/RMS combination. The shuttle/payload/RMS is shown in Figure

I1.1 below, while the payload/RMS free-body diagram is shown in Figure II.3.

\V/

Figure II1.2: Definition of ¢



Figure II.3: Arm-Payload Geometry
The equations of motion for the payload/RMS are

ZFX =-A =ma (11.7)

X P DX
IF = -A =ma I11.8
y = Ay =M (11.8)
ZMD = —MT + DA x (-4) = Iyypqp (1I1.9)
where mp is the mass of the payload/RMS combination and I is its mass

p
moment of inertia about an axis parallel to the y-axis through point D.

Note that in equations (II.7) and (II1.8), a, and a, are expressed in
b3 z

terms of a rotating coordinate system which is rotating at the angular rate

of the shuttle (i.e., Qcoords = wg = qu)-

From Figure (II.2), note that

TAD

where ¢ is the angle between the positive x-axis and the line AD, and d is

=dcos $ 1~dsin ¢ k , (11.10)

the distance from A to D. Thus, ;CD is given by

Tep = Tca t Tap

(xg, + d cos "I+ (zg, - d sin 0k (11.11)

16
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The quantity d can be allowed to vary during relative motion of the shuttle
and payload. The present analysis will allow this and it will be assumed
that this motion is known over the period of interest and will be specified
over the period of interest by three parameters, do’ &o’ and ;o° The motion

will be modeled as

—3 3 3 2
d(t) do + dot + dot /2 (I1.12)

The quantities do’ &o’ and do will be input parameters in the computer program.

It is now necessary to develop expressions for ap and ap -

X Yy

In general,

aj = a, + a + 0 x (2 x rCD) + 2Q x VD + Q x Top (I1.13)
rel rel _

It is most convenient to develop each term of equation (II.13) separately and
then combine them to form ;D' In this manner, errors can be more easily
avoided,

First, ;C is known from equations (II.1l) and (II.2), i.e.,

- = o ~ + . b .
aq (4 + qsw) i (w qsu) k (I1.14)
The quantity ED is the acceleration of point D relative to point C disregarding
rel
coordinate rotation. Thus, ED is the second derivative of ;CD taken with
rel

unit vectors fixed. (It is convenient to do this in two steps as the first

derivative will be identified as VD and will be used in a later term).

rel



Equation (II.

v =
Drel

and z

since xCA CA

fo §
o
i

rel

+

The quantity & X

11) gives r Thus,

cD’

(+ d cos¢ -dd sing)I + (-d sing -d$ cosd)k

are constant. Next,

+ 5 cos¢ -2&$ sind -dg sin¢ —d&zcos¢)i
(—5 sing —2&$ cosd —d; cos¢ + d&z sind)k
@ xr

CD) is given by

q  j x [qu X {(xCA~+ d cos¢d)i + (zCA - d sind)k)}]
Thus,
- - - _ 2 2 -
£ x (2 x rCD) = ( N d cosd)i
2 2 s a\T
+ ( 9 Zcp + qg d sin¢d)k
The term 2§ X VD is given by
rel

20 x ¥ = 2q J % {(+ d cosd ~dd sin¢)i
D s
rel . . _
+ (-d sind -d¢ cosd)k}
Thus,
20 x VD = (-Zqu sind —2qsd¢ cosd)i
rel

Finally, the term QxtT

X rep

+ (-2qsé cosd + 2qsdé sin)k

cp 1S &iven by

= asj X{(xCA + d cos$)i + (zCA - d sing)k}

(I1.15)

(I1.16)

(I1.17)

(I1.18)

18
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Thus,

@ x T = (quzp, - 9.4 sin)1 + (-q %, - 9 d cosp)k (I1.19)
Combination of equations (II.14), (II.15), (II.18), and (II.19) results in

an = u + qw + d cos¢ ~ 2dd sing

d¢ sing - dé? cos¢ - a2x g,

2 - L
qsd cos¢ 2qsd sing

2qsd¢ cos¢ + AeZca

qd sind (I1.20)

a, = &'- q.u - d sind - 2&& cos)

d¢ cos¢ + d$2 sind - q;zcA

+ ¢°d sin¢ - ZqS& cos¢
+ 2qsd¢ sing - 9%
ésd cosg (11.21)

Finally, the quantity qp can be related to qg by

Q=45+ ¢ (11.22)
and
q =q_ +0¢ (I1.23)
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The procedure now will be to introduce the expressions derived for
ay s ap s and qp into equations (II.7), (I1.8), and II.9) in order to

X y

develop expressions for Ax’ Ay’ and and a differential equation for ¢.

Equation (II.7) becomes

=u+ &S (zCA - d sind)

'
ﬁalx>

+q (w - 2d sind - 2d} COS¢)
+ (+ 5 cosp - 2d) sing -dd®cos¢)

+ q; (—xCA - d cos¢)

+ ¢(- d sind) (11.24)
Similarly, equation (II.8) becomes
Az [ ] .
- E;.= W+ q (-xCA -~ d cos¢)
+ qg (-u - 2d cosd + Zdé sind)
+ (-d sin¢ —2&& cos¢ + déz sing)
2 (. .
+ q ( Zoa + d sing)
+ ¢(-d cos¢) (11.25)
Equation (II.9) becomes
q (11.26)

- MA - Az d cos¢ - Ax d sinpg =1 q +1 o)

Equations (II.1l), (II.2), (II.3), and (II.26) are a set of four simultaneous

first order differential equations in the four variables u, w, g and ©.

However, they are not in a form amenable to numerical integration and equations



(II.24) and (II.25) must be used along with considerable algebraic manipu-

lation to put them in such a form. In order to simplify this process, the

following definitions are made.

o
1

= m ~ d sing)

pZea

o
]

2 —mp(d sing)

o
]

{qs(w - 2d sing - 2d$ coso)
+ (d cosd —Qéésin¢ - 2d$2cos¢)
2
+ qS( Xoa d cos¢)} mp
With these definitions, equation (II.24) becomes
—Ax = mpu + blqS + b2¢ + b3
Substitution of this into equation (II.1l) results in
Tx - mpu - blqs - b2¢ - b3 = mu + m_q_w
Equation (II.29) can be rewritten as

(mS + mp) u+ 0w+ blqS + b2¢ =_Tx - mqw - b

In a similar manner, the definitions

3

(11.27)

(11.28)

(11.29)

(1I1.30)

21



C;=(x, -d cos¢)mp

CA

(]
]

2 = My (-d cosd)

(e}
]

3 {(~u -2d cos¢ + 2dé sincb)qs

+ (-3 sing —2&$ cos¢ + d$2 sing)

2 (_ i
+q; ( 2, t+ d sing) } m,

lead to rewriting equation (II.25) in the form

—Az = mpw + Clqs + Cz¢ + C3

Substitution of equation (II.32) into equation (II.2)

Tz - mpw - ClqS - C2¢ - C3 =mw-mq

or

0u+ (ms + mp)w + Clqs + C2 o = Tz -

Next, it is necessary to substitute equation (II.

equation (II.3). However, prior to this step, let us

the form

M, = (¢ - ) + Cb

This will make equation (II.3) and (II.9) independent

be used to solve for MA to substitute into the other.

substitutions, equation (II.3) becomes

(11.31)
(11.32)
results in
u
Cy + mqu (11.33)

28) and (IT.32) into

assume that MA is of

(1I1.34)

so that neither has to

With the indicated

22
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My ™ 2ea™p" T ZcaP19s T Zcaba ¢

+x. mw+x (11.35)

= Zopby F Xmow F Xppeiq

+ XcaCo d + XCACB + MT = Iyysqs

Regrouping the terms in equation (II.35) leads to

(zCAmp)u + (Iyyx + ZCAbl - XCAcl)qS

+ (- xCAmp)w + (zCAb2 - xCACZ)¢ (11.36)

= Mp Myt X003 - ZepPs
Substitution of equation (II.28) and (II.32) into equation (IT.26) yields

- MA + (mpd cosd)w + (Cld coscb)qs

+ (Czd éos¢); + CSd cosd

+ (mpd sind)u + (bld sin¢)qs

+ (bzd sin¢)$ + b3d sing

O +I_ ¢ (11.37)

I
yyp's yyp

Collection of terms in equation (II.37) results in
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(-—mpd sinp)u + (-mpd cosd)w

+ (Iyyp - bld sing - Cld cos¢)qs
+ (I - C,d cos$ ~b,d sin =
Tyyp = ©2 b o
- MA + C3d cos$¢ + b3d sing + (11.38)

Equations (II.30), (II.33), (II.36), and (II1.38) are now of the form

where

Bjju+ 945: + Bygq, + Byué =Dy

BZlu + B22w + B23qs + Bz4¢ = D2
(11.39)
B3lu + B3 W+ B33q + B34¢) = D3
Bygu ¥ Bygw + Bygag B0 =D,
= mp + mS B31 = ZCAWp
=0 B3z = Xa™,
= b B33 = Tyys ¥ ZcaP1 ™ *ealy
= b B34 = ZcaPy = *ca®y
= TX - mqw- b3 D3 = MT + MA + xCAC3 CAb3
= 0 = - {
B41 mpd sing
= (mp + ms) 7 B42 = —mpd cos¢d
= C1 B43 = Iyys -bld sing -Cld cosd
= C = - - i
2 344 Iyyp c2d cos¢ b2d sin¢
= -+ - . = - 3
Tz msqsu C3 D4 MA + C3d cos¢ + b.d sind

3

™
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The differential equations of motion for the system can be written as

(let 6 = lI))

4 Y f® ¢
) D,
w D, .
B iU = <D » ' (1I.40)
qs 3
W D
\ 7 L 7/ \ 4)

plus the equation

Do
L]
€

(11.41)

Using a linear systems solver or matrix inverse at each derivative evaluation,

the vector

ce

guo

v can be formed.

e

Eo

,_
De

Given initial conditions

(u ) (0)
w 0
-4218» = 40‘- s
® 0
6 ) 104
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1
3

an initial value for 9, i.e., 60, values for d, &, and d, m_, m , Iyys

Iyyp’ the spring constant K, the geometric quantities Toa (xCA and ZCA)

Top (xCT and ZCT)’ and the thrust components Tx and Tz’ then it is possible

’

to carry out the required numerical integration.

As the integration is carried out, Ax’ Az, and m can be evaluated at

each point in time from equations (II.28), (II.32), and (II.34), respectively.



III. TWO JOINT MODEL

In the two joint model, single axis pin joints will be assumed at the
shoulder and the wrist of the shuttle/arm/payload combination.
The forces and moments acting on the shuttle itself are shown below

in Figure III.1.

Arm
§<:z>>~1 MA A ¢ +qS
D'/ c R
L e
|
/;i‘- z AZ

Figure III.1: Shuttle Free~Body Diagram
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The quantities marked through are zero because the model is two-dimensional.
The xyz coordinate system is centered at the shuttle center of mass, C,
and rotates with the shuttle.

The force and moment equations for the shuttle in body fixed axes are,

as before [see equations (II.1 thru II.3)].

ZFX =T + Ax = ms(u + qsw) (I11.1)
ZF& = Ty + Ay = ms(w - qsu) , (I11.2)
M. =M, +M_+ 2. A -x. A =1 q (II1.3)

CA'z yys s

where =11 variables are defined as they were in the analysis of the single
joint model.

Equations (III.1) through (III.3) can be written as differential equations
for ﬁ, Q, and és with unknowns Ax’ Az, and MA appearing on the right hand

sides. Thus,

o TX AX

@ o= —qu o E+E (I1I.4)
S s

. TZ AZ

v o=qu +-2+ ;n: (I1I.5)

e 1

Q=7 {MT +2o,A - XAt MA} (I1I.6)

I
yys

As before, the torque exerted by the arm on the shuttle at point A will be
modeled as

M, = K($p - ¢o) + Co (111.7)
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In order to find the forces Ax and Az, 1t is necessary to consider the
arm and then the payload.
The arm will be assumed to be massless. Thus, its effect is to transmit

and modify torques. The free-body diagram of the arm is shown in Figure III.2.

———n
B |
. x “
d BZ d sin ¢
M (\4{// \\¢ - _
A - r,. =d cosp i - d sindk
AB
-A,
-——,}AZ
—
d cosp’

Figure II1.2: Arm Free-Body Diagram

The equations of motion for the arm are

SF_=-A_+B_=0 (111.8)
X ps X

2F =<A +B =20 (111.9)
y z z

ZMA = -MA + MB - Bzd cosd -BX d sinp = 0 (111.10)

From equations (III.8) through (III.10), we get

Ax = BX ‘ (I;I.ll)

Az = Bz (I11.12)

M, =M + Azd cosd + Axd sing¢ (111.13)

B A



However, as was the case with the shoulder joint, a form will subsequently

be specified for MB (in terms of an angle yet to be defined).

The next step is to examine the free-body diagram of the payload shown

below

where

Figure II1.3: Payload Free~Body Diagram

The equations

of motion for the payload are given by

ZFx = -Bx = mp an = —Ax (111.14)
EFZ = —Bz = mp aDz = -AZ (I11.15)
EMD = -Mgj 4 rpp X (-B) = Iyyp pj (I11.16)
Ing = ~Tppy = +&siny i + Lcosy k
Tpg X (<B) = rp, x B

= I—BD X A

= (-2 sinyi - Recosy k) x (AXI'+ AZE)
;DB x (-B) = (+ AZK siny - Axl cosy)j

30
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Thus, equation (III.16) can be written as

ZMD = fMB + Az fsiny - Ax Lcosy = Iyypqp (I11.17)

In equations (III.14) and (III.15), ay and ay are expressed in a
x z

coordinate system which rotates with the shuttle (at an angular rate given
D=0 =q 3).
by W, = q.3)

As before [see equation (II.13)]

+ 20 x V +8x7r (I11.18)

In order to generate a complete expression for ;D’ it is necessary to first

write an explicit form for r Thus,

CD*

Tep = Fea Y Taz T Tmp A

or

= (x

=i
I

+ d cos$¢ - Lsiny) i + (zCA ~-d sind - Qcosw)E (I11.19)

(9] CA

As in the single joint model, the length of the arm will be modeled
as

) . .
d(t) do + d0 t + dot /2 (111.20)

where db’ do, and d are input parameters. Now let us proceed to develop each

of the terms of the right-hand side of equation (III.18) individually.
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From equations (III.1) and (III.2), 5C is given by

a=(u+q Wi+ W-gquk (I11.21)
c s s
Next, the quantities V and ED will be developed from r... Recall
D CD
_ rel rel
that rop is given by
Top = (XCA + d cos¢ - Lsiny)i + (zCA - d sin$ - LcosyP)k (I11.22)
where Xopr Zop’ and £ are constants. To find VD and ZD , 1 and k are
rel rel
treated as constant vectors also. Thus,
VD = (& cosd - d&sin¢ - lécosw)I + (—& sind - d$c0s¢ + £$ sinP)k (111.23)
rel

and
a = (d cos¢ - 2é$sin¢ - d¢sing - déz cosd - LPcosy + 2@ siny)i
rel (II1.24)
+ (-d sin¢ - Zaécos¢ ~ ddcosd + d&zsin¢ + LYsiny + Q@ cosP) k
The quantity & x (£ X ;CD) is given by
qsf x [q53 X {(xCA + d cosd - LsinP)i + (zg, - d sing - LcosP)kl}]
Thus,
0 x (@ x ;CD) =(—q;xCA - q:d cosd + q; Lsin) i
2 24 2 =
+ ( 9 Zc, t qsd sin¢ + qslcosw)k (111.25)

The term 20 x V is generated from
rel

20 x Vil = 2q85 x {(d cosd - dpsing - LPcosy)i

+(f& sing - d$c0s¢ + Q&sinw)}ﬁ

and



20 x V = (—qud sin¢ —qudécos¢ + 2q52¢sinw)i

+ (~2qsé cos¢ +2qsdésin¢ + ZqSE@cosw)E

Finally, the 0 x ;CD term is generated by

0 x Tep = qsf X {(XCA + d cosd - Lsiny)i

+ (zCA - d sind - LeosP)k

or

X r

e K

cp = (qszCA - qsd sin¢ -q, LeosyP)i

+ (—&SXCA —asd cosd + &slsinW)i
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(I11.26)

(111.27)

Combination of Equations (III.21), (III.24), (III.25), (1I1.26), and

(I11.27) to form ED results in

a, = u + qq W + d cos¢ —Zéésin¢~d¢sin¢
X .
déZcosd - cosy + Wlsin P

2 2 2 .
Q¥ ~9g d cosp + qg Lsiny

2qsa sing --2qS $c05¢ + ZqSR@sinw

9%ca -qsd sin¢ ~qS£cosw

L d

a, =w-qu- d sind - 2&$cos¢ - décosd

+ ddZsind + zisinw + 202 cosy

2 2 . 2
9.2%cp + qsd sin¢ + qsﬁcosw

zqs& cosp + qudé sind + 2qsiﬁéosw

= Q¥ ~ qsd cosd + qszsinw

(I11.28)

(I11.29)

Substituting equations (III.28) and (II1.29) into equations (III.14) and

(II1.15) and collecting terms, we get



34

+ mp(zCA - d sin¢ - lcosw)és
+ mp(—d sind)¢ + mp(-zcosw)w
+ mp[q;(—xCA - d cosd + Lsiny)

+ (é cosd —Zéésin¢ -d$2c05¢ + l@zsinw)

+ q (v -2d sin¢ -2d¢cosd + 20Psiny)] (II1.30)
and
A =0u+m w
z P
+ mp(--xCA -d cos¢ + Qsinw)qs
+ mp(—d cosd)¢ + mp(lsinw)w
2, .
+ mp[qs( Zoa + d sind + Lcosy)
4+ (-d sin¢ -2ddcosé + d&zsin¢ + 2¢ZCOSW)
+ qs(-u -2d cosd + 2d$sin¢ + 22$cosw)] (I11.31)
With the definitions below, the expressions for Ax and AZ can be greatly
simplified.

o'
1t

/7
1 (zCA - d sin¢ - lcosw)mp

o
]

2 mp(-d sing)

o
1t

3= mla -2d sing -2ddcosd + 28Ysiny)
+ (H cosd —2&$sin¢ -dézcos¢ + lizsinw)

+ q:(—xcA - d cos¢ + Lsiny)]

o
]

4 mp(—kcosw) (111.32)




c, = (—xCA ~-d cos¢ + lsinw)mp
c, = mp(—d cosd)
cq = mp [qs(-u -2d cosgp + 2d$sin¢ +2£@cos¢).
+ (—E sind —2&$cos¢ + dézsin¢ + lizcosw)
+ q;(—zCA + d sind + Lcosy)] .
¢, = mp(%sinw) (I11.33)

The resulting expressions for Ax and Az are

!
>
I

< = mpu + blqs + b2¢ + béw + b3 (I11.34)

1
>
1

= mpw + ¢,9 + c2¢ + CAw + Cq (I11.35)

Rewriting equations (III.1l) and (II1.2), we have

mu -~ Ax Tx - mqw (1I11.36)

W - Az TZ + m.q_u (111.37)

Combination of equations (III.34) and (II1I.36), (III.35) and (III.37),

results in

v (mS + mp)u + blqS + b2¢ + béw = Tx - mqw - b3 (I11.38)
(mS + mp)w +ciq  + c2¢ + c4w - T, = mq.u - ¢4 (111.39)

Equations (III.3) can be rewritten as
Iyysqs + xCAAz - zCAAx = MT + M.A (I11.40)

Combination of equations (III.34), (I1I.35), and (III1.40) results in

35



Iovsds = Xca™p¥ = ¥ca19s ~ Xca®®

—xCAcAw - XCACB + zCAmpu + zCAblqS

+2z b2¢ + z b4w + ZCAbB = MT + MA

which can be rewritten as

(z )u + (- XCAmp) w

FIye + ZesPy ~ *ca 1)q

H(zgaby = Xgy 2)¢

\ 3
Hzgpby = XppCp IV

Mp + My = 2ppby + XppCy
Combination of equations (III.34, III.35) and (III.17) results in

I
YYP P
-'b Rcosw¢ - b lcosww -b Qcosw

-m 2cos¢u -b 2coswq

+ mp251nww + clﬁsians

+ c2£sinw¢ + caksinww + c3lsinw

=M

I11.41

(111.42)

36




Finally, the quantity qp can be related to q_ by

P s
94p =9tV
ip = is + v ~ (II1.43)

Combination of the last of equations (IIIL.43) with (III1.42) and rearranging

terms results in

(-mp lcosw)ﬁ + (mp lsinw)%

+‘(Iyyp - b1 Lcosy + cy

+ (-b Lecosy + cy 231nw)¢

2sinw)és

+ (Iyyp - b4 Lcosy + <, LsinY)yP

=-M 4 b3 Lcosy -Cy Lsiny (I1I1.44)

Equations (III.38), (II1.39), (III.41), and (III.44) are four equations of

the form

Bjyu+ By,w+Bigq + Bi4¢ + Bisw =Dy (i=1,4) (I11.45)

This is a system of four equations with five unknowns.

Equation (III.13) can be used, along with (III.34) and (III.35) to
obtain the needed additional relstion. Equation (II1.13) can be rewritten as

shown below when Az and A.x are eliminated.

m d cosd w + cld cos¢q + czd cos¢¢ + cad cos¢¢ + c3d cosd

+ m d sing u+b.d 51n¢q + b2d sin¢¢ + bhd 51n¢w + b3d sin¢
P 1

+ My - M, =

37
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which can be rewritten as

(mpd sin¢)& + (mpd cos¢)&
+ (bld sing + cld cos¢)&s
+ (bzd sind + c,d cos)¢
+ (b,d sing + c,d cosd)y

=M, -M_ -b

" B 3d sin¢ ~ c3d cosd (I11.46)

Equation (III.45) forms the fifth equation needed. Now if we let

= w
by
Vo= w,
and add the two differential equations
¢ = w¢
= W
V=

we will have seven first-order ordinary differential equations in seven unknowns.

The only step left is to specify the form of Mﬁ. MB must depend on the
relative angular displacement of the payload with respect to the arm (measured
from its initial relative angular displacement, and on the angular rate of the

payload with respect to the arm. The geometry for this is shown in Figure III.4.

Figure II1.4: Payload Angle Geometry
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The required angle is o where
o= -y

Also,

and

The torque, MB, on the arm, is negative when a > oy and & > 0. Thus,

M

B -KB (o - oco) -C,.0

B
or
Mp=-Kg (0 -9 -0, +¥) -Co(d - 1) (III.47)

The resultant elements of the b and D matrices are:

= = ’/
Bis (ms + mp) B,y mpicosw
B12 =0 B42 = mp251nw
313 = bl B43 = Iyyp —blzcosw + clﬂslnw
B14 = b2 344 = —b22cosw + czlsinw
_Bl5 = b4 ‘ B45 = Iyyp —b4£cosw + c4231nw
D1 = Tx - mqw --b3 D4 = -MB + bBZcosw -c3£sinw
By = 0 By, = mpd sing¢
By, = (mS + mp) B52 = mpd cos¢
323 = Cl 353 = bld sind + cld cosd .
B24 = C2 B54 = b2d sing + czd cos¢
B25~= C4 B55 = béd sing + c4d cos¢
D2 = Tz + m_q_u ~Cqg D5 = MA - MB - b3d sind - c3d cos¢



B3y = Zca™p

Byp = (=xgam)

BB3 - Iyys + zCAbl = *ea1
B3y = Zcabs ~ ¥eaSy

Bys = Zcabs = *¥cay

D =

3 = Mpt M- zp,bytxc,

The solution procedure is the same as that outlined in Section II.

40
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IV. NUMERICAL RESULTS

The one joint model developed in Section II and the two joint model
developed in Section III have been compared for a series of thruster firing
modes. The goal of this comparison was to determine the similaritieg and
differences in the dynamics as predicted by the two models. An analysis made
with the programs written to check the algebraric signs and the initial
magnitudes (see Appendix A) indicated that for the loaded RMS extended vertically
above the shuttle, Thruster 9 (the center RCS thruster firing upward on the
shuttle nose) produced the largest forces and bending moments at the shoulder
joint. All thrusters were checked in this determination.

Three comparison cases are presented here as an example of the data
obtainable from the programs. The three cases assume that Thruster 9 is fired
for 0.1 seconds and investigates the system oscillation during the subsequent
100 seconds. The parameters for each of the three cases are listed in Table 1.

The numerical results were obtained by numerically integrating equations
(I1.40) and (II.41) for the single joint model and equations (IIL.45) and (III.46)
for the two joint model using the parameters listed in Table 1. The equations
were integrated with a 4th-order Runge-Kutta integrator. The simulation assumes
that the RMS is manipulating a cylindrical payload with a mass of slugs
The numerical results obtained in this study are shown in Figures IV.1 through
IV.6. Two separate cases were considered with the two-joint model. The cases
differed in the length of the wrist joint. 1In Case II, the wrist joint was

zero while in Case III the wrist joint was 7.5 ft.

2



Table 1. PARAMETERS FOR NUMERICAL SIMULATION

Case 1 Case 2 Case 3
Program Single Joint Two Joint Two Joint
mp 2018.5 slugs Same as Case 1 Same as Case 1
m_ 4689.4 slugs " "
d 50 ft " , "
(.1 0 " "
d 0 " | "
. " 1]
Xop 36.33 ft |
- " "
Zoa ; 6.083 ft _
C, 1.22 x 10° 1b.ft.sec/rad " "
K, 1.0 x 10" 1b.ft/radian " "
Iyvs 5699753. slug.ft? " n
2 " 1"
IYYP 625805. slug.ft
T 0.0 1bs " "
X
Tz 870.0 1bs " "
u 0 " "‘
o
W 0 " "
o
n 111
9s0 0
- 1" 1]
wo w¢o 0
(-] 1" "
¢O 90
L —-— 0 7.5 ft
wwo —— 0 ’ 0
' —— 0
uJO : 0 '
c —_— 1.22 x 10° 1b.ft.sec/rad Same as Case 2
B
K, L 1.0 x 10* 1b.ft/rad Same as Case 2

PLOT SYMBOL A 0 &
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The data for Case 1 do not contain the wrist joint rate, joint angle,

or moment at the wrist because these variables did not appear in the single

joint model. These variables do, however, appear in Cases 2 and 3 which

were generated using the two joint model. The output variables (all plotted

versus time) for the three cases are as listed below.

SH VX

SH VZ

QS

PHIDOT

PHI

ALPHA DOT

ALPHA

ARMFX(EAX)

This is the x comporent (in body axes) of the

velocity of the center of mass of the shuttle in

This is the z component of the velocity of the shuttle
center of mass in ft/s.

This is the pitch rate of the shuttle in degrees

per second.

This is the angular rate of the shoulder joint

in degrees per second.

This is the shoulder angle in degrees

This is the wrist joint rate (rate of rotation of the
payload relative to the arm) in degrees per second.
This variable is not integrated but is created after
integration by differencing angular rates

This is the wrist joint angle in degrees. This
variable is the angle between the arm and the payload
x axis.

This is the x component of the force in pounds at
the shoulder exerted on the shuttle by the RMS (The

x component of force exerted on the payload by the wrist

is ~AX for an RMS which is modeled as massless).
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ARM FZ(EAZ) This is the Z component of the force in pounds at
the shoulder exerted on the shuttle by the RMS.

AM(EMA) This is the shoulder moment exerted by the RMS on the
shuttle in ft. pounds.

BM(EMB) This is the wrist moment exerted on the RMS by ;he

payload in ft. pounds.

Figures IV.1 through IV.6 give 100-second time histories of all output
variables for the three cases described previously. Recall that case 1 does

not output the variables o (ALPEADOT), o (ALPHA), and BM.
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FIGURE 1V.1
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FIGURE IV.2
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FIGURE 1V.3
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From the figures, it is apparent that the dynamic behavior of Case 1
(symbolA) matches that of Case 2 (symbol [[] ) quite well. Both amplitudes
and periods of oscillations match very well. This match is significant
because the case 1 curves ( A ) were produced with the single joint model
while the Case 2 curves ( [c] ) were produced with the two joint model.

The similarities in dynamic behavior between Cases 1 and 2 can be at-
tributed to the following factors:

1. The payload center of mass is the same distance from

the shoulder (50 ft) in both cases.

2. The shoulder spring constant and damping constant are

the same in both cases.
3. The excitation (Thruster 9) is the same in both cases.
4, The initial conditions are the same.
The differences between Cases 1 and 2 are as follows.

1, The wrist in Case 1 is rigid while there is a joint with

a spring constant and dampoing at the wrist in Case 2.

2. No wrist joint torque is obtained in Case 1 (it could be
obtained by a rigid-body analysis but would be far too
large), while the torque is obtained in Case 2.

The results for Case 3 (symbol.<>) do'not match the results of Cases. 1l
and 2 mainly because the payload, c.g., in this case is 7.5 feet away from
the wrist joint (the more realistic case). In Cases 1 and 2 the payload is

~

assumed to have its c.g. at the wrist joint (in all cases the payload has a

non-zero moment of inertia about its center of mass).
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The period of oscillation in Case 3 is longer than in Cases 1 and 2
(31 seconds as opposed to 27 seconds), largely because of the additional
7.5 feet between the payload center of mass and the shoulder joint (the
pendulum is longer).

The magnitude of the oscillations in the x component of velocity of
the shuttle's center of mass is about the same in all three cases whereas
the z velocity component oscillation is slightly larger for Case 3. The
amplitude of oscillation in shuttle pitch rate is also larger for Case 3
than for Cases 1 and 2.

The angle ¢ between the arm and the orbiter oscillates with about
the same amplitudza: and rate variations in all three cases. However, integration
over a longer time might reveal an energy exchange between the wrist and
shoulder joints for the two joint cases (Cases 2 and 3). This should be
looked into when the models are compared fully.

The angle o and its rate a are defined only for Cases 2 and 3.
After an initial jump of 0.05 radians during the thruster firing, the angle
o oscillates over a range of about 0.1 degree in both cases. The differences
in geometry between the two cases causes the curves for o and & to differ
between the cases.

The crucial values in the analysis are the magnitudes of forces
~and moments at the shouler (and wrist) joint(s). In all three cases, the
force component in the z diréction is the important force variable. Although
the z component of force oscillates after the thruster is cut off in the same
way that the x component oscillates, the oscillation cannot be seen on the
plot because of the very high peak values of the z force which occur for all
cases during the thruster firing (during the initial 0.1 seconds). The force

peaks were in the range of 550 1lbs to 600 lbs in all three cases. Due to the



geometry, this force is an axial force on the arm. This force acts at both
joints (shoulder and wrist). For the values of system parameters chosen,
the peak values of force at the joints occur during or at the end of the
thruster firing after which the joint forces become very small.

The moments experienced at the shoulder and wrist joints peak 90° out
of phase with the forces at the joints. The plots of AM (all three cases)
and BM (two cases) show how the moments vary as a function of time. The
maximum torques exerted at the shoulder are larger than those at the wrist
for fhe values of system parameters chosen for the examples. This is because
the mass (and moment of inertia) of the shuttle are larger than those of the
payload.

Examination of the curve for the wrist moment (BM) indicates -clearly
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the effect of payload rotation about the wrist joint. Case 3 with the payload

c.g. offset from the joint gives higher values of wrist moment as would be
expected. Also, the predominant period of oscillation is again longer for

Case 3 than for Case 2.
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V. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Both single joint and two joint models have been developed for
two-dimensional analysis of shuttle RMS joint, loads. A limited comparison
of the two models has been made which indicates the following.

1. In many situations, either the single joint model or the two
joint model can be used to predict the approximate maximum

magnitudes of shoulder joint loads (forces and moments) .

2. The single joint model can be used to predict maximum wrist
joint forces, but the two joint model must be used if

information concerning the wrist joint moment is desired.

3. Both models give information on shuttle oscillations induced by
the RMS/payload combination. The time histories of the oscil-
lations at each joint are also available.

Both the one joint and two joint models are limited. The major

limitations are as follows.

1. Both models are two-dimensional while the RMS/shuttle/payload

system is a three-dimensional dynamical system.

2. The number of joints in the models is one or two while the

number of joints on the actual RMS is actually six.
Although the two limitations listed above are major, the models developed
should be quite useful because of the joint sequence on the RMS (three of
the joints are collinear and occur in sequence - one at the shoulder, one
at the elbow, and one at the wrist).

The procedure by which the models wére developed is readily extendable
to a three joint (elbow joint added) planar model. Such a model is the next
logical step in building up to a simplified dynamic model of the three-
dimensional shuttle/BMS/payload system which might be usable in a simulator
(a full-blown dynamic model will have difficulties operating in real time,

and real time is a must for training simulators).
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It is recommended that the following items be studied further.

1. The three joint planar model should be developed.

2. A two joint, three-dimensional model should be developed

(shoulder yaw and shoulder pitch).

3. A four joint, three-dimensional model should be developed as
an extension of the model of (2) above, and then a three-
dimensional six joint model should be developed. The philosophy
of each model should be to keep it as simple as possible while

performing the required tasks.

4, The models completed should be compared, and versions selected

for use as needed in:

(a) training simulators,
(b) mission planning and sequencing programs, and

(c) engineering simulators.
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ANALYSIS TO CHECK SIGNS OF Ax’ Az’ etc., at t =0

SINGLE JOINT MODEL

All rates will initially be zero, and quantities will be determined only at

the instant when the thruster is turned on. Equations (II.1l) through (II.3)

are
T. + Ax = ms(u + qsw) (11.1)
'1‘z + Az = ms(w - qsu) (1I1.2)
MA + ZCAAx - XCAAz + MT = Iyysqs (I1.3)

At t =0, q =w=u=0, Also, ¢ = ¢o,%and é = 0. Thus, from equation (II.34),

i.e., assume also that d = d=o0.

M, = K($ - ¢>o) + Co (II1.34)
it can be seen that MA = 0 (at t = 0)., Thus, equations (II.l) through (II.3)
become

Tx + Ax = m_u i (A.1)

Tz + A2 = mw (A.2)

ZopBy ~ xCAAz + M, = Iyysqs (A.3)
From equations (IT.28) and (II.32), we have

--Ax = mpu,+ blqS + b2¢ + b3 (1I1.28)

-Az = mpw + ¢4 + c2¢ + cq (11.32)
where, from equations (II.27) and (II.31) give bl’ b2, b3 and Cys Cps Cgs

respectively., At t = 0, these values are



b1 = mp(zCA ~ d sing)
b2 = —mpd sin¢
b3 =0

0
|

1° (—xCA— d cosd))mp

0
1

2 —mp(d cosd)
c, =0

Thus, (II.28) and (II.32) can be rewritten as

!
g
]

mpu + blqS + b2¢ (A.4)

I
2
[

= mpw + ¢4 + c2¢ (A.5)
Equation (II.38) can be written at t = 0 as

(—mpd sin¢)6 + (—mpd cos¢)§
+ (Iyyp -bld sing - cld coscb)qs

+ (Iyyp —czd cosd - bzd sing)¢ =0 £§.6)

Equations (A.1) through (A.6) form a system of six linear equations in six

unknowns.

The equations, in matrix form,; can be written as shown on the following

page.
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TWO JOINT MODEL

Equations (III.1) through (III.3), with the assumptions qq

gives (also d = é = 0)(& =y=0, ¢-= ¢O,w = Wo)

=)
c
!
>
i
-3

8
£
1
>
|
-

Equation (III.13) given MB =0at t =0, gives
AX d sind + AZ d cosp =0

Equation (III.17) can be written as

1
yyp's

Equations (III.34) and (IIL.35) can be written as
0

mpu +'b1qs + b2¢ + bad) +Ax= —-/{30

/i

mpw + 94 + c2¢ + caw + AZ

=0, M

q_ + Iyypw + Ax fcosy - Ax fsiny = 0

|
o

, =

(A.7)
(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

Where, from equations (III.32), (III.33), and the assumptions, we have

b1 = mp(zCA -d sin¢ - fLcosy)
b2‘= mp(—d sing)
b3;= 0 -
; NOTE: bl’ b2, b4 and €15 Cps C4
bA = mp(—lcosw) are formed as in TW@JINT.
c, = mp(—xCA ~d cosp + gsiny)
c, = mp(-d cosy)
Cy = 0
c =

.mp(lsinw)
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