
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19790008383 2020-03-22T01:40:51+00:00Z



Y

SIMPLE MODELS

FOR THE

SHUTTLE REMOTE MANIPULATOR

SYSTEM

W. T. Fowler

B. D. Tapley

B. E. Schutz

{NASA-CR-151 881) SIMPLE MODELS FOR THE 	 N79-16554
SHUTTLE REMOTE MANIPULATOR SYSTEM Final
Report {Texas Center for Research) 63 p HC
44' 4/MF A01	 CSCL 05H	 Unclas

G3/54 43559

lu

2122z3^A^s

V^--	 t6,	 Texas Center for Research

a	 3100 Perry Lane

v'^+ Austin, Texas

f

fj
1

J
7

This document is the final report under Contract NAS 9'-15385.

}

a



TABLE OF CONTENTS

INTRODUCTION 1

APPROACH 5

Figure I.I. Shuttle/RMS/Payload Model 5

RIGID-BODY MODEL 6

Figure I.2. Rigid -Body Model 6

Figure 1.3. Rigid-Body Model Coordinates 7

k8Figure I.4. Shuttle Free -Body Diagram

SINGLE JOINT MODEL 13
X

Figure II.1. Shuttle Free-Body Diagram 13

Figure II.2. Definition of	 , 15

TWO JOINT MODEL .	 27

Figure III,1. Shuttle Free-Body Diagram 27

Figure III.2. Arm Free -Body Diagram 29

Figure III.3. Payload Free-Body Diagram 30

Figure III.4. Payload Angle Geometry 38

NUMERICAL RESULTS
i

41

Table 1. Parameters for Numerical Solution
l

42

Figures IV.1 - IV.6 45-50

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS -54
I'

APPENDIX A - Analysis to Check Sign of AX and AZ



SIMPLE MODELS FOR THE SHUTTLE REMOTE MANIPULATOR SYSTEM

Introduction

One of the fundamental objectives of the NASA Space Shuttle Mission

is to develop the capability to launch and retrieve payloads from near-earth

orbit using the reusable shuttle orbiter vehicle. One of the more demanding

of the early space shuttle missions will be the deployment of the

Interium Upper Stage (IUS) which is currently under development for the

Department of Defense. The primary function of the IUS will be to place

a single large spacecraft or multiple smaller spacecraft in earth orbits

which differ from the shuttle orbit or to place planetary spacecraft on

earth-escape trajectories. The IUS-vehicle will be approximately sixty feet

long and cylindrical in shape with a diameter of about fourteen feet.

The overall weight of the IUS can be as much as 60,000 lb, which will be

about one third of the overall shuttle-orbiter weight. The IUS will rely

on a three-axis stabilized propulsion and avionic system for trajectory and

attitude control. As a consequence, it is critical that the IUS spacecraft

module be deployed in a stable attitude for check-out and launch. In the

event of malfunction during the deployment stage, it will be necessary

that the IUS module be recovered and returned to the shuttle payload bay.

Hence, the RMS must be able to accomodate each of these operations.

The requirement that these manuevers be conducted while the shuttle

and IUS are in close proximity without disturbing the attitude of the IUS

vehicle, lead to several critical operational requirements. One of the

primary problems associated with this close proximity operation arises

from the IUS interactions with the shuttle RCS thruster plume. Any

translational motion required by the shuttle for station-keeping and/or
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rendezvous purposes must be performed using the 900 lb RCS thrusters.

Since the projected area of the 60 feet long by 14 foot diameter IUS
i

module will be on the order of 840 square feet, a substantial force can

be generated by the pressure of the RCS jet plume. 	 Since, in general,

the center of pressure will not coincide with the center of mass, this
- s

interaction will lead to significant moments on the IUS.	 Tumbling and/or

severe disturbances in the IUS attitude may occur.	 If these moments

are introduced during the retrieve stage, severe forces and moments may be

introduced in the remote manipulation system RMS/arm.	 Such moments may
3

dead to structural failure of the RMS arm.

In addition, a careful study of the effects of the shuttle RCS thruster

actuation during any of the close proximity maneuvers must be made. 	 The

primary questions of concern are those related to the effects of the moments

on the IUS module.	 the forces generated on the RMS arm, control strategies

and limitations on the RMS arm movement to prevent damage and, finally,

thruster firing limitations to prevent unacceptable moments on the IUS.,

'	 The basic RMS design calls for two manipulator arms and the supporting

equipment for the operation of the arms.	 One manipulator arm will be mounted a

on the port side of the payload bay on all missions. 	 The second arm will
i

be installed on the starboard side of the payload bay and will be removable,

-	 if it is not required during a given mission. The RMS will be composed of
4

the following major components: (a) two manipulator arms, (.b) the RMS dis-

plays and control, and (c) the manipulator control interface unit. 	 These

components will be supported by the associated RMS software as well as the

RMS ground control equipment.	 As withall space rated systems, weight and j

power requirement must be kept to a-minimum. 	 This leads to severe design

f
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requirements which can be met if all pertinent factors are included in the

design process.

While the state-of-art in the design and utilization of fixed-based

remote manipulator systems has achieved a comparatively high degree of

sophistication through medical and industrial applications, the specific

applications of this technology to the shuttle remote manipulator system is

not a direct extension of the current practice. The fundamental difference

between the shuttle problem and those previously treated lies in the fact

that the shuttle will be operating in an orbiting environment. As a

consequence, the shuttle and the associated payload, which is either to be

deployed or retrieved, will be interacting in an essentially zero-gravity

environment. In this situation, unbalanced forces developed due to the mutual

shuttle-payload interactions will cause rotational motions about the center

of mass of both the shuttle and the payload. Since the RMS arm will be required

either to move to accomodate these relative motions or to counter the motion

by elastic deformation, severe design restraints are placed on the operation

and control of both the shuttle and the RMS in the payload deployment/retrieval

mode. Pre-launch study of the IUS operation can be accomplished only through

numerically simulated studies. The simulation models will be complex since

a number of factors will contribute to the phenomena under study. However,

the models and the associated computer simulation program will serve as basic

mission analysis tools. Consequently, it is mandatory that NASA develop
E

a comprehensive understanding of the characteristics, accuracy, and limitations

of the computer program simulations.

Computer programs which give reasonable complete descriptions of the

motion are described in Refs. 2 and 3. The computing effort required to

simulate motions of the arm with these models is quite severe and hence

1y



case studies cannot be made in real time. In addition, there is significant

computation costs associated with exercising computer programs based on complete

mathematical models. As a consequence, simple models which contain the

essential characteristics of the dynamic motion are of interest for pre-mission

design studies. The models would be useful for performing a number of case

studies rapidly with minimal computer costs. The conclusions reached after

study with such models would then lead to a limited number of special cases

which would be studied in detail by the more precise mathematical models.

With this objective in mind, this investigation is aimed at establishing a

series of simple models which can be used to study the forces and moments

which occur due to the RCS jet plume firings during a deployment or retrieval

of an IUS type payload. The models considered in this investigation are

primarily planar in nature. The extension to three-dimensional motion is

straightforward and will be addressed in subsequent studies. In this study

primary attention is given to the roles the payload play in determining the

overall moments on the arm.

1
i

i
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Approach

In order to gain insight into the overall dynamics, the planar model

of the space shuttle/FMS/payload system shown in Fig .. 1.1 is considered.

As stated previously, the primary objective of the analysis will be to

characterize the forces and moments at the shoulder of the RMS (point a) as

a function of the thruster force, T. The analysis will be developed in

several stages. In the first stage, the shuttle/RMS/payload combination

will be assumed to be totally rigid. After considering the equations of

motion for this model, a model with a linear spring at the shoulder, a,

will be developed. The model will then be extended to include linear springs

at both a and b. In each analysis, force and loading moments at a will

be identified. Following a complete study of the single joint model, similar

studies will be-made of a two—joint-model in which the arm is separated into

two segments connected by linear spring at the midpoint C.

T

Figure I.l: Shuttle/RMS/Payload Model

The analysis will be developed in several steps. In the first step, the

Shuttle/RMS/Payload combination will be assumed to be totally rigid. Next,

a model with a_linear spring at A will be developed. Then a model with linear

springs at A and B will be considered. In each analysis, forces and bending

to n^nent^ n1- A –411 l— ^....nht
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I. RIGID BODY MODEL

In this model, the shuttle, arm, and payload are assumed to be a

single rigid body. The geometry is shown below in Figure I.2.

Figure I.2: Rigid Body Model

The point C is the center of mass of the shuttle, the point D is the

center of mass of the payload, and the thruster applies a thrust T and a torque

MT about the shuttle center of mass.

The equations of motion for the system can be written in terms of the

overall system center of mass G defined by

_	 r m + r m

rG

	

	 cros + mP' p	 (I.1)
s _ p

or, in terms of the motion of the center of mass, C, of the shuttle. Analyses

based on G and C will be presented for comparison and to lay the groundwork

'ar^
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Motion Referenced to System c:m„G:

The free-body diagram for the system is shown in Figure I.3.

Figure 1.3: Rigid Body Model Coordinates

The overall goal of the analysis is, as stated earlier, to derive

forces and bending moments at the shoulder, point A. The pertinent equations

are

EFx = Tx = (ms + mp) a 
x

EFz T  = (ms + mp) aG	(I.2)
z

EMG=rGQAT=IGa

Since the selection of a thruster gives the components of T, and the specified

shuttle-payload geometry gives rGQ , equations (I.2) form three equations in

	

the three unknowns a  
-1

	 , and a.

	

x	 z
The geometry needed to determinerGQ is simple since rG , rC , and rCQ are

known

r



n	 a
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i

r 
	 = rC + rCQ

rGQ = r 	 - r (I.3)

To find the forces and bending moments at A induced by the thruster firing,

a free body diagram of the shuttle alone is necessary (see Figure I.4).

Figure I.4: Shuttle Free Body Diagram

For the shuttle,

EF =A +T	 max	 x	 x	 s c
t	 x	

L

EF = A + T = m a	 (I.4)
z	 z	 z	 s C 

`
EMC = 'MA +rCAxA+rcQxT=I a

Yyr.s^	
x

The unknowns are Ax, Az , MA, ac , and a 	 From kinematics, the acceleration of
x	 z

C is related to the acceleration of G by

ac aG + w x (w x rGC ) + a x rGC	 (I.5)

2-
-S.
t



For the two-dimensional model, this vector equation results in two

scalar equations. One new unknown is introduced, w. However, w is related

to a by a = dw/dt. Thus, a value is needed only for wo.

In scalar form, the equations necessary for this analysis are as follows.

Let the origin of the chosen coordinate system be located at the initial

location of the system center of mass and be translating along with it. When

a thruster is fired, of course, the center of mass, G, will move away from

the origin of the coordinates. Thus,

rG = Oi + Ok
o	 (I.6)

VG	Oi + Ok
o

The analysis is much simplified if the thrust firing is represented by an

impulsive change. Equations (I.2) become, considering equations (I.6)

1 4

VGx 
= (ms + mp) (lTXdt)

VG - (m + m) 
(fTZdt)	 (1.7)

z	 s	 p

W = W  + I [rGQ x lTdt)
G

In the third of equations (L.7),

rGQ r  - rG

but initially rG = 0. Also

R
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r  = r  + rCQ

r  = (x
C
 + x

CQ
)i + (z

C
 + zCQ)k

V + zQk

Also

T= T 1+ T k
x	 z

and

rGQ x T = (zQTx - xQTz )j	 (I.8)

Thus, if a constant thrust over a time of 0.1 is assumed, equations (I.7) become

O.1Tx

VGx 
(ms + m  )

O.lT_	 z
VGz	

(ms + mp )	 (I.9)

z T - x T
W

_	 Q x	 Q z	
GG- o +	 10 1G	
d

f

Equations (I.9) determine the velocity of the system center of mass

and the angular velocity at the end of any given impulsive firing of the
a

thrusters. This information will be used to determine steady-state loads. For

dynamic loads, as the thruster is fired it is necessary to return to Equations?
41

r'
Equations (I.2) can be rewritten as

i.
T
x

a G 
x 

(m
P 

+ ms)

T
a =	

z	
(1.10)

G 	 (mp + ms)	
1

z 
Q 
T x - XQTz

a _	
IG

a^t^
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These three equations give aG , aG and a explicitly. Considering w as a
X	 z

known parameter for the analysis which can be varied to determine its effects,

the acceleration of the shuttle center of mass, C, can be formed using

equation (I.5). For this purpose, let

rGC = xGC i + zGC k

W = wj

a = aj

Thus, from equation (1.5)

aC = aG - w2xGC + 'GC a
x	 x

(I.11)

aC = aG - w 2 zGC - 'GC a
z	 z

Equations (I.11) give a  and a  explicitly in terms of known quantities.
X	 z

Next, Ax and Az can be determined from equations (I.4) as

Ax = msaC - Tx
X	 a

(1.12) 4

AZ = m3aC - Tz
z

Finally, MA can be determined from the third of equations (I.4) as

MA _ IYYS - zCQTX + xCQTz - 
zCAAx + x

CAAz	 (I.13)

s'

a
a•

ti

s

a
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Equations (1.10), (1.11), (1.12), and (1.13) form the computation sequence

for Ax, Az and MA in the rigid body case for any thruster. The parameters

which must be specified are:

Choice of Thruster:	 (TX' Tz' xCO, zCQ)

Payload Location and Mass: 	 (mp, xC , z C , Iyyp)

Shuttle Parameters: 	 (Iyys, ms)

Overall System Parameters: 	 I  is given by geometry, Iyys , and Iyyp

z



+q

x

o	 Z

	

13
	

4*1

II. SINGLE JOINT MODEL

The forces and torques acting on the shuttle are as shown below in

Figure II.1.

Figure II.1: Shuttle Free Body Diagram

T= T i++ T k

0
A=A 37 +	 +Ak

x	
^	

z
0

V C u i + A + w k

0
rCA _ xCAi + . Aj + zCAk

0	 0
MA Vi + MAj + N

_	 0	 _0
MT L^ + MTj } I T c

where the quantities marked through are zero because of the assumption of planar

motion. The xyz coordinate system is centered at the shuttle center of mass, C,



and rotates with the shuttle. 	 The force A is the force exerted by the RMS

on the shuttle at the shoulder and the force T is the force exerted on the

shuttle by the firing of a thruster.	 In the current model, any thruster can

be selected to exert the force T. 	 The torque about C produced by firing the

thruster is MT .	 In this model, the torque exerted by the RMS on the shuttle

at A will have only one component (in the j direction).

The angular velocity of the shuttle at any time, w, can be written in

component form as

W 
S 

= p i+ q j+ r k
$	 $	 $ 9

For the two-dimensional model, this reduces to

W = qsj

The force and moment equations for the shuttle in body-fixed coordinates

are (for the two-dimensional model)

EFx = Tx + Ax = mX (u + q sw)	 (II.1)

EFz = T z + AZ = mx (w - q su)	 (II.2)

EMC	MA
 + rCA 

x Ax + MT =
E`	 -

MA + 
zCAAx	 xCAAz + MT

I	 q	 (II.3)
vvs s

where	 m	 is the mass of the shuttle and I 	 is the mass moment of inertia
s	 yys

of the shuttle about the y axis (through C).

From equations (11.1),(11.2), and (II.3), we get

1

^.	 - s
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T +A
u —qsw + x  

X	
(II.4)

S

T +A
w = q 

s 
u + 

z  Z

	
(II.5)

S

qs - Il	 {MA + ZCAAX — XCAA. + MT }	 (II.6)
YYs

Equations (II.4), (II.5), and (II.6) would give the shuttle c.g. center

of mass velocity and pitch rate versus time if they could be intetrated. However,

AX, AZ , and MA are unknown.

In order to determine AX , AZ , and MA, it is necessary to consider the

payload /RMS as a second rigid body and look at its motion. Let D be the center

of mass of the payload/RMS combination. The shuttle/payload/RMS is shown in Figure

II.1 below, while the payload/RMS free-body diagram is shown in Figure 11.3.
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-A

Figure II.3: Arm-Payload Geometry

The equations of motion for the payload/RMS are

EFx = -Ax = mPaD_	 (II.7)
x

EFy = -Az = mpaD	 (II.8)
z

EMD = -MT + 'DA x (-A) = Iyy qp	(II.9)
P

where m  is the mass of the payload'/RMS combination and I yy is its mass
P

moment of inertia about an axis parallel to the y-axis through point D.

Note that in equations (LI.7) and (II.8), 
a  

and -aD are expressed in
x	 z

terms of a rotating coordinate system which is rotating at the angular rate

of the shuttle (i.e., T2
coords = Ws = qsj).

From Figure (II.2), note that

rAD = d cos ^ i - d sin ^ k 	 (II.10)

where ^ is the angle between the positive x-axis and the line AD, and d is

the distance from A to D. Thus, rCD is given by

rCD - rCA + rAD

(X CA+ d cos ^)i + (z CA- d sin ^)k	 (II,11)
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The quantity d can be allowed to vary during relative motion of the shuttle

and payload. The present analysis will allow this and it will be assumed

that this motion is known over the period of interest and will be specified

over the period of interest by three parameters, do , do , and do . The motion

will be modeled as

d(t) = do +_dot + dot2 /2	 (II.12)

The quantities d o , do , and do will be input parameters in the computer program.

It is now necessary o devel op expressions for a and a 	 In general,Y	 P P	 D _ D 

	

x	 y

aD = aC + aD	 + SZ x (S2 x rCD) + 252 x VD	 + 0 x 
rCD	

(II.13)

rel	 rel

It is most convenient to develop each term of equation (II.13) separately and
v

then combine them to form aD . In this manner, errors can be more easily

avoided.

First, aC is known from equations (II.1) and ^II.2), i.e.,

ac = (u + q sw) i + (w - qsu) k	 (I1.14)

E

The quantity aD	is the acceleration of point D relative to point C disregarding
rel

coordinate rotation. Thus, aD	is the second derivative of rCD taken with
rel

unit vectors fixed. (It is convenient to do this in two steps as the first

derivative will be identified as VD	and will be used in a later term).
rel



18

Equation (II.11) gives rCD .	 Thus,

VD = (+ d cosh -d$ sin^)i + (-d sink -d$ cos^)k (I1.15)
rel

since xCA and zCA are constant.	 Next,

aD (+ d cosh -2d$ sink -d^ sine -d^2cos^)i
rel

s

+ (-d sink -2d^ cosh -d^ cosh + d 2 sin^)k (II.16)

The quantity SZ x	 x rCD) is given by

q 	 J 
x [q S3x {(x CA+ d cos0 i + (z CA- d sin^)k)}]

Thus,

X
  x rCD) _ (-q 2 xC	- q 2 d cos^)i

s	 A

+ (-q 2 zCA + qs d sin^)k
a

(II.17)

,

The term 2n x VD	is given by
rel a

2n x VD	= 2gsj x {(+ d cosh -d$ sink)i
rel

+ (-d sink -d$ cos^)k}
{

1
i

Thus,

2n x VD	= (-2q d sink -2q # cosh)is
rel

+ (-2gsd cosh + 2gsd$ sin^)k (II.18)

Finally, the term 2 x r	 is given by
CD

7
X

. _

rCD	 qSJ x{(xCA + d cosOi	 + (zCA - d sin^)k}

x

y.^

'	

1
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Thus,

x 
-r 
CD(gsZCA 

qsd sino)i + (-g sZCA - 
qsd cos^)k	 (II.19)

Combination of equations (II.14), (II.15), (12.18), and (II . 19) results in

aD	 u + q 
sw + d coso - 2d$ sino

x	 ..  
w

- do sino - d$2 coso - gsZCA

- q 2d coso - 2g sd sino

- 2gsdo coso + gsZCA

- qsd sink	 (II.20)

aD	
w - qsu - d sino - 2d^ coso

Z	 ••

do coso + d$2 sino gsZCA

+ q 2 d sino - 2gsd cosO

+ 2gsdo sino - gsZCA

.	 h

qsd coso	 (II.21)
tS`	 I

Finally, the quantity q  can be related to q  by

qp = qs +	 (11 .22)

C
and

qp	 qs +	 (II.23)
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Itz

The procedure now will be to introduce the expressions derived for

a  , a  , and qp into equations (I1.7), (II.8), and II.9) in order to
x	 y	 ..

develop expressions for Ax, Ay , and and a differential equation for ^.

Equation (11.7) becomes

A
- m  = u + qs 

(z CA - d sink)
p	 0

q  (w - 2d sink - 2# cosh)

(+ d cosh - 2d$ sink -d$ 2cos^)

+ qs (-xCA d cosh)

+	 d sink)
(II.24)

Similarly, equation (II.8) becomes

A
- m  = w + qs (-x CA - d cosh)
p.

• q  (-u - 2d cosh + 2# sine)

• (-d sink -24 cosh + doj 2 sink)

• q 2 (-zCA + d sink)

+	 cosh)

Equation (II.9) becomes

(11.25)

_ MA - Az d cosh - Ax d sine = Iyys qS + 1
	

(11.26)

i

Equations (11.1.), (II.2), (II.3), and (II.26) are a set of four simultaneous	 i

first order differential equations in the four variables u, w, q s , and A.	 }

However,_ they are not in a form amenable to numerical integration and equations

=t.
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(II.24) and (II..25) must be used along with considerable algebraic manipu-

lation to put them in such a form. In order to simplify this process, the

following definitions are made.

b1 = mP 
(z CA - d sink)

b2 = -mP (d sine)

b3 = {qs (w - 2d sine - 2d$ cosh)

• (d coso -2apl sino - 2dc 2cos^)

• qs(- X	 - d cosh)} m	 (II.27)
P

A
With these definitions, equation (II.24) becomes

-AX = mpu + blgs + b20 + b3	(II.28)	 r

Substitution of this into equation (II.1) results in

TX - mpu - blgs - b? - b3 = msu + msgsw	 (II.29)	 I

f

Equation (I1.29) can be rewritten as

t

(ms + mP) u + 0 w + b lgs + b20 ='T 
x  

msgsw - b3	(II.30)

In a similar manner, the definitions
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A l
.

C 1 = (- xCA - d cos^)mp

C2 = m  (-d cosh)

C3	{(-u -2d cosh + 2d$ sin^)gs

+ (-d sink -2d$ cosh + d$2 sink)

+ a 2 (-zCA + d sink)} mp

lead to rewriting equation (II.25) in the form

-Az = mpw + Clgs + C 2^ + C3

(11.31)

(11.32)

Substitution of equation (II.32) into equation (11.2) results in

T  - mpw - C1gs - C 2^ - C 3 = msw - msgsu

or

0 u + (ms + m )w + Clgs + C 2 = T  - C3 + msgsu	 (II.33)

Next, it is necessary to substitute equation (11.28) and (I1.32) into

equation (11.3). , However, prior to this step, let us assume that MA is of

the form

MA = K(^ _ ^
o) + C$	 (11.34)

	This will make equation (11.3) and (11.9) independent so that neither has to
	

sh

be used to solve for MA to substitute into the other. With the indicated

substitutions, equation (11.3) becomes

i

A

1

f

a

.i
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..

MA 
zCAmpu z

CAbIgS zCAb2

zCAb3 + x
CAmpw + xCAcLgs	 (II.35)

+ xCAc2 + xCAC3 + MT = Iyysgs

Regrouping the terms in equation (1I.35) leads to

(zCAmp )u + (IyYX + zCAbl - xCACT)gs

+ (- xCAmp)w + (zCAb2 - XCAC2)^	 (11.36)

'2
	 + MA + xCAC3 - zCAb3

i
i

Substitution of equation (II.28) and (II.32) into equation (11.26) yields

MA + (mpd cosO) + (C ld cos04s

+ (C2d cos^)c + C 3 
d cosh

+ (mPd sinO) + (b Id sin^)gs

+ (b2d sin^)Q + b3  sink

.•	 s

= I q + I	 (L1.37)
yyP S	 yyP

r.
Collection of terms in equation (11.37) results in

I
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(-mpd sin O) + (-mpd cos^)w

• (Iyyp - b 
1 
d sink - C 

1 
d cos^)gs

• (Iyyp - C 2d cosh -b 2d sin^)^

- MA + C 3  cosh + b 
3 
d sink	 (II.38)

Equations (II.30), (II.33), (II.36), and (IL.38) are now of the form
y

Bllu + B,(2w + 
B13gs + 

B14^ = D1

B21u + B 22 + B 23gs + B24^ = D2

(1I.39)	 7

B31u + B 32 + B33gs + B34^ = D3

B41  + B42  + B43gs + B44^ = D4

where	 }

B	 - m -{- m	 B	 = zlI	 p	 s	 31	 CA
m

 p

B12 = 0
	 B32 = -xCAmp

!	 B13	 bl	 833 =
Iyys + 

zCAbl - xCAC1

B14	
b2	

B34 zCAb2 - XCAC2
D	 T- m q w- b	 D = M + M + x C	 z b

1	 x	 s 	 3	 3	 T	 A	 CA3	 CA3

B21	 0	 B41 = -m d sink
i	 p

B22 
_ 

(mp 
+ ms)	 B42 -m pdcosh

B23	 C1	 B43 = Iyys -b1d sink -C1d cosh

B24	 C2	 B44 1yyp -C
2d cosh -b2d sink

D2 = T  + msgsu - C3	 D4 = -MA + C3  cosh + b 
3 
d sino
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The differential equations of motion for the system can be written as

(let 8 = w)

u Dl

w' D2

= (II.40)
q D3

w D4

plus the equationP	 q

8 = w (11.41)

Using a linear systems solver or matrix inverse at each derivative evaluation,

the vector
u ^

QQ
W', d

can be formed. q s

• f
w h

e

Given initial conditions

u p

w 0

4 s = p

W 0

8 _	 0

r

r
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an initial value for 8, i.e., A o , values for d, d, and d, mp , ms , Iyys'

Iyyp , the spring constant K, the geometric quantities r
CA 

(x 
CA

and 
zCA)

rCT 
(x CTand zCT), and the thrust components T x and Tz , then it is possible

to carry out the required numerical integration.

As the integration is carried out, Ax , Az , and m can be evaluated at

each point in time from equations (II.28), (II.32), and (II.34), respectively.
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III. TWO JOINT MODEL

In the two joint model, single axis pin joints will be assumed at the

shoulder and the wrist of the shuttle/arm/payload combination.

The forces and moments acting on the shuttle itself are shown below

in Figure III.1.

Arm

1	 Az	 z

Figure III.l: Shuttle Free-Body Diagram

where
_	 0

T	 Ti	 ++ Th
,	

j.
X	 /Yj z

0A= A i ++ A k
X	 y	 z

OV =u 	 ++ wk
C

0

r'CA xCAl +CA3 + zCAk

MA - /
0	 _	 0

A' + MAj +

0	 _	 0

MT  	 + M 
T 
j + '^X

_^ 0 

-0
W	

,

s	
si + q	 +sJ	 s

r
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The quantities marked through are zero because the model is two-dimensional.

The xyz coordinate system is centered at the shuttle center of mass, C,

and rotates with the shuttle.

The force and moment equations for the shuttle in body fixed axes are,

as before [see equations (II.1 thru II.3)].

EFx = Tx + Ax = ms (u + qsw)	 (III.1)

EFy	 y= T+ Ay =ms (w- qsu)	 (III.2)

EMC = MA + MT + zCAAx xCAAz = Iyysg s	 (III.3)

where 411 variables are defined as they were in the analysis of the single

joint model.

Equations (III.1) through (III.3) can be written as differential equations

for u, w, and g S with unknowns Ax , AZ , and MA appearing on the right hand

sides. Thus,

TA
u = -qsw + 

mx + -2
	 (III.4)

s	 s

T	 A
w = qsu + m  + M 	 (IT1.5)

s	 s

qs I1- {MT + zCAAx - x
CAAz + MA}	 (III.6)

YYs	 i

As before, the torque exerted by the arm on the shuttle at point A will be

modeled as

MA = K(^	 C) + C$	 (III.7)

 ..........-^.
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In order to find the forces AX and Az , it is necessary to consider the

arm and then the payload.

The arm will be assumed to be massless. Thus, its effect is to transmit

and modify torques. The free-body diagram of the arm is shown in Figure III.2.

^MB,

B
X

	

d	 B	 d sin
z

-M r	 -
A	 rAB d cosh i - d sink

-A

	

A	
x

z

d coo

Figure III.2: Arm Free-Body Diagram

d
The equations of motion for the arm are

EFX = -AX + BX = 0	 (III.8)

i
i

EFy = -AZ + B  = 0	 (III.9)	 s"

EMA = -MA + MB - Bzd cosh -BX d sink = 0 	 (M.10)

From equations (III.8) through (III.10), we get

AX B	 (III11)

Az	 B 
	 (III.12)

MB MA + A 
z 
d cosh + AXd sink	 (III.13)
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However, as was the case with the shoulder joint, a form will subsequently

be specified for MB (in terms of an angle yet to be defined) .

The next step is to examine the free-body diagram of the payload shown

below

Arm //I

	 x

Figure III.3:	 Payload Free-Body Diagram

n

The equations of motion for the payload are given by

EFx' -Bx = m	 = -AxaD (III.14)'p	
x r

EFZ = -BZ = mp aD	= -AZ (LII.15)Z
1

EMD = -MB^ + rDB x ( -B)	
IYYP qP^

(I11.16) 

where

rDB = _r BD = +ksint	 i +	 kcost	 k

rDB x (-B)	
rBD x B

rBDxA

_ (-k sin^i	 - kcost	 k) x (AXi + AZk) .4

rDB
x (^B) _ (+ AZQ sing - Axk cosh)j

ti

t

r

.	 -	 ... :.^.	 ... a "♦i..	 , ay fad.:. ^N`b^
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Thus, equation (111.16) can be written as

ZM_ = -MB + Az Qsint - Ax kcost = Iyypgp	 (III.17)

In equations (211.14) and (111.15), aD and aD are expressed in a

	

x	 z
coordinate system which rotates with the shuttle (at an angular rate given

by 0 = is = qsj).

As before [see equation (I1.13)]

aD = aC + aD	 + S2 x	 x -r CD
rel

+ 2n x 
V_rel + E2 x rCD	 (II1.18)

In order to generate a complete expression for aD , it is necessary to first

write an explicit form for r CD . Thus,

rCD - rCA + rAB + rBD

or

rCD	
(x	 + d cosh	 - Qsin*) i	 + (z	 -d sink - Qcos^)k (I11.19)CA CA

l
As in the single joint model, the length of the arm will be modeled

as
I,

d(t) = d	 + d	 t + d t 2 /2 (III.20)
0	 0	 0 ^.

where	 do , do , and d	 are input parameters.	 Now let us proceed to develop each

of the terms of the right-hand side of equation (111.18) individually,

S

a

r°

._	 a
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From equations (III.1) and (III.2), a c is given by

ac=(u + q  w)i + (w - gsu)k	 (III.21)

Next, the quantities VD	and aD	will be developed from rCD . Recall
rel	 rel

that rCD is given by

rCD	
(x 

CA
+ d cosh - ksint )i + (z CA -_ d si.n^ - kcost )k	 (I11.22)

where x
CA' zCA' and k are constants. To find VD	and aD , i and k are

rel	 rel
treated as constant vectors also. Thus,

VD	= (d cosh - dcsin^ - ktcos^)i + (-d sink - d^cos^ + kt sin*)k 	 (I11.23)
rel

and

(d cosh - 2d^sin^ - #sink - d 2 cosh - 9t cost + Z; sing) i
^rel	 (1IL.24)

+ (-d sink - 2d$cos^ - d^cos^ + d$ 2 sin^ + ktsint + k$ cos^)k

The quantity n x (T2 x rCD ) is given by

qsJ x [qsJ x (x CA
+ d cost - ksint ) i + (z CA - d sink - kcost )k}]

a
Thus,

X (D 
xrCD) 

=(-gsxCA - qsd cosh + (i s
 ksinO i

+ (-q2+ q 2d sine + g2kcost)k	 (111.25)

The term 2S xVrel 
is generated from

20 x Vrel - 2g sj x {(d cosh d$sin^ - ktcos^)i

+(-d sink - #cosh +, Zt sinojK

and
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2D x Vrel -- (-2g sa sink -2gsdccos^ + 2gsk^sin^)i

+ (-2gsd coso +2gsd$sinc + 2gskipcost)k	 (111.26)

Finally, the 0 x rCD 
term is generated by

x rCD - qsi 
x [(x CA+ d cosh ksint)i

+ (z 
CA- 

d sink gcos*)k

or

x rCD = (gszCA - q s 
d sink -qs kcos^)i

	

+ (-gszCA 
qsd cost + gsksinip)k	 (I11.27)

Combination of Equations (I11.21), (I11.24), (I11.25), (111.26), and

(I11.27) to form aD results in

a  = u + q  w + d cosh -2a$sin^-d^sin^
g..

d$ 2cos^ - k1 cost + kl 2 Sin lU

gsz
CA ^s d cosh + qs ksin^

- 2gSa sink -2qs $cos^ + 2gsktsint

+ gs z
CA -qsd sink -g s kcos^	 (III.28)

aD = w qsu - d sink - 2# cosh - #cosh
z

+ 4 2 sin^ + k^sin^ + Z1 2cos^

q 
2zCA + qsd sink + gskcost

- 2gsd cosh + 2gsd sink +	 P.4)ces ip

gszCA - q s 
d cosh-+ gS ksint	 (I11.29)

Substituting equations (111.28) and (II1.29) into equations (111.14) and -

(111.15) and collecting terms, we get
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i.

-A
x

=mu+Ow
p

+ mp(zCA - d sink - kcost)4s

+ mp (-d sin^)^ + mp(-kcos^)t

+ mp [gs(-xCA - d cosh + ksin^)

• (d cosh -2d$sinc -d$ 2 cos^ + k$2sint)

• qs (w -2d sink -2d$cos^ + 2ktsint) l (III.30)

and

-Az = 0 u + m wp

+',mp (-xCA -d cosh + ksint)gs

+ mp (-d cos^)^ + mp(ksint)V

' + mp [g 2 (-zCA + d sink + kcosV)

+ (-d sink -2d$cos^ + d$ 2 sin^ + k^2cos¢)

+ qs (-u -2d cosc + 2d$sin^ + 2k$cosV)l (111.31)

^	 With the definitions below, the expressions for Ax and Az can be greatly

simplified.

b  (z CA - d sink - kcost)mp

b2 = mp (-d sink)

b3 = mp [gs(w -2d sink -2d$cos^ + 2k$sinV)

+ (d cosh -24sin^ -d$ 2 cos^ + k$2sinV)

+ qs (-xCA - d cosh + ksinV)l

b4 = m (-kcosv) (111.32)

s

.F

I5

i
a
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c 
	 = (-X CA -d cosh + ksin^)mp

c2 = mp (-d cosh)

c3 = m 	 [qs (-u -2d cosT + 2d$sin^ +2kt*cos*)

• (-d sink -2d$cos^ + d$ 2sin^ + k$2cos^)

• qs(-zCA + d sink + kcos^)]

c4 = mp (ksint) (111.33)

The resulting expressions for Ax and Az are

-AX = mpu + b 1	 + b 2^ + b4V^ + b3 (111.34)s
..	 ..L

-Az = mpw + c1gs + c 2^ + c4t^ + c 3I' (111.35)

'	 Rewriting equations (III.1) and (111. 2), we have

msu - AX = TX - msgsw (111.36)

m w-s	 z	 z	 s sA	 = T	 + m q u (111.37)

Combination of equations (111. 34) and (111.36),	 (I11.35) and (I11.37),

results in

(ms + mp)u + b 	 + b 2^ + b4^U = -TX - msgsw - b3 (111.38)

(ms + mp)w + clgs 
+ c 2^ + c4 	 = Tz = mSgsu - c3 (111.39)

Equations (111.3) can be rewritten as

IYYsgs + x
CAAz - zCAAx = MT 

+ MA (111.40)

Combination of equations (III.34),	 (111.35), and (111.40) results in

_.^^
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IYYsgs - x
CAmpw - xCAc1;S - xCAc2^

xCAC0 xCAC3 + 'Cep + zCAYS

+zCAY + z
CA

b4IP + zCAb 3 = "T + MA

which can be rewritten as
j

(zCAmp)u + (-xCAmp ) w

+(IYYs + z
CAbl - xCACl)gS

..	 III.41

+(ZCAb 2 - 
xCAC2)^

f	 +(zC b -x c )..-
AA CA A

N

N + MA zCAb3 + xCAc3

Combination of equations (III.34, III.35) and (III.17) results in

IYYPgP - m
p2cos^ - b 1kcost 4s

b2Rcos# - b 4Qcos^	 b3kcos*

+ m
P 
Qsin* + c 1Qsin^g s 	t.

+ c2Qsin# + c 4Rsin^^ + c3zsin^

_14	 (111.42)

r:,
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Finally, the quantity q 	 can be related to q 	 by

qp = qs +	 + (^-$)

qp=qs+

qp = qs + (1I1.43)

Combination of the last of equations (111.43) with (111.42) and rearranging

terms results in

'	 (-mp kcost )u + (mp ksinOw

+ (Iyyp - b 	 kcost + cl ksin*)gs

+ (-b2 kcost + c2 ksin^)^

+ (Iyyp - b4 kcost	 + c4 ksin*)t^

- MB + b3 kcos^ -c3 ks n^ (I11.44)

Equations (111.38),	 (111.39),	 (111.41), and (111.44) are four equations o'f
i

the form

Bi1 u + B
i
2w + BD qs + BiO + BiS 	 _ D

i	 (i=1,4) (111.45)

{

This is a system of four equations with five unknowns.
v

Equation (111.13) can be used, along with (111.34) and (111.35)	 to
J.

obtain the needed additional relation.	 Equation (111.13) can be rewritten as

shown below when	 AZ	 and	 AX	 are eliminated.

+cdcos..+cdcos...mpd cosh w + c1d cos^g s 	2	 ^^	 4	 ^^
+cdcos

3	 ^

+ m d sink u + b 1 
d sings + b 2 d sine + b 4 d sine

+ b 3 d sink
p

+MB -MA=O
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which can be rewritten as

(mpd sin^)u + (mpd cos^)w

+ (bId sine + c 1 
d cos0;s

+ (b 2d sink + c 2 d cos^)^

+ (b4d sink + c 4 d cosO)

= MA - MB - b 3 d sink - c
3  cosh	 (111.46)

Equation (III.45) ' forms the fifth equation needed. Now if we let

w^

- 

N
and add the two differential equations

$-w^

_ W,^

we will have seven first-order ordinary differential equations in seven unknowns.

The only step left is to specify 'the form of MB . MB must depend on the

relative angular displacement of the payload with respect to the arm (measured

from its initial relative angular displacement, and on the angular rate of the 	
if

payload with respect to the arm. The geometry for this is shown in Figure IIIA.

a

^I

4

a

4

,x

Figure III.4: Payload Angle Geometry
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The required angle is a where

a = ^ - t

Also,

ao=^o-^o

and

The torque, MB , on the arm, is negative when a > a  and a > 0. Thus,

MB = -KB (a - ao) -CBa

or

MB = -KB (	 - - ^o + ^ ) -CB (	 -	 )	
(111.47)

The resultant elements of the	 b	 and	 D	 matrices nrc;
n

B11 (ms + mp )
B41 = -Mpkcost

B12 = 0 B42 = Mp Zsint	 j

B13 - bl B43	 IYYP -b
lkcost + clksin^

B14
= b 2 B44 = -b 2kcos^ + c2ksin^

B15
b 4 B45 = Iyyp -b 4 kcost + c49.sint

D1 = TX - msg Sw -b 3 D4	 = -MB + b 3kcos^ -c3ksin^

,l

B 21 -Q B51-mpd sink

B22 - (ms + mP) B52 = M d cosh

B23 - Cl B53 - b 1 
d sink + c ld cosh	

k

B24 - c2 B54 = b
2d sine + c 2d cosh

B25
c4

= b4d sink + c 4d coshB55 	
a

D 2 = T  + mSgsu -c 3 D5 = MA - MB - b 
3 
d sine - C3  cosh



I

B31 - zCAmp

B32 = (-xCAmp)

B33 IYYs 
+ ZCAbl - XCA'l

B34 ZCAb2 - XCA'2

B35 ZCAN - XCA'4

D3 = MT + MA - zCAb3 + XCAc3

The solution procedure is the same as that outlined in Section II.

.o
40

4

i

r	 a

I/
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IV. NUMERICAL RESULTS

The one joint model developed in Section II and the two joint model

developed in Section III have been compared for a series of thruster firing

modes.	 The goal of this comparison was to determine the similarities and

differences in the dynamics as predicted by the two models. 	 An analysis made

with the programs written to check the algebraric signs and the initial

magnitudes (see Appendix A) indicated that for the loaded RMS extended vertically

above the shuttle, Thruster 9 (the center RCS thruster firing upward on the

shuttle nose) produced the largest forces and bending moments at the shoulder

joint.	 All thrusters were checked in this determination.

Three comparison cases are presented here as an example of the data s

obtainable from the programs. 	 The three cases assume that Thruster 9 is fired

for 0.1 seconds and investigates the system oscillation during the subsequent G

100 seconds.	 The parameters for each of the three cases are listed in Table 1.

The numerical results were obtained by numerically integrating_ equations

(I1.40) and (L1.41) for the single joint model and equations (III.45) and (III.46)
I

for the two joint model using the parameters listed in Table 1. 	 The equations

were integrated with a 4th-order Runge-Kutta integrator. 	 The simulation assumes

that the RMS is manipulating a cylindrical payload with a mass of	 slugs

The numerical results obtained in this study are shown in Figures IV.1 through

IV.6.	 Two separate cases were considered with the two-joint model.- 	 The cases

differed in the length of the wrist joint. 	 In Case II, the wrist joint was

zero while in Case III the wrist joint was 7.5 ft.

Y

J

1	 -^

•.^- -	 -rr^a^l^E7iiluK'•1^^lk'1!*AL^^"'.._' ,.

a
__xa^.
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Table 1. PARAMETERS FOR NU14ERICAL SIMULATION

Case 1	 Case 2 Case 3
Program Single Joint	 Two Joint Two Joint

m 2018.5 slugs	 Same as Case 1 Same as Case 1
P

ms 4689.4 slugs	 11

d 50 ft

a 0

a 0

xCA
36.33 ft

-6.083 ft
zCA

CA 1.22 x 10 5 lb.ft.sec/rad

K 
1.0	 x 10 `' lb.ft/radian

-YYS
5699753.	 slug.ft2

IMP 625805.	 slug. f t2

T 0.0 lbs
x

T 870.0 lbs
zI

U 00
w 0
0

qso
0	 " "

W	 = w
o	 ^o

0

0
90°

R, ---	 0 7.5 ft

w1po
	 ---	 0	 0

IPo	 ---	 0	 0

C	 -	 1.22 x 10 5 lb.ft.sec/rad	 Same as Case 2
B	 1

---	 1.0 x 10 `' lb.ft/rad	 -Same as Case 2

1

PLOT SYMBOL 0	 D	 O

-.. t,;
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The data for Case 1 do not contain the wrist joint rate, joint angle,

or moment at the wrist because these variables did not appear in the single

joint model.	 These variables do, however, appear in Cases 2 and 3 which

were generated using the two joint model. 	 The output variables (all plotted

versus time) for the three cases are as listed below.

SH VX This is the x component (in body axes) of the

velocity of the center of mass of the shuttle in

SH VZ This is the z component of the velocity of the shuttle

center of mass in ft/s.

QS This is the pitch rate of the shuttle in degrees

per second.

PHIDOT This is the angular rate of the shoulder joint

in degrees per second.

PHI This is the shoulder angle in degrees

ALPHA DOT This is the wrist joint rate (rate of rotation of the

payload relative to the arm) in degrees per second.

This variable is not integrated but is created after

integration by differencing angular rates

ALPHA This is the wrist joint angle in degrees.	 This

variable is the angle between the arm andthe payload

x axis.

ARMFX(=AX ) This is the	 x	 component of the force in pounds at

the shoulder exerted on the shuttle by the RMS (The

x component of force exerted on the payload by the wrist

is -AX	 for an RMS which is modeled as massless)..
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ARM FZ(-=A 
z	

This is the Z component of the force in pounds at

the shoulder exerted on the shuttle by the RMS.

AM(-=M 
A	

This is the shoulder moment exerted by the RMS on the

shuttle in ft. pounds.

BM( =-M 
B)	

This is the wrist moment exerted on the RMS by the

payload in ft. pounds.

Figures IV.1 through IV.6 give 100-second time histories of all output

variables for the three cases described previously. Recall that case 1 does

not output the variables a (ALPHADOT), a (ALPHA), and BM.
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FIGURE IY•5
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From the figures, it is apparent that the dynamic behavior of Case 1

(symbolA) matches that of Case 2 (symbol[] ) quite well.	 Both amplitudes

and periods of oscillations match very well. 	 This match is significant

because the case 1 curves ( Q) were produced with the single joint model

`	 while the Case 2 curves 	 were produced with the two joint model.

^j	
The similarities in dynamic behavior between Cases 1 and 2 can be at-

tributed to the following factors:

1. The payload center of mass is the same distance from

the shoulder (50 ft) in both cases.

2. The shoulder spring constant and damping constant are

the same in both cases.

3. The excitation (Thruster 9) is the same in both cases.

4. The initial conditions are the same.

The differences between Cases 1 and 2 are as follows.

1. The wrist in Case l is rigid while there is a joint with

a spring constant and dampoing at the wrist in Case 2.

2. No-wrist joint torque is obtained in Case 1 (it could be

obtained by a rigid-body analysis but would be far too+

large), while the torque is obtained in Case 2.
i

The results for Case 3 (symbol Q) do-not match the results ofCases.l

and 2 mainly because the payload, c.g., in this case is 7.5 feet away from E

the wrist joint (the more realistic case). 	 In Cases 1 and 2 the payload is
r

assumed to have its c . g. at the wrist joint (in all cases the payload has a

non-zero moment of inertia about its center of mass).

t

-u
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The period of oscillation in Case 3 is longer than in Cases 1 and 2

(31. seconds as opposed to 27 seconds), largely because of the additional

7.5 feet between the payload center of mass and the sboulder joint (the

pendulum is longer).

The magnitude of the oscillations in the x component of velocity of

the shuttle's center of mass is about the same in all three cases whereas

the z velocity component oscillation is slightly larger for Case 3. The

amplitude of oscillation in shuttle pitch rate is also larger for Case 3^

than for Cases 1 and 2.

The angle ^ between the arm and the orbiter oscillates with about

the same amplitude and rate variations ii, all three cases. However, integration

over a longer time might reveal an energy exchange between the wrist and

shoulder joints for the two joint cases (Cases 2 and 3). This should be 	
i

looked into when the models are compared fully.

The angle a and its rate a are defined only for Cases 2 and 3.

After an initial jump of 0.05 radians during the thruster firing, the angle

a oscillates over a range of about 0.1 degree in both cases. The differences

in geometry between the two cases causes the curves for a and a to differ

between the cases.
a

The crucial values in the analysis are the magnitudes of forces

wand moments at the shouler (and wrist) joint(s). In all three cases, the

force component in the z direction is the important force variable. Although

the z component of force oscillates after the thruster is cut off in the same

way that the x component oscillates, the oscillation cannot be seen on the

plot because of the very high peak values of the z force which occur for all

cases during the thruster firing (during the initial 0.1 seconds). The force

peaks were in the range of 550 lbs to 600 lbs in all three cases. Due to the

i,,
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geometry, this force is an axial force on the arm. This force acts at both

joints (shoulder and wrist). For the values of system parameters chosen,

the peak values of force at the joints occur during or at the end of the

thruster firing after which the joint forces become very small.

The moments experienced at the shoulder and wrist joints peak 90° out

of phase with the forces at the joints. The plots of AM (all three cases)

and BM (two cases) show how the moments vary as a function of time. The

maximum torques exerted at the shoulder are larger than those at the wrist

for the values of system parameters chosen for the examples. This is because

the mass (and moment of inertia) of the shuttle are larger than those of the

payload.

Examination of the curve for the wrist moment (BM) indicates cleariy

the effect of payload rotation about the wrist joint. Case 3 with the payload

c.g. offset from the joint gives higher values of wrist moment as would be

expected. Also, the predominant period of oscillation is again longer for

Case 3 than for Case 2.

I

1
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V. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Both single joint and two joint models have been developed for

two-dimensional analysis of shuttle RMS joint,loads. A limited comparison

of the two models has been made which indicates the following.

1. In many situations, either the single joint model or the two

joint model can be used to predict the approximate maximum

magnitudes of shoulder joint loads (forces and moments).

2. The single joint model can be used to predict maximum wrist

joint forces, but the two joint model must be used if

information concerning the wrist joint moment is desired.

3. Both models give information on shuttle oscillations induced by

the RMS/payload combination. The time histories of the oscil-

lations at each joint are also available.

Both the one joint and two joint models are limited. The major

limitations are as follows.

1. Both models are two-dimensional while the RMS/shuttle/payload

system is a three-dimensional dynamical system.

2. The number of joints in the models is one or two while the

number of joints on the actual RMS is actually six.

Although the two limitations listed above are major, the models developed

should be quite useful because of the joint sequence on the RMS (three of

the joints are collinear and occur in sequence - one at the shoulder, one
t

at the elbow, and one at the wrist).

t
The procedure by which the models were developed is readily extendable

to a three joint (elbow joint added) planar model. Such a model is the next

logical step in building up to a simplified dynamic model of the three-

dimensional shuttle /RMS /payload system which might be usable in a simulator

(a full-blown dynamic model will have difficulties operating in real time,

and real time is a must for training simulators).,
r



55

It is recommended that the following items be studied further.

1. The three joint planar model should be developed.

2. A two joint, three-dimensional model should be developed

(shoulder yaw and shoulder pitch).

3. A four joint, three-dimensional model should be developed as

an extension of the model of (2) above, and then a three-

dimensional six joint model should be developed. The philosophy

of each model should be to keep it as simple as possible while

performing the required tasks.

4. The models completed should be compared, and versions selected

for use as needed in:

(a) training simulators,

(b) mission planning and sequencing programs, and

(c) engineering simulators.
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ANALYSIS TO CHECK SIGNS OF A x , Az , etc. at t = 0

SINGLE JOINT MODEL

All rates will initially be zero, and quantities will be determined only at

the instant when the thruster is turned on. Equations (II.1) through (II.3)

are

TX + Ax = ms (u + qsw)	 (II.1)

Tz 
+ A

z 	 s	 sm (w - q u)	 (II.2)

MA + 
zCAA

x xCAAz + MT
 - IYysgs	

(II.3)

At t	 O, qs = w = u = 0. Also, 	 0,and	 = 0. Thus, from equation (II.34),

i.e., assume also that d = d = 0.

MA = K(^	 o) + C$	 (II.34)

it can be seen that MA = 0 (at t = 0). Thus, equations (II.1) through (II.3)

become

Tx + Ax = msu	 (A.1)

T  + AZ = m s 
w	 (A.2)

zCAAx - x
CAAz + MT = Iyysgs	(A.3)

From equations (II.28) and (11.32), we have

-Ax = m
P 
u + b lgs + b 2^ + b 3	 (II.28)

-Az = m 
p 
w + clgs + c? + c3	 (II.32)

where, from equations (II.27) and (II.31) give b l , b2 , b3 and cl , c2 , c3,

rcanontivol y	 At t = n tl-^occ »^l. . oc arc



9	 fi	
AA-2

b  = mP (zCA - d sink)

b2 = -mPd sink

b3=0

cl = (-x0A d cos^)mP

c2 = -mP (d cosh)

c3=0

Thus, (II.28) and (II.32) can be rewritten as

-Ax = mPu + blgs + b?	 (A.4)

-Az = mpw + clg s + c2^	 (A.5)

Equation (II.38) can be written at t = 0 as

(-mpd sinOu + (-mPd cos^)w

+ (I
YYP 

-bld sink - cld cos^)gs

+ (IyyP -c2d cosh - b 2  sin^)^ = 0	 (A.6).^

Equations (A.1) through (A.6) form a system of six linear equations in six

unknowns.

The equations, in matrix form, can be written as shown on the following

page.
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A-4

TWO JOINT MODEL

Equations (III.1) through (111.3), with the assumptions q  = u = w = 0, It  = 0

gives (also d = d= 0) (^ = ^ = O, ^ = X 04 = ''o)

msu - Ax = Tx (A.7)

msw - AZ 	T (A.8)

Iyysgs + xCAAz - zCAAx = MT (A.9)

Equation (III.13) given MB = 0 at t = 0, gives
1

Ax d sink + AZ d cosh	 0 (A.10)

Equation (III.17) can be written as

IYYPgs + IYYP^ + A
x kcost - Ax ksin^ = 0 (A.11)

l

'	 Equations (111.34) and (I11.35) can be written as

^ D

m,p +.b lgs + b 2^ + b4	 + Ax = - 3 (A.12)O

mpw + clgs + c2^ + c4^ + AZ = - (A.13)

Where, from equations (111.32), 	 (111.33), and the assumptions, we have

r^

bl - mp(zCA -d sink - kcos^)

b 2	mp (-d sink) {

b 3' - 0 ;.NOTE: bl, b 2 , b 	 and cl, c 2 , c4
b4	 mp (-kcos0 are formed as in T140JNT.

cl = m
P 

(-x CA -d cosh + ksint )
'.

c 2 = mp (-d cosh) i

c	 03 = 

c4 	 mp(ksinO
r

qtr

t
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