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ABSTRACT

A numerical treatment of acoustic waves in a Jet is described. The

full time dependent Euler equations are used in both linear and nonlinear

formulations. The computational region of integration is artifir 'y

bounded and boundary conditions are developed to simulate outgoing waves

and to enable the computational domain to be substantially restricted.

Higher order methods and coordinate transformations are introduced to

further reduce the nv,nber of grid points as well as to increase the

efficiency of the program. Numerical results are presented for time

harmonic sources as well as for sources with more complicated time

dependence.
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Introduction

This study is concerned with the numerical computation of time

dependent acoustic waves in a jet. The presence of inhomogeneities

causes a significant change in acoustic behavior and avro-acoustic

noise prediction schemes must take this into account in order to

accurately predict aerodynamic noise. We will he concerned here only

with the propagation of sound and not with its generation. Thus the

rcoustic sources will be modelled by arbitrary forcing terms in the

equations.

Previous workers (Schubert [11, Liu and Maestrello [2], Mungur et

al. [3]) have approached the problem by deriving a convective wave

equation for the pressure and then assuming tlit both th y : source and the

solution have a time dependence of the form e iwt . The use of this

assumption in the convective wave equation leads to an elliptic equation

for the acoustic pressure. in the case of zero mean flow this elliptic

equation is the Helmholtz equation.

A very efficient solution method for the elliptic equation was intro-

duced by Schubert [1]. He split the linear elliptic equation into two

coupled nonlinear equations for the amplitude and phase of the time

dependent solution. A motivation for this approach is that these quantities

are smoother thar. the pressure and so can be efficiently approximated on

a coarse grid.

The method used here differs from the above approach in two ways.

First the time dependent equations are used rather than assuming a time

harmonic behavior. This is because there are physical problems of interest

Viere the source does not have a simple time harmonic dependence. For

example, in a real jet the sources generally are convected downstream with

the jet. Other sources of interest are those which have a pulse type time



dependence. Numericai results for these types of sources will be presented

here.

A second difference from previous work is that in the present study

the first order equations of fluid dynamics are integrated. There are

several limitations in the use of a convective wave equation for the

pressure. The primary one is that several physical approximations are

necessary in order to eliminate the acoustic velocities (see [1)). These

assumptions are generally of the type that the wave length of the sound is

small compared with the diameter of the ,jet. Since only relatively low

frequencies can ne computed numerically the validity of these approximations

is open to question. Furthermore, the exclusion of the velocities in the

convective wave equation complicates the boundary conditions needed to

simulate outgoing waves. Third the nature of the source term is less

clearly defined than in the primitive equations of motion. For example,

a source of mass or momentum can be easily included in the primitive

equations but does not correspond to any simple type of source in the

convective wave e(luation.	 On the other hand the primitive equations can

he easily modified to include nonlinear effects that are neglected in

the standard linearizations. Finally e--elicit finite difference schemes,

which are ideal for vector machines as the STAR-100, can be applied _o

yield very efficient algorithms.

The computational effort required to solve the first-order system is

not substantially greater than that required for the convective wave

equation. The second order wave equation requires at least two levels

of storage while the first order system can be programmed with one level

of storage for each of the unknc)wns, When the source has a harmonic

time dependence then the time dependent procedure can be considered as
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an iteration scheme to obtain the time harmonic solution. In this case

further study Is required to determine if this approach is competitive

with the multi-grid methods used by Fix, Cunzburger, and Nicolaides (4].

The present method requires computational resolution of the solution

on the basis of the wavelength. This will also be true of any method

that solves the time independent equations, either as a first order system

or as a single second order equation. Such methods can not generate

accurate solutions using grids as coarse as those used by Schubert. indeed,

the authors have found that a substantial fraction c` the total number of

points uso' by Schubert is required merely to resolve the mean flow of the

jet.

The method of Schubert requires essentially that the solution be composed

of onl y one wave. If we define a wave as a function of the form

w(r) = A(r)eikS(r)

where A and S are slowly varying real valued functions of the spatial

point r, and k is the wave number, then A and S can be approximated

with a coarser grid than the solution w. However, the assumption that the

solution be composed of only one wave is a very restrictive assumption

which in general does not hold. For example. if the jet exits from a wall

there will be reflections off 0.e wall which will introduce other waves. Our

results indicate that even for the problem considered by Schubert reflections

occur because of the gradient of the mean flow. 	 The method presented here

permits the accurate computation of these cases but is restricted in the

frequency range for which it can be applied.

I
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11.	 Equations

The equations of me' ion for an inviscid axially symmetric flow in

Ylindrical coordinates are

Pt + (pu) z + (()V) lOvv) r + 	 = 0

pt
(2.1)	 uI + uu z + vu r + p 0

p
V t + Uv z + Vv r + p = 0

is the density, u and v are the axial and radial components of

velocity respectively and p is the pressure. We assume an isentropic

flow so that

(2.2)
	 p=APy

where A is a constant. These equations are to be integrated for t > 0

and for all space r > 0, - oo < z < ou . In addition, we need to introduce

additional terms into (2.1) to simulate the acoustic sources.

In order to incorporate properties of the mean flow we expand the

solution about the mean flow of the jet (pn,u0,v0)r.

1p0	p'\

(2. 3)	 u	 =	 u 0	 E u' 1
v	 v	 v'

0

where E is a perturbation parameter determining the amplitude of the source.

The acoustic approximation generally assumes E is small. In addition we

non-dimensionalize the system by choosing new variables
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t oz	 z. r
d	 d	 d

	

u	 -	 v

P.	 pOU	 a	 a

where d is the diameter of the ,jet, a is the ambient sound speed and

pu, , pm are the ambient pressure and density respectively. For simplicity

we will drop the bars in the sequeal; all quantities will be non-dimen-

sionalized.

The mean flow for the jet was obtained from experimental data

(Maestrello [51) which indicates that p0 is nearly constant and v0 is,

in the extreme case, only about 2 percent of u 0 , Computational

	

experience confirms that the inclusion of v 	 makes little difference.

Hence, for the remainder of this study we neglect vU and assume that

	

pC is constant (pau ), The mean velocity u 	 corresponds to a spreading

jet with a spread of about 12°. For fixed z the mean flow has a

maximum at the axis and decays with distance normal to the axis. Further

details of this flow can be found in [5].

In order to facilitate the comparison of linear and nonlinear models

we introduce new variables

= P

u	 (l+ E p )^i'
(2.4)

v = ( 1 +Ep )v'

p = ((1+Ep )y- 1) /E.

For non-zero r_ the quantities u and v are part of the terms making

up the non-dimensionalized momenta. The choice of dependent variables in

(2.4) puts the resultant system of equations in conservation form. Upon
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Including a source term in the mass equat ion of ( 2. 1). We can rt-write

(2.1) as

Ov +v

	

F, t + (i u0 + u) z + Ov0 + v) r +	 Or	 - F(z,r,t)

(2.5)	 u + [u(u +CU')] + (ii(v +? v')] + I (1—^^-I 
z	

uv	 - vu	 +E u(F+	 )
-t	 0	 z	 U	 r	 C' -Y Y-
	

0, r	 0, r	 r

v + (v(u +eu')] + [v(v +E .v')] 
+ I(1+F.L

Ey
'	 v 

O,z	 O,z	 r
v	 - uv	 +ry (F+ vt)

t	 0	 z	 0	 r	 I

	

L	 -r

0< r< a	 -W <  z < m, t	 0.

If E is set to zero in (2.5) we obtain a linear system for the

acoustic density and velocities. (The acoustic pressure is proportional

to the acoustic density by linearizing (2.2)). For most of the study we

have used the linearized equations, f - 0. Differences between the

linear and nonlinear equations are discussed in section 5.

Generally, we take the source as being of the form

F(z,r,t) = f(t)d(/ r 2+(z-z0 ) 2 ) for some axial point z 0 . The delta

function source when implemep,.ed in the primitive equations of motion

corresponds to a simple source of mass or momenta depending on which

equation it is in. Axial dipoles and quadrapoles can also be handled

easily. This is one of the advantages of working with the Euler equations.

The delta function is modeled by a Gaussian centered at the source point.

In previous work ([1], [21) the source was modeled by excluding a small

circular region from the domain of integration and then imposing suitable

boundary conditions. This approach was originally used for this study

but was discontinued as being inconvenient for optimized vector computation

on the CDC STAR-100.
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Equations (2.5) must be supplemented by initial and boundary conditions.

'rhe initial conditions specified are p. u, v - 0 at t - 0 (i.e. the source

is switched on from a state of rest). Analytically the domain of integration

is the entire plancj computationally we require a bounded domain with

appropriate boundary conditions. This is treated in detail in section 4.

III.	 Numerical Scheme

The system (2.5) can be written in the ?eneral form

I	
( ;' . 1)	 wt + F  + C r = H .

We solve this system by splitting it into a sequence of one dimensional

problems (see Strang [6], MacCormack [71). Let 1. 7 and L 	 denote

the finite difference approximations to the one-dimensional equations

W t + FT = Hl

wt + 6  = H2

respectively, where H = 11 1 + H 2 . Then, the solution to (3.1) is updated,

with second order accuracy in time, by

(3.2)	 w(t+2At) - LTLrLr1,Zw(t).

The solution was found to be insensitive to the decomposition of H

except that r had to be included in Lr.
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For the numerical operators 1, z and L r , a spatially fourth order

accurate extension of the Mae.Cormack method developed by Gottlieb and

Turkel [8I was used. The higher order accuracy was necessar y in order

to efficiently compute the solution at lari;.: dlwtal ►ces from the jet

exit. The higher order formulas allow a greatly reduced mesh without

anv loss of accuracy as compared with second order methods. Detailed

comparisons of second and fourth order methods are given by Turkel [9].

There it is shown that fourth order methods allow haiving the mesh in

each direction for a given error tolerance of about five percent. In

addition the higher order method if- about three times faster, to achieve

comparable accuracy, as a second order scheme. In order to further reduce

tuc number of mesh points an exponential coordinate stretching was intro--

daced in both directions. This concentrates points near the axis and near

the source. Finally at points where sufficient boundary conditions ar

not prescribed a third order extrapolat'on of the fluxes is used as

described in 191.

The explicit nature of the fluxes F, G given by (2.5) allow; their

computation over the entire grid by vector operations. Hence, this

algorithm is well-suited for a vector processor such as the STAR-100.

The program was coded in 32 bit arithmetic in SL-1, a high level compiler

writte-,-, for the STAR. Including all factors, such as some recoding to

facilitate vectorization, the program ran 80 times faster on the STAR than

on a CYBER-175 serial computer.

IV.	 Boundary Conditions

For computational purposes the infinite domain of integration for (2.5)

must he replaced by a hounded domain on which appropriate boundar y conditions

must be specified.	 Since the infinite space problem is well posed for the
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hyperbolic system (2.5), it is necessary to develop radiation boundary

conditions only to achieve accuracy and computational efficiency. In

principle, for an y finite region anti for a fixed time of integration one

c.in place the artificial boundaries sufficiently far away so that the

numerical solution Is accurate in the region of interest. This Is not

practical since in fact, one needs to constrict the region of Integration

as much as possible, in order to reduce the number of grid points. Our

•	 experience indicates that this is the fundamental computational difficulty

in obtaining accurate solutions to (2.5). All this Is fundamentally

different from the Helmholtz equation where it 	 condition is

required to obtain a unique solution (cf. Hellwig 1101).

Two types of honndary condlt, , :-.s ;:re required corresponding to

inflow and outflow situations. Inflow conditions occur where the ,jet

enters the region of interest while outflow conditions occur at the

far field cutoff where outgoing waves must be simulated. A complete

description and justification of these conditions is given by Bayliss

and Turkel (111. Here, a summary of the actual conditions, which were

used in this study is presented.

A. Three types of inflow confiiturations are considered and are

Illustrated in figures 1-3. These figures are presented in cylindrical

coordinates with axial symmetry understood. These Inflow conditions are:

1. A semi-infinite pipe extending into free space (figure 1).

2. A semi-infinite pipe extending from an acoustic baffle

(figure 2).

3. An anti-jet, that is a convergent upstream flow (figure 3).

The anti-jet is obtained by reflecting the mean flow symmetrically about

the plane of the nozzle exit.
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Conditions 1 and 2 corre and to physically realistic situations.

In both cases two conditions must be imposed at the pipe exit (dashed

line in figures 1 and 2). We have indicated (dotted line in figure 1)

an outflow boundary directly above the nozzle; also included are far

field boundaries G ndicated by	 •) . Experimentally, one is not

interested in the acoustic field above the pipe even for case (1).

The anti-jet is a nonphysical, computational device introduced in

the treatments of the convective wave equation in order to remove the

necessity of specifying boundary conditons along the pipe and at the

nozzle exit. 'rhese conditions are difficult to Impose for the convec-

tive wave equation since the velocities are not independent

variables. However, the anti-jet formulation has several disadvantages.

Besides being nonphysical it requires the solution of the equations in a

much larger region than necessary. Finally, at the inflow (left) boundary

110 is positive over portions of the boundary. Hance, two boundary con-

ditions must be specified in order to have a well posed problem. We

have not succeeded in developing such an additional condition. For the

computational results computed with the anti- et this inflow boundary was

sufficiently far away so that u 0 was smzli. Using on)v the radiation

boundary condition (to be described) instability was delayed long enough

to permit a periodic solution to he generated downstream. Clearly the use

of the anti- ,jet is unsatisfactory and inefficient for time dependent

equations. The anti-jet was used in this study for only a few test cases

for comparison purposes. All other cases used either boundary conditions

1 or 2.

For the inflow pipe we assume a constant mean flow 
X10 

and E - 0.

We further assume that the flow is one dimensional, i.e. Independent of
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r. From characteristic theor y one finds that the appropriate boundary

conditions at the .jet exit are

(4.1)	 u + p - 0

(4.2)	 v - 0 .

In I I I I we present it 	 for these conditions for the full

two dimetvilonal problem based on an expansion of modes travelling; down

Hit , pipe; they help explain the numerical results presented In the next

section. Rogers 1121 has shown that these condition~ imply that the

energy flux through the pipe is negative, i.e., no energy flows from the

pipe into the computational domain and hence (2.5) is well posed in the

sense of Ha ' .i • d.

B.	 The outflow boundary conditions must approximate the condition

or outgoing; waves. The mean flow decays with the distance from the

nozzle and when u0 is zero (2.5) can be reduced to a wave equation for

p. The condition for outgoing; wives can then be expressed in terms of

9 - tan-t 
z 

and d - (r2+z 2 )^ by

(4.3)	 p - F
f (t-d,(1)

i-1	 di

(see [11] and also Friedlander 1131). This implies that

(4.4)	 pt + pd --d + 0( 13)
d

which upan using (2.5) with u 0 = 0, E - 0 is equivalent to

-11-



(4. 5)	 u^ - pt - d + 0( 13)
d

where u 	 denotes the radial vo•locity in polar coordinates. Although

there equations are strictly valid only when utl a 0 exterior to some

sphere,we have applied it to very constricted domains with substantial

In t he

P in

bounds

dittoIIs

success, as is describe:

show that the correction

false reflections at the

a family cf boundary con

(see (111).

next section. Computational experiments

(4.5) is necessary in order to control

ry. The condition (4.5) is part of

asymptotic to any order in	 1d

The boundary condition (4.5) is coupled with cubic extrapolation

on the fluxes for u and v as described in (9). This enables us to

solve for the variables on the boundary. Gottlieb. Gunzburger, and

Turkel f141 demonstrate that numerical stability can be improved by use

of characteristic variables for those quantitites which are not

analyticall y prescribed.	 For the computations III 	 studv it was

never necessary t-, use -haracteristic variables. Instead, the radiation

boundary condition (4.5) was used to calculate the pressure after the

two equations for u and v h-id been integrated.

The radiation boundar y conditions presented here differ from those

introduced by Engquist and Majda(151. Ours are asvmptotle in the distance

of the cutoff while the expansions of Fngquist and yajda are asymptotic

In the deviation of the wave from normal incidence. The conditions at

the nozzle (4.1 - 4.2) are formally equivalent to the first order condition

in 115J, the .Justification for which is based on the constraint v = 0

In the pipe. An analynls of the appropriate equations shows that th•^se

conditions are rigorously asymptotic in the distance of the pipe for
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frequencies below a fired limit, which includes all frequencies for which

numerical studies are feasible. This is discussed in detail in [11).

V.	 Numerical Results

The first computations were designed to test the boundary conditions

described in the previous section. Computations were performed comparing

the nozzle inflow conditions (4.1 - 4.2) with the anti-jet. Computations

with different frequencies as well as computations with pulse type forcing

functions all yielded virtually indistinguishable results for both sets

of boundary conditions. Therefore, all the remaining results were pro-

duced for the configuration shown in figure 1. Here the outflow radiation

conditions are imposed directly above the nozzle (dotted line iu figure 1).

This eliminates all upstream integrations.

We first consider a time harmonic source. Then the forcing function

In (2.5) is given by

(5.1)	 F(z,r,t) = H(t)^cos wtjl	 r2+(z-zH)2

H(t) is a smooth approximation to the Heavisi.e function and z 0 is 2

jet diameters upstream of the nozzle. The linearized equations, ! = 0,

are solved.

The quantity of physical interest is the relative sound pressure

level (SPL). Let p(z,r,t) he the non-dimensionalized pressure in (2.5).

We then define

T 
2IT p2(z,r,t)dt

(5.2)	 I(z,r) =	 T	 .
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This integral is taken over one period once a perlodic oscillation has

Lot
been etitahlished.	 It	 cos<<t	 in (5.1) Is replaced by a	 ,Ind if wv

assume that

iwt
P(^. r .t)	 a	 p(z,r)

then it follows that

(5. 3)	 I(z.r) ' I}i(z.r)I.

We then define

(5.4)	 SPI. - 20 log10 1(z•r).

This corresponds to the sound pressure level in the usual sense (soe

[1j). For general, nonharmontc problem the definition (5.2) is an exten-

sion of the definition of (SFI,) provided T is chosen large enough.

The pressure is usually normalized relative to some reference pressure pit.

Since only differences in SPI. are Important this normalization can he

Ignored. Differences between the SPL at different points are measured in

decibels (d.b.).

For the first set of experiments we consider the harmonic source (5.1)

with different boundary conditions. The figures 4-7 display the SPL,

relative to 90°. at a fixed distance from the source and as a function of

the angle 0. For these runs, u;aless otherwise stated, the exit Mach

number Is .62, the non-dimensional frequency is 1.145. and the downstream

boundary is at 65 diameters from the source. The radial cutoff is denoted

by R, 
I' 

and is measured In jet diameters.
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The fundamental physical affect to be expected hcre is the bending

of sound waves awa y from the axis, a phenomena known as refraction. This

results in a .substantial reduction in the Sil l. as the axis is approached

(i.e. 0 - 0).0). This refraction effect decreases as 0 i 90° so that the

solution approaches the solution with no flow (i.e. the wave equation).

This fact is used as a check on the code as well as a justification for

constricting the computational domain to a narrow region around the

jet axis.

Figure 4a and 4b show plots of the SPL For different values of R, r*

When reference values at 90 0 are not available they are taken from the

case with R T = 57. It is clear that we can severely constrict the domain

normal to the jet without seriously degrading the solution. The SPL is

relatively insensitive to pointwise error!;, however examination of the

pointwiso solution indicates very small errors due to the constriction of

the region. This is also true if the downstream cutoff is decreased. If

the lower order term p/d is dropped in the radiation boundary condition

(4.5) then much larger regions are required to control the reflections from

the boundary. The solutions presented here agree closely with those

obtained in [2) near the axis. The increase in the SPI, that Is found at

mid-angles was found in all the runs with the harmonic- source. This was

not found in previous studies, probably because of a lack of resolution in

the angular direction.

In Figure 5 results are shown for the case of a jet exiting from an

acoustic baffle. In this problem there is a reflected wave from the

baffle and it is clear from the figure that at higher angles there is

at first a cancellation due to the interference of the waves and then

a reinforcement.
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to rtgure 6 comparisons are presented with experimental results

of Grande (see [11). We note that there is good qualitative agreement

except that the rate of increase of the SPl, is steeper as 0 Increases

from zero. Comparisons with extensive experiments being conducted at

NASA Langley Research Center wi11 he presented subsequently.

Computations were made with Elie nonlinear equations (2.5) with

ditlet'ent values of	 our results showed that the SPl, level was

largely unaffected by the nonlinear terms except in the near field

where the axial clip was slightly reduced for E 'V .02 (based on a

nondimensional P„ of 1). For higher valves of E the scheme

exhii, ► ted uonl inear instabilities which would require ; ► rt if icial

dissipation to control.

Hie time dependent calculations with the harmonic forcing term

indicated that secondar y reflections from the gradient of the mean flow

are present near the axis. To demonstrate this. more clearly we present

numerical computations with a pulse type solution. In this case the

source In (2.5) is given by

(5.5)	 F(z,r,t) = f(t)(5 r/-r2+(z-z0)2I

where f(t) is a smooth approximation to a delta function.

In Figure 7 the pressure is plotted as a function of time. at a

fixed axial point 20 diameters downstream of the source. Results are

presented for four different values of the exit Mach number. Tho striking

feature to observe is the strong; secondary wave occuring after the primary

wave. We have verfied that this is insensitive to numerical changes such

as the position of the arttfi,tal boundaries; and grid refinements.
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The secondarN , wave is not a near field phenonmena and will occur

at far field axial points over a sufficiently long tine' interval. The

ti ne • of arrival of the secondary wave is inversely proportional to the

exit Ma. • It tnumber while the amplitude is, to good approximation, propor-

t ion,t I t o the square of t Iit^ Mach numher.

As a third example we consider time-harmonic sources convecting down

the axis of the Jet. We consider it 	 where sources drift downstream

of the Jet for one diameter and then are recreated at their initial posi-

tion.	 This represents it 	 model for the convection of acoustic

sources tit 	 Jet..	 Mathematically the forcing term (5.1) is modified to

he

0.6)	 F(z, r, t) - ! '(t)cos+ct t 6	 1 z-(Z0+a(t))I 2 + r2

where

(5. 7)	 a(t) - c t "mod I )

The convection speed c was chosen as .5 of the exit mach number of the

.jet and the frequency as 1.145.

Analysis of the effect of the forcing term (5.6) on the solution of

the system (2.5) is difficult even In the case of no meats flow where the

acoustic density o satisfies the inhomogenous wave equation, Since the

derivation of the wave equation from (2.5), involves taking the time deri-

vatives of the first equation in (2.5), it is clear that the forcing term

(5.6) will give rise to a combination of a dipole and a monopole as a

I'his model was suggested by Lucio Maestrello.

I
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forcing; term for the wave equation. If the source convection speed c

Is reduced and the allowed length of drift in (5.7) Increased, one expects

a Doppler shift to a new frequency

(5.8)	 w' = w [ i + c • cos ti

This was in fact observed 
fit
	 case of c very small and a large

length of drift.

We then consider more realistic parameters such as c = .3 and

a drift length of 1. Figure 8 is a plot of the SPL change around circles

centered at the origin of the source. The first thing to note is that

these plots are very similar to those with no drift. There is a slight

deepening of the dip as the axis is approached. This was observed in all

tests with the drifting; sources. Our results show that this deepening

decreases as the convection speed of the sources increases and also that

the field at angles close to 90 0 is basically unchanged.

The fundamental difference due to the convection of the sources is

in the periodicity of the solution. Our results indicate that for the

parameters of (5.7) the solution oscillates with the original frequency.

The amplitude of each peak, however, varies substantially, and the solution

exhihits a strong quasi-periodic behavior.

VI.	 Conclusion

The primitive (i.e. Euler) equations for the acoustic perturbations

are solved for hoth the Iine:3rized and non-linear versions in axisvmmetric

cylindrical coordinates. These equations are inherentl y more accurate, as
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no approximations are made, as compared to the convective wave equation.

There is little computational disadvantage in solving the first order system

as opposed to solving the time dependent convective wave equati.n. These

equations are suitable for both harmonic time dependence and more complicated

temporal behavior.

Boundary conditions have been developed which permit the solution to

be computed over severely restricted domains. These conditions are asymptotic

in the distance of the artificial cutoff. The approximation (4.5) is

easy to implement and allows very little reflection of the outgoing

waves into the domain of integration. The boundary conditions coupled

with a fourth order numerical method permit the computation of accurate

solutions with reasonable grids. The explicit code results in great

efficiencies on a vector machine (see (161).

Solutions generated with a time harmonic source agree closely with

previous computations '.n describing the dip in pressure near the axis.

Differences away from the axis can probably be attributed to the increased

resolution of the present computations. Further results are described

with other time-dependent sources as pulse type forcing functions and

moving sources. These reveal new phenomena which can not be calculated

by previous codes. Extensive computations have indicated that the relative

SPL level is very stable under large perturbations. In order to distineuif;h the

effect of various sources one must examine the pressure as a function of

time. Physical experiments are presently in progress to verify several

of the computations presented in this study.
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Figure 1. Computational dorlain for semi-infinite pipe.

-21-



!	 Outflow
boundary	 •

Spreading; jet	 I

Axis of jet

2. Semi-infinite pipe extending from
acoustic baffle.

-22-



Outflow boundary

•

I	 I

!	 +	 ^	 l	 IAnti-jet
I	 Spreading jet	 I

I	 I

Axis of jet

Figure 3. Computational domain for anti-jet configuration.

-23-



+5

0

SPL	 -5
Level
relative	 -10

to 900 	 -15

-20

-25
0	 15	 30	 45	 60	 75	 90

0 degree

Figure 4a. SPL (relative to 90 c ') for different values
of I? T on a circle 51.4 diameters from source.

-24-



+5

SPL	 +0

Level
relative	 5
to 900	-10

I

0 15	 30	 45

0 degree

- I? T = 30.5

-RT =57

I	 i	 '
60	 75	 90

Figure 4b. SPL (relative to 900 for different values
of R  on a circle 19 diameters from source.

-25-



+5

0

r.-J
aPL
Relative -10
to 900

- J

-Z0

0

I

15	 30	 45	 60	 75	 90

(,degree

Figure 5. Comparison betwee . jet exiting from a baffle
and jet in free space (Q= 1.145, distance 51.4
diameters from Source).

-26-



10

SPL
Relative
to
900

5

0

-5

-10

-15

-20

-25

-30

-35
0 10	 20	 30	 40	 50	 60	 70	 SO	 90

1
0 degree

Figure S. Comparison with experimental results of
Grande (P = 1.055, Mach number = .9, distance
of 100 diameters from source).

i

-27-



1

. 10.4

alS6.:s rr

4383.15 ^--
r-

	

E	 1
3510.13	 -

??J? Al

1291.07

r

518-G6

-254. °6

r
-IU27.06^

x-

-1801•L0	 II

-2574.02	 IA Lill 1111J 1111) I1J 1111111 Lau w i L 11 LLL, 11^ 171	 .111111 11 i i 1 t t 11 I 1 i 11 111/11 1111111)
2	 4	 6	 8	 10	 12	 14	 16	 18

TIME

Figure 7a. Pressure from pulse forcing term (Mach number = .01.

distance of 20 diameters from source).

-28-

21 X 10'



10•
371 .6.1

272.05

172.47

72.63

W	 -26.69

LLJ

:^	 c

-?25.85

-325.43

-425.01

-524.59

-624.17^i,111 1111111! 11^^^11^11 I 1 I1111^1J1ll1.111^1^1111111^1ll11.L111 (11.L1L31J ^ 1^111111J ll 11 1111.11
U	 4	 8	 12	 1	 z3	 ^2	 3i	 43 ► I7'

T PIE

Figure 1b. Pressure from pulse forcing term (Mach number 	 .31.
distance of 20 diameters from source).

-29-



I 1Z- •
1321.59

950.13

594. b7

231.01

;L:	 -132.55

V,

o-	 -498.11

-859.67

1223.24

-IS26.80

17a]j NOr

2313.92 L1111 111111111111111111111111.11111J111^ 1L f f It 11111 ^ ^^^11L11111J1J11^ 1111111J1 LL111i111111r1111111
0	 2	 4	 t;	 9	 Iv	 IZ	 11	 It	 Is	 20 x 14,

T i r.E

Figure 7c. Pressure from pulse forcing term (Mach number = .62.

distance of 20 diameters from source).

ORIGINAL PAGE IS
OF I'O'''' (TALITY

-30-



. )RIGINAL PAGE, IS
23z:.!5 p-	 OF P Y ',., C, -- ^ MTY

w
a

Ln
w
a
CL

lss7.3c

1U11.77^

3:6.17

tt
	 V

-299.'f 3 F--

-`Si.5.C3 r

G

r

-2266.22

-2°21.621—

r

-3577-S',

-V2]].Ot f 1 ; i i 11 t 11 ;11111111.111J .1LJ11J,_l i1J1.:1:^111_.1111J 1J1.1111.1.1^ 11111L1111^11J1.1
U	 2	 4	 b	 8	 10	 12	 14

flt^E

U I IU1Ulit L11.1.11J Ui
16	 i3	 .:0	 + 1G'

Figure 7d. Pressure from pulse forcing term (Mach number = .F5.
distance of 20 diameters from source).

-31-



+5

0

SPL
Level	 -5
relative	 x - Distance of 51.4 diameters

from initial source position.
to o	 -10	 0 - Distance of 19.3 diameters
90	 from initial source position.

-15

-20
0	 15	 30	 45	 60	 75	 90

U degree

Figure 8. Relative SPL level for sources
convecting; down ,jet (Sc = 1.145,
Mach number = .62, convection
speed = .31, ,drift length A).

—32—


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf

