General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

TWO-MICRON SPECTROPHOTOMETRY OF THE GALAXY NGC 253

c. G. WYNN-WILLIAMS* ${ }^{\star}$
Millard Radio Astronomy Observatory, Cavendish'. Laboratory, Madingley Road, Cambridge CB3 0HE
E. E. BECKLIN ${ }^{\star \dagger}$, K. MATthews*, G. NEUGEbaUER*
Hale Observatories California Institute of Technology, Pasadena, CA 91125, USA

Summary. A very strong Bracket- γ hydrogen emission line, ant the $2.3 \mu \mathrm{~m}$ CO stellar absorption feature have been measured in NGC 253. The presence and strength of the CO feature indicates that late type giant stars produce most of the $2.2 \mu \mathrm{~m}$ continuum emission, while the rate of ionization implied by strength of the Brack'stt- γ line indicates that much, perhaps all, of the luminosity detected at far infrared wavelengths originates from a large number of $O B$ stars. As compared to the corresponding region of the Galaxy, the number of massive young stars in the central 200 pc of NGC 253 is thirty times greater, but the total mass of stars is roughly the same.

[^0]
1. Introduction

NGC 253 is a southern Sc galaxy with a nucleus that is prominent at wavelengths from $2 \mu \mathrm{~m}$ to $300 \mu \mathrm{~m}$. For an assumed distance of 3.4 Mpc , its bolometric luminosity is $2.8 \times 10^{10} \mathrm{~L}_{\odot}$ (Telesco and Harper 1978), which puts it intermediate in power between the Galaxy and a Seyfert galaxy. The nucleus at $10 \mu \mathrm{~m}$ and its associated radio source are both extended on a scale of 10 arcsec or 150 pc (Becklin, Fomalont, and Neugebauer 1973, Rieke and Low 1975). At visible wavelengths the nucleus shows strong $\mathrm{H} \alpha$ emission with velocities indicative of expansion speeds of about $80 \mathrm{~km} \mathrm{~s}^{-1}$ (Ulirich 1978). Infrared spectrophotometry by Gillett et al. (1975) and by Russel1, Soifer, and Merrill (1977) show a $10 \mu \mathrm{~m}$ "silicate" absorption feature, broad unidentified $3.3 \mu \mathrm{~m}$ and $11.3 \mu \mathrm{~m}$ features, and the $12.8 \mu \mathrm{~m}$ [NeII] 1ine. In the present paper we present spectrophotometry :n the $2.2 \mu \mathrm{~m}$ window; the features of interest are the $2.17 \mu \mathrm{~m}$ hydrogen Brackett- γ line, and the $2.3 \mu \mathrm{~m}$ stellar CO absorption edge.

2. Observations

Observations were made on 1976 July 13 and 14 on the 4 m telescope at CTIO using a continuously variable interference-filter wheel in conjunction with an indium antimonide photovoltaic detector. The observing system is the same as that described by Wynn-Williams et al. (1978). In the present observations the spectral resolution was approxImately 25 nm , and the diaphragm diameter was 13 arcsec. Over most of the spectral range observations were spaced by 13 nm , but a higher sampling rate was employed near the Brackett- γ line. A correction of 0.05 mag per air mass was applied at all wavelengths.

3. Results

Fig. 1 shows the spectrum of the source measured at the position of maximum broad-band $2.2 \mu \mathrm{~m}$ emission. Each data point is the mean of observations taken on two days. Comparison of the two days' readings indicates that the relative error between nearby spectral points rarely exceeds 3 percent, although the absolute calibration, via the B5 star * Eridani, is accurate only to about 10 percent.

Two spectral features can be seen in Fig. 1. The absorption feature at $\lambda>2.3 \mu \mathrm{~m}$ is similar to that arising from CO molecules in the atmospheres of late-type giant stars (see e.g., Frogel et al. 1978). The emission feature at $2.17 \mu \mathrm{~m}$ is the Brackett- γ recombination line of hydrogen; its strength, estimated from the area between the spectrum and the interpolated continuum, is $(5 \pm 2) \times 10^{-16} \mathrm{~W} \mathrm{~m}^{-2}$. The error quoted reflects the uncertainty in determining the continuum level beneath the line.

4. Discussion

4.1 Extinction

As discussed by Rieke and Low (1975), the extinction to the nucleus of NGC 253 can be estimated on the basis of the near infrared colour of the stellar distribution, and from the depth of the silicate absorption. The $1.6-2.2 \mu \mathrm{~m}$ colour of the nucleus of NGC 253 is 0.7 mag (Becklin et al. 1973) which is 0.5 mag redder than that of M31 (Sandage, Becklin and Neugebauer 1969). If NGC 253 has a similar stellar distribution to M31, and if a normal extinction law applies, the visual extinction to the central stars in NGC 253 is then 7 mag. Gillett et al. (1975) estimated that the depth of the silicate absorption feature corresponds to $15-60$ mag of visual
extinction. The uncertainty reflects the uncertainty in the ratio of visual to $10 \mu \mathrm{~m}$ absorption; the use of Becklin et al.'s (1978) ratio as measured towards the Galactic Centre would lower this estimate to a visual extinction of about 12 mag. Taken together, these methods would suggest that the visual extinction to the central region is about 10 mag, corresponding to 1 mag at $2.2 \mu \mathrm{~m}$. If this extinction applies to the hydrogenline emitting region, the de-reddened $£ 14 x$ of the Brackett- γ line is $1.2 \times 10^{-15} \mathrm{~W} \mathrm{~m}^{-2}$. This number will be adopted for the remainder of the paper, although it could easily be in error by a factor of two.

4.2 Ionization in the central region of NGC 253

If the nucleus of NGC 253 behaves like a normal H II region, the rate of hydrogen ionization implied by the strength of the Brackett- γ line is $1.2 \times 10^{53} \mathrm{~s}^{-1}$. This number is about thirty times larger than that from the central 200 pc region of our own galaxy (Mezger and Pauls 1978); it corresponds to about $10^{3} 04$ stars (Panagia 1973).

The free-free radio flux density corresponding to the adopted Brackett- γ flux is calculated, using the relat ion given by Wynn-Williams et al. (1978), to be 140 mJy at 2.7 GHz . This value is a factor of 15 below that observed by Becklin et al. (1973) at this frequency; the nonthermal nature of the nuclear radio emission is therefore confirmed.

The Brackett- γ line can also be used to predict the strength of the hydrogen radio recombination lines from the nucleus. If the lines are emitted in LTE at $10^{4} \mathrm{~K}$, the flux of the H102 α line from the central 13 arcsec (150 pc) of NGC 253 would be $3.6 \times 10^{-23} \mathrm{Wm}^{-2}$. Seaquist and Bel1 (1977), using a 4 arcmin beam, measured a flux of $1.3 \times 10^{-21} \mathrm{Wm}^{-2}$
for this line. This factor of thirty discrepancy is certainly partly due to the large difference in beam size, but is very probably accentuated by stimulated emission effects of the radio line (Sheiver, Churchwell, and Walmsley 1978).

Ulrich (1978) measured a flux of $7 \times 10^{-16} \mathrm{Wm}^{-2}$ for the $H B$ line from a 20 arcsec diamater region very close to the galactic nucleus. The flux she obtained is about 6000 times larger than that predicted from the measured Brackett- flux density by use of Giles' (1978) calculations for a plasma at $10,000 \mathrm{~K}$, and 10 mag of visual extinction. There are two possible explanations for this. The first possibility is that the bulk of the ionized gas lies at the galactic centre, behin' about 10 visual magnitudes of visual extinction, and that what Ulrich sees is either a foreground H II region or a small part of the central source seen through a line of low extinction. The second possibility is that both the $H \beta$ and the Brackett-r fluxes refer to the same body of ionized gas which is not associated with the nuclear regions of the galaxy and which lies behind only about 3 mag of visual extinction. The disadvantage of this latter model is that the rate of ionization for this postulated H II region, about $6 \times 10^{52} \mathrm{~s}^{-1}$, is 80 times larger than that of the brightest galactic spiral arm H II regions such as W 49. Although there exist a few H II regions of this luminosity in M101 (Israe1, Goss and Allen 1975), they are sufficiently compact that the location of such a luminous region along the line of sight to the nucleus would be particularly fortuitous.

It therefore seems reasonable to assume that the ionized gas seen at $2 \mu \mathrm{~m}$ 1ies at the centre of NGC 253. It is not clear how this gas is kept fonized, but the presence of large amounts of dust and of molecular clouds
in NGC 253 (Rickard et al. 1977) makes it very plausible that the ionization arises from newly formed massive stars at the centre of the galaxy.

4.3 Late type stars and the mass of the NGC 253 nucleus

The presence of a strong 2.3 um absorption feature indicates that a substantial fraction of the flux density at that wavelength arises from late-type giant or supergiant stars (Frogel et al. 1978). From Fig. 1, the CO index, as defined by Frogel et al. (1975), is 0.13 mag without a reddening correction; applying a reddening correction appropriate to NGC 253 in the manner discussed by Aaronson (1978) increases the index to about 0.2 mag. This value is among the largest found for any galaxies by Frogel et al. (1978), confirming that photospheric emission from latetype giants or supergiants dominates at $2.2 \mu \mathrm{~m}$. If the extinction at $2.2 \mu \mathrm{~m}$ is 1 mag (section 4.1) and the distance modulus is 27.7 mag, an absolute magnitude at $2.2 \mu \mathrm{~m}$ of -2 i .1 is obtained for the central 13 arcsec of NGC 253.

The possibility that the $2.2 \mu \mathrm{~m}$ emission from the centre of NGC 253 is dominated by M-type supergiants will be examined first. Such a possibility is suggested by the inferred presence there of a large number of 0 stars (section 4.2). A comparison of the nucleus of NGC 253 with the 30 Doradus nebula in the Large Magellanic Cloud is interesting in this context since 30 Doradus is the largest well-studied H II region, and is also known to be very rich in M supergiant stars (Hyland, Thomas, and Robinson 1978). If the ratio of the number of M supergiants to 0 stars (as measured by the rate of production of ionizing photons) is the same in 30 Doradus as in the nucleus of NGC 253 we may use the ionizing rate derived
in section 4.2 to predict the absolute $2.2 \mu \mathrm{~m}$ magnitude of the M supergiants in NGC 25 ,. From the radio flux and distance of 30 Doradus as given by McGee, Brooks, and Batchelor (1972) and Bok (1966), with Hyland et al.'s (1978) 1ist of M supergiants in 30 Doradus, the absolute magnitude of the M supergiants in NGC 253 will be -16.5 . Since the measured absolute magnitude of the central region of NGC 253 is -21.1 , it may therefore be concluded that M supergiants cannot be responsible for the bulk of the $2.2 \mu \mathrm{~m}$ emission unless the ratio of evolved M supergiants to 0 stars is some seventy times larger in NGC 253 than in 30 Doradus.

It therefore seems much more probable that the $2.2 \mu \mathrm{~m}$ emission arises from M giant stars rather than M supergiants, and that the late-type star population is not unlike those of ocher Sc galaxies. Turnrose (1976) has studied seven such galaxies, not including NGC 253 , and constructed models of their stellar populations based on spectrophotometry at visible wavelengths. In all of the galaxies he studied, most of the $2.2 \mu \mathrm{~m}$ flux density comes from K and M giants, whereas most of the mass resides in the late-type dwarfs. The early-type stars, while contributing very significantly to the total luminosity, make a negligible contribution to either the mass or the $2.2 \mu \mathrm{~m}$ flux density. If, in NGC 253 , the ratio of late-type giants to late-type dwarfs is similar to those in Turnrose's sample, the $2.2 \mu \mathrm{~m}$ flux density can be used to estimate the total stellar mass in the region, irrespective of the presence of the large number of 0 stars implied by the strength of the Brackett- γ line. Turnrose calculates the mass to visible light ratio for all his seven Sc galaxies; these range from 0.67 to 1.52 solar units. He does not give the $V-K$ color for all
his models, however, because of uncertainties in the appropriate choice of V - K color to use for his M giant populations. Recently, however, Aaronson (1978) has measured the $V-K$ color for the central regions of five of Turnrose's galaxies, while Penston (1973) has measured it for another. The $V-K$ colors range from 2.94 to 3.31 mag. From the six galaxies, the mean ratio of $2.2 \mu \mathrm{~m}$ flux density to the mass may be calculated and used in conjunction with the measured $2.2 \mu \mathrm{~m}$ magnitude of NGC 253 to determine a mass of $1.2 \times 10^{9} \mathrm{M}_{\Theta}$ within its central 200 pc . This mass is comparable to the value of $2 \times 10^{9} \mathrm{M}_{\varrho}$ estimated by Oort (1977) for the mass In the central 200 pc of the Galaxy. It is also compatible with the estimate by Combes, Gottesman, and Weliachew (1977), based on 21-cm data, that NGC 253 contains $5 \times 10^{9} \mathrm{M}_{\odot}$ within 1 kpc of its center.

A very much lower estimate for the mass of stars in the center of NGC 253 was made by Ulrich (1978), who deduced from her Ha profiles that the mass within the central 20 arcsec diamter was $2 \times 10^{7} \mathrm{M}_{0}$. A possible explanation for part of the discrepancy in the nuclear mass is connected with the suggestion made above that the visible emission lines seen by Ulrich originate at scme substantial distance in front of the nucleus rather than very close to 1t. A measurement of the profile of the Brackett- γ line would clearly be of great interest.

4.4 The origin of the far-infrared luminosity

The total far-infrared luminosity of NGC 253, as measured with a 50 arcsec beam, is $2.8 \times 10^{10} \mathrm{~L}_{\Theta}$ (Telesco and Harper 1978). The size of this region is not known. It is of interest to examine how much of this luminosity could originate from the stars whose existence has been inferred
from the 2.2 m observations. These stars comprise two groups, the general population as seen in the $2.2 \mu \mathrm{~m}$ continuum, and the additional population of early-type stars whose presence is deduced from the existence of the strong Brackett-y line.

To estimate the contribution from the general population of stars, the bolometric luminosity was calculated for each of 'furnrose's model Sc galaxies and combined with the measured $V-K$ colours to obtain a bolometric correction to the 2.2 m magnitude, $M_{B}-M_{K}$. The mean value of this correction was +2.55 , with a range of 2.14 to 2.89 mag . This correction was applied to the 2.2 m magnitude of NGC 253 to obtain the value of $2 \times 10^{9} L_{\Theta}$ for the luminosity o the model population of stars in the central 13 arcsec of NGC 253. The fraction of this luminosity that would originate in $O B$ stars varies from zero to 65% in 'iurnrose's models.

On the assumption that the hydrogen giving rise to the Brackett- γ line is ionized by uitraviolet photons from 0 stars in environments similar to those in our own galaxy it is possible to estimate the luminosity contributed by this young population. Galactic H II region complexes have an approximate linear relationship between their total luminosity and their rate of ionization (Wynn-Williams and Becklin 1974). Extrapolation of Jennings' (1975) relationship to NGC 253 leads to a predicted luminosity of $8 \times 10^{9} \mathrm{~L}_{\odot}$. It is therefore immediately evident that NGC 253 contains a more luminous young population than is predicted from Turnrose's models. Much of this luminosity arises from $O B$ stars, but some may be from protostars, evolved stars and other objects which contribute to the heating of H II region/ molecular cloud complexes.

Of the $2.8 \times 10^{10} \mathrm{~L}_{\ominus}$ detected at far infrared wavelengths in a 50 arcsec beam, therefore, approximately $10^{10} \mathrm{~L}_{9}$, or one third, can be accounted for by the stars in the central 13 arcsec. It seems entirely possible that the beam size correcifon could account for the remaining difference, given that both the mass, the $2.2 \mu \mathrm{~m}$ and the $10 \mu \mathrm{~m}$ flux densities (see Becklin et al. 1973) scale approximately as the first power of radius in this region, and that the luminosity-ionization relation for H II regions is uncertain by a factor of two.

If the far infrared source has a size intermediate between 13 arcsec and 50 arcsec, then, from the discussion in the previous section, it is associated with a mass in the range $1-5 \times 10^{9} \mathrm{M}$. The bolometric mass to luminosity ratio is therefore between 0.04 and 0.2 . These values are significantly higher than the value of 0.002 estimated by Rieke and Lebofsky (1978), since the latter used Ulrich's (1978) mass estimate.

4.5 Neon abundance

Gillett et al. (1975) measured the [NeII] $12.8 \mu \mathrm{~m}$ line in NGC 253, but were unable to make an accurate estimate of the neon abundance without a hydrogen lins. From their flux for the neon-line, the adopted Brackett- γ flux from this paper, and the formula of Petrosian (1970) a neon abundance of 1.7×10^{-4} is obtained. This value includes a factor of 2.0 for the beam size correction from Gillett et al.'s 7 arcsec beam to our 13 arcsec beam. Given the various uncertainties, the calculated neon abundance agrees reasonably well with that given by Cameron (1973) for the solar system, namely 1.1×10^{-4}. A similar result for M82 was reported by Willner et al. (1978).

5. Conclusions

A 2.1 to $2.4 \mu \mathrm{~m}$ spectrum of the ceatral region of NGC 253 shows the $2.3 \mu \mathrm{~m}$ absorption feature of CO and the $2.17 \mu \mathrm{~m}$ Brackett- γ hydrogen emission ine. From the strength of these features it is deduced that:
a) The rate of ionization, and hence probably the number of $O B$ stars, In the central 200 pC of NGC 253 is about thirty times larger than than estimated to be in the corresponding region of the Galaxy.
b) As in other Sc galaxies, the $2.2 \mu \mathrm{~m}$ continuum emission from the central region of NGC 253 is dominated by late-type giant stars. The total mass of stars in the central 200 pc is comparable to that in the Galaxy. c) At least 25 percent, and possibly a11, of the luminosity emitted by dust grains at far fnira, ed wavelengths originates in stars whose presence is deduced from the $2.2 \mu \mathrm{~m}$ observations. Most of this luminosity is attributed to massive young stars.
d) The total-piass to total-luminosity ratio is in the range of $0.04-0.2$ solar units.
e) There are 10 mag of visual extinction to the nucleus of NGC 253. The hydrogen emission seen at visible wavelengths probably lies significantly in front of the nucleus.
f) The 2.7 GHz radio emission is non-thermal.

Acknowledgements

We thank the director and staff of the Cerro Tololo Observatory, especially C. Poblete, D. Rios, O. Saa, S. Schaller, R. Venegas and M. Zemelman. We also thank G. Forrester for his assistance at Caltech, and

Brent Tully and Ian Gatley for discussions. This work was supported in part by NSF grant AST77-20516 and NASA grant NGi vj-002-207.

References

Aaronson, M., 1978. Ph.D. Thesis, Harvard University.
Becklin, E. Y., Fomalont, E. D., \& Neugebauer, G., 1973. Astrophys. J. (Lett), 181, L27.

Becklin, E. E., Matthews, K., Neugebauer, G., \& Willner, S. P., 1978. Astrophys. J., 220, 831.

Bok, B., 1966. Ann. Rev. Astr. Astrophys., 4, 95.
Cameron, A. W., 1973. Space Sci. Rev., 15, 121.
Combes, F., Gottesman, S. T., \& Weliachew, L. 1977, Astr. Astrophys., 59, 181.

Frogel, J. A., Persson, S. E., Aaronson, M., Becklin, E. E., Mathews, K., \& Neugebauer, G., 1975. Astrophys. J. (Lett.), 195, L15.

Frogel, T. A., Persson, S. E., Aaronson, M., \& Matthews, K., 1978. - cruphys. J., 220, 75.

Giles, K., 1978. Mon. Not. R. astr. Soc., 180, 57P.
Gillett, F. C., Kleinmann, D. E., Wright, E. L., \& Wright, R. W., 1975. Astrophys. J. (Lett.), 198, L65.

Hyland, A. R., Thomas, J. A., \& Robinson, G., 1978. Astr. J., 83, 20.

Israe1, F. P., Goss, K. M. \& A11en, R. J., 1975. Astron. Astrophys., 40, 421.
Jennings, R. E., 1975. "H II regions and related topics," ed. T. L. Wilson and D. Downes (Springer-Verlag, Berlin), p. 137.

McGee, R. X., Brooks, T. W., \& Batchelor, R. A., 1972. Aust. J. Phys., 25, 581 .

Mezger, P. G., \& Pauls, T., 1978. I.^.U. Symposium 84, Maryland. Oort, J., 1977. Ann. Rev. Astr. Astrophys., 15, 295.

Panagia, N., 1973. Astr. J., 78, 929.

Petrosian, V., 1970. Astrophys. J., 159, 833.
Penstori, M. V., 1973. Mon. Not. R. astr. Soc., 162, 359.
Rickard, L. J., Palmer, P., Morris, M., Turner, B. E. \& Zuckerman, B., 1977. Astrophys. J., 213, 673.

Rieke, G. H., \& Lebofsky, M., 1978. Astrophys. J. (Lett.), 220, L37.
Rieke, G. H., \& Low, F. J., 1975. Astrophys. J. (Lett.), 197, 17.
Russell, R. W., Soifer, B. T., \& Merrill, X. M., 1977. hstrophys. J., 213, 66.
Sandage, A. R., Becklin, E. E., \& Neugetauer, G., 1969. Astrophys. J., 157, 55.

Seaquist, E. R. \& Bell, M. B., 1977. Astron. Astrophys., 60, L1.
Shaver, P. A., Churchwel1, E., \& Walmsley, 1978. Astron. Astrophys., 64, 1
Telesco, C. M., \& Harper, D. A., 1978. Private communication.
Turnrose, B. E., 1978. Astrophys. J., 210, 33.
Ulrich, M-H., 1978. Astrophys. J., 219, 424.
Willner, S. P., Soifer, B. T., Russell, R. W., Joyce, R. R., \& Gillett, F. C., 1977. Astrophys. J., 217, L121.

Wynn-Williams, C. G., \& Becklin, E. E., 1974. Publ. Astr. Soc. Pacific, 86, 5.

Wynn-Williams, C. G., Becklin, E. E., Matthews, K., \& Neugebauer, G., 1978. Mon. Not. R. astr. Soc., 183, 237.

Figure Caption

Fig. 1 Spectrum of the central 13 arcsec of NGC 253 from 2.1 to $2.4 \mu \mathrm{~m}$. The dashed 1 ines are the estimated continuum in the absence of the CO and Brackett- γ features.

Fig. 1

[^0]: *Visiting Astronomer, Cero Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

 Present address: Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, Hawaii 968 22 , USA.
 ${ }^{\S}$ Operated jointly by the Carnegie Institut ion of Washington and the California Institute of Technology.

