General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

P DESERT RESEARCH INSTITUTE UNIVERSITY OF NEVADA SYSTEM

(NASA-CR-150905) PREPARATORY STUDIES OF N79-16886 ZERO-g CLOJD DROP COALESCENCE EXPERIMENT Final Report, 21 Apr. 1975 - 31 oct. 1978
(Desert Research Inst., Reno, Nev.) 172 p unclas
$\mathrm{HC} A 08 / \mathrm{MFAO1} \quad$ CSCI 22A G3/12 13962

FINAL REPORT
Prepared for

George C. Marshall Space Flight Center Marshall Space Flight Center

Alabama 35812

CONTRACT NUMBER:

TITLE OF CONTRACT:

CONTRACTOR:

PRINCIPAL INVESTIGATOR:

CONTRACT PERIOD:
DATE OF THIS REPORT:
AUTHORS:

NAS8-31441

Preparatory studies of Zero-g Cloud Drop Coalescence Experiment

Desert Research Institute Atmospheric Sciences Center P. O. Box. 60220

Reno, NV 89506

James W. Telford
21. Apr 1975 through 31 Oct 1978

January 5, 1979
James W. Telford T.S. Keck

ATMOSPHERIC SCIENCES CENTER

TABLE OF CONTENTS

Page

1. Introduction 1
2. The Tools Used in this Investigation 3
3. A Closer View of the Experiment 4
4. Recommendations and Requirements 7
5. Areas for Further Investigation 8
6. Summary 9
Appendix 1. Cloud Droplet Coalescence Experiments in Orbit
Appendix 2. Modeling of Cloud Drop Collisions with Low Gravity
Appendix 3. Interim Final Report, 15 January 1976
Appendix 4. Monthly Progress Report, 17 February 1976
Appendix 5. Monthly Progress Report, 15 March 1976
Appendix 6. Monthly Progress Report, 1 June 1976
Appendix 7. Monthly Progress Report, l July 1977
Appendix 8. Monthly Progress Report, 7 July 1977
Appendix 9. Monthly Progress Report, 15 March 1978
Appendix 10. Mini-Compiter (MAC l6) Coding

1. INIRODUCTION

The availability of earth-orbiting laboratories makes possible experiments that would be difficult on earth. One area for which this is true is the study of cloud droplets. In nature, the collisions and coalescence of these droplets brings rain in warm clouds. In the laboratory, the small size of these droplets, say around 20 microns, makes, them elusive objects for study. The slightest air current or electric charge sends them swirling about. Their rate of fall, say around $1 \mathrm{~cm} \mathrm{sec}-1$, is fast enough to prevent more than hurried examination in a reasonably sized instrument. Under low gravity conditions the pace slows down. It becomes practical to do the experiment of placing droplet A above droplet B so that A overtakes and collides with B. In earth orbit there is a convenient source of low gravity generated by rotating the apparatus to give centrifugal force. It may be controlled by changing the rate of rotation or by moving away or towards the center of rotation. Another advantage is that one may use larger droplets. The Reynolds number of a falling droplet varies with the gravitational acceleration and with the cube of the droplet radius. Thus, in a gravitational field of $10^{-3} \mathrm{~g}$ one may model terrestrial conditions with droplets 10 times larger. These drops will fall only a tenth as fast as their earth-side analogs.

The interest in these drops arises because of the role they play in rain formation in warm clouds and in the formation of larger cloud drops able to play a role in ice and water collision processes to initiate precipitation in supercooled clouds . . . Appendix 1 describes the meteorological background of the experiment and Appendix 2 is the original conference paper on this subject.

This discussion relates to the work actually completed under this contract. Reference will be made to the Appendices for past project reports describing particular details of the work as they are discussed.

One basic design has been investigated in the project. The experimental chamber is basically a long tube rotated about an axis perpendicular to its length (See Appendix 3). Droplets are injected by some means such as a vibrating needle. The injection velocity is rapidly lost, leaving the droplets near a fixed point in the chamber. The conditions in the tube are controlled to prevent the droplets from evaporating appreciably during the experiment. Also condensation on the optics, etc. must be avoided. The droplets are injected near the center of rotation. Near this point droplet motion will be very slow, allowing time to examine and align the droplets. When the droplets have been positioned properly, the tube is shifted along its length to bring the droplets out to a fixed distance from the axis of rotation. Then the tube is shifted at a rate to counteract fall of the lighter droplet. This droplet sits at a fixed distance and feels a fixed gravity. The heavier droplet has been arranged so that it will pass near the other droplet for a collision or close encounter. The rotation and other motions of the apparatus are controlled using stepping motors. It is important that the control of these movements be done accurately and continually. This can only be done using a computer. In fact every effort should be made to do all control with a computer. The most an operator need do is provide a few measurements of droplet locations. There is no need to touch the droplets to move them about. By moving the mass of air in which they reside, the droplets may be manipulated. For example a cylinder may be inserted into the chamber to enclose the droplets. This may be done without creating enough turbulence to disturb
the droplets. This "squirrel cage" can be rotated to realign the droplets within (See Appendix 4, I7•February 1976, Appendix 5, 15 March 1976).

2. THE TOOLS USED IN THIS INVESTIGATION

Much of the work done under this contract was numerical simulations on the University of Nevada timesharing system and on a Lockheed MAC-16 minicomputer (Appendix 6, 1 June 1976). The University system was used mainly to assemble the MAC-16 programs and to try out ideas before the MAC-16 system was developed. A large set of software for doing realtime simulations was written for the MAC-16. This included everything from floating point addition to a diskette based operating system for the MAC-16 fortran compiler. The MAC-16 has 8 K of memory, multiplexer channels, incremental plotter, Tektronix 4014-l CRT and a dual diskette drive. The MAC-16 was to model the experiment in realtime. That is, the simulated droplets would move just as fast as real ones would. The available floating point software was far too slow to keep up with the necessary amount of computation. So a whole new package of addition, subtraction, sine, cosine, etc. was written which kept fewer bits of precision but was quite fast. These pieces were combined into a simulator which displays droplet dynamics on the CRT screen. The simulator was used to show how the various strategies of operation would actually work. As a next stage of software development it was planned to interface the simulator to fortran language operation. Thus far all the operating strategies have been tediously coded in machine language. The testing of new ideas often became buried under endless rounds of debugging. A diskette operating system for running the Lockheed editor, assembler, and fortran compiler has been developed. Though primitive by
modern standards, it fits in the limited memory space of the MAC-16 (8 K words). The next stage in software development would be to convert the simulator into an alternate fortran runtime library. This would make the whole package natural and simple to use.

3. A CLOSER VIEW OF THE EXPERIMENT

When one first sits at the simulator console, the droplets seem stationary. The screen shows a closeup of the two droplets and two markers the operator must match with the "real" droplets. Their motion becomes obvious, however, as one attempts to follow them with the joystick. The speed builds slowly but surely as the droplets drift towards the edges of the screen. The errors build too. The first small error in a position measurement grows to glaring proportions. Then there is a hurry to fix it in the time left. The droplets must not drift too far from the center before the computer gets control from the operator. Time spent watching the slow acceleration of the drops should have been spent molding the motion of the markers to the motion of the real drops. Then the computer takes over accepting the indicated positions as accurate. A series of quick manipulations aligns the droplets, offset from the center of the chamber. Then there is a scale change as the screen now displays the whole chamber as seen from a distance. The chamber shifts along its length to bring the droplets to the desired distance from the center. In the process the droplets have drifted nearly back to the centerline of the chamber. The chamber stops and reverses its motion to counteract the now rapid fall of the droplets. One is nearly held fixed on the CRT screen and the other slowly passes by a few hundred microns from the first. More accurate information from the operator would have narrowed the distance to a near collision. But
most of the error came from a simplified method of aligning the droplets.

Use of the simulator makes clear that although the motion of the droplets is much slower than on earth, they are still moving. The alignment of the droplets must be completed before they drift too far. Eventually they collide with the chamber walls. To use the squirrel cage, both drops must fit inside. If the drops are too far apart, they may move farther apart rather than collide. That is, if the differential in the centrifugal force is great enough between the two positions, the lighter drop may actually fall faster than the heavier. This gives a design consideration for the droplet injector. It should leave the drops as close to the center as possible.

One thing that has been ignored in the simulator so far is that the droplet injector will leave the droplets in a volume of space, not always in the same plane. Thus a method (e.g. a squirrel cage) will have to be provided to bring the droplets to one level. This would also call for a second set of optics at right angles to the first. Another possibility would be to use the limited depth of field of the optics to find the droplet's third coordinate. If digital imaging were used the computer could find the depth by seeking the level of maximum contrast. A digital system has other advantages also. It would remove the human element from determining position and droplet radius. The continuous stream of position information would locate the droplets much more accurately than the raster dimensions. The main disadvantage is the increased computation load on the computer which must sift through great volumes of data to keep track of the droplets.

The operation of this experiment requires that the position and size of each droplet be accurately known. The size can be determined
from two time and position measurements since size is related to rate of fall. In practice the accuracy is limited by the resolution of the measuring device and the skill of the operator. To overcome this a least square fit from several measurements was tried. With an ideal operator this would have yielded accuracy of about $1 / 2 \%$ in the droplet radius after 3 or 4 position measurements. In practice random and systematic errors limited this to 2 or 3\%. A second method that was tested shows the operator how close his last guess corresponded to reality. If the simulated position deviated from the real position, he could move the simulated drop to where it belonged. This would tell the computer how far the earlier radius estimate deviatan from reality. When the estimated radius deviated considerably from the true one, this yielded results good to about 1%. One must look more carefully to notice small deviations, but this would come with more practice. The main disadvantage was that position estimates did not improve with the number of measurements. The least. square fitting of the first method could be incorporated with this second method to give the advantages of both.

Once the size and positions of the droplets have been determined the droplets must be moved out some distance from the center. They must arrive here aligned so that one collides with the other. This requires considerable prearrangement to achieve. (This is called prealignment below.) The biggest effect is Coriolis force during the move. The droplets must start some distance from the midline of the chamber to end up on the midline after the move. The procedure to move the droplets from a position near the center to one offset to one side depends heavily on the positions and radii of the droplets. It was hoped to reduce this to a set of approximate formulas (Appendix 7, I July 1977, Appendix 8, 7 July, 1977). Using the University computer the
prealignment procedure was determined for a range droplet sizes and positions. Then formulas were fit to these data. However, even formulas involving hundreds of terms proved inadequate. A workable solution is to use a simple formula to approximate the answer. Then simulate to see how close it is and use successive approximations to arrive at a solution. This means that the computer must be able to do 3 or 4 complete simulations in short enough time for the droplets not to get away from it (For, example see Appendix 9, 15 March, 1978). The MAC-16 is not that fast so only the simple formula was ever implemented into the simulator.

4. RECCMMENDATIONS AND REQUIREMENTS

The experience gained so far indicates a number of requirements for the actual system to be used in earth orbit. The experiment could easily use one or more dedicated processors during operation. The control of stepping motors and internal environment must be precise and repeatable. This would be difficult with a computer that must take time out to handle "high priority" events. Since the computational load is not great here, this would be an ideal application for a microprocessor. The experiment requires a considerable amount of computation doing simulations. During a look-ahead simulation for the prealignment process, it would have to run about 50 times the realtime rate. This would require a floating point add time of less than 19 microseconds. Thus the experiment would need at least an upper grade minicomputer. The simulations could share a computer with other functions if the compute time was available during the short periods when it was most needed. A great increase in computer load would also result if l:l scaling proves possible. This is rotating the chamber fast enough to generate 1 gravity fields and using smaller droplets. This has the advantage that
earthside conditions obtain and no doubts can raise about the applicability of the results. However, the 10 micron droplets would move 3.3 times faster than the 33 micron radius droplets that are currently being modeled. This means that the computer simulations would have to run correspondingly faster in a computer of sufficient power. $1: 1$ scaling is probably only possible if the experiment could run without much operator input. This would be the case if digital imaging were used.

The optical system would need a clear flat field with low distortion. Some procedures call for combining the view of the droplets with a computer display. This would need to be done very accurately with provisions to prevent parallax errors, etc. A CRT display would make this easier. A step further would be a digital imaging system. This, of course, would add a continuous high computation load to the computer.

5. AREAS FOR FURTHER INVESTIGATION

The largest area that has not been touched is the design of hardware. Droplet generators need investigation. The number of experiments that can be run per hour depends on how often the generator can deliver droplets of the desired size range to the desired area. Stepping motor systems which move accurate distances at controlled rates are needed. Clear low distortion optical systems play an all important part to the operation of the whole experiment. A more immediate need is better joystick input for the simulator. The current one is very slow and clutters the display with extraneous lines.

Software development must keep space with that of hardware. For example, the procedure for prealignment of droplets depends on the exact manner that the stepping motors operate. It also varies when the
experiment is rescaled to use droplets in a different size range. In fact, it would be desirable to make the final version adaptive. The program would use its experience with real droplets to improve its performance on further trials.

The investigations so far have brought out some of the ways in which the experiment could operate. However, the design is by no means fixed. New ideas still occur which could change the apparatus considerably.

6. SUMMARY

This project is still in the conceptual stage, but the simulator has given much information on the problems yet to be solved. At this point, basic strategies for operating the experiment have been mapped out. The problems remaining lie in the area of developing the hardware to do the tasks needed.

The simulation performed on this contract has been a fairly sophisticated numerical simulation of behavior of cloud droplets in an experiment suitable for an orbiting laboratory. The simulation will become a part of the real experiment when it is actually put into execution. A copy of the mini-computer (MAC 16) coding is attached. The besic feasibility of the computational approaches have been demonstrated, and numerical alternatives evaluated. Computational speeds have been addressed and are well within the state of the art.

APPENDIX 1

Cloud Droplet Coalescence Experiments in Orbit

RREGEDNNG PAGE MAMNK NOT FRMED

CLOUD DROPLET COALESCEENCE EXPERIMENTS IN ORBIT

1. INTRODUCTION

Any attempt to justify a substantial effort to study the processes of nonfreezing rain formation is inadequate unless we recognize that cloud droplets are not raindrops and that condensation processes can never grow a drop large enough (say to one millimeter in diameter) to be a raindrop. The importance of the condensation process is that it forms the cloud in the first place and in so doing provides the supply of water needed for the ice forming process to proceed or for coalescence to occur and raindrop sizes to be produced.

The difference between the initial condensation process and the ice particle formation stage is in the number of particles which can act as nucleating agents. Even modest supersaturation in the normal atmosphere produce an abundance of particles able to act as nuclei and it never occurs that only one particular per liter activates. If the latter were to happen rain would be produced directly from clear air, and condensation rather than icing would be the principle aircraft hazard.

However, condensation nuclei are numerous and ice forming nuclei are rare, so clouds containing many small drops are formed which supercool readily as the cloud rises and cools below freezing. Then the few nuclei which activate to initiate ice particles, rapidly acquire all the water available by vapor transfer, giving large particles which precipitate as rain or snow. In this context it seems unlikely that a
factor of, say 10 or more, in cloud droplet sizes or number concentration could have any effect on the ice based rainforming processes. If this were true then the study of the condensation process might be thought to be an academic exercise, unless it could be proven that most rain actually did form by coalescence. However, Hallet and Mossop (1974) have advanced an interesting hypothesis that ice crystal production occurs during the freezing of the largest cloud drops, thus intimately relating cloud drop sizes to all rainforming processes, and in particular to the initial phases of severe thunderstorms.

The physics of rain formation by the coalescence mechanism is quite different from that involved in the ice process. The drop sizes needed to allow numerous cloud droplet collisions is larger than condensation processes usually give with typical nuclei counts, because small drops do not touch but slide apart on collision. Hence a thorough understanding of the condensation process is a necessary step in understanding non freezing rain. This knowledge will be incomplete however, unless we know the next link in the chain of events leading to rain formation, the coalescence mechanics. The continued efforts to elucidate the details of the condensation process is partly justified because we believe coalescence studies have shown that only large drops (i.e. > $18 \mu \mathrm{~m}$ radius) can grow by collision. The verification of the theoretical estimates of the coalescence rates is thus equally important (as indeed is an adequate study of the modifications possible in the cloud spectrum by the turbulent mixing in of dry air, which now also appears to be important) to determining cloud droplet spectra.

2. SCIENTIFIC BACKGROUND

In the past 20 years the physical process which allows rain to form
by the aggregation of cloud particles has been the subject of detailed modelling. The instability of a cloud composed of the many small water drops which form by the initial continuing process of condensation was recognized many years ago by Bergeron. He understood that the drops which cooled in a rising cloud of air did not freeze immediately on reaching the normal freezing temperature at $\emptyset C$. However, as an associated effect of this supercooling the vapor tends to transfer to any ice in the vicinity below this temperature. The difference in the vapor pressure between that over the water and the smaller pressure over ice at the same temperature, results in the very rapid growth of those first few ice crystals formed in the supercooled water cloud, using up the water lost from evaporating drops.

While this process had been generally accepted however, it was not long until (before 1950) aircraft observations convincingly demonstrated that rain often fell from clouds in which no ice could reasonably be thought to exist. These clouds were warmer than the freezing point of water in their coldest tops. The existence of this phenomenon necessitated an alternative explanation. Thus it was conceived that slight differences in cloud drop sizes would enable the bigger drops to catch up with any smaller slower drops beneath them and on contact join up to give a bigger drop which would repeat the process.

It was soon apparent that at cloud drop sizes the flow of the air around the drops did not result in one drop gliding up to another as though it was not there until it bumped into it. The movement of the air in the front of the larger drop pushes the lower drop out of the way and the result is that at small sizes drop interactions rarely result in collisions.

The transition between cloud droplet sizes where most intersecting
paths of falling droplets result in collisions, and the alternate case where there are very few collisions, occurs with decreasing drop sizes just before sizes become as small as the drops in real clouds.

Observations of real clouds show however, that rain does fall from relatively thin clouds in relatively brief times of twenty minutes or so. Crude theory requires much larger times. The stochastic problem of the collision dynamics was formulated quantitatively by the author (Telford, 1955) when he included in the calculation, the low probability, but highly significant, faster than average growth by the few largest droplets. Even so these considerations do not give adequate growth rates even when using the present highly sophisticated theoretical values for the collision efficiencies.

Furthermore these theoretical values for the collection efficiency have never adequately checked in the drop size region of interest. The experiments are exceedingly difficult, using as they must nearly equal droplets of less than $40 \mu \mathrm{~m}$ diameter. Numerous peripheral measurements have been performed using bigger drops or drops in a continuous stream but these do not address the real problem. The experimental difficulty relates to handling the drops so they can be precisely positioned before being dropped into the fall trajectories which lead to the collision dynamics.

Another fundamental problem which could be resolved in a good experiment relates to the method whereby the initial microscopic bridge of water occurs between the two droplets at the initialization of coalescence. It is well known that electric fields make an enormous difference in the behavior of drops skating over a flat water surface. Any appreciable field results in the drops immediately coalescing with the surface. For unequally charged drops the interdrop field, of course,
rises without limit as the drops approach to spaces below $1 \mu \mathrm{~m}$. It is of both fundamental and practical importance to know whether drops will coalesce without the help of some electric field between them.

The stability of clouds and fogs may occasionally be a consequence of the total absence of electric effects to aid coalescence, or the presence of small, like, charges on the drops. It is also vital to check the theoretical calculations of the collision dynamics itself because of other approximations involved. Any appreciable deviation from the present theory could well have marked effects on the rate of growth of droplets in clouds and fogs by coalescence.

The author performed a large number of experiments in about 1955 to check effects of surface active agents on drops about $150 \mu \mathrm{~m}$ in diameter and found no effect on the coalescence or "bounce" rate between drops. Hence most "bounces" in fact probably do not involve surfaces separating from distances of less than $0.2 \mu \mathrm{~m}$, say. Later experiments showed a large influence from horizontal electric fields at diameters of $2 \emptyset \mu \mathrm{~m}$.

More recently Neiburger, Lee, Lobl and Rodriguez (1974) have done a series of experiments at these small sizes from which they conclude that their smaller measured values of collection efficiences deviate from both theory and previous measurements, and that the logical deduction from this is that coalescence does not occur unless there are small residual charges on the drops.

Thus any accurate explanation of the rainmaking process will involve the building of a precise numerical model which depends almost entirely on knowledge of this coalescence process when freezing has not become active, and may be dependent on this information even where ice processes have become active at some later stage.

3. HISTORY OF COALESCENCE

The history of the coalescence problem began with Bowen's (1950) calculations on the growth of drops in warm clouds. Langmuir understood the collection efficiency problem, from his work on aircraft icing where a similar form of collection efficiency is important. He calculated the collection efficiency for a large collecting drop with potential fluid flow (infinite Reynold's number) and a small drop with viscous flow drag (zero Reynold's number, or Stokes' Law). He did the same calculation when the collecting drop was small and also had a zero Reynold's number for the flow around it. He then used an intuitive method to interpolate between the collection efficiencies calculated for an infinite Reynold's number collector and the collection efficiencies calculated for a zero Reynold's number flow at the collector. He thus derived a figure for the collection efficiency for the collector drop at the Reynold's number appropriate for its size. There was an obvious need to check this work experimentally and during experiments which this principal investigator undertook the wake collection effect was discovered at slightly larger than cloud drop sizes (Telford, Thorndike and Bowen, 1955; Telford and Thorndike, 1961). Then Hocking (1959) produced this solution for both drops having small enough Reynold's numbers so that his series solution converged. He assumed the equations were sufficiently linear (i.e. zero Reynold's number) so that the actual flow patterns around the drops could be formed by addition of a solution for motion along the line of centers and a separate solution for motion perpendicular to the line of centers.

This resolution is only strictly valid for a zero Reynold's number (viscous or Stokesian flow) as only in this case is the drag force exactly proportional to velocity, so allowing the superposition of
solutions. Zero Reynold's number however precludes the wake collection effect observed at larger sizes. But only for zero Reynold's number will the vector force due to two separate calculations of the forces, using the specified resolved velocity which is the vector combination of the two components of the velocity. Thus, Hocking's numbers for the collection efficiencies failed to consider the approximations in this force resolution approach.

Analogy approaches were tried. Sartor (1954) produced an erroneous analog in which he did not try to make the densities of the drops and their medium take on the correct ratio, and thus the approach was not exact. The density ratio for oil drops in water in no way approaches the 800:1 ratio of densities met in clouds of water drops in air. Attempts were made to solve this problem by "simulating" high densities (i.e. 800 $\mathrm{gm} \mathrm{cm}^{-3}$) using metal balls in oil with large masses rigidly attached (Telford and Cottis, 1964).

To reiterate, vital interest in the collection efficiency arises because the Reynold's numbers of the droplets in clouds is too large to be considered zero, but far too small to allow potential flow solutions to be useful, thus posing an extremely difficult theoretical problem. Clouds are however observed to rain in conditions where coalescence proceses appear to be the only possible mechanism.

Hocking's collection efficiencies predicted no drops would coalesce unless their radii exceeded $18 \mu \mathrm{~m}$. This process demands an improbably large size for drops to occur in clouds by condensation growth, in the conditions usually occurring.

Sartor, apparently realizing the difficulties of analog simulation and experimental measurement with cloud sized drops (for previous experimental work in this area see Telford and Thorndike, 1961; Woods
and Mason, 1965; Picknett, 1960; and Woods, Drake and Goldsmith, 1972) encouraged Bill Davis to rework the problem theoretically (Davis and Sartor, 1967). The experimental work at UCLA with Neiberger and Pruppacher was based on confirming the theory by experiments with heavy metal balls in viscous fluids (density ratios of less than 20:1). More extensive theoretical work was undertaken by Hocking and ūonas (1970). who took account of the force couples on the drops at close approach and also used the improved approximation to the theory given earlier by Davis and others. They also point out that collision is impossible if Stokesian (viscous) flow is preserved at close approach. Davis (1972) treated the problem of the final thin film of air between the drops.

All these treatments assume zero Reynold's number (Stokesian or purely viscous flow) in separating the flow field solutions. The wake effect observed experimentally, and for which there is some evidence at Reynold's numbers approaching the values found in cloud droplets, is a direct manifestation of non-Stokesian flow. Thus the zero Reynold's number on which the theory is based remains in need of verification.

Bartlett (1970) used the Hocking and Jonas' (1970) calculation to look at the evolution of a possible cloud drop spectrum. He examined the modification of the cloud drop spectrum and shows the spectrum of large cloud drops sometimes observed in clouds could not be obtained this way. However, he equated the changing whole cloud drop spectrum with rain formation, which is not satisfactory. As Telford (1955) showed, the growth of raindrops may be quite separate from any large modification of the droplet spectrum at cloud drop sizes. The majority of cloud drops have their sizes determined by coalescence, condensation and mixing, in their passage up through the cloud. Rain is formed by about one in 10^{5} of these drops growing faster than the others by virtue of experiencing
collisions very early in the cloud process, and using this advantage to grow to raindrop sizes while the other cloud drops are still only a few tens of microns in size.

Thus Bartlett's conclusion that clouds formed of large drops will not evolve to the super large drop spectrums sometimes reported, by coalescence alone, is not the central issue. Incidentally, a large number of large cloud drop spectra sampled with oil coated slides simply demonstrate that coalescence of the captured cloud drop occurs on the collecting slide. The real issue is whether coalescence processes allow the very few droplets needed to produce rain to start growth soon enough after condensation begins, to give them the time advantage needed to form rain before the cloud evaporates.

In fact the lifetime of clouds, if the microphysics were different, would become larger and larger until rain formed frequently enough to stop the average moisture in the atmosphere from increasing any further. Thus, the problem is one of determining an explanation of why coalescence processes in warm latitudes over the sea operate as quickly as they are observed to do. Thus the interest in coalescence processes is in relatively rare events that occur much earlier in time than the time when the average collision will occur. The theoretical work is very valuable but we shoula beware of accepting the view that such calculations have settled the problem, without experentl checks.

The urge to get on with it often produces the attitude that the best to date must be good enough, unless there is a simple path to an easy improvement. Berry's recent work integrating the stochastic equations is questionable for this reason. He does not appear to have treated the problem of how the first bigger cloud drops form (say those greater than $15 \mu \mathrm{~m}$ radius) but has treated the calculation of how the
raindrop spectrum evolves after this has happened and in non turbulent clouds. This problem is compounded by the fact that there is no well founded logical basis for integrating growth in a smooth updraft when we know what we do now know about the large turbulence in clouds.

Thus, there is presently a tendency to say that the interesting part of the coalescence problem remaining to be solved is what happens when the drops are very close. We suggest here that the important thing is to develop any sort of experiment that works with water drops in air at sizes close to real cloud droplets sizes. Experiments in liquids (i.e. water drops in oil) are always suspect because of double layer phenomena which produces surface repulsive layers which do not occur in air.

Once a reliable experimental technique is available, experiments can be performed using surface active agents in the water or other liquids besides water. Previous experiments in about 1955 by the author with larger drops (150 microns) indicate that surface active agents, e.g., hexadecyl-tri-methyl amonium bromide, produce very little effect on water drop collisions in air although for bubbles and liquid drops in water the effects are large.

4. DROP DISTORTION

It is sometimes suggested that using larger water drops under lower gravity will not model the surface tension forces and thus give uncorrectable errors. Let us now look at the suggestion that the distortion of the drops during collision may play a role in the dynamics. This should be checked by using drops with a higher or lower surface tension in the experiment but let us reason as follows.

In a sphere in an acceleration field we have a pressure gradient within the drop. Thus, the curvature at the top and bottom of the drop will differs slightly.

If the surface tension is T then in a non-accelerated drop of radius r the pressure is,

$$
P=\frac{2 T}{r} .
$$

This applies also to any spherical cap of radius r.
The pressure gradient in the drop is, where a is the acceleration and ρ the density,

$$
\frac{d \mathrm{p}}{\mathrm{dz}}=\rho \mathrm{a} .
$$

At the top and bottom of the drop there is very little tangential airflow so the internal pressure will rarely determine the surface curvature (we ignore internal circulation although this should model correctly in the case of the experiment which we hope will be an outcome of this work).

The average pressure in the drop will be

$$
P=\frac{2 T}{r}
$$

The pressure deficit at its top will be,

$$
\Delta P=-r \rho a .
$$

Thus

$$
\begin{aligned}
& P_{T O P}=P+\Delta P=\frac{2 T}{r}-r o a=\frac{2 T}{r_{T O p}} \\
& \frac{r_{T O p}}{r}=\frac{2 T}{2 T-r^{2} \rho a}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{1}{1-r^{2} \rho a / 2 T} \\
T=76 \text { dynes } / \mathrm{cm} \\
r=50 \times 1 g^{-4} \mathrm{~cm} \\
=\frac{25 \times 10^{-6} a}{150}=1.7 \times 1 g^{-7 a}
\end{gathered}
$$

For a 1% effect on the drop curvature,

$$
\begin{aligned}
a & =\frac{0.01}{1.7 \times 10^{-7}} \\
& =\frac{10^{5}}{1.7} \approx \times 10^{4} \mathrm{~cm} \mathrm{sec}^{-2}
\end{aligned}
$$

Thus the distortion of such a drop under its own weight is quite negligible.

To es 5ate the acceleration during a drop collision assume the drop moves aside by one drop radius in the time the drop takes to move forward one diameter.

The terminal velocity in the experiment is $0.18 \mathrm{~cm} \mathrm{sec}^{-1}$ and hence we might assume a relative velocity of $\emptyset .1 \times \emptyset .18$. Thus,

$$
\begin{aligned}
a & =\frac{r}{[2 r /(0.1 \times 0.18)]^{2}} \\
& =\frac{1}{12345 \mathrm{r}} \\
& =0.024 \mathrm{~cm} \mathrm{sec}^{-2} \\
& =\frac{9}{40,900}
\end{aligned}
$$

Thus the acceleration of the drops in the experiment is about 10^{6} times too small to produce perceptable drop distortion.

As a check on the surface tension formula consider the average radius of a drop which is big enough to give the curvature of the top surface as half the average curvature in a 1 g field (i.e. under its own weight).

$$
\begin{aligned}
& \frac{r^{2}{ }_{0} a}{2 T}=1 / 2 \\
& r^{2}=\frac{T}{\rho^{2}}=\frac{76}{1 \times 1 \emptyset^{3}}
\end{aligned}
$$

$r=0.28 \mathrm{~cm}$ which agrees with the observation that 3 mm radius water drops show marked flattening.

The real answer to the question of the non-perfect analog of the cloud drop collisions is of course that we can readily use the apparatus to simulate 1 g or so we have every non-dimensional number exactly correct. The essence of the experiment is that zero-g conditions allow opportunity to arrange the positions of the drops precisely before they start falling. Thus we should have no fundamental problem in extending the experiments down to $20 \mu \mathrm{~m}$ radius droplets in a 1 g field. It should be pointed out at this stage that the plane of the collision can be arranged so that the acceleration of the drops is not in the direction of the Coriolis forces and hence such effects should be secondary. With the ability to study the larger cloud drop sizes at correct and constant Reynold's number but varying other parameters of analog simulation away from their exact values, the experiment should shed light on their importance.

This experiment is one which cannot be performed in the earth bound laboratory because of the enormous difficulty of controlling the
position of the two drops before the collision process starts. Flinging the drops into position from a vibrating hollow needle in a stream of one drop after another creates flow forces on the drops which tend to align the drops before the drops have decelerated to the velocities comparable to the initial conditions of approach experienced in clouds, and this unrealistic beginning to the collision trajectories can have a profound effect on the measurement (Telford, 1966). In the zero-g experiment the process can be started from rest with precise positioning.

The experiment is important because the theoretical description of the process involves assumptions the evaluation of which are a matter of faith. The understanding of the phenomenon is important becaustan if the formation of warm rain cannot be explained in this way as a coalescence phenomenon we are left with a problem which, when solved, could have far reaching effects on all rainforming theories and techniques of weather modification. If rain can be explained as the result of coalescence we need to know how, so as to evaluate its influence in all rainforming processes. Freezing rainforming processes cannot act in clouds wholly above zero in temperature. Coalescence processes will always be in action unless the collection efficiencies are truly zero.

The proposed experiment offers a tool in which other efforts on coalescence, dust in the air, electric fields, sudden acceleration of the air during, close approach to simulate turbulence, etc. can be evaluated once the technique is established.

5. THE EXPERIMENTAL APPROACH

The possibility of an experiment under very low gravity allows a
new freedom in planning experimental measurements of the efficiencies of collection between cloud drops. To correctly simulate the dynamics of droplet collision it is necessary to maintain the Reynold's Number of the flow correct at each geometrically similar point while the colliding drops approach each other. To do this it is not sufficient to arrange the sizes of the drops and the viscosity of the fluid so the Reynold's Numbers are correct when the drops are well separated. In addition, it is necessary to have the density of the drops relative to the surrounding fluid the same as for water relative to air, about 1000:1. Only then will the Reynold's Numbers of the drops remain correct as the drops accelerate when the trajectories curve on close approach.

The desirability of modeling the drop collision phenomenon comes about because of the difficulties in working with water drops some $10 \mu \mathrm{~m}$ or so in diameter. Two fundamental problems arise. The first is the virtual impossibility of positioning two drops one above the other and a hundred diameters apart vertically in such a way that the horizontal separation of the projected paths is known, and secondly, the smallest air currently seriously disturbs the paths of the drops falling at a few centimeters per second. Choosing pairs of drops in a projected stream of droplets from a vibrating needle is useless since the collision dynamics are well advanced, in an entirely different dynamical regime, before the drops slow down in the observational field. On the other hand, random collisions between well isolated drops are too rare for profitable observation and a dense cloud of drops introduces its own circulation problems.

The virtue of modeling experiments performed under conditions of zero gravity is that the drops can be arranged manually before release. This paper describes a method of use in a zero g laboratory to take
advantage of this condition with water drops falling in air.

6. BACKGROUND TO COLLISIONS UNDER LOW GRAVITY

The opportunity to virtually turn off gravity at the center of mass of the capsule allows an adequate setting up procedure since the drops remain almost unmoving. The turning on of linear gravitational acceleration at 1 g would be difficult in a capsule because of the large velocities involved. However, it turns out that small controlled circular accelerations bring major advantages to the experiment in the form of allowing larger drops and slower speeds to retain dynamic similarity. The flow appears to be exactly analogous but for this to be true the ratio of the drop density to that of the surrounding fluid must be the same as for water drops in air, and hence the experiments require a liguid moving in a gas. Water in air is the obvious choice because it is harmless and will stimulate actual coalescence much better, the different drop surface curvature being the only essential change.

For lower gravity the formulae for the terminal velocities of drops are as follows:

Stokes Law gives,

$$
\begin{aligned}
& F=6 \pi n r v=4 \pi\left(\rho-\rho^{\prime}\right) r^{3} g / 3 \\
& v=2\left(\rho-\rho^{\prime}\right) g r / 9 \\
& R_{e}=4\left(\rho-\rho^{\prime}\right) g r^{3} / 9 v^{2} \rho^{\prime}
\end{aligned}
$$

where

$$
\begin{aligned}
& \nu=\eta / \rho^{\prime}=\text { kinematic viscosity of air } \\
& \eta=\text { dynamic viscosity of air } \\
& \rho=\text { density of water } \\
& \rho^{\prime}=\text { density of air }
\end{aligned}
$$

$$
\begin{aligned}
& r=\text { drop radius } \\
& g=\text { acceleration due to gravity } \\
& R_{e}=\text { Reynold's number }
\end{aligned}
$$

Thus, in simulation with reduced g, using the subscript e to refer to normal conditions on Earth,

$$
\frac{R_{e}}{R_{e}}=\frac{q r^{3}}{y_{e^{3} e}}
$$

Hence, if we plan to set up an experiment at zero g in a small package and then accelerate at $10-3 \mathrm{~g}$ we can simulate by using $200 \mu \mathrm{~m}$ drops the collisions of two nearly equal drops in the atmosphere, of diameters $2 \varnothing \mu \mathrm{~m}$ (we need to simulate diameters from $2 \emptyset \mu \mathrm{~m}$ to $40 \mu \mathrm{~m}$).

The terminal velocity of the $200 \mu \mathrm{~m}$ drops at $10^{-3} g_{e}$ will be (for R_{e} $=R_{e_{e}}$),

$$
v_{e} g r / g_{e} r_{e}=v_{e} r_{e} / r=1.2 / 1 \emptyset=0.12 \mathrm{~cm} \mathrm{sec}^{-1}
$$

Hence the simulated drop moves through its surrounding air a distance of about 6 radii each second. If we plan on a 18 difference in the terminal velocity of two drops set up for collision at a distance of 30 diameters apart they will need a time of,

$$
t=60 x 100 r / v=6000 r_{e} / v_{e}\left(g_{e} / g\right)^{2 / 3}=5\left(g_{e} / g\right)^{2 / 3},
$$

so that about $10^{-3} g_{e}$ the experimental drops will take about 8 minutes to collide. If this occurs in a Enearly accelerating chamber accelerating at g, the chamber will move

$$
L=1 / 2 g t^{2} \zeta \quad l 2 g_{e}\left(g_{e} / g\right)^{1 / 3}
$$

or a distance of 1200 meters or more.
This approach would thus require acceleration of the spacecraft. Sustained acceleration is obtainable from the gravity gradient across
the spacecraft. However, this is of the order of $10^{-6} g_{e} / \mathrm{m}$. This low number suggests an even more desirable experiment where the drops used are $2000 \mu \mathrm{~m}$ or 2 mm in diameter and the experiment runs for a time of 1000 minutes or 16 hours. This would, however, involve servo control of the spacecraft to keep the experimental chamber in free fall within an experimental volume where the only force on the experimental container is a controlled force generating the ${1 \emptyset^{-6}} g_{e}$ acceleration. Since the 2 mm drops need to move $60 \emptyset 0 \times 2 \mathrm{~mm}$ within their immediate airspace the chamber would also need to be this long and adjusted so the gravitational gradient along it was either negligible or used so the drops always experienced the correct acceleration.

Considerations of trade-offs along this line of thought depend on engineering data unavailable to the author, in particular, the spectral density of the g noise, which has only been mentioned as of the order of $10^{-4} g_{e}$. However, this approach seems impractical at present and an alternative approach is recommended, which is much less demanding and should give the desired results.

Thus, the practical approach to using a very low acceleration (e.g. $1 \sigma^{-4} g_{e}$) is to set up the drops in their initial condition and then apply an acceleration by swinging the chamber in a circle.

When the drops have a diameter of $20 \emptyset \mu \mathrm{~m}$ a fall dtance of $60 \emptyset \emptyset$ diameters is 120 cm and hence the fall space in the chamber would have to be about this length. To achieve an acceleration of $10^{-3} g_{e}$ or 1 cm $\sec ^{-2}$ the circular path and velocity are given by

$$
1=r \Omega^{2}
$$

If $r=3 \emptyset \emptyset, \Omega=\emptyset .18$ radians $\sec ^{-1}$ or a full circle is $T=35$ seconds. Thus a free space allowing a circular swing of about $2-1 / 2 \mathrm{~m}$
diameter is needed for this experiment.
Since such a size may be unwieldly it is suggested that the optimum result will come from choosing the instrument to fit inside a 60 cm diameter space. Thus, the maximum length of fall is about 20 cm with the drops moving on a 10 cm radius circular path. Thus, the drop diameters should be $20 / 6000=33 \mu \mathrm{~m}$ in diameter.

This size drop calls for an acceleration of $g_{e} / 4.49=218 \mathrm{~cm} / \mathrm{sec}^{2}$.
If the radius arm is $10 \mathrm{~cm}=(218 / 10) 1 / 2=4.67$ radians $/ \mathrm{sec}$.
$T=1.35$ seconds per revolution.
The time needed for the drops to fall is $t=14$ seconds.
Thus, while the drops are smaller than desired the experimenBkks - practical to perform under low gravity conditions. At D-2.

Thus, for a 10 cm radial distance of the rotating chamber $=1.6 \mathrm{radians} / \mathrm{sec}$ $T=3.9 \mathrm{sec}$

The time for the drop falling is $=44$ seconds

This final configuration looks the best particularly if a total diameter greater than $6 \emptyset \mathrm{~cm}$ is feasible.

7. THE EXPERIMENTAL METHOD

Thus, the experiment would be planned to visually adjust the position of two drops using small air jets, acoustic manipulators or the centrifugal acceleration gradient, while on the axis of rotation of a transparent square tube rotating around a line perpendicular to the tube through one end. In this essentially non-accelerated region the task of adjusting position can be done at leisure and may well take 10 to 15
minutes to set up a required drop collision. This overcomes the problem met in terrestrial experiments associated with the impossibility of positioning the participating drops as needed.

Acceleration is then applied to the drops by moving the transparent square tube along its axis away from the axis of rotation until the drops themselves are 10 cm from the axis of rotation. Here the acceleration is 26 cm . sec. ${ }^{-1}$ and this is maintained by moving the transparent tube back along its axis so the drops are always 10 cm from the axis of rotation.

Since we are considering $67 \mu \mathrm{~m}$ diameter drops 39 diameters apart this is a separation of 2 mm in 10 cm and the centrifugal acceleration difference is 2% which is negligible. Similarly the gas will have virtually no motion induced by these accelerations. g_{e} gives at 1000 mb pressure a pressure gradient of $0.12 \mathrm{mb} \mathrm{m}^{-1}$. The effects in this experiment on gas compression are thus very much less than 1 in 10^{4} and so are negligible. Gas temperature and moisture differences should be evened out by stirring between each experimental run.

The drop motion can be photographed with two perpendicular views super imposed in color on the film.

It is essential for the success of this experiment to provide the operator with a good viewing and manipulation facility since the essential capability this experiment offers is the ability to initialize the drop motion precisely as needed without throwing a stream of drops into place along a track, or picking pairs at random or using some other expedient which has so seriously hampered terrestrial approaches to this measurement problem.

The figures show the experimental device and how the drops can be viewed while in the rotating experimental space. The optical device for
some other visual display device) would keep the drops central in the field as they were moved radially outwards and removed the rotation from the image. They would be adjusted to their initial positions by acoustic or other mothods when in the zero gravitational field on the axis of rotation of the apparatus. Then the tube would be moved radially on outwards until the drops were rotating on a 10 cm radius circle and experiencing the "gravity force" from this centrifugal acceleration. Their position would be maintained at this radius, as they fall, by moving the enclosing tube radially.

The dynamics involved in moving the drops out from the center could be calculated accurately since Stokes' law applies when they are well separated at this stage of their fall. A digital simulator could be put together fairly readily for allowing practice of the setting up procedure.

8. INVESTIGATIVE APPROACH

This project has been concerned with examining the details of initializing the droplet collision processes. This has been more than half accomplished to date and involves producing the mathematical routines and programming them to run on both a CDC 6400 computer for checking out convergence problems in the integration, etc., and in real time on a minicomputer owned by the laboratory, to displaying the drop behavior on a display screen. The purpose of this work was two-fold, to show by simulation that the experiment was practical to control by a human operatond to provide a simulator for planning the actual experimental details. We have produced a substantial number of mathematical routines able to simulate the drop behavior when falling in the rotating chamber but well separated so drop interaction is
negligable. The only practical way to perform the experiment is to mathematically predict the positions to which the drops must be moved before they start to fall together. As they move out from the rotation axis in the rotating tube their paths are quite complex, far too complex for an operator to guess at where they should start. Hence in initializing the position of the drops their positions will need to be accurately recorded in the computer as the payload specialist continually keeps the drops located by adjusting separate crosshairs for each drop in the viewing device.

Most of the positioning can be accomplished by rotating the chamber in a controlled manner as the computer routines predict drop collisions, or miss dist.ances. In this way the drops can be initialized in positions which, for simple geometric collisions, would range from a near miss from one side to a near miss from the other side. The proportion of actual coalescences to coalescences expected on simple geometric considerations, then leads to collection efficiency values (the linear collision and coalescence cross-section needs to be squared to give the usual formulations for collection efficiency which is based on area).

More laboratory work will need to be done with actual drops before a final design of the experimental procedure can be specified. We need to know how well we can manipulate two closely spaced drops in zero-g, with some of the current drop manipulation procedures now being developed by various interested experimenters. The availability of precise pinpoint control, for example by laser beam, could modify the experiment.

However, experimenters have been generating small drops for fifteen or twenty years now and it is more a matter of selecting a technique and refining it to the stage where it will operate reliably, rather than
developing a new approach. Thus, generating a stream of droplets from a vibrating hypodermic needle is an acceptable technique if it can be made to operate reliably with the skills we can expect from a payload specialist. Depositing two nearly equal droplets very close together in the chamber is exactly what we need here since the centrifugal force will slowly separate them, and after having come to rest any deleterious wake effects biasing the experiment after leaving the needle will no longer apply. Hence it is probably a practical technique to charge all but selected droplets by a photo-electric synchronized charging plate near the needle and to thus extract all unwanted droplets from the stream. Thus, pressing a button could be arranged to give one drop.

After the drops are located the computer could then indicate if they are suitably positioned to give a later position for collision, and if not then call for another one to be supplied, relying on the inherent random scatter from the needle generator to provide the variety of positions reguired.

Our numerical experiments have been based on rotating the air around the two drops by means of a circle of thin wires parallel to the axis of rotation. Such a structure can be built so that these "squirrel cages" can enter the air from positions flush with the tube walls and turn sufficiently to rotate the angle between the drops relative to the rotating tube. If done slowly there will be negligible turbulence created. Possibly a complete cylinder of very thin metal may prove satisfactory. The numerical simulation shows such a procedure should be satisfactory if we can inject the drops closely enough in the first instance, and measure their positions accurately enough.

The initial simulation was achieved with the operator shifting the cross hairs from one drop to the other, alternately, as the simulated
drops drift on the screen in the way they would drift in the rotating tube. (See figures in the appendix for the apparatus).

This procedure indicates that all is well in anticipating a practical experiment. However, this is not an adequate way to assess the degree of skill needed to do the experiment in real time.

The simulation has been improved in terms of human interaction to make it more satisfactory. We have added to the display two small crosses showing where the drops being matched to the simulated drops by the monitor program appear in space so the operator can concentrate on improving the match where most needed, rather than trying to give exact information when a lot of approximate positions would be of much more use, and vice versa. The software routines in the monitor program solve a number of complicated fitting and dynamical problems in real time in order to achieve these results. This software is needed to run the zero-g experiment when the time comes. At some final stage, the drop simulator must be replaced by the real apparatus with the real drops in it.

The program at present simulates all the forces on the droplets when the drops are well separated and no interaction is occuring. Thus by following the actual drop motion (simulated by the computer at this stage) with crosshairs, under operator control, the monitor program estimates drop sizes. The program can thus control the rotation of the tube and "squirrel" cages to position the drops in such a way that a collision will occur later on down the tube, when the two drops have fallen after one another far enough for the dynamical interaction to be fully developed.

Further implementation of the experiment would include building and
testing the computer controlled interfaces needed to control the mechanical operation of the experimental apparatus (see drawings for preliminary concept of apparatus). This includes computer interfaces and stepping motor drives for each necessary response to the monitor program.

In zero-g the observation of whether or not the drops coalesce, as a function of computed geometric position, gives the collection efficiencies we need. The computer simulation we are reporting here as the initial study will of course give only the geometrical, non-dynamical, interaction. However the whole system can be tested in this way up to this last stage, and operators trained, experimental accuracies refined, and the many minor problems cleared up before the final instrument is built.

The present software will provide the real time mechanical control to control the rotation rates, position the tube relative to the center of rotation, rotate the air around the drops, all according to mathematical simulations. Hence the drop motion should be strictly reproducible, and so the needed information can be obtained by recording the range of initial conditions which give a hit. Accurate tracking of the drop trajectories as they approach each other after the initial placement is, alone, sufficient to give the collection efficiencies.

9. SUMMARY

This report describes scientific studies undertaken to fill the gap left by the zero-g condensation experiments in order to give the latter work practical value in weather modification directed goals. If the condensation processes give cloud drops which are never going to coalesce then we are not studying the mechanisms truly responsible for
rain formation. Thus we need to know precisely how much coalescence can get started at sizes before condensation growth becomes too slow to be important. It is presently doubtful that the condensation processes give rise to drop sizes for which the more rapid fall of the largest drops gives collisions and accretion by coalescence until rain results.

It is believed that the flow fields of the air around the tiny cloud drops prevent most collisions from achieving contact. However, the extensive theoretical work done on this subject needs to be checked by direct experiments with water drops.

The earth based laboratory experiments are almost impossible to perform without prohibitive restrictions. This study shows how conditions of zero-g can be used to overcome these problems and allow a well regulated and precise experimental situation.

There is a need to continue the preparatory work needed to specify the reguired apparatus, test its performance, make the measurements and analyze and supply the results.

REFERENCES

Bartlett, J.T., 1979: The effect of revised collection efficiencies on the growth of cloud droplets by coalescence. Quart. J. Roy. Met. Soc., 96, 730-738.

Bowen, E.G., 1950: The formation of rain by coalescence. Austr. J. Sci. Res., Ser. A, 3, 193-213.

Davis, M.H., 1972: Collisions of small cloud droplets: Gas kinetic effects. J.Atmos.Sci., 29, 911-915.

Davis, M.H. and J.D. Sartor, 1967: Theoretical collision efficiencies of small cloud droplets in Stokes' Flow, Nature, 215, 1371-1372.

Hallett, J. and S.C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 4542, 26-28.

Hocking, L.M., 1959: Thie collision efficiency of small drops. Quart. J. Roy. Met. Soc., 85, 44-50.

Hocking, L.M. and P.R. Jonas, 1970: The collision efficiency of small drops. Quart. J. Roy. Met. Soc., 96, 722-729.

Jonas, P.R. and B.J. Mason, 1974: The evolution of cloud droplet spectra by condensation and coalescence in cumulus clouds. Quart. J. Roy. Met. Soc., 100, 286-295.

Neiburger, M., I.Y. Lee; E. Lobl and L. Rodriguez, 1974: Computed collision efficiencies and experimental collection efficiencies of cloud drops. AMS Preprints, Conference on Cloud Physics, Oct. 21-24, 1974, Tucson, AZ.

Picknett, R.G., 1960: Aerodynamic capture of particles. Nature, 185, 665-666.

Sartor, J.D., 1954: A laboratory investigation of collision efficiencies, coalescence and electrical charging of simulated cloud droplets. J. Meteorol., 11, 91-103.

Telford, J.W. 1955: A new aspect of coalescence theory. J. Meteorol., 12, 436-444.

Telford, J.W., 1966: Discussion: "The wake capture of water drops in air". Quart. J. Roy. Met. Soc., 92, 171-174.

Te]furd, J.W. and R.E. Cottis, 1964: Cloud droplet collisions. J. Atmos. Sci., 21 549-552.

Telford, J.W. and N.S. Thorndike, 1961: Observations of small drop Collisions. J. Meteorol., 18, 382-387.

Telford, J.W., N.S. Thorndike and E.G. Bowen, 1955: The coalescence between small water drops. Quart. J. Roy. Met. Soc., 81,

Woods, J.D., J.C. Drake and P. Goldsmith, 1973: Coalescce in a turbulent cloud. Quart. J. Roy. Met. Soc., 98, 135-149.
Woods, J.D. and B.J. Mason, 1965: The wake capture of water drops in air. Quart. J. Roy. Met. Soc., 91, 35-43.

APPENDIX 2
Modeling of Cloud Drop Collisions with Low Gravity

PRECEDING PAGE PLANK NOT FKRED

MODELING OF KTAOD DROP COLLISIONS WITH LOW GRAVITY
J. W. Telford

Desert Research Institute University of Nevada System Reno, Nevada

1. INTRODUCTION

The possibility of experiment under very low gravity allows a new freedom in planning experimental measurement of the efficiencies of collection between cloud drops. To correctly simulate the dynamics of droplet collision it is necessary to maintain the Reynold's Number of the flow correct at each geometrically similar point while the colliding drops approach each other. To do this it is not sufficient to arrange the sizes of the drops and the viscosity of the fluid so the Reynold's Numbers are correct when the drops are well separated. In addition it is necessary to have the density of the drops relative to the surrounding fluid the same as for water relative to air, about 10c0:1. Only then will the Reynold's Numbers of the drops remain correct as the drops accelerate when the trajectories curve on close approach.

The desirability of modeling the drop coliision phenomenon comes about because of the difficulties in working with water drops some 10 um or so in diameter. Two fundamental problems arise. The first is the virtual impossibility of positioning two drops one above the other and a hundred diameters apart vertically in such a way that the horizontal separation of their projected paths is known, and secondly, the smallest air current seriously disturbs the paths of the drops falling at a few centimeters per second. Choosing pairs of drops in a projected stream of croplets from a vibrating needle is useless since the collision dynamics are well advanced, in an entirely different dymamical regime, before the drops slow down in the observational field. On the other hand random collisions between well isolated drops are too rare for profitable observation and a dense cloud of drops introduces its own circulation problems.

The virtue of modeling experiments is that the drops can be arranged manually before release. This paper describes a method for use in a zero g laboratory to achieve this same purpose with water drops falling in air.

2. BACKGROUND TO COLLISIONS AT LO GRAVITY

The opportunity to virtually turn off gravit; at the center of rass of the cacsule allows an aceguate setting up frocecure. The turning on of lirear gravitationel acceleration at 1 g would be cifficult in a cacsule because of the large
velocities involved. However it turns out that small controlled accelerations bring major advantages to the experiment in the form of allowing larger drops and slower speeds to retain dynamic similarity. The flow appears to be exactiy analogous but for this to be true the ratio of the drop density to that of the surrouriding fluid must be the same as for water drops in air and hence the experiments require a liquid moving in a gas.
Water in air is the obvious choice because it is harmess and will simulate actual coalescence much better, the different drop surface curvature being the only essential change.

For lower gravity the formulae for the terminal velocities of drops are as follows:

Stokes Law gives,

$$
\begin{aligned}
& F=\epsilon \pi r v=4 \pi\left(p-\rho^{\prime}\right) r^{3} g / 3 \\
& v=2\left(p-p^{\prime}\right) g r^{2} / 9 \eta \\
& R_{e}=4\left(p-p^{\prime}\right) g r^{3} / g v^{2} p^{\prime}
\end{aligned}
$$

where
$v=\eta / \rho^{\prime}=$ kinematic viscosity of air
$\eta=$ drnamic viscosity of air
$\rho=$ density of water
$\rho^{\prime}=$ density of air
$r=$ drop radius
$g=$ acceleration due to gravity
$R_{e}=$ Reynold's number

Thus, in simulation with reduced g, using the subscript e to refer to normal conditions on Earth.

$$
\frac{R_{e}}{R_{e}}=\frac{g r^{3}}{g_{e} r^{3}}
$$

Hence, if we plan to set up an experiment at zero g in a small package and then accelerate the package at $10^{-3} \mathrm{~g}$ we can simulate using $200 \mathrm{\mu m}$ drops the collision off two nearly equal drops in the atrosphere, of diamoters $20 \mu m$ (we need to simulate ciameters from 20 Nm to $40 \mathrm{\mu m}$).

The terminal velocity of the $200 \mu \mathrm{~m}$ drops
at $10^{-3 g_{e}}$ will be (for $R_{e}=R_{e}$)
$v=v_{e} G r^{2} / G_{e} e^{2}=v_{e} e^{/ r=1.2 / 10=0.12 \mathrm{cm.sec} .^{-1} .}$

Hence the simulated drop moves through its surrounding air a distance of about 6 radii each second. If we plan on a lt difference in the terminal velocity of two drops set up for collision at a distance of 30 diameters apart they will need a time of
$t=60 \times 100 r / v=6000 r_{e} / \nabla_{e}\left(g_{e} / g\right)^{2 / 3}=5\left(g_{e} / g\right)^{2 / 3}$,
so that at $10^{-3} g_{e}$ the experimental drops will take about 8 minutes E_{o} collide. If this occurs in a linearly accelerating chamber accelerating at g, the chamber will move

$$
L=1 / 2 g t^{2}=12 g_{e}\left(g_{e} / g\right)^{1 / 3}
$$

or a distance of 1200 meters or more.
This approach would thus require acceleration of the spacecraft. Sustained acceleration is obtainable from the gravity gradient across the spacecraft. However this is of the order of $10^{-6} \mathrm{~g}_{\mathrm{e}} / \mathrm{m}$. This low number suggests an even more desirable experiment where the drops used are $2000 \mu \mathrm{~m}$ or 2 mm . in diameter and the experiment runs for a time of 1000 minutes or 16 hours. This would however involve servo control of the spacecraft to keep the experimental chamber in free fall within an experimental volume where the only force on the experimental container is a controiled force generating the $10^{-6} g$ acceleration. Since the 2 mm . drops need to move $6000 \times 2 \mathrm{~mm} .=12 \mathrm{~m}$. Within their imnediate airspace the chamber would also need to be this long and adjusted so the graritational gradient along it was either negligible or used so the drops always experienced the correct acceleration.

Considerations of trade-offs along this line of thought depend on engineering data unavailable to the author, in particular, the spectral density of the g noise, which has only been mentioned as of the order of $10^{-4} \mathrm{~g}$. Without knowing the excursions in position of the craft around the true central point nothing further can be done in this way and so an alternative approach is. recommended which is much less demanding and should give the desired results.

Thus the practical approach to using a very low acceleration (e.g. $10^{-4} \mathrm{~g}{ }_{e}$) is to set up the drops in theix initial condition and then apply an acceleration by swinging the chamber in a circle. \quad.

When the drops have a diameter of $200 \mu \mathrm{~m}$ a fall distance of 6000 diameters is 120 ens. and hence the fall space in the chamber would have to be about this length. To achieve an acceleration of $10^{-3} g_{e}$ or $1 \mathrm{~cm} . \sec .^{-2}$ the circular path and velocity ane given by

$$
1=\pi \Omega^{2}
$$

If $r=30 \mathrm{~cm} ., \Omega=0.18$ radians $\mathrm{sec} .^{-1}$ or a full circle is $T=35$ seconds.

Thus a free space allowing a circular swing of about 2-1/2 m. diameter is needed for this experiment.

Since such a size may be utwieldy it is suggested that the optimum result will come
from choosing the instrument to fit inside a 60 cm . diameter space. Thus the maximum length of fall is about 20 cms . with the drops moving on a 10 cm . radius circular path. This the drop diameters should be $20 / 6000=33 \mu \mathrm{~m}$ in diameter.

This size drop calls for an acceleration of $g_{e} / 4.49=218$ sis cas. $/ \mathrm{sec} .^{2}$.

If the radius arm is 10 cms .

$$
=(218 / 10)^{1 / 2}=4.67 \mathrm{radians} / \mathrm{sec}
$$

$T=1.35$ secands per revolution.
The time needed for the drops to fall
is $t=14$ seconds.
Thus while the drops are smaller than could be desired the experiment looks practical to perform under low gravity conditions. At these substantial accelerations the movement of the spacecraft would be negligible.

Let us repeat the exercise with half the initial separation of the drops which may be sufficient in most cases. If 20 cm . is 3000 drop diameters the drop will be $67 \mu m$. Thus we need an acceleration $g_{e^{\prime}} 38=26 \mathrm{~cm} . \mathrm{sec} .^{-2}$.

Thus for a 10 cm . radial distance of the rotating chamber

$$
\begin{aligned}
& =1.6 \text { radians } / \mathrm{sec} . \\
T & =3.9 \mathrm{secs} .
\end{aligned}
$$

The time for the drop falling is

$$
t=44 \text { seconds }
$$

This final configuration looks the best particularly if a total diameter greater than 60 cms . is feasible.

3. THE EXPERTMENTAL METHOD

Thus the proposed experiment is to adjust the position of two drops with optical observation using small air jets, acoustic manipulators or the centrifugal acceleration gradient, while on the axis of rotation of a transparent square tube rotating around a line perpendicular to the tube through one end. In this essentially non-accelerated region the task of adjusting position can be done at leisure and may well take 10 to 15 minutes to set up a required drop collision. This overcomes the problem met in terrestrial experiments associated with the impossibility of positioning the participating drops as needed.

Acceleration is then applied to the drops by moving the transparent square tube along its axis away from the axis of zotation meil the drops themselves are 10 cms . from the axis of rotation. Here the acceleration is $26 \mathrm{~cm} / \mathrm{csec}^{-1}$ and this is maintained by moving the transparent tube back along its axis so the drops are always 10 cm . from the axis of rotation.

Since we are considering $67 \mu \mathrm{~m}$ diameter drops 30 diameters apart this is a separation of 2 mm. in 10 crs. and the centrifugal acceleration difference is 2 which is neglible. Similarly the gas will have virtually no motion induced by these
accelerations. ge gives at 1000 mb pressure a pressure gradient of $0.22 \mathrm{mb} . \mathrm{m}^{-1}$. The effects in this experiment on gas compression are thus very much less than 1 in 10^{4} and so are negligible. Gas temperature and moisture differences should be evened out by stirrir.g between each experimental run.

The drop motion can be photographed with two perpendicular views superimposed in color on the film.

It is essential for the success of this experiment to provide the operator with a good viewing and manipulation facility since the essential capability this experiment offers is the ability to initialize the drop motion precisely as reeded without throwing a stream of drops into place along a track, or picking pairs at random or using some other expedient which has so seriously hampered terrestrial approaches to this measurement problem.

Figures. The figures are self-explanatory and illustrate the experimental apparatus and how the drops are positioned for a collision. experiment.

The Figures show the proposed experimental device and how the drops can be viewed while in the rotating experimental space. The optical device proposed would keep the drops central in the field as they were moved radially outwards and remove the rotation from the image. They would be adjusted to their initial positions by acoustic or other methods when in the zero gravitational field on the axis of zotation of the apparatus. Then the tube would be moved radially outwards until the drops were rotating on a 10 cm . radius circle and experiencing the "gravity force" from this centrifugal acceleration. Their position would be maintained at this radius, as they fall, by moving the enclosing tube radially.

The dynamics involved in moving the drops out from the center could be calculated accurately as Stokes' law applies when they are well separated at this stage of their fall. A digital simulator could be put together fairly readily for allowing practice of the setting up procedure.

SRHCADING PAGE RLANK NOT FSEZED

APPENDIX 3

Interim Final Report, 15 January 1976

Introduction

This project has as its ultimate goal the study of cloud water droplets to ascertain whether present theory of cloud drop collision and coalescence is adequate. The dynamics of cloud droplets is not yet completely understood. The collisions and interactions that produce rain drops have not proven themselves easy to study. For one thing the droplets are very small, say $20 \mu \mathrm{~m}$, and small air currents or electric charges affect them greatly. In addition droplets of this size fall at about $1 \mathrm{~cm} \mathrm{sec}^{-1}$. This gives the experimenter only seconds to position droplets for an experiment and since the droplets cannot be touched, accurate positioning is impossible in an earth situated laboratory. The possibility of doing experiments in earth orbit eases these problems considerably because the droplets are not falling and so can be positioned by moving the air near them. Furthermore a small simulated and controlled gravity force is possible with a rotating apparatus in which centrifugal force acts like a much lesser gravity than on earth as long as it is needed. With lower gravity applying throucgnout the collision trajectory it is actually necessamy to use larger, more easily controllable droplets. To model the droplets in clouds one must maintain the same dynamical situation. That is, the Reynold's numbers of the droplets used must be the same as those on earth. Analysis shows that this is the requirement that

$$
g r^{3}=\text { constant }
$$

where g is the gravitational acceleration and r is the droplet radius. Thus at a.gravity 0.001 of the earth's one may use droplets ten times as large: In addition they would fall only a tenth as fast.

Description of Program to Date

In this project we have begun the study of a system for performing such experiments in orbit. The aim is to produce a system that is mainly self-controlling. Schematically the apparatus consists of a long tube which is rotated about a line perpendicular to its axis. The droplets are injected into the tube and there are subjected to centrifugal force. This provides a controllable amount of "gravity" since the rotation of the tube is by a stepping motor under computer control. Also the tube may be shifted along its length across the axis of rotation. This allows the droplets to be moved from positions near the axis of rotation to positions farther out. At the nearer positions the droplets experience little force and there is more time for the human operator to provide necessary information to the controlling computer. When the droplets are at some distance from the axis of rotation, the tube may be slowly shifted to offset their rotation. This causes the drops to stay at a constant radius and so see a fixed gravity, Eventually the droplets collide with the end of the tube. Thus one must make sure the events of interest
can occur within a space limited to a meter or so of total tube length. The actual experimental procedures would be as follows. The apparatus is provided with an optical system which allows a view of the droplets from above and from the side to facilitate aligning them. A system of prisms removes the rotation so that a stationary observer may view the droplets as if they were fixed. Two droplets are injected into the tube. They are aligned along the length of the tube with the larger placed so that it will fall into the smaller. The tube is shifted by the computer to place the droplets at the desired radius. Then the droplets are held at that radius until the one goes by the other or the end of the tube is reached.

The injection of the droplets is not precisely controllable. There will be random variations in the droplets' positions and variations in the size of the droplets. Thus the drops must be aligned each time. Also one must discover which droplet is heavier to do the alignment correctly. When the droplets are held at a fixed radius, one must shift the tube at a precise rate which depends on the size of the droplet. Fortunately, the radius determination may be made part of the process of alignment. The droplets' own response to manipulations of the apparatus gives away its radius.

Two methods have been used to manipulate the droplets: viscous drag to rotate the droplets' positions and shifts of the tube along its length to move the droplets from one place
to another. If the rotational rate of the apparatus is changed, the air within reacts variously depending on position. Far from the axis of rotation the air simply follows the motion of the tube as if it were rigidly connected. (There is a small shift in which barostatic pressure changes in accordance with "gravity"; but this is very small in the cases considered here.) Near to the axis the tube can only act indirectly on the air tirough viscous drag. The air gradually reaches the new angular velocity through the relatively weak viscous forces. The scale of distances here is provided by the diameter of the tube. "Near" means less than the tube radius and "far" means more than a few radii. In practice a movable "squirrel cage" would be used. This would be a rotatable cylinder that could be moved in and out of the tube with minimal disturbance to the droplets. It would be rotated until the droplets had been turned far enough, stopped and then extracted from the tube. Two of these situatec at right angles would be necessary to align the droplets one above the other. An apparatus of this type would have to be calibrated "in flight". It would be difficult to estimate beforehand the race at which a wire squirrel cage transfers its rotation to the enclosed air. Except for this undetermined parameter the situation is remarkably simple. If one looks at the air long after the rotation of the cage has been stopped, one sees that the air has rotated as a solid body. (This follows mathematically from the linearity of the equations.)

The droplets do not exactly follow the motion of the air but tend to fly out from the center. This depends on the droplet radius, and hence may be used to estimate the radius. One need only measure the distance from the center of rotation before and after the cage has been spun. One may then give a radius estimate without having to know exactly how the cage was spun, for how long, etc. Unfortunately this measurement is sensitive to errors in measurement and care must be used in applying it.

The second maneuver available is shifting the tube along its length. This is necessary for moving the droplets from the center where they are aligned out to the position where they are allowed to collide. One uses it to hold the droplets at the chosen distance while they fall and to help center the droplets in the tube while they are being aligned. An additional use is in gaining radius estimates. One shifts the droplets to a distance from the center, leaves them there while the apparatus rotates, and returns to the center. The amount that the droplets shift depends on the radius and so gives an estimate. At this point one may discover that one has set the heavier droplet below the heavier and the squirrel cage must be used to reverse them. One may also have to abandon the droplets in favor of a new pair. If the droplets are nearly equal in radius while being relatively far apart, the lighter one can fall faster than the heavier because it feels more gravity, being farther from the axis of rotation. Also collision may not occur until after the droplets have reached the end of the tube.

A program has been written which simulates the operation of the experiment. It consists roughly of two parts. One part picks droplets of random size and places them randomly about a point in the tube. This simulates the drops from the droplet generator. The droplet generator can be a vibrating needle from which charged drops are extracted from the droplet stream by an electric field. When a droplet is needed the charging mechanism is turned off and the neutral drop traverses the field region to enter the tube. The program then simulates the actual response of the droplets to manipulating the apparatus. The second part, and only part that would actually be flown with the instrument, starts with the nominal radius of the droplets. It does its own simulations and runs the droplets through the same maneuvers using the estimated droplet size. It uses the differences between the "real" and the simulated drops to estimate the radii. It aligns the droplets and indicates whether the droplets can be run to a collision encounter within the confines of the apparatus after each spin of the squirrel cage, shift of the tube, etc. In this simulation the operator is given a display of the position of the droplets on a CRT and must indicate to the computer the positions of the droplets by adjusting the crosshairs on the screen to coincide with a drop just as he would through using the optical system of the actual experiment. These are the only responses required of the operator. The rest of the decisions are made by the computer.

This current version runs using the University of Nevada timesharing system but is very slow as timeshared intervention is needed repeatedly and the transmission rate is too slow. It does not provide a view of things as they happen. It is only feasible to display the positions of the droplets when a response is needed from the operator.

It is planned for the future tiat a version will be produced which runs on a minicomputer. When certain hardware enhancements are installed it is hoped that this version will run at nearly real time giving continuous real time simulation. This will provide needed experience to assess the ability of the operator to provide responses quickly enough and accurately enough to operate the experiment. This stage should also show any problems not anticipated at this stage.

Abstract

Summary The simulation experiment has progressed to the stage where most of the conceptual problems have been sorted out. The next phase is to implement the simulation in real time to show better the practical aspects of the experiment.

APPENDIX 4
Monthly Progress Report, 17 February 1976

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

CONTRACT NUMBER:
TITLE OF CONTRACT:

CONTRACTOR:

PRINCIPAL INVESTIGATOR:
MONTHIY PROGRESS REPORT NO.:
REPORT FOR THE PERIOD:
DATE OF THIS REPORT:
AUTHOR:

NAS8-31441
Preparatory Studies for Zero-g Cloud Drop Coalescence Experiment

Desert Research Institute
Energy \& Atmospheric Environment Center University of Nevada System SAGE Bldg., Stead Campus Reno, Nevada 89507

James W. Telford
8
December 21, 1975 to January 20, 1976
February 17, 1976
T. S. Keck

1. Progress during the reporting period

During this month the software for simulating the motion of water droplets in a rotating reference frame with air motion was written. This is general enough to be used in all the cases needed. It was applied to the case motion inside a spinning "squirrel cage". Also added this month was the ability to produce hard copies of the CRT displays. This includes software for drawing lines and points plus character generating software for reproducing the labels from the CRT displays. Included with this report are two plots used to help verify the software. Figure 1 shows motion of the droplets when the squirrel cage is turned once and stopped, and Figure 2 gives the motion for one half revolution.

The squirrel cage (not shown) rotates about the point in the center. The position of each droplet is shown each $1 / 6$ second and every one second a line is drawn between the two droplets to clarify their relative positions. This illustrates how the air follows the spinning motion of the squirrel cage oniy after some delay. The inner droplet does not move much until after the first second. It continues to move for several seconds after the cage has stopped. It may be shown that the air will rotate just as far as the cage. If the cage is rotated one turn, the air after lagging behind will end up moving exactly one revolution when sufficient time has elapsed for the motion to come to rest again. This is not true for the droplets. Note that the angle of lag is bigger for the outer droplet.

There is also considerable radial motion, especially in the 360° case. The algorithm for aligning the drops uses rotations mainly less than 90° where these effects are smaller. Also it spaces the droplets so that they are at the same radius and the centrifugal forces act equally. So the main effect is that one underestimates the angle the squirrel cage should be turned. This was not compensated for in the earlier time-sharing version of the program. It often increased the number of steps to align the droplets. Compensation will only be added to the current program if it seems necessary later on.

This motion provides the initial basic maneuver to adjust two drops which are injected into the tunnel at close but random
separations. This maneuver enables the vertical alignment (relative to the radial center line of the rotating tube) to be changed predictably and at will. The aim of the experiment is to produce two drops of measured size in the centrifugal force field at about 10 cm from the axis of rotation. These drops need to have a known separation along the centrifugal force direction and a known sideways separation of a fraction of a drop diameter. the operator will then need to note if coalescence occurs when the bigger drop catches up with the smaller one. This stage of the model is aimed at simulating the initial plans for lining up the drops and determining their sizes.

The early stage in the proposed experiment can be well represented mathematically but the final stage when the drops are less than one diameter apart needs to be verified against the sophisticated numerical treatments available, because of its vital importance in rain formation processes in the atmosphere. Other physical effects such as the role of surface phenomenon in the final stages before contact between the drops can be checked in the actual experiment by using water containing surface active agents, and drops formed from non-polar fluids other than water.

Once a viable set of maneuvers has been generated in this simulation the final specification of the software will enable the space vehicle software to be written without regard to the problems of cloud microphysics which dominate this feasibility and design stage.

Fig. 1. Motion of droplets within "squirrel cage" rotated 360° and stopped. Position shown at $1 / 6$ second intervals and line drawn between droplets once per second. (Squirrel cage not shown.)

Fig. 2. Same as Fig. I with rotation of 180°.

precking pege is ars ridicu

APPENDIX 5

Monthly Progress Report, 15 March 1976

Monthly Progress Report

Prepared for

> George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

CONTRACT NUMBER:
TITLE OF CONTRACT:

CONTRACTOR:

NAS8-31441
Preparatory Studies for Zero-g Cloud Drop Coalescence Experiment

Desert Research Institute
Energy \& Atmospheric Environment Center University of Nevada System SAGE Bldg., Stead Campus Reno, Nevada 89507

James W. Telford
9
January 21, 1976 to February 20, 1976
March 15, 1976
T. S. Keck

1. Progress during the reporting period

This month the problem of aligning water droplets in the zero-gravity chamber was addressed. Certain refinements were made in the alignment algorithm.

Last month there were included with the report figures showing the affect of rotating a "squirrel cage" about the two droplets. One effect noticed was that the droplets moved through a smaller angle than the squirrel cage. From several numerical experiments a simple correction procedure was derived to predict just how far a given droplet would turn. This procedure was added to the alignment algorithm previously used. There was a
great enhancement. Alignments normally took four to six motions. Now two are usually all that are needed.

Included with this report is a plot generated during program execution. This shows the process of alignment of two droplets. The viewpoint is that of an observer rotating with the tube. The center of rotation for both the tube and squirrel cage is marked in the center. The droplets start at the positions marked "A" and their positions are shown thereafter at $1 / 6$ second intervals. The droplets started at the randomly chosen points A. It is desired to bring them to a new position elong the center line of the tube stradding the center of rotation. First the squirrel cage is rotated to make the droplets straddle the center line. They end up at B. Then the whole tube is shifted left to place the center of rotation on the line segment joining the two droplets. The resulting position is C. Finally the squirrel cage is rotated to place the heavier droplet to the left of the other. (Currently this decision is made using the actual size of the droplets. The radius-determining algorithms have not been implemented yet.) The final result is positions D which are close to what was desired.
2. Plans for the next reporting period

In the next month the droplet-radius determining procedures will be added. It is hoped to have hardware then to run the displays at full speed.

rreceding page blank not farded

APPENDIX 6

Monthly Progress Report, 1 June 1976

Prepared for

> George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35312

CONTRACT NUMBER:
TITLE OF CONTRACT:

CONIRACIOR:

PRINCIPAI INVESTIGATOR:
MONTHLY PROGRESS REPORT NO:
REPORT FOR THE PERIOD:
DATE OF THIS REPORT:
AUTHOR:

NAS8-31441
Preparatory Studies of Zero-g Cloud Drop Coalescence Experiment

Desert Research Insticute
Energy \& Atmospheric Environment Cente? University of Nevada System SAGE Bldg., Stead Campus Reno, ivV 89507.

James W. Telford

12

April 21, 1976 to May 20, 1976
June 1, 1976
T. S. Keck

1. Progress during the reporting period

In this report it would seem opportune to present the mathematical basis for the work under way. We will present the equations used in the numerical simulations. We assume that the small droplets obey Stokes' Law as they fall through the air, i.e. they feel a force

$$
\vec{F}^{\prime}=-6 \pi n r\left(\vec{v}-\vec{v}_{a i r}\right)
$$

where $\quad \eta=$ dynamic viscosity of air

$$
r=\text { aroplet radius }
$$

$$
\vec{v}_{\text {air }}=\text { air velocity }
$$

Relative to the rotating experimental chamber we then have the equation of motion,

$$
\begin{aligned}
& \frac{\partial \stackrel{\rightharpoonup}{v}}{\partial t}=-2 \vec{\omega} \times \vec{v}+\omega^{2} \vec{R}-\frac{6 \pi \eta r}{m}\left(\vec{v}-\vec{v}_{a i r}\right) \\
& k=\frac{6 \pi \eta r}{m}=\frac{6 \pi \eta r}{4 / 3 \pi \rho r^{3}}=\frac{9 \eta}{2 \rho r^{2}}
\end{aligned}
$$

where $\vec{\omega}=$ angular velocity vector of rotating system

$$
\vec{R}=\text { radius vector of droplet }
$$

$$
\rho=\text { density of water (reduced by density of air) }
$$

$$
\mathrm{U}=\mathrm{x} \text { velocity droplet }
$$

$$
V=y \text { velocity droplet }
$$

$$
u_{a}=x \text { velocity air }
$$

$$
\mathrm{v}_{\mathrm{a}}=\mathrm{y} \text { velocity air }
$$

Then using a difference approximation of

$$
\begin{gathered}
\frac{\partial U}{\partial t}=\frac{1}{t}(U(t+\Delta t)-U(t)), \text { etc. } \\
U(t+\Delta t)=(1-k \Delta t) U+2 \omega \Delta t V+\omega^{2} x \Delta t+k \Delta t U_{a} \\
V(t+\Delta t)=-2(1) \Delta t U+(1-k \Delta t) V+\omega^{2} y \Delta t+k \Delta t V_{a} \\
x(t+\Delta t)=x+\Delta t(U(t+\Delta t)+U) / 2 \\
Y(t+\Delta t)=y+\Delta t(V(t+\Delta t)+V) / 2
\end{gathered}
$$

These equations will be numerically stable if all coefficients. are less than 1 in magnitude. This is satisfied if

$$
\Delta t<\frac{2}{K}=\frac{4 r^{2}}{9 \eta} \text { and } \Delta t<\frac{1}{2 \omega}
$$

These equations give the motion in all the cases needed to simulate the motion of the droplets. When the tube enclosing the droplets is shifted they feel an air velocity in the direction
of movement. The shock waves in air set up by starting the tube into motion, etc. occur on a time scale much less than the reaction of the droplets to Stokes' force and we may simply assume that the air follows the motion of its enclosure.

The other case this equation needed was for motion in a rotating cylinder or "squirrel cage". Here we must integrate the air. motion separately. Radial centrifugal effects are small and are dropped: Starting with the Navier-Stokes equation in a rotating frame

$$
\frac{d \vec{v}}{d t}=-2 \vec{\omega} \times \vec{v}+\omega^{2} \vec{R}-\frac{1}{p} \nabla p-\nu \nabla \times \nabla \times \vec{v}
$$

and dropping all terms in the radial direction, we have

$$
\frac{\partial \Omega}{\partial t}=v\left(\frac{3}{r} \frac{\partial \Omega}{\partial r}+\frac{\partial^{2} \Omega}{\partial r^{2}}\right)
$$

where

$$
\begin{aligned}
& \Omega=\text { angular velocity of air } \\
& \nu=\text { kinematic viscosity of air }
\end{aligned}
$$

Applying a difference approximation we obtain

$$
\left.\Omega_{i}(t+\Delta t)=\left(1-\frac{2 v \Delta t}{\Delta r^{2}}\right) \Omega_{i}+\frac{v \Delta t}{\Delta r^{2}}\left(1+\frac{3}{2(i-1)}\right) \Omega_{i+1}+\left(1-\frac{3}{2(i-1)}\right) \Omega_{i-1}\right)
$$

where

$$
\begin{aligned}
& r_{i}=\Delta r(i-1) \\
& \Omega_{i}=\Omega\left(r_{i}, t\right)
\end{aligned}
$$

Numerical stability will be obtained if all coefficients are less than 1 in magnitude. This holds if

$$
\Delta t<\frac{2}{5} \frac{\Delta r^{2}}{v}
$$

This is more restrictive than the limits on Δt given for the
droplet motion equations. When simulating the motion of the droplets in the rotating cylinder, the air velocity is calculated from the above equation by interpolation.

When one is using the rotating cylinder to align the droplets, there are precise angles through which the droplets must turn. The air inside acts like it is elastically connectad to the cylinder. When the cylinder is rotated through a fixed angle, the air inside eventually stops after going through the same angle. The droplets lag behind the air and do not travel as far. By numerical experiment it was found that a linear correction factor would compensate quite nicely.

$$
\theta_{\text {desired }}=(1-0.06 R) \theta_{\text {required }}
$$

where $\quad R=$ distance of droplet from axis of rotaticn $\theta_{\text {desired }}=$ angle that droplet is to turn ${ }^{\theta}$ required $=$ angle that cylinder must be turned

When two droplets must be positioned, it is sufficient to use the radius of a point midway between them. To estimate the radius of a droplet one takes the droplet motion equation and assumes that the radial component of acceleration is small. (Not true when the appratus is shifted relative to the axis of rotation, but good enough otherwise.) This reduces the equation to

$$
\dot{R}=\frac{2 \rho r^{2} \omega^{2} R}{9 \eta},
$$

notation as before, except that here ω is the total angular velocity of the droplet.

Let

$$
\Omega(t)=\int_{0}^{t} \omega^{2}(t) d t
$$

then

$$
R=R_{0} e^{\frac{2 \rho \Omega(t) r^{2}}{q^{2}}}
$$

Suppose the droplet has a true radius of r_{a}, but one has estimated the radius to be r_{e}. If the predicted position is not too different from the actual position, the two values for $\Omega(t)$ will be about the same and one may eliminate it from the two equations for R.' This gives

$$
\left(\frac{r_{a}}{r_{e}}\right)^{2}=\frac{\log R_{a}-\log R_{0}}{\log R_{e}-\log R_{0}}
$$

where

$$
\begin{aligned}
& R_{0}=\text { initial position of droplet } \\
& R_{e}=\text { predicted position } \\
& R_{a}=\text { actual position }
\end{aligned}
$$

Some care must be given in using this formula. If the droplets are allowed to drift too far, the correction will not be too accurate, but will still adjust in the correct direction. If insufficient drift has been allowed, then errors in measuring R_{a} becomes important. In fact small random errors could give wildy different estimates. In the program R_{a} is shifted by the probable error and if too great a change in the radius correction results, no estimate is made.

During this month work was done to debug the droplet radius estimation procedures. This is not yet complete. Also considered were procedures to compensate for the effects of
coriolis force on droplet alignment. This becomes significant when droplets are shifted from a point near the axis of rotation out to the position where they are to collide.

This month the effects of coriolis force on the relative alignment were simulated. To study the dynamics of collisions one must align the droplets quite closely. On moving droplets from near the center of rotation out to an appreciable radius, coriolis force changes the alignment. Thus it is necessary to compensate for this by adjusting the alignment before moving the droplets out to the fixed radius. Simulations of this were done using the University of Nevada CDC timesharing system. Work on this project has come to a halt waiting for the return of the MAC-16 computer and the start of the next contract period.
2. Plans for the next reporting period Little work on the MAC-16 minicomputer programs may be done in the next month because the computer has been returned to the factory for hardware improvements. Included is highspeed interface for the CRT and wiring for a set of multiplexer data channels. The data channels themselves are not beint purchased at this time.

PRECEDING RAGE RLANK NOT FEMIED

AFPENDIX 7
Monthly Progress Report, 1 July 1977

> George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

CONTRACT NUMBER:
TITLE OF CONTRACT:

CONTRACTOR:

PRINCIPAL INVESTIGATOR:
MONTHLY PROGRESS REPORT NO:
REPORT FOR THE PERIOD:
DATE OF THIS REPORT:
AUTHOR:

NAS8-31441
Preparatory Studies of Zero-g Cloud Drop Coalescence Experiment

Desert Research Institute Energy \& Atmospheric Environment Center University of Nevada System P. O. BOX 60220 Reno, NV 89506

James W. Telford

24

April 21, 1977 to May 20, 1977
July 1, 1977
T. S. Keck

1. Progress during the reporting period

Work continued on the predicter formulas. These give the procedure for moving a pair of droplets from their initial positions to the location for the desired collision. So far it has been assumed that the droplets have radii of $33 \mu \mathrm{~m}$ and $35 \mu \mathrm{~m}$. A set of thirl order least square fit formulas was produced (three formulas with all terms to the third order in the four initial position coordinates). These formulas worked well over a wide range of initial positions. The errors tended to have the same sense for both droplets. Collisions did not occur exactly at the target position, but they did occur, and were near the target.

The formulas are extremely unwieldy. The 105 coefficients would become 525 if the size of the droplets were allowed to vary and terins only to the second order in droplet radius were retained. The formulas represent a large amount of computation. Solutions are obtained over the whole range of circumstances that may occiur. Then the least square procedure compresses this into a form that requires much less computing to evaluate (even with $500+$ coefficients!). Another approach would be to do some of this computation in flight. A simpler set of prediction formulas would be used to obtain rough values for the alignment. Once the computer has determined values for the droplet radii, it could then proceed to compute more accurate values over a small range of droplet positions. This could be "in the background" with results only needed in the final stages of the operations. The computer would proceed to move the droplets into positions near those for which it is determining values. An interpolation would then give the information needed to effect the droplet collision.
2. Plans for the next reporting period

In the next reporting period the details of this on-board computation procedure will be proved further.

2neceorng 2
 Page blank NOT friden

APPENDIX 8
Monthly Progress Report, 7 July 1977

CONTRACT NUMBER:
TITLE OF CONTRACT:

CONTRACTOR:

PRINCIPAL INVESTIGATOR:
MONTHLY PROGRESS REPORT NO.:
REPORT FOR THE PERIOD:
DATE OF THIS REPORT:
AUTHOR:

NAS8-31441
Preparatory Studies of Zero-g Cloud Drop Coalescence Experiment

Desert Research Institute Energy \& Atmospheric Environment Center University of Nevada System P. O. BOX 60220 Reno, NV 89506

James W. Telford

25

May 21, 1977 to June 20, 1977
July 7, 1977
T. S. Keck

1. Progress during the report period

In this month an improved procedure for determining droplet radii was developed. This was developed from a closed-form solution to the equation for droplet motion in still air.

If the air is still in a rotating frame of reference the equations of motion of a droplet are

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=2 \omega \frac{d y}{d t}+\omega^{2} x-k \frac{d x}{d t} \\
& \frac{d^{2} y}{d t^{2}}=-2 \omega \frac{d x}{d t}+\omega^{2} y-k \frac{d y}{d t}
\end{aligned}
$$

where (x, y) is droplet position
ω is angular velocity of frame
k is given by Stokes' Law as $\frac{9 \eta}{4 r^{2}}$

$$
\begin{aligned}
& \eta \text { is viscosity of air } \\
& r \text { is droplet radius }
\end{aligned}
$$

Let $z=x+i y$. Then, $\quad \frac{d^{2} z}{d t}=-(k+2 \omega i) \frac{d z}{d t}+\omega^{2} z$
with general solution,

$$
\begin{aligned}
& z(t)=A \exp \left(\frac{-\alpha+\beta}{2} t\right)+B \exp \left(\frac{-\alpha-\beta}{2} t\right) \\
& A=\frac{1}{\beta}\left(u_{0}+\frac{\alpha+\beta}{2} z_{0}\right) \\
& B=-\frac{1}{\beta}\left(u_{0}+\frac{\alpha-\beta}{2} z_{0}\right) \\
& \alpha=k+2 \omega i \\
& \beta=\left(k^{2}+4 \omega i\right)^{\frac{1}{2}} \\
& z_{0}=z(0) \\
& u_{0}=\frac{d z}{d t}(0)
\end{aligned}
$$

Transients die out quite rapidly with a time constant of about 40. So we may take $B=0$. Then

$$
z(t)=z_{0} \exp \left(\frac{-\alpha+\beta}{2} t\right)
$$

This shows how unimportant the process is of injecting the droplets into the chamber. Only the position that this leaves the droplets matters. Separately the real and imaginary parts

$$
\begin{gathered}
\delta+\varepsilon i=\frac{-\alpha+\beta}{2} \\
x(t)=\left(x_{0} \cos \varepsilon t-y_{0} \sin \varepsilon t\right) e^{\delta t} \\
y(t)=\left(y_{0} \cos \varepsilon t+x_{0} \sin \varepsilon t\right) e^{\delta t} \\
R(t)=\left(x^{2}+y^{2}\right)^{\frac{1}{2}}=R(0) e^{\delta t}
\end{gathered}
$$

Thus the radius vector of the droplet increases exponentially. Evaluating for δ,

$$
\delta=\frac{\omega^{2}}{k}-\frac{5 \omega^{4}}{k^{3}}+\frac{42 \omega^{6}}{k^{5}}-\cdots
$$

reverting the series,

$$
\begin{aligned}
& \frac{1}{k}=\frac{\delta}{\omega^{2}}\left(1+5 \frac{\delta^{2}}{2}+33 \frac{\delta^{4}}{\omega^{4}}+\ldots\right) \\
& r^{2} \simeq \frac{9 n \delta}{4 \omega^{2}}\left(1+5 \frac{\delta^{2}}{\omega^{2}}\right) \\
& \left(33 \frac{\delta^{4}}{\omega^{4}}<5 \times 10^{-4}\right)
\end{aligned}
$$

Thus the radial motion of the droplet gives the radius of the droplet through a simple formula. In practice one can determine δ by performing a least-square fit from several positions of the droplet.

The solution of the droplet equation will be very useful to the simulation programs, which are still needed when the air is in motion. For example, the condition $B=0$ gives,

$$
u_{0}=\frac{-\alpha+\beta}{2} z_{0}=(\delta+\varepsilon i) z_{0},
$$

i.e. an initial velocity for any given initial position.
2. Plans for the next reporting period

In the next month these results will be used in the further development of a scheme for affecting droplet collisions.

; pebcranka prata

APPENDIX 9

Monthly Progress Report, 15 March 1978

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

CONTRACT NUMBER:
TITLE OF CONTRACT:

CONTRACTOR:

PRINCIPAL INVESTIGATOR:
MONTHLY PROGRESS REPORT NO.:
REPORT FOR THE PERIOD:
DATE OF THIS REPORT:
AUTHOR:

NAS8-31441
Preparatory Studies of Zero-g Cloud Drop Coalescence Experiment

Desert Research Institute Atmospheric Sciences Center P. O. Box 60220

Reno, NV 89506
James W. Telford
30
October 21, 1977 to November 20, 1977
March 15, 1978
T.S. Keck

1. Progress during the report period

One part of the control of this experiment has proved quite complicated. This is positioning a pair of droplets so that they will collide at the desired place. It is complicated by the rotation of the apparatus. Falling droplets are forced sideways as they move by Coriolis force. One must compensate before hand for this with a small shift to the opposite side. Accurately predicting this small shift has been a problem. Given unlimited computation time, this could be solved by trial and error. This can be stated as the following: The droplets are at A and B at present time. Find operations that result in their collision near C at a later time. Each guess requires a simulation run to determine if it
works. This requires time which eventually runs out since the droplets continue to move as computations go on. One solution that was tried was to do all the computation ahead of time. Many simulations were done for representative situations and then a least-square fit was done to fill in the gaps. This proved unworkable when a sixth degree polynomial in six variables was inadequate. At this time an intermediate solution seems workable. When the representative solutions for the least-square fit were generated, a successive approximation method was used. Convergence was quite fast (2 or 3 trials) once an approximate solution was found. Thus, for the real-time case, the approximating polynomial need only be accurate enough to come into the useful range of the interative technique.

The following procedure is being investigated. One predicts the droplet positions at a time far enough ahead to do, say, five complete simulations. The predicted position is substituted into a polynomial formula to obtain a trial solution. The trial solution is interated upon until either it converges or time runs out. 2. Plans for the next reporting period

In the next month approximating procedures will be investigated further.

PRECEDING PAGE BLANK NOT FEMED

Appendix 10
Mini-Computer (MAC 16) Coding

```
                +* DROPLET STMULATOR
                    ENTRY RALCOMD
                    ENITRY NFCOUT
                            ENTRY MODF,QNONO,GINJ,RDCORD
                            FNTRY PAK.PKP
                            ENTRY MGG,ESCFNQ
    ENTRY LOG?
    ENTRY XOFF,YOFF,SCALF
    EXTRN PLOT,SYMROL
    EXTRN FMUL,FADD,FSIJR,FDIV,NORM,FLOAT,FIX
    EXTRN XPOS,YPOS
    FXTRN XLOC,YLOC,MARK
    EXTRN CRT,PKP],RLFNZ
    EXTRN MOVF
    EXTRN TRIG,SIN.COG
    ORG $800
N-4
    SKP
    JMP MITI
0801 5000+
0003 0004+ LNI 4 TURN OFF TTY INTFRRUPTS
0804 0F46+
0805 52004+
0806 C001+
0807 5002+
0808 0740+
OROA 0743+
080日 05C1+
08\capC DON3
O800 6004+
OROF 6006+
08104007+
O810 40CFD+ DC DR,DR,WS
OR13 0001
0814 0008+
    LDA WS
081560009+
0816 DO0A+
0817 0801+
0818 600B+
0819 4007+
    STA DT
    LDA WS+1
    ADI l
    RFXH
    LDA Il1
    STA DR
    L\capA IlI+].
    STA DR+1 DR=1/11
    JMM FMUI
    STA DT+1 DT=?MR**?
    JMM FMUH
    DC NU,DT,A A=NU#DT
    JMM FDTV
    DC A,WS,R B=A/DR**?
081E 00023+
    LDA R
    LDA B+1
    ADA B
    STA C+1
    JMM FSUR
    DC.DI,C,C C=1-2B
    LDA C+1
```

| 0832 | $4012+$ | JMM FRACT |
| :--- | :--- | :--- | :--- | :--- | :--- |
| OR S | | |

0850	20]R+TIJRER	STX TIIRX
095 E	001C+	LnA FALL
085 F	$04 \mathrm{Al}+$	SAT 1
0タ60	$5280+$	JMP HERRST
0861	$4010+$	JMM MOVF.
0867	$0 \mathrm{OF} 0+$	DC 0350., SCAI.F
0863	0 DF 4	
0864	$4015+$	JMM 7ERO
0865	${ }^{\text {OCFF }}$	DC. XOFF, YOFF,
ORF6	0 CF 1	
0867	0000	
0868	$400 \mathrm{C}+$	JMM FDTV
0869	ODF? +	DC D14..SCALE,WIDTH
ORGA	ODF 4	
086R	1260	
ORGC	$401 \mathrm{~F}+$	JMM CRT DRAW TIJRF
ORGD	ODR3+	DC M1.4K.M1.03,4
OGRE	OnR 7	
ORSF	0004	
0870	$401 F+$	JMM CRT
0871	0DB5+	DC D1.46.M1.0.3.?
087 ?	nDR7	
0873	0007	
0874	401F*	JMM CRT
0875	0ПR5 +	DC D1.46.01.03,4
0876	ODR9	
08.77	0004	
0878	$401 F+$	JMM CRT
0879	ODR3 +	DCM].46.01.03.?
087A	OnR9	
0878	0002	
0876	$4020+$	JMM MSG
0R7D	$0889+$	Dr PLX,PLY,PLIIS
ก87E	088R	
087 F	0000	
ORRO	$4020+$	$J M M$ MSG
0 OR1	0ACG+	DC M.1, $\mathrm{M} .1, \mathrm{Zl}$
0日R?	0 BC 4	
0883	0F0?	
0884	$4020+$	JMM MSG
0885	$0 \mathrm{RC} 4+$	DC. D.1, 0.1 .7 .7
0886	0 06.4	
OBR7	OFO4	
ORRR	5818+	JMP *TIIRX
0889	$8741+P L X$	DC. - 73469E-2R-7,-7
ORAA	FFFO	
ORRB	B4C5+PLY	OC -.91R3KE-2R-6,-6
ORRC	FFFA	
ORRD	$\text { DO21 }+ \text { + HEPRS }$	$T \angle D A=84$
0 ORF	$6022+$ S	STA SCAIF
ORRF	$0007+$	LnI 7
0890	$6023+$	STA SCALF+l
$0 \mathrm{RG1}$	D024+	$\angle D A=583$
0892	60?54	STA XOFF
0893	$0003+$	LDI 3
0894	6026+	STA XOFF+1
0895	$400 \mathrm{C}+$	JMM FDIV
0896	ODF? +	DC D14.. SCALF,WIDTH
0897	ODE 4	
0898	İGO	
0899	$401 F+$	JMM CRT
089A	08C2+	DC M1, 01,4
0898	0003	
089C	0004	
$089 D$	$401 \mathrm{~F}+$	JMM CRT
0 O9E	ODA9 +	DC DII, Cl . 2
OR9F	0003	

090R	$4010+$	JMM MOVF	
090 C	$0858+$	DC D30., TP	
0900) DAB		
090 E	404? +	JMM SHIFT COLLFCT CROSSHAIR	INPUTS
090 F	$0540+$	CLA	
0910	$603 \mathrm{~B}+$	STA FITTJNG	
0911	$603 \mathrm{C}+$	STA MVI	
0912	$6030+$	STA MVZ	
0913	$6035+$	STA DIDI	
0914	$6035+$	STA Dİ?	
0915	$0001+$	LDI 1 OTSPLAY RFSULTS	
0916	$4043+$	JMM MODF	
0917	$401 F+$	JMM CRT	
0919	$0 \cap 83+$	DC M1.46.0.5,4	
0919	ODF 6		
091 A	0004		
0918	4044+	JMM DECOIJT	
091 C	0048+	DC $\times 1$	
091 D	$4044+$	JMM DECOIT	
091 E	OD4A+	DC Y 1	
0917	$4044+$	JMM DECOUT	
0970	0056+	DC R1	
0921	$401 \mathrm{~F}+$	JMM CRT	
0972	ODR3+	DC MI. $46 \cdot \mathrm{D.4.4}$	
0976	0004		
0925	4044+	JMM DECNIT	
0926	005C+	DC X ?	
0927	4044+	JMM DECOIIT	
0978	005E+	DC YZ	
0929	$4044+$	JMM DFCOUT	
0974	OD6A+	DC R?	
0978	$401 F+$	JMM CRT	
0976	ODB3 0 OFF	DC Ml. $4 \mathrm{~h}, \mathrm{M} \cdot 4,4$	
09 OE	0004		
092F	4044+	JMM DECOUT	
0970	$0070+$	DC EX1	
0931	$4044+$	JMM DECOIJT	
0932	0072+	DC EYI	
0933	$4044+$	JMM DECOUT	
09.34	On7F+	DC ER1	
0935	$401 F+$	JMM CRT	
0936	OnR3+	DC M1. $46, \mathrm{M} \cdot 5,4$	
0937	0 E. 00		
0938	0004		
0939	4044+	JMM DECOIIT	
0934	0086+	DC EX2	
$093 B$ 093	$4044+$	JMM DECOUT	
093 C	0088 +	DC EY2	
0930 0935	$4044+$	JMM DECOIT	
093 E 093	0094+	DC ER2	
093F	0 A47+NESC	EDI 4,7	
0940	$533 \mathrm{~F}+$	JMP *-1 WAIT FOR ESC	
0941	$0918+$	SBI \$1R	
0942	$04 \mathrm{Al}+$	SAZ 1	
0943	$533 \mathrm{~F}+$	JMP WESC	
0944	$4010+$	JMM MOVF	
0945	0F39+	DC D. $25 . \mathrm{VCH}$	
0946	0005		
0947 0948	4045+	JMM FADO	
0948 0949	0072+	DC EY1,FY?,TP	
0949	$0 \cap 88$ 0 DAB		
094 B	D0464	LDA TP + 1	
094 C	0804+	ADI 4	
0940	$0401+$	SAG 1	
094 E	$5360+$	JMP XTFST	

094 F	$4045+$ ALIGN	JMM FAnn
0950	$0070+$	DC FXI, FXP, TP?
0951	ODR6	
0952	0040	
0953	4047+	JMM ATAN
0954	ODAB+	DC TP, TPP, THFTA
0955	ODAD	
0956	ODAF	
0957	$4048+$	JMM FNFG
0958	ODAF +	DC THFTA
0959	0049+	LDA THFTA +1
095 A	0801+	\triangle I 1
095 B	0401+	SAG 1
095 C	5368 +	JMP COMPFN
0950	D04A ${ }^{\text {+ }}$	LDA THETA
095 F	$0495+$	SAN 5
095 F	$4011+$	JMM FSIJR
0960	ODAF +	DC THETA,DI, THFTA
0961	0003	
096?	0 DAF	
0963	5368+	JMP COMPFA
0964	$4045+$	JMM FADC
0965	ODAF +	DC THETA,DI, THETA
0966	0 OO3	
0967	ODAF	
0968	$404 \mathrm{~B}+$ COMPE	N JMMM RADTUS
0969	00AB +	OC TP, TPP, TP
096 A	ODAD	
096B	ODAB	
096C	$404 \mathrm{C}+$	JMM TWIST
0960	$4045+$ XTFST	JMM FADC
096 E	$0070+$	DC EX1. FX2, TP
$096 F$	0086	
0970	ODAB	
0971	D046+	LnA TP+]
0972	0804+	ADI 4
0973	$0401+$	SAG 1
0974	$537 \mathrm{~A}+$	JMP YTEST
0975	$4040+$	JMM HALF
0976	ODAB+	DC TP
0977	4048 +	JMM FNEG
0978	ODAB+	DC TP
0979	$4042+$	JMM SHIFT
0974	$4045+Y$ TEST	JMM FADD
0978	$0072+$	DC EY1,FY2,TP
097 C	ODAF	
0970	ODAB	
097 E	D046+	LDA TP +1
097 F	0804+	ADI 4
0980	0481+	SAN 1
0981	534 F +	JMP ALIGN
0982	0036+	LDA ER l +1
0983	F0.37 ${ }^{\text {+ }}$	CAA ERP + 1
0984	$538 \mathrm{C}+$	JMP ISI
0985	$538 \mathrm{~A}+$	JMP IS?
0986	D033+	LDA ER1
0987	F034+	CAA ER?
0988	$538 \mathrm{C}+$	JMP ISI
0989	0500+	NOP
098A	D04E+IS2	LПA $=-1$
098 B	$0481+$	SKP 1
09RC	0001+IS1	LOI 1
O9RD	$604 \mathrm{~F}+$	STA WHICH
098 E	$4011+$	JMM FSlla
09 RF	0086+	DC FX2,EXI, TP
0990	0070	
0991	ODAB	
0992	$4011+$	JMM FSUA

```
0993 0072+
0994 0088
0995 ODAD
099G DN4F+
0997 0404+
0998 4048+
0999 0DAR+
099A 40484
0998 ODAD+
099C 4047+
0990 ODAD +
O99E ODAB
O9GF ODAF
09A0 404B+
09Al 0070+
09A2 0D72
09A3 0DAR
09A4 4007+
09A5 ODAF+
09AG ODFR
09A7 ODAF
09A9 0540+
09AA 6039+
09AB 603A+
09AC 53BE+
DC EYI,FYP,TDP
LDA WHICH
SAG }
JMM FNFG
\MM FF
OC TPM FNEG
JMM FNEG
DC TP? 
DC TPR,TP,THFTA
JMM RADIIIS
DC EXI,FY1.TP
JMM FMUL, THETA,01.05,THFTA
JMM TWIST
CLA VSH
STA VSH
STA VSH+1
JMP DOFALL
```

O9AD	EOLC+AUTM	INC TEST
O9AE	$4010+$	JMM MOVF
O9AF	OCF3+	DC R0,R1
O9R0	0056	
O9R1	$4010+$	JMM MOVF
O9R2	OCF3+	DC. RO, ERI
09 R 3	007E	
0984	$4010+$	JMM MOVF
0985	ODE9+	DC RO2.R?
0986	006A	
$09 \mathrm{R7}$	$4010+$	JMM MOVF
09 R	00F9 +	DC ROO, ER?
09R9	0094	
O9RA	$4038+$	JMM XCOFF
09 RB	0044+	DC Q ${ }^{1}$
09RC	$4038+$	JMM XCOFF
09RD	$\begin{aligned} & 0058+ \\ & + \text { DOFAI } \end{aligned}$	LC DSTSY
O9RE	$401 \mathrm{D}+$	JMM MOVF
09RF	007E+	DC FR1, $\mathrm{XP}+2$
09C0	0R7R	
09C1	$4010+$	JMM MOVF
09 C 2	0D94 +	DC ER2, XP + 4
09 C 3	0R70	
09 C 4	4007+	JMM FMUL
0985	$007 \mathrm{E}+$	DC ERI, FRア, XP+6
0966	0 094	
$09 \mathrm{C7}$	OR7F	
09 0.8	$4007+$	JMM FMUL
0969	OD7E +	DC ERI,FRI, XP + F
09CA	007E	
09 CB	0881	
09 CC	$4007+$	JMM FMUL
09 CD	$0094+$	DC ER2,FR2, XP+10
O9CE	0094	
09 CF	0883	
0900	$4007+$	JMM FMIII.
$\begin{aligned} & 0901 \\ & 090 ? \end{aligned}$	$0863+$	$D C A P+?, X P+2, \triangle O F F$
0973	0855	
0904	$4007+$	JMM FMIIL
0905	0865+	$D C A P+4, X P+4, W S$
0976	0R7D	
0907	0001	
0908	$4045+$	JMM FADN
0979	0001+	DC WS, AOFF, AOFF
09DA	0855	
09nB	0 R55	
09DC	$4017+$	JMM FMUL
09 DD	0867+	DC AP + $5 \cdot X P+6 \cdot W .5$
09DE	0R7F	
09 DF	0001	
09 F 0	$4045+$	JMM FADD
09F1	$0001+$	DC WS, A $\cap F F, A \cap F F$
09 F ?	0855	
09 F 3	0855	
09F4	4007+	JMM FMIUL
0955	OR69+	DC AP + $8, \mathrm{XP}+8, W \mathrm{~S}$
09 F 6	$0 \mathrm{RB1}$	
09 F 7	0001	
09F8	$4045+$	JMM FADD
09 F 9	0001+	DC WS, AOFF, AOFF
09FA	0R55	
09FB	0855	
09 FC	$4007+$	JMM FMUL
O9ED	0868+	DC AP +10, XP +10,W
O9FE	0883	
09FF	0001	

09 F 0	$4045+$	JMM FADn
09 Fl	$0001+$	DC WS,A
09F?	0R55	
0974	$4045+$	JMM FADN
0955	0861 +	$D C$ AP, AOFF, $A \cap F F$
0976	0R55	
0957	0F55 5	
09 FP	$4007+$	JMM FMUL.
0979	036F+	DC $R P+$?, $X P+$? , WS
G9FA	0878	
09FR	0001	
09FC	$4045+$	JMM FADD
09 FD	0860 +	DC BP, WS, \triangle SLOPF
O9FE	0 D01	
09 FF	0853	
0 AOO	$4007+$	JMM FMUL
0 A01	0871+	$D C B P+4, X P+4, W S$
0 AO2	0R7D	
0 A03	0001	
0 On 4	$4045+$	JMM FADM
0 O05	0001 +	DC INS,ASLOPE,ASLOPE
0 AOG	0853	
OAO7	0R53	
OAOB	$4007+$	JMM FMIIL
OAOG	0873+	$D C \cdot B P+6, X P+6, W S$
OAOA	0875	
$\bigcirc A^{\circ} \cap \mathrm{B}$	0001	
OAOC	$4045+$	JMM FADD
0 AOD	0001+	EE WS,ASLOPE,ASLOPE
OAOE	0853	
OAOF	0853	
0 Alo	$4007+$	JMM FMUL
0 All	0875+	DC. $B P+8, X P+8, W S$
0 Al?	ORR1	
()A13	0 DO 1	
OA14	$4045+$	JMM FADI
0) 15	ODO1+	DC WS,ASLOPE, ASLOPE
OA16	0853	OC WS,ASLOPE, A.SLOE
0 O17	0853	
OA18	$4007+$	JMM FMUL.
0 O19	0877+	DC BP + 10, XP + 0 0,W
0 AlA	0883	
OA1B	0001	
0 OlC	$4045+$	JMM FADN
OAID	0D01+	DC WS,ASLOPE, ASLOPE
OAIE	0853	
0 A1F	0853	
0 A? 0	$400 \mathrm{C}+$	JMM FDIV
0 A? 1	0D4C+	DC. Cll, ПT,KA
0 A2?	0 CFF	
0 A? 3	ODDE	
0 AP4	$400 \mathrm{C}+$	JMM FDIV
0 A 25	0060+	DC CZ1, 0 T,KR
0 A 26	0 CFF	
0 A27	ODEO	
0A2. 8	$400 \mathrm{C}+$	JMM FDTV
0 A? 9	ODF $7+$	DC OMS?,KA,KA
0 A? A	ODDE	
$0 A ? B$	ODDE	
OA? C	$400 \mathrm{C}+$	JMM FDIV
0 A ? D	ODE ${ }^{+}$	DC OMS?,KR,KR
OAPE	ODE 0	
OA2F	ODE 0	
OA.30	$4007+$	JMM FMIJL
0 A31	ODDE +	DC KA,DIn., VELD
0 A32	ODDR	
04.33	ODE?	

0 A 34	$4048+$	JMM FNEG		
0 A35	ODF2+	DC VELD		
0436	$4007+$	JMM FMUL		
0437	0859+	DC M10.,KA,LVFL		
OA 38	ODDE			
0A39	OR5F			
OASA	$400 \mathrm{C}+$	JMiv FDIV		
0 A 3 B	- BSB +	DC 030., OT, LWHILF		
DA3C	0 CFF			
OAFD	0R5n			
OA3E	$4018+$	JMM FIX		
0 A3F	OR5D+	DC LWHILF		
0 A40	$4047+$	JMM ATAN		
OA4 1	0841 ${ }^{\text {+ }}$	DC OSLOPE, DI, TP		
0 A42	0003			
0 A4 3	ODAB			
0 A 44	$4011+$	JMM FSIJP		
0445	$0 D A B+$	OC TP,M. ${ }^{\text {S5, SAXON }}$		
0 A46	0845			
0 A47	0849			
0 A48	$4050+$	JMM SQPT		
0 O49	0840+	DC D2..TP?		
0 A4A	ODAD			
OA4B	$4011+$	JMM FSIIR		
0 A4C	$0003+$	DC DI, OSLOPE,TP		
0 A40	0741			
0 A4E	ODAB			
OA4F	$400 \mathrm{C}+$	JMM FDIV		
OA50	ODAD ${ }^{+}$	DC TPP, TP, TP?		
0 A5 1	ODAB			
0 A5?	ODAD			
0 A53	$4007+$	JMM FMUL		
0 A 54	ODAD+	OC TP2, 0 OFF OST?		
0.455	0843			
0 A56	0R4B			
0 A57	0357 ${ }^{+}$	LDA TEST		
0 - 58	04 Al -	SAZ 1		
0459	$5271+$	JMP AGAJN		
0 A5A	$0001+$	LDI 1		
OA5R	$6012+$	STA FALL		
0 A5C	$4043+$	JMM MODF		
0 O5D	$4051+$	JMM WIPF		
0 A 5 E	$4052+$	JMM TURFR		
OA5F	$4011+$	JMM FSUR		
0 AGO	005C+	DC X2. $\times 1, \mathrm{WS}$		
0 AGI	0048			
OAG?	0001			
0463	D008+	LDA WS		
0464	$0401+$	SAG 1 MAKE X1 THF	DOWNWARD	DROP
9A65	52A8+	JMP ACTION		
0466	C053+	LDX $=-14$		
0467	0454+	LDA Q1+14.1		
0468	$6008+$	STA W5		
OAFO	D455	LDA $02+14,1$		
OAFA	$6454+$	STA Q1+14.1		
OAFB	D008+	LOA WS		
$0 A G C$	$6455+$	STA Q2+14,1		
OAFD	$0201+$	INX 1		
DAGE	$5267+$	JMP *-7		
OAGF	$52 \mathrm{AB+}$	JMP ACTION		
0 A 70		DS 1 SPACER		
0 A 71	$0001+$	LDI 1		
0472	$4043+$	JMM MODF		
0473	0540+	CLA		
0 A 74	$6008+$	STA WS		
0 O75	$6004+$	STA WS+1		
0 A76	$6056+$	STA Y1		
0477	$6057+$	STA Y1+1.		

OARF	004A	
OARC	0046	
OARD	$4007+$	JMM FMU1
OARF	ODEO+	DC KB, Y , V
OARF	005E	
OACO	0D5A	
OAC1	$4007+$	JMM FMIJL
OAC?	0 OE0 +	DC KB, X? 112
0 AC3	005C	
DAC4	0058	
	+CTH	LSTSY
$0 \mathrm{AC5}$	$4007+$	JMM FMIJ
OACG	0R53 +	DC ASLOPF, XI. THFTA
OAC7	0048	
0 AC8	ODAF	
\bigcirc AC9	$4045+$	JMM FADD
OACA	ODAF +	DC THETA,ADFF, THFTA
OACB	0855	
$\bigcirc A C C$	ODAF	
OACD	$404 \mathrm{R}+$	JMM RADIUS
$\triangle A C E$	0048+	DC XI,YI, TP
$\bigcirc A C F$	0044	DC ${ }^{\text {RI, }}$,
$0 \triangle D 0$	$\bigcirc D A B$	
0 An 1	$4385+$	JMM TWIST
OADE	0005+	LDI 5
0 AD3	$602 \mathrm{~F}+$	STA PAWS
OAD4	$4010+$	JMM MOVF
OAD5	0003+	DC DI, VSH
OADG	0005	
$\bigcirc A D 7$	$4010+$	JMM MOVF
OADR	$0 \mathrm{~B} 3 \mathrm{~F}+$	DC DIST, TP
OAD9	ODAR	
OADA	$4010+$	JMM MOVE
OADR	ODRD +	DC DO. O, VFLD
OADC	ODE?	
OADD	$4.3 \mathrm{DC}+$	JMM SHIFT
OADE	$4010+$	JMM MOVF
\bigcirc ADF	0849+	DC SAXON, THFTA
0 AFO	ODAF	
OAF 1	$4010+$	JMM MOVF
OAF 2	$0 \mathrm{R} 3 \mathrm{~F}+$	DC DIST, TP
OAF3	ODAB	
$0 \mathrm{AF}^{2}$	$4385+$	JMM TWIST
OAF5	$4007+$	JMM FMUL
OAFG	$0048+$	DC X1, TSLOPE,TP
OAF 7	0 R 4 F	
OAFR	ODAB	
OAF9	$4045+$	JMM FADD
$0 A F A$	0 OAB +	DC TP.TOFF, TP
$\bigcirc A F B$	OR51	
OAFC	$\bigcirc D A B$	
OAFD	$0350+$	LDA LWHTLE
OAFE	$602 F+$	STA PAWS
OAFF	$4010+$	JMM MOVF
OAFO	$0 \mathrm{RSF}+$	DC LVEL,VFLD
OAFI	ODE?	
OAF?	$\mathrm{E} 358+$	INC IFPASS
OAF 3	$430 \mathrm{C}+$	JMM SHIFT
$\bigcirc A F 4$	0001+	LDI 1
$\bigcirc A F 5$	$4043+$	JMM MODF
OAF6	$401 F+$	JMM CRT
OAF7	$08 C 2+$	DC M1., M2. 4
OAF 8	ODEB	
OAF9	0004	
OAFA	$4044+$	JMM DECOUT
OAFB	$0048+$	DC $\times 1$
OAFC	$4044+$	JMM DECOUT
DAFD	0D4A+	DC Y 1.

OAFE	4044 +	JMM DE.COIIT	
OAFF	$0 \mathrm{O} 5 \mathrm{C}+$	DC \times ?	
0 POO	$4044+$	JMM DECOIIT	
0801	005E+	DC Y ${ }^{\text {d }}$	
0 BO	$401 F+$	JMM CRT	
0803	08C? +	DC M1., M3.,4	
0R0 4	ODFD		
0805	0004		
OPOK	$4044+$	JMM DECNIJT	
$0 \mathrm{BO7}$	0837+	DC POSI	
0 OOR	$4044+$	JMM DECNIT	
$0 \mathrm{B09}$	OR3F+	DC DIST	
080A	$4044+$	JMM DFCOUT	
OROB	0B49+	DC SAXON	
OBOC	D357+	LDA TEST	
OROD	$601 \mathrm{C}+$	STA FALL.	
OBOE	$505 \mathrm{C}+$	JMP T6GOn	
OBOF	$2050+L O C A T$	E STX L_OCX	
0810	$0700+$	LAX 0	
OR11	$6315+$	STA LOX	
$0 \mathrm{P1}$?	$0701+$	LAX 1	
0813	$6316+$	STA LOY	
OR14	$401 \mathrm{~F}+$	JMM CRT	
OR15	0000+10x	DC 0	
OR16	$0000+L 0 Y$	DC 00,4	
0R17	0004		
OR18	$4045+$	JMM FADC	
OR19	$1 G R D+$	DC XPOS,DI, XPOS	
081A	0 003		
ORIR	16 RD		
0 BlC	4045+	JMM FADD	
OR1D	$16 \mathrm{BF}+$	DC YPOS, D], YPOS	
ORIE	0003		
OBlF	16 RF		
0R?0	$401 \mathrm{~F}+$	JMM CRT	
0B21	1 GRD +	DC XPOS, YPOS,	
0 R 22	16 BF		
0 0823	0002		
08? 4	$405 \mathrm{~F}+$	JMM GIN MARKER DRAWN. INPUT	XHAIRS
0875	D05F+	LDA YPOS NO CHANGF. IF $Y<-1$	
0826	$0455+$	SAG NUVAL.	
0 BP 7	0060+	LDA YPOSt 1	
0828	$0401+$	SAG 1	
$0 \mathrm{B2} 9$	0482+	SKP NUVAL	
0R2A	C050+	Lny Locx	
0 BP B	$07 \mathrm{C2}+$	Jmx 2	
OB?C	C050 + NUVAL	LDX LOCX SAVE NFW POS	
08?	D061+	LDA XPOS	
DR2E	$0340+$	SIX 0	
0B2F	0062.	LDA XPOS+1	
0 B 30	$0341+$	SIX 1	
0831	0201+	INX 1	
0832	D05F+	LDA YPOS	
0833	$0340+$	SI\% 0	
0B34	D060+	LDA YPOStl	
0835	$0341+$	SIX 1	
08.36	$07 \mathrm{Cl}+$	JMX 1	
	+ ${ }^{+}$		
0837	0000+P0S1	OC 0,0,0.0	
0838	0000		
0879	0000		
0R3A	0000		
0838	0000+POS2	DC 0,0,0,0	
OR3C	0000		
0830	0000		
OB3E	0000		
OR3F	$0000+$ DIST	DC 0,0	

0 F 40	0000
OR41	$8466+0$ SLOPE DC－．0301778－5．－5
$0 \mathrm{P}_{4} 2$	FFFA
0843	$5 \mathrm{~F} 1 \mathrm{~B}+00 \mathrm{FF}$ DC－3676R－1，－1
0R44	FFFF
0R45	C000＋M．25 DC－－25R－1：－1
084 08	
0 R 49	F＇FFF SAXA OC－ 25
0849	$0000+5 A X O N$ DC 0.0
OB4A	0000
0R4R	0000＋DST2 DC 0．0
$0 \mathrm{B4C}$	0000
0840	40004D2．DC ？．Rア，？
0 R 4 E	0002
$0 \mathrm{R4F}$	DFD3＋TSLOPE DC－ 1.00561 R ？ ？
0 R50	0002
0851	45A9＋TOFF DC 8．70日R4．4
$0 \mathrm{R5} 2$	0004
2B53	$0000+A S L O P E$ DC 0，0
0 O5 4	0000
0855	A5C3＋AOFF DC－．29R－1，－1
0856	FFFF
0857	＋TEST DS 1
0858	$0000+$ IFPASS DC 0
0859	B000＋M10．DC－10．R4．4
OR5A	0004
0858	$7800+030 . D C 3085.5$
0 P5C	0005
0850	$0000+$ LWHTLE DC 0,0
0 B5F	0000
OB5F	$0000+$ LVEL．DC 0．0
0860	0000
0861	$40 F 4+A P \quad D C \cdot 10149 F 1 B 191$
ORF2	0001
0863	$52 C 8+$ DC．66？37F3R10，10
0864	000A＋DC－131R6E4R11．11
0865	
0867	AFAE + OC－26321E6R19，19
0 O68	0013
0869	$5175 *$ DC．41708F5R16．16
086A	0010 OC $30771 \mathrm{FRP19}$
OBFE	4R1F＋DC ．30771F6R19．19
ORGC	0013
OBRD	$0 A G B+B P$ DC． 104 P0F2R7．7
OBGE	$852 \mathrm{E}+\quad \mathrm{OC}-.78 \mathrm{CO6E4R13,13}$
OR70	000 D
0871	64B4＋DC．16113F4日11，11
0872	000B
0873	R2DC＋DC－．l2639E7A2l， 21
OB74	0015
$0 \mathrm{B75}$	7RC4＋DC．20278F7R2l．21
0876	0015
0877	$5179+$ DC ． 16686 6 6月18，18
0878	0012
0879	$+X P$ DS 12

OBC8	E064 +	INC	TP
OBC9	04R? +	SKP	2
ORCA	0540+	CLA	
OBCA	$6067+$	STA	OM+11
ORCC	E065+	INC	TP?
ORCD	04R1+	SKP	1
ORCE	5863+	JMP	${ }^{3} \mathrm{~T}$ T ${ }^{\text {d }}$
ORCF	F06A+	INC	CT
ORDO	$53 \mathrm{PT}+$	JMP	LP
ORD1	D029+	LDA	TNXT
0802	F0ZA+	CAA	ITIMF
0RD3	0482+	SKP	
0BD4	0481+	SKP	1
0805	$530 ?+$	JMP	*-3
0BD6	D02A+	LDA	ITIMF
0 BD 7	6029+	STA	TNXT
0808	$406 E+$	JMM	DSPLA
0809	$401 \mathrm{~F}+$	JMM	CRT
OBDA	$0001+$	DC. 1	
ORDB	53R5+	JMP	GLP

C-2


```
OCR5 OFDG+ DC WS2,WS.2
OCRG ODO1
OCR8 4011
OCRG ODRG+ DC EX2,D.1,WS
OCRA ODNI
OCRC 4011+ JMM FSIJP
OCRD ODREF DC EYZOD.l,WS?
OCAE ORC.4
OCgO 4ODR
0C91 0086+
0C9? n088
0C93 0004
OCgS OGGl DCWS,WS?,2
0C9G OFOG
M JMP #DSX
```



```
OCOE 0000+CR DC O
OCDF 0000+C.ALCOMP DC 0
OC.FO 0001+0NE
    0004+FOUR
    GAC?
    6666+OMEGA DC 1.6R1.1
    001
    R9C8+SHIFTY DC -$46.38,-6 -3/350 THREF INCREMFNTS
    FFFA
    0000+ANG DC 0&0
0000
6488+P
DC $648R,?
0002
0000
O000+QMOD DC. }
0000+XOFF DC 0,0
0000
    0000+YOFF DC 0,0
    0000
    FF&
    0000+C3 DC 0.0
    0000
    0000+C4 DC 0:0
    0000 DC 0;0
    4OD3+NU DC $4DD3,-2
    FFFE
    5017+111 DC $5017,-3 1/11
    FFFD
    0000
    0000+DT DC. 0.0
OCFF
ODOO 0000
ODO1 0000+WS DC 0.0
0002 0000
    0000
                                    DC $4000:1
0003 40001
O005 cloloM
DS 12
    lll
    0000
    0000+R DC 0,0
    0000
    0000+C DC 0,0
    0000
    0000+D DC 0,0
    0000
    0000+E DC 0,0
ODPC 0000
0000+G DC 0,O
    0000
                                DC 0,0
ODRE
    0000+H
ODPF
O0, DC 0,0
00.32 0000
lol
003440000
00.35 4000+P5 DC $4000,0
0036}0000
    DC}
    OD38 0000+TMI OC 0,0
0039 0000
ODBA 
```

```
OD.3C 0000+PTR OE O
0D3E 0000
OD3F OOOO+WYE
    DC 0.0
0П40 0000 0
0041 6666+P1 DC $6656,-3 .l 
On42 FFFD
DCTO
+01 LSTSY
0044 0000+Ul DC 0,0
0045 0000
0046 0000+V1 DC 0,0
0047 0000
DC 0,0
0049 0000
004A 0000+Y1 DC 0,0
OD4R 0000
OD4C 0000+C.11 DC 0.0
004E 00000+11X1 DC 0,0
004F 0000
0050 0000+VX1 DC. 0,0
0051 0000
    0000
0053 0000 +
DC 0,0
0053 00000
DC 0,0
OD54
\0056
DC.006RR-7,-7
    +0?
lll
lolo DC 0,0
0D5C 0000+x2 DC 0,0
0050 0000
OD5E 0000+Y2
DC 0,0
OOFF 0000
0060 0000+C21
DC 0,0
ODF1 0000
DC 0,0
0062 0000+U\times2
0063 0000
lol
0065 0000
0066 0000+XX2 DC 0,0
0067 0000
0D68 0000+YXZ DC 0.0
0069 0000
ODGA 6C?2+R2
DC.0056R-7,-7
00GA 6CZ?
            +EQ1
                                    LSTSY
ODGC 0000+FU1 DC 0.0
ODGD 0000
006E 0000+EVVI
                                DC 0,0
OD6F 0000
DC 0,0
0070 0000+EXI
0071 0000
OD7Z 00000+EY1 DC 0,0
0073 0000
OD74 0000+EC11 DC 0,0
0075 0000
O076 0000+EUX1
                                DC 0,0
0077 0000
O
DC 0,0
0078 0000+EVX1
0079 0000
DC 0,0
OD7A 0000+EXXI
DC 0,0
```

```
0070 0000
ODTE OONO+ERI DC O,O
007F
0000
ODRO 0000+LOCO1 DC 0,O
0081 0000
                    +FQ2 LSTSY
ODRZ 0000+FUS DC 0.0
0083 0000
0084 0000+FVZ DC 0,0
0085 0000
0086 0000+EX2 DC 0,0
ODA8 0000+FY2 DC 0,0
ODRQ 00000
ODRB 0000 +EUX2 DC 0,0
ODRD 0000
ODRE 0000+FVXZ DC 0,0
ODRF OOOO
    0000+EXX2 DC 0,0
    0000
    +EYXZ DC 0,0
```



```
    0000
    0000+LOCO2 DC 0,0
    0000
OD98 rrateSTF1 DS 1
OD9A D2C1+REST TXT,16
O9C
0090
009E
ODAO
ODAl
ODAZ 0000+
                                DC 0
ODA2 
0DA4 0000
00A5 8334+M.975 DC -.975A0,0
0DA6 0000
ODA7 5ALC+RTURB DC 5.5E-3B-7,-7
ODAR FFF9 
ODAA 0004
    0004
ODAC 0000 TP DP DC 0,0
ODAE 0000
    0000 TPO DCO
ODAF OOOO+THETA DC 0,0
ODRO 0000
ODB1 7AED+QUANT DC $7AFD,-4
ODR2 FFFC
0DR3 A261+M1.46 DC -$5D9F,1
0DR4 0001
ODR5 5D9F+D1.46 DC $5D9F,I
ODRG 0001 
0DR7 BE2C+M1.03 DC -$41D4,1
0DR8 0001
00R9 4104+1D1.03 DC $4104.1
0DBA 0NO1
ODRB %GI+M.006 DC $-5N9F,-7
ODRC FFF9
ODRD 0000+D0.0 DC 0,0
ODRE 0000
ODRF SD9F+D.006 DC $509F,-7
```

```
ODCO FFF
ODC,1 0000+WHICH DC O
00C
ODC3
ODC5
00C6
ODC8
ODC9
ODCA
ODCB D3C8+SHFTMDCOO
ODCC
ODCD
D4AO
ODCF
ODNO
00D1 0000
00N2 001R+TS DC 27
```



```
ODNS OOOO+VSH DC 0,0
0DD6 0000
OON7 9C00+M400. DC -400R9.9
0008 0009
0009 0000+TINC DC 0,0
ODNA 00OO
ODNB 5000+D10. DC 10R4,4
ODDC 0004
0ODD 0000+CLZ DC 0
ODNF OOOO+KA DC 0,0
ODNF 0000
OOFO 0000+KR DC 0,0
ODF1 0000
ODE2 0000+VELD DC 0.0
ODF3
ODFS 0000
ODEG 0000+FALL DC 0
ODF7 0000+OMS2 DC 0,0
ODF8 0000 
ODF9 72RO+R02 DC .0035R-8,-8
ODFA FFFB
ODFB COOO+M2. DC -2.R2.2
ODFC 0002
ODED AODO+M3. DC - 3.R?. 2
ODFE 0002
ODFF
    l
ODF1 0009
ODF2 7000+D14. DC 14R4.4
ODF3 0004
ODF4 4000+SMALL DC -5B0,-20
ODF5 FFEC
ODF6 4000+D.5 DC .5R0.0
ODF7 0000 0.5 . DRO.0
0DF8 4333+D1.05 DC 1.05R1,1
ODF9 0001
ODFA 5000+D5. DC 5.83.3
ODFB
ODFB
ODFC
    0003
ODFD
ODFE
ODFF
    6G66+D.4 DC .4B-1,-1
    FFFF
    999A+M.4 DC =.4B-1,-1
OEOO
    FFFF
    8000
        DC $8000,-1
OEO1 FFFF
OE02 B100+71 DC. $B100,0
OE03
    0000
```

OFO4 R200+72 DC SR200,0
$\begin{array}{ll}\text { OEOS } \\ \text { OEO } & 000 \\ \text { +XTIME OS } 1\end{array}$

OEDO	$+\mathrm{XHX}$	DS
OFDI	+ XRED	OS 1
OED?	$+\mathrm{XHCOF}$	DS ?
OED4	+ FITT	ING DS
0 ODS	+ X1OR2	2 DS 1
0 ORG	+ NUTIM	ME OS ?
OFOS	+ XSCRE	EP DS 2
OEDA	+YSCR	P DS 2
OEDC	+ROLD	DS ?
OEDE	+ OLDT	IME DS
OFDF	- + RNU	DS?
OEF1	$58 \mathrm{~B} 9+$ LOGE2	DC.693172日0,
0EF2	0000	
OEF3	$0000+\mathrm{MV1}$	DC 0
OFF4	0000+0ID1	DC 0
OEF5	0000+R10LD	DC 0:0
OEF6	0000	
OEF 7	0000+T10LD	DC 0
OEF8	$0000+M V 2$	DC 0
0EF9	$0000+0 I D ?$	DC 0
OEFA	$0000+\mathrm{R2OLD}$	DC 0,0
OEFB	0000	
OEFC	O000+T2OLD	DE 0
OEFD	$0000+$ NUTIM	ME? DC 0
OEFE	$0000+$ XHDEL	T DC 0,0
OEFF	0000	
OEFO	$2327+E \times P$?	STX XPX $\quad Y=2 . \% * X$
OEF1	$0300+$	LIX 0
OEF2	$6328+$	STA TEX
OEF3	$0301+$	LIX 1
OEF4	$6329+$	STA TEX E -1
OEF5	0700+	LAX 0
OEF6	$62 \mathrm{FF}+$	STA AEX
DEF7	$4018+$	JMM FIX
0 EF8	$0{ }^{0} 28+$	DC TEX
0EF9	D328+	LDA TEX
OEFA	0801+	ADI 1
OEFB	$632 \mathrm{~B}+$	STA AEXP+1
OEFC	4081+	JMM FLOAT
OEFD	$0 \mathrm{~F} 28+$	DC TEX
OEFE	$4011+$	JMM FSIJR
0 EFF	OOOO + AEX	DC 000 , TEX. TEX
0 FOO	0 F 28	
OFO1	0 F 28	
OFO2	$4012+$	JMM FRACT
0 F 03	$0 \mathrm{~F} 28+$	DC TEX
OFO4	D328+	LDA TEX
0F05	$04 \mathrm{EO}+$	MPY
0 F 06	0000+	DC $0, \mathrm{CX} 4, \mathrm{TEX}+1$.
0 F 07	OF30	
OFOB	0F29	
OFO9	$0 \mathrm{CC3}+$	ARS 3
OFOA	$832 \mathrm{~F}+$	ADD CX 3
OFOR	$04 \mathrm{EO}+$	MPY
OFOC	$0000+$	DC 0,TEX.TEX + .
OFOD	0F28	
OFOE	OF29	
OFOF	$0 \mathrm{CC2}+$	ARS 2
OFI 0	$832 \mathrm{E}+$	ADD CX2A
OFll	04E0+	MPY
OFI?	0000+	DC 0, TEX, TEX +1
OF13	0F28	
OF 14	0F29	
OF15	$0 \mathrm{CCl}+$	ARS 1
OF 16	$8320+$	ADD CXIA
OF 17	$04 \mathrm{E} 0+$	MPY
OF18	0000+	DC 0. TEX, TEX +1

OFDR $0000+$ UA DC 0,0
OFn9 0000
$O F D A \quad 0000+V A \quad D C \quad 0,0$

1020	$106 \mathrm{C}+$	DC VP, EI, VP	
1021	1064		
$102 ?$	106 C		
1023	$408 \mathrm{~A}+$	JMM DADD	
1024	$106 \mathrm{C}+$	DC VP, D?, VP	
1025	1066		
1026	106 C		
1077	$408 A+$	JMM DADD	
1028	106C+	DC VP, D3.VP	
10,9	1068		
102A	106C		
102B	$408 \mathrm{~B}+$	JMM DAVFR	
10?	1078+	DC. UXT,UP,WS	
$10 ? 0$	106A		
102E	0001		
102 F	$408 \mathrm{C}+$	JMM DFLOAT	
1.030	0001+	DC WS, WS	
1031	0001		
1032	$4007+$	JMM FMUL	
1033	0001 +	DC WS,DT, WS	
10.34	OCFF		
1035	ODO1		
1036	408A+	JMM DADD	
1037	$107 \mathrm{C}+$	DC XXT, WS, XXT	
1038	0001		
1039	107C		
103A	$408 \mathrm{C}+$	JMM DFLOAT	
103 B	$107 \mathrm{C}+$	DC XXT, XT	
103 C	1072		
1030	$408 \mathrm{Ba}+$	JMM DAVFR WS	
103 E	$1074+$	DC VXT, VP, WS	
103 F	$106 C$		
1040	0001		
1041	$408 \mathrm{C}+$	JMM DFLOAT	
1042	00^{01+}	DC WS,WS	
1043	0001		
1044	$4007+$	JMM FMUL	
11045	ODO1 +	DC WS,DT,WS	
1046	0 CFF		
1047 1048	0001		
1048	$4084+$	JMM DADD	
1049 $104 A$	107E+	DC YXT,WS, YXT	
104 A	0001		
104 B 104	107 E		
104 C	$408 \mathrm{C}+$	JMM Y ${ }_{\text {d }}$ LOAT	
104 E	1074	DC YXT, YT	
104 F	$4010+$	JMM MOVF	
1050	$106 A+$	DC UP, UXT	
1051	1078		
1052	$408 \mathrm{C}+$	JMM DFLOAT	
1053	1078+	DC UXT,UT	
1054	1065		
1055 1056	$4010+$	JMM MOVE	
1056	106C+	DC VP, VXT	
1057 1058	107A		
1058 1059	$408 \mathrm{C}+$	JMM DFLOAT	
1059 $105 A$	107A+	OC VXT,VT	
105A	1070		
1058	C084+	LDX $=-20$ REPLACE UPDATED	ARGS
105 C	D682+	LDA PT+20,1	
1050	6E63+	STA \&PTRA, 1	
105 E	$0201+$	INX 1	
1057 1060	525C+	JMP $\%-3$	
1060 1061	C262+	LDX TX	
1061	$07 \mathrm{Cl}+$	JMX 1	
1062	$0000+{ }^{+}$	DC 0	

1063	$0000+\mathrm{PTRA}$ $0000+\mathrm{F}$	DC
065	0000	
066	0000+D2	DC 0,0
1067	0000	
1068	$0000+D 3$ 0000	DC 0,0
106A	0000+UP	DC 0,0
1068	0000	
106 C	$0000+V P$	DC 0,0
1060	0000	
1065	$0000+{ }^{+}{ }^{\text {T }}$	LSTSY DC 0,0
	0000	
1070	$0000+V T$	DC 0,0
11071	0000 $0000+$	$0 \mathrm{O}, 0$
1073	0000	DC 0,0
1074	$0000+Y T$	DC 0,0
76	0000	
076	$0000+\mathrm{CT}$	DC 0,0
078	$0000+U X T$	DC 0,0
1079	0000	
107 A	$0000+\mathrm{VXT}$	DC 0,0
107 C	$0000+X X T$	DC 0,0
1070	0000	
07 F	0000	0
1080	0000+RT	DC 0,0
1081	0000	

1082	$0300+$ HALF	LIX 0
1083	$04 \mathrm{~A} 2+$	SAZ 2
1084	$0301+$	LIX 1
1085	$0901+$	SRI 1
1086	$0341+$	SIX 1
1087	$07 \mathrm{Cl}+$	JMX 1
1088	$0300+$ TWICE	LIX 0
1089	$04 \mathrm{AC+}$	SAZ 2
108A	$0301+$	LTX 1
108 B	$0801+$	ADI 1
108 C	0341 +	SIX
10 RD	$07 \mathrm{Cl} 1+$	JMX 1
10 RE	$22 F 0+A T A N$	STX ATX.
10 RF	$0300+$	LIX 0
1090	$62 F 3+$	STA Y
1091	$0504+$	SEX S
1092	$04 \mathrm{Bl}+$	SAN 1
1093	$05 \mathrm{C} 4+$	RFX 5
1094	$0301+$	LIX 1
1095	62F4+	STA Y +1
1096	$0433+$	SNS 3
1097	4048 +	JMM FNFG
1098	$10 \mathrm{F3}+$	DC Y
1099	C2FO+	LDX ATX
109 A	$0201+$	INX 1
1098	$0301+$	LIX 1
109 C	$6252+$	STA ${ }^{\text {a }}$ +1.
1090	$0300+$	LIX 0
109 E	$62 \mathrm{Fl}+$	STA X
109 F	$04 \mathrm{B3}+$	SAN 3
10A0	$05 \mathrm{C} 8+$	RFX R
10 Al	$0540+$	CLA
10A2	0484+	SKP 4
10A3	4048 +	JMM FNEG
1044	$10 \mathrm{Fl}+$	DC X
1045	0508+	SEX R
1046	D068 +	LDA $=\$ 4000$
1047	$8076+$	$A D O=\$ 2000$
1048	$62 F 5+$	STA QUAN
1049	D2F4+	LDA $Y+1$
10 AA	F2F2+	CAA $x+1$
10 AB	0481 1.	SKP 1
10 AC	D2F2+	LDA $\mathrm{X}+1$
10 AD	0180+	ONA
10 AE	$62 \mathrm{F6}+$	STA EXP
10 AF	$82 \mathrm{~F} 4+$	ADD $\bar{Y}+1$
1080	$62 F 4+$	STA $Y+1$
10 Bl	D2F2+	LDA $x+1$
$10 \mathrm{B2}$	$8276+$	ADD EXP
10 R 3	62F2+	STA $\mathrm{X}+1$
10 R 4	$4012+$	JMM FRACT
10R5	10F1+	DC x
$10 \mathrm{R6}$	$4012+$	JMM FRACT
1087	$10 \mathrm{~F} 3+$	DC Y
10 BB	D2F1+	LDA X
1089	82F3+	ADD Y
10 RA	0801+	ADI 1
10 BB	$62 F 7+$	STA T
10 CBC	D2F3+	LDA Y
10 AD	92F1+	SUB X
10AE	$0470+$	DIV
10RF	$0000+$	DC $0, T, T$
1000	10 F 7	
10 Cl	10 F 7	
10 C 2	$62 \mathrm{Fl}+$	STA X
10 C 3	04E0+	MPY

$\operatorname{LDA}=-1$? CLA
NSIIM
LMM RANDM
A OD NSUM
STA NSUM
INC NCT
JMP $\because-5$
LDA NSUM
SUB $=\$ 300$
STA NSUM
LDI 4
STA NSUM+1
JMM NORM
DC NSUM
LDX NX
LDA NSIJM
SIX 0
$\begin{array}{ll}\text { LINA } & \text { NSUM }+1 \\ \text { SIX } & 1\end{array}$
1115 2323+RANDM

$111 E$	$0001+V A L$	$D C$	1
$111 F$	$0000+N S U M$	$0 C$	0
1120	0000		
1121	$0000+N X$	$D C$	0
1122	$0000+N C T$	$0 C$	0
1123	$0000+R N X$	$0 C$	0


```
\begin{tabular}{llll}
\(113 D\) & \(C 344+\) & LDX RAX \\
\(113 E\) & \(0202+\) & INX \\
\(113 F\) & \(0347+\) & LDA \\
\(114 R\) \\
1140 & \(0340+\) & SIX \\
1141 & \(0348+\) & 0 \\
1142 & \(0341+\) & SDA & \(Y R+1\) \\
1143 & \(07 C 1+\) & SMX & 1
\end{tabular}
\[
\begin{array}{llc}
1144 & 0000+R A X & D C \\
1145 & 0000+X R & D C \\
1146 & 0000
\end{array}
\]
\[
1146 \quad 0000
\]
\[
\begin{array}{llll}
1147 & 0000+Y R \quad \text { DC } 0,1 \\
1148 & 0000
\end{array}
\]
\[
\begin{array}{llll}
1149 & 237 A+50 R T & \text { STX SOX } \\
114 \mathrm{~A} & 0301+ & 1
\end{array}
\]
```



```
117E 6A2?
1180 7AEF
11月1 0000+SQT DC 0
11R2 0000+SQEXP DC O
1183}0000+\mathrm{ RAND DC 0,0
11R4 0000
```



```
ll
```



```
\begin{tabular}{llll}
1282 & \(62 A 1+P A K\) & STA PKA \\
1283 & \(0270+\) & LDA QMONO IF STORAGE MODE OUTPUT OIRECTLY \\
1284 & \(0401+\) & SAG 1
\end{tabular}
12R4 0401+
1285 0484+
12RG D?Al
1287 0446+
1290 5288
l2RA
12R
l28
128F
1291 D2A
SAG l
1292 0CC
1294}04040
0700+
1296
12
129B
1?90
1290
12A0
ZRA D2A1+
SKP 4
2R9 07CO+
EOO 4.6
+ JMX O
DDA PKA
ANA = S
    D2A1+
LDA PKA
JMX O
STA PKT
STX PAX 
LDA P
XXA
SNC 4
    A2A3+ + DRA PKT
    0740
    0485+
    D2A3+
    0CO8+
    0740+
    0540
    2A4+
    O2AI
    5AAZ+
+*
SAX
    7C0
```



```
1333 ODE4
1335 4045+ JMM FADN
1376 17FO+ DC XLOC,XOFF,XLOC
13.38 17F0
1339 4045+ JMM FADN 
133B OCF1
133D 5R3E + +GGX JMP *FGX
```



```
\(\begin{array}{ll}13 C 1 & 4328+R E C A L C \\ 13 C .2 & 4010+\end{array}\)
```

130.3	$17 \mathrm{FO}+$	DC XLOC, X?
1364	0D5C	
1365	$4010+$	JMM MOVF
1366	17F?+	DC YLOC,Y?
13 C 7	0D5E	
13 CB	4?2R+	SMM MSG
1309	$0048+$	DC X1,Y1,00.0
$13 C A$	0D4A	
13 CB	ODRD	
$13 C C$	422R+	JMM MSG
13.30	005C+	DC X2,Y?,D0.0
13 CF	OD5E	
13 CF	ODAD	
1300	4282+	JMM GIN
1301	D2A4 +	LDA PKP
$13 n 2$	$9040+$	SUR PKP1
$13 \cap 3$	$9010+$	SUR PKPl
1304	0804+	ADI 4
1305	$6048+$	STA Q
1306	$4015+$	JMM CRT START DISPL
1307	0001+	DC I ${ }^{\text {I }}$ CRT
1308 1309	$4081+$	JMM FLOAT CALC DISP TIME
1309 1304	0033+	DC Q
1304 1308	$400 \mathrm{C}+$	JMM FDIV
1308 130 C	$0033+$	DC Q,D960., Q
130 E	$4011+$	JMM FSUR
13 DF	$0 \mathrm{D} 5 \mathrm{C}+$	DC. $\times 2, \times 1, A$ GET RF POS
$13 F 0$	0048	
13 F 1	0023	
1375	$4011+$	JMM FSUR
135 135	005F+	DC YZ, Y1, R
$13 F 4$	0D4A	
1355 $13 F 6$	0025	
$13 F 6$	$4011+$	JMM FSUR ESTIMATF VELOCITY
$13 F 7$	0023+	DC A,EXI,WS
1358	0070	
1359	0001	
$13 F A$	$400 \mathrm{C}+$	JMM FDIV
$13 F \mathrm{~F}$	0001+	DC. WS,Q,G RFLATIVE X VEL
] 3 FC	0033	
$13 F D$	0020	
$13 F E$	$4011+$	JMM FSUR
$13 F F$	0025+	DC R,EYI, WS
$13 F 0$	$0 \cap 72$	
13 F 2	$400 \mathrm{C}+$	JMM FDIV
$13 F 3$	$0001+$	DC WS,O.H
$13 F 4$	0033	
$13 F 5$	ODOF	
13 F 6	D069+	LDA $=-3$
$13 F 7$	$\begin{aligned} 60 A 9 & + \\ & +N E W T \end{aligned}$	$\begin{aligned} & \text { STA TEMP } \\ & \text { LSTSY } \end{aligned}$
$13 F 8$	40AA+	JMM LIE
$13 F 9$	ODGC+	DC EUI, A.C
$13 F A$	0023	
$13 F B$	0027	
$13 F C$	$40 \Delta A+$	JMM LIF
$13 F D$ $13 F F$	0023+	DC A,G,F
$13 F F$	0020	
$13 F F$	0戈2B	
1400	$4305+$	JMM DOT
1401	ODGC+	DC EUI,A,P
1402	0023	
1403	0 D 31	
1404	$4305+$	JMM DOT
1405	006C+	DC FUl,G,R

```
1406 00200
lll
140A OD27
140R 0D01
l40C 4015+ 
140F L4FO+ OCM R,E,WS?
1411 OFDG
1412 4011+
1415 OFNG
1416
1 4 1
1418
141A 43B7+
141C ODPD
141D}00
141F}0000
1421 0001
1472
1424 0027
1425 00227
1427 0027
1428}0000
1429 0001
142解 0001
142C OFDG
142D 0DO1
142F
1430 OCFA
1431 0001
1432 D00A 
14330901 
1434
14.35
14.364045
LDA 
JMM FSUR
DC. WS,WS?,WS?
LDA WSZ HOLN STEADY IF DFNOM ZFRO
JMP SET
DC FUIGG,GS
JMM FMUL
DC WSgF.WS
DMM FMUL
DC C,C,C
JMM FSIJR
DC C.WS.WS
JMM FDIV
JMM FDIV
DC WS,PI,WS
LDA WS+1 HOLN STEADY ON EXCESSIVE CHANGE
SAN 1
JMP SET
JMM FADN
1437 0029+
DC D,WSOD
1438 0001
143A 401D+CET
JMM MOVF
DC A,EXI
JMM MOVF
DC R,EYI
JMM RANGF
DC D TRIG
OMM TRIS
JMM FMUL CALC COMP OF ACCEL
DC W,SIN,FVI
JMM FMUL
DC W,COS,FUI
```

144 A	1757		
1448	0n6C		
144 C	FOA9+	INC TEMP	
1440	$5040+$	JMP NEWT	
144 E	$4007+$	JMM FMUI	UPDATF POS AND VEL
144 F	0.33.3+	DC Q, FIll 4	
1450	006 C		
1451	$0 \cap 23$		
1452	$4040+$	JMM HALF	
1453	0023+	DC A	
1454	$4045+$	JMM FADC	
$1 \begin{aligned} & 1455 \\ & 1456\end{aligned}$	$0044+$	DC Ul, A.Ul	
1456	0 023		
1457	0044		
1458	$4007+$	JMM FMIUL	
1459	$0044+$	DC Ul, X,R	
145 A	0033		
145R	0025		
145 C	40 全5+	JMM FADD	
1450	$0048+$		
145 F	0025		
145 F	0048		
1460	$4045+$	JMM FADI	(RFST OF VFL CHNG)
1461	$0044+$	Dr. Ul, A, 111	
$1 \begin{aligned} & 1462 \\ & 1463\end{aligned}$	0 ロ23		
1463	0044		
1454	$4007+$	JMM FMUL.	
1465	0033+	DCO OVI.A	
1466	0065		
1467	0023		
14 ¢8	$4040+$	JMM HALF	
14 K9	0023+	DC A	
145 A	$4045+$	JMM FADD	
146 R	0046+	DC. VI, A, VI	
146 C	0023		
146 D	0046		
$146 E$	$4007+$	JMM FMUL	
$146 F$	0046+	DC VI, ${ }^{\text {V,R }}$	
1470	0033		
1471	0025		
1472	$4045+$	JMM FADI	
1473	$0044+$	DC Y1. B.Y1	
1474	0025		
1475	004A		
1476	$4045+$	JMM FADC	
1477	0046+	DC Vl, A,V1	
1478 1479	0023		
147 A	4 4.86+	JMM ROUND	
147 R	0048+	DC XI, XOFF	
147 C	$\triangle \mathrm{CEF}$		
1470	5 2AB+	JMP HUMAN	
147 E	$42 \mathrm{RG}+$	JMM BOUND	
$147 F$	OD4A+	DC Yl, YOFF	
1480	0 CF 1		
$14 \mathrm{R1}$	$52 A B+$	JMP HUMAN	
1492	42B6+	JMM ROUND	
1493 1484	$005 \mathrm{C}+$	DC X2, XOFF	
1484 1485	$0 C F F$ $529 E+$		
	S29E+	JMP CPU	
1486 1487	$4286+$	JMM BOUND	
1487	$0 \mathrm{DSE}+$	DC YZ. Y OFF	
1499	529E,	IMP CPU	
148 A	$4011+$	JMM FSUR	
14 BB	$0048+$	D. $\times 1, \times$? A	MISL CLOSE?
14 AC	0D5C		
148 D	0073		

158 D	D39A+	LDA DD	
15 RE	$0500+$	REX V	
15 RF	$01 \mathrm{CO}+$	ADC	
] 500	$839 \mathrm{C}+$	ADO DR	
1591	$0415+$	SNV 5	
$159 ?$	$0180+$	ONA	
1593	$6.337+$	STA FR	
1594	0241+	DNX 1	
1595	$2336+$	STX DFX	
1596	$536 \mathrm{~F}+$	JMP MAX	
1597	$0340+$	STX 0	
1598	$07 \mathrm{Cl}+$	J解 1	
1599	+		
	+ ${ }^{\text {a }}$ A	DS	
159 A 150 C	$+0 D$ $+0 B$	DS 2	
$15^{\circ} \mathrm{C}$	$\begin{aligned} & +1 \text { B } \\ & +* \end{aligned}$	DS ?	
159 E	$2384+$ DAVER	STX DHX	$\operatorname{MEAN}(A, R)=C$
159 F	$0300+$	LTX 0	MEAN(A,R)=C
15 A0	$0 \mathrm{CCl}{ }^{+}$	ARS 1	
1501	$6385+$	STA DH	
15 A2	$0301+$	LIX 1	
15 A 3	OCA1+	LRI 1	
15 A 4	$6386+$	STA DH+1	
$15 \wedge 5$	0201+	INX 1	
15 A6	$0300+$	LIX 0	
1547	OCCl	ARS 1	
15 AB	$6.39 \mathrm{~A}+$	STA DD	
15 A9	$0301+$	LIX 1	
15 AA	OCA1+	LRI 1	
15 AB	05E0+	REX C	
15 AC	$8386+$	ADD $\mathrm{DH}+1$	
$15 A D$	$0201+$	INX 1	
15 AE	$0341+$	SIX 1	
15 AF	D3R5*	LDA DH	
15 RO	$01 \mathrm{CO}+$	ADC	
$15 \mathrm{R1}$	$839 \mathrm{~A}+$	ADD DD	
15 R 2	0340+	SIX 0	
1583	$07 \mathrm{Cl}+$	JMX 1	
$15 R 4$	$+\mathrm{DHX}$	D. 51	
] 585	$+\mathrm{DH}$	DS 2	

	+ *	TEKTRONIX PLOTTING POUTINF
	+	ENTRY CRT, XPOS, YPOS.PKPI,RLFN2
	+	ENTRY XLOC, YLOC,MARK
	+	EXTPN PLOT, CALCOMP
	+	EXTRN MODF, QMODO, GINT, RDCORD
	+	FXTRN PKP.PAK
	$+$	EXIRN FADD, FSUR, FMUL,FDIV,FIX,FLOAT, NORM, FRACT
	+	EXTRN X $-F F, Y \cap F F, S C A L F$
15FF	$20 R 4+C R T$	STX PX
15 F 0	$0700+$	LAX 0
15 F1	$0444+$	SAZ 4
15 F ?	$0901+$	SRI 1
$15 F 3$	$04 \mathrm{Al}+$	$5 A 71$
$15 F 4$	0482+	SKP ?
15 F 5	$5085+$	JMP SWIRIJF
15 F 6	50R6+	JMP NURUF
$15 F 7$	$0901+$	SRI 1
15 F	04A1	SAT 1
1579	$0481+$	SKP 1
15 FA	50R7+	JMP FORGFT
15 FB	$0300+$	LIX 0
15 FC	$6061+$	STA X
15 FD	$0301+$	LIX $\frac{1}{x}$
15 FE	$6062+$	STA $\mathrm{X}+1$
15 FF	0201+	INX 1
1600	$0300+$	LIX 0
1601	$62 \mathrm{BF}+$	STA Y
1602	$0301+$	LIX 1
1603	$62 \mathrm{CO}+$	STA Y+1
1604	0701+	LAX 1
1605	$62 C 8+$	STA OP
1606	D2C1+	LDA IX
1607	$62 \mathrm{C5}+$	STA XL SAVE OLD POSITION
1608	D2C6+	LDA IY SAVE OLD POSITION
1609	62CA+	STA YL
160 A	$4011+$	JMM FSUR
160 B	$168 \mathrm{C}+$	DC $X, X \cap F F, I X$
160 C	OCEF	
1600	1601	
160 E	4011+	JMM FSUR
1607	$16 R F+$	DC Y, YOFF, IY
1610	0 CFI	
1611	1606	
1612	$4007+$ $1601+$	JMM FMIUL CONVERT INCHES TO INCREMENTS
1613	$16 \mathrm{Cl}+$	DC IX, SCALE, IX
1614	ODF 4	
1615	16C1	
1616	D2C2+	LDA $1 X+1 \quad * 4$ RFSOLUTION
1617	0802+	ADI 2×1,
1618	$62 \mathrm{C2}+$	STA IX ${ }^{1}$ I MOVF OPIGIN TO LOWER LFFT CORNFR OF SCR
1619	$4045+$	JMM FADD MOVF OPIGIN TO LOWER LFFT CORNFR OF SCRFEN
1614	$16 \mathrm{Cl}+$	DC IX,OX,IX
1618	16 C 3	
161 C	16 Cl	
1610	$4018+$	JMM FIX
161 E	$16 \mathrm{Cl}{ }^{+}$	PTR IX CONVFRT OT FIXED POINT INCREMENTS
$161 F$	$4007+$	JMM FMUL SAME FOR Y COORD
1620	$16 \mathrm{C6}+$	DC IY, SCALE,IY
1621	ODE 4	
1672	16.6	
1623	D2C7+	LDA IY +1
1624	$0802+$	ADI ${ }^{\text {L }}$
1635	$62 \mathrm{C7}+$	STA IY+1
1626	$4045+$	JMM FADD
1627	16C6+	DC IY,OY, IY
1678	$16 \mathrm{C8}$	
1629	$16 C 6$	
162 A	$4018+$	JMM FIX

1665	$0402+$	SAG	2	
16 FF	$04 \mathrm{Al}+$	SAZ	1	
1670	$0540+$	CLA		
1671	$90 \mathrm{RA}+$	SUB	$=3170$	
1677	$04 \mathrm{Bl}{ }^{+}$	SAN		
1673	0540+	CLA		
1674	$80 B A+$	ADD	$=3120$	
1675	$6346+$	ST	A DIY	
1676	D3A5+	LDA	DIX	
1677	$0 \mathrm{CR7}+$	LRN	7	
1678	กR20+	AD I	\$20	
1679	$63 A A+$	STA	HX	
167 A	D3A5+	LnA	DIX	
1678	$0 \mathrm{CR2}+$	LRN		
167 C	R0A3+	ANA	=\$1F	
1670	$0840+$	ADI	\$40	
167F	$63 \mathrm{AB}+$	STA	LX	
167 F	D3A5+	LDA	DIX	
1680	B0RB +	ANA	$=3$	
1581	$6348+$	STA	XRYTF	
1682	03A6+	LDA	DIY	
1693	$0 \mathrm{CR7}+$	LRN	7	
1684	0820+	ADI	\$ 20	
1685	$63 A 7+$	STA	HY	
1686	D3AF+	LDA	DIY	
1687	$0 \mathrm{CB2}+$	LRN	2	
1698	B0A3+	ANA	$=81 F$	
1689	0860+	ADI	\$60	
IGRA	$6349+$	STA	LY	
16R8	D3A6+	LDA	DIY	
16RC	RORA +	ANA	$=3$	
.1680	$0 \mathrm{CO}+$	LLN	2	
168 E	A 3 A ${ }^{+}$	ORA	XBYTF	
168 F	0860+	ADI	\$60	
1690	$6348+$	STA	XBYTF	
1691	D3AA+	LDA	HX DETERMINF WHICH RYTES NEED	XMITING
1692	$\mathrm{F} 3 \mathrm{AF}+$	CAA	LPOS+2 HI X DIFF	
1693	0484+	SKP	4	
1694	$0483+$	SKP	3	
1695	0540+	CLA		
1696	$63 A A+$	STA	HX CLEAR UNNFCESSARY BYTE	
1697	0481+	SKP	1 l 1 SAVE NEW VALUF	
1698	$63 A E+$	STA	LPOS + ? SAVE NEW VALUF	
1699	D3A7+	LDA		
1698	-3AC+	CAA	LPOS	
169 C	$0483+$	SKP	4	
1690	$0540+$	CLA		
169\%	$63 A 7+$	STA	HY	
169 F	0481+	SKP		
1640	$63 A C+$	STA	LPOS	
JGAI	D396+	LDA	AUK SHOIILD LINE RE INVISIBLE	
IGA?	0402+	SAG	2	
16A3	0090 +	LDI	\$90 lis	
1644	$4058+$	JMM	PAK	
1645	C094+	LDX	$=-5$	
16A6	D7AC+	LDA	HY+5,1	
16A7	$23 A F+$	STX	TRX	
1648	$4058+$	JMM	PAK	
16A9	C3AF+	LDX	TRX	
16AA	0201+	INX		
16AA	52A6+	JMP	$*-5$	
16AC	0016+	LDA	CALCOMP	
16AD	04D1+	SAG		
16AF	5RA4+	JMP	*DRX	
16AF	0396+	LDA	AUK	
16 R 0	${ }_{0}^{0} 001+$	LLN	1	
$16 \mathrm{R1}$	0802+	ADI	2	

	$+* \quad S 1$	STNGL.F PRFCISION FLOATING SINF-COSINF
	+	FNTPY TPIG, SIN, COS
	+	EXTRN FRACT
	+	EXTRN NOPM
	+	FXTRN FTX.FLOAT
17F5	+SIN	DS ?
1757	$+\mathrm{COS}$	DS ?
17F9	20C1+TRIG	G STX TX
17FA	$0300+$	LIX 0
17FR	$6002+$	STA ANG
17FC	$0301+$	LIX 1
17 FD	$60 \mathrm{C3}+$	STA ANG+1
17 FE	$401 ?+$	JMM FRACT
17 FF	1834+	DC ANG
190n	1234+	LDA ANG
1801	$6236+$	STA X ANGLE TO ARG OF SERIES CALCULATOR
18n?	$4212+$	JMM SICO DO TRIG SERIES
1903	$60 \mathrm{C4}+$	STA SIN
1804	D234+	LDA ANG ROTATE BY 90 DEG FOR COSINF
1805 1806	An68+	$A D D=\$ 4000$
1806	6236+	STA X
1807	4212+	JMM SICO
1808	$60.5+$	STA cos
1809	$0540+$	CLA
180A	$60.65+$	STA SIN+1
180R	$60.7+$	STA COS +1
180 C	4082+	JMM NORM NORMALITE RESULTS
1800	$1755+$	DC SIN
$18 \cap \mathrm{~F}$	$4082+$	JMM NORM
180 F	$1757+$	DC Cos
1810	C233+	Lnx TX
1811	$07 \mathrm{Cl} \mathrm{I}_{+}$	JMX 1
1月1?		0 LDA X CALC SIN X
1813	$0500+$	RFEX CONVFRT X TO + -90 SCALED TO +-1
1814	$0 \mathrm{C} 41+$	ALS 1 ,
1815	041 ?	SNV 2 MO OVFPFLOW IF IN +-90
1816	$8083+$	$A D D=¢ 8000$
1月17	$0100+$	TWA
1818	$6236+$	STA X
1819	$04 \mathrm{Al}+$	SAZ 1
1814	$0481+$	SKP 1
1818	$07 \mathrm{CO}+$	JMX 0 O 0.180 ARE ZFRO
$181 C$ 1910	$0236+$ $0450+$	LDA X
181E	$0000+$	DC $0, X, T$
181 F	1836	
1820	1838	
$18 ? 1$	$6237+$	STA Z Z $=X * X$
1872	$0450+$	MPY CALC SIN $(X)=X+X *(C 1+Z *(C 3+Z * C 5))$
1823	0000+	DC 0, C5, T
1824	183R	
1825	1838	
1876 187	$0 \mathrm{CC3}+$	ARS 3 SFT RTNARY POINT
1877	823A+	ADD C3
1828	04E0+	MPY
1829	$0000+$	DC 0, Z.T
182A	18.37	
182 R	1838	
18?	8239+	ADD Cl
187 D	$04 \mathrm{EO}+$	MPY
18PE	0000+	DC $0, X, T$
1875	1836	
1830	1838	
18.31	$8236+$	ADD x
1832	07C0+	JMX 0
1833	$0000+T X$	DC 0

1RRR 0000
1RRC $00000+X R$ DC 0,0
1 1RRD 0000
$\begin{array}{llll}1 R R F & 0000+Y R ~ D C . ~ & 0.0\end{array}$
IRRF 0000

1 RFR	$\mathrm{ROCO}+$	ANA	$=\$ \mathrm{~F}$	GET	RY	YTF					
1 RF9	090A+	SRI	10	0-10 I	IS 0	-10	11-1	IS -1	THRII		
1 RFA	$0402+$	SAG									
$18 F B$	080A+	ADI									
18 FC	0481+	SKP									
1 RFD	$0100+$	TWA									
1 RFF	$0 \mathrm{CO} 1^{+}$	LLN									
$1 R F F$	$8314+$	ADO									
1900	$6314+$	STA	YP	SAVF N	NFW	Y POS					
1901	$4017+$	JMM	PLO								
1902	$1919+$	DC ${ }^{\text {P }}$	$X P: Y$								
1903	191A										
1904	$0000+P E N$	DC									
1905	0002+	LDI	2	SFT PFN	N TO	DOWN	N FOP	NEXT S	EGMFNT		
1906	$6304+$	STA	PEN	S MOVF					CGMFNT		
1907	E317+INC	INC	DPT	R MOVF	F TO	NEXT	T RYT				
1908	F31R+	TNC									
1909	$52 \mathrm{E} 4^{+}+\mathrm{CONF}$	JMP	DDD								
190 A	ODOE + DONE	LDI	14	LFAVF	PEN	, BY L	LOWER	RIGHT	CORNFR	OF	CHAR
190 B	$8313+$	ADD									
190 C	$6.313+$	STA									
190 E	$1913+$	${ }_{D C}{ }^{\text {SM }}$									
190 F	1914										
1910	0004										
1911	$\begin{aligned} 5816+ \\ + \end{aligned}$	JMP	\% DR								
191 ?	$0000+5 Y X$	DC									
1913	$0000+X$	DC. 0									
1914	$0000+Y$	DC 0									
1915	$0000+P T R$	0 C									
1916	0000+DRX	DC 0									
1917	0000+ 0 PTR	DC 0									
1918	$0000+\mathrm{CHAR}$	DC. 0									
1919	$0000+X P$	DC 0									
191 A	$0000+Y P$	DC 0									
1918	$0000+C T$	OC 0									
1910	$0144+$ VECT	R DC	C \$01	144, \$01	172,9	9,294F					
1910	0172										
$191 F$	294 F										
$191 F$	5972+	DC 9	\$5977	, 9812F	F.901	172					
19	812F										
1922	$4969+$	DC. 5	54969	, \$1167	7,421	127					
1973	1167										
1924	2127										
1975	$2128+$	DC $\$$	\$212R	. 84110	, 8.72	916					
1976	4110										
1978	$3144+$	DC $\$$	83144	. $\$ 1118$, 829	294 A					
1979	1118										
192A	$294 A$										
192 B	1125+	DC $\$$	8112	- \$48R9	- 528	8C?					
192C	4889										
1970	28C2										
197 E	$40 C 7+$	DC $\$$	\$4007	- \$68CF	- $\$ 30$	ODC					
197 F	68CF										
1930	300C										
1931	$48 \mathrm{~F} 2+$	DC \$	\$48E?	, 960 FR	. $\$ 18$	8 F 7					
1932	G0EP										
1933	18 F 7										
1934	$80 F A+$	DC $\$$	\$80FA	. $\$ 610 \mathrm{~A}$	A. $\$ 59$	950					
1935	610 A										
1936	5950	-									
1937	$6190+$	DC $\$$	86190	. $\$ 1970$. $\$ 29$	93F					
1938	1970										
1939	293F										
193 A	1980+	DC. $\$$	\$1980	. $\$ 6983$	3. $\$ 01$	183					

$197 F$	3747		
1980	$4130+$	DC	¢4130, $\$ 1001, \$ 0200, \$ 0703$
1981	1001		
$198 ?$	0200		
1983	0703		
1984	$4714+$	DC	\$4714.84040, $50007 \cdot \$ 0007$
1985	4040		
1986	0007		
1987	0007		
1988	$2447+$	DC	\$2447, $94000.90740 \cdot \$ 4730$
1989	4000		
198A	0740		
198日	4730		
19RC	1001+	DC.	\$1001, \$0617. $53746, \$ 4130$
1980	0617		
198 F	3746		
198F	41.30		
1990	$7000+$	DC	\$7000. $\$ 4700 \cdot 50434, \$ 0407$
1991	4700		97000.44700.50434,50407
] 992	04.34		
1993	0407		
1994	$3746+$	$D C$	\$3745.94534, \$3010,\$0106
1995	4534		
1996	3010		
1907	0106		
1998	$1737+$	DC	\$1737,\$4641,\$3031,\$304R
1999	4641		
1	3031 304		
199 C	0004+	DC	\$0004, \$3404. $\$ 0737 \cdot \$ 4645$
1990	3404		(0nn4.93404.407.37.9464.5
1995	0737		
$199 F$	4645		
1940	$3424+$	OC	\$3424,\$4001, \$1030,\$4143
19 Al	4001		
194?	1030		
1943	4143		
1944	$3414+$	DC.	\$3414,\$0506,\$1737,\$4620
1945	0506		
1946	1737		
19 A 7	4620		
1948	$2707+$	DC	\$2707. $\$ 4747 . \$ 4130 . \$ 1001$
1949	4747		
19AA	4130		
19AR	1001		
19AC	0207+	DC	\$0207, \$0720,\$4707,\$1024
$19 A D$	0720		
19AF	4707		
$19 A F$	1024		
19 P 0	$3047+$	DC	\$3047, \$0740, \$7000, \$4707
$19 \mathrm{P1}$	0740		
19 R 2	7000		
19R3	4707		
19 R 4	$2420+$	DC	\$2420,\$2447, \$0747,\$0040
19 R 5	2447		
19R6	0747		
$19 \mathrm{R7}$	0040		
$19 R 8$	$3010+$	DC	\$3010,\$0106.\$1737,\$4641
19 Ra	0106		
19 RA	1737		
19 RB	4641		
19 RC	$3010+$	DC	\$3010,\$3020,\$2716,\$0617
19 RD	3020		
19 RE	2716		
19 RF	0617		
1960	$3746+$	DC.	\$3746,\$4401, \$0040, \$0617
19 Cl	4401		
19 C 2	0040		

$\begin{aligned} & 1903 \\ & 1904 \end{aligned}$	$\begin{aligned} & 0617 \\ & 3746+ \end{aligned}$	DC	\$3746, $54534, \$ 1434, \$ 4341$
190.5	4534		
1966	1434		
190.7	4341		
190.8	$3010+$	Dr.	\$3010, $80107, \$ 0343, \$ 3337$
1909	0107		
19 CA	0343		
19 CA	3337		
19 CC	$3047+$	DC	\$3047, \$0704, \$3443,54130
19 CD	0704		
19 CE	3443		
19 CF	4130		
1900	$1001+$	DC.	\$1001, \$4637, 81706, 90110
1901	46.37		
1902	1706		
$19 \cap 3$	0110		
1904	$3041+$	DC	\$3041, \$4334, \$1403, \$0747
1905	4334		
1976	1403		
1907	0747		
$19 \cap 8$	$0014+$	DC	\$0014. \$0506,\$1737,\$4645
1909	0506		
19 A A	1737		
19 DB	4645		
190 C	$3414+$	DC	\$3414.50301,\$1030.54143
1900	0301		
$19 \cap \mathrm{~F}$	1030		
19 FF	4143		
$19 F 0$	$3401+$	DC	\$3401, \$1030, $541.46, \$ 3717$
19 Fl	1030		
19 F 2	4146		
19 F 3	3717		
19 F 4	0604+	DC	\$0604,\$1333,\$442.1,\$2523
$19 F 5$	1333		
$19 F 6$	4421		
19 F 7	2523		
$\begin{aligned} & 19 F 8 \\ & 10 \mathrm{FF} \end{aligned}$	0343+	DC	\$0343. $50343, \$ 0343, \$ 2315$
$\begin{aligned} & 19 F 9 \\ & 19 F A \end{aligned}$	0343 0.343		
19 FR	2315		
19 FC	$3123+$	DC	\$312.3, \$3511, \$0047, \$4031
19 FD	3511		
19 FF	0047		
19 FF	4031		
1. 9F0	$3647+$	DC	\$3647, \$0011,\$1607.\$0110
19 Fl	0011		
$19 F 2$	1607		
$19 F 3$	0110		
$19 F 4$	$3041+$	DC.	\$3041. \$4334,\$1405,\$0617
19 F 5	4334		
$19 F 6$	1405		
19 F 7	0617		
99F8	3746+	DC	\$3746,\$3727,\$2828,\$0242
19F9	3727		
19 FA	2828		
19FB	0242		
19 FC	7044+	DC	\$7044,\$0418.82021,\$1110
19 FD	0418		
19 FE	2021		
19 FF	1110		
1 AO 0	$2010+$	DC	\$2010,\$1121.\$2010,\$1517
1 An 1	1121		
1402	2010		
1 A03	1517		
1 A04	$7037+$	DC	\$7037.\$354C,\$2C29,8490C
1405	354 C		
1 A 06	$2 C 29$		

$1 A \cap 7$	490 C		
1408	2C29+	DC	\$2С79,\$0920,5?111,\$1020
1409	0920		
$1 A \cap A$	2111		
1 AOB	1020		
$1 \triangle \cap C$	$7013+$	DC	\$7013, \$2324, \$1413,\$2725
$1 A O D$	2324		
IAOF	1413		
1AOF	2725		
1 AlO	$4016+$	DC.	\$4016, \$2736, \$0301, \$1020
1A11	2.736		
1Al?	0301.		
1 A13	1020		
1 A14	$4300+$	DC	\$4.300, \$2670,\$4620.67002
1 A15	2670		
1 116	4620		
1 A] 7	7002		
1 A18	$4270+$	DC	\$4270, \$4404, \$4103, \$4501
1419	4404		
1A1A	4103		
IAIB	4501		
1A1C	$4.305+$	DC	\$4305,50617, क2736,\$3513
1 AlD	0617		
1A1E	2736		
$1 A 1 F$	3513		
$1 A ? 0$	2270+	DC	\$2270.\$1011, \$2120.\$101R
$1 A ? 1$	1011		
1422	2120		
1423	1018		
1424	2021+	DC	\$2021.51110,\$2070,\$1323
1425	1110		
1 A26	2070		
14.7	1323		
1A28	$2414+$	DC	\$2414.\$1300
1A29	1300		

1 ARG	$041 \mathrm{~F}+$ $0560+$	SNV	14 CHECK FOR	R OVF	FLOW			
1AKG	0560+	LSA	IVFRT SIGN	N AI	AND INSERT	CARRY	RTT	AS
1 ARA	6286+	STA	TEMP HIGH MA	AGAN	JDF RIT			
1 AFB	D28.3+	LDA	ADENO					
1AFC	8083+	ADD	$=\$ 8000$					
1 ARD	$0 \mathrm{C} 31+$	LLC						
1 AFF	$6283+$	STA	ADEND					
1 AFF	0286+	LDA	TEMP					
1470	80R3 ${ }^{\text {+ }}$	$A \cap D$	$=\$ 8000$					
1471	$0570+$	SSA						
$147 ?$	D283+	LDA	ADFNO					
1 A73	$0 C A 2+$	LR J.						
1 A74	6283+	STA	ADEND					
1 A 75	$\mathrm{F}_{5} \mathrm{Sa}_{4}+$	INC	ADEND +1					
1476	$0500+$	NOP						
1 A 77	4287+	JMM	NORM					
] 478	$1483+$	PTR	ADFND					
1479	C280+RESUL	T LD	$X F X$					
$147 A$	$0202+$	INX						
] A 7 R	0283+	LDA	ADEND					
1A?C	$0340+$	SIX						
1A7D	D284 +	LDA	ADFND +1					
$1 \mathrm{~A} \mathrm{I}^{\text {E }}$	$0341+$	SIX	1					
1A7F	$07 \mathrm{C}]+$	JMX	1					
$1 A B O$	+FX	DS 1						
$1 A R 1$	+ SMAND	DS	$?$					
$1 A 83$	+ ADEND	DS	2					
$1 \triangle 85$	$0 C C O+A R S$	ARS	0					
IARG	$+ \text { TEMP }$	DS 1						
1 AR7	$0300+$ NORM	LIX	0					
1 AR8	$04 A 9+$	SAZ	9					
$\triangle A P Q$	$0500+$	RFX	V					
IARA	$0 \times 41+$	ALS	1					
$1 A 8 R$ $1 \triangle 8 C$	$0411+$	SNV	1					
$\triangle A B C$ $\triangle A B D$	$07 \mathrm{Cl}+$	JMX	1					
IARD IARE	$0340+$	SIX	0 FLDATING P	POINT	NORMALIZE			
$1 A R E$ IARF	$0301+$	LIX	$\frac{1}{1}$					
$1 A R F$ $1 A O O$	$0901+$ $0341+$	SRI	1					
	$0341+$ $5287+$	SIX	NORM					
1492	0341+	SIX	1					
1493	$07 \mathrm{Cl}+$	JMX	1					
	$2205+F D I V$	STX	FDX FLOATING	G DIV	IDF			
1495	$0300+$	LIX						
1496	04A1*	SAZ	1					
1497	$0484+$	SKP	4					
1498	020?+7RET	INX	2					
1499	$0340+$	SIX	0					
1 ACA	$0341+$	SIX	1					
1498	$07 \mathrm{Cl}+$	JMX	1					
149 C	$6206+$	STA	DENO					
1490	0301+	LIX						
$1 \mathrm{~A} \mathrm{C}^{\text {E }}$	$6207+$	STA	DEND +1					
1 A 9 F	$0201+$	INX	1.					
$1 \triangle A 0$	$0301+$	LIX	1					
1 AAI	6209+	STA	DSOR + 1					
1AAZ	0300+	LIX	0					
$14 A 3$	$6208+$	STA	DSOP					
1 AA 4	050C+	RFX	V, R, S					
$1 A^{\prime} 5$	$0407+$	SAG	7 -					
1 AAG	$0100+$	TWA						
$1 \triangle A 7$	0508+	SEX	R					
$1.4 A B$	$0413+$	SNV	3					
1AA9	D068+	LDA	=191					
IAAA	E209+	INC	DSOR + 1					

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 0446 \& 6784+ \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { STA } \\
& \text { RFX } \\
& \operatorname{LnA}
\end{aligned}
$$} \& \multicolumn{6}{|l|}{XDIP $+42,1$}

\hline 0447 \& 05F4+ \& \& S.C ARSOLIETF \& VALUF, SAVE \& SIGN \& \& \&

\hline 0449 \& D7AB+ \& \& XPPOG+43,1 \& \& \& \& \&

\hline 0449 \& 0484+ \& SAN \& \& \& \& \& \&

\hline 044 A \& $63 A A+$ \& STA \& T+1 \& \& \& \& \&

\hline 0445 \& D7AA+ \& LDA \& XPROG +42.1 \& \& \& \& \&

\hline 044 C \& $63 A 9+$ \& STA \& T \& \& \& \& \&

\hline 0440 \& $04888+$ \& SKP \& 8 \& \& \& \& \&

\hline 044 E \& 0504+ \& SEX \& $\times 5$ \& \& \& \& \&

\hline 044 F \& D7AA+ \& LDA \& XPROG $+42,1$ \& \& \& \& \&

\hline 0450 \& $0100+$ \& TWA \& \& \& \& \& \&

\hline 0451 \& $63 A 9+$ \& STA \& \& \& \& \& \&

\hline 0452 \& D7AB+ \& LDA \& XPROG+43.1 \& \& \& \& \&

\hline 0453 \& $0180+$ \& ONA \& \& \& \& \& \&

\hline 0454 \& $01 \mathrm{CO}+$ \& ADC \& \multirow[b]{2}{*}{$T+1$} \& \& \& \& \&

\hline 0455 \& $63 A A+$ \& STA \& \& \& \& \& \&

\hline 0456 \& D3A9+ \& LDA \& \& \& \& \& \&

\hline 0457 \& $0 \mathrm{C} 21+$ \& ELI \& 1 \& \& \& \& \&

\hline 0458 \& $0 \mathrm{CQ1}+$ \& LRN \& 1 \& \& \& \& \&

\hline 0459 \& $6349+$ \& STA \& \& \& \& \& \&

\hline 045 A \& D3AA+ \& LDA \& $T+1$ \& \& \& \& \&

\hline 0458 \& $0 \mathrm{C} 21+$ \& Lli \& 1 \& \& \& \& \&

\hline 045 C \& $63 \mathrm{AA}+$ \& STA \& \multicolumn{2}{|l|}{$T+1$} \& \& \& \&

\hline 0450 \& 03A9+ \& LDA \& \multirow[t]{2}{*}{T TIMES NUMFR} \& RATOR \& \& \& \&

\hline 045 E \& 04E0+ \& MPY \& \& \& \& \& \&

\hline 045 F \& 0500+ \& NOP \& \& \& \& \& \&

\hline 0460 \& $0572+$ \& PTR \& RASTFR \& \& \& \& \&

\hline 0461 \& 0546+ \& PTR \& S \& \& \& \& \&

\hline 0462 \& $63 A 7+$ \& STA \& S+1 \& \& \& \& \&

\hline 0463 \& D3AA+ \& LDA \& T+1 \& \& \& \& \&

\hline 0464 \& 04E0+ \& MPY \& \& \& \& \& \&

\hline 0465 \& $0500+$ \& NOP \& \& \& \& \& \&

\hline 0466 \& 0572+ \& PTR \& RASTFR \& \& \& \& \&

\hline 0467 \& 05A9+ \& PTR \& \multirow[t]{2}{*}{${ }_{T}^{T}+1$} \& \& \& \& \&

\hline 0468 \& $63 A A+$ \& STA \& \& \& \& \& \&

\hline 0469 \& D3A9+ \& LDA \& \multirow[t]{2}{*}{$$
\stackrel{\top}{S}+1
$$} \& \& \& \& \&

\hline 046 A \& $83 A 7+$ \& ADD \& \& \& \& \& \&

\hline 046 B \& $63 A 7+$ \& STA \& $$
\begin{aligned}
& S+1 \\
& S+1
\end{aligned}
$$ \& \& \& \& \&

\hline 046 C \& 04R1+ \& SAN \& $$
\begin{aligned}
& 5+1 \\
& 1
\end{aligned}
$$ \& \& \& \& \&

\hline 046 C \& 5271+ \& JMP \& $\cdots+4$ \& \& \& \& \&

\hline 046 EF \& $83 \mathrm{CD}+$ \& ADD \& $=\$ 8000$ \& \& \& \& \&

\hline 0467 \& $63 A 7+$
$63 A A+$ \& STA \& S+1 \& \& \& \& \&

\hline 0470 \& \& INC \& T+1 \& \& \& \& \&

\hline 0471
047 \& D3AA
$04 \mathrm{~F} \mathrm{O}^{+}$

a \& LDA \& T+1 \& \& \& \& \&

\hline 0472 \& $04 \mathrm{FO+}$
$0500+$ \& DIV \& \multicolumn{2}{|l|}{DIVIDE RY DENOMINATOR} \& \& \& \&

\hline 0474 \& $05 \mathrm{~A} 7+$ \& PTR \& \multicolumn{2}{|l|}{S+1} \& \& \& \&

\hline 0475 \& $0571+$ \& PTR \& \multirow[t]{2}{*}{PROG
PXS} \& \& \& \& \&

\hline 0476 \& $67 \mathrm{AD}+$ \& STA \& \& POS SCALED \& TO \& PASTER \& UNITS,HI \& PART

\hline 0477 \& D3A7+ \& LDA \& \multirow[t]{2}{*}{S+1} \& \& \& \& \&

\hline 0478 \& $04 \mathrm{FO}+$ \& DIV \& \& \& \& \& \&

\hline 0479 \& 0500+ \& NOP \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{S}} \& \& \& \&

\hline 047 A \& 05A6+ \& PTR \& \& \& \& \& \&

\hline 047 R \& 0571+ \& PTR \& PROG \& \& \& \& \&

\hline 047 C \& $67 \mathrm{AC}+$ \& STA \& PXS+42,1 LO P \& PART \& \& \& \&

\hline 047 D \& 05E0+ \& REX \& \& \& \& \& \&

\hline 047 E \& D7AD+ \& LDA \& PXS $+43,1$ \& \& \& \& \&

\hline 047 F \& $0 \mathrm{CAl}+$ \& LRI \& \& \& \& \& \&

\hline 0480 \& $67 \mathrm{AD}+$ \& STA \& PXS $+43,1$ \& \& \& \& \&

\hline 0481 \& D7AC+ \& LDA \& PXS $+42,1$ \& \& \& \& \&

\hline 0482 \& $0 \mathrm{COL}+$ \& LLN \& \& \& \& \& \&

\hline 0483 \& 0 OA1 + \& LRI \& \& \& \& \& \&

\hline 0484 \& $67 A C+$ \& STA \& PXS + 42, 1 \& \& \& \& \&

\hline 0485 \& $0437+$ \& SNS \& 7 STICK SIGN \& BACK ON \& \& \& \&

\hline 0486 \& 05E0 + \& REX \& C \& \& \& \& \&

\hline 0487
0488 \& $0100+$
$67 \mathrm{AC+}$ \& TWA
STA \& PXS +4 ? 1 \& \& \& \& \&

\hline 0489 \& D7AD+ \& LDA \& $P \times S+43 \cdot 1$ \& \& \& \& \&

\hline
\end{tabular}

