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NOMENCLATURE

C -	 seal	 clearance along centerline

F -	 axial	 force

F - nondimensional	 force, F/6uw(r0/C)2r2

h -	 film thickness

I 1 ,1 2	- integrals	 defined	 in Eqs.	 (21)	 and	 (22)

I 3 ,I 4 -	 integrals defined	 in Eqs.	 (36)	 and	 (31)

1 1 -	 given	 by	 Eq.	 (26)

U 2 -	 given	 by	 Eq.	 (41)

Mx - restoring moment

M x -	 nondimensional	 moment, Mx/6uw(ro/C)2r3

(1 z - transverse rmment

M 
	 - nondimensional moment, Mz/6uw(ro/C)2ro

p pressure

'	 R	 - nondimensional	 radius, r/r
o

r	 - radial	 coordinate

r'	 - radial	 coordinate of extreme pressure

x,z	 - orthogonal	 axes,	 see Figure	 1

Greek Sumbols:

y	 - angle of tilt

E	 - tilt parameters, yro/C

e	 - angular coordinate

u	 - viscosity

w	 - rotational angular velocity

i i i



Subacripte:

ap	 - approximate

- at inner radius

m	 - at midradius

o	 - at outer radius
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INTRODUCTION

Seal leakage and short seal life are common problems found in a host of

industrial equipment and in other applications. For this reason seal research

has been carried out since the early sixties in an attempt to understand the

mechanism of seal operation. Denny [1) has shown experimentally that hydro-

dynamic effects in a misaligned radial face seal are the cause for axial for-

ces and pressures in excess of those theoretic?lly predicted for aligned flat

seal faces. Following Denny's findings, many investigators have treated this

problem and there have been several hypotheses put forth to explain the mecha-

nisms responsible for the development of the lubricating film pressure ghat

acts to eparate the primary seal faces. These hypotheses include surface

angular misalignment (21, surface waviness [3,4,5), microas perities [61, vapo-

r
rization of the fluid film [71, and thermal deformation [8,91. Examination

4
C

reveals that these theories are of limited use from an operation prediction

:	 standpoint, and that face seal lubrication theory is still very primitive.

It is also noted that seal dynamics, which is thought to be of major impor-

tance, is poorly understood.

In some recent papers [10,111 an attempt is made to solve analytically

the dynamic behavior of a radial face seal. In these papers the dynamic res-

ponse of an angular misaligned seal is considered due to a restoring moment

that coincides with the angular misalignment vector. This restoring moment,

which is an important factor in seal stability, is by no means the only mo-

ment acting on the seal faces, a fact that somehow was overlooked in the

past. A transverse moment that leads the angular misalignment vector by 90

degrees and is generated by hydrodynamic effects is pointed out in [121. This
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transverse moment may be the origin of dynamic instability and has to be con-

sidered in any dynamic analysis of a realistic seal model.

In order to establish a better understanding of radial face seal mecha-

nism of operation, it is important to obtain the complete system of forces

and moments. As a first step the hydrostatic effects in a misaligned seal

were analyzed [12] and both the axial force and tilting moment were found.

In this paper the hydrodynamic components of the forces and moments will be

treated.

In previous works analytical results were limited to very small angular

tilts (21, or to an approximated film thickness geometry where radial varia-

tions were neglected (111. Also the transverse moment, mentioned before, was

overlooked.

It is the objective of this paper to present an analytical solution for

IL 	 the hydrodynamic effects in a realistic misaligned seal geometry. This solu-

tion covers the complete range of seal mis.ilignment from parallel faces to

surface touch down.
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ANAL YSIS

The Reynolds equation for a narrow seal and incor^pressible fluid is:

a 
rh 3 ae) = 6vw a

where the film thickness, h, for a misaligned seal (Figure 1) is given by:

h=C+yrcose
	

(2)

It is shown in (121 that while curvature effects may be neglected, thus allow-

ing the replacement of r in (1) by the mean radius	 rm , the film thickness	 in

(2)	 should remain a function of both r and e.	 This	 is	 due to the fact that

the pressure is strongly affected by radial changes	 in the file thickness

along the narrow width of the sealing gap.

In contrast to the film thickness,	 its circumferential gradient	 is	 al-

most unaffected by the radius and hence may be approximated by

a 
ae -	

Yrmsin6

Eq. (1) then becomes

ar (h3 dRr ) _ - 6ujwy
rmsine	 (3)

Integrating once we have

ap = - 6
	

yrmsine(r-r-)	 (4)ar
h

3
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where r' is a constant of integration corresponding to the radius where the

pressure has an extremum. Integrating once again gives

P = - 6uWYrmsin©( 2	 2 -(- h +) +j + C l 	(5)

	

Y co: e	 2h	 2yh cose

with C l as another constant of integration. The boundary conditions for the

hydrodynamic case are p = C at r= ro and at r=r i . Hence

1	 _C _ 1 + r'	 1	 _C _ 1	 + r'

•cos 2h hi) 2^ ycos©{
2h^ ho) 2^

	

i	 i	 o	 0

or

n
h h 

i_	 1	 o

L	
r ^	 Ycose(2h0 + hi - C)
	 (6)

Since

h o 
h i = C2 + Cr(r0+r i )cose + y2roricos2e

and

C(ho+h i ) = 2C 2 + Cy(ro+ri)cOSe

we get f rom (6)

rI _ C(ro +r
i
) + 2yroricose

+ Y ro+ri,cose

4



or in dimensionless farm

RIII + ERicose

+ ER mcos6
	

(7)

where R = r/r09 e = Yro/C, ano Rm = 0 ,IRi)/2.

Eq. (7) gives the radius where the radial pressure profile reaches its

maximum or minimum. This radius clearly differs frc„n the mean radius R  at

which the maximum pressure is obtained when radial variation in h are neglec-

ted (11).

The constant C l in Eq. (5) is found by equating p to zero at r=rn . Thus

the pressure distribution is

	

6uwr	 h-h h +h
p = _ m since ( o ^	

oC + ;r'cose) - hh

	

Y	
)

cos a h ho Z

From (6) we have

h h.

C + Yr' cose = 2h o n
o 1

Hence

	

61,wr	 h - h	 h +h
_	 m sine	 o	 0

p	 f	 co	 h T(ho+h- 
oh i - hho)

0

or

(ro-r)(r-ri)
p = 3owCRmcsine	 --^—

hm h

CA

4
L
s

(b)

(g)

5
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where hm = (ho+hi)/2.

In 1111 where radial variations in h are neglected and the film thick-

ness expression is:

h = hm = C + yrmcose

tre pressure is given by

3uwCRmesinv l	
2	 2

P = -- h3	 4 r -r
o 
	 )	 - (r-rm ) 1

M

which can be rearranged in the form

(roi)
Pap " 3uwCRmesine

hm

The symbol pap is used in (10) to indicate that the pressure in 1111 is only

an approximation resulting from the omission of radial variations in h. The

accurate p ressure given by (9) is related to the approximate pressure of Eq.

(10) by

P = Pap ( hh ) 2	(ll)

The film thickness, h, given by Eq. (2) can be written in the form

h = C(1 + eRcose)	 (12)

or

(10)

The mean thickness,h, is

6



h  - C(1 + eRmCOW
	

(13)

Hence, from (11) it is clear that for rose>0, p ap underestimates the pressure

at any R>Rm and overestimates the pressure at any R<Rm . For cose<0, p ap is

an overestimation when OR  and an underestimation of the accurate pressure

when RKRm . The approximate pressure p ap is antisymmetric about the line BB

which connects the highest and lowest points of the seal (see Figure 1), but

the ratio hm/h is symmetric about that line. Hence, the accurate pressure p

is from (11) also antisymmetric ,about line BB.

In the absence of an hydroF , is component this will mean negative p re-

ssures in the diverging clearance where dh/de>0. For the narrow seal approAi-

mation cavitation is assumed to occur in this section of the seal [111	 and

tA
the pressure is assumed to he zero	 (half Sommerfeld condition).	 When the

hydrostatic pressure component does exist the extent of cavitation is depen-

dent on the pressure differential	 across the seal	 boundaries.	 The cavitation

zone decreases as the sealed pressure increases until	 a	 full	 fluid film con-

dition is reached.

The two extreme cases, namely, the half Sommerfeld condition for cavita-

ting flow and the full fluid film condition for high pressure seals, will now

be considered.

Cayitatiog FZow:

Avial rnrra-

In the case of a very small pressure differential across the seal boun-

daries the axial force is

7



o r"

r I r.
F 	 J 	 ^` prdrde	 ( lq)

i

Substituting Eqs. (12) and (13) into Eq. (9) we have

p = 3ww(^)2Rm(1-R)(R-Ri)

	

	 (sine	
(15)

0 + 0mcose)(1 + ERcoso)

Neglecting curvature effects and substituting the pressure qiven by (15). Eq.

(14) becomes

r	
f
n 	 1	 ( 1 -R)(R-R.)csine

F	 3uw(^) 2 rm 	 —	 ^

	

o 	 R i

j 

(1+ERcose) (1+ERmcose) dRde
	 (16)

The integration over R can be performed by parts noting that

u 5R
(1-R)(R-R i ) = 2(Rm-R)	 (17)

c

Hence

i

	

rl (1-R)(R -Ri) 	-	 (1-R)(R-Ri)	 1

R i (I+ERcose) dR
	

Ecose +c toss R1 +

2	 r1	 Rm - R

+ (nose 
RJ	

1 + ERcose dR
	 (18)

The first term on the right hand side of (18) vanishs on both limits of the

integration. The second term yields

2	 1	 Rm -R	 2	 Rm

Ecose Rf 1+cRcose 
dR	

Ecose 
{Ecose zn(1+ERcose)

1	 1-	 ^[1 + (Rcose - An(1+cRcose)j1 	 =
(Ecose)	 IRi

8

L-



-- 2
 ^	 m((l+,Rcose)tn l+CCOS

	 -
 (1-Ri)Ecose)	 (19)

(Ecose)	 1

Substituting into (16) yields

F 6vw 
ro r22	 r ^ Esine n l+Ecose

( C ) m 
of ( Ccose )^+T— î cose

- (1- Ri) 	2tsine	 -1 do	 (20)
(Ecose) (1 + ERmeose)

Defining the integrals

Il(R,e) =

^( (Coso)

Esinb3 
tn(1 + E Rcose)de	 (21)

and

0

I2(e) =	
2fsine	

de (22)
(Ecose) (1 + ERmcose) 

and using the substitution u = ecose, we find [131:

_ kn 1+ERcose +	 R	 R2	 1 + ERcose	
(23)I1(R ' e) 2Ecose - 2 en

2(,-cos,))	 ECOSe

1 + E.Rmcosa	 1 + CRmcose

1 2 (6)	 Ecose	 - Rmkn	 Ecose	
(24)

Substituting Eqs. (23) and (24) into Eq. (20) we have for the axial force

► o
	 (25)

r

t

r

i

9
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where

J I (e) - I 1 (.,e) - I I (R i se) • (1-Ri)I2(e)
	

(26)

and F is a dimensionless force defined by

F =	F

6u^( 
C 

)2ro

I l (1,e) and I I (R i 0) are obtained from Eq. (2.3) by substituting R=1 and R=R;,

respectively. After some algebra J 1 (a) is obtained as follows:

J (a) =	 1	 to l+ccose - 1-R i	 - 1 in l+Ecose

1	 2(ccOse)2	
+cRicosO 2ccose 2	 1+cRmcose

R2	 1+ER.cose

+ 2 kn +cl- R cose	
(27)

c

It is noted L'hat J 1 (e) as given in (27) is bounded at a=n/2 and hence, F is

integrable over the interval 0<e <n. This can be readily shot. , , by expanding

the first logarithmic term of (27) in the form

2	 3

9n(l+x) = x - 1 + 3 + ...

As e--r /2, cose;0, }.i-.ce orders of (cose) 2 and higher can be neglected, and by

(28) we have

2
1	 l+CCOSO	 1-Ri	

Ri-1

t^ln/2[2(ecose n T+cR
i cose - 2tco^;^3^ =	 4

(28)

Finally, the dimensionless axial force is by (25) and (27)

10
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	1+LR.	 l+eR

	

- ^ en l+` - an ^--^-̂-	 1̂-( e n l̂ -+-̂  - in ^
-^ E	 2

C
 L'	 1-^ I EK i ) + L	 1-ET

-
 EKm)

R.	 1+ER	 I+ER.

M	 I

Eq. (29) gives the axial force over the complete range of misalignment that

is, frcm aligner3 faces at c=0 to touch down at c=1.

A simpler expression for F can be derived for small tilts by using the

expansion

3	 5

4n^—x = 2(x + 3 * x + ...)

With this expansion Eq. (29) can be rearranged in the form

F ={
1-R i

 - 2[E(1-R i ) + 3{1-R3)  + -5(1-R5) + ...)

E

3

3
+ R^( e (Rm-R i ) + 3(Rm-R3) + ...1}fin

Neglecting terms of order : 2 and higher and noting that

1-Rm = Rm -R i = 2(1 Ri)

we have for the axial force at very small tilts

F =f- 3(1-R3) + 2(1-Ri)(l+Ri))Rm

0

f

1

(29)

(30)

(31)

(32)



in

^ tt

F7.,-

which reduces to

F = 6(1-R i ) 3 Rm	(33)

The expression for the axial force given by (33) is the same as the one ob-

tained in 1111 where very small tilts are assumed. Hence, when dealing with

small c values the omission of radial variations in h is an acceptable app-

roximation.

When the sealing surfaces come into co,itact at a=1, the dimensionless

axial force in (29) becomes

_	 1-R2	
1+R i	

1-Rm`	
1-

E2 	9
F = (1- R i +	 —(in T- + i nr^—, + 1 i m —^- 2 n (1- E)) RmI	 m	 e -+1 2E

Using Eq. (32) and noting that

0-E2^2e2
lim kn(1-e)	 = U

E- 1

we have at E=1

Fc=1 = (1-R i Xi	
Rmin 1+R )Rm

m

	 (34)

Restoring Moment:

The restoring moment about the x axis (Figure 1) is

Mx = -
 In f

ro pr2cosedrde
o r^

12



N

t

t

1

Neglecting curvature effects this becomes

M X = - rm((pcosedrdo
	

(35)

The sign convention in (35) assures that a restoring moment will have a posi-

	

tive val'je.	 Using Eqs. (15), (18), and (19), we have

M X = - 6uw( C 
)2rm E (

( 
esine	 0 l+Eeoso

o f	 (Ecoso)2	
1+ERiCOS8

	

_	 Esino

(1-P i ) F-eose +cRmcose lde

Defining the integrals

I 3 (R,o) =	
Es	

zn(l+cRcose)d6	 (36)
(eCos^,) C

and

_	 Esinedo

I 4 (e)	 jCcosO(l +E:Rmcoso) 	 (37)

we find

I (R,e) = en(I+ERcose) + RznI+ERcoso	
(38)

3	 tcoso	 ECOSO

1+fR toss

and the nondimensional restoring moment becomes

13
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R'	 n
M (x) _ - m J 2 (e^	 (40)

o

where

J 2 (e) = I 3 (l,e) - 1 3 (R i3 O) - (1-Ri)I4(e)
	

(41)

and

_	 M
=	 x

Mx	

r6vw(0)2r3

	

C	 o

After some algebra, J 2 (6) becomes

_	 l+ccose	 l+k-cos6	 i	 (42)J (e)2	 co,,
c 	 in 1+cR i cos6 + in +e moose	

R	
1+cR cos6

ijn 1+cRmcos6

Expanding the first logarithmic term in (42) by the serie of (28), yields

lim(7cose in 1+ER 
^
ceose )	1-R

l2	
i

e--n 

Hence, M (x) is integrable over the interval 0<e<n and the nondimensional

restoring moment is

	

2	 l+cR

Mx = ( 2̂ in ^ —^ '-(in. ±^ - inI--gym)
E	 1-c R 	 m

R.	 1+cR	 14-0. 3
+	 e	 m - 1	 IRm (43)

For small c, if we use the expansion

14
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2	 3
Rn(1-x) _ - (x + -x— + x +	 )

2	 3

and the one given by (3'). M(x) can be expanded in the form

4	 3
Mx = t- - (E 2 (1-R?) +	 (1-R4) + ...J + ?(e(1-Rin	E3 (1-R m) +	 J

E

+ 
2Ri

(c( Rm - R i ) + V Rm- R3)  +	 J}Rn	 (45)

which, after neglecting high orders of ., becomes for very small tilts

2
M x = T Rm(1-Ri)3

At t=1 the nondimensional restoring moment is

1+Rm
M x	 = JR i in R - AnRm

(1+Rm )J in
► = 1	 m

The moment about the z axis (Figure 1) is

f r. rr

M z = )
	

I o pr2sinodrde
o r.

i

which after neglecting curvature effects becomes

M 
= r2 rn (ro

z	 m	 I	 psinedrde
of rd

(44)

(45)

(46)

(47)

Again, by Eqs. (15), (18), and (19)

15
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c

M	 6uW(r0 2 r3 
1

r
'^ ( csin 2 a	 l+ecose

z	 C	 m o f	 (ecose)-3	 l+c icose

(1-R)	 esin2e	
Jde

('cosa) (I+r%cose)	
(48)i 

	

Integrating by parts and using I 1	and 1
2
 as defined in Eqs. (21) and (22,^

we have

1

csin2v3Z n(1+ERcose)de = I I (R,9)sine - jI I (R,e)cosede	 (49)
(ecose)

and

r	 E:sin2ed6
	
fJ(f cosa) (1+ef^coso ) = 12(6 )sine-
	 1 2 (e)cosede	 (50)

On both boundaries of the integration (0 = 0 and 6= n) sine=0. Hence, substitut-

ing Eqs. (49) and (50) into (48) yields

M z = - 6u,(^) 2 r^ J^(I 1 (l,e) - 1 1 (R i ,6) - (1-R i )I 2 (e)Jcosede	 (51)
0

The sum in the brackets under the integral of Eq. (51) was already found, see

Eqs. (26) and (27). Thus, the transverse moment in its dimensionless form

can be written as

3

_ -km "	 1	 l+ecose
M z	 2e o f <<eosa ^n 1+cRiCosa - (1-Ri)

1 +eeosa	 2	 1
+eRieose

Ecose(an 1+ER
mcose + Rien 1+ERm Cosa )Jde (52)

where

16
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or

M
M =	 Z --

z	 6;.w(	 )2r3o

From [141 we find

f° Rn(1+cRcose) de - rsin-l(LR)
COSH

Also, integrating by parts, we have

00
( r eoseen(1+ERcose) - Aj r	 S '"20 doJ	 +' Cose

and from [15)

fr+-inoso do = "^(1 - (1 - E 2R 2 )
'2

 E R

Substituting Eqs. (53), X54), and (55) into Eq. (52) yields after some alge-

bra

M Z ={[sin -1 (eR i ) - sin -1 (e)l + E(1-Ri)(1-e2Rm)^'

2E

+ 2L [R i (1-E 2 R2	 - (1-E ) 
S 

X110

For small tilts we can use the approximations

33

sin -1 (__R) = ER +	 +2.3 

and

(53)

(54)

(55)

(56)

17
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(1-c 2 R2 ) k' = 1 _I f2R2

Thus, for very small t Eq. (56) becomes

_ rc	 3,3

Mz	 24
( 1 - R i ) "Fl.

Full F% -Id Fi 1m:

Under full fluid film condition the hydrodynamic pressure is antisymme:-

ric about the line connecting the highest and lowest points of the seal rinfl

(line BB in Figure 1). This results in a net zero axial force and eliminates

Le 	 the hydrodynamic component of any restoring moment, M x . However, the trans-

LA	
verse moment, M z , beco,iies twice its value for the half Soanmerfeld condition.

r
t	 Thus, by (56) we have for full fluid film condition

Mz -( 2( sin -1 (uR i ) - sin-1(01 + 2n(1-Ri)(1-E2Rm)^
f

+ !(Ri(1-E2R?)^' - (1- E2 ))1 R^	 (58)

and by (57) for very small tilts

	

Mz = 12 (1-R i )3FT	 (59)

The hydrostatic pressure ir, a misaligned seal is symmetric about line BB.

Therefore, in contrast to hydrodynamic effects, it does not produce any trans-

verse moment	 Hence, this moment, which is shifted 90 degrees from the mis-

(57)

18



alignment vector, is entirely due to hydrodynamic effects.

Although leakage was not treated in the case of a cavitating flow, it

should be mentioned that under full fluid film conditions the leakage is

entirely hydrostatic. This is due to the antisymmetric nature of the hydro-

I

, 	 dynamic pressure which results in zero hydrodynamic leakage.

Ut

u
IL

r
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RESULTS AND DISCUSSION

Values of the nondimensional parameters F, M x , Rz, and the ratio M7/Mx

for the case of cavitating flow (half Sommerfeld condition) are presented in

Table I and Figures 2 to 4. These cover the whole range of tilt parameters,

from c -0 to c=l.

The axial force and the restorin g and transverse moments are greatly in-

fluenced by the radius ratio, r i /ro . As r i /ro decreases the force and mo-

ments increase quite rapidly. At a given radius ratio both the axial force

and the restoring moment increase with c. An increase in the tilt parameter,

E = yro /C, is a result of a decrease in the seal clearance C or an increase

in the angle of tilt Y. Hence, dT/d, and dM x/dc are proportional to the

axial stiffness dF/dC and to the angular stiffness dM x/dY, respectively.

From Table I and Figures 2 and 3 it is seen that decreases in the radius ra-

tio are accompanied by increases in the axial and angular stiffnesses. Also

at a given r i /r o the axial and angular stiffness increase with increasing

tilt parameter

An irteresting result is the ratio of transverse to restoring moment

M Z /Mx . Whenever c>0.6 M Z is smaller than M x , but, as c decreases, the ratio

M Z/Mx increases and becomes larger than 1 for any E<0.6. At t=1, the trans-

verse moment is only about 10 to 20 percent of the restoring moment but be-

comes about 8 times larger than the restoring moment at c =0.1. These resul-,s

are true for any r i /ro indicating that the center of pressure is not sensi-

tive to the radius ratio and, what is more important, that there is a strong

coupling between transverse moment and angular misalignment immediately after

the misalignment begins. Such coupling can lead to dynamic instability
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wobbling of the primary seal similar to a whirl in ,journal bearings.

In the case of a high pressure seal where the full fluid film condition

prevails the hydrodynamic components of the axial force and restoring moment

vanish but the transverse moment becomes twice its value for the cavitating

flow case. The transverse moment vs. tilt parameter for the full film con-

dition is presented in Figure 5.

It is interesting to compare the transverse moment due to hydrodynamic

effects with the hydrostatic tilting moment due to the pressure difference

across the seal boundaries. These two moments are 90 de g rees apart from each

other and therefore the problem of dynamic instability and wobbling in high

pressure seals is similar to that occuring in low pressure seals with cavita-

tion.

v•	
As an example, a seal having the following dimensions and operating con-

ditions was chosen:
C

Outerradius, r,., ^?n . .	 . . . . . . . . . . . . . 5

Radius ratio, r 
i o
/r	 . . . . . . . . . . . . . . . . . . 0.9

Wanradius, rm, cm . . . . . . . . . . . . . . . . . . 4.75

Seal Clearance, C, cm . . . . . .	 . . . . . . . . . . 0.0025

Shaft speed, n, rpm	 . . . . . . . . . . . . . . . . . . 1000

Fluid viseos:'ty, u, N-sec/m 2 . . . . . . . . . . . . . . 1.72 10-3

Pressure differential, op, N/m2 . . . . . . . . . . . . 100

In 1121 a hydrostatic tilting moment of 430 N-cm is found for that seal

when E=1. The hydrodynamic transverse moment at the same tilt parameter and

full fluid film condition is 536 N-cm, and would be even higher for smaller

21
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seal clearances C without affecting the hydrostatic tilting moment. Hence.

the hydrodynamic transverse moment, which was overlooked in the past, is a

significant factor in both low and high pressure seals and clearly plays an

important role in radial face seal operation.

V

c

c
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