## LOADS - A COMPuTER PROGRAM FOR DETERMining The SHEAR, bending moment and axial loads FOR FUSELAGE TYPE STRUCTURES.



By: William E. Nolte

Prepared for:
NATIONAL AERONAUTICS ANU SPACE ADMINISTRATION
Johnson Space Center
Houston, Texas 77058
July 1976

## PREFACE

The Engineering Design Integration (EDIN) System consists of a series of computer programs used in the preliminary design of aerospace vehicles. This system is operational on the Univac 1110 at NASA, Johnson Space Center. The programs in the EDIN System are used to determine aerodynamics, propulsion, mass properties, trajectory analysis, stability and control, and cost. Due to the need for a structures program, APAS (Automated Predesign of Aircraft Structures) has been acquired and adapted to the Univac Exec 8 System. APAS, however, requires shear and bending moment diagrams and axial loads for the vehicle being designed.

This requirement has resulted in two programs - LOADS and LDSTRS. The former does the actual calculations of shear, moment and axial load while the latter is used as a translator program, i.e., it takes data output by the other EDIN programs such as weights and c.g. programs and converts it to the proper format for input into the LOADS Program. The following report gives.a brief description of the LOADS Program.

## TABLE OF CONIENTS

Page
SUMMARY AND INTRODUCIION ..... 1
LOADS Program
SHEAR FORCE ..... 2
BENDING MOMENT ..... 4
AXIAL LOAD ..... 5
CANTILEVERED ITEMS ..... 6
LOADS INPUT ..... 8
APPENDIX ..... 15
LDSTRS INPUT ..... 16

IOADS - A COMPUTER PROGRAM FOR DETERMINING THE SHEAR, BENDING MOMENT AND AXIAL LOADS FOR FUSELAGE TYPE STRUCTURES.

By: William E. Nolte - Sigma Corporation
SUMMARY AND INTRODUCTION
LOADS Program

LOADS determines rigid body vehicle shears, bending moment and axial loads on a space vehicle due to aerodynamic loads and structure and propellant inertial loads. The program was written from an algorithm presented by E. F. Bruhn in part El. 7 of Analysis and Design of Missile Structures. An example hand calculation is also presented in Bruhn's book and was used to check LOADS. A brief description of the program and the equations used will be presented here, however, the reader should consult Bruhn's book for a more detailed discussion of the algorithm.

LOADS will be used in the EDIN System to provide inputs to a structural synthesis program, APAS, which requires vehicle shears, bending moments and axial loads. APAS will then be used to size structural elements and calculate the total weight of the basic body structure.

LOADS is operational on the Univac 1llo, occupies 10505 core and typically takes less than one (1) second of CAU time to execute. All of the elements (symbolic, relocatable and absolute) of LOADS are on file ODIN-DBINIT2. All three of these elements are called LOADS while the map element is called LOADSMAP. The data for the sample case presented in Bruhn's book is in element LDS INP. The output generated from this data by LOADS varied from Bruhn's output by less than one per cent. It should be noted at this point that Bruhn used a desk calculator which can not match the accuracy of a digital computer. Further verification of the accuracy of the program can be made by noting load values at the final station where it is known that shear, moment and axial load should be zero. LOADS printed out values of $0.05,117.1,-0.25$ for these three forces respectively. Bruhn's calculations, however, produced values of $-50 ., 103000 ., 1000$. respectively. From these comparisons it is concluded that the LOADS program is working properly and performing the necessary calculations. The final value for the moment, 117.1 in-lbs, may be considered approximately zero when compared to a maximum bending moment of $133.1 \times 10^{6}$ in-1bs.

The appendix contains a brief description and list of inputs for the translator program LDSTRS.

## SHEAR FORCE

The shear force at a station $j$ is equal to the aerodynamic loads up to that station minus the lateral inertial loads due to the structure and propellant weights up to that station.

$$
s_{j}=\sum_{i=1}^{j}\left(q I_{i}+q f_{i}\right)-\sum_{i=1}^{j}\left(w_{i}+v_{i}+w_{\operatorname{cant}_{i}}\right) n_{i}
$$

where,
$q l_{i}$ is the normal aerodynamic force at station $i$
$q f_{i}$ is the engine side force at station $i$
$w_{i}$ is the structural weight at station i
$v_{i}$ is the propellant weight at station $i$
$W_{\text {cant }}$ is the weight of cantilevered items at station $i$
$n_{i}$ is the lateral acceleration at station $i$
The weight of cantilevered items is added in at the reaction station of that item. The lateral acceleration at any station $i$ is given by

$$
\begin{aligned}
& n_{i}=\ddot{y}+\frac{\bar{x}-x_{i}}{12_{g}} \ddot{\theta} \\
& x_{i} \text { is the station location } \\
& \bar{x} \quad \text { is the vehicle c.g. location } \\
& g \quad \text { is the force of gravity } \\
& \ddot{y} \quad \text { is the lateral acceleration of the vehicle c.g. or the } \\
& \\
& \text { sum of all normal forces (ql }+q f) \text { divided by the } \\
& \\
& \text { total weight }(W) \text { of the vehicle. }
\end{aligned}
$$

$$
\ddot{y}=\frac{1}{W} \sum_{i=1}^{n}\left(q l_{i}+q f_{i}\right)
$$

$\ddot{\theta}$ is the pitching acceleration in radius/second ${ }^{2}$

$$
\ddot{\theta}=\frac{1}{12 I} \sum_{i=1}^{n}\left(q I_{i}+q f_{i}\right)\left(\bar{x}-x_{i}\right)
$$

where $I$ is the vehicle moment of inertia in slug-feet ${ }^{2}$ :

$$
I=\frac{1}{144 g} \sum_{i=1}^{n} w_{i} r_{i}^{2}+v_{i} p_{i}^{2}+\left(w_{i}+w_{\operatorname{cant}_{i}}+v_{i}\right)\left(x_{i}-\bar{x}\right)^{2}
$$

$r_{i}$ is the vehicle radius of gyration
$\rho_{i}$ is the propellant radius of gyration
It should be noted that there is no radius of gyration term for cantilevered items. It is assumed that this term will be small compared to the other terms. The radius of gyration can be determined from the following figure:

TABLE E1.7.11
RADIUS OF GYRATION - FORMULAS


The moment at a station $j$ is given by:

$$
\begin{aligned}
M_{j} & =\sum_{i=1}^{j} s_{i-1}\left(x_{i}-x_{i-1}\right)-\frac{1}{12 g} \sum_{i=1}^{j}\left(w_{i} r_{i}^{2}+v_{i} \rho_{i}^{2}\right) \ddot{\theta} \\
& +\sum_{i=1}^{j}\left(q I_{i}\right) \Delta x_{i}-\sum_{i=1}^{j} w_{c^{2}} \operatorname{cant}_{i} n_{i} \Delta x_{i}
\end{aligned}
$$

The first term accounts the area under the shear diagram assuming point load applications. The second term involving the pitching acceleration, accounts for a distributed non-uniform load. The third term adds the moment due to the aerodynamic forces on externally cantilevered items. The fourth term introduces a correction moment for internally cantilevered items. $\Delta x$ is the distance from the point where cantilevered item is attached to the tank wall to the C.G. location of that item. It should be noted that the second term neglects the contribution of cantilevered items. Once again, it has been assumed that the radius of gyration of cantilevered items will be small in comparison to the vehicle radii of gyration.

AXIAL LOAD

The axial load at a station $j$ is the sum of the drag, thrust and inertial loads up to that station. Two formulas are used to determine axial load depending on whether or not the station passes through a solid propellant tank or a liquid propeliant tank. This is due to the fact that solid propellant is attached to the tank walls and creates an incremental load while liquid propellant loads only the tank bottom. Thus, if the station $j$ passes through a solid propellant tank, the axial load is given by :

$$
P_{i}=\sum_{i=1}^{j} f_{i}+n_{a} \sum_{i=1}^{j}\left(w_{i}+w_{c a n} t_{i}+v_{i}\right)
$$

$n_{a}$ is the axial acceleration

$$
\begin{aligned}
& n_{a}=\sum_{i=1}^{n} f_{i} \int_{i=1}^{n}\left(w_{i}+w_{c a n t_{i}}+v_{i}\right) \\
& f_{i} \text { are the tangential forces where } f_{n}=- \text { THRUST }
\end{aligned}
$$

It should be noted that the weight of the cantilevered items is added in at the reaction station.

If the station $j$ passes through a liquid fuel tank or no fuel tank at all, the axial load is given by:

$$
p_{i}=\sum_{i=1}^{j} f_{i}+n_{a} \sum_{i=1}^{j} w_{i}+w_{c a n t}{ }_{i}
$$

and if the station $j$ is at the bottom of a liquid propellant tank, the axial load becomes:

$$
P_{i}=\sum_{i=1}^{j} f_{i}+n_{a} \sum_{i=1}^{j}\left(w_{i}+w_{\operatorname{cant}_{i}}\right)+n_{a} \sum_{i=1}^{k} v_{i}
$$

$k_{i}$ is the station at the bottom of the liquid propellant tank.

## CANTILEVERED ITEMS

Cantilevered items are structures which are attached to the vehicle and will create a bending moment on the vehicle under lateral acceleration. The point at which the item is attached to the vehicle is called the reaction station and it is assumed that the moment created by the item can be introduced at this point.

Internally cantilevered items consist of engines which will introduce a correction moment at the reaction station. The moment arm, DELX, is

$$
\Delta x=x_{r}-x_{i}
$$

and should be negative. $X_{r}$ is the locat. : of the reaction station and $X_{i}$ is the location of the engine c.g.


INTERNALLY CANTILEVERED

ENGINE

Externally cantilevered items can be of two types - (1) fairings or (2) wing surfaces such as canards, wings, stabilizers, etc. The normal aerodynamic force acting on a fairing will create a moment which is added to the total moment at the vehicle reaction station:


The normal aerodynamic force acting on a wing will create a moment which is differenced from the total moment at the attach point.


The following is a list of the input variailes for program LOADS. All of the variables are dimensioned by 100 except for TBOT which is dimensioned 20 and $N$ and NLASX which are not dimensioned. All data is read in by namelist NML.

XNEW (I) - X station in inches. The first station must always equal zero - XNEW ( 1 ) $=0.0$. XNEW (I) is referenced from the nose of the vehicle.

$W(I) \quad$ Weight of the $i^{\text {th }}$ section in $1 b s$. This includes everything except fuel, oxidizer and payload weight. $W(1)=0.0$ always.
$V(I) \quad$ Weight of fuel or oxidizer in the $i^{\text {th }}$ section in $1 \mathrm{bs} . \mathrm{V}(1)=0.0$.

WCANTI(I) - Weight of internally cantilevered item in lbs. This is input at the $X$ station which locates the c.g. of the cantilevered item. WCANTI ( 1 ) $=0.0$.

DELX (I) - Distance between internally cantilevered item c.g. and item attach point in inches. This is input at the $X$ station which locates the attach point of the item and is usually negative. $\operatorname{DELX}(1)=0.0$.

WCANTE(I) - Weight of externally cantilevered item in lbs. This is input at the $X$ station which locates the c.g. of the cantilevered item. WCANTE (1) $=0.0$.

EXDELX(I) - Distance between externally cantilevered item c.g. and item attach point in inches. This is input at the X station which locates the attach point of the item and is usually negative. $\operatorname{EXDELX}(1)=0.0$.

| N | - Number of stations to end of fuselage-type structure. |
| :---: | :---: |
| ISV (I) | - Propellant radius of gyration indicator. |
| ; | $\operatorname{ISV}(I)=0$ - No propeliant. <br> $\operatorname{ISV}(I)=3$ - Liquid propellant. |
|  | $\operatorname{ISV}(\mathrm{I})=4$ - Solid Propellant. |
| ISW (I) | - Structure radius of gyration indicator. |
|  | $\operatorname{ISW}(\mathrm{I})=1$ - Solid tube. |
|  | $\operatorname{ISW}(I)=2-H 0 l l o w ~ t u b e$. |
|  | ISW $(\mathrm{I})=4$ - Cylinder. |
| IBOT ( I ) | - Station number representing bottom of liquid fuel or oxidizer tank. |
| QL (I) | - Normal aerodynamic force on vehicle in lbs. $Q L(1)=0.0$. |
| QLEX (I) | - Normal aerodynamic force on externally cantilevered item in lbs. QLEX(1)=0.0. |
| DELQL (I) | - Distance between normal force on externally cantilevered item and attach point of cantilevered item. This is input at the $X$ station which locates the attach point of the cantilevered item. DELQL (1)=0.0. |
| $F(I)$ | - Tangential aerodynamic force. $F(1)=0.0$. |
| $R(I)$ | - Radius in inches. $R(1)=0.0$. |
| RO(I) | - Internal radius for $\operatorname{ISV}(I)=3$ in inches. $\mathrm{RO}(1)=0.0$. |
| NLASX | - Total number of stations. |

+ ＋+ LDADS FFDEFAM + ＋
PEFEFEHKE TFNFLYSIS RND DEEIGH DF MISSLE STRIMTUFES＇ E＇S E．F．ERIUHN：FFPT EL．P．






 K
FEFL MOMENT：IMMT：L
 －ISU，ISW，IECT，UELQL，GLEX，BL，$F$ ，

F，FO，WEFMTE，HLESW，TITLE
FFOEFAM LOALE DETEFMINES SHEAE，BENIITE MLMENT：HMI HOIFL LDFI DM R FDCKET IME TD HERGDYNFMIE LDAIS FHII
 FEFI FFOM HFMELIST MML WHICH WFS WFITTEN DN FILE S B＇Y THE TRFNSLATUE FRQGFFM：LDSTRS：QUTPUT IE WRITTEM ロM FILE 14 FQF USE EY THE STRUTIIPFL S＇NTHESIS PRD－ GFFM．AFAS

IATA Eッふこ．
IIRTF Lン100 0．
IATA SHWEM 10010.
IHTA SHWEME $100+0$.

IIATA FG，JFI，JFE：IEI，JSE，ISEE：ISEL T OH．
IIATA TEFM1，TEFME：TEFMS，TEFMA，FSLIM S＊B．
DATA TF1：TFE：TPS：USIMA4－1．
FEWIND 1.1
FEWIND 8
FEHD：SOMHL
FEINT 1，TITLE

LID $9 \quad I=1,100$
$\therefore \mathrm{OI}=\mathrm{FHEW} \mathrm{CI}$
9 EOATIMALE
IETEFMINE \＆．G．LOEATIDM OF \＆EHIELE
I口 $10 I=1$ ，HLAS

WWSUM＝SLM $1+$ WWSUM
SIME $=\operatorname{SLM} 1+\cdots 13+\operatorname{SLME}$
10 EANTINUE
$\because E F F=\triangle M M E \because Y O M$
IETEFMINE FRIIIS OF GYEFTIDN SQOAFED：
ISU－ISU＝ 1 ＂SDLID THEE
$\because \therefore$ HOLLDU TUEE
$\because \because$ LIDUII FPGPELLANT $4 \therefore$ CYLINIER SDLID FFOFELLANT

I口 $20 \mathrm{I}=\mathrm{Z}$ ，H
$L C I=X(I)-X(I-1)$


 12．


20 CDNTITILE

```
calculate tatfl mamemt af inertif in slug feet＊ 2
加 \(30 \mathrm{I}=1\) ，HAFSK
SUM3 \(=\) 小（I）FFESO（I）＋W（I）＋FHDSO（I）
EO EDNTINUE
```




```
IO \(40 I=1\) ：NLASX
SUM4 \(=\)（GL（I）＋ELEX（D）－CXEAR－XCD）+ SUM4
40 EUNTIPILEE
THETAI \(=1 .,(12 . *\) IMNT \() \cdot\) SUM 4
laterfl mecelerftidn ft b．g．frif at fay statian
吅 \(50 \mathrm{I}=1\) ，HLAS C
SLMS \(=\) DL（I）+ QLEX（I）＋SUMS
50 EDMTINHE
YII \(=\) ：1．－WWSNP SLIMS
IID \(60 \mathrm{I}=1\) ：MLASE
```



```
60．cantinue
－＊＊＊＊＊＊＊＊GALCULATE YEHICLE SHEAE \(\rightarrow+{ }^{+*+* * * * ~}\) STATIDMS．DELX GNI EXIELY ARE GIVEN YHLIIES AT THE RTTACH
```



``` af the ghntileweren item．
```

时 $70 \mathrm{I}=1: \mathrm{N}$
SUME $=$ OLCI + SUME
IF（IELXCI）．ME．O． 2 Eロ Tロ TE

SUMF $=(W C D+U(I)$ PACLLATCI + SUMT
时 TE
Te dantinule
$I S I=J E I+1$
IFCISI GT．HLFSO GU TO 30

SAWEM（I）$=$ WSATTCISI $A C D L A T C I S$


EDTOTE
T4 comtinule
$J S E=J E+1$
IFCJE－GT．MLHSK ED TV EO

SAVEME（I）＝WCANTE（ISE AHCCLATCISE）

－SRUEMCD＋Sump
pe egmtinue
dSEL＝MEEL＋1
IFOJEL． $\operatorname{IT}$ ．MLASX）Gロ TG 80

SUMP $=$ SUMT－DLEX（USEL）
PE SHEFR（I）＝SLME－SIJMP
30 camtimue
ED Tロ 85
BU EINTINLE
PRINT BE， $\mathrm{N}, \mathrm{N}, \mathrm{N}, \mathrm{JSI}, \mathrm{JE}, \mathrm{ISEL}$


 －GFMTILEVERED ITEMS＇，Six＇，IF IEE EMEEEDS ，IS，＂，DHECK，



－，I4
STAF
85 CINTINLIE
ge igntinule
$\mathrm{ISEE}=\mathrm{SE} 2+1$
IFCISEE GT．MLASO ED TO OE

TERMS＝RLEXCIEEZ）DELUL（I）＋TEFM3
的TD 96
98 EaMTIMIUE
FRINT 97，JEEE
stop

－＂caloulate termz marent contriblitian＂．
－$\quad 5 \%$＂JSEE＝＂I4
96 CIMTINUE
THE FQURTH MDMENT TEFM．TERM4：RCGDUMTS FOR ERMTILEVEFED ITEMS WHICH QVEFHANG FROM THEIF FEBCTIDH STATIONS．
 MAMEMT（I）＝TERM－1．（1E．－G）TERME＋TEFMS－TERM4 90 EOMTINUE

吅110 I＝1，M
FSIIM $=F(I)+F S U M$
1！I CONTINUE
AMACCL $=-F S U M / W U S U M$
TEMP $=0$.
ISTEP $=1$
I何 $120 \quad I=1, N$
$T P_{1}=F(1)+T F 1$
IF（IELX（I）．NE．0．）GO TD 112

$T P E=W(I)+T P E$
的 115
112 EONTINLIE
$J F I=J F I+1$
IF（JPI ．GT．NLASS）ED TD 130
IF 〔LCANTI（JPI）EQ．D．）EOTD 112
TEMP＝WCAMTI（JPI）
IF（ENDELXCD）．NE．O．）EOTD 114
TFE $=W(I)+T E M P+T P Z$
TEMP $=0$.
时TD 115
114 EANTINIIE
$J P E=J P E+1$
IF（JPE．GT．HLAS\％GD TD 130
IF（MGANTE UPE）EQ．D． $\operatorname{Ba}$ TD 114
$T P E=W(I)+$ WCANTE $(J P E)+T E M P+T P E$
TEMP $=$ ．
GOTD 115
130 gamtimue
PRIRT 131，JPI，JPE
131 FDRMAT $\%$ ， $5 \%$ ，ERRDR IN LQADS FPOGRAM WHILE GALCULATINE＇：

stap
115 EONTIMUE
IF（ISU（I）－3）12e．1E4，1E6
－a mo fropellant in this segtiam
0．A LiUIII FROFELLANT

+ －sglid frofellant
12 E EMTINHIE
$T P 3=Y(I)+T P S$
－a Ta lez
1 E4 comtinue
IF（I ．EQ．IBRT（ISTEP）EQ TD 1ES
VSUM $=V(I)+V S U M$
BロTロ 1e
IES ERATINHE
VSIM $=V(I)+V S U M$
TFS $=$ VSUM + TPS
WSUM $=0$ ．
ISTEP＝ISTEP＋ 1
1 EZ EOMTINIE
$P(I)=T P 1+B M A C L+T P E+B M C D L T P 2$
120 continlae

FRINT 1000


DO $250 \mathrm{I}=1 \mathrm{M}$
$\mathrm{C}=\mathrm{I}-1$
$P(I)=-1 . P^{-1}(I)$


1 050 FDPMAT 以
35 ELHT IMIIE
EMDFILE 11
FEUINI 11
GALL FIIFEL (14:1HX, 100: $x$ )
EHLL FDIPEL (14; EHEHEFF, $100:$ SHEFF)
CALL FIDDEL (14, GHMOMENT,1010,MDMENT)
BHLL FIDREL (14,1HP, 100\%F)
END

## APPENDIX

Procram LDSTRS is a translator program which takes data from other EDIN programs and arranges it in proper form to be input into the LOADS Program. Stations are synthesized according to the maximum allowable distance between any two adjacent stations which is an input. The nose of the vehicle is assumed to be an ellipse with structural (and propellant) weight distributed according to the integral of the ellipse. For the rest of the vehicle, structural and propellant weights are distributed according to section length and radius. Moment arms are calculated for cantilevered items and are output at the station which represents the attach point for the item.

IDSTRS is a program which takes data from the data base and arranges in the proper form to be input into the LOADS program. IDSTRS also synthesizes stations so that a smoother loads analysis will be produced. Data is read into program LDSTRS by namelist $\$ I N$. All stations are referenced from the nose of the vehicle.

| ENDPY | - Station at end |
| :---: | :---: |
| WPYLD | - Weight of payload in pounds. |
| BGNPY | - Station at beginning of payload bay in inches. |
| $\operatorname{EXCTCG}(\mathrm{I})$ | - C.G. location of externally cantilevered item. Up to 10 externally cantilevered items may be input. |
| EXCTWT ( 1 ) | - Weight of externally cantilevered item. Dimensioned by 10, the weight of ith item must correspond to EXCTCG(I). |
| INCTCG(I) | - C.G. location of internally cantilevered item. Up to 10 items may be input. |
| INCTWT (I) | - Weight of the $i^{\text {th }}$ internally cantilevered item. |
| EXCTAT(I) | - Location of attach point of externally cantilevered item. |
| INCTAT ( 1 ) | - Location of attach point of internally cantilevered item. |
| WTOT (I) | - Total structural weight of the $i^{\text {th }}$ stage less the weight of cantilevered items. Up to 4 stages may be input with WTOT(1) = weight of last stage, $\operatorname{WTOT}(2)=$ weight of next to last stage, etc. |
| ENDSTG (I) | - Station at end of stage. ENDSTG(I)=0.0, ENDSTG(2) $=$ end of final stage, etc. |
| VLOX(I) | - Weight of LOX in $i^{\text {th }}$ tank. Up to 10 tanks may be input. |
| VRP (I) | - Weight of liquid propellant in $i^{\text {th }}$ tank. Up to 10 tanks may be input. |


| WLXST (I) | - Weight of $i^{\text {th }}$ Lox tank |
| :---: | :---: |
| WRPST (I) | - Weight of $i^{\text {th }}$ I |
| BGNLX (I) | - Station which denotes beginning of $i^{\text {th }}$ LOX tank. |
| ENDLX(I) | - Station which denotes end of i |
| BGNRP ( I ) | - Station which denotes beginning of $i^{\text {th }}$ liquid propellant tank. |
| ENDRP (I) | - Station which denotes end of $i^{\text {th }}$ liquid propellant tank. |
| VSLD (I) | - Weight of solid propellant in $i^{\text {th }}$ tank. Up to 10 tanks may be input. |
| WVSST (I) | - Weight |
| VSRADI (I) | - Internally radiu |
| BGNVS (I) | - Station which denotes beginning of $i^{\text {th }}$ solid propellant tank. |
| ENDVS (I) | - Station which denotes end of $i^{\text {th }}$ solid propellant tank. |
| RADGYR (I) | - Radius of gyration indicator. Up to 10 may be input with each RADGYR(I) corresponding to XRAD (I). |
| XRAD (I) | - Station at which radius and radius of gyration have been input. $\operatorname{XRAD}(1)=0.0 \operatorname{XRAD}(2)=$ point at which slope of ellipse becomes zero, XRAD (3) = ENDPY. |

ENDPY



XRAD (3)

```
RAD(I) - Radius at i 'th station. RAD (I)=0.0,
    RAD (I)=XPAD (I).
QLEXF(I) - Normal aerodynamic force on externally cantilevered item.
XQLEXF(I) - Location of QLEXF(I).
QLF(I) - Normal aerodynamic force on vehicle. Up to 20 may be input.
XQL(I) - Location of QL(I).
FF(I) - Tangential aerodynamic force. Up to lo may be input.
XF (I) - Location of \(\mathrm{FF}(\mathrm{I})\).
XMAX - Maximum allowable distance between any two adjacent stations.
```

