## General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

# (NASA-CR-161116) TRANSISTOR STEP STRESS 

## MSFC/NASA CONTRACT NUMBER NAS8-31944

FINAL REPORT
FOR
JANTX 2N290';A

FEBRUARY 1979

## Prepared

For

GEORGE C. MARSHAL SPACE FLIGHT CENTER NATIONAL AERONAUTICS GOD SPACE ADMINISTRATION

TRANSISTOR

## STEP STRESS PROGRAM

## MSFC/NASA CONTRACT NUMBER

NAS8-31944

FINAL REPORT
FOR
JANTX2N2905A

FEBRUARY 1979

PREPARED FOR
GEORGE C. MARSHALL SPACE FLIGHT CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

## PREPARED BY

$$
\begin{aligned}
& \text { DCA RELIABILITY LABORATORY } \\
& 975 \text { BENICIA AVENUE } \\
& \text { SUNNYVALE, CALIFORNIA } 94086
\end{aligned}
$$

FOREWORD

This report is a summary of the work performed on NASA Contract NAS8-31944. The investigation was conducted for the National Aeronautics and Space Administration, George C. Marshall Space Flight Center, Huntsville, Alabama. The Contracting Officer's Technical Representative was Mr. F. Villella.

The short-term objective of this preliminary study of transisters, diodes, and FETS is to evaluate the reliability of these discrete devices, from different manufacturers, when subjected to power and temperature step stress tests.

The long-term objective is to gain more knowledge of accelerated stress testing for use in future testing of discrete devices, as well as to determine which type of stress should be applied to a particular device or design.

This report is divided as follows: description of tests, figures, tables, and appendix.

## TABLE OF CONTENTS

Page
1.0 INTRODUCTION ..... 1
2.0 TEST REQUIREMENTS ..... 1
2.1 Electrical ..... ? Stress Circuit
2.2
2.2 ..... 1 ..... 1
2. Group I - Power Stress ..... 1
2.4 Group II - Temperature Stress I ..... 2
2.5 Group III - Temperature Stress II ..... 2
3.0 DISCUSSION OF TEST RESULTS ..... 2
3.1 Group I - Power Stress ..... 3
3.1.1 Texas Instruments ..... 3
3.1.2 Motorola ..... 4
3.1.3 Statistical Summary - Group I ..... 4
3.2 Group II - Temperature Stress ..... 5
3.2.1 Texas Instruments ..... 5
3.2.2 Motorola ..... 5
3.2.3 Statistical Summary - Group II ..... 7
3.3 Group III - Temperature Stress II ..... 7
3.3.1 Texas Instruments ..... 7
3.3.2 Motorola ..... 8
3.3.3 Statistical Summary - Group III ..... 9
4.0 FINAL DATA SUMMARY ..... 9
5.0 CONCLUSIONS ..... 10

## LIST OF ILLUSTRATIONS

Fiqure
1.

2

3

4

5

A-1
A-2
A-3
A-4
B-1
B-2
B-3
C-1
C-2

Title
Page
Power and Temperature Stress Circuit for JANTX2N2905 ..... 11
Cumulative Percent Failures Versus Junction Temperature, Texas Instruments ..... 12
Time Steps Versus Junction Temperature, Texas Instruments ..... 13
Cumulative Percent Failures Versus Junction Temperature, Motorola ..... 14
Time Steps Versus Junction Temperature, Motorola ..... 15
S/N 4711. Magnification 144 X ..... 28
S/N 4750. Magnification 5 X ..... 28
S/N 4761. Magnification 144 X ..... 30
S/N 4769. Magnification 144 X ..... 30
S/N 4722. Magnification 160 X ..... 33
S/N 4772. Magnification 160 X ..... 36
S/N 4784. Magnification 200X ..... 36
S/N 739. Magnification 152X ..... 39
S/N 739. Magnification 152 X ..... 39

## LIST OF TABLES

Page 16
Test Flow Diagram
Parameters and Test Conditions 17
Power Stress Burn-In Conditions 17
Group I - Power Stress Data Summary ..... 19
Group II - Temperature Stress I Data Summary ..... 21
Group III - Temperature Stress II Data Summary ..... 22
Final Data Summary ..... 23
Step Stress Catastrophic Failure Summary ..... 24
Step Stress Parametric Failure Summary ..... 25

INTRODUCTION
DCA Reliability Laboratory, under Contract NASs-31944 for NASA/Marshall Space Flight Center, has compiled data for the purpose of evaluating the effect of power/temperature step stress when applied to a variety of semiconductor devices. This report covers the transistor JANTX $2 N 2905 \mathrm{~A}$ manufactured by Texas Instruments and Motorola.

A total of 48 samples from each manufacturer was submitted to the process outlined in Table l. In addition, two control sample units were maintained for verification of the electrical parametric testing.
2.0 TEST REQUIREMENTS

### 2.1 Electrical

All test samples were subjected to the electrical tests outlined in Table 2 after completing the prior power/temperature step stress point. These tests were performed using the Fairchild Model 600 High-Speed Computer-Controlled Tester. Additional bench testing was also required on the devices.

### 2.2 Stress Circuit

The test circuit shown in Figure 1 was used to power all of the test devices during the power/temperature stress conditions. The current was set by $\mathrm{I}_{\mathrm{E}}$ and the voltage was varied in order to comply with the skecified power rating for this device. At least one of the devices was subjected to maximum rated power (MRP). All remaining devices were subjected to no less than $90 \%$ of MRP. See Figure 1 for load resistance values and voltages.

Group I - Power Stress
Thirty-two units, 16 from each manufacturer, were submitted to the Po er Stress Process. The diodes were stressed in 500 -hour steps at $50,100,125$, 150 and 175 percent of maximum rated power (MRP) for 2500 hours or until 508 or more of the devices in a sample lot failed,* Electrical measurements were performed on all specified electrical parameters after each power step. See Table 1. (*See Notes at end of text.)
2.4 Group II - Temperature Stress I

Thirty-two units, 16 from each manufacturer, were submitted to the Temperature Stress I Process. Group II was subjected to 1600 hours of stress at maximum rated power in increments of 160 hours. The temperature was increased in steps of $25^{\circ} \mathrm{C}$, commencing at $75^{\circ} \mathrm{C}$ and terminating at $300^{\circ} \mathrm{C}$ or until $50 \%$ or more of the devices failed.* Electrical measurements were performed on all specified electrical parameters after each temperature step. See Table 1.
2.5 Group III - Temperature Stress II

Thirty-two units, 16 from each manufacturer, were submitted to the Temperature Stress II Process. Group III was subjected to $\quad 12$ hours of stress at maximum rated power in increments of 16 hours. The temperature was increased in steps of $25^{\circ} \mathrm{C}$, commencing at $150^{\circ} \mathrm{C}$ and terminating at $300^{\circ} \mathrm{C}$ or until $50 \%$ or more of the devices in a sample lot failed.* Electrical measurements were performed on all specified electrical parameters after each temperature step. See Table 1.
3.1 Group I - Power Stress
3.1.1 Texas Instruments. The Texas Instruments sample lot completed a total of 1750 hours of Group I Testing before the lot was stopped because of an excessive amount of mechanical failures due to handling. Serial number 4708 was listed as a handling failure 150 hours into the $125 \%$ MRP step. Serial numbers 4703 and 4713 were listed as handling failures 250 hours into the $125 \%$ MRP step. Serial number 4705 was listed as a handling failure 10 hours into the $150 \%$ MRP step. Serial numbers 4711 and 4714 were listed as handiing failures 25 hours into the $150 \%$ MRP step. Serial number 4706 was listed as a handling failure 50 hours into the $150 \%$ MRP step. Serial number 4712 was listed as missing from the Group I Testing 250 hours into the $50 \%$ MRP step. Typical characteristics of this sample lot's performance were:

1) The mean value for ${ }^{I_{C B O}}$ changed 32.96 pA from an initial mean of 21.33 pA to a final mean of 54.29 pA .
2) The mean value for $h_{F E}$ changed 4.1 from an initial mean of 169.5 to a final mean of 165.4.
3) The mean value for ${ }^{\mathrm{V}} \mathrm{CE}(\mathrm{SAT}) 1$ changed 1.0 mV from an initial mean of 168.6 mV to a final mean of 167.5 mV .
4) The mean value for $\mathrm{V}_{\mathrm{CE}}(\mathrm{SAT}) 2$ changed 2.5 mV from an initial mean of 466.4 mV to a final mean of 458.9 mV .

The control units for this sample lot remained constant throughout the entire Group I Testing.
3.1 .2
3.2.1 Texas Instruments. The Texas Instruments sample lot completed a total of 1280 hours of Group II Testing before the lot was stopped because more than $50 \%$ of the lot had failed. The first six failures occurred 160 hours into the $225^{\circ} \mathrm{C}$-temperature step. Serial numbers 4721, 4722, 4724, 4727, 4732 and 4734 failed the maximum ${ }^{I_{C B O}}$ limit. The last five failures occurred 160 hours into the $250^{\circ} \mathrm{C}$-temperature step. Serial numbers 4723,4725 , 4730,4735 and 4736 failed the maximum ${ }^{I}$ CBO limit. Typical characteristics of this sample lot's performance were:

1) The mean value for $\mathrm{I}_{\mathrm{CBO}}$ changed 499.4nA from an initial mean of 376.9 pA to a final mean of 499.8 nA .
2) The mean value for ${ }^{h_{F E}}$ changed 319.7 from an initial mean of 178.9 to a final mean of 498.6 .
3) The mean value for $\mathrm{V}_{\mathrm{CE}}(S A T) 1$ changed 13.1 mV from an initial mean of 172.1 mV to a final mean of 185.2 mV . 4) The mean value for $\mathrm{V}_{\mathrm{CE}}$ (SAT) 2 changed 91.0 mV from an initial mean of 487.0 mV to a final mean of 578.0 mV . The control units for this sample lot remained constant throughout the entire Group II Testing.
3.2.2 Motorola. The Motorola sample lot completed the entire 1600 hours of Group II Testing with a total of two catastrophic failures. The first catastrophic failure occurred 160 hours into the $225^{\circ} \mathrm{C}$-temperature step. Serial number 4772 failed
the minimum ${ }^{h_{F E}}$ lim $t$. The last failure occurred 160 hours into the $275^{\circ} \mathrm{C}$-temperature step. Serial number 4784 failed the maximum ${ }^{\mathrm{I}} \mathrm{CBO}$ limit. Typical characteristics of this sample lot's performance were:
4) The mean value for ${ }^{\mathrm{I}}$ CBO changed
33.12 nA from an initial mean of 1.04 nA to
a final mean of 34.16 nA .
5) The mean value for ${ }^{h_{F E}}$ changed
14.4 from an initial mean of 134.4 to a final mean of 148.8 .
6) The mean value for $\mathrm{V}_{\mathrm{CE}(\mathrm{SAT}) 1}$
changed 36.2 mV from an initial mean of 186.0 mV to a final mean of 149.8 mV . 4) The mean value for $\mathrm{V}_{\mathrm{CE}(\mathrm{SAT}) 2}$ changed 89.1 mV from an initial mean of 586.2 mV to a final mean of 497.1 mV .

The control units for this sample lot remained constant throughout the entire Group II Testing.
3.2.3 Statistical Summary - Group II. Table 5 of this report outlines the results of Group II Temperature Stress $I$ Testing, for each of the electrical parameters and all of the measurement points pertaining to both Texas Instruments and Motorola.
3.3 Group III - Temperature Stress II
3.3.1 Texas Instruments. The Texas Instruments sample lot completed a total of 96 hours of Group III Testing before the lot was stopped because more than $50 \%$ of the devices failed. The first failure occurred 16 hours into the $225^{\circ} \mathrm{C}$-temperature step.

Serial number 4745 failed the minimum ${ }^{h_{F E}}$ limit. The last eight failures occurred 16 hours into the $275^{\circ} \mathrm{C}$-temperature step. Serial numbers 4739, 4741, 4743, 4744, 4746, 4747, 4748 and 4752 failed the maximum ${ }^{I}$ CBO limit. Typical characteristics of this sample lot's performance were:

1) The mean value for ${ }^{\mathrm{I}} \mathrm{CBO}$ changed 532.6
nA from an initial mean of 608.1 pA
to a final mean of 533.2 nA .
2) The mean value for $\mathrm{h}_{\mathrm{FE}}$ changed
144.7 from an initial mean of 180.3 to
a final mean of 325.0 .
3) The mean value for ${ }^{V_{C E}(S A T) 1}$
changed 1.7 mV from an initial mean of 159.3 mV to a final mean of 157.6 mV .
4) The mean value for $\mathrm{V}_{\mathrm{CE}(\mathrm{SAT}) 2}$
changed 21.3 mV from an initial mean of 45.8 mV to a final mean of 476.1 mV .

The control units for this sample lot remained constant throughout the entire Group III Testing.
3.3.2 Motorola. The Motorola sample lot completed the entire 112-hour Group III Testing with no catastrophic failure. Typical characteristics of this sample lot's performance were:

1) The mean value for ${ }^{\mathrm{I}}$ CBO changed
0.296 nA from an initial mean of 1.651 nA to a final mean of 1.355 nA .
2) The mean value for $\mathrm{h}_{\mathrm{FE}}$ changed 16.1 from an initial mean of 127.7 to a final mean of 143.8 .
3) The mean value for ${ }^{C E(S A T)} 1$ changed 34.6 mV from an initial mean of 194.4 mV to a final mean of 159.8 mV .
4) The mean value for $\mathrm{V}_{\mathrm{CE}}(S A T) 2$ changed 1.5 mV from an initial mean of 591.3 mV to a final mean of 589.8 mV . The control units for this sample lot remained constant throughout the entire Group III Testing.
3.3.3 Statistical Summary - Group III. Table 6 outlines the results of Group III - Temperature Stress II Testing, for each of the electrical parameters and all of the measurement points for both Texas Instruments and Motorola.
4.0 FINAL DATA SUMMARY

Table 7 statistically summarizes the change in the mean value from the zero-hour data to the final data. The graphs of Figures 2 and 4 plot the cumulative percent failures versus the temperature stress level for Group II - Temperature Stress I, and Group III - Temperature Stress II. The graphs of Figures 3 and 5 plot the time step for Group II (160 hours) and Group III (15 hours) versus the temperatures $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ calculated from Figures 2 and 4 . Tsbles 8 and 9 summarize the failures encountered for all three stress groups. The failures are separated into two categories: catastrophic failures in Table 8 and parametric failures in Table 9. The data from Table 3 were used as a source for the graphs in figures 2 and 4. Figures 2 and 4 were used as a source for the graphs in Figures 3 and 5, respectively. Junction temperature is plotted on an inverse hyperbolic scale.

CONCLUSIONS
In summary, we find that 13 parts were destroyed by handling and 25 other parts failed catastrophically for various reasons. Many of the devices, from both manufacturers, failed due to thermal overstress which caused gold/aluminum intermetallics to form, and which degraded the col-lector-base junctions. The excess die temperature and intermetallic attack upon the oxide allowed metallic impurities to contaminate the oxide and thus degrade the transistor characteristics

A plot showing cumulative failure distribution for Groups II and III was drawn for the Texas Instruments sample lot (Figures 2 and 3 ), but a complete plot for the Motorola sample lot could not be drawn due to an absence of failures in the Group III Testing. Figures 2 and 3 display the data for the Texas Instruments sample lot used to calculate an activation energy of 2.38 eV .

A broken circle around a marked point on the graph indicates a freak failure not calculated as part of the regression line. A solid circle around a marked point indicates an isolated main failure point. The regression line was calculated using the least squares method.

The activation energy was calculated from the formula:
$\left.E=\left[\ln \left(\frac{t_{1}}{t_{2}}\right)\right]\left[\frac{8.63 \times 10^{-5} \mathrm{eV} /{ }^{\circ} \mathrm{K}}{\left(\frac{1}{T_{1}+273}\right)-\left(\frac{1}{T_{2}+273}\right.}\right)\right] \mathrm{eV}$
Where: $t_{1}=$ step of Group $11-T e m p$ Stress $1=160 \mathrm{hrs}$.
$t_{2}=$ step of Group 111 - Temp Stress $11=16 \mathrm{hrs}$.
$T_{1}=$ temperature $\mathrm{in}^{\circ} \mathrm{C}$ of $16 \%$ failure for Group II.
$T_{2}=$ temperature $\mathrm{in}^{\circ} \mathrm{C}$ of $16 \%$ failure for Group III.

NOTE:

* Conditions for failure:
A) Open or short
B) Leakage exceeds the maximum limit by 100 times.
C) Other parameters exceed MIL limits by $50 \%$ or more.

NOTES: $\quad R_{1}=800 \pm 5 \%, 2 \mathrm{~W} . \quad R_{2}=150 \Omega, \pm 18,1 / 2 \mathrm{~W}$


## FIGURE 1

Power/Temperature Stress Circuit




JANTX2N2905A

| － |  |  |  |  |  |  | － | － |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | － |  |  |  |  |
|  |  |  |  |  |  |  |  | \＃ |  |  |  |  | $\stackrel{\square}{\circ}$ |
|  |  |  |  |  |  |  | $\underline{ }$ | 等高 | § |  |  |  |  |
|  |  |  |  |  |  |  |  | －¢ | ＂ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | ： |
|  |  |  |  |  |  |  |  | －鮕高。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 迷 ${ }^{\circ}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{\circ}^{\circ}$ |
|  |  |  |  |  |  |  |  | $\pm$ | － |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{2}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | \％ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \＃ |  |  |  |  |  | － | － | － |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | － |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $8$ |  |  |  | $\stackrel{\sim}{\circ}$ | － | 80 | $\stackrel{\circ}{\circ} \stackrel{\sim}{\sim}$ | ํํํ | 28 | ® | 8 |  |  |
|  |  |  |  |  |  | ）צnıv | Lvもヨad | OW31 No12 | （1）NN\％＊ |  |  |  | 号 |


*Quantity per manufacturer (Texas Instruments and Motorola)
NOTES:

1) Electrical measurements per Table 2 were made at $50,150,250$ and 500 hours.
2) Electrical measurements per Table 2 were made at $10,25,50,150,250$ and 500 hours.
3) Electrical measurements per Table 2 were made at the end of each 160 hours.
4) Electrical measurements per Table 2 were made at the end of each 16 hours.


NOTES:
1/ In addition, any open or short shall be considered catastrophic

TABLE 3
POWER STRESS BURN-IN CONDITIONS

| $\mathrm{I}_{\mathrm{C}}=12.0 \mathrm{~mA}$ |  |
| :---: | :---: |
| $\mathrm{~V}_{\mathrm{CE}}$ | Percent $\mathrm{P}_{\mathrm{D}}$ |
| 12.5 | 50 |
| 25.0 | 100 |
| 31.2 | 125 |
| 37.5 | 150 |
| 43.7 | 175 |
|  |  |
|  |  |

NOTE
FOR TABLES
4 THROUGH 7

The minimum/maximum initial and final data generally have an absolute accuracy of $\pm 1 \%$ of the reading and $\pm$ one digit except for readings greater than 9.99 mA which have an absolute accuracy of $\pm 2$ \% of the reading and $\pm$ one digit. The data also have a resolution for four digits. The standard deviations, means, delta means, and average means are, therefore, valid indicators of trends over time and temperature, excepting the minor statistical computer error of supplying a constant number of significant digits.
GROUP I - POWER STRESS DATA SUMMAPY
TABLE 4
POWER STRES

JANTX2N2905A

| PARAMETER | $\mathrm{I}_{\mathrm{CBO}}=10 \mathrm{nA} \mathrm{MAX}$ |  | $\begin{aligned} & \mathrm{h}_{\mathrm{FE}}=75 \mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~mA} \end{aligned}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}(\mathrm{SAT}) 1=-0.4 \mathrm{~V} \mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{CE}}=-150 \mathrm{~mA} \end{aligned}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}(\mathrm{SAT}) 2=-1.6 \mathrm{~V} \mathrm{MAX} \\ & \mathrm{I}_{\mathrm{C}=}=-500 \mathrm{~mA} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CONDITIONS AND LIMITS | $\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V} \mathrm{dc}$ |  | $\mathrm{I}_{\mathrm{C}}=-0.1 \mathrm{~mA} \mathrm{dc}$ |  | $\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}$ |  | $\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}$ |  |
| IDENTIFICATION | TI | MOT | II | MOT | TI | MOT | TI | MOT |
| INITIAL DATA |  |  |  |  |  |  |  |  |
| MIN VALUE MAX VALUE MEAN STD DEV | $\begin{gathered} 0.0 \mathrm{~A} \\ 260 \mathrm{pA} \\ 21.33 \mathrm{pA} \\ 65.0 \mathrm{pA} \end{gathered}$ | $\begin{gathered} 0.0 \mathrm{~A} \\ 5.35 \mathrm{nA} \\ 705.9 \mathrm{pA} \\ 1.249 \mathrm{nA} \end{gathered}$ | $\begin{gathered} 140.0 \\ 222.0 \\ 169.5 \\ 20.58 \end{gathered}$ | $\begin{gathered} 69.7 \\ 188.0 \\ 117.8 \\ 33.89 \end{gathered}$ | $\begin{gathered} 158.0 \mathrm{mV} \\ 195.0 \mathrm{mV} \\ 168.6 \mathrm{mV} \\ 9.258 \mathrm{mV} \end{gathered}$ | $\begin{gathered} 0.00 \mathrm{~V} \\ 255.0 \mathrm{nV} \\ 175.9 \mathrm{nV} \\ 56.96 \mathrm{mV} \end{gathered}$ | $\begin{aligned} & 434.0 \mathrm{mV} \\ & 520.0 \mathrm{mV} \\ & 466.4 \mathrm{mV} \\ & 20.75 \mathrm{mV} \end{aligned}$ | $\begin{array}{r} 0.00 \mathrm{~V} \\ 797.0 \mathrm{mV} \\ 527.9 \mathrm{mV} \\ 184.2 \mathrm{mV} \end{array}$ |
| INTERIM DATA |  |  |  |  |  |  |  |  |
| POWER 150 TO 175\% $\triangle$ MEAN VALUE |  |  |  |  |  |  |  |  |
| 150\% POWER |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 1510 \text { HRS } \\ & 1525 \text { HRS } \\ & 1550 \text { HRS } \\ & 1650 \text { HRS } \\ & 1750 \text { HRS } \\ & 2000 \text { HRS - Note } \end{aligned}$ | 13.22 pA <br> 9.67 pA <br> 18.67 pA <br> 21.53 pA <br> 32.96 pA <br> JOB STOPPED | $\begin{aligned} & -474.5 \mathrm{pA} \\ & -411.6 \mathrm{pA} \\ & -357.4 \mathrm{pA} \\ & -485.9 \mathrm{pA} \\ & -448.4 \mathrm{pA} \\ & -383.9 \mathrm{pA} \end{aligned}$ | 3.6 -2.2 -3.1 -3.9 -4.1 JOB STOPPED | $\begin{gathered} 38.6 \\ 34.9 \\ * 31.13 \\ 35.9 \\ 38.6 \\ 38.5 \end{gathered}$ | 0.1 mV -2.1 mV -1.9 mV -3.3 mV -1.0 mV JOB STOPPED | $\begin{array}{r} 2.7 \mathrm{nV} \\ 6.0 \mathrm{nV} \\ * 709.4 \mathrm{nV} \\ 7.1 \mathrm{mV} \\ 8.4 \mathrm{nV} \\ 9.1 \mathrm{nV} \end{array}$ | 1.1 mV -0.1 mV -0.4 mV -3.5 mV 2.5 mV JOB STOPPED | 35.6 mV 45.5 mV $\star 730.1 \mathrm{mV}$ 38.9 mV 43.7 mV 46.5 mV |
| $175 \%$ POWER |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 2010 \text { HRS } \\ & 2025 \text { HRS } \\ & 2050 \text { HRS } \\ & 2150 \text { HRS } \\ & 2250 \text { HRS } \\ & 2500 \text { HRS } \end{aligned}$ |  | $\begin{aligned} & -454.2 \mathrm{pA} \\ & -478.4 \mathrm{pA} \\ & -369.1 \mathrm{pA} \\ & -449.2 \mathrm{pA} \\ & -417.9 \mathrm{p}^{\prime} \\ & -383.9 \mathrm{pA} \end{aligned}$ |  | $\begin{aligned} & 39.8 \\ & 38.5 \\ & 40.0 \\ & 39.8 \\ & 41.8 \\ & 25.5 \end{aligned}$ |  | $\begin{array}{r} 5.6 \mathrm{mV} \\ 7.0 \mathrm{mV} \\ 6.6 \mathrm{mV} \\ 2.2 \mathrm{mV} \\ 10.5 \mathrm{mV} \\ 992.1 \mathrm{nV} \end{array}$ |  | $\begin{array}{r} 35.6 \mathrm{mV} \\ 40.1 \mathrm{mV} \\ 39.7 \mathrm{mV} \\ 27.6 \mathrm{mV} \\ 46.6 \mathrm{mV} \\ 995.1 \mathrm{mV} \end{array}$ |
| FINAL DATA/HOURS | 1750 | 2500 | 1750 | 2500 | 1750 | 2500 | 1750 | 2500 |
| MIN VALUE <br> MAX VALUE <br> MEAN <br> STD DEV | $\begin{gathered} 0.0 \mathrm{~A} \\ 380.0 \mathrm{pA} \\ 54.29 \mathrm{pA} \\ 133.0 \mathrm{pA} \end{gathered}$ | 10.00 pA 1.340 nA 322.0 pA 384.0 pA | $\begin{gathered} 146.0 \\ 186.0 \\ 165.4 \\ 13.36 \end{gathered}$ | $\begin{gathered} 0 \\ 224.0 \\ 143.3 \\ 56.58 \end{gathered}$ | $\begin{gathered} 159.0 \mathrm{mV} \\ 177.0 \mathrm{mV} \\ 167.6 \mathrm{mV} \\ \quad 5.123 \mathrm{mV} \end{gathered}$ | $\begin{gathered} 148.0 \mathrm{mV} \\ 9.99 \mathrm{~V} \\ 1.168 \mathrm{~V} \\ 2.941 \mathrm{~V} \end{gathered}$ | $\begin{gathered} 450.0 \mathrm{mV} \\ 488.0 \mathrm{mV} \\ 468.9 \mathrm{mV} \\ 11.58 \mathrm{mV} \end{gathered}$ | $\begin{gathered} 424.0 \mathrm{mV} \\ 9.99 \mathrm{~V} \\ 1.523 \mathrm{~V} \\ 2.825 \mathrm{~V} \end{gathered}$ |

excessive meachnical failures $\quad *$ NOTE: Catastrophic reject(s) removed from data after this point
TABLE 5
GROUP II TEMP STRESS I


[^0]| PARAMETER | SPECIFICATIONS <br> LIMIT |  | U$N$ITS | MEAN INT. DATA | average $\triangle$ IN MEAN VALUE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX |  |  | POWER STRESS |  | TEMPERATURE STRESS |  | TEMPERATURE STRESS 11 |  |
|  |  |  |  |  | TI | MOT | TI | MOT | TI | MOT |
| $\mathrm{I}_{\text {CBO }}$ | -- | -10 | nA |  | +. 0146 | *-. 2588 | ${ }^{*}+.2108$ | ${ }^{*}+10.31$ | ${ }^{*}+88.86$ | -. 1500 |
| $h_{\text {FE }}$ | 75 | --- | -- |  | +1.89 | ${ }^{\star}+23.76$ | *-81.0 | * +20.36 | ${ }^{*}+15.72$ | +16.10 |
| $\mathrm{V}_{\text {CE (SAT) }}$ | --- | -0.4 | V |  | $+.0007$ | +. 0730 | -. 0004 | -. 0137 | -. 0025 | -. 0156 |
| $\mathrm{v}_{\text {CE (SAT) }}$ | --- | $-1.6$ | v |  | +. 0018 | *+. 1007 | +. 0210 | +. 0580 | +. 0101 | -. 0149 |

* NOTE: Catastrophic reject(s) removed from data after this point

FINAL DATA SUMMARY
FAILURE SUMMARY
GROUP III 16 HR. TEMP. STEPS

MFR "B" - MOTOROLA

| $\begin{aligned} & \text { TEST } \\ & \text { STEP } \end{aligned}$ | MFR A |  | MFR B |  |
| :---: | :---: | :---: | :---: | :---: |
|  | aty. | NOTE | QTY. | NOTE |
| $75^{\circ} \mathrm{C}$ | 0 | - | 0 | - |
| $100^{\circ} \mathrm{C}$ | 0 | - | 0 | - |
| $125{ }^{\circ} \mathrm{C}$ | 0 | - | 0 | - |
| $150^{\circ} \mathrm{C}$ | 0 | - | 0 | - |
| $175{ }^{\circ} \mathrm{C}$ | 0 | - | 0 | - |
| $200^{\circ} \mathrm{C}$ | 0 | - | 0 | - |
| $225{ }^{\circ} \mathrm{C}$ | 6 | A | 1 | C |
| $250^{\circ} \mathrm{C}$ | 5 | A | 0 | - |
| $275{ }^{\circ} \mathrm{C}$ | JOB ST | OPPED | 1 | A |
| $300{ }^{\circ} \mathrm{C}$ | $\downarrow$ | $\downarrow$ | 0 | - |

TABLE 8 STEP STRESS

$$
\text { NOTES: } \quad \mathrm{A}-\mathrm{I}_{\mathrm{CBO}} \geq 1000 \mathrm{nA}
$$

$$
\begin{aligned}
& \mathrm{B}-\text { Test stopped due to excessive mechanical failures } \\
& \mathrm{C}-\mathrm{h}_{\mathrm{FE}} \leq 37.5 \\
& \mathrm{D}-\text { Open } \\
& \mathrm{E}-\mathrm{V}_{\mathrm{CE} 2} \geq 2.4 \mathrm{~V}
\end{aligned}
$$



## APPENDIX A

FAILURE ANALYSIS

## POWER STEP STRESS

## Date 26 April 1978

$\mathrm{J} / \mathrm{N} \xlongequal{2 \mathrm{CN} 242-04 \mathrm{~A}} \mathrm{P} / \mathrm{N}$ 2N2905 (PNP) MFR TEXAS INSTRUMENTS

| S/N | $\mathrm{BV}_{\text {CEO }}$ -volts | -volts- | $\begin{aligned} & { }^{{ }^{\mathrm{CBO}}} \\ & -\mu \mathrm{A}- \\ & \mathrm{eV}_{\mathrm{CB}}= \\ & 50 \mathrm{~V} . \end{aligned}$ | $\begin{aligned} & \mathrm{BV}_{\mathrm{EGO}} \\ & -\mathrm{volts} \end{aligned}$ | $\begin{aligned} & { }^{\mathrm{h}_{\mathrm{FE}}} \mathrm{I}_{\mathrm{C}}= \\ & 100 \mu \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{v}_{\text {BEO }} \\ & \text {-volts- } \\ & \text { @ } \mathrm{I}_{\text {BEO }}= \\ & 10 \mathrm{~mA} \\ & \hline \end{aligned}$ | INITIAL REJ. AT TEST SEQUENCE NO.: | INITIAL REJ. FOR: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4706 | 72 | 86 | 0.2 nA | 7.3 | 185 | 0.78 | $35 \text { (150\% Power, }$ $50 \mathrm{Hrs} \text {.) }$ | Catastrohpicvisual |
| 14708 | 70 S | 100 | 0.2 nA | 7.3 | 122 | 0.76 | 25 (125\% Power, $150 \mathrm{Hrs}$. ) | Catastrophicvisual |
| 4711 | 70 | 108 | 10.nA | 7.6 | 172 | 0.78 | 33 (150\% Power, $25 \mathrm{Hrs}$. ) | Catastrophicvisual |

INTERNAL VISUAL INSPECTION: S/N 4711 has some areas of non-significant abraded metallization under the glassivation (Figure A-1). The other 2 samples show no significant anomalies.

All rejected samples in this sublot have a missing external emitter lead. (Total of 8 including 2 control units.)

CONCLUSIONS: A11 the selected samples were functional and within acceptable limits. The only significant anomaly was the breaking off of the extcral wire leads. This breaking was caused by the use of close hole sockets on the burn-in boards. The leads had to be bent together for burn-in at each stage and then spread to normal separation for each test. These samples experienced from 25 to 35 cycles of bending and spreading before t\}ey broke. The main bending stress is concentrated where the leads exit from the glass of the header and all glass seals are somewhat cracked from this flexing (see Figure A-2).

Bend tests were performed on undamaged samples and on the remaining leads of the damaged samples and no evidence of crystallization or brittleness was found in 3 right angle bend cycles per wire.

Sample size-8 ea.
Failure Analysis - 3 ea.
${ }_{4}^{\mathrm{h}} \mathrm{FE}$ trace present. Cannot meet stated test conditions. (Leaky)
** FE trace very leaky.

-     -         -             -                 -                     -                         -                             -                                 -                                     -                                         -                                             -                                                 -                                                     -                                                         -                                                             -                                                                 -                                                                     -                                                                         -                                                                             -                                                                                 -                                                                                     -                                                                                         -                                                                                             -                                                                                                 -                                                                                                     -                                                                                                         -                                                                                                             -                                                                                                                 -                                                                                                                     -                                                                                                                         -                                                                                                                             -                                                                                                                                 -                                                                                                                                     - 

$D=d r i f t H=h y s t e r e s i s$ Inv=inversion $R=r e s i s t i v e ~ S=s o f t$ Uns=unstable

ORIGINAL PAGE IS
OF POOR QUAIITY


FIGURE A-1
S/N 4711, Texas Instruments Die Geometry, 144X. (The dark areas in the metallization are mechanically disturbed.)


FIGURE $\Lambda$-2
S/N 4760, Magnification 5X.
Typical lead bending for
insertion in burn-in board.

## FAILURE ANALYSIS



INTERNAL VISUAL INSPECTION: S/N 4769 has been destroyed by electrical overstress (see Figure A-4).
The other two samples show nc significant internal anomalies.
S/N 4770 has a missing external emitter lead. This sublot contains nine devices with missing leads, including one control unit.
CONCLUSIONS: S/N 4769 was destroyed by high current operating over a long period of time.
The emitter metallization and silicon were melted, as well as the internal gold emitter wire. (See Figure A-3.) The appearance of the damage suggests that the overstress current was greater than 2 amperes and flowed for longer than 100 microseconds. The voltage was not greater than the device breakdown of 30 to 75 volts. ( $\mathrm{S} / \mathrm{N} 4765$ and 4767 , which were not failure analyzed, also exhibited open emitters and are presumed to have the same failure mode as $S / N$ 4769.) The source of the massive overstress is not known but the $V_{S A T}$ tests suggest themselves as possibilities.

- Refer to Texas Instrument's analysis for a discussion of broken external lee 4 s.

Sample size - 9ea.
Failure Analysis - 3 ea.

1// Initial breakdown occurs at 10 Volts and by increasing current, the second breakdown occurs at 33 Volts.

$D=d r i f t H=h y s t e r e s i s$ Inv=inversion $R=r e s i s t i v e ~ S=s o f t ~ U n s=u n s t a b l e$


Figure a-3
S/N 4761, Typical Motorola Instruments Die Geometry, 144x.


FIGURE A-4
S/N 4769, Motorola Device Destroyed by Electrical Overstress, 144 X .

## APPENDIX B

## FAILURE ANALYSIS

TEMPERATURE STRESS I

## FAILURE ANALYSIS

Date 27 April 1978
$\mathrm{J} / \mathrm{N} \quad 2 \mathrm{CN} 242-04 \mathrm{~B} \quad \mathrm{P} / \mathrm{N} \quad$ 2N2905 (PNP) MFR_TEXAS INSTRUMENTS

| s/s | ${ }^{\text {BV }}$ CEO ${ }_{\text {-volts }}$ | $\begin{gathered} \mathrm{BV}_{\mathrm{CBO}} \\ - \text { volts- } \end{gathered}$ | $\begin{gathered} \mathrm{I}_{\mathrm{CBO}} \\ -\mu \mathrm{A}- \\ \mathrm{g} \mathrm{~V}_{\mathrm{CB}}= \\ 50 \mathrm{~V} . \end{gathered}$ | $\begin{aligned} & \mathrm{BV} \mathrm{EBO}_{\text {EBO }} \\ & \text {-volts- } \end{aligned}$ | ${ }^{\mathrm{h}_{\mathrm{FE}}} \mathrm{I}_{\mathrm{C}}=$ 100 $\mu \mathrm{A}$; $\mathrm{V}_{\mathrm{CE}}=$ 10 V . | $\begin{gathered} \mathrm{v}_{\text {BEO }} \\ \text {-volts- } \\ @ \mathrm{I}_{\text {BEO }} \\ 10 \mathrm{~mA} \end{gathered}=$ | INITIAL <br> REJ. AT TEST SEQUENCE NO.: | INITIAL REJ. FOR: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{4722}$ | 0.58 | 4.8R | 1.03 mA | 7.2 | R | 0.8 | $\begin{aligned} & 15(100 \%, 160 \mathrm{Hrs.} \\ & \left.225^{\circ} \mathrm{C}\right) \end{aligned}$ | $\mathrm{I}_{\mathrm{CBO}}$, $\mathrm{h}_{\mathrm{FE}}$ |
| 4725 | 13.5 | 56S | 5.0 0 A | 7.2 | 54 | 0.79 | $\begin{aligned} & 17 \underset{\left.250^{\circ} \mathrm{C}\right)}{(100 \%}, 160 \mathrm{Hrs} . \end{aligned}$ | $\mathrm{I}_{\text {CBO }}$ |
| 4727 | 0.6 | 13.5R | $600 \mu \mathrm{~A}$ | 7.3 | R | 0.78 | $\begin{aligned} & 15(100 \%, 160 \mathrm{Hrs} . \\ & \left.225^{\circ} \mathrm{C}\right) \end{aligned}$ | $\mathrm{I}_{\text {CBO }}, \mathrm{h}_{\mathrm{FE}}$ |
|  |  |  |  |  |  |  |  |  |

## INTERNAL VISUAL INSPECTION

The appearance and conclusions for this subgroup are the same as for $\mathrm{J} / \mathrm{N} 2 \mathrm{CN} 242-04 \mathrm{C}$ (Texas Instruments).

Sample size - 3 ea.
Failure Analysis - 3 ea.
${ }_{\star}^{*} h_{\text {FE }}$ trace present. Cannot meet stated test conditions. (Leaky)
${ }_{\star} h_{\text {FE trace }}$ very leaky.
$\mathrm{D}=\mathrm{drift} \mathrm{H}=\mathrm{hysteresis}$ Inv=inversion $\mathrm{R}=\mathrm{resistive} \mathrm{S}=$ soft Uns=unstable


FIGURE B-1
S/N 4722, Typical Texas Instruments
Die Appearance, 160X.

## FAILURE ANALYSIS

## (TEMPERATURE STRESS II)

Date 28 April 1978


INTERNAL VISUAL INSPECTION
S/N 4772 and 4780 have no significant visual defects.
S/N 4784 exhibits silicon damage on the base-collector junction (see Figure B-3).
$\left.\right|_{\star \star} ^{*} h_{\text {FE trace present. Cannot meet stated test conditions. (Leaky) }}^{\text {Fe }}$

-     -         -             -                 -                     -                         -                             - 

$D=d r i f t \quad H=h y s t e r e s i s$ Inv=inversion $R=r e s i s t i v e ~ S=$ soft Uns=unstable

S/N 4772 Th!s sample has lost most of its current gain without exhibiting any other junction anomalies sufficient to explain that loss. This suggests that the decreased $\mathrm{h}_{\mathrm{FE}}$ was due to loss of emitter injection efficiency - specifically a loss of hole lifetime and/or mobility. Such a change could be induced by drifting of impurities under the influence of the high power and temperature used to stress the device. The change (increase) in collector-emitter breakdown voltages upon opening the packages and the hysteresis seen on those measurements is evidence that contamination was indeed present within the packages.

S/N 4780 This is a good unit. The $\mathrm{V}_{\text {BEO }}$ and $\mathrm{V}_{\mathrm{CBO}}$ forward voltage data given above confirms that there is no abnormal resistance present in the contacts or package, and the ${ }^{\text {C C E (SAT) }}$ at ${ }^{I_{C}}=150 \mathrm{~mA}$ was within specified limits. This is considered to be a measuring error reject, possibly for poor contact, since the external leads of this sample are oxidized.

S/N 4787 There is a collector-base junction defect on this sample which breaks down at 70 volts. As the collector-base voltage is raised, a resistive trace appears on the curve tracer from 70 volts to the true breakdown at 104 volts. This defect is the cause of the excessive leakage for which the sample was rejected. See Figure B-3.

$$
\begin{aligned}
& \text { Sample Size }=3 \\
& \text { Failure Analysis }=3
\end{aligned}
$$

ORIGINAL PAGE IS
OF POOR QUAN


FIGURE B-2
S/N 4772, Typical Motorola Die Geometry, 160X.


FIGURE B-3
S/N 4784, Motorola Sample, 200X.
Arrow indicates collector-base junction defect.

## APPENDIX C

FAILURE ANALYSIS

TEMPERATURE STRESS II

## FAILURE ANALYSIS

(TEMPERATURE STRESS II)
Date 20 March 1978
$\mathbf{J} / \mathrm{N}$ 2CN242-04C $\mathbf{P} / \mathbf{N}$ 2N2905A MFR_TEXAS INSTRUMENTS

| Max. =$10 \mathrm{nA}$ |  |  |  |  | $\underset{75}{\operatorname{Min}}=$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S/N | $\begin{array}{\|c\|} \hline \mathrm{BV} \\ \text { CEO } \\ \text {-volts } \\ * \\ \text { * } \\ \text { See } \\ \text { bell } \end{array}$ | $\begin{array}{\|l\|} \hline \mathrm{BV}_{\text {CBO }} \\ \text {-volts- } \\ \text { note } \\ \text { ow } \end{array}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{CBO}} \\ & -\mu \mathrm{A}- \\ & @ \mathrm{~V}_{\mathrm{CB}}= \\ & 50 \mathrm{~V} . \end{aligned}$ | $\begin{aligned} & { }^{B V_{E B O}} \\ & \text {-volts- } \end{aligned}$ | $\begin{aligned} & \mathrm{h}_{\mathrm{FE}} \\ & \mathrm{I}_{\mathrm{B}} \\ & 0.1 \mu \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CE}}= \\ & 10 \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\text {BEO }} \\ & \text {-volts- } \\ & \text { @ } \mathrm{I}_{\text {BEO }}= \\ & 10 \mathrm{~mA} \end{aligned}=$ | INITIAL <br> REJ. AT TEST <br> SEQUENCE NO.: | INITIAL REJ. FOR: |
| E01473 | 35 | 100 | $<10 \mathrm{nA}$ | 7.0 | 160 | 0.75 | - not rej | cted - |
| 739 | 6.7 S | 15 S | 152. | 7.2 | 25 | 0.70 | 11 (2500) | $\mathrm{h}_{\text {FE }}, \mathrm{I}_{\text {CBO }}$ |
| 745 | 80.uns | 84 uns | 1.0 | 7.1 | 10 | 0.65 | 09 (225 ${ }^{\circ}$ ) | Catastrophic |
| 747 | 2.58 | 16 S | 120. | 7.2 | * | 0.68 | 11 (250\%) | $\mathrm{h}_{\text {FE }}, \mathrm{I}_{\text {CBO }}$ |
| 752 | 1.85 | 4.5 | 6100. | 7.4R | none | 0.76 | 15 (300 ${ }^{\circ}$ ) | Catastrophic |

*NOTE: The $^{\mathrm{BV}_{\mathrm{CEO}}{ }^{\text {and }}{ }^{\mathrm{BV}}{ }_{\mathrm{CBO}} \text { readings were measured at } 5 \mu \mathrm{~A} \text {. Actual breakdown had not been }}$ reached on $\mathrm{S} / \mathrm{N} 739,747$ and 752 . The $\mathrm{I}_{\mathrm{CBO}}$ readings were also below breakdown voltages.

## INTERNAL VISUAL INSPECTION

A11 samples have severe intermetallic formation surrounding the base and emitter lead wires. No other significant defects were visable (see Figure C-1).

## OTHER TESTS

Upon stripping the metallization and lead wires chemically, areas of damage to the surrounding oxide could be seen under the former intermetallics (see Figure C-2).

## CONCLUSION

These samples failed due to thermal overstress which caused gold/aluminum intermetallics to form, and which degraded the collector-base junctions. The excess die temperature and intermetallic attack upon the oxide allowed metallic impurities to contaminate the oxide and thus degrade the transistor characteristics. The emitter-base junctions did not degrade because the higher boron concentration of the emitter diffusions gettered the impurities at the emitter-base junction. Sample size - 5 ea. Failure Analysis - 5 ea.
$\star^{h}$ FE trace present. Cannot meet stated test conditions. (Leaky)
$\star * h_{\text {FE trace very leaky. }}$
$\mathrm{D}=\mathrm{drift} \mathrm{H}=$ hysteresis Inv=inversion $\mathrm{R}=$ resistive $\mathrm{S}=$ soft Uns=unstable


FIGURE C-1
S/N 739, Typical Overall Die View, 152X. Dark areas of gold/aluminum
intermetallics surround the emitter and base ball bonds.


FIGURE C-2
S/N 739, Same Die as Figure C-1, 152X.
After stripping the metallization and wire bonds.
Arrow indicates damaged oxide which
was attacked by the intermetallics.


[^0]:    *NOTE: Catastrophic reject(s) removed from data after this point

