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NOTATION

airfoil enclosed area divided by c¢2

participation coefficient

chord length

drag coefficient

lift coefficient

pitching-moment coefficient

pressure coefficient

design objective function to be minimized or maximized
arbitrary function of X

constraint function

Hession matrix containing second partial derivatives
number of design variables

search direction in optimization
thickness—-to-chord ratio

vector containing the design variables

lower bound on design variable i

upper bound on design variable i

array of airfoil coordinates

array of coordinates defining a shape function
airfoil angle of attack

move parameter in optimization

gradient operator

difference operator

iii



Subscripts:

i variable number
Ls lower surface
max maximum

min minimum

us upper surface
Superscripts:

0 nominal design

q iteration number
k design number



APPROXIMATION CONCEPTS FOR NUMERICAL AIRFOIL OPTIMIZATION
Garret N. Vanderplaats

Ames Research Center

SUMMARY

An efficient algorithm for airfoil optimization is presented. The algo-
rithm utilizes approximation concepts to reduce the number of aerodynamic
analyses required to reach the optimum design. Examples are presented and
compared with previous results. Optimization efficiency improvements of more
than a factor of 2 are demonstrated. Much greater improvements in efficiency
are demonstrated when analysis data obtained in previous designs are utilized.
The method is a general optimization procedure and is not limited to this
application. The method is intended for application to a wide range of engi-
neering design problems.

INTRODUCTION

Numerical optimization techniques have been shown to provide a versatile
tool for airfoil design. The usual approach has been to couple existing aero-
dynamic analysis codes with an optimization code to achieve the design capa-
bility. The primary effort has been directed toward application of these
techniques to a wide variety of design problems while using increasingly
sophisticated and time-consuming aerodynamic analysis programs.

The cost of this automated design, whereby a very time-consuming analysis
program is executed repetitively (perhaps several hundred times), is neces-~
sarily an important consideration when judging the practicality of these
techniques. Perhaps the simplest means of estimating cost is by the number of
times the aerodynamic analysis program is executed during a design study.

That is, for a given aerodynamics program, the cost of optimization is a
direct function of the number of times the program is executed on the com-
puter. Therefore, any improvement in optimization efficiency is directly
measurable in design cost savings.

Very little effort has been directed toward improving the efficiency of
the automated design process as applied to aerodynamic design. The principal
improvement to date has been in the method of defining the airfoil. 1In refer-
ences 1 and 2, polynomials were used to define the airfoil shape, with the
coefficients of the polynomial being the design variables. 1In references 3
and 4, and in subsequent work, these polynomials were replaced by more general
analytical or numerically defined shape functions. The result was an effi-
ciency improvement of more than a factor of 2, together with improved airfoil



definition (ref. 3). However, efficiency improvements are still needed if
numerical airfoil optimization is to become an economically feasible design
approach when using sophisticated aerodynamic analysis codes.

The purpose here is to present a technique that improves the design effi-
ciency by another factor of 2 or more. The basic approach is to develop
approximations to the design problem using a minimal amount of information.
The approximating functions are used in the optimization and the resulting
design is analyzed precisely. This analysis information is added to the
available data and the process is repeated until convergence to the optimum
is achieved. (The idea of using approximation concepts in aerodynamic opti-
mization originated from the observed success of similar techniques used by
Schmit and Miura (ref. 5) in the field of structural optimization.)

To provide a background for the method, the basic concepts of numerical
optimization are first presented. This is followed by a description of the
present method of coupling an aerodynamic analysis program to an optimization
program for automated design. The concept of optimization by sequential
approximations is then presented, followed by a more precise mathematical
formulation of the method and a summary of the design algorithm. Examples
demonstrate the efficiency and reliability of the method and finally, some
of the implications of this method for future development are discussed.

OPTIMIZATION CONCEPTS

Assume the airfoil is defined by the relationship

§=a1§1+a23_(2+...+an?n (]_)

where Y is a vector containing the upper and lower coordinates of the air-
foil and Y1 are shape functions that may themselves define airfoils. The
coefficients a;, ap . . ., ay are referred to as participation coefficients.
Now assume it is desired to find the airfoil that minimizes the drag coeffi-
cient Cp with constraints on lift coefficient Cp, thickness-to-chord ratio,
t/c, etc., at a specified Mach number and angle of attack. The participation
coefficients a; - a, are the design variables, and will be changed during
the optimization process. The n~dimensional space spanned by the design
variables is called the design space.

The optimization problem can be stated mathematically as:
Minimize
Cp (2)

subject to

WV

‘L CLmin (3



(t/e) > (ele) )

where CD, CL’ and t/c are functions of aj, az, . . ., ap. This can be
generalized to be:

Minimize
F (X) (5)
subject to
cj(i) <0 j=1,m (6)
xil <x,<x" i=1,n (7

where X is a vector containing the design variables, aj, 1 = 1,n. There are
a total of m constraints. The 1lift constraint of equation (3) is written in
the form of equation (6) as

C
1- ¢ L <o (8)
Lnin
Similarly, from equation (4)
Lo e =0 ®
“‘min

i and Xiu of equation (7) are referred to as side con-
straints that limit the region of search for the optimum. Although side
constraints could be included in equation (6), they are usually treated sepa-
rately for convenience and efficiency.

The parameters X-z

The optimization problem of equations (5)-(7) is quite general. 1If it
is desired to maximize Cj with a constraint on Cp, —CL is minimized.
Also, the constraint set of equation (6) is not limited to constraints at the
design flight condition. With this formulation, the airfoil can be designed
at a given flight condition with constraints at other flight conditions so
long as the appropriate information is calculated during the aerodynamic
analysis. 1If the inequality conditions of equations (6) and (7) are satis-
fied, the design is said to be feasible. If any of these conditions are
violated, the design is called infeasible.

The optimization process typically proceeds in an iterative fashion as:
X% = 3371 4 x5 (10)

An initial design, XU, must be provided which may or may not define a feasible
design. The superscript gq 1is the iteration number. Vector S9 is the



search _direction and a* 1is a scaler determining the move distance in direc-
tion S9. The notation a is used for consistency with mathematical pro-
gramming literature and should not be confused with the airfoil angle of

attack.

If gradient methods are used, the optimization process consists of two
steps. The first is determination of a move direction SY that will improve
the design without violating any constraints; the second is calculation of
a* such that the objective is reduced as much as possible in this direction.

This may be understood by considering a two-variable design problem where
Cp 1is minimized subject to constraints on Cf, and t/c. A hypothetical
problem is shown in figure 1 which shows contours of constant drag and shows
the C;, and t/c constraint boundaries. Assume an initial design is given at
point A, with no active or violated constraints._Using gradient methods, the
process begins by perturbing each component of X to determine its effect on
the objective. That is, the gradient of Cp is calculated by finite differ-
ence using a single forward step, and the gradient vector is constructed as

)
(BCD (ACD
3%, AX,
3CD ACD
3%, AXo
VF = §CD = S [ (11)
BCD ACD
oX J AX
\ o { o)

It is obvious that the greatest improvement of the objective function is
achieved by moving in the negative gradient, or steepest descent direction,
so that S = ~§CD. Knowing the search direction, §1, the scalar o* that
will minimize Cp in this direction must be found. This is a one-variable
minimization problem. Several somewhat arbitrary values of o are defined
and the airfoil is analyzed at each point, X=X+ asl. A polynomial is
usually fit to these points and a more precise o = a* 1is calculated at point
B in figure 1, ending the first optimization iteration. The second iteration
begins by again perturbing the design variables to obtain the gradient of the
objective. Using the conjugate direction algorithm of Fletcher and Reeves
(ref. 6) a new search direction, S2, is found which will again reduce the
objective. A search is performed in this direction, leading to point C,
completing iteration two. At C, the 1lift constraint is active (Gj = (0) and
a direction is found that will reduce Cp without violating this constraint.
The gradient of both the objective and active constraint are calculated and
a new search direction, S3, is found using Zoutendijk's method of feasible



directions (refs. 7,8). The process is repeated until a design at E is
obtained where no direction can be found that will reduce the objective with-
out violating the constraints and this design is called optimum. Logic is
included in the algorithm so that if an initial design is defined at point F,
the constraint violations are overcome to yield a final design at point E.

The optimization procedure described above is essentially that used in
the CONMIN program (ref. 9). 1In a typical design, about 10 iterations are
required to achieve an optimum design. For each iteration, m aerodynamic
analyses are used to calculate the required gradient information by finite
difference. To determine a* requires an average of three analyses so that
a total of 10(n + 3) = 10n + 30 aerodynamic analyses are required for opti-
mization for a single flight condition. Although quite efficient from an
optimization viewpoint, that many executions of a sophisticated aerodynamics
program can be very expensive. Therefore, it is desirable to reduce the number
of required analyses as much as possible. This improvement in optimization
efficiency is the subject here. The technique will be developed by first
reviewing the approach currently used for aerodynamic optimization.

Previous Method of Aerodynamic Optimization

At the present time, most airfoil optimization is performed by coupling
the aerodynamics program to the optimization program as shown in figure 2.
Each time the optimization program defines a new design, either for finite
difference gradient computations or for determining o%*, the aerodynamics
program is called for a complete analysis. For the example of figure 1, a
set of analyses is performed as indicated in figure 3. During optimization,
at iteration j, very little information from previous iterations is used.
At point B in figure 1, the vector S!  is used to calculate S$? so that, if
no constraints are active, prior information is used. However, if one or
more constraints are active or violated (the usual situation), no prior
information is used.

It can be argued intuitively that all calculated information should
be of value in guiding the optimization process. Furthermore, in a design
study, numerous optimizations are usually performed. For example, one
optimization may be done to minimize Cp with constraints on C; and, later,
another optimization done to minimize Cy with constraints on Cj, and Cp.
It may be expected that, because many airfoils were analyzed during the first
optimization, a second optimization at the same flight condition should
utilize this available information. One way to do this would be to approxi-
mate the required functions using available information. This would provide
explicit functions which could now be optimized independent of the time
consuming aerodynamic analysis program. Aerodynamic analysis is still used
to improve the approximation, leading to a precise solution.

The general procedure is outlined in the following section.



Optimization by Sequential Approximations

Assume it is desired to approximate the aerodynamic parameters linearly
in terms of the design variables, X. Then, for example,

ac, 3C,, . ac,,
~ g 0 4 —2 - X0 + == ~ — -x0
CD CD + 3%, (x4 X1Y) 3%, (X, = X5°) +. ..+ BXn (Xn Xn Yy (12)
—c 04T . (% - R0
CD + VCD X - X9 (13)

where the superscript denotes the point about which the curve fit was done.
Now at point A in figure 1, this information is obtained by n + 1 analyses;
an initial function evaluation plus finite difference gradients. Similar
information can be simultaneously obtained for Cp, and t/c. This provides
explicit, but approximate, expressions for the functions. The two-variable
representation for this linearized problem is shown in figure 4, where the
objective and constraints are now linear functions of the design variables.
It is clear from figure 4 that the solution to the approximate optimization
problem is unbounded so that this would not yield meaningful results.
However, by limiting the design change to some reasonable bounds, shown by
the rectangle, the optimization will have a solution. At that point, the
problem could be linearized again and resolved. Note that at the end of this
first optimization the airfoil will be analyzed precisely and the results
compared with the approximate solution. Therefore, n + 2 analyses are now
available to set up a new approximate problem. The problem could be linear-
ized by either using only n + 1 of these analyses or using a least squares
fit to all of the data.

Note that, because this approximate problem is strictly linear, linear
programming techniques could be used (Simplex method, ref. 10). The technique
of repeatedly linearizing a nonlinear problem and solving with linear pro-
gramming is known as ''sequential linear programming" and has been used with
success in structural design (ref. 11).

An alternative approach to sequential linear programming, and the one
used here, is to use the excess data to develop higher order approximations
to the functions. Then, in this case, the extra analysis would be used to
provide a second-order approximation with respect to X;. This new approxi-
mate problem is optimized, followed by a new precise analysis and the process
repeated until the solution has converged. When a total of
14+ n+na(n+ 1)/2 analyses are available, a full quadratic approximation is
possible. Subsequent to this, new analyses are used in a weighted least
squares fit, rather than obtaining ever higher order approximations. Only a
second-order approximation is used because higher order approximations
(1) would require excessive data, (2) tend to model noise in the data, and
(3) have been found to be unnecessary.

If a quadratic design problem were being considered, the quadratic
approximation would be precise. If the problem at hand can be approximated
closely by a quadratic function, this method can be expected to be



competitive. Assuming only a few analyses are required beyond that necessary
for a quadratic approximation, this method is competitive for problems of
fewer than 20 design variables, and is twice as efficient for problems of

10 variables. More dramatic improvements are realized by using analysis data
obtained in one optimization as data for subsequent optimizations.

The concept of sequential approximations is shown in block diagram form
in figure 5. Note, in comparison to figure 2, that the optimization program
never directly works with the aerodynamic analysis, but only optimizes the
approximating functions. Because the evaluation of the approximate functions
is short and is explicit, the efficiency of the optimization code itself is of
minor importance because the necessary function evaluations are quite rapid.
Also, gradients of the approximating functions are easily calculated analy-
tically, a feature that improves the efficiency of the approximate

optimization.
In the following section, the sequential approximation approach to
optimization is outlined mathematically.
Mathematical Formulation

Consider the Taylor series expansion of any function:

£rf0 4T R-K) 42 ®-K) - H - R-F0) 4 - - - (14)

In equation (14), X0 1is the point about which the expansion is being per-
formed, £0  is the corresponding function value, and Vf is the vector of
first partial derivatives (gradient). The matrix of second partial deriva-
tives (Hession matrix), H, is symmetric:

( af ([ 32f 52f o 52f
9%, 9X12  3X,0X, 89X 19X,
of 32f
X, 59X, 2
vE = J - Y E= ﬁ : o (15)
2
Bf SYMMETRIC R
8%, J 9Xp J
\ \

In aerodynamic optimization, this information is not usually available analy-
tically, but can be calculated numerically. The usual approach is to use
finite difference gradients to provide a good approximation to Vf and H.
This assumes a small finite difference step size to insure that the



approximation is good.

However, it may be desirable to utilize previously

calculated data to determine the components of VE and H, recognizing that the
accuracy of this approximation will not be as great as if small finite differ-

ence steps were used.

The terms up through second order
compact form as

of equation (l4) may be written in more

1

Af = VE - AX + E-AiT [H] AR (16)
where
AX = X - X0
and
Af = £ - £0
Equation (16) may be expanded as
Af = VEq AXy + VE,AX, + - VE_ X
+-% (Hyp 8X12 + Hyp DX 4+ -+« + B Aan)
+ H12AX1AX2 + H13AX1AX3 + . - + HlnAxlAXn
+ H23AX2AX3 + . . Hn—l,n AXn-—-l AXp (17)

Now assume a nominal design, X0, has been analyzed to yield £0,
Xk  have been analyzed to give

numerous other designs, X!,
£, . . ., fk. Let

AXL = X1 _ X0

and

afl = g1 - £0
Then we can write k
Vfl an and H]_l, H12
unknowns.
io, a total of
unknowns can be determined.
cients.
which can be solved directly.

. Hyp

If more than

used. If less than

8

equations of the form
for a total of
Remembering that one analysis was required for the nominal design,
2 + 1 designs are required.
Equation (17) is linear in the unknown coeffi-
Writing this equation for each of

Also,

i=1, ., k
i=1, .k
(17). The unknowns are

L =n+nm+ 1)/2

Thus, if k=2 & + 1, the

¢ designs yields & equations

2 designs are available, a weighted least squares fit is
£ designs are used,

fewer coefficients are calculated.



In the extreme, if only the nominal design and one other design are available,
only the first term in equation (17) is calculated. This approximation can
be used to optimize with respect to variable X; only. The result of that
optimization is then analyzed and used to calculate the first two terms in
equation (17). Optimization can then be performed with respect to X; and
X5, and so on. In this fashion, all data are used to guide the optimization,
and the design is continually improving. Figure 6 depicts the sequence of
designs that may be analyzed precisely in the two variable example.

Design Algorithm
Given the capability of developing the approximate Taylor series expan-
sion of the various aerodynamic and geometric functions, it is incorporated
into an optimization algorithm as follows:
1. Given k dinitial designs, k =2 2
2. Create the Taylor series expansion about the current "best'" design

3. Number of design variables, NDV = MIN(k,n)

4. Set limits on the design variables, say X% = 0.8*X0 and

xu = 1,2%x0
5. Optimize the approximating functions
6. Analyze the proposed optimum
7. Add results to data set; set k =k + 1
8. If k<n+ 1 go to step 2
9. Check convergence

10. TIf satisfied, print final results; otherwise, go to step 2

A FORTRAN computer code was written for this technique and a block
diagram of the major operations is shown in figure 5.

The CONMIN program (ref. 9) was used for the optimization capability.
In the following section, design examples are presented to demonstrate
the efficiency of the method.

DESIGN EXAMPLES

Examples are presented here to identify the generality and efficiency
of approximation concepts as applied to airfoil optimization. Four existing



airfoils are used as the design basis vectors in equation (1). These are the
NACA 2412, NACA 641-412, NACA 65,-415, and the NACA 64,-A215 airfoils. The
coordinates are defined at 50 points along the upper and lower surfaces. The
coordinates are approximate, obtained from curve fits of the existing airfoil
data (refs. 12, 13) and no attempt was made to precisely match the data given
in the references. Two additional basis vectors were used to impose the
boundary conditions at the trailing edge of the airfoil: Y,4 = X/C, Yo4 =0
and Yyis = 0, Yoo = -(X/C). The shapes defined by these six basis vectors are
shown in figure 7. These basis vectors are the same as those used in
reference 3. TFor consistency, the same aerodynamic analysis code (ref. 14)
was also used. Three of the design examples of reference 3 are solved here,
two of which were also presented in reference 2.

Example 1: Lift Maximization, M = 0.1, o = 6°

Figure 8 shows the results of optimization of an airfoil for maximum
1ift. The design constraints are listed on the figure and are the same as
Case 2 of reference 3. Additional numerical results are given in tables 1
and 2. This optimization required 19 aerodynamic analyses; 44 were required
previously. Although it may be  argued that this airfoil is dimpractical, it
must be remembered that this airfoil mathematically satisfies the design
constraints. Also, the lift coefficient obtained here, Cy, = 1.144, is better
than the one obtained before, C; = 1.108. The fact that this airfoil was not
obtained using the method of reference 3 suggests that the present method is
numerically better conditioned for optimization. Furthermore, these results
were obtained using less than half the number of aerodynamic analyses used
previously.

The quality of the approximation to the lift coefficient may be judged
from figure 9. Because there are four independent design variables, the
full second-order Taylor series expansion of the functions requires 15 anal-
yses. It is intriguing to note that on the sixteenth analysis and beyond,
the approximation for this case is quite precise.

Example 2: Lift Maximization, M = 0.75, a = 0°

Although optimization using sequential approximations works well for
low-speed airfoils, it might be expected that the technique would not be
adequate for high-speed applications where the nature of the flow field about
the airfoil can be quite sensitive to small changes in the airfoil shape.

To study this possibility, Case 3 of reference 3 was solved using the present
method. Here, the 1lift coefficient was maximized subject to a constraint

on wave drag. A value of (p, = 0.4211 was obtained after 27 analyses,
compared to Cp = 0.4188 obtained in 70 analyses previously. The results
are shown as example 2A in figure 10. Using the present method, the optimi-
zation continued to mathematically improve the airfoil. After 37 analyses,
the airfoil of figure 11 (example 2B) was obtained. The optimization
terminated after 48 analyses, yielding the airfoil shown in figure 12
(example 2C). Note the sigrificant changes in pressure distribution among

10



figures 10-13. The comparison of approximate and precise values of Cy and Cp
are shown in figure 13. The two values agree well at 27 analyses. After 37
analyses the flow field is as shown in figure 11. The comparison between
approximate and precise values is then poor until the convergence to the final
optimum after 48 analyses. The disagreement between approximate and precise
function values is understandable from figure 14 which shows the airfoil
corresponding to the forty-third analysis. Note the reverse curvature of the
upper surface near the leading edge and near the 60-percent chord. This
results from the inability to properly model a supercritical airfoil using

the NACA basis airfoils. The optimization was able to effectively utilize
these data to redirect the optimization process, leading to the final
converged solution. This final airfoil, shown in figure 12, has the same
characteristics as the airfoil of figure 14, but to a lesser degree. 1In a
practical design situation, it would be desirable at this point to add other
basis vectors that represent supercritical airfoils, remembering that the

48 analyses already obtained provide useful data for the expanded optimiz-
ation. The results of this optimization are given in tabular form in tables 1
and 2.

Example 3: Wave Drag Minimization, M = 0.75, a = 0°

To demonstrate the efficiency of the present method when multiple
optimizations at the same flight condition are performed, Case 4 of
reference 3 was solved. The 48 analyses performed to solve example 2 here
were used as initial data. 1In reference 3, the optimum airfoil from the
previous design was used as a starting point for this design. 1In the present
study, the twenty-seventh analysis (fig. 10) was used as the nominal design
about which the first Taylor series expansion was performed. An optimum
design of Cp = 0.0009 was obtained using only two additional analyses. The
resulting airfoil is given as example 3A in figure 15 and in tables 1 and 2.
This result compares to an optimum Cp = 0.0007 obtained previously using
44 aerodynamic analyses.

As an additional exercise, this design was repeated beginning with the
forty-eighth analysis of example 2 as the initial nominal airfoil. An
optimum Cp = 0.0003 was obtained using four additional analyses. This
design (example 3B) is presented in figure 16 and in tables 1 and 2. As
seen from the figures, examples 3A and 3B represent quite different airfoils,
although the actual calculated wave drag is negligible in each case.

DISCUSSION

Approximation concepts as applied to aerodynamic design have been
presented. The technique has been shown to be more versatile and efficient
than earlier techniques. It is not limited to two-dimensional airfoils, or
to a single flight condition, and it is not limited to the aerodynamic
analysis code used to provide the examples. The technique is a general

11



automated design procedure that may be applied to a wide variety of engineer-
ing design problems in addition to the one considered here.

The results presented here are considered preliminary and, as experience
is gained through application of the method, further refinements can be
expected.

Future effort will concentrate on development of the computer code,
written as part of this study, into a generally available code for distri-
bution, applicable to problems of broad engineering interest. Efforts in
aerodynamic design will be directed toward extension to more general design
situations. Of fundamental importance is development of data storage and
retrieval systems so that the ever increasing body of available aerodynamic
data can be easily utilized in design. Finally, effort will be directed
toward the use of experimental data as a basis for design. The general goal
is to develop a distributable computer program and data base that the user

can apply to his particular design problem at extremely low cost.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, California 94035, November 17, 1978
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2,3
2A
2B
2C
2D
3A
3B
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TABLE 1.~ DESIGN INFORMATION

Comment

Initial design

Optimum design

Initial design

After 27 analyses
After 37 analyses
Optimum design
Forty-third analysis
Initial analysis no. 27
Initial analysis no. 48

Coefficients

a ar aj
1.0 0 0
4.9323 | -0.6653 | -0.4802
1.0 0 0

-4989 L4004 | -.5997

.0533 L9713 | -1.3342
-.4518 1.3518 | -1.8513
-.4954 1.2148 | -1.8393

.4205 .1930 | -.6256
-.2137 -.7223 | -1.3723

ay

.3018

.6181
.2632
.8959
.0302
.8698
.7285




ST

TABLE 2.- ANALYSIS INFORMATION

Number of analyses

Example Cr, CDW Cy A% t/c Camber New
Ref. 2 |Ref. 3 method
1 init. . 9864 0 -0.0645 .0809 0.1193 0.0201 - - -
1 opt. .1437 0 -.7496 .0750 .1501 .0398 103 44 19
2,3 init. L4824 .0113 -.1068 .0821 .1201 .0201 - - -
2A 4211 .0039 -.1017 .0750 .1119 .0101 143 42 27
2B L4702 .0039 -.1341 .0750 L1154 .0108 143 70 37
2C 4716 . 0040 ~.1505 .0755 .1191 L0117 143 70 48
2D L4024 .0019 -.1319 .0759 L1191 L0124 - - -
3A .3057 .0009 -.0770 .0751 .1108 .0077 - 44 2
3B .3009 .0003 -.0945 .0765 .1168 .0079 - 44 4

YCross-sectional area divided by the chord squared.
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X, b Cp = CONSTANT
C, =0
tlepyy —tle=0
0 X4

Figure 1.— Two-variable design space.
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INPUT

-3 OPTIMIZATION

' '

PRECISE
RES[IJI\:_TrS AERODYNAMIC
ANALYSIS

Figure 2.— Previous program organization.



@ PRECISE ANALYSIS

0 X4

Figure 3.— Sequence of precise analyses: previous method.
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BOUNDS ON 0.030
APPROXIMATE
OPTIMIZATION

X, A

(t/c)MlN —t/e=0

Figure 4.— Linear approximation to initial design.
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INPUT

p—"

NOT
SATISFIED

TAYLOR SERIES
EXPANSION
V_ » OPTIMIZATION
PRECISE i
AERODYNAMIC
ANALYSIS _
APPROXIMATE
ANALYSIS
CHECK SATISFIED PRINT
CONVERGENCE RESULTS

Figure 5.— New program organization.
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xzﬁ

@® PRECISE ANALYSIS

I . PR

0 X4

Figure 6.— Sequence of precise analyses using approximation techniques.



_

NACA 2412

BASIS SHAPE 1

NACA 64,-412

BASIS SHAPE 2

NACA 65,-415

BASIS SHAPE 3

(a) Shapes 1 through 3.

Figure 7.— Basis Shapes.
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NACA 64,A215

BASIS SHAPE 4

Yys =X/¢ V15 =0

BASIS SHAPE 5

Yys = 0.y s = -x/e

BASIS SHAPE 6

(b) Shapes 4 through 6.

Figure 7.— Concluded.
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CONSTRAINTS: IC, (x/c=0.01)|<2.0 ICy|<0.0756 A >0.075
us
t/e < 0.15 CAMBER < 0.04

! AN ———— INITIAL DESIGN
-2 \ — —— OPTIMUM DESIGN

Co e
B I L Y D R L]
AIRFOIL SHAPE

.2r-
1= == ——-—

- T

y/e s e = o
N T SR GU s R
R— =¥
Al L | ! i I | l I |
0 4 8 1.0
x/c

Figure 8.— Example 1: Lift maximization, M = 0.1, o = 6°.

25



1.2 —

OPTIMUMC, = 1.144

11—

LIFT
COEFFICIENT, ——O——PRECISE VALUE
c, — — A~ — APPROXIMATE VALUE
M=0.1
a=6°
1.0
G
.9 I I ! ] | | l l {
1,2 4 6 8 10 12 14 16 18 20

ANALYSIS

Figure 9.— Optimization history for example 1.



CONSTRAINTS: CDW <0.004 A=0.075

INITIAL DESIGN
-1.5 — —~——— DESIGN AFTER 27 ANALYSES

1.0

O e T T R N R

Figure 10.— Example 2A: Lift maximization, M = 0.75, a = 6°, 27 analyses.

27



INITIAL DESIGN
-15— — — — DESIGN AFTER 37 ANALYSES

PRESSURE DISTRIBUTION

S T SN DR N T S S B B

AIRFOIL SHAPE

Figure 11.— Example 2B: Lift maximization, M = 0,75, a = 6°, 37 analyses.
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CONSTRAINTS: CDW< 0.004 A >0.075

INITIAL DESIGN

-1.5 ———= OPTIMUM DESIGN

AIRFOIL SHAPE

Figure 12.,— Example 2C: Lift maximization, M = 0.75, o =

6°, 48 analyses.
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—O— PRECISE VALUE

-=--- APPROXIMATE VALUE

M =0.75
a=0°

q
d
<l
<)
S
<]
[=]
<

80 —
60 —

o o
< o o
Ll L

M
000t x 93 1N31914302 DYHA IAYM

T3

‘

€« 0N

AN3II014309 L4117

ANALYSIS

Figure 13.— Optimization history for example 2.
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1.0 PRESSURE DISTRIBUTION

asb L1

A P AIRFOIL SHAPE
l | | A —
-l I l l l l l L J

2 4 6 8 1.0
x/c

(=}

Figure 14.— Example 2D: Airfoil associated with analysis no. 43.
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CONSTRAINTS: €, >0.30 A >0.075

INITIAL DESIGN
—~——— OPTIMUM DESIGN

PRESSURE DISTRIBUTION

1.0

15 | [ ]
AIRFOIL SHAPE
1
1 | | ] | | | | 4 !
yle 0 1 1 1 1 1 1 ) ]

-1 ] | | | | | | I | |
0 2 4 6 8 1.0

x/c

Figure 15.— Example 3A: Drag minimization, M = 0.75, o = 0°.



CONSTRAINTS: C, > 0.30 A >0.075

-18 INITIAL DESIGN

— ———0PTIMUM DESIGN

Figure 16.— Example 3B: Drag minimization, M = 0.75, a = 0°.
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