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Abstract 

The following is a presentation of the results of two separate theore

tical investigations. Both studies utilize the computer program described 

in Reference 1. This program is capable of predicting the aerodynamic 

characteristics of both upper-surface blowing (USB) and over-wing blowing 

(OWB) configurations. 

The f~rst -investigat~on is a theoretical analysis of the effects 

of over-wing blowing jets on the induced drag of a 50° sweep back wing. 

Exper~ments have shown net drag reductions assoc~ated with the well 

known lift enhancement due to over-wing blowing. This study reveals the 

mechanisms through wh~ch this drag reduction is brought about. It is 

shown that both jet entrainnent and the so called w~ng-jet interaction 

play inportant roles in this process and neither effect can be overlooked. 

In the second ~nvestigatlon, the effects of a rectangular upper

surface blowing jet are examined for a w~de variety of planforms. In 

all cases the jet characteristics were identical. The isolated effects 

of wing taper, sweep, and aspect ratio variations on the incremental lift 

due to blowing are presented. The effects of wing taper ratio and sweep 

angle were found to be especially important parameters when considering the 

relative levels of incremental lift produced by an upper-surface blowing 

configuration. 
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1. Analysis of the Induced Drag Reduction of an Over-Wing Blowing Con

figuration at Mach Number of .4. 
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The following report is a theoretical investigation into the mechanisms 

through which the induced drag of over-wing-blowing configurations are 

affected. The analysis was carried out with the computer program of 

Reference 1. This program ut1lizes the theory reported in Reference 2 by 

Lan. The over-wing blowing configuration used for this investigation is 

3 identical to that used in an experimental test carried out by Putnam . 

In that experiment, a jet was exhausted from above and ahead of a 50° swept 

back wing from four different positions (see Figure 1), and freestream 

Mach numbers ranging from .4 to .95. In this theoretical study, only the 

two aft jet locations were investigated (high-aft and low-aft) and a 

freestream Mach number of .4 was used throughout the analysis. 

It is well known that significant increases in lift coefficient can 

be obtained with over-w1ng blowing jets and that improvements in take-off 

and landing performance can be achieved. This is evident in Figure 2 

where the predicted incremental lift coefficients of the present theory 

are compared with the experimental data of Reference 3 and results of a 

O\ffi theory of Putnam, reported in Reference 4. The theory by Putnam 

accounts for the jet entrainment effect only and is limited to jets 

located rather high above the wing (>1.5 jet diameters) or jets which 

do not wash the wing. The present theory accounts for both jet entrainment 

and also wing-jet interaction. The additional lift increment due to wing-

jet interaction is shown by the experimental data and the theory of Lan 

(see Figure 2). This interaction effect becomes much larger as the jet 

is lowered closer to the wing. Figure 3 shows the incremental drag 

reduction due to the O~ jet. Again the accuracy of Lan's theory is 

seen. The theory of Putnam underpredicts the influence of the jet because 

it accounts for entrainment effects only. 
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3 

These induced drag reductions associated with over-wing blowing 

conf1gurations offer a means of improving the cruise performance of jet 

aircraft. This is verified experimentally and theoretically in Figure 

4. This drag reduction associated with a lift enhancement is seen again 

in Figure 5. Note that in Figure 5 drag reductions seem possible at low 

angles of attack only, because changes in induced drag are evaluated at 

a constant alpha rather than at a constant lift coefficient as in Figure 

4. Because increases in lift at large alpha are comparatively larger 

than drag increases, the overail LID with the jet on is still larger than 

for the wing alone (see Figure 4). 

Comparisons of the present theory with other OWB experiments have 

5 6 also shown good agreenent ' • Reference 7 compares experimental results 

for another OWB configuration w1th the predictions of the present theory 

and also the theory of Putnam. Again the improved accuracy of the theory 

by Lan was shown. The drag reduction associated with additional lift 

production is one of the least understood phenomena associated with OWB 

configurations. The main purpose of this investigation is to gain a 

better understanding of how particular OWB configurations can produce 

significant increases in lift and reductions in induced drag as compared 

to a wing alone. 

As shown in Figure 6 the sectional induced drag is the sum of two 

components of opposite sign. The drag component of the pressure distri-

bution is partially nul11fied by the thrusting component of the leading 

edge thrust. Figure 7 shows the increased pressure distribution induced 

by the high-aft jet configuration of Figure 1. Because the pressure 

distribution must re~ain normal to the camber line, any increase in the 

resultant pressure force must also produce a proportionate increase in 



the induced drag component of this force, see Figure 6. More insight 

into the nature of the incremental pressure coefficient can be gained 

from Figure 8. Note that in F1gures 7 and 8 the coefficient Cp is the 

coefficient of the net pressure force acting on the airfoil section, 

(usually referred to as ~ Cp). Also in Figure 8 the ~ Cp term is the 

coefficient of the additional pressure distribution induced by the jet, 

above what the wing alone is capable of producing. Examination of the 

pitching moment data for the configuration of Figure 8 reveals that the 

center of pressure is unaltered by the Jet, however significant forward 

movement of aerodynamic centers have been shown both experimentally8 

and theoretically9 for upper-surface-blowing configurations with large 

thrust coefficients. One mechan1sm through which the OT.JB jet can in-

crease the wing pressure distribution is the jet entrainment. The jet 

entrainment produces upwash on the w1ng wh1ch not only increases the 

wing pressure distribution but also induces larger normal velocities 

around the leading edge and hence more leading edge thrust. Figure 9 

shows that the entrainment effect induces larger increoents of leading 

edge thrust as compared to the incremental pressure drag. Thus a net 

decrease in total drag is achieved. Figure 10 reflects this property 

of the jet entrainment, showing all 1ncrements of drag to be negative and 

showing the powerful influence of jet velocity ratio. Figure 11 again 

shows that when jet entrainment alone is considered, that in every 

instance the increment of leading edge thrust is larger than the entrain-

ment induced increment of pressure drag. Figures 12 and 13 show that 

the spanwise increments of pressure drag and leading edge thrust coefficient 

due to the entrainment of the high-aft jet. As might be expected, the 

effect that entrainment has on a given portion of the wing is a function 
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of distance from the jet, the most powerful influences being exerted 

on the blown portion of the wing where the jet entrainment is strongest. 

Figure 14 shows the entrainment effect on the incremental leading edge 

thrust coefficient for varying angles of attack. Again maximum leading 

edge thrust increments are seen to be generated near the blown portion 

of the wing but not exactly on the jet centerline as expected, but 

closer to the outboard edge of the jet. Also the portion of the wing 

outboard of the jet is more strongly influenced than the inboard por-

tion. This might be explained by re-examining the wing geometry, Figure 

1. The jet is entraining air along its entire length. The portion of the 

jet above the wing is shielded fran below by the wing. If the portion 

of the jet downstreaM of the leading edge is entraining air around the 

leading edge it will affect the outboard portion of the leading edge 

most because the wing is highly swept and the outboard edge is closer 

to the downstream portion of the jet. See sketch A. 

So far, only the effect of the jet entrainment of the high-aft jet 

configuration has been analyzed. 2 However, it has beep shown by Lan 

4 and Putnam that accounting for the jet entrainment alone results in an 

underprediction of the jet induced lift. The presence of the jet near 

the wing will modify the wing flow field and in the same way the wing 

will alter the jet flow. This wing-jet interaction process must be 

accounted for. Details of how this is done in this theory can be found 

in Reference 9. When the wing-jet interaction is also taken into account 

as in Figures 15 and 16 it is seen that the incremental pressure drag 

(and lift) coefficients are increased above what entrainment alone is 
, 

capable of. (Compare to Figures 11 and 12.) It is also seen that 

wing-jet interaction also has a detrimental effect upon the leading edge 

thrust. Thus only at high blowing rates and low angles of attack can net 

5 
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reductions in drag be achieved, see Figure 15. By comparing Figure 17 to 

Figure 13 and Figure 18 to Figure 14, it can be observed that this de-

terioration of the incremental leading edge thrust occurs near the wing 

panel blown by the jet, which is exactly where the entrainment exerted its 

most powerful effects. Figure 19 shows that at low blowing rates the 
I 

~I 

leading edge thrust in the jet region can be reduced to less than that 

produced by the wing alone. The reason will be explained later. I 
I , 

It is known that the vertical height of the jet relative to the 

wing has a powerful effect on how much the jet can increase the lift 

coefficient of the wing. All of the data discussed previously have been 

for the high-aft jet location. To better understand the effects of the 

jet vertical height on the induced drag, the low-aft configuration of 

Reference 3 was also analyzed. The program predicted that the jet would 

wash the wing in this conf1guration and so an equivalent upper-surface-

2 blowing jet was used for the interaction computat10n. F1gure 20 shows 

that this prediction was verified exper1mentally. Figure 21 shows that 

indeed, two or three times the incremental lift coefficient of the high-

aft jet can be obtained with the low-aft jet but a much larger induced 

drag penalty must be paid. Figure 22 shows why this is so. Not only 

is a large increment of pressure drag (and lift) being generated on the 

blown portion of the wing but the leading edge thrust in this same vicinity 

is reduced to a very small proportion of what the wing was producing 

alone. Figures 23 and 24 show how these two phenomena together produce 

very large induced drag increments in the jet reg10n. Figure 25 exhibits 

the large error in the prediction of the incremental induced drag that 

would be made if wing-jet interaction was not accounted for. Figure 25 

also shows that at large thrust coefficients the low-aft jet can produce 



net increases in the leading edge thrust even with the large deterior

ations in the jet blown region. Figures 26 and 27 clarify how this is 

possible. However, no matter what the sign of the leading edge thrust 

increment is, the large decrements of leading edge thrust coefficient 

in the jet blown region will prevent the low-aft jet configuration from 

achieving the efficiencies shown for the high-aft jet in which the lead

ing edge thrust is increased along the entire wing span. Thus from a 

cruise performance point of view, tn~high-aft jet would be more appealing. 

Figure 28 shows the large error that would be made in the prediction of 

the incremental leading edge thrust if the wing-jet interaction is 

ignored. The interaction effect of a low jet cannot be ignored. 

Figure 29 compares the incremental leading edge thrust coefficients 

for the low-aft and high-aft jet configuratiosn. Curves are also shown 

for the entrainment alone si~plification. It is seen from the dashed 

lines that lowering the jet close to the wing surface does increase the 

entrainment effect upon the leading edge thrust as would be expected. 

However, this change in the entrainment effect is not nearly as dramatic 

as the effect the jet height has upon the wing-jet interaction. Figure 29 

also shows one reason why the simple entrainment alone assumption may be 

adequate for a jet far above the wing but is not realistic for a low 

over-wing blowing or upper-surface blowing jet. The integrated values 

for the two high-aft jet curves are roughly the same. They are not even 

close for the low-aft jet, see also Figure 28. Figure 30 compares the 

spanwise distribution of induced drag due to the pressure distribution 

for the low and high jet. The peaks in the loading at either edge of 

the jet are explained in detail in Reference 10 but briefly are due to 

the side surfaces of the equivalent rectangular USB jet used in the compu

tation. Figure 31 shows the total induced drag coefficients and leading 

edge thrust contributions for the low-aft and high-aft jets. The data 

7 



in the corner of the plot show that the integrated spanwise leading edge 

thrust for the high-aft jet is larger than that of the low-aft jet, 

even though sectional coefficients on either side of the jet region 

are larger for the low jet, it is seen that the large deterioration in 

leading edge thrust in the jet blown region is the major cause of the 

large induced drag associated with this configuration. The question 

arises as to what is causing this. One of the boundary conditions of the 

interaction theory is that the jet surface is a stream surface and that the 

flow on either side (inside or outside) of this surface must be parallel 

to that surface. The jet is assumed to be flowing parallel to the local 

chord which in this case is also the local camber line. If the jet 

is near the wing and parallel to it and the outer flow near the jet is 

constrained to be parallel to the jet then this flow must also be 

parallel to the wing chord. Becuase the jet is slightly above the wing 

small normal velocities may be possible at the leading edge, but not as 

large as would occur with the wing alone. If the jet were lowered 

all the way down to the wing surface the normal velocit1es and hence 

leading edge thrust should go to zero in the region close to the jet. 

8 



Flgure 1. Ideahzed geOr.le:ry of tne Ol:B wind tunnel model used in Putnam's 
investigac!on. see ';-\5A r.; D-736i 
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Figure 2. Comparison'of the predicted incremental lift coefficient with 

the experimental data of reference 3 and the theory of reference 

4, for the high-aft jet configuration. 
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2. Analysis of Planform Effects on Upper-Surface Blowing Lift 

Augmentation 
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2.1 INTRODUCTION 

It is a well-known fact that an upper-surface blowing jet induces 

large increments of lift beyond the potent~a1 flow limit of a w~ng with-

out blowing. This increment of additional lift has been shown to be 

strongly dependent upon the amount of blowing (thrust coefficient). 

This additional lift has also been shown to be very sensitive to the loca-

tion of the jet exit relative to the wing. One of the major reasons 

the aerodynamic characteristics of an upper-surface blowing configuration 

are sensitive to the characteristics of the jet is the so called wing-jet 

- - ff 9 ~nteract~on e ect. The wing flow field is modified by the presence 

of the jet and conversely the jet flow f~e1d is altered by the presence 

of the wing. Thus the wing characteristics as well as the jet characteris-

tics are important in the over-all performance of the wing-jet system. 

The effects of jet location and jet thrust coefficient have been studied 

in numerous wind tunnel ~nvestigations, the trend being to pick a par-

ticu1ar wing p1anform of interest and vary the jet location and nozzle 

geometry in an effort to opt~mize a particular wing jet combination. 

In this computer analysis the opposite approach was taken in that the 

characteristics and geometry of the jet-were fixed beforehand and the wing 

p1anform was varied, in order to determine what particular wing parameters 

are important in optimizing a w~ng which utilizes upper-surface blowing 

(USB). A wide range of planforms were exam~ned in hopes of finding a 

wing parameter to which ~ncrementa1 lift ~s a direct function of. This 

parameter could thus be used to predict the incremental lift of any 

general wing planform for a given amount of jet blowing. A family of 

such relations for varying levels of blowing could be used in the design 

process for an upper-surface blowing (USB) configured aircraft. Partial 
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success was made in this direction, however, the problem is complex. 

It was found that any alteration of the wing flow field also disturbs the 

way the wing and jet interact and the incremental lift produced by the 

interaction process. No one wing parameter was found to be dominant but 

rather all three parameter variations undertaken (sweep, aspect ratio, taper 

ratio) effected important changes in the incremental lift due to blowing. 

By the same reasoning, any major modificat1on of the jet flow field should 

disturb the interaction process and resulting additional lift. Thus all 

of the data shown, apply only to the particular jet characteristics and 

geometry used for this test, although the trends of the results are 

probably very general. 

The wing-jet interaction effect was calculated according to the theory 

reported in Reference 9, using the computer program of Reference 1. The 

theoretical predictions of this program have been compared extensively 

~~ith experimental results and the theoretical results were in good 

agreement with the USB experiments9 ,11 

2.2 GEOMETRY OF THE JET 

As was stated earlier, the major emphasis of this investigation was 

the effect of wing planform variations on upper surface blowing perfor-

mance. The same jet was used for all wings tested to insure that any 

variations in incremental lift were due solely to planform changes. Be

cause only one jet configuration was used throughout the analysis, it is 

important that it be as realistic as possible so that subsequent findings 

lend themselves to real world situations. Much of the jet characteristics 

used (see Table 1) are similar to data taken from Reference 12 and jet 

parameters of the Boeing YC-14 advanced medium STOL transport. The 



Table 1 

Description of the Jet 

Used Throughout this Investigation 

Geometry: rectangular USB exit 

width Aspect Ratio ( ) 5.0 thickness 

Ajet _ 
S /2 - .038088 
w 

v 
co 

V. = .16 
J 

C = 2.0 
u 

T. t- = 1.25 
co 

M. = .838 
J 

Comparison of the USB jet 

exit with the YC-14 exit 

based on fractl.onof wing area. 
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input data used models conditions during low-speed flight. A rather high 

aspect ratio rectangular jet exit was used because wide thin jets have 

been shown to exhibit the highest lift augmentation at low speed and 

superior flow turning around flaps. However, it should be noted that 

severe cruise drag penalties can result from the large boattail angles 

13 necessary for such nozzles • This problem was overlooked because, from 

a cruise drag point of view, the jet scrubbing of any upper-surface 

blowing (USB) configuration is not favorable when compared to an over-

wing blowing (OWB) configuration. 

In all cases, the jet exit was placed directly on the leading edge of 

the wing. Although the lateral extent of the jet was held constant, 

the sweep angle of the eX1t varied with the planforms such that the 

inboard and outboard edges of the jet exit always remained directly on 

the leading edge.' The exit was placed on the leading edge because many 

unrelated wind tunnel investigations have shown that this longitudinal 

location relative to the wing yields the largest increments of additional 

lift. In all cases the jet was located as far inboard as possible, its 

inboard edge lying on the root chord. This is the probable location for 

most USB configurations because of the problem of lateral trim with one 

engine out. 

2.3 DESCRIPTION OF lHNG GEOMETRIES 

In this investigation the effects of planform variations were explored 

through the variation of three important planform parameters: aspect 

ratio, leading edge sweep angle, and taper ratio. Only plain unflapped 

wings were investigated. Hopefully this investigation can serve as a 

data base for subsequent studies of the effects of flap geometry variations 
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or other wing parameters of a more secondary nature. For example the 

wing camber distribution has been shown to be important to the drag of 

6 OWB configurations • 

The original set of wing planforms used in this study can be seen 

in Figures 32 through 35. These wings shapes were chosen to represent 

a wide range of aircraft now in service. Each wing is code-marked with 

an alphabetical letter from A to P. The original set seen in Figure 32 

is a two dimensional matrix of wings with consistent levels of aspect 

ratio and leading edge sweep. Seven increments of sweep were used; 

were used; 1.5, 2.5, 3.75, 5.0, 7.0, 9.5, with an additional set of aspect 

ratios 12 wings included later. (See Figure 36.) Wing taper ratio was 

preset in reference to sweep angle. This was done to economize computing 

time. Allowing a "three dimensional matrix of wings with seven levels of 

sweep, aspect ratio, and taper ratio would generate 343 possible combina-

tions. It was presu~ed beforehand that wing sweep and aspect ratio would 

be the two most important parameters in the production of additional lift 

due to blowing. Wing sets with the same sweep angle such as B, C, D 

or E, F, G were all given the same taper ratio. More swept sets were 

given more taper. In this way the effect of aspect ratio can be seen 

for groups of wings with identical sweep and taper. The sweep-taper 

combinations were an attempt to model real aircraft planforms with a 

minimum of wings. This was done through the use of Figures 37 and 38 

in which the taper ratios and wing sweeps of a wide range of aircraft 

are plotted as a function of their aspect ratios. Although the data 

shown represent jet aircraft ranging from fighters to subsonic transports, 

a fairly well defined band exists for both sweep and taper relative to 
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aspect ratio. This is no doubt due to structural and performance con

straints. The matrix of wings A through P was laid out across these design 

bands as shown. As stated earlier, this matrix of wings is conducive to 

the study of aspect ratio effect for wings of constant sweep and taper. 

However, the effect of sweep on wings of constant aspect ratio such as 

groups C, F, I, K or D, G, L is complicated by taper variation as well as 

sweep variation. This problem was overcome in the following way. Two 

wings (G and N) were chosen for a taper variation, see Figures 39 and 40. 

The aspect ratio and leading edge sweep were held constant while the taper 

ratio was varied. This taper variation was carried out such that many of 

the wings had the identical taper ratios of other wings in the matrix. 

For example, the pairs of wings N-3, M or N-2, H both have identical aspect 

ratios and taper ratios and thus a sweep effect study can be made for these 

wings. Also the G and N series of wings were used to show the effect of 

taper ratios on wings with the same leading edge sweep and aspect ratio. 

In this way the effect of aspect ratio, taper ratio and leading edge sweep 

were all examined independently with all other variables held constant. 

All three parameters have important effects on the magnitude of the addi

tional" lift due to blowing, as will be shown. 

The original matrix of wings (A through P) was enlarged with wings 

Q, R, S, T (see Fig. 36). The entire set can be seen in Figure 41. An 

additional wing V (Fig. 42) was input which exhibited a sweep angle change 

along its leading edge. This was done to discern whether complicated plan

forms such as variable sweep wings, offer any particular advantage or 

disadvantage in a USB application. 

All of the w~ngs used in this theoretical investigation were flat 

plates with no camber and no twist. All of the planforms have identical 



wing areas. In this way the scale of the wings and the thrust coefficient 

were held constant in reference to the jet geometry. The wing area was 

simply rearranged around the jet by planform shape variations with no area 

variation. 

2.4 EFFECT OF WING TAPER RATIO 

The effect of wing taper ratio on the incremental lift due to blowing 

was investigated through the use of the Nand G series of wings seen in 

Figures 40 and 39. The presumption that taper ratio would only have a 

small effect on incremental lift was totally incorrect as seen in Figure 

43. The untapered N-l configuration produces twice the incremental lift 
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of the highly tapered N-4 configuration. Note also that the ratio of in

cremental lift to wing alone lift is very consistent for all configurations, 

with only a sl~ght deterioration at high angles of attack. Thus this ratio 

of incremental/wing ·a10ne lift 1S independent of the angle of attack or 

wing lift coefficient, but strongly dependent upon the spanwise lift dis

tribution as will be shown. The relationship between incremental lift and 

taper ratio is very linear for both the Nand G series of wings, (see Fig. 

44). It is seen in Figure 44 that for both wing sets, 100% improvement 

in incremental lift/wing alone lift ratio is ach1eved by the untapered 

wing as compared to a highly tapered configuration. Figure 45 shows the 

untapered wing to have the smallest lift curve slope and yet Figure 46 

reveals that the untapered wing ?roduces the largest increments of addi

tional lift. Thus, the ratio of additional lift to wing alone lift 1S 

very high for the untapered wing. This is seen in the sectional data of 

Figure 47. 

The key to why the untapered wing is such an efficient producer of 

additional lift is seen in Figure 48. The tapered wings are highly loaded 

near the wing tip where the influence of the jet is smallest. However, 



the spanwise loading of the untapered wing is concentrated farther inboard 

where the jet influence is most powerful. Figure 47 shows that the wing

jet interaction process does not confine itself to inboard modifications 

of wing lift coefficient, but rather, it is distributed along the entire 

wing span. Figure 48 suggests that the tapered wings offer an "uphill 

gradient" to this process whereby the jet tries to modify already large 

lift coefficients near the tip where its influence is the smallest. Thus 

for a jet of finite strength, this is not a conducive environsent for the 

production of additional l~ft. Figure 48 shows that the magnitude of the 

sectional lift coefficients are almost the same in the inboard third of 

the wings and yet Figure 47 shows the incremental lift in this same vici

nity to vary widely. Because the lift of the outboard portion of the un

tapered wing is more easily modified by the jet, the inboard portion can 

be modified to a greater extent, as seen in Figure 47. This phenomena 

is further illustrated in Figures 49 and 50. Figure 49 compares the span

wise distributions of wing alone lift and total jet-on lift for the unta

pered G-2 configuration and the highly tapered p1anform, G-4 (refer to 

Fig. 39). As always, the incremental lift due to blowing is distributed 

along the entire wing span. Examining the outboard halves of each wing 

it is seen that the incremental lifts are of the same order of magnitude 

but the ratio of incremental to wing alone lift is not. Also the incre

mental lift of the untapered wing goes to zero at the tip as does the 

wing alone lift. It is obvious that the ellipt~cal lift distribution of 

the untapered wing is more easily enhanced by the jet. The inboard lift 

distributions show that although the wing alone sectional lift coefficients 

are higher for the,untapered wing, the incremental lift there is also very 

49 



much larger and thus the relative improvement is much better as shown in 

Figure 50. 

The above discussion has revealed that the spanwise lift distribution 

of the wing alone plays an important role in determining the efficiency of 

the wing-jet interaction. Wings that are highly loaded in the near field 

of the jet are seen to be the best producers of additional lift. These 

results imply that the spanwise distribution of camber or twist could be 

very important in the production of additional lift due to jet blowing. 

2.5 THE EFFECT OF LEADING EDGE SWEEP ANGLE 
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It was shown that the taper ratio of a given p1anform has an impor

tant effect on the additional jet-induced lift the wing is capable of pro

ducing. The sweep of the wing was also found to be important. Figure 51 

compares three pairs of wings. Each wing pair have identical aspect ratios 

and taper ratios. It can be seen in all three instances that increased 

sweep of the wing has a very beneficial effect on the capability of a wing 

to produce additional lift with blowing. Figures such as Figure 51 can be 

misleading. This figure shows the ratios of the incremental lift coeffic

ient to the wing alone lift coefficient, at an angle of attack of 200
• It 

is true that the more highly swept wings have a smaller lift-curve slope 

for the wing alone. Therefore, if two wings of different sweep were gen

erating equal levels of incremental lift, the ratio of incremental to 

wing alone lift would be higher for the more swept wing because its wing 

alone lift coefficient would be smaller. This, however, is not the case. 

Figure 52 is included to show that indeed the levels of incremental lift 

are higher for the more swept wings. This results in the much improved 

ratios of incremental to wing alone lift as indicated in Figure 51. 
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The reader may also question the unusually high angle of attack (200
) 

used for these calculations. Solutions were found also at angles of attack 

of 2 degrees and 10 degrees for all wings. As mentioned in the previous 

section, the ratio of incremental to wing alone lift is a constant for all 

angles of attack. (see Fig. 43). The theory does not account for flow 

separation or vortex lift effects at large angles of attack. 

The sweep effect is so pronounced that even wing sets of constant as

pect ratio but non-constant taper ratio can be used to show the effects of 

sweep. Figure 53 shows the ratio of incremental lift to wing alone lift 

for all of the wings at a = 200
• Referring back to Figure 32 it can be 

seen that all wings sets of constant aspect ratio such as C, F, I, K 

have increased taper with increased sweep angle. The detrimental effect 

of taper can be reviewed by examining the Nand G series of wings in Figure 

53. Wings N-l and G-2 are untapered. Wings N-4 and G-4 are highly tapered. 

On the basis of taper alone one would expect wing K to be inferior to wing 

C, for example. This is not the case, however, the sweep effect is so 

powerfully beneficial that in examining wings of cons cant aspect ratio, 

(Fig. 53), it is seen that increased sweep angle still yields increased 

increments of additional lift. One reason this is true is because the 

taper variation within any aspect ratio set is not too large. For example, 

set C, F, I, K all have tapers ranging from 1/2 to 1/6.5. If wing K were 

given the large taper of wings 0 or P it could not be expected to remain 

superior to wings C, F or I. If this so-called taper effect and sweep 

effect are consistent and independent phenomena, one would expect a plan

form with a large degree of sweep and no taper to have the largest incre

mental lift due to blowing. Wing N-l embodies both of these qualities • 



and Figure 53 reveals it to be an excellent producer of additional lift. 

Conversely, a wing with only small sweep and a large taper ratio would 

be expected to be a poor choice for lift augmentation by blowing. Wing 

H (Fig. 53) is such a planform and only a 6% lift gain was achieved with 

the upper-surface blow~ng of this wing. Planforms Hand N-2 each have an 

aspect ratio of 2.5 and a taper ratio of .25. Planform H has a leading 

edge sweep of 25 degrees while the N-2 conf~guration has a 65 degree lead

ing edge sweep. The improvement due to increased sweep can be seen in 

Figures 53 and 54. Figure 54 shows the additional lift due to blowing to 

be very uniform throughout a wide angle of attack range. Only a slight 

deterioration of incremental lift is evident at high angles of attack. 

This is the case for all of the configurations studied here. Wings L 

and G-3 both have an aspect ratio of 5 and a taper ratio of 1/6.5. Again 

the more swept wing is seen to produce the higher levels of incremental 

lift, (see Fig. 54). Figure 54 shows this lift augmentation to be invar

ient throughout a wide range of angles of attack. 

The question arises as to why the lift of a highly swept wing would 

be influenced to a greater extent by an upper-surface blowing jet. A 

clue is found in comparing the spanwise lift distributions of planforms 

Hand N-2 (see Fig. 56,57). The planforms being identical except for 

sweep angle have similar spanwise lift distributions with no blowing. 

However, with blowing the highly swept N-2 configuration shows an incre

mental lift distribution which increases from root to tip, with the largest 

gains being made in the mid-span region. The incremental lift of wing H 

starts at the root chord with roughly the same ~agnitude as N-2 but from 

there deteriorates in the outboard regions of the wing. This is seen 
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more clearly in Figure 58 where the ratio of incremental lift to wing 

alone 11ft is plotted for both wings, along the span. It can be seen 

from this figure that the ratio of incremental lift to wing alone lift 

is the same for both wings near the root section but the swept wing pro

duces more lift in the outboard areas of the wing. Comparing the geo

netry of the two planforms relative to the jet exit and the jet itself, 

(Figure 32) several things can be observed. If the N-2 wing is sliced 

streaMWise into many strips, each strip is increasingly farther downstream 

from the jet eX1t in comparison to 1ts equivalent strip on the H planform. 

Evidently the jet, which is emanat1ng at the leading edge, can effect 

larger d1sturbances on wing panels which are farther downstream of the 

jet exit. This would explain the increased lift augmentation of the out

board portion of the highly swept wing. Also the outboard portion of the 

swept N-2 wing is geometrically closer to the trailing jet section. This 

can be seen in Figure 32 by connecting two imaginary lines from the tip 

chords of wing Hand N to the trailing jet section. In fact, much of 

the outboard portion of N-2 is actually downstream of the frontal boun

dary of the trailing jet section. The entire planfor~ H lies upstream of 

this boundary. More interaction could exist between the swept wing and 

the trailing jet vortices by virtue of their close proximity. 

The same situation is seen to exist for the two equivalent wings 

G-3 and L; see Fig. 59. Figure 59 clearly depicts the spanwise incremen

tal lift distribution that is typical of all the wings tested in this USB 

investigation. There are three dist1nct zones along the span. A large 

"bubble" of incremental lift is generated by the portion of the wing 
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which is being blown by the jet. The magnitude of this "bubble" determines 
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the incremental lift that will be generated outboard of the jet section. 

The incremental lift deteriorates at the same rate (Fig. 59) from the 

level at the jet section, for all wings. If the incremental lift is 

large in the blown region of the wing, it will carryover all the way 

toward the wing tip. In other words, the incremental lift deterioration 

never exhibits drastic changes from regions of peak lift but rather always 

deteriorates in the same gradual fashion (see Fig. 59). Between the blown 

portion of the wing and the outboard deterioration zone a sharp peak of 

incremental lift is produced. This peak is due to the side surface of 

the equivalent rectangular USB jet used in the computations. lO 

A conveniently simple parameter was found to account for the sweep 

effect upon wings of equal aspect ratio. A polar plot was created as 

shown in Figure 60. A single point was plotted for each wing. The radial 

coordinate was the ratio of incremental lift to wing alone lift produced 

by the wing in question at a = 20 degrees. The angular coordinate of each 

wing point was simply the sweep angle of the leading edge. This was done 

to produce a sort of contour map with which the efficiency of unswept 

wings could be compared to that of swept wings. All wings with equal as

pect ratios were connected by the curves shown. If, for example, the 

sweep of the wings was irrelevant and all w~ngs of common aspect ratio 

developed the same ratio of incremental lift, then these curves would be 

concentric, like the rings of a tree stu~p. However, a much more interes

ting result was found. Although the curves represent wings with taper 

variation as well as sweep variation; wings which share only a common 

aspect ratio, all of the curves are very linear and all parallel to the 

chord or stream direction. The lines connecting H to N-2 and M to N-3 
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are special cases with no taper variation amongst the pairs, and the lines 

are seen to be very close to parallel with the center line. With the aid 

of Figure 61 it can be seen that the data of Figure 60 is implicating 

that the parameter, (6CL/CLW)cosALE' is a constant for any group of wings 

with a common aspect ratio and taper ratios which are close or equal.* 

Plotting this parameter as a function of wing aspect ratio results in a 

condensation of the scattered data of Figure 53 into a single curve or 

band of data; see Fig. 62. This parameter does nothing to constrict the 

scatter due to taper effect seen in Figure 53 for the Nand G series of 

wings. This problem will be discussed later. 

2.6 THE EFFECT OF tHNG ASPECT RATIO 

There are five sets of wing planfo~s within the matrix that share 

a common taper ratio and leading edge sweep angle. No two sets have the 

same sweep or taper ratio (Fig. 32). The effect of increasing aspect 

ratio on each of these five wings sets can be seen by following the five 

curves in Figures 53 and 63. Each plot shows the ratio of incremental 

lift to wing alone lift at angles of attack of 20 degrees and 10 degrees 

respect1vely. An aspect ratio variation from 2.5 to 12.0 has a very small 

effect on four of the five wing groups. The only exception is the most 

highly s\vept group 0, N, T. This group shows a marked improvenent between 

wing 0 of aspect ratio 1.5 and wing N with an aspect ratio of 2.5. This 

is the only wing group with a constituent wing of aspect ratio 1.5. If 

the other wing groups had been extended to such a low aspect ratio they 

would probably also show the same deterioration of incremental lift. The 

ratio of incremental lift to wing alone lift is fairly stable for wings of 

*This data applies only to flat plate planforms with no camber or twist. 
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aspect ratio 5 or larger. The level of additional lift produced by each 

wing group is mainly a function of the group's sweep angle and also the 

taper ratio. Below an aspect ratio of 5 the level of lift augmentation 

begins to drop off. This is an unexpected result when one considers the 

fact that as aspect ratio is decreased, the ratio of jet span to wing 

span increases. The entire inboard halves of wings ° and P are blown by 

the jet while the jet span represents only 18 percent of the wing span of 

wings Q, R, S w1th aspect ratios of 12. 

Figure 64 shows the spanwise distribution of wing alone lift for the 

wing set 0, N, T. All three wings have a taper ratio of 1/9.214 and a 

leading edge sweep of 65 degrees. All three wings generate similar lift 

distributions, (see F1g. 64), with high loading of the wing tips. Figure 

65 shows the spanw~se distribution of the incremental lift/wing alone 

lift ratio for wings 0, N, T. As mentioned previously in the section on 

sweep effects, 1t can be seen that the incremental lift extends over the 

entire span. The relat1ve level of incremental lift always deteriorates 

to a small level at the wing tips and this deterioration takes place at 

a gradual rate for all three w1ngs. Comparing wings ° and T in Figure 65 

it is seen that planform T is able to generate very large increments of 

additional lift inboard because this planforn has a large unblown portion 

of its span along which th1s large lift increment may decay. Wing 0, how

ever, has a much smaller portion of wing span along which this gradual 

decay can take place and thus the level of incremental lift inboard is 

limited. This trend is again illustrated in Figure 66 which shows the 

ratio of incremental lift to wing alone lift, as it is distributed along 

the spans of wings E, F, G, H. All four wings exhib1t the same trend of 
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deter10ration of incremental lift outboard of the jet span. The more span 

that is available for this deterioration, the higher the level of incremen

tal lift from which this decay begins. 

Although Figure 63 shows that the wings of a given set generate al

most constant ratios of increMental lift to wing alone lift, this result 

is deceiving. Each incremental increase in aspect ratio within a given 

set o~ wings causes a proportionate increase in the lift-curve slope as 

seen in Figure 67. An equivalent increase in incremental lift occurs 

also, as seen in Figure 68, and thus the ratio of incremental and wing 

alone lift rema1n constant. This 1S the case with all of the wing sets 

as shown in Figures 69 through 72. Figure 73 compares the relative levels 

of 11ft with the Jet on and for the wing alone. Note the large gains of 

incremental lift for aspect ratio increases from 1.5 to 5 and the rather 

gradual increases from 5 to 12. Note also amongst wings of aspect ratio 

5 that the highly swept wing T can produce the largest increments of 

additional lift while operating at the smallest 11ft coefficient. Figure 

73 also shows clearly that wings which have the largest ratio of jet span 

to wing span, such as w1ngs 0, N, M do not necessarily produce the lar

gest increments of additional lift due to blowing. In fact, a specific 

portion of unblown span seems to be needed for decay of the large incre

ments of lift generated under the jet. For this jet, the aspect ratio 

5 wings seem to have the optimum level of unb10wn span. This gives a jet 

span to wing span ratio of .28. 

2.7 SUPPLEMENTAL RESULTS 

The original intent of th1s investigation was to find some wing 

parameters with which the incremental 11ft, caused by an USB jet, could 



be predicted for any general planform. Once accomplished, a series of 

design curves could be found for jets of varying size and power. 

The incremental lift developed by an upper surface blowing jet is 

primarily due to the interaction between the jet and the wing. Th~s is 

referred to here as the interact~on effect. This is not the case with 

over-wing blowing configurations where most of the jet induced lift can 

be attributed to the entrainment effect. The blowing jet has the tendency 

to entrain or suck external flow into its own flow thereby creating upwash 

on the wing and addit~onal lift. The entrainment effect is very small 

for USB configurat~ons because of the shield~ng effect of the wing when 

directly below the jet. Thus, for USB configurations the ratio of incre

mental lift to wing alone lift is a measure of the eff~ciency with which 

the wing and jet interact. A wing-Jet combination which exhibits a great 

deal of interaction is an efficient producer of additional lift. I 

The relative efficiencies of all the wings investigated can be seen 

in Figures 53 and 63. Highly tapered wings were shown to be very ineffi

cient producers of additional lift compared to similar but untapered 

wings. Increased sweep angle was found to have a very beneficial effect 

on a wing's abi11ty to produce additional lift. The efficiencies of 

wings with widely varying sweep angles were reduced to a s~ngle curve in 

Figure 62 by use of the multiplying factor (cosA
LE

). This does little to 

account for the taper effect as seen in Figure 74 where the scatter due to 

taper variations of the Nand G series of wings is evident. However, a 

relatively narrow band encompasses most of the wings. Only wings with 

extreme taper ratios of .0278 and wings with no taper at all lie outside 

this band, see Figure 63. Note also in Figure 63 the stability of the 
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data over a very wide range of aspect ratios. For this particular jet 

geometry, the incremental lift begins to diminish for planforms with 

aspect ratios less than 5.0. 

Figure 75 shows the rat10 of incremental lift to wing alone lift 

as a function of each wing's taper ratio. The two curves seen in Figure 

75 reflect the effects of taper variations on the Nand G series of wings. 

Note the linear increase in incremental lift with decreasing taper ratio. 

This linear relationship between taper ratio and the efficiency of incre-

mental lift production can be seen also in Figure 76. In Figure 76 the 

multiplying factor (cosALE) was applied to the data which resulted in 

some shrinking of the data scatter. This occurs because all of the highly 

tapered wings also have large leading edge sweep angles and the cosine of 

these angles is s~aller than one. This causes a magnitude reduction for 

the data plotted and shrinkage of the range of scatter. A simple multi-

plying factor was desired such as (cosALE) which could normalize the taper 

ratio effect and reduce the slope of the linear curves seen in Figures 75 

and 76 to zero. For this purpose F1gure 77 was constructed. In Figure 77 

the incremental lift efficiency of each tapered Nand G wing was normalized 

with the efficiency of the untapered wings, and plotted as a function of 

taper ratio. Both curves show the highly tapered planforms to be only 

about 50 percent as effective at producing additional lift compared with 

the untapered wings. Figure 77 shows that the curves for the cube root 

and fourth root of the taper ratio to follow closely the efficiency ratio 

curves. Possibly these parameters could be used as multiplying factors 

to cancel variations due to taper effect. The inverse relationship is 

seen in Figure 78. Note also in both Figures 77 and 78 the divergence 
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of the root curves from the wing curves at large taper ratios. The fourth 

root of the taper ratio was chosen as a multiplying factor because of its 

smaller divergence at large taper ratios. This mUltiplying factor was 

applied to the data of Figure 74 in hopes of reducing the data spread due 

to taper variations. The result seen in Figure 79 shows the scatter of 
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data for the Nand G wing sets to have been reduced, but the scatter amongst 

the other wings was increased. The problem of predicting taper ratio effects 

remains unresolved. 

Probably the most straightforward approach to predicting lift incre

ments due to blowing is to examine the effect blowing has upon the lift

curve slope of a wing. It has been shown that the incremental lift coef

ficient due to blowing is a constant fraction of the lift coefficient pro

duced by the wing alone. A simpler way of stating this is that the net 

effect of the jet is to increase the lift-curve slope of a wing. This 

point is illustrated in Figure 80, which shows the effect of the USB jet 

upon the three untapered wings A, G-2 and N-l. In all cases the lift 

curve slope was increased to a higher but constant level. Note in Figure 

80 that the jet exerts a smaller and smaller influence upon the lift-curve 

slope of a wing as the magnitude of that slope increases for the wing 

alone. This trend can be seen also in Figure 81 where it becomes evident 

that there is more potential for lift augmentation of wings with small 

lift-curve slopes. The boundary lines drawn in Figure 81 indicate that 

a jet of finite strength can exert only a minimum effect upon an infinite 

aspect ratio wing, (2-D wing). The scatter band for the data of Figure 81 

can be reduced greatly by using the multiplying factor, (cosALE), previously 

used in Figures 62 and 74, (see Fig. 82). Most of the data points fit 



along a single line curve. An upper bound on the incremental lift ratio 

is created by the untapered wings. The wings with the most extreme taper 

represent a lower bound for the ratio of additional lift/wing along lift. 

Most of the wings fit along a linear curve with zero slope. This allows 

the incremental lift of a wide range of aircraft to be predicted for this 

jet thrust coefficient. A family of curves such as Figure 82 would faci-

litate incremental lift predictions at any power setting. 

EXAMPLE: (See Fig. 82) 

For this jet geometry and this power setting (C 2.0) 
u 

for CL > 2.6: 
a. 

= f (C
L 

) 
a. 

Note: only accurate for (.1 < ). < .75) 

Figure 82 has shown that the planforms with the greatest potential for 

lift augmentation by upper-surface blowing are highly swept untapered plan-

forms. Upper-surface blowing could be used to enlarge the flight envelope 

of high speed aircraft and improve their maneuverability. The untapered 

N-l configuration wi~h a 65 degree sweep angle showed a 24 percent increase 

in lift-curve slope due to interaction with the USB jet. This is accom-

plished without the use of flaps. Upper-surface blowing could represent 

an alternative to variable sweep concepts with their inherent weight 
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penalties and structural complications. By use of controlled vortex lift, 

f bl · . bl . 13 b·· h f h upper-sur ace oWlng, or spanWlse oWlng or com lnatlon t ereo , t e 

low speed performance of p1anforms wlth high sweep angles can be improved 

greatly . 

• 
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Figure 39. G-series of wing p1anforms. 
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Figure 54. 

86 

.18 

.16 -----__ N-Z 

--.14 

.1 2 

- ----------- --_. __ .. 

-.10 - .-. .. ..---------. ---- -. ---- ------------- ---

---- ----------------- - -
- - -- - ----- --- .. .. 

.. ...... _.. -.«)8 - _. --- - ---------- - ---.- --------- ----- ---- -- --- ---- -------

- .OS-:-

--.«)4 

.02 

.. .. .. .. .. 

-=_:-:-------- .. - -----: - --- --: ~-=:-- - --- _ ..... 
_:---==--.. _t=.::--==-:-~-;_-::- ~_~ -:-~~ _-:-_-~_...:. __ .. -= ____ : ___ --...... 

____ .. __ .. __ .. ________ ... --- --=_::.:- t. .. H .. 
- - ..... --- ---- --- .. _ .. 

------

- - -------

- A -
_- _ LE 
65~ 

-- .. -- 25~ 
- -

= 

: 

- .. ---- ------ .-- - -- - -- ... - .. -- -_.----- .------------ ---- --- .. -- ---- .. ... 

-- - ... ... .. _ ........ -- - ---- --- - ... ----.- ---.. ---.... - - -
....- -- ------ ~. -.. -- _ ... 

4 ______ _ 

.. ---_... ---O-----L.----=-----------......;;---------
0 ___ - :--:_: 4-- __ - s- 24 

DEGREES 

Effect of leading edge sweep on the ratio of incremental/wing alone 
lift coefficients. AR = 2.5, A = .25. 



.14 

L 

.12 ---

.10 

.08 ~----------------------------------

.06 

.04 

.02 

o 

o 2 4 6 8 10 12 14 16 18 20 

0(, - DEGREES 

Flgllre 55. Effect of leading edgl' sweep on th(' ratio of in('rementill/wing alone 11ft coefffcf('ntq. AR = 
5.0, A = 1/6."'. 



.7 

.6 

.5 

.4 

.3 

.2 

.1 

o 

o 

Hgllre 56. 

----
..

~_/ 

------ JET -----

.1 .2 .3 

.... --.,; 
./ 

~I 

.4 

2Y -B 

----------- .................. 
........ 

"
'\ 

---------
\ 

WING N·2 

--- --- - JET ON 

----------WING ALONE 

.5 .6 .7 .8 .9 

gCfect of the IISI1 jet on the' spanwlse dl'ltrlhutlon of 11ft Loefflcient for wing N-2. n 
AR - 2.S, A = .25, ALR 65°. 

--~--~~-~ ~ ~~ ~--~ ~ - ~- ---:-----

1.0 



.7 

.6 

.S 

.4 

.3 

.2 

.1 

o 

---- --..- ----

~--------JET----------~~~I 

---- - ---- ..... 
....... 

"-
" \. 

\ 
\ 

WING H 

----- - - JET ON 

----- WING ALONE 

\ 
:-.. 
~ 

~--------------------------------------------------------------------------~ 

o .1 .2 .3 .4 

2Y 
B 

.S .6 .7 .8 .9 1.0 

Figure 57. ,,[feLt of the usn let on the sl'[llIwise distribution of 11ft coefficient for wing II. " 
AR = 2.5, " ,. .2S, AU. = 2S". 

I nO , 



Flgur-e 58. Effect of leading edge swpep on the spanwlse distrihution of incremental/wing alone lift coef
ficient ratio. a = 20° AR = 2.5,A = .25. \0 
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3. CONCLUSIONS 

3.1 Conclus~ons for the Analysis of the Induced Drag of an OWE Configuration 

1. Certain OWE Configurations can generate more circulation lift 

than the wing alone with a net reduction in total induced drag. 

2. This drag reduction associated with a lift gain is possible be

cause the jet flow enhances the leading edge thrust of the wing as well 

as the pressure distribution. Net reductions in induced drag are achieved 

when the incremental change in leading edge thrust is larger than the 

incremental increase in pressure drag. 

3. Two separate mechanisms exist through which the jet influences 

the w~ng flow f1eld. These are jet entrainment and so-called wing-jet 

interaction. Jet entrainment is the dominant influence for OHB configu

rations in which the jet is far above the wing and does not wash it. (The 

high-aft configuration). For OWE configurations in which the jet is close 

enough to wash the wing surface (low-aft configuration), the wing-jet 

interaction becomes much more important and cannot be ignored. 

4. As a OWE jet is lowered down to the wing surface, the w~ng-jet 

interaction causes deterioration of all wing leading edge thrusts in the 

near field of the jet. Pressure drag increments are increased so overall 

drag reduction deteriorates. 

5. The above conclusion makes high O\{B configurations more attrac

tive from a cruise drag point of view. 



3.2 Conclusions for the Analysis of Planform Effects on USB Lift 
Augmentation 

1. The predicted incremental lift due to the upper surface blowing 

jet was found to be a constant percentage of the wing alone lift over a 
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o 0 wide range of angles of attack, 2 to 20 • Although this ratio, ~CL/CLw ' 

is a constant for each planform examined, it varies widely between differ-

ent planforms and is also sensitive to variations of the jet characteristics 

or power setting. 

2. The taper ratio of a wing was found to be very important. Un-

tapered wings were found to produce over 60% more additional lift with 

blowing than highly tapered wings with identical sweep and aspect ratio. 

3. Analysis of sectional data revealed that the superior performance 

of the untapered wing was due to its more nearly elliptical distribution 

of lift coefficien~ along the span. Tapering of a wing shifted the crest 

of the wing alone lift distribution outboard, away from the jet, reducing 

the jet's influence upon wing lift. 

4. Increasing the sweep angle of a wing permits much larger incre-

ments of additional lift, due to blowing, to be generated. tihen wings of 

identical taper and aspect ratio are compared, the more highly swept wing 

produces more additional lift due to the same blowing jet. This is because 

wing panels which are farther downstream from the jet are affected to a 

greater extent by wing-jet interaction. These outboard panels are also 

closer to the trailing jet section than the equivalent wing panels of an 

unswept wing. 

5. It was discovered that the parameter: (~CL/CLw)coSALE is a constant 

for wings with equal aspect ratios but widely varying sweep angles. It is 

applicable to USB configurations with identical jet characteristics and 

~I 

I 
I 



thrust coefficient. Effects of twist or camber are not included. 

6. Increasing wing aspect ratio beyond 5.0 resulted in only gradual 

increases in incremental lift. Increases in jet induced lift were in 

proportion to increases in wing alone lift and thus the ratio ~CL/C~~ 

was constant for aspect ratio increases above 5. However, large improve-

ments in incremental lift were achieved with aspect ratio increases made 

from 1.5 up to 5.0. 
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7. Plotting the ratio of incremental to wing alone lift coefficients 

as a function of the lift-curve slope for the wing alone reveals that for 

a given amount of blowing and jet geometry, there exists a minimum level 

of ~CL/CLw which all wings examined were capable of achieving. For this 

jet (Cu = 2.0), (~CL/CLw)MIN. = .05. Such a plot also shows that wings 

with small l~ft curve slopes to have the greatest potential for lift aug-

mentation depending upon the planform geometry. As lift-curve slope for 

the wing alone is increased, the potential for lift augmentation goes down 

and is only a minimum for wings with lift-curve slopes approaching 2~. 

8. Plotting of the parameter, (~CL/C~v) cosALE as a function of the 

lift-curve slope for the wing alone produces a very consistent and 

narrow band of data for wings with wide variations of sweep, taper, and 

aspect ratio. The mUltiplying factor (cosALE) drastically reduces the 

data scatter evident in plots of ~CL/CLW vs CL • 
a 
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