@ https://ntrs.nasa.gov/search.jsp?R=19790011095 2020-03-21T23:33:26+00:00Z

MNGA CR 15623 9

College of Engineering
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

NASA-CR-158239
19790011095

VPI-E-79.6
NONLINEAR INTERACTION OF WAVES IN
BOUNDARY-LAYER FLOWS

Ali H. Nayfeh and Ali N. Bozatla

Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

February 1979

- WP~ T
ks

A 20 Y

ONR Contract: NR 061-201
NO0014-75-C-0381

NASA Research Grant No: NSG 1255

VA

NT9-192 L ( #




“w . ~ -
NASA Techmical

| I

31176 01417 591

Nonlinear Interaction of Waves in
Boundary-Layer Flows
Ali H. Nayfeh and Ali N. Bozatli
Department of Engineering Science and Mechanics,
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061
Abstract

First-order nonlinear interactions of Tollmien-Schlichting waves of
different frequencies and initial amplitudes in boundary-layer flows are
analyzed by using the method of multiple scales. For the case of two
waves, a strong nonlinear interaction exists if one of the frequencies
w2 is twice the other frequency w;. Numerical results for flow past a
flat plate show that this interaction mechanism is strongly destabilizing
even in regions where either the fundamental or its harmonic is damped
in the absence of the interaction. For the case of three waves, a
strong nonlinear interaction exists when w; = wz- wi;. This combination
resonance causes the amplitude of the wave with the difference frequency
w3 to multiply many times in magnitude 1n a short distance even if it
is damped in the absence of the interaction. The initial amplitudes
play a dominant role in determining the changes in the amplitudes of

the waves in both of these mechanisms.



I.  INTRODUCTION

One of the major roads from laminar to turbulent flow involves the
ini1tial linear amplification of disturbances, which might be present in
the flow. However, as these disturbances grow to appreciable amplitudes,
nonlinear effects set in. The nonlinear mechanisms that are activated
depend on the spectrum of the disturbances. In this paper, we investigate
two of these mechanisms.

In his experiments on the transition from laminar to turbulent flow
in a separated shear layer, Sato] observed the appearance of the subharmonic
of order one-half in addition to the higher harmonics of the fundamental
wave. Willez observed the development of subharmonic waves while investigating
the stability of both circular and plane jets. Kachanov, et a13 observed
that, in addition to the higher harmonics of a fundamental wave, which
was introduced in the flow by a vibrating ribbon, a subharmonic wave
with one-half the frequency of the fundamental wave appeared downstream.

Micha1ke4

postulated that the subharmonic appears when two vortices
rotate around each other in a fusion mating dance. Ke]1y5 showed that
the appearance of the subharmonic in a shear layer is due to a secondary
linear instability associated with a time-dependent flow that consists
of the superposition of the basic flow and a finite-amplitude funda-

6 investigated the appearance of the

mental wave. Nayfeh and Bozatli
subharmonic in boundary layers by analyzing the instability associated
with a time-dependent flow that consists of the superposition of the
basic flow and a Tollmien-Schlichting wave. The results show that the
amplitude of the fundamental wave must exceed a critical value to

trigger this parametric instability. This value is proportional to a



detuning parameter that is the real part of k - 2K, where k and K are
the wavenumbers of the fundamental and its subharmonic, respectively.
For the Blasius flow, the critical amplitude is approximately 29% of the
mean flow. For other flows where the detuning parameter is small, such
as free-shear layer flows, the critical amplitude can be small, thus the
parametric instability might play a greater role. Since the analysis of
KeHy5 and Nayfeh and Bozath‘6 are linear, they do not account for the
effect of the subharmonic wave on the fundamental wave. This effect may
be small initially, but as the subharmonic grows appreciably, its

effect on the fundamental cannot be neglected. One of the purposes of
the present paper is to determine the nonlinear interaction of a Tollmien-
Schlichting wave with its subharmonic.

Sato’, Miksad®

, and Kachanov, et a]g observed that the nonlinear
development of the waves in the transition region depends on the initial
and external disturbances. Sato7 conducted an experiment on the stability
of symmetric laminar wakes by exciting two unstable modes with the
frequencies f; and f.. He observed the generation of waves having the
frequencies f, + f,. Miksad8 excited two unstable modes of a laminar
asymmetric free-shear layer. He also observed nonlinear triggered
instabilities of the difference mode f, - fi, subharmonics, and higher
harmonics of the fundamental waves. Kachanov, et a]g introduced two
Tollmien-Schlichting waves in the boundary layer on a flat plate by
using two vibrating ribbons. They observed the appearance and growth of
a8 Tollmien-Schlichting wave having the difference frequency f, - f,.

Norman]0 also observed the amplification of the difference harmonic of

two introduced disturbance waves in his experimental study of secondary



flows around and downstream of protuberances in laminar boundary layers.
The second purpose of the present paper is to determine the nonlinear
interaction of three Tollmien-Schlichting waves (combination resonance)
in boundary layers and show that the difference frequency can be very
unstable when generated by the nonlinearity, even though it is stable
when introduced by itself in the boundary layer.

The problem is formulated in Sec. II. The analysis for the com-
bination-resonance case is contained in Sec. III, while the results for
the second-harmonic case are stated in Sec. IV. The numerical procedure
is discussed in Sec. V, while the numerical results are presented in

Sec, VI.



II. PROBLEM FORMULATION

We consider nonlinear interactions of wave packets in a two-dimensional
steady incompressible boundary-layer. The equations describing the

motion of the fluid are

Mo, g2 3B oy, (2)

Sovugl +vil =B 4o, (3)

i=V¥=0 at y=0, (4)

-1 as y » o, (5)
where

2 _ 92 th
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Here, x and y are made dimensionless by using a reference length Gr’

the time is made dimensionless by using Gr/Um, and the velocities are
made dimensionless by using the freestream velocity U_. The Reynolds
number R = Uwér/v with v being the fluid kinematic viscosity.

The analysis is restricted to basic flows that are slightly
nonparallel (i.e., vary slowly in the streamwise direction) and to
disturbances that are small but finite. The slow variation is expressed
by using the slow scale x; =e;x, where €; is a small dimensionless quantity
that characterizes the nonparallelism of the flow and can be related
to R by €, = R"}. The smallness of the amplitude of the disturbance
is expressed by introducing the small dimensionless parameter €. For

a general solution, we assume that € = O(e;) so that the resulting



expansion accounts simultaneously for the effects of nonparallelism and
nonlinearity. When e << €;, the nonlinear effects are negligible and
the solution reduces to those obtained in Refs. 11 and 12. When
e >> €1, the nonparallel effects are negligible and the solution reduces
to equations with constant coefficients.

We assume that each flow quantity is the sum of a mean-flow quan-
tity and an unsteady disturbance quantity, which is assumed to be much
smaller than the mean-flow quantity. We can then express the velocity

components and the pressure as

U(x,y,t) = Up(x1,y) + eu(x,y,t), (6)
V(X,y,t) = E:IVO(XI’.Y) + EV(X9yat)s (7)
P(x,y,t) = P (x1) + ep(x,y,t), (8)

where Ug, Vo, and Py are the nonparaliel basic-flow quantities. Sub-
stituting Eqs. (6) - (8) into Egs. (1) - (5) and subtracting the basic-

flow quantities, we obtain

U , v _
T Ay 0, (9)
@E.-{-U 8_u+v§!9_+§2_lvzu=_€u§.uﬁ__sv _a__l!.
at 0 ax y ox R 7 9x, 170 3y
au _ au
- eUgx T eV gy (10)
v v, _ 12y, . 2y Vo _ v _ Wy
st TUogxtay RV el 55, ~ eV gy - eV gy
oV oV
- EU oo - eV 3y (11)
u=v=0 at y=0, (12)
U, Vv as y > w (13)



Without loss of generality, we let € = ;. To determine the wave-

packet solutions of Eqs. (9) - (13), we use the method of multiple

sca]es]3 and seek an expansion in the form
U= Ug(XosX15YsTosT1) + eUi{XosX15YsTosT1) + vty (14)
V = Vo(XosX1,YsTosTa) + €Vi(XosX1sYsTosT1) + .uvs (15)
P = PolXosX15¥,To,T1) + €p1(XosX15y>To,T1) + ..., (16)

where xq = x, To = t, and T, = et. Substituting Egs. (14) - (16) into

Egs. (9) - (13) and equating coefficients of 1ike powers of e, we obtain

Order €°
oo+ o=, (17)
<:7€1(UOsV0apo) = g%%‘+ Uo %%% + Vo %g£'+ %%% - %‘V%Uo =0, (18)
Cj?QZ(UO’VOaPO) = %%%‘+ Uo %%% + %5& - %'V%Vo = 0, (19)
Ug = Vo = 0 at y =0 (20)
Ups Vo > O as y - o (21)
Order €
(_’;5(1(“1,V1apl)='%{—:‘ 'Uo‘g'g—%'%%%”*%g—;%‘gyl‘ ‘Uo%?(‘g'
- Vo %%9-- Ug %%%—- Vo %%Q , (23)
B NP R T R A
c Uy Moy, e (24)

Xo ° dy



uy = vy =0 at y = 0, (25)

Ur, vi > 0 as y =+ o, (26)

2 2
A L
Vo oX3  9y2 °

In what follows, we describe the details of the analysis for the
combination-resonance case and only state the results for the second-

haromnic resonance case.



TII. COMBINATION RESONANCES
A. First-Order Problem

For the case of combination resonances, we consider three wave-
packets centered at the frequencies w;, w2, and ws, Then we examine the
resonances that might exist among them. Thus, the solution of Egs.

(17) - (21) is expressed as a linear combination of three Tollmien-

Schlichting waves; that is,.

uo= A (x1,Ty)zra{ysxy)exp(ieg) + Az(x1,Ty) x

12(y3x1)exp(162) + Az(x1,T1)cis(ysxi)exp(i6s) + c.c., (27)
vo= Ar(x1,T1)z21(ysx1)exp(ify) + Ax(xy,Ty) x

Z22(ysxi)exp(i6z2) + As(x1,T1)z23(ysx1)exp(ifs) + c.c., (28)
Po= Ar(x1,Th)zar(ysxa)exp(iey) + Az (x1,Th) x

Taa(ysx1)exp(i62) + As(x1,Ti)zas(ysxi)exp(ifs) + c.c., (29)

= _-ﬂ = - -
'8—)(0‘ = kn(xl)s 3To wn (n 1, 2, 3) (30)

with the Wy being real constants. The quasi-parallel Orr-Sommerfeld

problems for these waves are

MI(C H) an; k ) = Dan + iklcln = Oa (3])

1n n
Malg s T s s Kps o) = 1(Uoky = wpdz o+ ¢ (DU

+ikig - oo -k =0, (32)



n n’>,n an

- g (07 - K2)e =0, (33)

Zn =% " 0 at y =0, (34)
Zne S 0 as y > o, (35)

where D = 3/93y.

B. Second-Order Problem

Substituting Egs. (27) - (29) into Egs. (22) - (26), we find that
the inhomogeneous parts in Egs. (22) - (26) contain terms proportional
to

exp(i6:), exp(i6z), exp(103),
exp[i(62 - 81)], exp[i(0, + 83)], exp[i(62 - B3)]

where the overbar indicates the complex conjugate. The terms that are
proportional to these exponential expressions will create secular terms
in the particular solutions for u;, v,, and p; if k3 <~ k2 - k;

and w; ~ w2 - w13 that is, when a combination resonance exists among the
waves. To express quantitively the nearness of the above resonances, we

introduce the two detuning parameters o, and o, defined by

w3 = Wy * W= €01, (35)

Rea](k3 - k2 + k]_) = €02, (37)

10



where o = 0(1). Using Egs. (36) and (37), we write

0y + 03= (ki + k3)dxe - (w1 + w3)To=062+¢ 1 (k. +k

11 3i
- kzi)dxo, (38)
B - 63= 08, - ¢ + 1 (k21 + kai - kli)dx°’ (39)
By - B1= 63 - ¢ + i (kli + kzi - kgi)dx°’ (40)
where kni stands for the imaginary part of kn and
¢ = J.ozdxl- 01Ty (41)

To determine the An’ we seek a particular solution for the second-

order problem in the form

up = Yra(ysxi)exp(101) + Yr2(ysxi)erp(if2) +yra(ysx1) x

exp(ig;) + c.c., (42)

vi = Y21(ysxa)exp(i61) + Y22(ysxi)exp(i62) + was(ysx1) x
exp(ig;) + c.c., (43)

P1 = Yar(ysxi)exp(18:1) + Ysa(ysxi)exp(i62) + Yas(ysxa) x
exp(i6s) + c.c. (44)

Substituting Eqs. (27) - (30) and (38) - (44) into Egs. (22) - (26) and
equating the coefficents of exp(if,), exp(if.), and exp(i6s) on both

sides, we obtain the following equations:

M1(\P1j, IPZJ; kJ) = le9 (45)

N
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~

1J 3’ 2J
Ms (y j* Y50 V.5 Ky wJ) =d 5 (47)
b=V =0 at y =0, (48)
by v,y 0 as y > @ (49)

for j =1, 2, and 3, where the dij are given in Appendix A.

C. Adjoint Problem

Since the homogeneous parts of Eqs. (45) - (49) are the same as
Eqs. (31) - (35) and since the latter have a nontrivial solution, the
inhomogeneous equations (45) - (49) have a solution if, and only if, the
inhomogeneous® parts are orthogonal to every solution of the adjoint

homogeneous problem; that is,

. *. + . *. + *. = 1 =
/(duglJ d jor; +d cr)dy =0 for §=1,2, and 3,

0

(50)
where the z*'s are the solutions of
M (2 = ik 7. -DC.=0 (51)
! C2\].’€3J" kJ) =1 chJ B Caj o
Mo (s T s € xs Kes w:) = 1(Ugk VoL + o LDU
2 Clj’ [:2.]" Csj’ J’ wJ = 110 J B wj Cs Z‘;2\]' 0
o o Ypz _ o2y, =
Dclj R (D kj)C3J 0, (52)
M, ( * * * c ) (Usk ) * ik *
AL A R LR R LA B LAY B L
)2 o2y, -
R (D kj)Czj 0, (53)
e =0 =0 (54)
ST I at ¥y =0,
* 0 (55)
Clj’ Czj -> as y >,

12



Substituting for the dij from Appendix A into Eq. (50) and defining
X
ay = AJexp[.[ kjidx]’ (56)
X

we obtain the following differential equations for the evolution

of a1, a2, and djz:

1 9 2a h h -

5 5%1.+ 5§l' = (e, ?fL - kli)al + € f123 azasexp(-i¢), (57)
1 9 ) h h .

o St eE < (e T2 -k Jaz + e g2 aasexp(ie), (58)
1 9 P h — .

52 5%3.+ 5%3. = (g, ?31 - k3i)a3 + € 2:12 asa;exp(-i¢), (59)

where mﬁ = dwn/dkn is the group velocity and ¢ is defined in Eq. (41). For
spatial modulation only, o, = 0 and aan/at = 0; all the calculations
presented in this paper are for this case. We note that Egs. (57) -

(59) account for the combined effects of the nonparallelism (i.e.,

growth of the boundary layer) and the nonlinear interaction. If

€ << g1, the nonlinear interactions can be neglected and the spatial
variations in Eqs. (57) - (59) reduce to the nonparallel solutions of

Refs. 11 and 12. When €; << €, the effects of the nonparallelism are
negligible; that is, one can set €; = 0 and all the coefficients in Egs.

(57) - (59) can be treated as constants.

13



IV. HARMONIC RESONANCE

The interaction between a fundamental Tollmien-Schlichting wave and
its second harmonic is analyzed using a procedure similar to that
outlined in the previous section. In this case, instead of Egs. (57) -

(59) we obtain

l. &. &: m ml - _3

5t 5Tt ox (exf1 - kli)al te asaexp(-i¢), (60)

T 2a, (23, _ (_ has _ hay -

o 555 * By (€1f2 kzi)az te g atexp(i¢), (61)
where ¢ is defined in Eq. (41) and

€g, = Real(k, - 2k;), €01= wz - 2w, (62)

and f,, fo, hy1, h2aa, hy12, and hy, are given in Appendices B and C.

For spatial modulation only, o = 0 and aan/at = 0. All the

calculations presented in this paper are for this case.

14



V. COMPUTATION PROCEDURE
A. Solutions of First- and Second-Order Problems

The same procedure is followed 1n solving the first- and second-
order problems for both harmonic and combination resonances. Therefore,
only the computation methodology for the solution of the first-order
problem for the first mode is outlined here.

Equations (31) - (33) are expressed as a system of first-order
differential equation 1n the form

dz

a = Gz, (63)

where z 1s a 4 x 1 matrix with the elements

zy = gualysxa1)s z2 = Dgya(ysxa)s zs =g21(y3x1), 2y = Eal(y;h),

(64)
and G is a 4 x 4 matrix; its elements are given in Appendix D.

We start the integration of Egs. (63) at y = y_, where Yo is larger

e
than the boundary-layer thickness. Hence, U, = 1, DUy = 0, and

DUy = 0 at Y- Then the matrix G has constant coefficients at y = Yo

and Eqs. (63) have solutions of the form

Zi—

I ~18

cijexp(xjy) for i=1,2, 3, and 4, (65)
J=1

where the Cij are constants, the A's are the solutions of

|6 - AI| = 0, (66)

and I is the identity matrix. Equation (66) has the roots

1
A sk, A= x K+ ik - )R], (67)

192 KRR
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Two of these roots have positive real parts that make the solution grow
exponentially as y » «; hence, they must be discarded to satisfy conditions
(35). This leaves two linearly independent solutions that decay ex-

ponentially with y.

The eigenvalues are not known a priori and must be determined along
with the eigenfunctions. For given values of w; and R, we guess a value
for k, and integrate Egs. (63) from Yo tO Y = 0. If the quessed value
of k; does not staisfy the boundary conditions at y = 0, k; is incremented
by using a Newton-Raphson scheme and the procedure is repeated until the
boundary conditions are satisfied to within a specified accuracy. The
integration is done by using a computer code developed by Scott and

14

Watts This technique orthonormalizes the solution of the set of

equations whenever a loss of independence is detected.
B. Solution of Adjoint Problem

The solution procedure is exactly the same as that for the first-

order problem. The coefficients of the z matrix are

* * *
z, = gai(ysx1), z2 = Dga1(ysxi)s 23 = Ta1(ysxi),

Zy = CT1(Y;X1) (68)

and the adjoint problem has the same eigenvalues as the first-order
problem.

C. Solvability Conditions

The calculations are repeated at different streamwise locations to

evaluate fj, h kj, and the other interaction i1ntegrals for a given

ij’
frequency along the x-axis. A fourth-order fixed step-size Runge-Kutta

16



integration scheme is used to solve either Ecs. (57) - (59) for com-
bination resonances or Eqs. (60) and (61) for harmonic resonances to

find the amplitudes of the waves for different initial amplitudes of the

respective modes.

17



VI. Results and Discussion

The analysis presented in this paper is applicable to both two-and
three-wave interactions. First, we present and discuss numerical
results for the case of two-wave interactions. Then, we present and
discuss numerical results for the interaction of three waves whose

frequencies are such that F3 = F, - F;.

A.  Two-Wave Interactions

The numerical results presented in Ref. 6 show that the amplitude
of a wave a¥ = ea, must exceed a critical value before it can generate
and amplify its subharmonic. For the Blasius flow, the critical value
is approximately 29% of the mean flow. This is for the case when the
subharmonic wave has an infinitesimal amplitude. When the amplitude
af = ea; of the subharmonic wave is not infinitesimal, its influence on
a: should be taken into account. The equations governing this influence
are Eqs. (60) and (61) whose general solution is not available yet. The
previous results of the parametric instability mode]6 show that af
oscillates about its non-interaction value until a: reaches the critical
value. Figures 1 and 2, obtained by numerically solving Egs. (60) and
(61), agree with this conclusion. Initially, a: increases while af
oscillates around its non-interaction value.

At R < 580, Fig. 1 shows that at starts to deviate sharply from its
non-interaction value, while 1t follows from Fig. 2 that zna: ~ -1.25
or a: = 0.286 at this location. Hence, when a: is less than this
critical value, af can be approximated by its non-interaction value;

that is

18



at = atoexp(-klix + 1) (69)

*
where a o and T are the initial amplitude and phase of the subharmonic
wave, respectively. If we substitute Eq. (69) into Eq. (61) and neglect

the nonparallel effects, we obtain

*

da, = hay Y2 0re i i
T kzi 2 s aysexpl (Zkli + ieo, )x + 2it]. (70)

The solution of Eq. (70) that satisfies the initial condition

* *
a, = a-(0) at x = 0 can be written as
* L * hoy *, . )
az [a,(0) + f2(2k1i e03) a,sexp(2it)lexp( kzix)
- AES! a*zexp[-(Zk + jeop)x + 2it]
fﬂZkﬂ. + 1e02) 10 i 2 :

(1)
*
Equation (71) represents an approximation to a, as long as it is less

than the critical value needed to trigger the parametric instability 1n
the subharmonic wave.

Next, we consider the generation and amplification of a second-
harmonic wave by a fundamental Tollmien-Schlichting wave. We consider
the following three cases: (i) fundamental wave 1s stable while its
second harmonic is unstable, (ii) fundamental wave is unstable while its
second harmonic 1s stable, (iii) both fundamental and second-harmonic
waves are unstable.

When the fundamental wave is initially stable while its second
harmonic 1s unstable, af decays until it reaches the unstablie region and
then it 1ncreases as shown in Fig. 1. For Reynolds Number less than
560, af oscillates around its non-interaction value, implying a small
initial influence of its second harmonic on it. Thus, a: can be approx-
imated initially by Eq. (71). Figure 2 shows that the values obtained

from Eq. (71) are in good agreement with those obtained by numerically

19



integrating Eqs. (60) and (61) for R < 560. After a short initial
distance, the second term on the right-hand side of Eq. (71) decays.

Then, a: can be approximated by

* *2

*
ar= [a, (0) + 2K ?Zi 7557) aloexp(ZiT)]exp(-kzix),
1

(72)
*
as long as a, is less than the critical value.

Hence, the effect of the fundamental wave on 1ts second harmonic is
to increase its initial amplitude. However, as a: attains large values,
it strongly influences af which in turn strongly influences a:. The
result is an accelerated instability.

For the case when the fundamental wave is 1nitially unstable while
its second harmonic 1s stable, we performed calculations for waves with
the frequencies F; = 46.5 x 107 and F, = 93 X 1078, The fundamental
wave is in the unstable region at R = 950 where the calculations are
started. Thus, its unstable downstream of R = 950. Figure 3, obtained
by numerically 1integrating Eqs. (60) and (61), shows that a? hardly
deviates from its non-interaction value. On the other hand, a; in-
creases many orders of magnitude even for small initial amplitudes of
the fundamental wave as shown in Fig. 4. In these calculations, the
initial amplitude of the second-harmonic wave 1s taken to be 0.1% while
the initial amplitudes of the fundamental wave are 0.1% and 0.5%. Since
af hardly deviates from its non-interaction value, Eq. (71) is expected
to be a good approximation to a:. Figure 4 shows that the values obtained
from Eq. (71) oscillate about those obtained by numerically integrating
Eqs. (60) and (61). Since the initial values are very small, a:
does not reach the critical value to influerce af. After a short initial

distance, the first term on the right-hand si1de of Eq. (71) decays and

20



*
a, can be approximated by

* = - h21 *2 _ . )
4 f2(2k1.i + 1502) aloexp[ (2k11' + 1602)X + 2]1’],

(73)
*
as long as az is less than the critical value. Consequently, the effect

of the interaction is to produce a second-harmonic wave that grows
approximately at a rate that is twice that of the fundamental wave.

For the case when both waves are unstable, we performed numerical
calculations for waves having the frequencies F, = 52 x ]0'6 and
F» = 104 x 1070 starting near R = 600. Figure 5 shows that initially
af deviates slightly from 1ts non-interaction values. Hence, Eq. (71) is
expected to be initially a good approximation to a:. Figure 6 shows
that the numerical values obtained from Eq. (71) are in good agreement
with those obtained by numerically integrating Egs. (60) and (61) when
a: is less than 0.29. Thus, in this case, the effect of the interaction
on the second-harmonic wave is to increase its initial amplitude and to
produce a term that grows at a rate that is twice the growth rate of
the fundamental wave. Due to the fact that both waves are initially
unstable, the interaction 1s more effective in this case than in the
preceding two cases.
B. Three-Wave Interactions

In their experimental studies, Kachanov, et a19, Miksad8, Norman]O,

7

and Sato’ introduced two separate waves of different frequencies into

the flow that was being studied. They observed the growth of a wave
whose frequency is equal to the difference frequency. Kachanov et al
used the frequency pairs F; = 88 x 10'6 and F, = 104 x 10—6 and

6 6

F1 =88 x 107" and F, = 120 x 10"~ to analyze the growth of the associated

21



difference-harmonic waves at F; = 16 x 1078 (1.e. F3 = F, - F,) and
Fs = 32 x 10'6 in a boundary-layer flow over a flat plate. Using the
same frequency pairs, we determined the amplitudes of the fundamental
waves (af and a:) and the difference-harmonic wave a: by numerically
solving Eqs. (57) - (59). Figures 7 and 8 show the large increases 1n
the amplitudes of the above difference-harmonic waves due to the nonlinear
interaction of the waves with the frequencies F, and F,. The amplitude
of the difference-harmonic wave at R Z 715 is increased 120-200 times
its non-interaction value.

However, the amplitudes of the fundamental waves change very little
from their non-interaction values as shown in Fig. 9 for F, = 88 x 10'6.
Thus, af and az can be approximated by

* * * * .
a; = alcexp(-klix +17T,), a = azoexp(-kzix +it2), (74)

* *
where a,, and a,, are the initial amplitudes and T, and T, are the
mnitial phases of the fundamental waves. Substituting Eq. (74) 1into

Eq. (59) and neglecting the nonparallel effects, we obtain
*

* h *  k .
%"‘ k3_ia3 = f:lz di1p0d29 EXp[-(kl_i + kz'i + 1802)X
+ 1.('[1 + TZ)] (75)

The solution of Eq. (75) that satisfies the initial condition

a: = a:(O) at x = 0 can be expressed as
a; = [a; (0) + oK 1_h11§ ¥ Teos) avoazeexp(ity + 112)]
1 2
exp(-ks;x) - haye atoaz0expl-(k ; + k.
i f"3(k11 + kz]. + 1e0,) 11 21
+ deoy)x + ity * t2)]. (76)

*
Equation (76) represents an approximation to as as long as the amplitudes

of the fundamental waves do not deviate from their non-interaction values.
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Figures 7 and 8 show that Eq. (76) is initially in good agreement with
those obtained by numerically integrating Eqs. (57) - (59).

According to Eq. (76), the difference-harmonic wave grows at a rate
that is the sum of the growth rates of the fundamental waves. Since the
fundamental waves are unstable at R = 430, where the calculations are
started, the difference-harmonic wave amplifies considerably, inspite of
the fact that it is stable in the absence of the interaction. These
results are in qualitative agreement with the experimental observations

of Refs. 7 - 10.
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APPENDIX A

dlj = ( 22%'C1j + Aj :iij ),

dzj = dzjo + dzjn

dzjo= -(UoClj + CaJ- - F2(—1 kJ-ClJ- - VoDClj) ;23‘ +[ - U ;i—il
i zijJ ‘x (ks :iiJ ' ;;%Clj) - e oAy

d211 = [i(k2 3)Z1201s  + T22DT13 + DG12Z23]A2As X

exp[-i¢ - /(kz.l + k:«)1 - k1i)dx]:

dzz1 = [i(k: + k3)z11Z1s + 221013 + Dz11Z23]A1A; X

exp[i¢ ‘/(kl-i + ks-i - kz.i)dx],

dyj; = ('iTglzuClz + ikz€12-§-11 + EzzDZn + DC12221)A27\_1 x

exp['i¢ -ﬁkli + kz_i - kSi)dX]’

daj =d3jo +d3j1,
. 3A. 32 3
2 2 _
dsjo‘ (Uoga s - R—1 kizas) B—X% - [Uo BXIJ + VoDl;zJ + EzJ-DVo
. dk. 92 .
J2i 3 i |
R (dx 62 kj 3%, )]AJ"

ds11 = (-1K3C12C2s + 1KoZ22C13 + 2220023 + DZ22C23)AzA,
exp['i(b ‘/(kz.l + k3.| - kl_i)d)(},

diz1 = (Ksz11223 + Tkiz21213 *+ 2210523 + Dz21g23)A1A; x

expli¢ 'ﬁkli + ksi - kz.i)dx]’
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(A3)

(A6)

(A7)

(A8)

(R9)

(A10)



dysy = ( -ikiZaq + §KoC22811 * 2220051 + DZ2p%21)A2A, X

exp[-i¢ 'ﬁkli + kp_]. - k31.)dx]. (A11)
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+ ——J- )

21

o+

QZjDVO R

[oo]

/

0

h123

15 - [ -

W,
+ %, Clj]Czj

APPENDIX B

21k

(j=1,

3C1
X1

+ [Uo +

dk.
dx

)E1

2, 3),

03 ;

J
X1 + VoDClj

2
+ [(Uy - L)

*
+ QajJEZj

'(UO"

. — — — - *
[i(ka - k3)z12Z13 + T22DC13 + DZ12C23]C21

rond -_— - - e - *
+ ( -1KsZ12C23 + 1K2Z22C13 + C22D723 + DEzzCza)C31} dy,

co

/

h213

. *
[i(ky *+ k3)Z11Z13 + 2210513 + Dg11223]C22

*
+ (iksC11223 + iK1Z21813 + C21D0g23 + DC21C23)C32}dy,

hs1z = J/.{[1(

0

Ki)zi2C11 + 2220211 + DC12C21]Cza

—_— —_ — — x
+ (-iK1Z21812 + TkaZ22C11 + T22DC21 + DszCzl)Csa}dy.
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APPENDIX C

[o0]

- - . — _ *
hi2 =f{[szDC11 + £21D012 + (k2 - K1)z12C111221
0
_ —— - — *
+ [1kaz22011 = iKiC21C12%F 22207, + C21DC22]€31} dy (C1)

o0

* *
hay =f{[(ik1;1§ + 2210011)%22  + (ikiZ11C21 + C21DCz1)C32]}dy (c2)
0
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Q is
-1

di11

921

ga1

9y

APPENDIX D

=0, ¢g12=1, g13 =0, g1s =0 (D1)
- 2 _ _ p dUp _ g

= 'I(Uok - UJ)R + k s Jo22 = 0, g23 = R __Y—’ g2y = ikR (DZ)
= - ik, gs32 = g33 = gay =0 (D3)

=0, gy = -ik/R, gu3 = -[i(Uok - w) + k*/R], guy = 0 (D4)

a 2 x 4 matrix consisting of the last two rows of the matrix

The matrix B has the elements:

= bz = bys = byy = 1 (D5)
= -k, by =k, bas =k, ba =-k (D6)
= i, bsp = ik/k, bas = i, bay = -ik/k (07)
= (w/k = 1), buz =0, bys = (wk = 1), byy = 0 (D8)
S [K2 +i(k - w)R] /2 (D9)
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Figure 1. Amplitude of a wave at F, = 52 x 10”0 involved

in a subharmonic resonance with a fundamental wave

at F, = 104 x 107°,
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Figure 2. Amplitude of the fundamental wave at F, = 104 x 10°°

involved in resonance with its subharmonic at F, = 52 x 10'6.
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