NONLINEAR EQUATIONS

OF EQUILIBRIUM
FOR ELASTIC HELICOPTER
OR WIND TURBINE BLADES UNDERGOING MODERATE
DEFORMATION

Aviv Rósen and Peretz P. Friedmann University of California at Los Angeles Los Angeles, California 90024

December 1978

Prepared for

Office of Conservation and Solar Applications Division of Distributed Solar Technology

NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or̀ assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

NONLINEAR EQUATIONS OF EQUILIBRIUM

FOR ELASTIC HELICOPTER OR WIND

TURBINE BLADES UNDERGOING
MODERATE DEFORMATION

Aviv Rosen and Peretz P. Friedman University of California at Los Angeles
Los Angeles, California 90024

December 1978

Prepared for
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
Under Grant NSG-3082
for
U. S. DEPARTMENT OF ENERGY

Office of Conservation and Solar Applications
Division of Distributed Solar Technology
Washington, D.C. 20545
Under Interagency Agreement E(49-26)-1028
NOMENCLATURE v
SUMMARY 1

1. INTRODUCTION 2
2. BASIC ASSUMPIIONS 5
3. ELASTIC EQUIIIIBRIUM EQUATIONS OF THE BLADE 6
4. COMPARISON BETWEEN THE PRESENT ELASTIC EQUATIONS AND THE EQUATIONS OF OTHER STUDIES 23
4.1 Comparison with Houbolt and Brooks (Ref. 3) 23
4.2 Comparison with Hodges and Dowell (Ref. 8) 26
5. CONCLUDING REMARKS 28
APPENDIXES
A - DEFORMATION 38
B - MECHANICS OF A DEFORMED ROD WHICH IS SLENDER AND STRAIGHT BEFORE DEFORMATION 39
B. 1 General Expressions 39
B. 2 Bernoulli-Euler Hypothesis 46
B. 3 Force and Moment Resultants 49
C - EQUATIONS OF EQUILIBRIUM OF A DEFORMED ROD 62
D - DERIVATION OF THE EQUATIONS OF EQUILIBRIUM BY THE USE OF THE PRINCIPLE OF VIRTUAL WORK 74
D. 1 Principle of Virtual Work Applied to a Rod 74
D. 2 Equilibrium Equations in the Directions of the Deformed Rod Coordinates ($\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$) 77
D. 3 Equilibrium Equations in the Directions of the Undeformed Rod Coordinates $\left(\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}\right)$ 84
REFERENCES 93

A
 $B_{1}-B_{6}$
 $\tilde{B}_{1}-\tilde{\mathrm{B}}_{6}$
 $\overline{\mathbf{d}}$

E
E_{1}, E_{2}, E_{3}
$\bar{E}_{x}, \bar{E}_{y}, \bar{E}_{z}$
$\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$
$\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$
$\hat{e}_{x}^{\prime \prime}, \hat{e}_{y}^{\prime \prime}, \hat{e}_{z}^{\prime \prime}$
e_{1}
$\hat{e}_{\eta}, \hat{e}_{\zeta}$
$\hat{e}_{\eta}^{\prime}, \hat{e}_{\zeta}^{\prime}$
$\overline{\mathrm{F}}$

G
G_{12}, G_{13}, G_{23}
cross sectional areas of the blade
terms defined by Equation (D-26)
terms defined by Equation (D-43)
vectorial distance between a point on the cross section
of the blade and the shear center of the cross section
Young's modulus
Young's moduli of an orthotropic material
the base vectors on the elastic axis of the deformed blade
unit vectors in the directions of the coordinates x_{0}, y_{0}, z_{0}, respectively, before the deformation the triad $\hat{\mathbf{e}}_{\mathbf{x}}, \hat{e}_{\mathbf{y}}, \hat{e}_{\mathbf{z}}$ after deformation the triad ($\hat{e}_{\mathbf{x}}^{\prime}, \hat{e}_{\mathbf{y}}^{\prime}, \hat{e}_{\mathbf{z}}^{\prime}$) after the virtual motion blade pitch bearing offset defined in Figure 2 unit vectors in the directions η, ζ, respectively, before deformation
the vectors $\hat{e}_{\eta}, \hat{e}_{\zeta}$ after the deformation
the resultant force which acts on a cross section of
the blade
uodulus of shear
moduli of shear of an orthotropic material

$\tilde{p}_{x}, \tilde{p}_{y}, \tilde{p}_{z}$	the components of the distributed external force in the directions $\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$, respectively
$\overline{\mathbf{q}}$	distributed external moment per unit length along the axis of the blade
q_{x}, q_{y}, q_{z}	the components of the distributed external moment \bar{q}, in the directions $\hat{e}_{\mathbf{x}}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$, respectively
$\tilde{q}_{x}, \tilde{q}_{y}, \tilde{q}_{z}$	the components of the distributed external moment \bar{q}, in the directions $\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$, respectively
R_{1}, \ldots, R_{4}	terms defined by Equation (D-25)
$\tilde{\mathrm{R}}_{1}, \ldots, \tilde{R}_{4}$	terms defined by Equation (D-42)
$\overline{\mathrm{R}}$	the position vector of a point of the blade after the deformation
$0^{\bar{R}}$	the position vector of a point on the deformed elastic axis of the blade
\bar{r}	the position vector of any point of the blade before the deformation
$0^{\bar{r}}$	the position vector of points on the elastic axis of the blade, before deformation
$S_{i j}$	the elements in the matrix which describes the transformation between the triads $\left(\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}\right)$ and ($\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$.)
[T]	the matrix which gives the transformation between $\hat{e}_{x}, \hat{e}_{\eta}, \hat{e}_{\zeta}$ and $\hat{e}_{x}^{\prime}, \hat{e}_{\eta}^{\prime}, \hat{e}_{\zeta}^{\prime}$
T	the component of the resultant force, $\overline{\mathrm{F}}$, which acts in the direction $\hat{e}^{\prime}{ }_{x}$ (axial tension)
$\underset{T}{ }$	the component of the resultant force, \bar{F}, which acts in the direction \hat{e}_{x}

\bar{z}	resultant force per unit area of the cross section of the blade
U	elastic energy
u,v,w	the components of the displacement, \bar{W}, of a point on the elastic axis of the blade in the directions \hat{e}_{x}, \hat{e}_{y}, and \hat{e}_{z}, respectively
$\mathrm{V}_{\mathrm{y}}, \mathrm{V}_{\mathrm{z}}$	the components of the resultant force, \vec{F}, which act in the directions \hat{e}_{y}^{\prime} and \hat{e}_{z}^{\prime}, respectively
$\tilde{\mathrm{v}}_{\mathrm{y}}, \tilde{\mathrm{v}}_{\mathrm{z}}$	the components of the resultant force, $\overline{\mathrm{F}}$, which act in the directions \hat{e}_{y} and \hat{e}_{z}, respectively
$\overline{\mathrm{V}}$	the displacement of any point of the blade
\bar{W}	the displacement of a point on the elastic axis of the blade
W_{E}	the work of the external forces which act on the system
W_{I}	the work of the internal forces of the system
x_{0}, y_{0}, z_{0}	the initial system of coordinates of the blade
x, y, z	a rotating system of coordinates (Figure 1)
$\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$	a system of coordinates fixed with respect to the ground (Figure 1)
X_{A}	the offset between the shear center and the aerodynamic center of a cross section of the blade; positive when in the positive direction of η
X_{I}	the offset between the shear center and the center of gravity of a cross section of the blade; positive when in the positive direction of η

$\mathrm{X}_{\text {II }}$	the offset between the shear center and the tension center of a cross section of the blade; positive when in the positive direction of η
$y_{o c}, z_{o c}$	the position of the tension center of a cross section of the blade with respect to the coordinates y_{0} and z_{0}, respectively
${ }^{\beta}, x$	rate of change of a pretwist (equal to $\theta_{G, x}$ in the present study)
β_{p}	preconing angle; inclination of the feathering axis with respect to the hub plane (Figure 2)
ε	typical symbolic quantity used in the ordering scheme
$\begin{aligned} & \varepsilon_{x x}, \varepsilon_{y y}, \varepsilon_{z z} \\ & \varepsilon_{y z}, \varepsilon_{x y}, \varepsilon_{x z} \\ & \varepsilon_{x \eta}, \varepsilon_{x \zeta}, \varepsilon_{i j} \end{aligned}$	strain components
$\tilde{\varepsilon}_{\mathrm{xx}}$	strain of the elastic axis
η, ζ	principal coordinates of a cross section of the blade (η is the axis of symmetry in the present study)
θ_{G}, β	total geometric ${ }^{-}$pitch angle-of the-blade cross section (angle between \hat{e}_{y} and \hat{e}_{η})
$\theta_{x}, \theta_{y}, \theta_{z}$	the rotation component of the triad $\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$, during the deformation, about \hat{e}_{x}, \hat{e}_{y}, and \hat{e}_{z}, respectively
$8 \overline{0}$	the virtual rotation of any point on the elastic axis, during a virtual movement
${ }^{k} y^{\prime}{ }^{k}$	curvature of the deformed rod in the directions $\hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$, respectively. Defined by Equation (B-15)

A set of nonlinear equations of equilibrium for an elastic wind turbine or helicopter blade are presented. These equations are derived for the case of small strains and moderate rotations (slopes). The derivation includes several assumptions which are carefully stated. For the convenience of potential users the equations are developed with respect to two different systems of coordinates, the undeformed and the deformed coordinates of the blade. Furthermore, the loads acting on the blade are given in a general form so as to make them suitable for a variety of applications. The equations obtained in the present study are compared with those obtained in previous studies. Finally, it should be noted that this report represents the first in a series of three reports documenting the research performed under the grant. The second report (UCLA-ENG-7880) deals with the aeroelastic stability and response of an isolated horizontal axis wind turbine blade. The third report (UCLA-ENG-7881) deals with the aeroelastic stability and response of the complete coupled rotor/tower system simulating essentially the dynamics of the NASA/DOE Mod-O configuration.

1. INIRODUCTION

Recent investigations on the behavior of elastic slender rotor blades undergoing relatively large deformations during operation, show that nonlinear phenomena have considerable influence on this behavior. These nonlinear phenomena are due to the inclusion of moderately large deformations in the elastic, inertial and aerodynamic operators associated with this problem. A detailed review of recent research on rotary wing aeroelasticity with an emphasis on the importance of moderately large deformations has been presented in Ref. 1 and is beyond the scope of this report.

Recent emphasis on wind energy conversion, using large horizontal axis wind turbines, employing two-bladed, hingeless rotor configurations having rotor diameters varying between 120 to 300 ft . have added a new stimulus to the study of large flexible, highly pretwisted blades. In a recent study by Friedmann (Ref. 2) it has been noted that efficient construction and operation of wind turbines requires that the vibratory loads and stresses on the rotor itself and the combined rotor tower system be reduced to the lowest possible levels. Thus, structural dynamic and aeroelastic considerations are of primary importance for both the design of wind turbines and the comparison of various potential wind turbine configurations.

In view of this need, it was felt that a careful, fundamental derivation of the equations of motion for slender rotor blades, possibly highly pretwisted, undergoing relatively large deformations during their operation, is required. These equations could be used as a basis for future studies, into which nonisotropic material behavior, such as required for the treatment
of composite blades, could be easily incorporated. The main objective of the present study is the derivation of such a set of equations.

A fundamental work in this field was that of Houbolt and Brooks (Ref. 3) where equations of equilibrium for the coupled bending and torsion of twisted nonuniform blades were derived. Although some nonlinear effects were included in their derivation, their final results can be considered as a linear representation of the problem. Following this work, other researchers presented derivations of equations which include additional nonlinear terms. These include, for example, the work of Arcidiacono (Ref. 4), Friedmann and Tong (Ref. 5), Hodges, et al (Ref. 6-8) and a recent work by Friedmann (Ref. 9). The most detailed and comprehensive derivation of a set of nonlinear elastic equilibrium equations is presented by Hodges and Dowell (Ref. 8). There the equations are obtained by two complementary methods, Hamilton's principle and the Newtonian method.

In the present work a set of nonlinear elastic equilibrium equations of a blade are presented. These equations are derived for the case of small strain and finite rotations. The derivation includes several assumptions which are presented during the presentation. The equations are developed with respect to two different systems of coordinates. In each case the derivation is done using two complementary methods; the Newtonian method and the principle of virtual work. Finally, the equations obtained in the present study are compared with those obtained in the previous studies.

This report is a modified and abbreviated version of Reference 18, which contains a considerable amount of additional details. Furthermore, it should be noted that this report represents the first in a series of
three reports which document the research which has been performed under the grant. The second report (Ref. 20) deals with the aeroelastic stability and response problem of an isolated horizontal axis wind turbine blade. This report also containe typical single-blade aeroelastic stability boundaries together with blade response studies at operating conditions for the MOD-0 wind turbine, currently in operation at NASA Lewis Research Center. The third report (Ref. 21) deals with the aeroelastic response and stability of a coupled rotor-tower configuration corresponding to the NASA/DOE Mod-0 machine.

The geometry of the problem is shown in Figures 1 through 3. The following assumptions will be used in deriving the equations of motion.

1) The blade is cantilevered at the hub, the feathering axis of the blade is preconed by an angle β_{p}.
2) The blade can bend in two mutually perpendicular directions normal to the elastic axis of the blade, and can also twist around the elastic axis. The boundary conditions are those of a cantilevered beam.
3) The blade has an arbitrary amount of pretwist which is assumed to be built in about the elastic axis of the blade.
4) The blade cross section is symmetrical about the major principal axis. It has four distinct points:
I) Elastic Center (E.C.) - the intersection point between the Elastic Axis (E.A.) and the cross section of the blade
II) Center of Mass (C.G.)
III) Tension Center (T.C.) - the intersection point between the - Tension Axis (T.A.) and the cross section of the blade IV) The Aerodynamic Center (A.C.)

As shown in Figure 3 the C.G - E.C offset is denoted by X_{I}, the T.C - E.C offset is denoted by $X_{I I}$, and the A.C - E.C offset is denoted by X_{A}, where it is understood that the offsets shown in Figure 3 are considered to be positive.
5) The strains in the blade are always small, but the rotations can be finite (for additional details see Appendix B).

In this section, the equilibrium equations of the deformed blade are given. It is assumed that the blade can be considered to be a deformable, slender rod, made of linearly isotropic, homogeneous material. As formerly indicated, the analysis is restricted to the case of small strains and finite rotations. Appendix A gives a brief summary of some well known relations of nonlinear deformations. In Appendix B expressions for rotating and strains of a deformed slender rod are derived and the force and moment resultants are obtained. In Appendix C the equilibrium equations are derived systematically with respect to the deformed as well as the undeformed system of coordinates, using the Newtonian method. In Appendix D the same equations are derived using the principle of virtual work.

In this study the Bernoulli-Euler hypothesis is assumed to apply. This hypothesis is usually stated as: "Plane cross sections which are normal to the elastic axis before deformation remain plane after deformation (except for negligible errors due to warping) and normal to the deformed axis." Furthermore, it is also assumed that strains within the cross section can be neglected, and the warping is very small so that its influence is negligible, besides its effect on the torsional stiffness. (For a more accurate approach other warping effects can be included as shown in Appendix B.)

As shown in Figures 2 and 3, before the deformation of the elastic axis of the blade, which is the line that connects the shear centers of the blade cross sections, coincides with the x_{0} axis. The y_{0} axis is orthogonal to x_{0} and lies in a plane parallel to the hub plane, while z_{0}
is perpendicular to x_{0} and y_{0}. It is clear that x_{0}, y_{0}, z_{0} is a rectangular Cartesian system. As shown in Figures 2 and $3, \hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$ are unit vectors in the directions x_{0}, y_{0}, z_{0}, respectively. According to the Bernoulli-Euler hypothesis and the other accompanying assumptions, during the deformation the triad $\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$ is carried in a rigid form, composed of translation and rotation, to the new orthogonal triad $\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$ (shown in Figures 2 and 3). The unit vector \hat{e}_{x}^{\prime} is tangent to the deformed elastic axis, while \hat{e}_{y} and \hat{e}_{z} are rotated around it to the position of \hat{e}_{y}^{\prime} and $\hat{e}_{z}^{\prime}{ }_{z}$

It is assumed that the blade is acted upon by a distributed load, $\overline{\mathrm{p}}$, per unit length of its undeformed axis, given in component form by:

$$
\begin{equation*}
\vec{p}=p_{x} \hat{e}_{x}^{\prime}+p_{y} \hat{e}_{y}^{\prime}+p_{z} \hat{e}_{z}^{\prime} . \tag{1}
\end{equation*}
$$

This load, $\overline{\mathrm{p}}$, includes body forces, surface tractions and inertial loading. There is also a distributed moment, \bar{q}, per unit length of the undeformed axis of the rod, given by:

$$
\begin{equation*}
\vec{q}=q_{x} \hat{e}_{x}^{\prime}+q_{y} \hat{e}_{y}^{\prime}+q_{z} \hat{e}_{z}^{\prime} \tag{2}
\end{equation*}
$$

This also includes body couples, moments of surface tractions and moments of inertial loading. The loads and couples, $\overline{\bar{p}}$ and \bar{q}, and their derivatives are assumed to be continuous.

Then the exact equilibrium equations are obtained in Appendix C as Equations ($\mathrm{c}-7$) and ($\mathrm{c}-8$):

$$
\begin{align*}
& T, x+K_{y}\left(M_{z, x}+T M_{y}+q_{z}\right) \\
& -\kappa_{z}\left(M_{y, x}-T M_{z}+q_{y}\right)+p_{x}=0 \\
& -\left(M_{z, x}+\kappa_{z} M_{x}+\tau M_{y}+q_{z}\right), x \\
& \tag{3}\\
& \quad+\kappa_{y} T-T\left(M_{y, x}+\kappa_{y} M_{x}-\tau M_{z}+q_{y}\right)+p_{y}=0 \\
& \left(M_{y, x}+\kappa_{y} M_{x}-T M_{z}+q_{y}\right), x \\
& \\
& \quad+\kappa_{z} T-T\left(M_{z, x}+\kappa_{z} M_{x}+T M_{y}+q_{z}\right)+p_{z}=0 \\
& M_{x, x}-\kappa_{y} M_{y}-\kappa_{z} M_{z}+q_{x}=0
\end{align*}
$$

The first three equations are basically from force equilibrium relations in the $\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}$, and \hat{e}_{z}^{\prime} directions, respectively. The fourth equation is the moment equilibrium relation in the \hat{e}_{x}^{\prime} direction. The equilibrium of moments in the directions \hat{e}_{y}^{\prime} and \hat{e}_{z}^{\prime} are also satisfied.

T is the axial tension in the blade. M_{x}, M_{y}, and M_{z} are the components of the elastic moments, M_{x} is the torque, while M_{y} and M_{z} are the bending moments. K_{y} and K_{z} are the curvatures, while T is the twist of the deformed elastic axis. The expressions for the components of the moments are obtained from Equation (B-43) of Appendix B:

$$
\left.\begin{array}{l}
M_{x}=G J T \tag{4}\\
M_{y}=-E I_{23^{k} y}-E I_{33^{k}}+\mathbb{I z} o c \\
M_{z}=E I_{22^{k} y}+E I_{23^{k}}-T y_{o c}
\end{array}\right\}
$$

where E is young's modulus, G is the shear modulus, J is the torsional stiffness of the blade, and I_{22}, I_{33} and I_{23} are the flexural moments of inertia of the cross section (effective in carrying tensile stresses) around axes parallel to the directions \hat{e}_{y} and \hat{e}_{z} which pass through the point ($y_{o c} z_{o c}$). This point, whose coordinates are ($y_{o c}, z_{o c}$), is the tensile center. The moments of inertia are given by Equation (B-42), which is:

$$
\begin{align*}
& I_{22}=\iint_{A}\left(y_{o c}-y_{0}\right)^{2} d y_{0} d z_{0} \\
& I_{23}=\iint_{A}\left(y_{o c}-y_{0}\right)\left(z_{o c}-z_{0}\right) d y_{0} d z_{0} \tag{5}\\
& I_{33}=\iint_{A}\left(z_{o c}-z_{0}\right)^{2} d y_{0} d z_{0}
\end{align*}
$$

Furthermore, it is assumed that the blade cross section is symmetric about the η axis (see Figure 3). The moments of inertia about η and an axis perpendicular to η, which pass through the tensile center, are denoted by I_{3} and I_{2}, respectively. Then (see Figure 3):

$$
\left.\begin{array}{l}
I_{22}=I_{2} \cos ^{2} \theta_{G}+I_{3} \sin ^{2} \theta_{G} \tag{6}\\
I_{23}=\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G} \\
I_{33}=I_{2} \sin ^{2} \theta_{G}+I_{3} \cos ^{2} \theta_{G} .
\end{array}\right\}
$$

From Figure 3, the following relations follow:

$$
\begin{equation*}
y_{o c}=X_{I I} \cos \theta_{G} . \quad ; \quad z_{o c}=X_{I I} \sin \theta_{G} \tag{7}
\end{equation*}
$$

It is assumed that $X_{I I}$ is small enough so that the expressions $T z_{o c}$ and Ty $O C$ in Equation (4) are at most of the magnitude of the other terms in the equation.

Furthermore, it should be emphasized that Equations (4) were obtained after neglecting terms of order ε^{2} compared to unity (for more details about the ordering scheme, see Appendices B and C). According to the assumptions of Appendix B, rotations are of order ε.

Within the order of approximation implied by neglecting terms of order ε^{2}, compared to unity, the equations of equilibrium are simplified and are given in their final form by Equations (c-10):

$$
\begin{align*}
& T, x+K_{y} M_{z, x}-K_{z} M_{y, x}+\tau\left(k_{y} M_{y}+\kappa_{z} M_{z}\right) \\
& +K_{y} q_{z}-K_{z} q_{y}+p_{x}=0 \\
& -M_{z, x x}-\left(\kappa_{z, x}+\tau k_{y}\right) M_{x}-\left(\tau_{, x}+\dot{k}_{y} k_{z}\right) M_{y}-2 \tau M_{y, x} \\
& +\kappa_{y} T+\kappa_{z} q_{x}-\tau q_{y}-q_{z, x}+p_{y}=0 \tag{8}\\
& M_{y, x x}+\left(\kappa_{y, x}-\tau \kappa_{z}\right) M_{x}-\left(\tau_{, x}-\kappa_{y} \kappa_{z}\right) M_{z}-2 \tau M_{z, x} \\
& +{ }_{z} T-K_{y} q_{x}+q_{y, x}-\tau_{q_{z}}+p_{z}=0 \\
& M_{x, x}-K_{y} M_{y}-K_{z} M_{z}+q_{x}=0
\end{align*}
$$

In order to complete the formulation of the problem, the boundary conditions must be also taken into account. For the present case of a cantilevered blade, the boundary condition at $x_{0}=0$ corresponds to a clamped root and at the tip, $x_{0}=\ell$ (where ℓ is the length of the blade), free end conditions apply. Thus

$$
\begin{array}{ll}
\text { for } x_{0}=0: & v=w=v, x=w, x=\varnothing=0 \tag{9}\\
\text { for } x_{0}=\ell: & T=V_{y}=V_{z}=M_{x}=M_{y}=M_{z}=0
\end{array}
$$

V_{y} and V_{z} are the resultant shearing forces at the blade cross section and they are given by (see Equation (c-6) of Appendix C):

$$
\begin{align*}
& v_{y}=-\left(M_{z, x}+\underset{z}{\kappa_{z} M_{x}}+\tau M_{y}+q_{z}\right) ; \tag{10}\\
& v_{z}=M_{y, x}+{ }_{y} y_{y}^{M_{x}}-\tau M_{z}+q_{y}
\end{align*}
$$

The underlined terms in Equation (10) disappear in the case of a free edge when $M_{x}=M_{y}=M_{z}=0$, also.

The deflection of a point on the elastic axis is given by \bar{W} where (see Equation (B-6) of Appendix B):

$$
\begin{equation*}
\bar{W}=u \hat{e}_{x}+v \hat{e}_{y}+w \hat{e}_{z} \tag{17}
\end{equation*}
$$

The new triad, $\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$, which is tangent to the deformed coordinates of the blade is given by Equation ($\mathrm{C}-11$):

$$
\left.\begin{array}{l}
\hat{e}_{x}^{\prime}=\hat{e}_{x}+S_{12} \hat{e}_{y}+S_{13} \hat{e}_{z} \tag{12}\\
\hat{e}_{y}^{\prime}=S_{21} \hat{e}_{x}+\hat{e}_{y}+S_{23} \hat{e}_{z} \\
\hat{e}_{z}^{\prime}=S_{31} \hat{e}_{x}+S_{32} \hat{e}_{y}+\hat{e}_{z}
\end{array}\right\}
$$

where $S_{i j}$ are functions of w, x, v and $\Phi_{\text {. When finite rotations are }}$ considered, these $S_{i j}$ depend on the sequence of rotations which transform $\left(\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}\right)$ to ($\hat{e}_{x}^{\prime}, \hat{e}_{y^{z}}^{\prime} \hat{e}_{z}^{\prime}$), as one can see from Equations ($B-10$), ($B-13$) and ($B-14$) of Appendix B. If the sequence chosen is a finite rotation about \hat{e}_{z}, followed by rotation about \hat{e}_{y}, followed by rotation about \hat{e}_{x}, then, neglecting terms of order ε^{2} compared to unity, the transformation given in Equation (12) is defined by Equation (B-13):

$$
\left.\begin{array}{l}
\hat{e}_{x}^{\prime}=\hat{e}_{x}+v, x \hat{e}_{y}+w, x \hat{e}_{z} \tag{13}\\
\hat{e}_{y}^{\prime}=-(v, x+\Phi w, x) \hat{e}_{x}+\hat{e}_{y}+\Phi \hat{e}_{z} \\
\hat{e}_{z}^{\prime}=-\left(w, x-\Phi_{v}, x\right) \hat{e}_{x}-(\Phi+v, x, x) \hat{e}_{y}+\hat{e}_{z}
\end{array}\right\}
$$

With relations (13) the curvatures and twist are then given by (B-16):

$$
\begin{equation*}
k_{y}=v, x x+\phi w, x x \tag{14a}
\end{equation*}
$$

$$
\begin{align*}
\kappa_{z} & =w, x x-\phi v, x x \tag{14b}\\
\tau & =\phi_{, x}+v, x x^{w}, x \tag{14c}
\end{align*}
$$

The term v, x^{w}, x in Eqs. (13) and (14) was introduced by Wempner (Ref. 11) and was later shown to be significant for rotor blades by Kaza and Kvaternik (Refs. 15 and 17). Substitution of Equations (14), (6) and (7) into Equation (4) implies:

$$
\begin{align*}
M_{x}= & G J\left(\phi_{, x}+v, x x^{w}, x\right. \\
M_{y}= & -E\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G}(v, x x+\phi w, x x \\
& -E\left(I_{2} \sin ^{2} \theta_{G}+I_{3} \cos ^{2} \theta_{G}\right)\left(w, x x-\phi v, x x^{\prime}\right)+T X_{I I} \sin \theta_{G} \tag{15}\\
M_{z}= & E\left(I_{2} \cos ^{2} \theta_{G}+I_{3} \sin ^{2} \theta_{G}\right)\left(v, v v+\phi w_{, x x}\right) \\
+ & E\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G}(w, x x-\phi v, x x)-T X_{I I} \cos \theta_{G}
\end{align*}
$$

Substitution of Equations (14) and (15) into Equation (8), using Equations (6) and (7) and neglecting terms of order ε^{2} compared to unity, implies:

$$
\begin{aligned}
& T, x+v, x x^{\left[E I_{22}\left(v, x x+\phi w, x x^{\prime}\right)+E I_{23}\left(w, x x^{-\phi v}, x x\right)\right], x} \\
& +w, x x\left\{\phi\left[E I_{22}(v, x x+\phi w, x x)+E I_{23}{ }^{w}, x x\right]\right\}, x
\end{aligned}
$$

$$
\begin{align*}
& \left.-\mathrm{v}, \mathrm{xx}\left\{\mathrm{\phi EI}_{23} \mathrm{v}, \mathrm{xxx}+\mathrm{EI}_{33}(\mathrm{w}, \mathrm{xx}-\phi \mathrm{v}, \mathrm{xx})\right]\right\}, \mathrm{x} \\
& +\left(v, x x+\phi w, x x^{2}\right) q_{z}-\left(w, x x^{-\phi v}, x x\right) q_{y}+p_{x}=0 \tag{16a}
\end{align*}
$$

$$
\begin{aligned}
& -\left[E I_{22}\left(v_{, x x}+\Phi_{w, x x}\right)+E I_{23}\left(w_{, x x}-{ }_{x \times x}\right)-\mathrm{Ty}_{\mathrm{oc}}\right]_{, \mathrm{xx}}
\end{aligned}
$$

$$
\begin{align*}
& -\left({ }^{(}, x+v, x x^{w}, x\right) q_{y}-q_{z, x}+p_{y}=0 \tag{16b}
\end{align*}
$$

$$
\begin{align*}
& -\left({ }^{\Phi}, x+v, x x^{w}, x\right) q_{z}+q_{y, x}+p_{z}=0 \tag{16c}
\end{align*}
$$

$$
\begin{align*}
& +\left(E I_{33}-E I_{22}\right)\left[v, x x^{w}, x x+\Phi\left(w^{2}, x x-v^{2}, x x^{2}\right)\right] \\
& +T\left[y_{o c}\left(w_{, ~ x x}-q_{, x x}\right)-z_{o c}\left(v_{, ~ x x}+\Phi_{w}, x x\right)\right]+q_{x}=0 \tag{16d}
\end{align*}
$$

The system of Equations (16) contains four equations with four unknows being represented by v, w, Φ and T. The boundary conditions (9) together with Equations (10) and (15) become:

$$
\begin{align*}
& \text { for } x_{0}=0: \quad v=w=v, x=w, x=\phi=0, \tag{17a}\\
& \text { for } x_{0}=\ell: T=0 \tag{17b}
\end{align*}
$$

and

$$
\begin{align*}
& -v_{y}\left(M_{x}=M_{y}=0\right)=\left[E\left(I_{2} \cos ^{2} \theta_{G}+I_{3} \sin ^{2} \theta_{G}\right)\left(v_{, x x}+\phi_{w}, x x\right)\right. \\
& \left.+E\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G}\left(w, x x^{-\theta_{V}}, x X\right)-T X_{I I} \cos \theta_{G}\right], x \\
& +q_{z}=0 \tag{17c}\\
& V_{z}\left(M_{x}=M_{z}=0\right)=-\left[E\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G}\left(v, x x+\phi_{w}, x x\right)\right. \\
& \left.+E\left(I_{2} \sin ^{2} \theta_{G}+I_{3} \cos ^{2} \theta_{G}\right)\left(w, x x^{-\phi v}, x x\right)-T X_{I I} \sin \theta_{G}\right], x \\
& +q_{y}=0 \tag{17~d}\\
& M_{x}=\operatorname{GJ}\left(\Phi, x+v, x^{w}, x^{\prime}\right)=0 \tag{17e}\\
& -M_{y}=E\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G}\left(v, x x+\phi_{W}, x x\right) \\
& +E\left(I_{2} \sin ^{2} \theta_{G}+I_{3} \cos ^{2} \theta_{G}\right)\left(w_{, x x}-\Phi_{v}, x x\right)=0 \tag{17f}\\
& M_{z}=E\left(I_{2} \cos ^{2} \theta_{G}+I_{3} \sin ^{2} \theta_{G}\right)\left(v, x x+\phi_{w}, x x\right) \\
& +E\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G}\left(w, x x-D_{V}\right)=0 . \tag{17g}
\end{align*}
$$

The equations of equilibrium presented above were derived in the directions of the deformed coordinates. As pointed out in Appendix C, the equations can also be derived in the directions of the undeformed coordinates $\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$. In this case the distributed force; given previously by Equation (1), can be taken in the form:

$$
\begin{equation*}
\bar{p}=\tilde{p}_{x} \hat{e}_{x}+\tilde{p}_{y} \hat{e}_{y}+\tilde{p}_{z} \hat{e}_{z} \tag{18}
\end{equation*}
$$

while from similar considerations the distributed moment can be written as:

$$
\begin{equation*}
\bar{q}=\tilde{q}_{x} \hat{e}_{x}+\tilde{q}_{y} \hat{e}_{y}+\tilde{q}_{z} \hat{e}_{z} \tag{19}
\end{equation*}
$$

The equilibrium equations are given by ($\mathrm{C}-24$). In the present case the triad $\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$ is given by Equation (13). Then Equations (12) and (13) imply:

$$
\begin{align*}
& S_{12}=\mathrm{v}, \mathrm{x} \quad ; \quad \mathrm{S}_{13}=\mathrm{w}, \mathrm{x} \quad \mathrm{~S}_{23}=\varnothing \tag{20}\\
& S_{21}=-\left(v, x+\Phi_{w}, x\right) ; \quad S_{31}=-\left(w, x-\Phi_{v}\right) ; \quad S_{32}=-\left(\Phi+v, x^{w}, x^{\prime}\right) .
\end{align*}
$$

Substitution of Equation (20) into Equation (c-24) and neglecting terms of order ε^{2} compared to unity, yields the following equilibrium equations :

$$
\begin{aligned}
& {\left[T+\left(v, x+\phi_{w}, x_{z, x}-\left(w, x-M_{v}\right) M_{y, x}+w, x^{\Phi}, x_{z}\right.\right.}
\end{aligned}
$$

$$
\begin{align*}
& +\left(v, x \tilde{q}_{z}\right), x-\left(w, x \tilde{q}_{y}\right), x+\tilde{p}_{x}=0 \tag{21a}
\end{align*}
$$

$$
\begin{align*}
& +(v, x \cdot T)_{x}-\tilde{q}_{z, x}+\left(w, x \tilde{q}_{x}\right), x+\tilde{p}_{y}=0 \tag{2lb}
\end{align*}
$$

$$
\begin{align*}
& +(w, x T)_{x}-\left(v, x \tilde{q}_{x}\right), x+\tilde{q}_{y, x}+\tilde{p}_{z}=0 \tag{2lc}
\end{align*}
$$

$$
\begin{align*}
& M_{x, x}-\left(v, x x+q_{w, x x}\right) M_{y}-\left(w, x x-q_{v, x x}\right) M_{z} \\
& +v_{, x} \tilde{q}_{y}+w_{, x} \tilde{q}_{z}+\tilde{q}_{x}=0 \tag{eld}
\end{align*}
$$

Substitution of Equations (15) into Equations (21), using Equations (6) and (7), and neglecting terms of order ε^{2} when compared to unity, yields the following equations

$$
\begin{aligned}
& \left.\left.\left\langle T+v, x^{\left[E I_{22}(v, x x\right.}+\phi_{w, x x}\right)+E I_{2}{ }^{(w, x x}-\phi_{v}, x x\right)\right], x \\
& \left.\left.+\mathrm{w}, \mathrm{x}^{\left[E I_{23}\left(\mathrm{v}, \mathrm{xx}^{+}{ }^{\phi} \mathrm{w}, \mathrm{xx}\right)+E I_{33}(\mathrm{w}, \mathrm{xx}\right.}{ }^{-\phi_{\mathrm{v}}, \mathrm{xx}}\right)\right], \mathrm{x}
\end{aligned}
$$

$$
\begin{align*}
& \left.+\operatorname{GJ}\left(\Phi, x^{+}+, x x^{w}, x^{\circ}\right)\left(v, x^{w}, x x^{-v}, x x^{w}, x^{\prime}\right)\right\rangle, x \\
& +\left(v, x \tilde{q}_{z}\right), x-\left(w, x \tilde{q}_{y}\right), x+\tilde{p}_{x}=0 \tag{22a}
\end{align*}
$$

$$
\begin{align*}
& -\left[\operatorname{GJ}\left(\Phi, x+v, x x^{w}, x^{W}, x x^{W}\right], x\right. \\
& +\left[E I_{33}\left(\phi_{w}, x x+v, x^{w}, x^{w}, x x-\Phi^{2} v, x x^{\prime}\right], x x\right. \\
& -\left(E I_{33} v, x^{2}, x x^{2}, x+\left[v, x T+\left(\mathrm{Ty}_{o c}\right), x^{-(\$ I z}{ }_{o c}\right)_{, x}\right], x \\
& -\tilde{q}_{z, x}+\left(w, x \tilde{q}_{x}\right), x+\tilde{p}_{y}=0 \tag{22b}
\end{align*}
$$

$$
\begin{aligned}
& -\left(E I_{22} v^{2}, x x^{w}, x\right), x+\left[w, x+\left(T z_{o c}\right), x+\left(\Phi_{T y_{o c}}\right), x^{T}, x-\right.
\end{aligned}
$$

$$
\begin{align*}
& -\left(v, x \tilde{q}_{x}\right), x+\tilde{q}_{y, x}+\tilde{p}_{z}=0 \tag{22c}\\
& {\left[G J\left(\Phi, x+v, x x^{w}, x\right)\right], x+E I_{23}\left(v^{2}, x x^{2}-w^{2}, x x^{+}+4 \Phi v, x x^{w}, x x^{\prime}\right)} \\
& +\left(E I_{33}-E I_{22}\right)\left[v, x x^{w}, x x+\Phi\left(w^{2}, x x-v^{2}, x x\right)\right] \\
& \left.-T\left[z_{o c}{ }^{(v}, x x^{+} \phi_{w}, x x\right)-y_{o c}\left(w, x x^{-\phi_{v}}, x x\right)\right] \\
& +v, x \tilde{q}_{y}+w, x \tilde{q}_{z}+\tilde{q}_{x}=0 \tag{22d}
\end{align*}
$$

The boundary conditions remain the same as in Equation (17) and it is only required to write q_{z} and q_{y} as functions of $\tilde{q}_{x}, \tilde{q}_{y}$, and \tilde{q}_{z}. According to Equations ($\mathrm{C}-16$) and ($\mathrm{c}-11$):

$$
\begin{align*}
& q_{y}=\tilde{q}_{y}+s_{21} \tilde{q}_{x}+s_{23} \tilde{q}_{z} ; \\
& q_{z}=\tilde{q}_{z}+s_{31} \tilde{q}_{x}+s_{32} \tilde{q}_{y} \tag{23}
\end{align*}
$$

The equilibrium equations in Appendix C were derived by the Newtonian method. In Appendix D the two sets of equations, with respect to the two different systems of coordinates, are derived using the principle of virtual work. The equilibrium equations which are obtained from this procedure are identical to those obtained in Appendix C, within the approximations inherent in the present theory. One of the advantages of the second method is that it also provides the appropriate set of boundary conditions, which is sometimes difficult to obtain using the Newtonian method. It is shown that the boundary conditions of the blade, as stated in Equations (9) or (17), are in agreement with the boundary conditions obtained by the second method.

The equations of equilibrium can be further simplified by taking into account some common properties pertaining to helicopter and wind turbine blades. These blades are usually stiffer in lag than in the flap-wise direction, thus:

$$
\begin{equation*}
E I_{2}>E I_{3}, G J \tag{24a}
\end{equation*}
$$

The geometric pitch angle θ_{G}^{\prime} has an absolute value less than 45°. Therefore, according to Equation (6)

$$
\begin{equation*}
\mathrm{EI}_{22}>\mathrm{EI}_{33}, \mathrm{GJ} \tag{24b}
\end{equation*}
$$

Using Equation (24b) together with the ordering scheme (ε^{2} neglected compared to unity) enables one to neglect a considerable mumber of additional small terms; the resulting equations are given below:

$$
\begin{align*}
& +\left(v, x \tilde{q}_{z}\right), x-\left(w, x \tilde{q}_{y}\right), x+\tilde{p}_{x}=0 \tag{25a}
\end{align*}
$$

$$
\begin{align*}
& -\tilde{q}_{z, x}+\left(w, \tilde{q}_{x}\right)_{, x}+\tilde{p}_{y}=0 \tag{25b}
\end{align*}
$$

$$
\begin{align*}
& -\left(E I_{22}{ }^{2}{ }^{2}, x x^{w}, x\right), x+\left[w, x^{T}+\left(T z_{o c}\right), x+\left(\phi T y_{o c}\right), x^{]}, x\right. \\
& -\left(v, x \tilde{q}_{x}\right), x+\tilde{q}_{y, x}+\tilde{p}_{z}=0 \tag{25c}\\
& \left.\left[G J\left(\Phi, x+v, x x^{W}, x\right)\right], x+E I_{2} 3^{\left(v^{2}, x x\right.}-w^{2}, x x+4 \Phi v, x x^{w}, x x^{2}\right) \\
& +\left(E I_{33}-E I_{22}\right)\left[v, x x^{w}, x x+\Phi\left(w^{2}, x x-v^{2}, x x^{2}\right)\right]
\end{align*}
$$

$$
\begin{align*}
& +v, x \tilde{q}_{y}+w, x \tilde{q}_{z}+\tilde{q}_{x}=0 \tag{25a}
\end{align*}
$$

Usually, in the case of rotating blades large tensile forces are caused by the centrifugal forces; therefore, the nonlinear contributions of the bending and torsional moments to the tensile force are very small. In this case it seems to be justified to keep only the principal terms of this contribution (twice underlined in Equation (25a)) and neglect all the other terms associated with it (once underlined in Equation (25a)). In fact, it seems that neglecting the twice underlined terms will also not affect the results in a significant manner.

A further simplification can be obtained if all stiffnesses are approximately of the same order of magnitude, which means:

$$
\begin{equation*}
\frac{I_{22}}{I_{33}}, \frac{E I_{22}}{G J}, \frac{E I_{33}}{G J} \cong(0.5-2) . \tag{26}
\end{equation*}
$$

In this case, Equations (22) turn out to be:

$$
\begin{align*}
& -\tilde{q}_{z, x}+\left(w, x \tilde{q}_{x}\right)_{x}+\tilde{p}_{y}=0 \tag{27~b}
\end{align*}
$$

$$
\begin{align*}
& -\left(v, x \tilde{q}_{x}\right)_{, x}+\tilde{q}_{y, x}+\tilde{p}_{z}=0 \tag{27c}
\end{align*}
$$

$$
\begin{align*}
& +v, x \tilde{q}_{y}+w, x \tilde{q}_{z}+\tilde{q}_{x}=0 \tag{27a}
\end{align*}
$$

The underlined terms in Equation (27a) have the same meaning as those in Equation (25a).

To facilitate the use of these equations for rotor-dynamics applications and to also simplify comparison of the equations in this revised version of the report with the previous version, the Equations ($27 \mathrm{a}-\mathrm{d}$) are rewritten below using the principal moments of inertis of the cross section (Equations (6) and (7)). It should be noted that in
the previous version of the report, few terms in Equations (22b-d) were missing due to an algebraic error. In most copies of the report these terms were added in handwriting.

$$
\begin{align*}
& T_{, x}+\left(v, x \tilde{q}_{z}\right), z-\left(w, x \tilde{q}_{y}\right), x+\tilde{p}_{x}=0 \tag{27aa}\\
& -\left[E\left(I_{2} \cos ^{2} \theta_{G}+I_{3} \sin ^{2} \theta_{G}\right)(v, x x x+x)\right. \\
& +E\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G}(w, x x-2 \Phi v, x x)
\end{align*}
$$

$$
\begin{aligned}
& +\left\{v, x^{T}+\left[I X_{I I}\left(\cos \theta_{G}-\Phi \sin \theta_{G}\right)\right], x, x-\tilde{q}_{z, x}+\left(w, \tilde{q}_{x}\right), x+\tilde{p}_{y}=0(27 b b)\right. \\
& -\left[E\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G}(v, x x+2 \phi w, x x)\right. \\
& +E\left(I_{2} \sin ^{2} \theta_{G}+I_{3} \cos ^{2} \theta_{G}\right)\left(w, x x-\theta_{, x x}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left\{w, x^{T+\left[I X_{I I}\right.}\left(\sin \theta_{G}+\cos \theta_{G}\right)\right], x\right\}, x \\
& -\left(v, x \tilde{q}_{x}\right), x+\tilde{q}_{y, x}+\tilde{p}_{z}=0 \tag{27cc}\\
& {\left[G J\left(\Phi, x+v, x x^{w}, x\right)\right], x+\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G}\left(v^{2}, x x-w, x x^{2}\right)} \\
& +\left(I_{3}-I_{2}\right)\left(\cos ^{2} \theta_{G}-\sin ^{2} \theta_{G}\right)_{v}, x x^{w}, x x
\end{align*}
$$

$$
\begin{align*}
& +v, x \tilde{q}_{y}+w, x \tilde{q}_{z}+\tilde{q}_{x}=0 \tag{27dd}
\end{align*}
$$

Elastic equilibrium equations for a rotor blade were derived by different researchers during the past twenty years, as was shown in the introduction. In this chapter a comparison will be made between the present derivation and some of the previous ones. For the sake of brevity these comparisons are concise, much more detailed comparisons can be found in Reference 18.

4.1 Comparison with Houbolt and Brooks (Ref. 3)

A set of equations equivalent to those of Reference 3 can be obtained from Equations ($21 a-d$) by neglecting the nonlinear terms associated with the elastic moments. Performing these operations and replacm ing the moments by the appropriate expressions, as shown in Equation (15), results in the equations given below. It should be noted that nonlinear terms containing the displacements have been neglected in these equations.

$$
\begin{align*}
& T, x+\left(\tilde{q}_{z} v, x\right), x-\left(\bar{q}_{y} w, x\right), x+\tilde{p}_{x}=0 \tag{28a}\\
& {\left[E\left(I_{2} \cos ^{2} \theta_{G}+I_{3} \sin ^{2} \theta_{G}\right) v, x x\right.} \\
& \left.+E\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G} w, X X-T X I I \cos \theta_{G}\right], x X \tag{28b}\\
& -\left(\mathrm{Iv}_{, x}\right), x+\tilde{q}_{z, x}-\left(w, x \tilde{q}_{x}\right), x-\tilde{p}_{y}=0 \quad, \\
& -\left[E\left(I_{2}-I_{3}\right) \sin \theta_{G} \cos \theta_{G} v, X x\right. \\
& \left.+E\left(I_{2} \sin ^{2} \theta_{G}+I_{3} \cos ^{2} \theta_{G}\right)_{W}, X x-T X_{I I} \sin \theta_{G}\right], x x \\
& +\left(T w,{ }_{x}\right)+\tilde{q}_{y, x}-\left(v, x \tilde{q}_{x, x}+\tilde{p}_{z}=0\right. \tag{28c}
\end{align*}
$$

$\left[G J \phi_{, x}\right], x+\tilde{q}_{z} w, x+\tilde{q}_{y} v, x+\tilde{q}_{x}=0 \quad$.

If Equations (28) in this report are compared with Equations (15) and (18-20) of Reference 3, the following observations can be made:

1) Equation (28a) is identical to Equation (15) of Houbolt and Brooks, except for the terms $\left(\tilde{q}_{z} v, x\right), x$ and ($\tilde{q}_{y} w, x$), which are not present in Equation (15).
2) Comparing Equation (28b) of the present study with Equation (20) of Reference 3, it follows that in addition to the terms contained in Equation (28b), Houbolt and Brooks' equation contains an additional term involving β, x^{\prime} probably resulting from the as sumption $\sigma_{11} \cong \sigma_{x x}$.

Furthermore, the term [TX ${ }_{I I} \phi \sin \theta_{G}$], $x \times x$ which appears in Reference 3 is a physically nonlinear term. This term, which appears in Equation (22b) of the present study is associated with the term $\left(\phi M_{y}\right), x x$ in Equation (2lb) of the present study. If this term is retained, all other terms of the same order should also be retained. However, this was not done in the equations presented by Houbolt and Brooks.

In the loading terms, the term, $-\left(w, x \tilde{q}_{x}\right), x$, which appears in Equation (28b) of the present study does not appear in Equation (20) of Reference 3.
3) The comparison between Equation (28c) of the present stidy and Equation (19) of Houbolt and Brooks is analogous to the comparison given in the previous section, and will not be repeated
here.
4) Comparison of Equation (28d) and Equation (18) of Reference 3, shows that except for the terms which appear in Equation (28d), additional terms containing β, x appear in those of Houbolt and Brooks' equation. These, again, are related to the assumption $\sigma_{11} \cong \sigma_{x x}$. Houbolt and Brooks also retain the term $T k_{a}^{2} \phi, x \quad\left(k_{a}\right.$ being the radius of gyration of the cross sectional area). However, this term should be neglected within the assumption that strain is negligible compared to unity. Similar to what has been pointed out already in Item (2) of this comparison, from the nonlinear terms $-v, x \times M_{y}$ and $-w, x \times M_{z}$ in Equation (21d) of the present study, Houbolt and Brooks retain only the terms $-T X_{I I} \sin \theta_{G}{ }^{v}, x x$ and $T X_{I I} \cos \theta_{G}{ }^{w}, x x{ }^{\prime}$ while apparently neglecting other terms of the same order.
5) As pointed out in (2) and (4) above, it appears that Houbolt and Brooks assumed that in the expressions for the moments M_{z} and M_{y} (Eq. (4) of the present study), the terms Tz $O C$ and Yy $_{\text {oc }}$ are mich larger than the other terms. This seems to imply that the offset between the shear center and the tension center is the main contributor to the bending moments in the blade. This is a very special case which may be of limited importance from an engineering point of view. The assumption of the present study, that these terms are, at most, of the same
magnitude as that of the other terms, seems to be more realistic.

4.2 Comparison with Hodges and Dowell (Ref. 8)

1) Comparison of the expressions for E. shows that the strain at the elastic axis, and the contributions due to bending all over the cross section, are exactly the same. The expressions for warping are different. Hodges and Dowell also add the terms $\left(\eta^{2}+\zeta^{2}\right) \theta_{G, x} \phi_{, x}$ and $\left[\left(\eta^{2}+\zeta^{2}\right) \phi_{, x}^{2}\right] / 2$. The first expression is also present in the derivations of Houbolt and Brooks. The second term, as was pointed out by Hodges and Dowell thermselves, is neglected within the approximation that terms of order ε^{2} are negligible compared to unity. They retained this term for the case of very large torsional deformations, which imply that $y_{0} \phi_{, x}$ and $z_{0} \phi_{, x}$ are of order ε. The occurrence of such large elastic twist is unusual for most wind turbine or helicopter blades and is not treated in the present work. It should also be mentioned that the case when squares of strains are not negligible, in comparison to the strains themselves, is very special, and it appears that for this case a more refined theory than the one presented in this study will be required.
2) Comparing the shearing strains $e_{x \eta}$ and e^{x}, as derived from Equation (B-23) of the present study with Equations
$(25,26)$ of Hodges and Dowell, shows some discrepancy which appears to be related to the previously discussed differences in the warping function, and the expression for the twist. Furthermore, terms which represent products of the warping and curvatures in this work, are neglected by Hodges and Dowell in theirs. This neglect seems to be justified for the case of slender blades having a closed cross section.

After obtaining the strain components, Hodges and Dowell derived the equations of equilibrium by two complementary methods, the Hamiltonian principle (similar to what is done in Appendix D of this report) and the Newtonian method (similar to what is done in Appendix C of this report). It is obvious that different strain expressions, and different transformation relations between ($\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$) and ($\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$), will yield different final equations.

A system of consistent, nonlinear, equations of equilibrium of a pretwisted wind turbine or helicopter blade which undergoes moderate deformation was systematically derived. The derivation contains, in addition to the basic assumptions listed in Section 2, some additional assumptions which are gradually introduced in the course of derivation. For the sake of completeness, these additional assumptions are briefly summarized. The blade is slender and its undeformed elastic axis is straight, the blade is made of elastic isotropic material. The EulerBernoulli assumptions are valid (for details see Appendix B) and warping of the cross sections due to torsion is neglected.* Axial forces in the blade contribute to the bending moments, due to the offset between the elastic center of the cross section and the tensile center. It is assumed that this offset is sufficiently small such that the magnitude of this contribution is, at most, of the magnitude of the other contributions to the bending moments (e.g., see Equations (B43)). The strains in the blade are always small (less then 0.01), while the slopes due to elastic rotations are of order of magnitude ε where $\varepsilon \approx 0.2$; furthermore, terms of order of magnitude ε^{2} are neglected when compared to unity. Finally, it is assumed that deformations are changing gradually along the span of the blade, which implies that a modal expansion representing blade deformations would be restricted to

[^0]the lower modes.

Nonlinear structural problems require careful distinction between undeformed and deformed systems of coordinates for representing blade deformations. Therefore, in this study the final equations of equilibrium are presented in both the undeformed and deformed system. The general load components are also defined with respect to each of the systems.

The orthogonal system of coordinates : $x, y ; z$, used in deriving the equations of equilibrium in this study was found to be slightly more convenient than the curvilinear nonorthogonal x, η, ζ coordinate system used in References 3, 6, 8, 9 and 17. The main advantage being a somewhat simpler derivation and slightly simpler final equations. Additional information on this topic is provided in Reference 18.

An ordering scheme, such as used in this study, can simplify the equations considerably. The equations can be further simplified for certain blade geometries. It should be noted that the loading terms in the equations (forces and moments) were presented in a general form, without any approximations. Substitution of explicit expressions for the loading terms, and the application of an ordering scheme, enables one to identify and neglect a considerable number of additional small terms.

Since their derivation, these equations have been used extensively in a variety of aeroelastic stability and response problems as indicated below:

1) Calculation of coupled flap-lag-torsional aeroelastic stability
of hingeless rotor blades in forward flight (Ref. 19).
2) Aeroelastic stability and response calculations for an isolated horizontal axis wind turbine blade (Ref. 20). It should be noted that in this study, dynamic blade root bending moments were also calculated and found to be in satisfactory agreement with the loads measured on the NASA/DOE MOd-O machine.
3) Aeroelastic stability and response calculation of a coupled rotor/tower horizontal axis wind turbine, simulating the behavior of the NASA/DOE Mod-0 machine (Ref. 21).

Finally, it is important to note that the equations derived in this study were used to investigate the large deformations of a cantilevered beam loaded by a concentrated transverse load at the free end (Ref. 22). The numerical results obtained were in very good agreement with experimental results, which indicates that these equations are reliable and can be used with confidence in a variety of applications.

Figure 1a. General Description of Helicopter Rotor Geometry.

Fig. 1b. General Description of the Wind Turbine Geometry

Fig. 2a. Typical Description of the Undeformed Blade in the Rotating System x, y, z (i, i, $\underset{\sim}{\text { i }} \underset{\sim}{\mathbf{k}})$

FRONT VIEW

Fig. 2b. Geometry of the Elastic Axis of the Deformed Blade

A detailed development of the expressions in this Appendix can be found in many books on elasticity (for example, Refs. 10, 11); therefore, these are only briefly repeated here for the sake of clarity.

Consider a material point P in an elastic body, where the position before deformation is given by the position vector \bar{r} (Figure A-1). The position vector \bar{r} is a function of three coordinates, such that:

$$
\begin{equation*}
\bar{r}=\bar{r}\left(x_{0}, y_{0}, z_{0}\right) \tag{A-1}
\end{equation*}
$$

The coordinate system shown in Figure A-1 is an orthogonal Cartesian system with the unit vectors $\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$ in the directions x_{0}, y_{0}, z_{0}, respectively. Thus:

$$
\begin{equation*}
\bar{r}=x_{0} \hat{e}_{x}+y_{0} \hat{e}_{y}+z_{0} \hat{e}_{z} \tag{A-2}
\end{equation*}
$$

After the deformation, the material particle is located at point P^{\prime} (see Figure A-I) defined by the position vector \bar{R}. If the initial coordinates of the particle are used as independent variables, then:

$$
\begin{equation*}
\bar{R}=\bar{R}\left(x_{0}, y_{0}, z_{0}, t\right) \tag{A-3}
\end{equation*}
$$

where $\overline{\mathrm{R}}$ is also a function of time because the position of the point is a function of time $\left(x_{0}, y_{0}, z_{0}\right.$ can be considered to be the coordinates of
the point at $t=t_{0}$).
If $\overline{\mathrm{V}}$ denotes the displacement of the point, then:

$$
\overline{\mathrm{R}}=\overline{\mathbf{r}}+\overline{\mathrm{V}} .
$$

(A-4)

The base vectors of the point before deformation are defined as:

$$
\begin{equation*}
\bar{g}_{x}=\bar{r}_{, x} ; \bar{g}_{y}=\bar{r}_{, y} ; \bar{g}_{z}=\bar{r}_{, z} \tag{A-5}
\end{equation*}
$$

After the deformation, the base vectors are:

$$
\begin{equation*}
\bar{G}_{x}=\bar{R}_{, x} ; \quad \bar{G}_{y}=\bar{R}_{, y} ; \quad \bar{G}_{z}=\bar{R}_{, z} \tag{A-6}
\end{equation*}
$$

The strain components are given by Equation (2-20) of Wempner in Reference 11 (where x_{0}, y_{0}, z_{0} is an orthogonal system):

$$
\begin{aligned}
& \varepsilon_{x x} \equiv \frac{1}{2}\left(\bar{G}_{x} \cdot \bar{G}_{x}-1\right) ; \quad \varepsilon_{x y}=\varepsilon_{y x}=\frac{1}{2}\left(\bar{G}_{x} \cdot \bar{G}_{y}\right) ; \\
& \varepsilon_{y y} \equiv \frac{1}{2}\left(\bar{G}_{y} \cdot \bar{G}_{y}-1\right) ; \quad \varepsilon_{x z}=\varepsilon_{z x}=\frac{1}{2}\left(\bar{G}_{x} \cdot \bar{G}_{z}\right) ; \\
& \varepsilon_{z z} \equiv \frac{1}{2}\left(\bar{G}_{z} \cdot \bar{G}_{z}-1\right) ; \quad \varepsilon_{y z}=\varepsilon_{z y}=\frac{1}{2}\left(\bar{G}_{y} \cdot \bar{G}_{z}\right) .
\end{aligned}
$$

Fig. A1. Position of a Material Particle Before and After the Deformation

B.l General Expressions

A straight slender rod is shown in Figure B-l. Every material point in this rod is described by a rectangular Cartesian system of coordinates, x_{0}, y_{0}, z_{0}. The coordinate x_{0} is identical with the elastic axis of the rod, defined as the line which connects the shear centers of the cross sections of the rod. It is assumed that the elastic axis is a straight line. In this case, x_{0} denotes length along the elastic axis of the undeformed rod, while y_{0} and z_{0} denote lengths along lines orthogonal to the undeformed elastic axis.

Before the deformation the position vector of every material point is given by:

$$
\begin{equation*}
\bar{r}=x_{0} \hat{e}_{x}+y_{0} \hat{e}_{y}+z_{0} \hat{e}_{z} \tag{B-1}
\end{equation*}
$$

while after the deformation, at time t, the new position vector is:

$$
\begin{equation*}
\bar{R}=\bar{R}\left(x_{0}, y_{0}, z_{0}, t\right) \tag{B-2}
\end{equation*}
$$

The displacement of the particle is:

$$
\begin{equation*}
\overline{\mathrm{V}}=\overline{\mathrm{R}}-\overline{\mathrm{r}} \tag{B-3}
\end{equation*}
$$

Looking at a particle, which before deformation lies on the elastic axis, its initial position vector is:

$$
\begin{equation*}
{ }_{0}^{\bar{r}}=x_{0} \hat{e}_{x} \tag{B-4}
\end{equation*}
$$

and its position after the deformation is given by:

$$
\begin{equation*}
{ }_{o}^{\bar{R}}=\bar{R}\left(x_{0}, 0,0, t\right) \tag{B-5}
\end{equation*}
$$

The displacement of this point is denoted by:

$$
\begin{equation*}
\bar{W}=\bar{v}\left(x_{0}, 0,0\right)=u \hat{e}_{x}+v \hat{e}_{y}+w \hat{e}_{z} \tag{B-6}
\end{equation*}
$$

The base vectors of the undeformed rod are simply (according to Eq.
(A-5)) the orthonormal triad:

$$
\begin{equation*}
\bar{g}_{x}=\hat{e}_{x} \quad ; \quad \bar{g}_{y}=\hat{e}_{y} ; \quad \bar{g}_{z}=\hat{e}_{z} \tag{B-7}
\end{equation*}
$$

while the base vectors of the deformed rod are (according to (A-6)):

$$
\left.\begin{array}{l}
\bar{G}_{x} \equiv \bar{R}_{, x}=(\bar{r}+\bar{v})_{, x}=\hat{e}_{x}+\bar{v}_{, x} \tag{B-8}\\
\bar{G}_{y} \equiv \bar{R}_{, y}=(\bar{r}+\bar{v})_{, y}=\hat{e}_{y}+\bar{v}_{, y} \\
\bar{G}_{z} \equiv \bar{R}_{, z}=(\bar{r}+\bar{v})_{, z}=\hat{e}_{z}+\bar{v}_{, z}
\end{array}\right\} ;
$$

and at the elastic axis, a set $\bar{E}_{x}, \bar{E}_{y}, \bar{E}_{z}$ is defined as:

$$
\begin{align*}
\bar{E}_{x} & \equiv \bar{G}_{x}\left(x_{0}, 0,0\right)=\hat{e}_{x}+\bar{W}, x \\
& =(1+u, x) \hat{e}_{x}+v, x \hat{e}_{y}+w, x \hat{e}_{z} \\
\bar{E}_{y} & \equiv \bar{G}_{y}\left(x_{0}, 0,0\right)=\hat{e}_{y}+\bar{v}\left(x_{0}, 0,0\right), y \tag{B-9}\\
\bar{E}_{z} & \equiv \bar{G}_{z}\left(x_{0}, 0,0\right)=\hat{e}_{z}+\bar{v}\left(x_{0}, 0,0\right), z
\end{align*}
$$

The strains at any point are calculated by using Equations ($A-7$).

The motion which carries the rectangular lines of the undeformed rod into the curved lines of the deformed rod, carries the initial tangent unit vectors $\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$ to the current tangent base vectors, $\bar{G}_{x}, \bar{G}_{y}, \bar{G}_{z}$, respectively. This motion can be looked upon as two successive motions: First, the triad $\hat{e}_{\mathbf{x}}, \hat{e}_{\mathbf{y}}, \hat{e}_{z}$ is rigiday transformed and rotated to the orientation of an intermediate orthonormal triad $\hat{e}_{x}^{\prime}, \hat{e}_{\mathbf{y}}^{\prime}, \hat{e}_{z}^{\prime}$. Next, the intermediate triad is deformed to the triad $\bar{G}_{x}, \bar{G}_{y}, \bar{G}_{z}$ which means changing the angles between the vectors as well as the length of the vectors. The procedure which was described above is illustrated by Figure B-2.

Consider a triad $\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$ which is positioned on the elastic axis of the rod before deformation. In the stage of rigid transformation and rotation this triad is carried to the triad $\hat{e}_{x}^{\prime}, \hat{e}_{\mathbf{y}}^{\prime}, \hat{e}_{z}^{\prime}$, respectively. Without any loss of generality, let us assume that \hat{e}_{x}^{\prime} is carried in this stage to the direction of \bar{E}_{x}, which means that it is tangent to the elastic axis of the rod after deformation.

If the rotation of the triad $\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$ to the position $\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$
is relatively large, it cannot be described by a vector and it is treated by means of Euler angles (see, for example, Novozhilov, Ref. 12, Chapter VI, p. 205). If it is described as a finite rotation θ_{z} about \hat{e}_{z}, followed by a rotation θ_{y} about \hat{e}_{y}, followed by a rotation θ_{x} about \hat{e}_{x}, then the triad $\hat{e}_{x}^{\prime} \cdot \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$ obtained after these three rotations, is given by:

$$
\begin{align*}
\hat{e}_{x}^{\prime}=\left(\cos \theta_{y} \cos \theta_{z}\right) \hat{e}_{x} & +\left(\cos \theta_{y} \sin \theta_{z}\right) \hat{e}_{y} \\
& -\sin \theta_{y} \hat{e}_{z}
\end{align*}
$$

$\hat{e}_{y}^{\prime}=\left(\sin \theta_{x} \sin \theta_{y} \cos \theta_{z}-\cos \theta_{x} \sin \theta_{z}\right) \hat{e}_{x}$

$$
+\left(\cos \theta_{x} \cos \theta_{z}+\sin \theta_{x} \sin \theta_{y} \sin \theta_{z}\right) \hat{e}_{y}
$$

$$
+\left(\sin \theta_{x} \cos \theta_{y}\right) \hat{e}_{z}
$$

$$
\text { , (} B-10 b)
$$

$$
\hat{e}_{z}^{\prime}=\left(\cos \theta_{x} \sin \theta_{y} \cos \theta_{z}+\sin \theta_{x} \sin \theta_{z}\right) \hat{e}_{x}
$$

$$
-\left(\sin \theta_{x} \cos \theta_{z}-\cos \theta_{x} \sin \theta_{y} \sin \theta_{z}\right) \hat{e}_{y}
$$

$$
\begin{equation*}
+\left(\cos \theta_{x} \cos \theta_{y}\right) \hat{e}_{z} \tag{B-10c}
\end{equation*}
$$

Equation (B-10) are identical to Equations (A2) of Hodges and Dowell (Ref. 8), after replacing θ_{x}, θ_{y} and θ_{z} by $\bar{\theta},-\bar{\beta}$, and $\bar{\zeta}$, respectively. Consider the deformation of an element $d x_{0}$ on the elastic axis of the rod, as described in Figure B-3. The procedure is as follows: First, the element is carried in a rigid body translation that does not appear in Figure B-3. Then the element is stretched by an amount
$u_{, x} d x_{0}$ to the position A (1). Then the element is rotated by θ_{z} about \hat{e}_{z} while point (1) moves a distance $v, x d x_{0}$ to location (2), followed by a rotation $-\theta_{y}$, while the element tip moves from location (2) to (3). Finally, the element in its position $A-(3)$ is rotated by an amount θ_{x} about itself. From Figure B-3, the following relations are obtained:

$$
\begin{align*}
& \sin \theta_{y}=-\frac{w, x}{\sqrt{1+2 u, x+u_{, x}^{2}+v^{2}, x+w^{2}, x}} \quad, \quad(B-11 a) \\
& \cos \theta_{y}=\frac{\sqrt{1+2 u, x^{2}+u^{2}+v^{2}}}{\sqrt{1+2 u, x+u^{2}, x+v^{2}, x+w^{2}}} \\
& \sin \theta_{z}=\frac{v}{\sqrt{1+2 u, x}+u_{, x}^{2}+v^{2}, x} \tag{B-11c}\\
& \cos \theta_{z}=\frac{1+u}{\sqrt{1+2 u, x+u^{2}+\nabla^{2}}}
\end{align*}
$$

The quantity u, x is of the magnitude of strain, as will be shown later. Assuming that the strains are small (say, $\varepsilon_{1 j}<0.01$) which is the case for most engineering materials, then the expression u, x will be neglected in comparison to unity. Next, it is assumed that v, x, x and ${ }^{\theta} x$ are quantities of magnitude equal to or less than ε (in our case, $\varepsilon \approx 0.2$), and quantities of the magnitude of ε^{2} are negligible compared to unity.

Using these assumptions and expanding $\sin \theta_{x}$ and $\cos \theta_{x}$ into series, one obtains:

$$
\begin{align*}
& \sin \theta_{x} \cong \theta_{x} ; \sin \theta_{y} \cong-w, x ; \sin \theta_{z} \cong \sim v_{x} ; \tag{B-12}\\
& \cos \theta_{x} \cong 1 ; \cos \theta_{y}^{\cong} \cong 1 ; \cos \theta_{z} \cong 1
\end{align*}
$$

At this stage, in order to be consistent with the usual notation in the literature (for example, Reference 9), θ_{x} is replaced by $\Phi_{\text {. Sub- }}$ stituting Equations ($\mathrm{B}-12$) into Equations ($\mathrm{B}-10$) implies:

$$
\begin{align*}
& \hat{e}_{x}^{\prime}=\hat{e}_{x}+v, x \hat{e}_{y}+w, x \hat{e}_{z} \\
& \hat{e}_{y}^{\prime}=-\left(v, x+{ }_{x}, x\right) \hat{e}_{x}+\hat{e}_{y}+\phi \hat{e}_{z} \tag{B-13}\\
& \hat{e}_{z}^{\prime}=-(w, x-\phi, x) \hat{e}_{x}-(\phi+v, x, x) \hat{e}_{y}+\hat{e}_{z}
\end{align*}
$$

Because the rotations are treated as finite, it is not surprising that the triad $\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$ depends on the sequence of rotations. If the sequence consists of rotation θ_{y} about \hat{e}_{y}, followed by a rotation θ_{z} about \hat{e}_{z}, and finally, a rotation $\hat{\theta}_{x}$ about \hat{e}_{x}, as described in Figure B-4, then the expressions become:

$$
\left.\begin{array}{l}
\hat{e}_{x}^{\prime}=\hat{e}_{x}+v, x \hat{e}_{y}+w, x \hat{e}_{z} \\
\hat{e}_{y}^{\prime}=-\left(v, x+\phi_{W}\right) \hat{e}_{x}+\hat{e}_{y}+(\Phi-v, x, x) \hat{e}_{z} \tag{B-14}\\
\hat{e}_{z}^{\prime}=-\left(w, x-\phi_{v}, x \hat{e}_{x}-\phi \hat{e}_{y}+\hat{e}_{z}\right.
\end{array}\right\}
$$

The triad (B-14) differs from (B-13) by terms of second order. Other different sequences of rotation will yield other triads which will differ Prom each other by second order terms. Therefore, it is most important to retain one particular triad during a complete derivation, and consistency with this selected triad. In the theory of space curves there are three important quantities, defined as (for example, Wempner, Ref. 11, Eqs. $(8-19)-(8-21)):$

$$
\left.\begin{array}{l}
k_{y} \equiv \hat{e}_{y}^{\prime} \cdot \hat{e}_{x, x}^{\prime}=-\hat{e}_{x}^{\prime} \cdot \hat{e}_{y, x}^{\prime} \tag{B-15}\\
k_{z} \equiv \hat{e}_{z}^{\prime} \cdot \hat{e}_{x, x}^{\prime}=-\hat{e}_{x}^{\prime} \cdot \hat{e}_{z, x}^{\prime} \\
T \equiv \hat{e}_{z}^{\prime} \cdot \hat{e}_{y, x}^{\prime}=-\hat{e}_{y}^{\prime} \cdot \hat{e}_{z, x}^{\prime}
\end{array}\right\},
$$

where k_{y} and k_{z} are curvatures, while T is the twist. Equation (B-15) represents the exact expressions for the curvature and twist when strains are neglected compared to one. If $\hat{e}_{x}^{\prime}, \hat{e}_{\mathbf{y}}^{\prime}$, and \hat{e}_{z}^{\prime} are given by Equation (B-13), then:

$$
\begin{align*}
& \hat{e}_{x, x}^{\prime}=v, x x \hat{e}_{y}+w, x \hat{e}_{z} \\
& \hat{e}_{y, x}^{\prime}=-\left(v, x{ }^{+}{ }^{\Phi}, x^{w}, x+\Phi{ }_{w}, x x^{\prime}\right) \hat{e}_{x}+{ }^{\Phi}, x \hat{e}_{z} \tag{B-16a}\\
& \hat{e}_{z, x}^{\prime}=-\left(w, x x^{-\phi}, x^{v}, x^{-\phi}, x x^{-}\right) \hat{e}_{x}-\left(\Phi, x+v, x x^{w}, x+v, x^{w}, x x^{+}\right) \hat{e}_{y}
\end{align*}
$$

Substituting expressions ($\mathrm{B}-16 \mathrm{a}$) into Equations ($\mathrm{B}-15$), and assuming that $v, x x^{w}, x x^{\prime}$ and ϕ, x are of the same magnitude, and neglecting again terms of the magnitude of ε^{2} compared to unity, implies:

$$
\left.\begin{array}{rl}
k_{y} & =v, x x^{+}, x x \tag{B-16b}\\
k_{z} & =w, x x^{*}, x x \\
\tau & =0, x+v, x x^{w}, x
\end{array}\right\}
$$

The term $v, x x^{W}, x$ in the expression for twist is a well known term in the theory of rods (see for example, Reference 11, p. 390, Eq. 8-152d). It has also been used in rotor dynamics by Kaza and Kvaternik (Ref. 15).

From the definitions (B-15) and the orthonormality conditions of the triad $\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$, it is clear that:

$$
\left.\begin{array}{l}
\hat{e}_{x, x}^{\prime}=\kappa_{y} \hat{e}_{y}^{\prime}+k_{z} \hat{e}_{z}^{\prime} \tag{B-17}\\
\hat{e}_{y, x}^{\prime}=-k_{y} \hat{e}_{x}^{\prime}+\tau \hat{e}_{z}^{\prime} \\
\hat{e}_{z, x}^{\prime}=-k_{z} \hat{e}_{x}^{\prime}-\tau \hat{e}_{y}^{\prime}
\end{array}\right\}
$$

which can be easily verified by substitution of expression (B-17) into the definitions ($\mathrm{B}-15$).

B. 2 Bernoulli-Euler Hypothesis

At this stage, it is necessary to find an expression for \bar{R}. This always requires certain assumptions. In the present case, the well known Bernoulli-Euler hypothesis will be used. In most cases this hypothesis is stated as follows: During bending, plane cross sections which are
normal to the axis before deformation remain plane after deformation, and normal to the deformed axis. Usually, this hypothesis is combined with the assumption, although not always stated, that strains within the cross sections can be neglected. This assumption will be used in the present study also. (This is similar to the case of plate and shells where the analogous Love-Kirchoff hypothesis is used.) This hypothesis leads to the following results:

$$
\begin{equation*}
\bar{E}_{y}=\hat{e}_{y}^{\prime}, \quad \bar{E}_{z}=\hat{e}_{z}^{\prime}, \tag{B-18}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{R}=x_{0} \hat{e}_{x}+\bar{W}+y_{0} \hat{e}_{y}^{\prime}+z_{0} \hat{e}_{z}^{\prime}+\varphi\left(x_{0}, y_{0}, z_{0}, t\right) \hat{e}_{x}^{\prime} \tag{B-19}
\end{equation*}
$$

The last term in Equation (B-19) represents small normal displacement which, as pointed out by Novozhilov (Ref. 12, p. 213), is a generalization of the warping function of St.-Venant torsion. This function contains only quadratic and higher degree terms in y_{0} and z_{0} and is assumed to be small compared with typical cross-sectional dimensions of the rod.

Substitution of the expression (B-6) for $\overline{\mathrm{W}}$ into Equation (B-19), then differentiating (B-17) and using Equation (B-17), implies:

$$
\begin{align*}
\bar{G}_{x}=\bar{R}_{, x} & =(1+u, x) \hat{e}_{x}+v, x \hat{e}_{y}+w, x \hat{e}_{z} \\
& +y_{0}\left(-\kappa_{y} \hat{e}_{x}^{\prime}+\tau \hat{e}_{z}^{\prime}\right)+z_{0}\left(-\kappa_{z} \hat{e}_{x}^{\prime}-\tau \hat{e}_{y}^{\prime}\right) \\
& +\varphi, x \hat{e}_{x}^{\prime}+\varphi\left(\kappa_{y} \hat{e}_{y}^{\prime}+k_{z} \hat{e}_{z}^{\prime}\right) \tag{B-20a}
\end{align*}
$$

$$
\begin{align*}
& \bar{G}_{y}=\bar{R}_{, y}=\hat{e}_{y}^{\prime}+\varphi, y \hat{e}_{x}^{\prime}, \tag{B-20b}\\
& \bar{G}_{z}=\bar{R}_{, z}=\hat{e}_{z}^{\prime}+\varphi, z \hat{e}_{x}^{\prime} . \tag{B-20c}
\end{align*}
$$

By definition, \hat{e}_{x}^{\prime} is a unit vector in the direction of \bar{E}_{x}. Defining $\tilde{\varepsilon}_{x x}$ as the strain of the elastic axis, and then using the first of Equations ($\mathrm{B}-9$), implies:

$$
\begin{align*}
\bar{E}_{x} & =\left(1+u_{, x}\right) \hat{e}_{x}+\nabla_{, x} \hat{e}_{y}+w_{, x} \hat{e}_{z} \\
& \equiv\left(1+\tilde{\varepsilon}_{x x}\right) \hat{e}_{x}^{\prime} . \tag{B-21}
\end{align*}
$$

From Equation (B-21), using the phthagorian rule and neglecting terms of order ε^{2} compared to unity, implies:

$$
\begin{equation*}
\tilde{\varepsilon}_{x x}=u_{, x}+\frac{1}{2}\left(v_{, x}^{2}+w_{, x}^{2}\right) \tag{B-22}
\end{equation*}
$$

Substitution of Equations ($\mathrm{B}-20$) into the expressions (A-7) of Appendix A for the strain components, and making use of Equation (B-22), implies:

$$
\begin{align*}
& \varepsilon_{x x x}=\tilde{\varepsilon}_{x x}-y_{0} k_{y}-z_{0} k_{z}+\varphi, x \\
& \varepsilon_{x y}=\frac{1}{2}\left(\varphi_{; y}-z_{0} T+\varphi \kappa_{y}\right) \tag{B-23}\\
& \varepsilon_{x z}=\frac{1}{2}\left(\varphi, z+y_{0} T+\varphi \kappa_{z}\right)
\end{align*}
$$

In deriving the expressions ($\mathrm{B}-23$) use was made of the fact that
 and $\varphi_{, z}$ are of magnitude of strain and therefore less than ε^{2}.

In calculating the stresses in the rod, use is made of the constitutive relations of the material from which the rod is made. In the present case it is assumed that the rod is made of isotropic Hookean material which is homogeneous for every cross section. On the other hand, in the present study the assumption that $\sigma_{y y}=\sigma_{z z}=0$, commonly used for slender rods, is made. However, according to the Bernoulli-Euler hypothesis, $\varepsilon_{y y}$ and $\varepsilon_{z z}$ should also be zero, and the vanishing of $\sigma_{y y}, \sigma_{z z}, \varepsilon_{y y}$ and $\varepsilon_{z z}$ simultaneously, is inconsistent with Hooke's Law. This inconsistency, which is inherent in the Bernoulli-Euler hypothesis, although not always stated is explained in the literature in different ways. One of the explanations is that one is dealing with a material having a special type of orthotropy.

The constitutive relations for an orthotropic material, as given by Lekhnitskii (Ref. 14, Eq. (3-7)), are:

$$
\begin{aligned}
& \varepsilon_{x x}=\frac{1}{E_{1}} \sigma_{x x}-\frac{v_{21}}{E_{2}} \sigma_{y y}-\frac{v_{31}}{E_{3}} \sigma_{z z} \\
& \varepsilon_{y y}=-\frac{v_{12}}{E_{1}} \sigma_{x x}+\frac{1}{E_{2}} \sigma_{y y}-\frac{v_{32}}{E_{3}} \sigma_{z z} \\
& \varepsilon_{z z}=-\frac{v_{13}}{E_{1}} \sigma_{x x}-\frac{v_{23}}{E_{2}} \sigma_{y y}+\frac{1}{E_{3}} \sigma_{z z} \\
& \varepsilon_{y z}=\frac{1}{G_{23}} \tau_{y z} \\
& \varepsilon_{x z}=\frac{1}{G_{13}} \tau_{x z} \\
& \varepsilon_{x y}=\frac{1}{G_{12}} \tau_{x y}
\end{aligned}
$$

It is assumed, that in the present case:

$$
v_{21}=v_{31}=v_{12}=v_{13}=0 ; \quad E_{2}=E_{3} \rightarrow \infty ; \quad G_{23}=G_{13}=2 G \bullet^{*} \quad(B-24 b)
$$

By using Equation ($B-24 b$) together with the relations ($B-24 a$), the inconsistency that was mentioned earlier, disappears.

Another inconsistency which is inherent in the Bernoulli-Euler hypothesis, concerns the shearing stresses. If torsion is neglected, the assumption that plane cross sections, before deformation, remain plane after che deformation, means that the shearing strains $\tilde{\varepsilon}_{x z}$ and $\tilde{\varepsilon}_{y z}$ are zero. (These components are due to contributions other than torsion. The contributions due to torsion appear in Equation (B-23).) This means, according to Hooke's Law, that the shearing stresses due to contributions other than torsion disappear. However, these stresses, $\tilde{\boldsymbol{\tau}}_{x y}$ and $\tilde{\tau}_{x z}$, or more accurately their resultants -- the shearing forces -- do not vanish at all. Furthermore, they play an important role in the equilibrium calculations. Sometimes this inconsistency is explained by taking $G_{23}=G_{13} \rightarrow$ ∞ in Equations (B-24a). In the present case, where shearing strains due to torsion are also present, this assumption will cause some problems. Therefore, a better explanation is that in the case of slender rods the shearing strains are very small, so that they do not violate the hypothesis; however, their integral over the cross section should be taken into account, implying that the shearing forces cannot be neglected.

Using Equations (B-24a), (B-24b) together with the strain relations as given by Equation (B-23), implies:
*The two in the expressions for G_{23} and G_{13} is needed because shearing strains in Ref. 14 are defined without the factor $1 / 2$ which appears in Eq. (A-7) of the present study.

$$
\begin{aligned}
\sigma_{x x} & =E \varepsilon_{x x x} \\
& =E\left(\tilde{\varepsilon}_{x x x}-y_{0} k_{y}-z_{0} k_{y}+\varphi_{, x}\right) \\
\tau_{x y} & =\tilde{\tau}_{x y}+2 G \varepsilon_{x y} \\
& =\tilde{\tau}_{x y}+G\left(\varphi, y-z_{0} \tau+\varphi k_{y}\right) \\
\tau_{x z} & =\tilde{\tau}_{x z}+2 G \varepsilon_{x z} \\
& =\tilde{\tau}_{x z}+G\left(\varphi, z+y_{0} \tau+\varphi x_{z}\right)
\end{aligned}
$$

Detailed expressions for $\tilde{\boldsymbol{T}}_{x y}$ and $\tilde{\boldsymbol{T}}_{x z}$ are not required, as will be shown later.

The force which acts on the unit area of the cross section of the deformed rod, is:

$$
\begin{equation*}
\bar{t}=\sigma_{x x} \bar{G}_{x}+\tau_{x y} \bar{G}_{y}+\tau_{x z} \bar{G}_{z} \tag{B-25}
\end{equation*}
$$

Using Equations (B-20), (B-21), combined with (B-25), one obtains:

$$
\begin{align*}
\vec{t}=\left[\sigma_{x x}(1\right. & \left.\left.+\tilde{\varepsilon}_{x x}-y_{0} k_{y}-z_{0} k_{z}+\varphi_{, x}\right)+\tau_{x y} \varphi_{, y}+\tau_{x z} \varphi_{, z}\right] \hat{e}_{x}^{\prime} \\
& +\left[\sigma_{x x}\left(-z_{0} \tau+\varphi \kappa_{y}\right)+\tau_{x y}\right] \hat{e}_{y}^{\prime} \\
& +\left[\sigma_{x x}\left(y_{0} \tau+\varphi \kappa_{z}\right)+\tau_{x z}\right] \hat{e}_{z}^{\prime} \tag{B-26}
\end{align*}
$$

Assuming that the stresses are of the same order and neglecting terms of order ε^{2} campared to unity, implies:*

* See comment on page 57.

$$
\begin{equation*}
\bar{t}=\sigma_{x x} \hat{e}_{x}^{\prime}+\tau_{x y} \hat{e}_{y}^{y}+\tau_{x z} \hat{e}_{z}^{\prime} \tag{B-27}
\end{equation*}
$$

The resultant force, \bar{F}, which acts on the cross section, is obtained by integration:

$$
\begin{equation*}
\bar{F}=\iint_{A} \bar{t} d y_{0} d z_{0}=T \hat{e}_{x}^{\prime}+v_{y} \hat{e}_{y}^{\prime}+v_{z} \hat{e}_{z}^{\prime} \tag{B-28}
\end{equation*}
$$

Before proceeding, the warping function, which until now was treated in a general manner, has to be considered. One possibility it to treat it in an exact fashion as done by Wempner (Ref. 11, Chapter 8). This procedure, however, complicates the derivation considerably. Instead, when dealing with a slender rod, it is possible to introduce an assumption analogous to the one used for the case of the St. Venant torsion, whereby φ can be written as:

$$
\begin{equation*}
\varphi=\tau \tilde{\varphi}\left(x_{0}, y_{0}, z_{0}\right) \tag{B-29}
\end{equation*}
$$

where $\tilde{\varphi}$ is still a function of x_{0} because it is conceivable that the cross section changes along the span with x_{0}.

According to Equations (B-28), (B-24), (B-27) and (B-29):

$$
\begin{equation*}
T=\iint_{A} E\left(\tilde{\varepsilon}_{x x}-y_{0} k_{y}-z_{0} k_{z}+\tau, x \tilde{\varphi}+\tau \tilde{\varphi}_{, x}\right) d y_{0} d z_{0} \tag{B-30}
\end{equation*}
$$

Restricting the derivation to symmetric cross sections (at least about one axis of symmetry) yields:

$$
\begin{equation*}
\iint_{A} \tilde{\varphi} d y_{0} d z_{0}=\iint_{A} \tilde{\Phi}_{, x} d y_{0} d z_{0}=0 \tag{B-31}
\end{equation*}
$$

and Equation (B-30) becomes:

$$
\begin{equation*}
T=E A\left(\tilde{\varepsilon}_{x x}-y_{o c} x_{y}-z_{o c} x_{z}\right) \tag{B-32}
\end{equation*}
$$

while:

$$
\begin{align*}
& \iint_{A} y_{0} d y_{0} d z_{0}=y_{o c} A, \tag{B-33}\\
& \iint_{A} z_{0} d y_{0} d z_{0}=z_{o c} A .
\end{align*}
$$

The point $\left(y_{o c}, z_{o c}\right)$ is the point of intersection of the tension axis and the cross section. Equation (B-32) together with the first of Equations (B-24) implies:

$$
\begin{align*}
& \sigma_{x x}= \frac{T}{A} \\
&+\left(y_{o c}-y_{0}\right) E \kappa_{y}+\left(z_{o c}-z_{0}\right) E \kappa_{z} \tag{B-34}\\
&+E T, x \\
& \tilde{\varphi}+E T \tilde{\varphi}, x
\end{align*}
$$

After examining the force resultants on a cross section of the deformed rod, the moment resultants about the point $\left(y_{0}=z_{0}=0\right), \bar{M}$, will be considered, where:

$$
\begin{equation*}
\bar{M}=\iint_{A} \overline{\mathrm{~d}} \times \overline{\mathrm{t}} \mathrm{dA} \tag{B-35}
\end{equation*}
$$

According to the Bernoulli-Euler hypothesis:

$$
\begin{equation*}
\bar{d}=y_{0} \hat{e}_{y}^{\prime}+z_{0} \hat{e}_{z}^{\prime}+\tau \tilde{\varphi} \hat{e}_{x}^{\prime} \tag{B-36}
\end{equation*}
$$

Substitution of Equations ($B-27$), ($B-24$) and ($B-36$) into ($B-35$) implies:

$$
\begin{equation*}
\bar{M}=M_{x} \hat{e}_{x}^{\prime}+M_{y} \hat{e}_{y}^{\prime}+M_{z} \hat{e}_{z}^{\prime} \tag{B-37}
\end{equation*}
$$

where:

$$
\begin{aligned}
& M_{x}=\iint_{A}\left[y_{0}{ }^{T}{ }_{x z}-z_{0}{ }^{\tau}{ }_{x y}\right] d y_{0} d z_{0} \\
& M_{y}=\iint_{A}\left[\sigma_{x x} z_{0}-\tau \tilde{\varphi} \tau_{x z}\right] d y_{0} d z_{0} \\
& M_{z}=\iint_{A}\left[-\sigma_{x x} y_{0}+\tau \tilde{\varphi} \tau_{x y}\right] d y_{0} d z_{0}
\end{aligned}
$$

Substitution of Equation (B-24) into the first of Equations (B-38) implies:

$$
\begin{align*}
M_{x}= & \iint_{A}\left(y_{0} \tilde{\tau}_{x z}-z_{0} \tilde{\tau}_{x y}\right) d y_{0} d z_{0}+G k_{z} \tau \iint_{A} y_{0} \tilde{\varphi} d y_{0} d z_{0} \\
& \quad-G k_{y} T \iint_{A} z_{0} \tilde{\varphi} d y_{0} d z_{0} \\
& +G T \iint_{A}\left[y_{0}^{2}+z_{0}^{2}+y_{0} \tilde{\varphi}_{, z}-z_{0} \tilde{\varphi}_{, y}\right] d y_{0} d z_{0} \tag{B-39}
\end{align*}
$$

The first integral in Equation (B-39) is the torque which is produced by the shearing forces V_{y}, V_{z} around the point $z_{o c}=y_{o c}=0$. This point is the shear center of the cross section; thus, by definition this integral becanes zero. The last integral is the torsional stiffness, J, of the cross section known from St. Venant torsion. Thus, expression (B-39) simplifies to:

$$
\begin{align*}
M_{x}=G J T & +G \tau k_{z} \iint_{A} y_{0} \tilde{\varphi} d y_{0} d z_{0} \\
& -G T k_{y} \iint_{A} z_{0} \tilde{\varphi} d y_{0} d z_{0} \tag{B-40}
\end{align*}
$$

Substitution of Equations (B-34) and (B-24) into the second and third of expressions ($\mathrm{B}-38$) implies:

$$
\begin{align*}
& M_{y}=-E I_{23} k_{y}-E I_{33} k_{z}+T z_{o c}+\tau, x E \iint_{A} z_{0} \tilde{\varphi} d y_{0} d z_{0} \\
& +\tau E \iint_{A} z_{0} \tilde{\varphi}_{, x} d y_{0} d z_{0}-\tau \iint_{A} \tilde{\varphi} \tilde{\tau}_{x z} d y_{0} d z_{0} \\
& -\tau^{2} G \cdot \iint_{A} \tilde{\varphi \varphi}, z d y_{0} d z_{0}-\tau^{2} G \iint_{A} y_{0} \tilde{\varphi} d y_{0} d z_{0} \\
& -r^{2} \kappa_{z} G \iint_{A} \tilde{\varphi}^{2} d y_{0} d z_{0} ; \tag{B-41a}
\end{align*}
$$

$$
\begin{aligned}
& M_{z}=E I_{22}{ }_{y}+E I_{23} k_{z}-T y_{0 C}^{-\tau}, x E \iint_{A} y_{0} \tilde{\varphi} d y_{0} d z_{0}
\end{aligned}
$$

$$
\begin{align*}
& +\tau^{2} G \iint_{A} \tilde{\varphi} \tilde{\varphi}, y d y_{0} d z_{0}-\tau^{2} G \int_{A}^{\iint_{0}} z_{0} \tilde{\varphi} d y_{O} d z_{O} \\
& +T^{2} k_{y} G \iint_{A} \tilde{\varphi}^{2} d y_{0} d z_{O} ; \tag{B-41b}
\end{align*}
$$

where I_{22}, I_{33}, and I_{23} are flexural moments of inertia given by

$$
\begin{align*}
& I_{22}=\iint_{A}\left(y_{0 c}-y_{0}\right)^{2} d y_{0} d z_{0} \\
& I_{33}=\iint_{A}\left(z_{o c}-z_{0}\right)^{2} d y_{0} d z_{0} \tag{B-42}\\
& I_{23}=\iint_{A}\left(y_{o c}-y_{0}\right)\left(z_{o c}-z_{0}\right) d y_{0} d z_{0}
\end{align*}
$$

The underlined terms in Equations ($B-41$) become zero in the case of a symmetric cross section, which is the type of cross section being considered.

In the case of slender rods with closed cross sections, the influence of warping is usually neglected and in this case, expressions ($\mathrm{B}-40$) and (B-41) become :

$$
\left.\begin{array}{l}
M_{x}=G J T \\
M_{y}=-E I_{23} \kappa_{y}-E I_{33} \kappa_{z}+T z_{o c} \tag{B-43}\\
M_{z}=E I_{22} \kappa_{y}+E I_{23} \kappa_{z}-T y_{o c}
\end{array}\right\}
$$

Comment: In Equation ($B-26$) a contribution of the axial stress to the shearing forces acting on the cross section of the blade exists. For beams where the torsional stiffness is very small compared to the bending stiffness (like the case of beams with thin open cross sections) this contribution, sometimes called the trapeze effect, can cause considerable influence of axial forces on the torsional rigidity of those beams (see, for example, Ref. 16). However, rotor blades, which are the subject matter of this study are made of either closed or solid cross sections, where the above mentioned effect can be neglected, as pointed out by Goodier (Ref. 16, p. 386 , second column, line 18 from the top). Therefore, the assumptions leading from Equation ($B-26$) to ($B-27$) seems to be appropriate for the present study.

Fig. B1. Geometry of the Rod Before the Deformation

Fig. B2. Procedure of Deformation

Fig. B3. Euler Angles When the Order of Rotation is $\theta_{\mathbf{z}}, \theta_{\mathbf{y}},{ }_{\mathbf{x}}^{\mathbf{x}}$

Fig. B4. Euler Angles When the Order of Rotation is $\theta_{\mathbf{y}^{\prime}} \theta_{\mathbf{z}^{\prime}} \theta_{\mathbf{x}}$

In Appendix B the expressions for the resultant forces and moments which act on a cross section of a deformed slender rod, which was initially straight, were calculated. Furthermore, it was assumed that the rod is subjected to a distributed force, \bar{p}, per unit length of its undeformed axis. This load \bar{p} includes body forces, surface fractions and inertial loading. There is also a moment \bar{q} per unit length of the undeformed axis of the rod. This includes body couples, moments of surface traction and moments of inertial loading. The loads $\overline{\mathrm{p}}$ and $\overline{\mathrm{q}}$ are assumed to be continuous and also having continuous derivatives.

Figure Col shows a segment of the deformed rod. From equilibrium of forces the following equation is obtained:

$$
\begin{equation*}
\overline{\mathrm{F}}, \mathrm{x}+\overline{\mathrm{p}}=0 \tag{c-1}
\end{equation*}
$$

From the equilibrium of moments about the point p, letting $d x_{0} \rightarrow 0$, the following equation is obtained:

$$
\begin{equation*}
\overline{\mathrm{M}}, x+\bar{q}+\hat{e}_{x}^{\prime} \times \overline{\mathrm{F}}=0 . \tag{c-2}
\end{equation*}
$$

The load \bar{p} and the couple \bar{q} are described by their components:

$$
\begin{align*}
& \bar{p}=p_{x} e_{x}^{\prime}+p_{y} \hat{e}_{y}^{\prime}+p_{z} \hat{e}_{z}^{\prime}, \tag{c-3}\\
& \bar{q}=q_{x} \hat{e}_{x}^{\prime}+q_{y} \hat{e}_{y}^{\prime}+q_{z} \hat{e}_{z}^{\prime} .
\end{align*}
$$

Substitution of the first of Equations (c-3) into Equation (C-1), together with Equations (B-17) and (B-28), implies:

$$
\left.\begin{array}{l}
T, x-k_{y} V_{y}-k_{z} V_{z}+p_{x}=0 \quad\left(\hat{e}_{x}^{\prime}\right. \text { direction) } \\
V_{y, x}+k_{y} T-T V_{z}+p_{y}=0 \quad\left(\hat{e}_{y}^{\prime}\right. \text { direction) } \\
V_{z, x}+k_{z} T+T V_{y}+p_{z}=0 \quad\left(\hat{e}_{z}^{\prime} \text { direction }\right)
\end{array}\right\} \quad(C-4)
$$

Substitution of the second of equations (c-3) into (c-2), together with Equations (B-17), (B-28) and (B-37) implies:

$$
\begin{aligned}
& M_{x, x}-\kappa_{y} M_{y}-\kappa_{z} M_{z}+q_{x}=0 \quad\left(\hat{e}_{x}^{\prime}\right. \text { direction) } \\
& M_{y, x}+\kappa_{y} M_{x}-\tau M_{z}+q_{y}-V_{z}=0 \quad\left(\hat{e}_{y}^{\prime} \text { direction }\right) \\
& M_{z, x}+\kappa_{z} M_{x}+\tau M_{y}+q_{z}+V_{y}=0 \quad\left(\hat{e}_{y}^{\prime} \text { direction }\right)
\end{aligned}
$$

Equations ($\mathrm{C}-4$) and ($\mathrm{C}-5$) are exact, and contain no approximations. The procedure of solution is as follows: Expressions for V_{y} and V_{z} are obtained from the second and third of Equations (c-5). These are subsequently substituted in Equations (C-4). Following this procedure, the expressions for the shearing forces become:

$$
\begin{align*}
& V_{y}=-\left(M_{z, x}+K_{z} M_{x}+T M_{y}+q_{z}\right), \tag{c-6}\\
& V_{z}=M_{y, x}+K_{y} M_{x}-T M_{z}+q_{y}
\end{align*}
$$

Substitution of expressions (C-6) into Equations (C-4) implies:

$$
\begin{align*}
& T_{, x}+K_{y}\left(M_{z, x}+T M_{y}+q_{z}\right) \\
& -K_{z}\left(M_{y, x}-T M_{z}+q_{y}\right)+p_{x}=0 \tag{c-7a}\\
& -\left(M_{z, x}+K_{z} M_{x}+T M_{y}+q_{z}\right)_{, x}+K_{y} T \\
& =\tau\left(M_{y, x}+{ }^{K} y_{x}-T M_{z}+q_{y}\right)+p_{y}=0, \tag{c-7b}\\
& \left(M_{y, x}+K_{y} M_{x}-T M_{z}+q_{y}\right){ }_{y}+K_{z} T \\
& -\tau\left(M_{z, x}+K_{z} M_{x}+T M_{y}+q_{z}\right)+p_{z}=0 \tag{c-7c}
\end{align*}
$$

Equations ($C-7$) represent the equilibrium of forces in the directions $\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}$, and \hat{e}_{z}^{\prime}, respectively. There is still the moment equation, in the \hat{e}_{x}^{\prime} direction that must be satisfied, which is:

$$
\begin{equation*}
M_{x, x}-\kappa_{y} M_{y}-x_{z} M_{z}+q_{x}=0 \tag{c-8}
\end{equation*}
$$

Equations ($C-7$) and ($c-8$) are accurate and contain no approximations. These four equations (three of ($\mathrm{C}-7$) and one of ($\mathrm{C}-8$) must be solved in order to investigate the problem of the deformed rod. In order to obtain a solution, it is necessary to express the moments in terms of the derivatives of the displacements and the rotation of the cross
section about the elastic axis. This reduces the problem to one containing four equations and four unknowns.

In trying to simplify the equations, use can be made of the ordering scheme. Performing the differentiation in Equations (c-7a-c) implies:

$$
\begin{align*}
& T, x+\kappa_{y} M_{z, x}-\kappa_{z} M_{y, x}+\tau\left(\kappa_{y} M_{y}+\kappa_{z} M_{z}\right) \\
& +k_{y} q_{z}-k_{z} q_{y}+p_{x}=0 \tag{C-9a}\\
& -M_{z, x x}-\left(\kappa_{z, x}+\tau \kappa_{y}\right) M_{x}-\kappa_{z} M_{x, x}-T, x M_{y} \\
& -2 T M_{y, x}+T^{2} M_{z}+k T-q_{z, x}-\tau q_{y}+p_{y}=0(c-9 b) \\
& \dot{M}_{y, x x}+\left(\kappa_{y, x}-T \kappa_{z}\right) M_{x}+\kappa_{y} M_{x, x}-T, M_{z}-2 \tau M_{z, x} \\
& -\tau^{2} M_{y}+K_{z} T+q_{y, x}-\tau q_{z}+p_{z}=0 \tag{c-9c}\\
& M_{x, x}-K_{y} M_{y}-K_{z} M_{z}+q_{x}=0
\end{align*}
$$

The underlined terms in Equations (c-9b) and (C-9c) can be neglected according to the ordering scheme. As an example, consider Equation ($\mathrm{C}-9 \mathrm{~b}$). The underlined terms $\mathrm{T}^{2} \mathrm{M}_{\mathrm{z}}$ can be neglected, compared to the term $-M_{z, x x}$ which also appears in the equation. As a clarification, recall that according to the ordering scheme one can write:

$$
M_{z} \cong M_{z}\left(1-\varphi^{2}\right)
$$

If both sides of the last equality are differentiated twice with respect to x, it implies:

$$
M_{z, x x} \cong M_{z, x x}-M_{z, x x} \varphi^{2}-4 M_{z, x} \varphi \varphi, x-2 M_{z}\left(\varphi_{2}^{2} x+\varphi \varphi, x \times x\right)
$$

The underlined terms in the last equality are negligible compared to $M_{z, x x}$. The term $-2 M_{z} \varphi^{2}, x$ is of the order of magnitude of $T^{2} M_{z}$ and so neglection of the underlined terms in Equations (C-9) is justified. It is clear that the last argument is correct only if deflections and force and moment resultants are changing gradualiy along the span and do not have very high gradients.

Substitution of the expression for $M_{x, x}$ from Equation (c-9d) into Equations ($c-9 b, c$), and using the ordering scheme, implies the following set of equations:

$$
\begin{align*}
& T, x+K_{y} M_{z, x}-\kappa_{z} M_{y, x}+T\left(\kappa_{y} M_{y}+\kappa_{z} M_{z}\right)+K_{y} q_{z} . \\
& -x_{z} q_{y}+p_{x}=0 \tag{C-10a}\\
& -M_{z, x x}-\left(K_{z, x}+T K_{y}\right) M_{x}-\left(T, x+K_{y} K_{z}\right) M_{y}-2 \tau M_{y, x} \\
& +\kappa_{y} T+\kappa_{z} q_{x}-T q_{y}-q_{z, x}+p_{y}=0 \tag{c-10b}\\
& M_{y, x X}+\left(\kappa_{y, x}-T K_{z}\right) M_{x}-\left(\tau_{, x}-K_{y} \kappa_{z}\right) M_{z}-2 \tau M_{z, x} \\
& +k_{z} T-\kappa_{y} q_{x}-T q_{z}+q_{y, x}+p_{z}=0 \tag{c-10c}\\
& M_{x, x}-K_{y} M_{y}-K_{z} M_{z}+q_{x}=0 \tag{c-10d}
\end{align*}
$$

Sometimes it is more convenient to write the equations of equilibrium in the undeformed directions $\left(\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}\right)$, instead of the directions after the deformation $\left(\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}\right)$ as was done in the previous part of this Appendix. The general relation between the two systems is given in the form:

$$
\left.\begin{array}{l}
\hat{e}_{x}^{\prime}=\hat{e}_{x}+S_{12} \hat{e}_{y}+S_{13} \hat{e}_{z} \tag{C-11}\\
\hat{e}_{y}^{\prime}=S_{21} \hat{e}_{x}+\hat{e}_{y}+S_{23} \hat{e}_{z} \\
\hat{e}_{z}^{\prime}=S_{31} \hat{e}_{x}+S_{32} \hat{e}_{y}+\hat{e}_{z}
\end{array}\right\}
$$

Two such transformations, belonging to the class of transformations containing the inherent assumption that quantities of order of ε^{2} are negligible compared to unity, are presented in Appendix B as Equations ($B-13$) and ($B-14$). The components $S_{i j}$ are of order, E, or less.

The resultant elastic force on a cross section of the rod is given In an analogous manner to Equation (B-28), by the expression:

$$
\begin{equation*}
\overline{\mathbf{F}}=-\tilde{\mathbf{T}} \hat{\mathbf{e}}_{\overline{\mathrm{x}}}+\tilde{\mathrm{V}}_{\mathrm{y}} \hat{\mathbf{e}}_{\dot{\mathbf{y}}}+\tilde{\mathrm{V}}_{\mathrm{z}} \hat{\mathrm{e}}_{\bar{z}} \tag{C-12}
\end{equation*}
$$

and the resultant elastic moment, which acts on a cross section of the rod is given in an analogous manner to Equation ($\mathrm{B}-37$), by the expression:

$$
\begin{equation*}
\bar{M}=\tilde{M}_{x} \hat{e}_{x}+\tilde{M}_{y} \hat{e}_{y}+\tilde{M}_{z} \hat{e}_{z} \tag{c-13}
\end{equation*}
$$

Equations ($\mathrm{C}-12$), ($\mathrm{C}-13$), ($\mathrm{B}-28$) and ($\mathrm{B}-37$) together with Equation (C-17) imply:

$$
\left.\begin{array}{l}
\tilde{T}=T+S_{21} V_{y}+S_{31} V_{z} \tag{c-14}\\
\tilde{V}_{y}=S_{12} T+V_{y}+S_{32} V_{z} \\
\tilde{V}_{z}=S_{13} T+S_{23} V_{y}+V_{z}
\end{array}\right\}
$$

and

$$
\left.\begin{array}{l}
\tilde{M}_{x}=M_{x}+S_{21} M_{y}+S_{31} M_{z} \tag{c-15}\\
\tilde{M}_{y}=S_{12} M_{x}+M_{y}+S_{32} M_{z} \\
\tilde{M}_{z}=S_{13} M_{x}+S_{23} M_{y}+M_{z}
\end{array}\right\}
$$

The distributed force $\overline{\mathbf{p}}$ and distributed moment $\overline{\mathbf{q}}$ per unit length are given by (compare to Equation (C-3)):

$$
\begin{align*}
& \bar{p}=\tilde{p}_{x} \hat{e}_{x}+\tilde{p}_{y} \hat{e}_{y}+\tilde{p}_{z} \hat{e}_{z} \tag{c-16}\\
& \bar{q}=\tilde{q}_{x} \hat{e}_{x}+\tilde{q}_{y} \hat{e}_{y}+\tilde{q}_{z} \hat{e}_{z}
\end{align*}
$$

From the equilibrium of forces (Equation (C-1)) the following equations are obtained:

$$
\left.\begin{array}{l}
\tilde{T}_{, x}+\tilde{p}_{x}=0 \tag{c-17}\\
\tilde{v}_{y, x}+\tilde{p}_{y}=0 \\
\tilde{v}_{z, x}+\tilde{p}_{z}=0
\end{array}\right\}
$$

and the equilibrium of moments (Equation (c-2)) implies:

$$
\begin{align*}
& \tilde{M}_{x, x}-s_{13} \tilde{v}_{y}+s_{12} \tilde{v}_{z}+\tilde{q}_{x}=0 \\
& \tilde{M}_{y, x}+s_{13} \tilde{T}-\tilde{v}_{z}+\tilde{q}_{y}=0 \tag{c-18}\\
& \tilde{M}_{z, x}-s_{12} \tilde{T}+\tilde{v}_{y}+\tilde{q}_{z}=0
\end{align*}
$$

From Equations (c-14), neglecting terms of order ε^{2} compared to unity, one obtains:

$$
\begin{equation*}
\tilde{T}=T+\left(S_{21}-S_{31} S_{23}\right) \tilde{v}_{y}+\left(S_{31}-S_{21} S_{32}\right) \tilde{V}_{z} \tag{c-19}
\end{equation*}
$$

The second and third expressions of Equations ($\mathrm{C}-18$), together with (C-19), yields, after neglecting terms of the order ε^{2} canpared to unity:

$$
\begin{align*}
\tilde{v}_{y}= & -\tilde{M}_{z, x}+S_{12}\left(s_{31}-S_{21} S_{32}\right) \tilde{M}_{y, x} \\
& +S_{12} T-\tilde{q}_{z}+S_{12}\left(S_{31}-S_{21} S_{32}\right) \tilde{q}_{y} \tag{c-20a}
\end{align*}
$$

and

$$
\begin{gather*}
\tilde{v}_{z}=\tilde{M}_{y, x}-S_{13}\left(S_{21}-S_{31} S_{23}\right) \tilde{M}_{z, x}+S_{13} T \\
-S_{13}\left(S_{21}-S_{31} S_{23}\right) \tilde{q}_{z}+\tilde{q}_{y} . \tag{c-20b}
\end{gather*}
$$

Substitution of Equations ($\mathrm{C}-19$) and ($\mathrm{C}-20$) into ($\mathrm{C}-17$) and the first expression of Equations ($\mathrm{C}-18$), yields:

$$
\begin{aligned}
& {\left[T-\left(S_{21}-S_{31} S_{23}\right) \tilde{M}_{z, x}+\left(S_{31}-S_{21} S_{32}\right) \tilde{M}_{y, x}\right], x} \\
& -\left[\left(S_{21}-S_{31} S_{23}\right) \tilde{q}_{z}\right], x+\left[\left(s_{31}-S_{21} S_{32}\right) \tilde{q}_{y}\right], x+\tilde{p}_{x}=0, \quad(c-2 l a)
\end{aligned}
$$

$$
\begin{align*}
& {\left[-\tilde{M}_{z, x}+S_{12}\left(S_{31}-S_{21} S_{32} \tilde{M}_{y, x}\right]_{x}+\left(S_{12} T\right), x\right.} \\
& \quad-\tilde{q}_{z, x}+\left[S_{12}\left(S_{31}-S_{21} S_{32}\right) \tilde{q}_{y}\right]_{, x}+\tilde{p}_{y}=0, \tag{c-2lb}\\
& {\left[\tilde{M}_{y, x}-S_{13}\left(S_{21}-S_{31} S_{23}\right)_{z, x}\right]_{x}+\left(S_{13} T\right), x} \\
& \quad+\tilde{q}_{y, x}-\left[S_{13}\left(S_{21}-S_{31} S_{23}\right) \tilde{q}_{z}\right]_{, x}+\tilde{p}_{z}=0, \tag{c-2lc}\\
& \therefore \quad \tilde{M}_{x, x}+S_{13} \tilde{M}_{z, x}+S_{12} \tilde{M}_{y, x}+S_{12} \tilde{q}_{y}+S_{13} \tilde{q}_{z}+\tilde{q}_{x}=0 . \tag{c-2ld}
\end{align*}
$$

According to the assumption that quantities of the order of ε^{2} are negligible compared to unity, and the orthonormality of the transformation represented by Equation (c-11), one has:

$$
\begin{aligned}
& s_{21}-s_{31} s_{23} \cong-s_{12} \\
& s_{31}-s_{21} s_{32} \cong-s_{13} \\
& s_{12}+s_{31} s_{32} \cong-s_{21} \\
& s_{13}+s_{21} s_{23} \cong-s_{31} \\
& s_{23}-s_{12} s_{31} \cong-s_{32} \\
& s_{32}-s_{13} s_{21} \cong-s_{23} \\
& s_{21}+s_{13} s_{23} \cong-s_{12} \\
& s_{31}+s_{12} s_{32} \cong-s_{13}
\end{aligned}
$$

Making use of Equations (c-23), Equations (c-2la-d) turn out to be:

$$
\begin{aligned}
& \left(T+S_{12} \tilde{M}_{2, x}-S_{13} \tilde{M}_{y, x}\right)_{, x} \\
& +\left(S_{12} \tilde{q}_{z}\right), x-\left(S_{13} \tilde{q}_{y}\right), x+\tilde{p}_{x}=0 \\
& \left(-\tilde{M}_{z, x}-S_{12} S_{13} \tilde{M}_{y, x}\right)_{, x}+\left(S_{12} T\right)_{, x}-\tilde{q}_{z, x} \\
& -\left(S_{12} S_{13} \tilde{q}_{y}\right), x+\tilde{p}_{y}=0 \\
& \left(\tilde{M}_{y, x}+S_{12} S_{13} \tilde{M}_{z, x}\right), x+\left(S_{13} T\right), x+\tilde{q}_{y, x} \\
& +\left(S_{12} S_{13} \tilde{q}_{z}\right)_{, x}+\tilde{p}_{z}=0 \\
& \tilde{M}_{x, x}+S_{13} \tilde{M}_{z, x}+S_{12} \tilde{M}_{y, x}+s_{12} \tilde{q}_{y}+S_{13} \tilde{q}_{z}+\tilde{q}_{x}=0 .(c-23 d)
\end{aligned}
$$

Substitution of Equations ($\mathrm{C}-15$) into Equations ($\mathrm{C}-23$), using Equation ($C-24 d$) also, to substitute for $M_{x, x}$, and neglecting terms of order ε^{2} compared to unity, yields:

$$
\begin{align*}
& \left\{T-S_{21} M_{z, x}+S_{31} M_{y, x}-S_{13}\left(S_{32}\right)_{, x} M_{z}+S_{12}\left(S_{23}\right)_{, x} M_{y}\right. \\
& +\left[S_{12}\left(S_{13}\right), x-S_{13}\left(S_{12}\right), x M_{x}\right\}_{, x}+\left(S_{12} \tilde{q}_{z}\right), x-\left(S_{13} \tilde{q}_{y}\right), x+\tilde{p}_{x}=0(c-24 a) \\
& -\left\{M_{z, x}+\left(S_{13}\right), x M_{x}+\left[\left(S_{23}\right), x-S_{13}\left(S_{21}\right), x M_{y}-S_{32} M_{y, x}\right\}, x\right. \\
& +\left(S_{12} T\right)_{, x}-\tilde{q}_{z, x}+\left(S_{13} \tilde{q}_{x}\right), x+\tilde{p}_{y}=0 \tag{c-24b}
\end{align*}
$$

$$
\begin{aligned}
& \left\{M_{y, x}+\left(S_{12}\right), x M_{x}+\left[\left(S_{32}\right), x-S_{12}\left(S_{31}\right)_{, x}\right]_{z}-S_{23} M_{z, x}\right\}, x \\
& \quad+\left(S_{13} T\right), x-\left(S_{12} \tilde{q}_{x}\right)_{, x}+\tilde{q}_{y, x}+\tilde{p}_{z}=0,
\end{aligned}
$$

(c-24c)

$$
\begin{gather*}
M_{x, x}+\left[\left(S_{21}\right), x+S_{13}\left(S_{23}\right), x\right] M_{y}+\left[\left(S_{31}\right), x+S_{12}\left(S_{32}\right), x M_{z}\right. \\
+\tilde{q}_{x}+S_{12} \tilde{a}_{y}+S_{13}{\tilde{q_{z}}}_{z}=0 \tag{c-24d}
\end{gather*}
$$

Fig. C-1. Forces and Moments on Segment of the Deformed Rod

DERIVATION OF THE EQUATIONS OF EQUILIBRIUM BY THE USE OF THE PRINCIPLE OF VIRTUAL WORK

D. 1 Principle of Virtual Work Applied to a Rod

Usually, in a structural system subject to loads, internal forces develop between the various components of the system as a result of the external loads. If the work of the internal forces is denoted by W_{I}, and that of the external forces W_{E}, then the principle of virtual work can be simply expressed as:

$$
\begin{equation*}
\delta W_{I}=-8 W_{E} \tag{D-1}
\end{equation*}
$$

where δW_{I} and δW_{E} are the work done during a virtual displacement by the internal and external forces, respectively.

In the case of an elastic system,

$$
\begin{equation*}
U=-W_{I} \tag{D-2}
\end{equation*}
$$

where U is the elastic energy in the system. Therefore, Equation (D-1) becomes:

$$
\begin{equation*}
\delta \mathbb{U}=8 W_{\mathrm{E}} \tag{D-3}
\end{equation*}
$$

Using Equations (D-2) and (D-3) implies (for example, Eq. (9-125)
of Wempner, Ref. 11), the following expression for a continuous body:

$$
\begin{aligned}
& \delta W_{I}=-\iint_{\begin{array}{c}
\text { Volume of the } \\
\text { body }
\end{array}}^{\left[\sigma_{x x x} \delta_{x x}+\sigma_{y y} \delta \varepsilon_{y y}+\sigma_{z z} \varepsilon_{z z}\right.} \\
& \left.\quad+2 \tau_{x y}{ }^{\delta \varepsilon_{x y}}+2 \tau_{x z}{ }^{\delta \varepsilon_{x z}}+2 \tau_{y z} \varepsilon_{y z}\right] d x_{0} d y_{0} d z_{0} .(D-4)
\end{aligned}
$$

For the case of a slender rod of length \boldsymbol{l} and cross section A, within the framework of the Bernowli-Euler assumptions*

$$
\sigma_{y y}=\sigma_{z z}=\varepsilon_{y z}=0
$$

Equation (D-4) becomes :

$$
\begin{equation*}
\delta W_{I}=-\int_{x_{0}=0}^{x_{0}=\ell} \iint_{A}\left[\sigma_{x x} \delta \varepsilon_{x x}+2 \tau_{x y} 8 \varepsilon_{x y}+2 \tau_{x z} \delta \varepsilon_{x z}\right] d x_{0} d y_{0} d z_{0} \tag{D-5}
\end{equation*}
$$

The virtual displacement of the rod is given by a displacement $8 \bar{W}\left(x_{0}\right)$ of every point on the elastic axis, accompanied by rotation $8 \bar{\theta}\left(x_{0}\right)$ of the triad $\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$ at every point of the deformed rod. The virtual rotation $\delta \bar{\theta}$ can be described in this case as a vector because it is infinitesimal. The rod is acted upon by a distributed force, $\overline{\mathrm{p}}$, per unit length of its undeformed axis, which includes body forces, surface fractions and inertia loading, and it acts at the elastic axis

[^1]as described in Appendix C. There is also a distributed moment, \bar{q}, per unit length of the undeformed axis of the rod. It includes body couples, moments of surface tractions and moments of intertial loading. This moment also acts at the elastic axis of the rod. It is clear, therefore, that:
\[

$$
\begin{equation*}
\delta W_{E}=\int_{x_{0}=0}^{x_{0}=\ell}(\bar{p} \cdot \delta \bar{W}+\bar{q} \cdot \delta \bar{\theta}) d x_{0} \tag{D-6}
\end{equation*}
$$

\]

Equations (D-3), (D-5) and (D-6) imply:

$$
\begin{array}{r}
\int_{x_{0}=0}^{x_{0}=\ell}\left\{\iint_{A}\left[\sigma_{x x} \delta \varepsilon_{x x}+2 \tau_{x y} \delta \varepsilon_{x y}+2 \tau_{x z} \delta \varepsilon_{x z}\right] d y_{0} d_{0}\right. \\
-\bar{p} \cdot \delta \bar{W}-\bar{q} \cdot 8 \bar{\theta}\} d x_{0}=0 . \tag{D-7}
\end{array}
$$

According to Equations (B-23) of Appendix B:

$$
\begin{aligned}
& \delta \varepsilon_{x x}=\delta \tilde{\varepsilon}_{x x}-y_{0} \delta \kappa_{y}-z_{0} \delta \kappa_{z} \\
& \delta \varepsilon_{x y}=-\frac{1}{2} z_{0} \delta T \\
& \delta \varepsilon_{x z}=\frac{1}{2} y_{0} \delta T
\end{aligned}
$$

In deriving Equation ($D-8$), use was made of the assumption that in the case of a slender rod with closed cross section, the influence of warping is negligible and, therefore, the virtual work is taken as that
performed during a rigid body motion of a slice of the rod, and thus, 8φ is assumed to be zero. The terms $\psi \delta \kappa_{y}$ and $\phi 8 \kappa_{z}$ are also neglected as a consequence of assuming the warping to be negligible.

Substitution of Equation (D-8) into ($D-7$), use of Equations (B-38) from Appendix B, and neglecting the influence of warping, implies:

$$
\begin{equation*}
\int_{x_{0}=0}^{x_{0}=\ell}\left(T \delta \tilde{\varepsilon}_{x x}+M_{z} \delta \kappa_{y}-M_{y} \delta \kappa_{z}+M_{x} \delta \tau-\bar{p} \cdot \delta \bar{W}-\bar{q} \cdot \delta \bar{\theta}\right) d x_{0}=0, \tag{D-9}
\end{equation*}
$$

where $\delta \tilde{\varepsilon}_{x x}, \delta K_{y}, \delta K_{z}$ and δT are functions of $\delta \bar{W}$ and $\delta \bar{\theta}$. After substitution of the appropriate values for $\delta \tilde{\varepsilon}_{x x}, \delta \kappa_{y}, \delta \kappa_{z}$ and $\delta \tau$, the equilibrium equations and boundary conditions are obtained by performing an integration by parts of Equation (D-9).

In Chapter 2 of this study it was shown that the equilibrium equations can be obtained with respect to different directions. In the present case, the definition of $\delta \bar{W}$ and $\delta \bar{\theta}$ determines the directions in which the equations will be valid.

D. 2 Equilibrium Equations in the Directions of the

Deformed Rod Coordinates ($\hat{e}_{x}^{\prime}, \hat{e}_{y}^{\prime}, \hat{e}_{z}^{\prime}$)
In this case, the virtual displacement is chosen as:

$$
\begin{equation*}
\delta \bar{W}=\delta u u^{\prime} \cdot \hat{e}_{\dot{x}}^{\prime}+\delta v^{\prime} \hat{e}_{\mathbf{y}}^{\prime}+\delta w^{\prime} \hat{e}_{z}^{\prime} \tag{D-10}
\end{equation*}
$$

The virtual rotation is given in the form:

$$
\begin{equation*}
\delta \bar{\theta}=n_{x} \hat{e}_{x}^{\prime}+n_{y} \hat{e}_{y}^{\prime}+n_{z} \hat{e}_{z}^{\prime} \tag{D-11}
\end{equation*}
$$

where n_{x}, n_{y} and n_{z} are the components of the virtual rotation.

Due to $\delta \bar{W}$ and $\delta \bar{\theta}$ the triad $\hat{e}_{x}^{\prime}, \hat{e}_{\mathbf{y}}^{\prime}, \hat{e}_{z}^{\prime}$ is rotated to a new triad $\hat{e}_{x}^{\prime \prime}, \hat{e}_{y}^{\prime \prime}, \hat{e}_{z}^{\prime \prime}, \quad$ given by:

$$
\left.\begin{array}{l}
\hat{e}_{x}^{\prime \prime}=\hat{e}_{x}^{\prime}+\delta \bar{\theta} \times \hat{e}_{x}^{\prime}=\hat{e}_{x}^{\prime}+n_{z} \hat{e}_{y}^{\prime}-n_{y} \hat{e}_{z}^{\prime} \\
\hat{e}_{y}^{\prime \prime}=\hat{e}_{y}^{\prime}+\delta \bar{\theta} \times \hat{e}_{y}^{\prime}=-n_{z} \hat{e}_{x}^{\prime}+\hat{e}_{y}^{\prime}+n_{x} \hat{e}_{z}^{\prime} \tag{D-12}\\
\hat{e}_{z}^{\prime \prime}=\hat{e}_{z}^{\prime}+\delta \bar{\theta} \times \hat{e}_{z}^{\prime}=n_{y} \hat{e}_{x}^{\prime}-n_{x} \hat{e}_{y}^{\prime}+\hat{e}_{z}^{\prime}
\end{array}\right\}
$$

It is clear that $n_{x}=8 \phi$, however n_{y} and n_{z} are determined by $8 \bar{W}$. In order to find n_{y} and n_{z} let us consider an element $d x_{0}$ of the deformed elastic axis, which is shown in Figure D-1. Before the virtual displacement, the element is in position $A B$, described by $d x X_{x}^{\prime} \cdot$ After the virtual displacement, the element is in position $A^{\prime} B^{\prime}$, given by :

$$
\begin{align*}
& \overline{A^{\prime} B^{T}}=\left(\bar{R}+d x_{0} \hat{e}_{x}^{\prime}+\delta \bar{W}+\delta \bar{W}, x\right. \\
&\left.=\left(\hat{e}_{x}^{\prime}+\delta \bar{W}, x\right) d x_{0}\right)-(\bar{R}+\delta \bar{W}) \tag{D-13}\\
&
\end{align*}
$$

Substitution of expression (D-10) into (D-13), and performing the differentiation, while using Equation ($B-17$) of Appendix B for the derivatives of the unit vectors, implies:

$$
\begin{align*}
\overline{A^{\prime} B^{\prime}}=[(1 & \left.+\delta u^{\prime}, x-\kappa y \delta v^{\prime}-\kappa_{z} \delta w^{\prime}\right) \hat{e}_{x}^{\prime} \\
& +\left(\delta v^{\prime}, x+\kappa_{y} \delta u^{\prime}-\tau \delta w^{\prime}\right) \hat{e}_{y}^{\prime} \\
& \left.+\left(\delta w^{\prime}, x+\kappa_{z} \delta u^{\prime}+\tau \delta v^{\prime}\right) \hat{e}_{z}^{\prime}\right] d x_{0} \quad \tag{D-14}
\end{align*}
$$

Recalling that the virtual displacement $\delta \bar{W}$ is as small as desired, then from Equation (D-14), one obtains after neglecting products of virtual terms :

$$
\left.\left.\begin{array}{rl}
\hat{e}_{x}^{\prime \prime}= & \hat{e}_{x}^{\prime} \\
+\left(\delta v^{\prime}, x\right. \tag{D-15}
\end{array}\right){ }_{x} \delta u^{\prime}-\tau \delta w^{\prime}\right) \hat{e}_{y}^{\prime}, ~\left(\delta w^{\prime}, x+k_{z} \delta u^{\prime}+\tau \delta v^{\prime}\right) \hat{e}_{z}^{\prime} .
$$

Comparing Equation (D-15) with the first of Equations (D-12), the quantities n_{y} and n_{z} are determined. Thus, the rotation components are:

$$
\left.\begin{array}{l}
n_{x}=\delta \phi \tag{D-16}\\
n_{y}=-\left(\delta w^{\prime}, x+k_{z} \delta u^{\prime}+\tau \delta v^{\prime}\right) \\
n_{z}=\left(\delta v^{\prime}, x+k_{y} \delta u^{\prime}-\tau \delta w^{\prime}\right)
\end{array}\right\}
$$

Using definitions (B-15) from Appendix B, then:

$$
\begin{align*}
k_{y}+8 k_{y} & =\hat{e}_{x, x}^{\prime \prime} \cdot \hat{e}_{y}^{\prime \prime} \\
k_{z}+8 k_{z} & =\hat{e}_{x, x}^{\prime \prime} \cdot \hat{e}_{z}^{\prime \prime} \tag{D-17}\\
\tau+8 T & =\hat{e}_{y, x}^{n} \cdot \hat{e}_{z}^{\prime \prime}
\end{align*}
$$

Differentiation of expressions (D-12), using Equations (B-17)
of Appendix B, yields:

$$
\begin{align*}
& \hat{e}_{x, x}^{\prime \prime}=k_{y} \hat{e}_{y}^{\prime}+k_{z} \hat{e}_{z}^{\prime}+\left(n_{y} k_{z}-n_{z} k_{y}\right) \hat{e}_{x}^{\prime} \\
& +\left(n_{z, x}+T n_{y}\right) \hat{e}_{y}^{\prime}+\left(-n_{y, x}+T n_{z}\right) \hat{e}_{z}^{\prime} \quad, \quad \text { (D-18a) } \\
& \hat{e}_{y, x}^{\prime \prime}=-k_{y} \hat{e}_{x}^{\prime}+\tau \hat{e}_{z}^{1}-\left(n_{z, x}+n_{x} \kappa_{z}\right) \hat{e}_{x}^{1} \\
& -\left(n_{x} T+n_{z} k_{y}\right) \hat{e}_{y}^{\prime}+\left(n_{x, x}-n_{z} k_{z}\right) \hat{e}_{z}^{\prime} . \tag{D-18b}
\end{align*}
$$

Substitution of Equations (D-18) and (D-12) into Equation (D-17), and neglecting nonlinear terms in n_{x}, n_{y} and n_{z}, implies:

$$
\begin{align*}
\delta \kappa_{y} & =n_{z, x}+\kappa_{z} n_{x}+\tau n_{y} \\
\delta \kappa_{z} & =-n_{y, x}-\kappa_{y} n_{x}+\tau n_{z} \tag{D-19}\\
\delta \tau & =n_{x, x}-\kappa_{y} n_{y}-\kappa_{z} n_{z}
\end{align*}
$$

Substitution of expressions (D-16) into (D-19) yields:

$$
\begin{align*}
\delta \kappa_{y}=\delta v^{\prime}, x x & +\left(\kappa_{y} \delta u^{\prime}\right), x-\left(T \delta w^{\prime}\right), x \\
& +\kappa_{z} 8 \phi-T 8 w^{\prime}, x-T \kappa_{z} 8 u^{\prime}-T^{2} 8 v^{\prime}, \tag{D-20a}
\end{align*}
$$

$$
\begin{align*}
& \delta \kappa_{z}=\delta w^{\prime},{ }_{x x}+\left(\kappa_{z} \delta u^{\prime}\right), x+\left(T \delta v^{\prime}\right), x \\
& -\kappa_{y} \delta^{\phi}+\tau \delta v^{\prime}, x+\tau \kappa_{y} \delta u^{\prime}-\tau^{2} \delta w^{\prime} \quad, \quad \text { (D-20b) } \\
& \delta \top=\delta \Phi, x+{ }_{y}{ }_{y} \delta w^{\prime}, x+{ }_{x} y^{\kappa} z^{\prime} \delta u^{\prime}+{ }_{y} y^{\top} \delta v^{\prime} \\
& -\kappa_{z} \delta v^{\prime}, x-{ }_{x} y_{z} z^{\delta u^{\prime}+\kappa_{z} \tau \delta w^{\prime}} \tag{D-20c}
\end{align*}
$$

From Equation (D-14) it is clear that (neglecting products of components of the virtual displacement):

$$
\begin{equation*}
\delta \tilde{\varepsilon}_{x x}=\delta u_{, x}^{\prime}-\kappa_{y} \delta v^{\prime}-k_{z} \delta w^{\prime} \tag{D-21}
\end{equation*}
$$

The load $\overline{\mathrm{p}}$ and couple $\overline{\mathrm{q}}$ are given with respect to the deformed system, in the form of Equations (1) and (2), as:

$$
\begin{align*}
& \bar{p}=p_{x} \hat{e}_{x}^{\prime}+p_{y} \hat{e}_{y}^{\prime}+p_{z} \hat{e}_{z}^{\prime} \tag{D-22}\\
& \bar{q}=q_{x} \hat{e}_{x}^{\prime}+q_{y} \hat{e}_{y}^{\prime}+q_{z} \hat{e}_{z}^{\prime}
\end{align*}
$$

Substitution of expressions ($D-10$), ($D-11$), ($D-16$), ($D-20$), (D-21), and (D-22) into Equation (D-9) implies:

$$
\begin{aligned}
& \int_{x_{0}=0}^{x_{0}=b}\left\langle T 8 u_{, x}^{\prime}-T \kappa_{y} \delta v^{\prime}-T K_{z} 8 w^{\prime}+M_{z} \delta v^{\prime}, x 0 x+M_{z}\left(\kappa_{y} \delta u^{\prime}\right), x\right. \\
& -M_{z}\left(T 8 w^{\prime}\right), x+M_{z} K_{z} 8 \phi-M_{z} T 8 w^{\prime}, x-M_{z} T K_{z} 8 u^{\prime}-M_{z} T^{2} 8 v^{\prime} \\
& -M_{y} 8 w^{\prime}, x x-M_{y}\left(K_{z} 8 u^{\prime}\right), x-M_{y}\left(T 8 \nabla^{\prime}\right), x+M_{y} y^{\prime} \delta-M_{y} T 8 \nabla^{\prime}, x-
\end{aligned}
$$

$$
\begin{align*}
& +M_{x} K_{y} \top 8 \nabla^{\prime}-M_{x} K_{z} 8 \nabla^{\prime}, x-M_{x} K_{y} K_{z} 8 u^{\prime}+M_{x} K_{z} \top \delta w^{\prime} \\
& -p_{x} 8 u^{\prime}-p_{y} 8 v^{\prime}-p_{z} 8 v^{\prime}-q_{x} 8 \phi+q_{y} \delta w^{\prime}, x+q_{y} k_{z} 8 u^{\prime}+q_{y} \tau 8 v^{\prime}-q_{z} 8 v^{\prime}, x \\
& \left.-q_{z}{ }^{k} 8 u^{\prime}+q_{z} T 8 w^{\prime}\right) d x_{0}=0 . \tag{D-23}
\end{align*}
$$

Integration by parts of Equation (D-23) gives the following variational expression:

$$
\begin{align*}
& \int_{x_{0}=0}^{\ell}\left(-R_{1} \delta u^{\prime}-R_{2} 8 v^{\prime}-R_{3} \delta w^{\prime}-R_{4} 8 \phi\right) d x_{0} \\
& +\left[B_{1} \delta u^{\prime}\right]_{x_{0}=0}^{x_{0}=\ell}+\left[B_{2} 8 v^{\prime}\right]_{x_{0}=0}^{x_{0}=\ell}+\left[B_{3} \delta w^{\prime}\right]_{x_{0}=0}^{x_{0}=\ell}+\left[B_{4} 8 \phi^{\prime}\right]_{x_{0}=0}^{x_{0}=\ell} \\
& +\left[\begin{array}{ll}
B_{5} & \delta v^{\prime} \\
, x
\end{array}\right]_{x_{0}=0}^{x_{0}=l}+\left[B_{6}{ }^{8 w^{\prime}}, x\right]_{x_{0}=0}^{x_{0}=l}=0 \tag{D-24}
\end{align*}
$$

where the various expressions in (D-24) are:

$$
\begin{align*}
& R_{1}=T, x+\kappa_{y}\left(M_{z, x}+T M_{y}+q_{z}\right)-k_{z}\left(M_{y, x}-T M_{z}+q_{y}\right)+p_{x} \quad, \quad(D-25 a) \\
& R_{z}=-\left(M_{z, x}+K_{z} M_{x}+T M_{y}+q_{z}\right)_{, x}+K_{y} T \\
& -T\left(M_{y, x}+\kappa M_{y}-\tau M_{z}+q_{y}\right)+p_{y} \quad, \quad(D-25 b) \\
& R_{3}=\left(M_{y, x}+K_{y} M_{x}-T M_{z}+q_{y}\right), x+k_{z} T \\
& -T\left(M_{z, x}+\kappa_{z} M_{x}+\tau M_{y}+q_{z}\right)+p_{z} \tag{D-25c}
\end{align*}
$$

$$
\begin{equation*}
R_{4}=M_{x, x}-\kappa_{y} M_{y}-k_{z} M_{z}+q_{x} \tag{D-25d}
\end{equation*}
$$

and

$$
\begin{align*}
& B_{1}=T+K_{y} M_{z}-K_{z} M_{y} \\
& B_{2}=-\left(M_{z, x}+2 T M_{y}+\kappa_{z} M_{x}+q_{z}\right) \\
& B_{3}=M_{y, x}+\kappa_{y} M_{x}-2 T M_{z}+q_{y} \tag{D-26}\\
& B_{4}=M_{x} \\
& B_{5}=M_{z} \\
& B_{6}=-M_{y}
\end{align*}
$$

With the virtual displacement being arbitrary, the equilibrium equations turn out to be:

$$
\begin{equation*}
\mathrm{R}_{1}=0, \quad \mathrm{R}_{2}=0, \quad \mathrm{R}_{3}=0, \quad \mathrm{R}_{4}=0 \tag{D-27}
\end{equation*}
$$

Substitution of Equations (D-25) into (D-27) yields exactly the same equations of equilibrium ($\mathrm{C}-7,8$), which were obtained in Appendix C.

The boundary conditions for this problem can be obtained directly from Equation (D-24), subject to the assumption that the boundary conditions are not varied during the loading.

$$
\begin{array}{lll}
B_{1}=0 & \text { or } & u=0 \\
B_{2}=0 & \text { or } & v=0 \\
B_{3}=0 & \text { or } & w=0 \\
B_{4}=0 & \text { or } & \Phi=0 \\
B_{5}=0 & \text { or } & v, x=0 \\
B_{6}=0 & \text { or } & w, x=0
\end{array}
$$

The boundary conditions of free edge and rigid clamping, as stated by Equations (9) and (10) of Chapter 2, are in agreement with Equations (D-28). There is only one item which should be noted. In Equation (9) the boundary condition of $u=0$ at $x_{0}=0$ is neglected. This is due to the fact that T is used in the equilibrium equations, instead of u. As a result of this difference the first equation contains the first derivative of T instead of a second derivative of u. If expression ($B-32$) of Appendix B is inserted in the equilibrium equations instead of T, using Equation ($B-22$) for $\tilde{\boldsymbol{\varepsilon}}_{x x}$, the boundary condition, $u=0$ at $x_{0}=0$, is needed when the unknown T is replaced by u.

D. 3 Equilibrium Equations in the Directions of the

Undeformed Coordinates of the Rod $\left(\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}\right)$

As pointed out in Appendix C (Equation (C-11)), in general:

$$
\left.\begin{array}{l}
\hat{e}_{x}^{\prime}=\hat{e}_{x}+S_{12} \hat{e}_{y}+S_{13} \hat{e}_{z} \\
\hat{e}_{y}^{\prime}=S_{21} \hat{e}_{x}+\hat{e}_{y}+S_{23} \hat{e}_{z} \tag{D-29}\\
\hat{e}_{z}^{\prime}=S_{31} \hat{e}_{x}+S_{32} \hat{e}_{y}+\hat{e}_{z}
\end{array}\right\}
$$

Because of the orthonormality conditions, Equations (D-29) imply:

$$
\left.\begin{array}{l}
\hat{e}_{x}=\hat{e}_{x}^{\prime}+s_{21} \hat{e}_{y}^{\prime}+s_{31} \hat{e}_{z}^{\prime} \\
\hat{e}_{y}=s_{12} \hat{e}_{x}^{\prime}+\hat{e}_{y}^{\prime}+s_{32} \hat{e}_{z}^{\prime} \tag{D-30}\\
\hat{e}_{z}=s_{13} \hat{e}_{x}^{\prime}+s_{23} \hat{e}_{y}^{\prime}+\hat{e}_{z}^{\prime}
\end{array}\right\}
$$

The curvatures and twist, using definitions (B-15) of Appendix B are:

$$
\begin{align*}
& k_{y}=\hat{e}_{x, x}^{\prime} \cdot \hat{e}_{y}^{\prime}=\left(S_{12}\right)_{, x}+\left(S_{13}\right)_{, x} s_{23} \tag{D-31}\\
& k_{z}=\hat{e}_{x, x}^{\prime} \cdot \hat{e}_{z}^{\prime}=\left(S_{13}\right), x+\left(s_{12}\right)_{, x} s_{32} \\
& \tau=\hat{e}_{y, x}^{\prime} \cdot \hat{e}_{z}^{\prime}=\left(S_{23}\right), x+\left(S_{21}\right), x S_{31}
\end{align*}
$$

In this particular case, the virtual displacement is chosen as (compared to (D-10)):

$$
\begin{equation*}
\delta \bar{W}=\delta u \hat{e}_{x}+\delta v \hat{e}_{y}+\delta w \hat{e}_{z} \tag{D-32}
\end{equation*}
$$

Using Equations (D-13), (D-30) and (D-32), implies (compared with (D-1 4)):

$$
\begin{align*}
\overline{A^{\prime} B^{\prime}}= & \hat{e}_{x}^{\prime}+\delta u_{, x} \hat{e}_{x}+\delta v, \hat{e}_{y}+\delta w, x \hat{e}_{z} \\
= & \left(1+\delta u_{, x}+S_{12} \delta v, x+S_{13} \delta w, x\right) \hat{e}_{x}^{\prime} \\
& +\left(S_{21} \delta u_{, x}+\delta v, x+S_{23} \delta w, x\right) \hat{e}_{\dot{y}}^{\prime} \\
& +\left(S_{31} \delta u_{, x}+S_{32} \delta v, x+\delta w, x\right) \hat{e}_{z}^{\prime} . \tag{D-33}
\end{align*}
$$

Neglecting virtual terms compared to unity in Equation (D-33), implies (similar to (D-15)):

$$
\left.\left.\begin{array}{rl}
\hat{e}_{x}^{\prime \prime}=\hat{e}_{x}^{2} & +\left(S_{21} \delta u_{, x}+\delta v, x\right. \\
& +\left(S_{23} \delta w, x\right. \tag{D-34}
\end{array}\right) \hat{e}_{y 1}^{\prime} \delta u_{y}, x+S_{32} \delta v, x+\delta w, x\right) \hat{e}_{z}^{\prime} .
$$

The virtual rotation around the elastic axis is $\delta \Phi \hat{e}_{x}^{r}$, thus, according to Equation ($D-12$), one obtains:

$$
\left.\begin{array}{l}
n_{x}=\delta \tag{D-35}\\
n_{y}=-\left(s_{31} \delta u_{, x}+s_{32} \delta v, x+\delta w, x\right. \\
m_{z}=s_{21} \delta u_{, x}+\delta v, x+s_{23} \delta w, x
\end{array}\right\}
$$

Using (D-19), together with ($D-31$) and ($D-35$), implies:

$$
\begin{aligned}
8 \kappa_{y}=\delta v, x x & +\left(s_{21} \delta u, x, x-\left(S_{23}\right), x s_{31} \delta u, x+\left(s_{23} 8 w, x\right), x\right. \\
& -\left[\left(s_{23}\right), x+\left(s_{21}\right), x s_{31}\right] \delta w, x+\left[\left(s_{13}\right), x+\left(s_{12}\right), x s_{32}\right] \delta \Phi(D-36 a)
\end{aligned}
$$

$$
\begin{aligned}
& { }_{8 k}=\delta w, x x+\left(S_{31} \delta u_{, x}\right), x+\left(S_{23}\right)_{, x} S_{21} \delta u_{, x}+\left(S_{32} \delta v, x\right), x \\
& +\left[\left(S_{23}\right), x+\left(S_{21}\right), x S_{31}\right] \delta v, x-\left[\left(S_{12}\right), x+\left(S_{13}\right), x S_{23}\right] \delta \Phi \\
& 8 \pi=\delta^{\Phi}, x+\left[\left(S_{12}\right), x\left(S_{31}-S_{21} S_{32}\right)-\left(S_{13}\right), x\left(S_{21}-S_{23} S_{31}\right)\right] \delta u, x \\
& -\left(S_{13}\right), x^{\delta v}, x+\left(S_{12}\right), x^{\delta w}, x \\
& \text { - (D-36c) }
\end{aligned}
$$

From Equation (D-33), one obtains:

$$
\begin{equation*}
\delta \tilde{\varepsilon}_{x x}=\delta u_{, x}+s_{12} \delta v, x+S_{13} \delta w, x \tag{D-37}
\end{equation*}
$$

The virtual rotation components are given by Equations (D-35) with respect to the rotated triad $\left(\hat{e}_{x}^{\prime}, \hat{e}_{y}^{1}, \hat{e}_{z}^{\prime}\right)$. Using Equation (D-29), implies:

$$
\begin{align*}
\delta \theta=[\delta \Phi & \left.-\left(S_{21}-S_{23^{\prime}} S_{31}\right) \delta w_{, x}+\left(S_{31}-S_{21} S_{32}\right) \delta v, x\right] e_{x} \\
& +\left[-\delta w, x-\left(S_{31}-S_{32} S_{21}\right) \delta u_{, x}+S_{12} \delta \Phi\right] \hat{e}_{y} \\
& +\left[\delta v, x+\left(S_{21}-S_{23} S_{31}\right) \delta u, x+S_{13} \delta \Phi\right] \hat{e}_{z} . \tag{D-38}
\end{align*}
$$

With Equation (D-29) and the assumption that terms of order ε^{2} are neglected compared to unity:

$$
\begin{align*}
& S_{21}-S_{23} S_{31} \stackrel{\approx}{\approx}-S_{12} \tag{D-39}\\
& S_{31}-S_{32} S_{21} \stackrel{\approx}{\approx}-S_{13}
\end{align*}
$$

The load $\overline{\mathbf{p}}$ and moment $\overline{\mathbf{q}}$ are given with respect to the undeformed triad $\left(\hat{e}_{x}, \hat{e}_{\mathbf{y}}, \hat{e}_{z}\right)$, as in Equation ($\mathrm{C}-16$) of Appendix C :

$$
\begin{align*}
& \overline{\mathbf{p}}=\tilde{p}_{x} \hat{e}_{x}+\tilde{p}_{y} \hat{e}_{y}+\tilde{p}_{z} \hat{e}_{z}, \tag{D-40}\\
& \bar{q}=\tilde{q}_{x} \hat{e}_{x}+\tilde{q}_{y} \hat{e}_{y}+\tilde{q}_{z} \hat{e}_{z}
\end{align*}
$$

Substitution of Equations (D-32), (D-36), (D-37), (D-38) and (D-40) into ($D-9$), and using ($D-39$), implies, after integration by parts:

$$
\begin{align*}
& \int_{x_{0}=0}^{x_{0}=\ell}\left[-\tilde{R}_{1} 8 u-\tilde{R}_{2} 8 v-\tilde{R}_{3} 8 w-\tilde{R}_{4} 8 \Phi\right] d x_{0}-\left[\tilde{B}_{1} 8 u\right]_{x_{0}}^{x_{0}=\ell} \\
& -\left[\tilde{\vec{B}}_{2} \delta v\right]_{x_{0}}^{x_{0}=l}-\left[\tilde{B}_{3} 8 w\right]_{x_{0}}^{x_{0}=l}-\left[\begin{array}{l}
\tilde{B}_{4} \\
\tilde{x}_{4}
\end{array}\right]_{x_{0}=0}^{x_{0}=l} \\
& -\left[\tilde{B}_{5} \delta u, x\right]_{x_{0}=0}^{x_{0}=\ell}-\left[\tilde{B}_{6} 8 v, x_{x_{0}}=0-\left[\tilde{B}_{7} \delta v, x\right]_{x_{0}=0}^{x_{0}=l}{ }^{x_{0}=l}\right. \\
& =0 \tag{D-4I}
\end{align*}
$$

where:

$$
\begin{aligned}
\tilde{R}_{1}=\{T & -S_{21} M_{z, x}+S_{31} M_{y, x}-\left(S_{23}\right), x S_{21} M_{y}-\left(S_{23}\right), x S_{31} M_{z} \\
& \left.+M_{x}\left[\left(S_{13}\right), x S_{12}-\left(S_{12}\right)_{, x} S_{13}\right]\right\}, x \\
& +\tilde{p}_{x}-\left(S_{13} \tilde{q}_{y}\right), x+\left(S_{12} \tilde{q}_{z}\right), x
\end{aligned}
$$

, (D-42a)

$$
\begin{align*}
& \tilde{R}_{2}=-\left\{M_{2, x}+\left(S_{13}\right)_{, x} M_{x}+\left[\left(S_{23}\right)_{, x}+\left(s_{21}\right), x S_{31}\right] M_{y}-S_{32} M_{y, x}\right\}, x \\
& +\left(S_{12} T\right)_{x}+\tilde{p}_{y}+\left(S_{13} \tilde{q}_{x}\right), x-\tilde{a}_{z, x} \tag{D-42b}\\
& \tilde{R}_{3}=\left\{M_{y, x}+\left(S_{12}\right), x M_{x}-\left[\left(S_{23}\right), x+\left(S_{21}\right), x S_{31}\right] M_{z}-S_{23} M_{z, x}\right\}, x \\
& +\left(S_{13} T\right), x+\tilde{p}_{z}+\tilde{q}_{y, x}-\left(S_{12} \tilde{q}_{x}\right), x \tag{D-42c}\\
& \tilde{R}_{4}=M_{x, x}-\left[\left(S_{13}\right)_{, x}+\left(S_{12}\right)_{, x} S_{32}\right] M_{z}-\left[\left(S_{12}\right)_{, x}+\left(S_{13}\right)_{, x} S_{23}\right] M_{y} \\
& +\tilde{q}_{x}+s_{12} \tilde{q}_{y}+s_{13} \tilde{q}_{z} \tag{D-42d}
\end{align*}
$$

and:

$$
\begin{align*}
& \tilde{B}_{1}=T-S_{21} M_{z, x}+S_{31} M_{y, x}-\left(S_{23}\right), x S_{21} M_{y}-\left(S_{23}\right), x S_{31} M_{z} \\
& +M_{x}\left[\left(s_{13}\right), x s_{12}-\left(s_{12}\right), x_{13}\right]-s_{13} \tilde{q}_{y}+s_{12} \tilde{q}_{z} \quad,(D-43 a) \\
& \tilde{B}_{2}=-M_{z, x}-\left(S_{13}\right), x M_{x}-\left[\left(S_{23}\right), x+\left(S_{21}\right), x S_{31}\right] M_{y} \\
& +S_{32} M_{y, x}+\left(S_{12} T\right)_{x}-\tilde{q}_{z}+S_{13} \tilde{q}_{x} \tag{D-43b}\\
& \tilde{B}_{3}=M_{y, x}+\left(S_{12}\right)_{, x} M_{x}-\left[\left(S_{23}\right), x+\left(S_{21}\right), x S_{31}\right] M_{z} \\
& -S_{23} M_{z, x}+S_{13} T+\tilde{q}_{y}-S_{12} \tilde{q}_{x} \tag{D-43c}
\end{align*}
$$

$$
\begin{align*}
& \tilde{B}_{4}=M_{x} \tag{D-43d}\\
& \tilde{B}_{5}=-S_{31} M_{y}+S_{21} M_{z}, \tag{D-43e}\\
& \tilde{B}_{6}=-S_{32} M_{y}+M_{z}, \tag{D-43f}\\
& \tilde{B}_{7}=-M_{y}+S_{23} M_{z}, \tag{D-43g}
\end{align*}
$$

The virtual displacements are arbitrary, thus, the equations of equilibrium become:

$$
\begin{equation*}
\tilde{R}_{1}=0 ; \quad \tilde{R}_{2}=0 ; \quad \tilde{R}_{3}=0 ; \quad \tilde{R}_{4}=0 ; \tag{D-44}
\end{equation*}
$$

while the boundary conditions (assuming that the boundary conditions are not changed during loading) are:

$$
\begin{array}{lll}
\tilde{B}_{1}=0 & \text { or } & u=0 \\
\tilde{B}_{2}=0 & \text { or } & v=0 \\
\tilde{B}_{3}=0 & \text { or } & w=0 \\
\tilde{B}_{4}=0 & \text { or } & \Phi=0 \tag{D-45}\\
\tilde{B}_{5}=0 & \text { or } & u, x=0 \\
\tilde{B}_{6}=0 & \text { or } & v, x=0 \\
\tilde{B}_{7}=0 & \text { or } & w, x=0
\end{array}
$$

The equilibirum equations (D-44) are identical to (c-24) of Appendix

C, within the framework of the assumption that terms of order ε^{2} are neglected compared to unity, which implies:

$$
\begin{align*}
& -S_{21} M_{z, x}-S_{13}\left(S_{32}\right)_{, x} M_{z} \cong-S_{21} M_{z, x}-S_{31}\left(S_{23}\right)_{, x} M_{z} \tag{D-46a}\\
& S_{31} M_{y, x}+S_{12}\left(S_{23}\right), x M_{y} \cong S_{31} M_{y, x}-S_{21}\left(S_{23}\right)_{, x} M_{y}, \tag{D-46b}\\
& {\left[\left(S_{23}\right), x+\left(S_{21}\right), x S_{31}\right] \cong\left[\left(S_{23}\right), x-S_{13}\left(S_{21}\right), x\right] \quad,} \tag{D-46c}\\
& -\left[\left(S_{13}\right)_{, x}+\left(S_{12}\right)_{, x} S_{32}\right] \cong\left[\left(S_{31}\right), x+S_{12}\left(S_{32}\right)_{, x}\right] \quad, \tag{D-46d}\\
& -\left[\left(S_{12}\right), x+\left(S_{13}\right)_{, x} S_{23}\right] \quad\left[\left(S_{21}\right)_{, x}+S_{13}\left(S_{23}\right)_{, x}\right] \quad . \tag{D-46e}
\end{align*}
$$

From the boundary conditions (D-45) it seems that due to the change of the coordinate system a new boundary condition appears. $\tilde{\mathrm{B}}_{5}=0$ or $u_{, x}=0$. However, upon checking the sixth and seventh condition, it is clear that in the case of a clamped edge, $v_{, x}=w, x=0$, or a free edge, $M_{y}=M_{z}=0$, the condition $\tilde{B}_{5}=0$ is satisfied automatically. Thus, the fifth condition is satisfied, by satisfying the other boundary conditions.

Fig. D1. Displacement of Element on the Elastic Axis During the Virtual Displacement

1. Friedmann, P., "Recent Developments in Rotary-Wing Aeroelasticity," Proceedings of the Second European Rotorcraft and Powered Lift Aircraft Forum, Buckeburg, Germany, Paper No. 11, September 1976, pp. 11.1-11.34, J. of Aircraft, vol. 14, no. 11, Nov. 1977, pp. 1027-1041.
2. Friedmann, P., "Aeroelastic Modeling of Large Wind Turbines," Journal of the American Helicopter Society, Vol. 21, No. 4, October 1976, pp. 17-27.
3. Houbolt, J. C. and Brooks, G. W., "Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending, and Torsion of Twisted Nonuniform Rotor Blades," NACA Report 1346, 1958.
4. Arcidiacono, P. J., "Steady Flight Differential Equations of Motion for a Flexible Helicopter Blade with Chordwise Mass Unbalance," USAAV LABS, TR 68-18A, Vol. I, February 1969.
5. Friedmann, P. and Tong, P., "Dynamic Nonlinear Elastic Stability of Helicopter Rotor Blades in Hover and in Forward Flight," NASA CR-114485, May 1972.
6. Hodges, D. H., "Nonlinear Bending and Torsion Equations for Rotating Beams with Application to Linear Stability of Hingeless Rotor," Ph.D. Dissertation, Stanford University, Department of Aeronautics and Astronautics, December 1972.
7. Hodges, D. H. and Ormiston, R. A., "Stability of Elastic Bending and Torsion of Uniform Cantilevered Rotor Blades in Hober, AIAA Paper No. 73-405, Presented at the AIAA/ASME/SAE 14-th Structures, Structural Dynamics, and Materials Conference, Williamsburg, Virginia, March 20-22, 1973.
8. Hodges, D. H. and Dowel, E. H., "Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades," NASA, Technical Note D-7818, December 1974.
9. Friedmann, P., "Influence of Structural Damping, Preconing, Offsets and Large Deflections on the Flap-Lag-Torsional Stability of a Cantilevered Rotor Blade," AIAA, Paper No. 75-780, presented at the AIAA/ASME/SAE, 16-th Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, May 27-29, 1975. (Modified version to be published in AIAA Journal, February, 1977.)
10. Green, A. E. and Zerna, W., Theoretical Elasticity, 2nd Edition, Oxford, 1968.
11. Wempner, G., Mechanics of Solids with Application to Thin Bodies, McGraw-Hill, Inc., 1973.
12. Novozhilov, V. V., Foundations of the Nonlinear Theory of Elasticity, Graylock Press, Rochester, New York, 1953.
13. Peters, D. A. and Ormiston, R. A., "The Effects of Second Order Blade Bending on the Angle of Attack of Hingeless Rotor Blades," Journal of the American Helicopter Society, Vol. 18, No. 1, 1973, pp. 45-48.
14. Lekhnitskii, S. Ga, Theory of Elasticity of an Anisotropic Elastic Body, English Translation, Holden-Day, Inc., San Francisco, Calif., 1963.
15. Kaza, K. R. V. and Kvaternik, R. G., "A Critical Examination of the Flap-Lag Dynamics of Helicopter Rotor Blades in Hover and Forward Flight," Paper No. 1034, American Helicopter Society 2 3nd Annual National Forum, Washington, D. C., Nay 1976.
16. Goodier, J. N., "Elastic Torsion in the Presence of Initial Axial Stress," J. of Applied Mechanics, Transactions of ASME, Vol. 17, 1950, pp. 383-387.
17. Kvaternik, R. G. and Kaza, K. R. V., "Nonlinear Curvature Expressions for Combined Flapwise Bending, Chordwise Bending, Torsion and Extension of Twisted Rotor Blades," NASA TECHNICAL MEMORANDUM, TM X-73997, December, 1976.
18. Rosen, A. and Friedmann, P., "Nonlinear Equations of Equilibrium for Elastic Helicopter or Wind Turbine Blades Undergoing Moderate Deformation," University of California at Los Angeles, School of Engineering and Applied Science Report, UCLA-ENG-7718, Revised Edition, June 1977.
19. Shamie, J. and Friedmann, P., "Effect of Moderate Deflections on the Aeroelastic Stability of a Rotor Blade in Forward Flight," Paper No. 24, Proceedings of the Third European Rotorcraft and Powered Lift Aircraft Forum, Aix-en-Provence, France, September 1977.
20. Kottapalli, S. B. R., Friedmann, P. P., and Rosen, A., "Aeroelastic Stability and Response of Horizontal Axis Wind Turbine Blades," University of California at Los Angeles, School of Engineering and Applied Science Report, UCLA-ENG-7880, August 1978.
21. Warmbrodt, W. and Friedmann, P., "Aeroelastic Response and Stability of a Coupled Rotor/Support System with Application to Large Horizontal Axis Wind Turbines, ${ }^{n}$ University of California at Los Angeles, School of Engineering and Applied Science Report, UCLA-ENG-7881, August 1978.
22. Rosen, A., and Friedmann, P., "The Nonlinear Behavior of Elastic Slender Straight Beams Undergoing Small Strains and Moderate Rotations," to be published in the ASME Journal of Applied Mechanics, March 1979.

1. Report No. NASA CR-159478	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle NONLINEAR EQUATIONS OF EQUILIBRIUM FOR ELASTIC HELICOPTER OR WIND TURBINE BLADES UNDERGOING MODERATE DEFORMATION		5. Report Date D ecember 1978 6. Performing Organization Code
7. Author(s) Aviv Rosen and Peretz P. Friedman		8. Performing Organization Report No UCLA-ENG-7718
9. Performing Organization Name and Address University of California at Los Angeles Los Angeles, California 90024		11. Contract or Grant No. NSG-3082
12. Sponsoring Agency Name and Address U.S. Department of Energy Division of Distributed Solar Technology Washington, D.C. 20545		13. Type of Report and Period Covered Contractor Report 14. Sponsoring Agency Code Report No. DOE/NASA/3082-78/1
15. Supplementary Notes Final report. Prepared under Interagency Agreement E(49-26)-1028. Project Manager, D. A. Spera, Wind Energy Project Office, NASA Lewis Research Center, Cleveland, Ohio 44135.		
16. Abstract A set of nonlinear equations presented. These equations (slopes). The derivation includ convenience of potential user of coordinates, the undeform loads acting on the blade are of applications. The equation in previous studies. Finally of three reports documenting (UCLA-ENG-7880) deals with axis wind turbine blade. The bility and response of the com dynamics of the NASA/DOE	equilibrium for an elastic wi e derived for the case of $s m$ es several assumptions whi the equations are developed and the deformed coordinate ven in a general form so as obtained in the present study t should be noted that this re he research performed under he aeroelastic stability and hird report (UCLA-ENG-788 lete coupled rotor/tower sys d-0 configuration.	bine or helicopter blade are ains and moderate rotations carefully stated. For the spect to two different systems he blade. Furthermore, the e them suitable for a variety compared with those obtained represents the first in a series rant. The second report se of an isolated horizontal ls with the aeroelastic staimulating essentially the
17. Key Words (Suggested by Author(s)) Wind turbine aeroelasticity Aeroelasticity Structural dynamics Wind turbine blade dynamic	18. Distribution Unclassi STAR Ca DOE Cat	unlimited 39 UC-60
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 22. Price 105 A06

[^0]: *Except for the warping contribution to torsional rigidity.

[^1]: *The fact that $\varepsilon_{y z}=0^{\circ}$ emerges from the assumption that strains within the cross sections of the rod are neglected.

