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NOMENCLATURE

Definition

cross sectional a.r.eas of the blade

terms defined by Equation (D-26)

terms defined by Equation (D-43)

vectorial distance between a point on the cross section
of the blade and the shear center of the cross section
Young's modulus

Young's moduli of an orthotropic material

the base vectors on the elastic axis of the deformed
blade

unit vectors in the directions of the coordinates

X1 Yo zo, respectively, before the deformation

~ A

the triad @x,ey,ez after deformation
the triad (é;c,é"y,é‘;) after the virtual motion
blade pitch bearing offset defined in Figure 2

unit vectors in the directions n,{, respectively,
before deformation - - L

the vectors é‘n,é‘c after the deformation ‘

the resultant force which acts on a cross section of
the blade

uodulus of shear

modull of shear of an orthotropic material
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Mx’My’Mz

x'y’2

n _,n ,n

L]}

Px) Py’ Pz

the base vectors of the deformed blade in the directions

Xq21¥q2Zq» respectively

the base vectors of the yndefomed blade in the directions
xb,yo, Zy fegpectiﬁely- | |

the height of i:he'tower supporting the wind turbine (Figure 1b)
moments of inertis of the cross section (effective in carrying
tensile stresses) around axes parallel to the directions

é‘y;é\z which pass through the tensile cénter. Defined by
Equation (5) ‘

the principal moments of inertia of the cross section around the
principal axes (for a symmetric profile around the symmetry axes,: -
and-an axis perpendicular to it, respectively, Eqs. 6) |

unit vectors in the directions x,y, and 2z, respectively

- torsional stiffness of the blade (Figure 2)

length of the elastic part of the blade

the resultant moment which acts on the q;-qsé. seétion of the
blade , :

the components of the resultant moﬁent which acts on a cross
section of the blade, W, in the directions é;, &, and
é;, respectively 7

the components of the resultant moment which acts on a cross
section of.fhe blﬁg, fd, | in 'i;?)e-_ci.j.rections. gx’éy’ and
8;,- respectively . -

the components of the virtual rotation; Equation (D-11)
distributed external force to unit length of tﬁe ‘axis of

the blade
the components of the distributed external force in the

directions é‘;{ ’ 3}" s é; s respectively
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Px: Py: Pz

=]

Rl,.."Rh

~ ~
Rl,...,Rh

1]
OwI oo

i

=3

the components of the distributed external
force in the directions
respectively

distributed external moment per unit length
along the axis of the blade

e ,e ,€
x’ €y’ €z’

"the components of the distributed external

moment q, in the directions 3;(,8‘y,€;,

respectively

" the components of the distributed external

moment q, in the directions €x,€y,€z,

respectively

terms deéfined by Equation (D-25)

" terms defined by Equation"_(D-hz)

the positiqn vector of a point of the blade
after the deformation

the position vector of a point on the deformed
elastic axis of the blade

the position vector of any point of the blade
before the deformation

the position‘vectbr of poixits ‘on the elastic axis
of the blade, before deformation

‘the elemeénts in-the matrix which describes. the _

transformation between the triads (Qx,éy,az)

and (é‘;{,é",é" )

Yy’ 2z
the matrix which gives the transformation between
~ ~ A A' A' A'
ex,en,eg “and ex,e 'l’e§
the component of the resultant force, F, which
acts in the direction é'x (axial tension)
F,

the component of the resultant force, which

acts in the direction e

vii
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U

u,v,w
V'y,Vz
V&,Vé

v

W

wE

W1
xo’yo) zo
X,¥s2
xl:Yl: zl
xA

X7

resultant force per unit area of the cross
section of the blade

elastic energy

the components of the displacement, W, of a

-point on the elastic axis of the blade in the

directions 8#,6&, and é;, respectively

the components of the resultant force, F,
which act in the directions &} and é&;,
respectively

the components of the resultant force, F,

which act in the directions é& and éé,

respectively
the displacement of any point of the blade

the displacement of a point on the elastic
axis of the blade

the work of the external forces which act on the
system

the work of the internal forces of the system

the initiel system of coordinates of the blade

. a rotating system of coordinates (Figure 1)

a system of coordinates fixed with respect to
the ground (Figure 1)

the offset between the shear center and the aero-
dynamic center of a cross section of the blade;
positive when in the positive direction of 1

the offset between the shear center and the
center of gravity of a cross section of the blade;
positive when in the positive direction of 1

viii
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oc?’ oc

» X

E__,E ,E
xx’ yy’ zz

€ _,E ,E
vz’ xy’ xz

€ € €,
xn’ xf?7ij

™2

n, ¢

QG’,' p-—

0,09,49,

B

the offset between the shear center and the
tension center of a cross section of the blade;

positive when in the positive direction of 17

the position of the tension center of a cross
section of the blade with respect to the
coordinates Yo and Z5s respectively

rate of change of a pretwist (equal to © in the

G,x
present study)

preconing angle; inclination of the feathering axis
with respect to the hub plane (Figure 2)

typical symbolic quantity used in the ordering

scheme

strain components

strain of the elastic axis

principal coordinates of a cross section of the
blade (n is the axis of symmetry in the present
study)

© 7 total geometric-pitch-angle-of the blade-cross—————— - - -

section (angle between é& and Qq)

A

the rotation component of the triad é;,é&,ez,
during the deformation, about éi, é&, and €z,

respectively

the virtual rotation of any point on the elastic
axis, during a virtual movement

curvature of the deformed rod in the directions

~

e&,é;, respectively. Defined by Equation (B-15)
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A = - <p/d>,x

v Poisson's ratio
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JE el 1t Poisson's ratios of an orthotropic material

v

23’ "3 '

'Uxx’cﬁy’czz

O ,T_ ,T stress components

vz’ xy’ xz

Txn?xt’

T the twist of the deformed blade, defined by Equation (B-15)

T the twist while using coordinates 0,¢§
instead of Y022

¢ the rotation of a cross section of the blade
around the elastic axis (equivalent to 6 )

o warping function

$ the warping function as chosen by Hodges and
Dowell (Ref. 8)

@ o/

¥ azimuth angle of the blade, measured from
straight down position (Figure 1)

Q angular speed of rotation

C ) _LC ) ,0) . differentiation by x,y,, &and z

X Y » o’
respectively
a( ) differential
8( ) variation
(7) vector
(" unit vector
C)x () the cross product of two vectors
() differentiation with respect to x,



SUMMARY

A set of nonlinear equations of equilibrium for an elastic wind
turbine or helicopter blade are presented. These equations are derived
for the case of small strains and moderate rotations (slopes). The deriva-
tion includes several assumptions which are carefully stated. For the
convenience of potential users the equations are developed with respect to
two different systems of coordinates, the undeformed and the deformed co-
ordinates of the blade. Furthermore, the loads acting on the blade are
given in a general form so as to make-them suitable for a variety of
applications. The equetions obtained in the present study are compared
with those obtained in previous studies. Finally, it should be noted that
this report represents the first in a series of three reports documenting
the research performed under the grant., The second report (UCLA-ENG-7880)
deals with the aeroelastic stability and.reSponse of an isolated horizontal
axie wind turbine blade. The third report (UCLA-ENG-7881) deals with the
aeroelastic stability and response of the complete coupled rotor/tower
system simulating essentially the dynamics of the NASA/DOE Mod-0 config-

uration.



1. INTRODUCTION

Recent investigations on the behavior of elastic slender rotor blades
undergoing relatively large deformations during operation, show that non-
linear phenomena have considerable influence on this behavior. These non-
linear phenocmena are due to the inclusion of moderately‘large deformations
in the elastie, inertial and aerodynamic operators asgsociated with this
problem. A detailed review of recent research on rotary wing aeroelasticity
with an emphasis on the importance of moderately lerge deformations has been

presented in Ref. 1 and is beyond the scope of this report.

Recent emphasis on wind energy conversion, using large horizontel axis
wind turbines, employing two-bladed, hingeless rotor configurations having
rotor diameters verying between 120 to 300 ft. have added a new stimulus
to the study of large flexible, highly pretwisted blades. In a recent study
by Friedmann (Ref. 2) it has been noted that efficient construction and opera-
tion of wind turbines. requires that the vibratory loads and stresses on the
rotor itself and the combined rotor tower system be reduced to the lowest
possible levels. Thus, structural dynamic and aeroelastic considerations
are of primary importance for both the design of wind turbines and the compar-

ison of various potential wind turbine configurations.

In view of this need, it was felt that a careful, fundamental deriva-
tion of the equations of motion for slender rotor blades, possibly highly
pretwisted, undergoing relatively large deformations during their operation,
is required. These equations could be used as a basis for future studies,

into which nonisotropic material behavior, such as required for the treatment



of composite blades, could be easily incorporated. The main objective of

the present study is the derivation of such a set of equations.

A fundamental work in this field was that of Houbolt and Brooks (Ref.
3) where equations of equilibrium for the coupled bending and torsion of |
twisted nonuniform blades were derived. Although some nonlinear effects were
included in. their derivation, their final results can be considered as a
linear representation of the problem. Following this work, other researchers
presented derivations of equations which include additional nonlinear terms.
These include, for example, the work of Arcidiacono (Ref. 4), Friedmann and
Tong (Ref. 5), Hodges, et al (Ref. 6-8) and a recent work by Friedmann (Ref.
9). The most detailed and comprehensive derivation of a set of nonlinear
elastic equilibrium equations is presented by Hodges and Dowell (Ref. 8).
There the equations are obtained by two complementery methods, Hamilton's

principle and the Newtonian method.

In the present work a set of nonlinear elastic equilibrium equations
of a blade are presented. These equations are derived for the case of small
strain and finite rotations. The derivation incluﬁes several assumptions

which are presented during the presentation. The equations are developed with

respect to two different systems of coordinates. In each case the derivation
is done using two complementary methods; the Newtonian method and the principle
of virtual work. Finally, the equations obtained in the present study are

compared with those obtained in the previous studies.

This report is a modified and abbreviated version of Reference 13,
which contains a considerable amount of additional details., Furthermore,

it should be noted thdt this report represents the first in a series of



three reports which document the research which has been performed under

the grant. The second report (Ref, 20) deals with the aeroelastic

stability and response problem of an isolated horizontal axis wind turbine
blade. This report also containe typical single-blade aeroelastic stability
. boundaries together with blade reSpoﬁse studles at operating conditions for
the MOD-0 wind turbine, currently in operation at NASA Lewis Resgqarch Center,

The third report (Ref. 21) deals with the aerocelastic response and stability
of a coupled rotor-tower configuration corresponding to the NASA/DOE

Mod-~0 machine.



2. BASIC ASSUMPTIONS

The geometry of the problem is shown in Figures 1 through 3. The

following assumptions will be used in deriving the equations of motion.

1) The blade is cantilevered at the hub, the feathering axis of the
blade is preconed by an angle Bp.

2) The blade can bend in two mutually perpendiculer directions
normal to the elastic axis of the blade, and can also twist around
the elastic axis. The boundary conditions are those of a canti-
levered beam.

3) The blade has an arbitrary amount of pretwist which is assumed to
be builf in about the elastic axis of the biade.

4) The blade cross section is symmetrical about the major principal

axis. It has four distinct points:

I) FElastic Center (E.C.) - the intersection point between the
Elastic Axis (E.A.) and the cross section of the blade
II) Center of Mass (C.G.)
III) Tension Center (T.C.)- the intersection point between the
~  Tension Axis (T.A.) and the cross section of the blade =

IV) The Aerodynamic Center (A.C.)

As shown in Figure 3 the C.G - E.C offset is denoted by X;s the

T.C - E.C offset is denoted by X and the A.C - E.C offset is denoted

T’
by X, where it is understood that the offsets shown in Figure 3 are

considered to be positive.

S) The strains in the blade are always small, but the rotations can

be finite (for additional details see Appendix B).



3. ELASTIC EQUILIERIUM EQUATIONS OF THE BLADE

In this section, the equilibrium equations of the deformed blade are
given. It is assumed that the blade can be considered to be a deformable,
slender rod, made of iinea:rly isotropic, homogeneous material. As formerly
indicated, the analysis is restricted to the case of small strains and
finite rotations. Appendix A gives a brief summary of some well known rela-
tions of nonlineardeformations. In Appendix B expressions for rotating and
strains of a deformed slender rod are derived and the force and moment
resultants are obtained. In Appendix C the equilibrium equations are derived
systematically with respect to the deformed as well as the undeformed system
of coordinates, using the Newtonian method. In Appendix D the same equations

are derived using the principle of virtual work.

In this study the Bernoulli-Euler hypothesis is assumed to apply. This
hypothesis is usually stated as: "FPlane cross sections which are normal to the
elastic axis before deformation remain plane after deformation (except for
negligible errors due to warping) and normal to the deformed axis." Furthermore,

it is also assumed that strains within the cross section can be neglected,
and the warping is very small so that its influence is negligible, besides
its effect on the torsional stiffness. (For a more accurate approach other

warping effects can be included as shown in Appendix B.)

As shown in Figures 2 and 3, before the deformation of the elastic
axis of the blade, which is the line that connects the shear centers of the
blade cross sections, coincides with the X, axis. The Yo axis is

orthogonal to %o and lies in a plane parallel to the hub plane, while Z,



is perpendicular to and y.. It is clear that ’3¥~s2- 1s a rectangu-
*0 0 %007 %0

~ ~

lar Cartesian system. As shown in Figures 2 and 3, é%,ey,ez are unit vectors
in the directions X53Y2 2 respectively. According to the Bernoulli-Euler
hypothesis and the other accompanying assumptions, during the deformation the
triad ég,é&,éé is carried in a rigid form, composed of translation and -
rotation, to the new orthogonal triad é;,é},é; (shown in Figures 2 and 3).
The unit vector é; is tangent to the deformed elastic axis, while é& and

éé are rotated around it to the position of é; and Q'Z.

It is assumed that the blade is acted upon by a distributed load, 5,

per unit length of its undeformed axis, given in component form by:

'+ pé'+pe' . (1)

This load, P, includes body forces, surface tractions and inertial loading.
There is elso a distributed moment, q, per unit length of the undeformed

axis of the rod, given by:
q = qxé; + qyé;'+ qz€; . (2)

This also includes body couples, moments of surface tractions and moments of
inertial loading. The loads and couples, P and g, and their derivatives

are assumed to be continuous.

Then the exact equilibrium equations are obtained in Appendix C as

Equations (C-7) and (C-8):



X + Ky(Mz,x + ‘rMy + qz)

- - T + =
Kz(My,x Mz qy) + px 0

- T
(Mz,x + KzMx + My + qz),x

+kP-T(M +KM =tM + + =0 (3)
Y (M * M = T, q) + 2y

K -
M+ ny ™, + qy),x

Y,X
- K = \‘
+ % T T(Mz’x+ zMx+ T}& + qz) +p, 0

Mx,x - KyMy - KzMz + q = 0]

The first three equations are basically from force equilibrium rela-
tions in the é‘)'c,é‘l'r, and €} directions, respectively. The fourth
equation is the moment equilibrium relation in the é‘;{ direction. The equi-

librium of moments in the directions €3'r and é‘; are also satisfied.

T 1is the axial tension in the blade. Mx’My’ and Mz are the compo-
nents of the elastic moments, .Mx is the torque, while My and Mz are the
bending moments. Ny and Kz are the curvatures, while T is the twist of
the deformed elastic axis. The expressions for the components of the moments

are obtained from Equation (B-43) of Appendix B:

M_ = GJT
X

M) = -ELgk - Ely & + T ' (%)

Mz = EI‘ZZKy + IIE’.II'?}Nz - '.l.‘yoc



vhere E is young's modulus, G is the shear modulus, J is the torsional
stiffness of the blaﬁe, and ]'22 ,133 and ]’23 are the flexural moments of
inertia of the cross section (effective in carrying tensilé stresses) around '
axes parallel to the directions €y and €z which pass through the point

(y ). This point, whose coordinates are (y..,3_.), 1s the tensile

oc 2.OC oc” ocC

center. The moments of inertia are given by Equation (B-U42 ), which is:
- ] 6o -9 ey
L2 oc ~ Yo/ Wo %%
A
T3 = ﬂ Voo = Fo) (2o = 29009, 2, (5)
A .

~ ' 2
I35 = ff (zoc-zo) dy, dz, -
A

Furthermore, it is assumed that the blade cross section is symmetric
about the n axis (see Figure 3). The moments of inertia about 1 and an
axis perpendicular to 1, which pass through the tensile center, are

dencted by Iy and I,, respectively. Then (see Figure 3):

I, = Locog o, + Lysin0, | T — T T~

G~ 3 G
Ly = (I2 - 13) sin 6, cos O, 6)
133 = ]'.a s:!.n2 OG + 13 cosz OG .

From Figure 5, the following relations follow:

Yoo = Xy COB OG_ 5 2z, =Xpsine, . (7)



It is assumed that X is small enough so that the expressions

II
Tz, and Ty . in Equation (4) are at most of the magnitude of the

other terms in the equation.

Furthermore, it should be emphasized that Equations (4) were
obtained after neglecting terms of order Ez compared to unity (for more
details about the ordering scheme, see Appendices B and C )e According to

the sssumptions of Appendix B, rotations are of order €.

Within the order of approximation implied by neglecting terms of

order 62, compared to unity, the equations of equilibrium are simplified

and are given in their final form by Equations (C-10):

T + KM -k M + Tk M + k M)
X Y 2,Xx Z ¥YsX Yy zz
K - =
+ yqz qu'y + px o) \
'Mz,xx B (Kz’x + Tky)Mx - (Tlx * K.sz)My - et MY)X
+ K T+ K -7 - + = 0
v et T Ty TS x T By > (8)
M + (x - M - (T _-Kkk )M -2TM
¥, XX Yrx z'x ' X yz' z ZyX
[ - K - : =
+ ZT yqx + qy’x qu + Pz 0

- K - K =
Mx,x yMy zMz + qx 0

10



In order to complete the formulation of the'problem, the boundary
conditions must be also taken into account. For the present case of a canti-
levered blade, the boundary condition at X, = O corresponds to a clamped

root and at the tip, = ¢ (where £ 1is the length of the blade), free
%o

end conditions apply. Thus

= H = = = = ¢ = .
for X 0 VvV =W v,x w,x 0 H
(9)
for x, = £ T=V =V =M =M =M =0 .
y z X y z

V  and Vz are the resultant shearing forces at the blade cross section

and they are given by (see Equation (C-6) of Appendix C):

V =« + K + T .
Yy (Mz,x zMx Mx * qz) ’

(10)

. V =M + KM =-TM + .
Uz yx T yx T 20 Y%

The underlined terms in Equation (10) disappear in the case of a free edge
when M =M =M =0, also.
x Yy z

The deflection of a point on the elastic axis is given by W where

(see Equation (B-6) of Appendix B):

W o= ue +ve + wé . ' (1)
X y z



~ ~ ~
The new triad, e',e’',e’
x’ "y’ "z

nates of the blade is given by Equation (C-11):

s Wwhich 1s tangent to the deformed coordi-

I\' =

°x = ¢ * SlZe M Sl}ez

/\' = ~

e SZle + 6—+ 823ez (12)
e' =S5,.6 + 8

where Sij are functions of w < Vox and ¢. When finite rotations are
. ) J

considered, these Si depend on the sequence of rotations which transform

J
~ ~ A l\' I\' A'
(ex,ey,ez) to (ex,ey;ez), as one can see from Equations (B-10), (B-13) and
(B-14) of Appendix B. If the sequence chosen is a finite rotation about éz,
followed by rotation about é&, followed by rotation about é;, then,

2
neglecting terms of order € compared to unity, the transformation given in

Equation (12) is defined by Equation (B-13):

A' ~ A A
e =e +Vv e + w e
x XY »X 2
&' = (v +0w )& + & +08 . (13)
X X X Y z
e' =-(w_=-9% ) -(%+v w ) +é
z X ,x Tx X 5x Yy z

With relations (13) the curvatures and twist are then given by (B-16):

Ky = Vot $w,xx (14a)



K= w.__-4¢v (1bb)

4 » XX P XX
T = .
&)x + V, xxw’x A (lhc)

The term v w _ in Egs. (13) and (1%) was introduced by Wempner

b4 P

(Ref. 11) and was later shown to be significant for rotor blades by Kaza
and Kvaternik (Refs. 15 and 17). Substitution of Equations (14), (6) and

(7) into Equation (4) implies:

)

=
i

GJ(é:,x + Voo x

‘4'3.'
t

- -E(I2 - 15) sin 6, cos.OG(v,xx'+ &w,xx)
L2 2 ..
-E(L, sin 6g + I5 cos GG)(w,xx - $v,xx) +TX;; sin 6

, | .(is)
+ I sin’ OG)(V’W+ é w..)

’

M = E(12 cos2 e

z G

+ B(L, - 13) sin Q, cos OG(w,xx - &v,xx) - TX cos 9

Substitution of Equations (14) and (15) into Equation (8), using
Equations (6) and (7) and neglecting terms of order €2 compared to

unity, implies:

Tt Vol (v ot v e ELglv  mdv
B (7 4 b ) By v )
+ w,#[ﬁ%(vﬂ; LS > SO 4"“"-,;;::)].,; |

-V o BELs v v BI(w - v 1Y

)

+ (v .+ d'w,xx)qz- (vr,xx-$v,xx)c;y +p, =0 (16a)

13



- [EI.ZZ(v’mwL “w’xx) + EIZS(w,xx - °v’xx) - T.srm:],mt

- GJ(® w + vV _W.Ww - % y )+ EL, ¢ v

»X XXX XX, X, XXX »X XXX 3 ,XX ,xx
+EI__(¢ w +v w oW - % ¢ + 2v W )
33" ,xx ,Xx HXXX ,X XX » XX 5 XX ,xx » XX

(] ’ - -
* 2( ;x+ v,xxw;x)[EIz5 V,xx * EI33(W,XX %,Jc:) Tzoc],x

- ¢ -
+ (v,xx+ w’n Z ., ,xx)T+ (w,xx Ov,xx)qx

- (¢)x+ v’xxw’x)qy B qz)x * py =0 (26v)

- [EIZB(V,;cc+ %’n) + EIEB(w,xx - W’n) - Tzoc],xx

+ GJ(® v + % w + v )-EIZ
s X XXX s X 5 XAX ,xx ,xxx »X 3 ,xx 9 XX

-E]'.z(" v _+% w +v v w
2% ,XxX ,Xx P XX ,XX »XX L3000 ,X

- 2(@,x v xxw,x)[EIZZ(v,mt + w,xx) + EIZ} w,xx - Tyo<:],x

2

- ¢ - Y '
+ (w,xx ov,xx * yoc ,n)T (v,xx + w,xx)qx
- (¢
( )x :xx ,x)qz qy, Y (160)
GI(¢ _+v _w )] _+EL (" _-v_+hoy )
»X XX 4,X T ,X 123 » XX » XX ,Jo: 9 XX

+ (EI33 - EIZZ)[v,nw + "(wfxx - v,xx)]

» XX

+ T[yoc(w,xx - %,:nc) - zoc(v,xx+ "w’xx)] +q =0 (164)

The system of Equations (16) contains four equations with four
unknowns being represented by v, w, ® and T. The boundary conditions

(9) together with Equations (10) and (15) become:

for x,=0: vV=w=v_=w_=0¢=0, (17a)

,x ,x

for x, = &: T=0 , (11w)
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2 2
- = [S]
v&(Mx?My=O) [E(Iz cos 9G + I3 sin G)(v,xx + Ow,xx)
+ E(I2 - 13) sin GG cos eG(w,xx- ‘Pv’xx)-'r XII cos eG],
tq, =0 : ' (17c)
. -~ - ’ ' 9
VZ(MX=MZ=O) [E(I2 13) sin 9G cos G(v,xx + Qw,xx)
2 2
3 ($] - - in ©
+ E(I2 sin” 6, + I3 cos G)(W’ ¢v,xx) T X;; sin G],x
M = GJ(® _+v _w_) = 0 . o (17e)
x _ ,X »XX 5 X
- = - (S] 0
M.y E(I2 13) sin 6, cos G(v,xx'+ ¢w,xx)
| L2 2 N L |
+ E(I, sin” 8, + I cos eG)(w,xx - w’n) 0 .(;7f)
M = E( cos® ©_ + I, sin® © )(v + O )
pA IZ G 3 G ,xx » XX
+ E(I2 - I3) sin 9G cos eG(w,xx - W,xx) = 0 ., (17)

The equations of equilibrium presented above were derived in the
directions of the deformed coordinates. As pointed out in Appendix C, the

equations can slso be derived in the directions of the undeformed coordinates

~

ex’éy’gz' In this case the distributed force, given previously by Equetion

(1), can be taken in the form:

H
?
14

o)
+
Ko

+ D€ (18)

15



while from similar considerations the distributed moment can be written as:

~ ~ A

qQq = .qxex + y + quZ . : (19)

The equilibrium equations are given by (C-24). 1In the present case
the triad é‘;c,é;,é‘; is given by Equation (13). Then Equations (12) and

" (13) imply:

S., =V 5 S,z =W S, = ¢

12 ,x ’ 13 Y,x 23 ;
. (20)
= - H = - - . . = w{® '
821 (V,x + Qw’x), 851 (W,x W,x); S}z ( + V,xw’x)o
Substitution of Equation (20) into Equation (c-24) and neglecting
terms of order Ez compared to unity,_ yields the following equilibrium
equations :
(r+ (v + O M ~(w - % M +w ¢ M
»X ’X Z,X X »X ¥y,X »X )X 2
+v ¢ M+ (v w -v w M]
X ,X Yy X ,xX XX H,X X ,X
~ _ ~ o~ = 2
ML T " - @)
- [M +w M+ (¢ +v w M+ (+v w M ]
’ -2yX XX X » X XX ,X Y ’X X Y,X ,X
+ (v,x'T),x U x (w,x‘qx),x'+ p, 0 , (21v)
M _+v M -(® +v w M -0 ]
y,X »xx X »X XX ,X 2z Z,X ,X
+ (w,x- T),x - (v,x qx),x taq  +pP, = 0 (21¢)
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M - v+ % M - (w - % M
XyX s XX XXy XX - ,xx"z

~ ~ ~

(214)

Substitution of Equations (15) into Equations (21), using Equations

(6) and (7), and neglecting terms of order e’

yields the following equations

(T * v,x[.EIZZ (v,xx * %,)cx) * E125(w,xx - )]

2 XX X

+ 'w,x[EIZB(v,xx + ¢‘w,xx) + EI53(W o " & )]

’ XX ,x
¢ ~ .
+ w’x{ [E]’.az(v’xx+ w,xx} + }:.L25 w,xx]},x

- v OB v BTl - v )T

,xx’7°,x
+ GI(® + v w v w -v w N
» X XX ,X X ,XX XX ,X  H,X
- "~ ~
+ - =
(V,x qz):x (w;x qy);x ¥ px 0

- [EIZZ(v,xx + W,xx) + EIEB(w,xx -2¢ v’xx)]’)oc

’x ,ch ’x ,)O( ’x
+ [EIBB(%,xx + Vo v )],xx
2
- - (&
(EIB3 V’x w:xx)’x ¥ [v)x T+ (Tyoc )) ( Tzoc))x]:x

X IXX ,XT L,XX T ,X ’ » » XX
2
- o
(EI22 v w,x),x + {w’xT + (T2 ) <t ( Iyoc),x] X

when compared to unity,

(22a)

(22v)



AL AR (2ze)

2 2 :
¢ - ¢
e x v}xiw,x)],x * EIéB(v,xx Yot b v,ka,xx)

+ (EI53 - EIzz)[V, w4 06 v

XX ,XX » Xx » XX
- T[zoc(v,xx+ ¢w,xx) - yoc(w,xx - ¢v,xx)]
+ v’x qy + w,x qz + qx = 0 (224a)

The boundary conditions remain the same as in Equation (17) and it
is only required to write a, and qy as functions of qx,qy, and Q-

According to Equations (C-16) and (C-11):

S (23)
q =

G T Yt S Ut 559, 3

q, '
The equilibrium equations in Appendix C were derived by the Newtonian
method. In Appendix D the two sets of equations, with respect to the
two different systems of coordinates, eare derived using the principle of
virtual work. The equilibrium equations which are obtained from this
procedure are identicalvto those obtained in Appendix C; within the
approximations inherent in the present theofy. One of thé advantages
of.the second method is that it also prdvides the appropriafe set of
boundary conditions, which is sometimes difficult to obtain using the
Newtonian method.‘ Tt is shown that the boundary conditions of the blade,
as stated in Equations (9) or (17), are in agreement with the boundary

conditions obtained by the second method.

8 .



The equations of equil'ibr:luin can be further simplified by taking
into account some cammon properties pertaining to helicopter and wind
turbine blades. These blades are usually stiffer in lag than in the

flap-wise direction, thus:

E]:z > EI (24a)

3’ :

The geometric pitch angle OG has en absolute value less than

45°, Therefore, according to Equa.tion (6)

E122 > EIBB,GJ . (2kp)

Using Equation (2L4b) together with the ordering scheme (62 neglected
compared to unity)_ enables one to neglect a considerable mmber of addi-

tional,-sma.';.],._terms; the resulting equations are given below:
(T + _v.,x[m.zz-(v =t ) + EI23 - Oy )],x

(v = % )]

35 _pxx 2 XX T,%

+ .

w’x[E123(v + °w )+ EI

+w L0 [EIZZ(V )+ 12:123 -
- v, {°[E123 v _ +’E133$ ;1? + GJLx(v:xﬁ,;;'f Ve T
+

v 8 - ;qu),x =0 . (2se)

(EL,, (v’n + w’n) + EIZB(w,xx - zw,n)v- Ely3 w ]

» XX, XX

(GJ"w)+[vT;+(Ty) (°’1‘z)]

X ,XX ,X )X oc’,x oc’,x",x

~

qz;x+ (w,x Ex);x+ ;Y =0 : - " (250)
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[Elzs(v,xx + 29 ",xx) + EIﬁ(w - ¢",xx)]

» XX
o ) _
* [GJ( x7 v,xxw,x)v,xx s X E122 ,xx * ow,xx)],xx
- » ¢
(Eléz ,xx »X ,x+ [w,xT + (Tzoc)5 + ( Tyoc),x],x

(V,x qx),x+ E'Y)X+ ;Z =0 | 4 (zsc)

2 2 :
[GJ(°’x+ v,xxw,x)],x+ EIZS(",m -W M W )

- -
+ (EI33 - EIZZ)[v,xxw,n + °(w,xx - v,xx)_]

- T[zoc(v,xx+ ¢w,xx) - yoc(w,xx - °v,xx)]
+ v x qy + w,x q,+q = o) (254)

Usually, in the case of rotating blades large tensile forces are caused
by the centrifugal forces; therefore, the nonlinear _contributions of the °
bending and torsional moments to the tensile force are very small. In
this case it seems to be justified to keep only the principal terms of
this contribution (twice mderlﬁed in Equation (25a)) and neglect all
the other terms associated with it  (once underlined in Equﬁtion (25&.)).
In fact, it seems that neglecting the twice underlined terms will also

not affect the results in a significant manner.

A further simplification .can be obtained if all stiffnesses are

approximately of the same order of magnitude, which means:

Lo ELp Bl

22,2, P = os5-2) . (26)

33

In this case, Equations (22) turn out to be:
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{r+ ",x[E"zz(Lg )+ EIE} XX ”,xxn,x

+ w,x[353evn+ xx) + EI3 (w - b xxn,x

¥ ",x“(mg_g v oxx t B3 vf,x:':‘ x =Y x[o(EI?S Vot ’E153:;§x)],x

+ C'JO,x(v,xw,xx- - v,xxw’x)} ,x qz),x - (w,x qy) +p =0 (27a)

[15:1.az (",xx + ow’n) + EIZB(',xx -2%y m‘) - 3155 Ow,xx],n

- (GJO’x w’xx)'x+ [v’xT+ (!}‘yoc)’ (’Tzoc) x]’x

~

-Gt (w’x Ex),x+ sy = 0 | ' (270)

[El.z}(v'n-r 2¢-w’n) + E133(v'r,xx - ¢v )+ EL, %

,n P XX
+ (GJ¢,x v,lﬂt),x + [w,xT + (Tzoc), + (moc) x]’x
- (v,x qx),x+ Q@ *tP =0 (27¢)

| 2 2
[(}J(@’x + v nw x)],x + EIZB(v,xx - w’n) + (E:[33 - EIzz)v

’ ’

- T[zocZV =t w,n) - yoc(w,xx - %’n)].

Ey ,x;z+a'x = 0 o (27a)

The underlined terms in Equation (27a) have the same meaning &s

those in Equation (25a).

To facilitate the use of these equations for rotor-dynamics

' epplications and tb also simplif'y comparison of the equations in this
revised version of the report with the previous version, the Equations
" (27a-d) are rewritten below using the principal moments of inertia of

the cross section (Equations (6) and (7)). It should be noted that in
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the previous version of the report, few temms in Equations (22b - d) were
missing due to an algebraic © error. In most copies of the

report these terms were added in handwriting.

T~

Tt (v ) - a) +p (278a)

]
(o

g , A
[E(I2 cos” 6, + I, sin .ec)(",n‘” w’n)

+ E(Ia - I3) sin 8, cos eG(w,xx -2¢y xx)

2

2 2 : g
(2] %] - ¢
E(I2 sin 6, + I3 cos G)“’w, ];xx (Gg x ¥, ),x

+

{v:xT,+ .['MII(‘":’8 - * sin GG)J,x}',x'az,x ,qu) tp, =0 (27op)

- [E(I.Z - 13) sin GG cds €>G(v’xx + 20w xx)

+

E(% s:i.n2 GG + I3 cosz eG)(w,xx - Oy xx)

2 2 _ .
-0 8 ) )
+ E(Iz cos” 6, + I3 sin G)%_',xx],xx + (G x v,xx),x :

in © ¢ e
+ {w,xT+ (X ;(sin 6, + ¢ cos G)],x}

G )X

- (v,x qx),x ta  *tP, = 0 . (27¢ce)

(GJ(® + v o x)] + (]'2-. I.) sin 9 cos eG(v?xx - )

X » »

+ (I 1'2)(cos - sin® © )v

,xx » XX

[sin e ( -xx + %I-,xx)‘ - cos GG(w o " W,xx)]

}

P)
) '+V,qu :xqz+qx =0 . _ . S ,.(.27dd)
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4. COMPARISON BETWEEN THE PRESENT ELASTIC EQUATIONS

AND THE EQUATIONS OF OTHER STUDIES

Elastic equilibrium equations for a rotor blade were derived by
different researchers during the past twenty years, &s was shown in the
introduction. In this chapter a comparison will be mede between the
present derivation and some pf the previous ones. For the sake of
brevity these comparisons are concise, much more detailed comparisons

can be found in Reference 18.

4.1 Comparison with Houbolt and Brooks (Ref. 3)

A set of equetions equivalent to those of Reference 3 can be
obtained from Equations (2la~ d) by neglecting the nonlinear terms assoc-
iated with the elastic moments. Performing these operations and replec-~
ing the moments by the appropriate expressions, as shown in Equation (15),
results in the equations given below. It should be noted that nonlinear

terms conteining the displacements have been neglected in these equations.

2 2
[E(I2 cos” @, + I3 sin’ OG)v,xx

+ E(L, - 13) sin O cos O, w - TX ; cos oG],xx (28v)
- (Tv,x),x+ W,x ~ (w,x q7:),x - py =0 ’

-[E(I.a - IB) sin O, cos 6, v
2 2
+ E(I‘Z sin o + 13 cos OG)w,xx - TXII sin GG],xx

+ (w )+ q. - a +p =0 (28c)
( »X qY:x (v:quZX pz
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[GJ $,x],x.+ a‘z w,x * 'qu v,x * Ex =0 . (28d)

~

If Equations (28) in this report are compared with Equations (15)

and (18 -20) of Reference 3, the following ocbservations can be made:

1) Equation (28a) is identical to Equation (15) of Houbolt and

2)

3)

Brooks, except for the terms (Ez v x) . and (E'_y w x) x
b4 F ? ]

which are not present in Equation (15).

Comparing Equation (28b) of the present study with Equation (20)
of Reference 3, it follows that in addition to the terms con-

tained in Equation (28b), Houbolt and Brooks' equation contains
an additional term involving ﬁ,x’ probably resulting from the

assumption 0 = an.

Furthermore, the term [TX.. ¢ sin OG] o Vhich appears
N ?

I1
in Reference 3 is a physically nonlinear term. This term, which
appears in Equation (22b) of the présent study is q.ssociated
with the term (¢ My), o 1p Equation (21b) of the present study.
If this term is retained, all other terms of the same order
should also be retained. However, this was not done in the

equations presented by Houbolt and Brooks.

In the loading terms, the term, - (w ax) , which
X » X
appears in Equation (28b) of the present study does not appear

in Equation (20) of Reference 3.

The comparison between Equation (28c) of the present study and
Equation (19) of Houbolt and Brooks is anslogous to the compar-

ison given in the previous section, and will not be repeated

24



here.

4) Comparison of Equation (28d) and Equation (18) of Reference
3, shows that except for the terms which appear in Equa~- |
tion (284), additional terms containing a,x appear in
those of Houbolt and Brooks' equation. These, again, are
related to the assumption 611 ; cxx' Houbolt and Brooks
also retain the term Tki d . (k, being the radius of
gyration of the cross sectionsl area). However, this term
should be neglected within the assumption that strain is
negligible compared to unity. Similar to what has been
pointed out already in Item (2) of this comperison, from the
nonlinear terms - v’n My and -~ w,xx Mz in Equation

(21d) of the present study, Houbolt and Brooks retain only

the terms -T X.. sin © Vo and TX, . cos@,w _,
’

II G I1 G ,xx
while apparently neglecting other terms of the same order.
5) As pointed out in (2) and (4) above, it appears that
Houbolt and Brooks assumed that in the expressions for the
' moments M, and M (Eq. (4) of the present study), the
”*”'i”"““t?rﬁfrz‘;* ‘and Ty _ =~ are mich larger than the other —— —
terms. This seems to imply that the offset between the
shear center and the tension center is the main contri-
butor to the -bending moments in the blade. This is a very
- special case which may be of limited importance from an
engineering point of view. The assumption of the present

study, that these terms are, at most, of the same
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magnitude as that of the other terms, seems to be more

realistic.

L.2 Comparison with Hodges and Dowell (Ref. 8)

1)

2)

Comparison of the expressions for € o — Shows that the
strain at the elastic axis, and the contributions due to
bending all over the cross section, are exactly the same.

The expressions for warping are different. Hodges and
Dowell also add the terms (7 + gz)oG,x $’x and

[(1\2 + ;2 fo] /2. The first expression is also present in
the derivations of Houbolt and Brooks. The second term, as
was pointed out by Hodges and Dowell thermselves, is neglect-
ed within the approximation that terms of order 62 are
negligible compared to unity. They retained this term for
the case of very large torsional deformations, which imply
that Yo ‘L,x and zZ, $,x are of order €. The occurrence
of such large elastic twist is unusual for most wind turbine
or helicopter blades and is not treated in the present work.
It should also be mentioned that the case when squares of
strains are not negligible, in comparison to the strains
themselves, is very special, and it appears that for this case
a ﬁore refined theory than the one presented in this study

will be required.

Comparing the shearing strains e and e {— B8 derived

n
from Equation (B-23) of the present study with Equations

26



(25, 26) of Hodges and Dowell, shows some discrepancy which
eppears to be related to the previously discussed differ-
ences in the warping function, and the expression for the
twist. Furthermore, terms which represent prdducts of the
warping and curvatures in this work, are neglected by Hodges
and Dowell in theirs. This neglect seems to be justified

for the case of slender blades having a closed cross section.

After obtaining the strain components, Hodges and Dowell derived
the equationg of equilibrium by two complementary methods, the Hamil-
tonia.ﬁ principle (similar to what is done in Appendix D of this report )
and the Newtonia.n method (similar to what is done in Appendix C of this
repor_t). It is 6bvious that different strain expressions, and different
transformation relations between (é;c , €y , ?z) and_ ;(é‘)‘c ,.é; R é‘;) , will
yiei.d different final equations.
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5, CONCLUDING REMARKS

A system of consistent, nonlinear, equations of equilibrium of a
pretwisted wind turbine or helicoptervblade which undergoes moderate
deformation was systematically derived. The derivation contains, in
addition to the basic assumptions listed in Section 2, some additional
assumptions which are gradually introduced in thé course of derivation.
For the sake of cdmpletenéss,'these additional assumptions a&e'briefly
sumarized. The blade is slender and its undeformed elastic axis 1s-
straight, the blade is made of elastic isotropic material. The Euler-
Bernoulli assumptidns are valid (for details see Appéndix B) and warp-
ing of the cross sections due to torsion is neglected.* Axial forces
in the blade contribute to the bendihg moments, due to the offset be-
tween the elastic center of the cross section and the tensile center.
Tt is assumed that this offset is sufficiently small such that the mag-
nitude of this contribution is, at most, of the magnitude of the other
contributions to the bending moments (e;g., see Equations (B43)). The
strains in the blade are always small (less then 0.01), while the
slopes due to elastic rotations are of order of magnitude € where
€ R 0.2; furthermore, terms of order of magnitude 62 are neglected
when compared to unity. Finally, it is assumed that deformations are
changing gradually slong the span of the blade, which implies that a

modal expansion representing blade deformations would be restricted to

*
Except for the warping contribution to torsional rigidity.
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the lower modes.

Nonlinear structural problems require careful distinction between
undeformed and deformed systems of coordinates for representing blade
deformations. Therefore, in this study the final equations of equili-
brium are presented in both the undeformed and deformed system. The
general load components are also defined with respect tb each of the

systems.

. The orthogonal system of coordinates “'x, Yy, 2, used in deriving
the equations of equilibrium in this study was found to be slightly more
convenient than the curvilinear nonorthogonal x, 1, { coordinate
system used in References 3, 6, 8, 9 and 17. The main advantage being
a somewhat simpler derivation and slightly.simpler final equations.

Additional information. on this topic is.provided in Reference 18.

An ordering scheme, such as used in this study, can simplify the
equations considerably. The equations can be further simplified for
certain blade geometries. It should be noted that thé loading terms 'in
the equations (forces and moments) were presented in a general form,
loading terms, and the application of an ordering scheme, enables one to

identify and neglect a considerable number of additional small terms.

Since their derivation, these equations have been used extensively

in a variety of aeroelastic stability and response problems as indicated

below:

1) Calculation of coupled flap-lag-torsional aeroelastic stability
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of hingeless rotor blades in forward flight (Ref. 19).

2) Aeroelastic stability and response calculations for an iso-
lated horizomtal axis wind turbine blade (Ref. 20). It should
be noted that in this study, dynamic blade root bending
moments were also calculated and found to be in satisfactory

agreement with the loads measured on the NASA/DOE Mod-O

machine.

3) Aeroelastic stability and response calculation of & coupled
rotor/tower horizontal axis wind turbine, simulating the

behavior of the NASA/DCE Mod-O machine (Ref. 21).

Finally, it is important to note that the equations derived in this
study were used to investigate the large deformations of a cantilevered
beam loaded by a concentrated transverse load at the free end (Ref. 22).
The mumerical results obtained were in very good agreement with experi-
mental results, which indicates that these equations are reliable and can

be used with confidence in a variety of applications.






Fig. 1b. General Description of the Wind Turbine Geometry
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Fig. 2a. Typical Description of the Undeformed Blade in the Rotating System x, vy, z (i, i ,5)
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APPENDIX A

DEFORMATIONS

A detailed development of the expressions in this Appendix can be
found in many books on elasticity (for example, Refs. 10, 11); therefore,

these are only bfiefly repeated here for the sake of clarity.

Consider a material point P in an elastic body, where the posi-
tion before deformation is given by the position vector r (Figurg A-i).

The position vector r is a function of three coordinates, such that:
r = ;(xo,yo,zo) . (A-1)

The coordinate system shown in Figure A-l is an orthogonal Cartesian
system with the unit vectors é;,é&,é; in the directions x,¥.,%,,
respectively. Thus:

r = x,& + y’oey + 208 . (a-2)

After the deformation, the material particle is located at point
P' (see Figure A-1) defined by the position vector R. If the initial

coordinates of the particle are used as independen£ variables, then:
ﬁ = i(xo,yo, zo,t) ,. (A‘B)

where R 1s also a function of time because the position of the point is

a function of time (xb,yb,zo can be considered to be the coordinates of
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the point at t = to).

If V denotes the displacement of the point, then:
R = r+V . _ (A-L)

The base vectors of the point before deformation are defined as:

By ST, 3 BT 3 8 =T . (A-5)

After thé deformation, the bé.se vectors are:

G, =R _ ; §y=R ; G =R _ . (A-6)

The strain components are given by Equation (2-20) of Wempner in

Reference 11 (where xo,yo;zo is an orthogonal system):

= -]-: G ) G - . = = -]—' G [ e .
T 568 -1 e = = zé(qx; ‘fy) f
= ; G [ G - * = = -]-'- G [ G H -
€y = 2 (Gy G, 1) ; € s € 0 5 (Gx Gz) ; (A-7)
= l— G . G - . = = —]; G L) G
€~ 266 -1)5 e =g =50 5).
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Fig. A1. Position of a Material Particle Before and After the Deformation



APPENDIX B
MECHANICS OF A DEFORMED ROD WHICH IS SLENDER AND

STRAIGHT BEFORE DEFORMATION'

B.1 General Expressions

A straight slender rod is shown in Figure B-i. Every material point
in this rod is described by a rectangular Cartesian system of coordinates,
’ ‘X35¥yr%,+ The coordinate x, 1is identical with the elastic axis of the
rod, defined as the line which connects the shear centers of the cross
sections of the rod. It is assumed that the elastic axis is a straight line.
In this case, X denotes length alcong the elastic axis of the undeformed
rod, while Yo and zZ, denote lengths along lines orthogonal to the unde-

formed elastic axis.

Before the deformation the position vector of every material point is

given by:

To= xe + ybey'+ 208, s (B-1)

while after the deformation, at time ¢, the new position vector is:

R = ﬁ(xo,yo,z'o,t) ° (B=2)

The displacement of the particle is:

(B-3)

<t
[
i
'
i
[ ]
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Looking at a particle, which before deformation lies on the elastic

axis, its initiel position vector is:
r o= x.e (B-4)
and its position after the deformation is given by:

oi‘z = R(xo,o,o,t),. (B-S)

The displacement of this point is denoted by:

- A

W = v(xo,o,o) = ue + Ve +we . | (B-6)

The base vectors of the undeformed rod are simply (according to Eq.

(A-5)) the orthonormal triad :

B =€, 3 & =€ 3 B =& , (B-7)
yhile the base vectors of the deformed rod are (according to (A-6)):

('}x = ﬁ,x = (r+ \7),x = €x + V,x

ﬁy = ﬁ',y = (r+ \'i),y = éy + V’y 3 FB-B)

az = i,z = (r+ V),; = é\z + v,z

and at the elastic axis, a set E ,E};,E is defined as:



= % = _ 2 -
Ex Gx(xo ,0,0) e+ w’x ‘
= (L+u ) +v € +w &
XX »x Yy »X 2
} . (B-9)
E, = Gy(xo,0,0) = &+ v(xo,o,o),y
E = Gz(xo,0,0) = e + V("o’o’O),z )

The strains at any point are calculated by using Equations (A-7).

The motion which carries the rectangular lines of the undeformed rod

into the curved lines of the deformed rod, carries the initial tangent unit

vectors é;,é&,é; to the current tangent base vectors, éx,ay,éz,

respectively. This motion can be looked upon as two successive motions:

A ~

First, the triad é;,ey,ez is rigidly transformed and rotated to the

orientation of an intermediate orthonormal triad é;,é;,é;. Next, the inter-
mediate triad is deformed to the triad Ex,éy,éz which means changing the
angles between the vectors as well as the length of the vectors. The

procedure which was described above is illustrated by Figure B-2.

"~ ~

o Céhéidei’a’tfiad’”ék;ey;ezl>wh1chfis;positioned”onﬁthgAg;gsygqigxigjw 7

of the rod before deformation. In the stage of rigid transformation and
rotation this triad is carried to the triad é;,@',é;, respectively. With-
out any loss of generality, let us assume that é; is carried in this

stage to the direction of Ex’ which means that it is tangent to the

elastic axis of the rod after deformation.

A ~

A~ A' I\' A'
If the rotation of the triad ex,ey,ez to the position _ex,ey,ez

L1



is relatively large, it cannot be described by a vector and it is treated by
means of Euler angles (see, for example, Novozhilov, Ref. 12, Chapter VI,

p. 205). If it is described as a finite rotation O, sbout &, followed
by a rotation Oy about é&, followed by a rotation ©_ sbout é;, then

the triad é;.é;,é; obtained after these three rotations, is given by:

Ar A ~
= + |
é (cos Oy cos Oz)ex (cos Oy sin OZ)ey

- gin oy e, , (B-10a)

>
I

(sin©® s8in @ cos © - cos @ sin 0 Je
x v 2z x 2z’ x
+ (cos @ cos © + sin © sin © sin 6 )é
x z X y 2%y

+ (8in 6_ cos Gy)ez | , (B-10b)

é' = (cos© sin© cos © + sin @ sin 0_)é
z x y z x z’%x

- (sin © cos © -cos © sin 6 gin 0 )é
x z x y z’%y

+ (cos 6_ cos Oy)ez . (B-10¢)

Equation (B-10) are identical to Equations (A2 ) of Hodges and Dowell (Ref.

8), after replacing Ox, Oy and Oz by 6, -B, and t, respectively.

Consider the deformation of an element dx0 on the elastic axis
of the rod, as described in Figure B—B. The prdcedure is as follows:
First, the element is carried in a rigid body translation that does not

appear in Figure B-3. Then the element is stretched by an amount -



LY dx, to the position A- @. Then the element 1s rotated by 6, about
e, while point @ moves a distance v’x d.x0 to location (é) , followed
by a rotation -Oy, while the element tip moves from location @ to @) .

' Finally, the element in its position A - Q) is rotated by an amount Ox

about itself. From Figure B-3, the following relations are obtained:

sin Oy = - , (B-11a)

‘cos Oy = X X 2X ey ’ (B-11p)
\j 2 2
l1+42u _+u_+v _+w
’ ’ X X
. v x :
= 2 ) -
s8in 02 o > = » (B llc)
\[l +2u _+u +v
’ ’ X
l+u *
cos 6, = 2 . (B-114)

=
,\]1+ 2u _ + uz + Vz
ol . - N-L L X X X

The quantity u % is of the magnitude of strain, as will be shown
?

later. Assuming that the strains are small (say, € < 0.01) which is the

13
case for most engineering materials, then the expression u x will be
)
neglected in comparison to unity. Next, it is assumed that v x,w - -and
b4 J
ex are quantities of magnitude equal to or less than € (in our case,

€ ~ 0.2), and quantities of the magnitude of e are negligible compared

to unity.
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Using these assumptions and expanding sin Ox and cos Ox into

series, one obtains:

sin 6 = © ; sin 6 = -w ; sin 6 =+v H
x X Y ’X z » X
(B-12)
cos © = 1 3 cos © =2 ; cos & = 1
x z

At this stage, in order to be consistent with the usual notation in
the literature (for example, Reference 9), ex is replaced by ¢. Sub-

stituting Equations (B-12) into Equations (B-10) implies:

(1]
i
]
~~
L
+
~—
(]
+
(1]
+
©
(1]
.

3 | (B-13)

Because the rotations are treated as finite, it is not surprising
that the triad é‘;c, é;, é‘; depends on the sequence of rotations. If the
sequence consists of rotation Oy about €y, followed by a rotation Oz
about 32, and finally, & rotation ©_ about éx’ as described in
Figure B-4, then the expressions become: '

&' = & +v & +w_é
x )Xy )X oz
-~ I A A ¢ - ~ . _
& (v,x + W,x)ex + &+ ( v,xw’x)ez (B-14)

Ay - - A - °A + ~
e = .(wx 'W’x)ex e, + e,



The triad (B-1h) differs from (B-13) by tems of second crder. Other
different sequences of rotation will yleld other triads which will differ
fram each other by second order terms. Therefore, it is most important to
retain one particular triad during a complete derivation, and consistency

_ with this selected triad. In the theory of space curves there are three
1m§ortant quantities, defined as (for example, Wempner, Ref. 11, Eqs.
(8-19) - (8-21)): |

K = é‘n . é‘v = _é‘v . é"
Yy Yy X, X X YrX
-— A N ~ A
K = @' «eg! = -g' . e B-
z z Xy X X Z,X ’ ( ,15)
T = é‘t . @' = 8! e e'
2 YrX Yy Z,X

where ny and K  are curvatures, while T is the twist. Equation (B-15)
represents the exact expressions for the curvature and twist when strains

are neglected compared to one. If e;, e&, and 8; are given by Equation

(B-13), then:

A ~ ~
! = e +w
X, X ' XX Y XX~ Z - - o o
Al = -(v + 9% w +%w e + ¢ @ o (B-16a)
Y,X P XX X X XX X »X 2
e =-(w__-¢ v )é

”
-ty Je - (® +v w _+vV w e
Z,X »XX | X HX ,xx’ox ,X ,XX 5 X ,X Sxxy

Substituting expressions (B-16a) into Equations (B-15), and assuming

that v w_, and ¢ are of the same magnitude, and neglecting
>

xx! T,xx »X

again terms of the magnitude of 52 compared to unity, implies:

ks



K = v + O

Yy » XX 1 XX
K = - o -
z Vo ¢V,xx (B-16v)
T = ¢ +v _w
X »XX ,X

The term v — % in the expression for twist is a well known
? » . ) N

term in the theory of rods (see for example, Reference 11, p. 390,

Eq. 8-152d). Tt has also been used in rotor dynamics by

Kaza and Kvaternik (Ref. 15).

From the definitions (B-15) and the orthonormality conditions of

the triad é\'x,é‘;r,é\;, it is clear that:

A ~ A
] = K e' + K e'
X, X Yy z z
A A ~
x Tyt TS ’ (8-27)
ad} = -K é\l - T gi

which can be easily verified by substitution of expression (B-17) into

the definitions (B-15).

B.2 Bernoulli-Euler Hypothesis

At this stage, it is necessary to find an expression for R. This
always requires certain assumptions. In the present case, the well known
Bernoulli-Euler hypothesis will be used. In most cases this hypothesis

is stated as follows: During bending, plane cross sections which are



normal to the axis before deformation remain plane after deformation, and
normal to the deformed axis. Usually, this hypothesis is combined with
the aséuﬁption, although not always stated, that strains within the cross
sections can be neglected. This assumption will be used in the present
study also. (fhis is similar to the case of”plate and shellé vhere the
analogous Love-Kirchoff hypothesis 1s used.) This Hypbthesis leads to

fhe following results:

i = . o B = A \ -
Ey & E e (B-18)
and
- = ~ - /\' A' ) A'. L. R _
R xb’ex + W+ yb ey-+,zo ez + @(xo,_yb, zO’ t)ex .. (B-19)

The last term in Equation (B-19) represeﬁts ;mall normal displacement
which, as pointed out by Novozhilov: (Ref. 12, p. 213), is a generaliza-
tion of the warping function of St.-Venant torsion. This function con-
tains only quadratic.and higher'degfee terﬁs in Yo andA z, and is
assumed to be small éompaied with tyﬁicai'cross—sectional dimenﬁion; of

the rod.

Substitution of the expression (B-6) for W 1ntoiEéﬁA£io;7(ﬁ-i§5jtxi

then differentiating (B-17) and using Equation' (B-17), implies:

¢ = R = (L+u )e +v & +w &
x »X ,x' x X Y »X 2
-k e ot “(a ’;l - Sy
+ yb( v ey + T ez) + zo( K, € =7 ey) |
+ ) K &'+ Kk @ -
'¢,x ér + Q( g S, ez) . (anpa)
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G = R_ = ¢€+9_& |, (B-20b)

y Y Yy Y X
G < R = at ot
G, R,z = &)+ ‘P’z e, . (B-20¢)

By definition, é‘;: is a unit vector in the direction of ix.
Defining €__ &8 the strain of the elastic axis, end then using the

first of Equa.flions (B-9), 1mpiies:

E = Q+u_)e +v_¢& +w_é
X ( ,x)x ,X'y ’xz

= (1+ E'n)é‘;‘ . | (B-21)

From Equation (B-21), using the phthagorian rule and neglecting terms of

order €2 compared to unity, implies:

o~ l ,2 2
E = - . ) . . -
s wLts (v,x+ w’x) (B-22)

Substitution of Equations (B-20) into the expressions (A-7) of Appendix

A for the strain components, and making use of Equation (B-22), implies:

xx xx Hx
’ 1
€ = = - T + K . B-2
o "y TreR) (3-23)
1
€ 2 5 (ep,z+ yo'r+q1nz)

In deriving the expressions (B-23) use was made of the fact that
the quantities Yo Ky, Zy Kz, Yo T, Z, T, @’x, 9 Ky’ @ ‘z’ ‘P’y:

and @ z are of magnitude of strain and therefore less than 82.
>
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B.3 Force and Moment Resultants

In calculating the stresses in the rod, use is made of the con-
stitutive relations of the material from which the rod is made. In the
present case it is assumed that the rod is made of isotropic Hookean
material which is homogeneous for every cross section. On the other hand,
in the present study the assumption that Uw = czz = 0, commonly ﬁsed
for slender rods, is m'ade.' However, eaccording to the .Bernmn.'l.li-Eulér
hypothesis, € vy and Ezz should also be zero, and the vanishing of
) vy’ L ey’y and €, 0 simulttméously, is inconsistent with Hooke's
Law. This inconsistency, which is inherent in the Bernoulli-Fuler hypo-
thesis, _ﬂ.though not always stated is explained in the literature in |
dif‘ferexit ways. One of the explanations is that one is dealing with a

material having a special type of orthotropy.

The constitutive reletions for an orthotropic material, as given

by Lekhnitskii (Ref. 14, Eq. (3-7)), are:

v
1 21 31
E = 0 - ==0 - o
xx El lod 1‘.‘.2 Yy E3 zZ
v v
120 _1 32
I - e ¢ A A - & S B
¥y B By By o
v v
15 23 1
€ T w0 =<0 + =0
44 El xx E2 yY E3 22z
b Py (B—‘Bha)
E = 6]4- T )
yz 23 Y2
1
€ = = T
b'e ] G13 X2
1
E = —= T ,
xy G X _ J

L9



It is assumed, that in the present case:
=V v, 0 E, & ®3 G 26 o (B-2kv)
Vo1 = Vs T2 T3 705 B 2 Es 3 Gz = Gy . B-24b

By using Equation (B-24b) together with the relations (B-24a), the incon-

sistency that was mentioned earlier, disappears.

Ancther inconsistency which is inherent in the Bernoulli-Euler
hypothesis, concerns the shearing stresses. If torsion is neglected,
the assumption f;hat plane cross sections, before deformation,v remain
plane after the deformation, means that the shearing strains gxz and Eyz
are zero. (These camponents are due to contributions other than torsion.
The contributions due to torsion appear in Equation (B-23).) This meens ,
according to Hooke's lLaw, that the shearing stresses due to contributions

other then torsion disappear. However, these stresses, TJW and ?xz’ or
more accurately their resultants -- the shearing forces -- do not vanish at
all. Furthermore, they play an important role in the equilibrium calcula-
tions. Sometimes this inconsistency is explained by taking (133 = G13 -
®© in Equations (B-24a). In the present case, where shearing strains

due to torsion are also present, this assumption will csuse some
problems. Therefore, a better explanation is fha.t in the case of slender
rods the shearing strains are very small, so that they do not violate the
hypothesis; however, their integral over the cross section should be taken

into account, implying that the shearing forces cannot be neglécted.

Using Equations (B-24a), (B-24b) together with the strain relations

as given by Equation (B-23), implies:

*The two in the expressions for (}23 and Gl‘)’ is needed because shearing

strains in Ref. 1l are defined without the factor 1/2 which appears in
Eq. (A-T) of the present study.
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(] = EE€
X p.o g

= ECy - Y vy "% "y * (p,x)

T = '? + 2G €
o (B-24)

'?+G<P -2 T+ @K
Xy (,y 0 .cpy)

T = T + 2GE€
Xz Xz

= 'rxz+G(<p’z+yoT+cpnz) -

Detailed expressions for ;JW and ;xz are not required, as will be shown

later.

The force which acts on the unit area of the cross section of the

deformed rod, is:

o G + T:qr Gy T g G e (B-25)

Using Equations (B-20), (B-21), combined with (B-25), one obtains:

—_ = -~ - - < A,
t [crxx(l tE_ -7, ny zo K, + cp,x) + TJW (p’y * T, CP,z]ex

+ [axx(-zo T+ @ ny) + T’Ulé;

+ [an(yo T+ Q nz) + Tjtz]é; . . (B-26)

Assuming that the stresses are of the same order and negl_l.ecting _terms

*
of order €2 compared to unity, implies:

*

See comment on page 57.
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t =06 &' +71T &' +71 @& . B-2
v & . (B-27)

The resultant force, F, which acts on the cross section, is

obtained by integration:
F = ry = ] ot ol
F j] t dy, dz, T e, + vy é, + v, e . (B-28)
A

Before proceeding, the warping function, which until now was treatéd
in a general manner, has to be considered. One possibility it to treat it
in an exact fashion as done by Wempner (Ref. 11, Chapter 8). This procedure,
however, complicates the derivation considerably. Instead, when dealing
with a slender rod, it is possible to introduce an assumption analogous to
the one used for the case of the St. Venant torsion, whereby ¢ can be

written as:
¢ = T $(x0 ) yo, zo) » ’ (B“29)

where 6 is still a function of x, because it is conceivable that the

cross section changes along the span with Xg°

According to Equations (B-28), (B-2k), (B-27) and (B-29):

T = ﬂ E(sxx - ¥ ny -z, uz + T,x P+ T q>’x)dyo dzo . (B-30)
A

Restricting the derivation to symmetric cross sections (at least about one

axis of symmetry) yields:



[[ ¥ ay, az, = _[[ a,xdyo az, = 0 (8-31)
A A
and Equation (B-30) becomes:

T = EA(Exx-yoc Ky = Zo k) (B-32)

while:

_[/Vodyodzo = yot:A 4
A

(B-33)
[fzodyodzo = zocA .
A

The point (yoc’zoc) i8 the point of intersection of the tension
axis and the cross section. Equation (B-32) together with the first of

'Equations (B-24) implies:

After examining the force resultants on a cross section of the de-
formed rod, the moment resultants about the point Vo =25 =0)y ¥, wild

be considered, where:

aa . (B-35)

ctt

:ﬁsffax

A
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According to the Bernoulli-Euler hypothesis:
= ot at
d Yotz +TOE . | (B-36)

Substitution of Equations (B-27), (B-24) and (B-36) into (B-35)
impiies:

M = Mxe + My ey+ M ez (B-3T)

X

where:

ﬂ [yo n]dy dz, \

- I[ [cxx 2y = 7 g;rxz]dyo dz ‘? . (B-38)
A | o |

= U/f [-o'xx Yot T ? T:qr]dyo dzd )
A

Substitution of Equation (B-24) into the first of Equations (B-38)
implies: -

M o= [[(yo Tz ~ %0 Txy)Wo 4o+ G K, T j] Yo @ dy, dzg
A A , |
T[/qzo“’dyodzo
A
+G*ﬂ[y2+¢2+y$ -z‘$]dy dz (B-39)
ot %ot Y ?, - % P Ay, dz, .
A

sk



The first integral in Equation (B-39) is the torque which is produced
by the shearing forces V.,V around the point z, =Y, = 0. This point
is the shear center of the cross section; thus, by definition this integral
becomes zero. The iast :Lntegra.'l.' is the torsional st;ffness, J, of the
cross section known from St. Venant torsion. Thus, expreésion (B-39)

simplifies to:

Mx-GJ1'+G‘ru ﬂyo¢@0dz

..G'rn ﬁz <deodz . (B-40)

Substitution of Equstions (B-34) and (B-24) into the second and

third of expressions (B-38) implies:

My = -ELEBKy-EIBBKz+Tzoc+T,xE I[ zOCdeodzo

2 T = a o .
-7 K, G I/ Q dyo dzo 5 (B—l&la}

25



rr oo
-7 E'VU Yo q>, dy, dzg + T JL'/ ¢ . dys dzg
A A

\.,’\.i ) O o
A A
2 [ /
K . -
+ T v G . & dy, dz, 3 (B-41b)

- where 122, I and 123 are flexural moments of inertia given by

33’

2
L/ Woe - ¥o) vy dz,

e

r 2 B ]
I;5 = \1} (zo - zo) dy, dz, (B-42)

Ly = JJ/ Voo = ¥o) (2o - zo)dyo dz,

The underlined terms in Equations (B-41) become zero in the case of a

symmetric cross section, which 1is the type of cross section being considered.

In the case of slender rods with closed cross sections, the influence
of warping is usually neglected and in this case, expressions (B-40) and

(B;hl) become :
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M =GJrT

4
[

= -E Ly Ky - EIgzk, + Tz (B-143)
Mz = E I22 Ky + E 125 K, = T Yoe

Comment: In Equation (B-26) a contribution of the axial stress
to the shearing forces acting on the cross section of the blade exists.l
F_or. beams where the torsionel stiffness is very small compared to the
bending stiffness (1like the case of beams with thin open cross sections)
this contribution, sometimes called the trapeze effect, can cause con-
giderable influence of axial forces omn the torsional rigidity of those
beams (see, for example, Ref. 16). However, rotor blades, which are the
8subject matter of this study are made of elther closed or solid cross
sections, where the above mentioned effect can be neglected, as pointed
out by Goodier (Ref. 16, p. 386, second column, line 18 from the top).
Therefore, the assumptions leading from Equation (B-26) to (B-27) seems

to be appropriate for the present study.
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Fig. B2. Procedure of Deformation
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(1+ u,x) dx,

Fig. B3. Euler Angles When the Order of Rotation is Bz, By, Bx
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o)

dx

Fig. B4. Euler Angles When the Order of Rotation is ()y, 02, ()x

61



APPENDIX C

EQUATIONS OF EQUILIBRIUM OF A DEFORMED ROD

In Appendix B the expressions for the resultant forces and moments
which act on a cross sect;pn of a deformed slender rbd., which was initially
straight, were calculated. Furthermore, it was us@ed that the rod is
subjected to a distributed force, f), per unit length of its undeformed
axis. This load D includes body forces, surface tractions and inertial
loading. The'i;é is also a mament c-l per unit length of the undeformed
axis of the rod. This includes 'body couples, moments of surface tractions
and moments of inertial loading. The loads p and q are assumed to be

continuous and also having continuous derivatives.

Figure C-1 shows a segment of the deformed rod. From equilibrium

of forces the following equation is obtained:
F_+p =0 . " (c-1)

From the equilibrium of moments about the point P, 1letting d.x0 - 0,

the following equation is obtained:

. (c-2)

=
+
Ne ] ]
+
(1]
s
X
=il
]
o

»X

The load p and the couple 4-1 are described by their components:

€2



Lo k]

’

= 14 jad ol |
px ex py ey +. PZ eZ

(c-3)
- = A' A' A'
q A Sy * 9, ey T e
Substitution of the first of Equations (C-3) into Equation (C-1),
together with Equations (B-17) and (B-28), implies:
- - = ot :
T "%y vy €, V, * D 0 (ex direction)
V _+r T « 7V _+ = 0 e' d . -k
vx "y 2t Py (e irection) (c-4)

Ay
V, tE, T+ T v&-+ D, 0 (ez direction)

Z,X

Substitution of the second of equations (C-3) into (C-2), together

with Equations (B-17), (B-28) and (B-37) implies:

-k M - 4+ = o} .
Mﬁ,x Y 'v. “e Mz a, 0 (éx direction)
- ’ - = o _
My,x+ Ky Mx T Mz + qy Vz 0 (ey direction) . (C=5)

+ K o!
M LM T M+ g, * v, 0 (ey direction)
Equations (C-4) and (C-5) are exact, and contain no approximations.
The procedure of solution is as follows: Expressions for V_ and Vz
are obtained from the second and third of Equations (C-5). These are
subsequently substituted in Equations (c-4). Following this procedure,

the expressions for the shearing forces become:
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vV = -(M +nzux+'rMy+qz) ,

Yy ZyX
(c-6)
Vz = My',x+ ny_M‘x - T Mz+ qy e
Substitution of expressions (C-6) into Equations (C-4) implies:
T,x + Ky(Mz,x+ T My + qz)
- ‘_nz_.(My,x -TM + q_y) +p, = 0 ’ (c-Ta)
'(Mz,xf Ky Mg * T My M qz),x+ Ky T
- T(M + K M -TM + + = 0 -
R (»y,x'yx_ zﬂv) Py 7 ’ (c-7)
Mt Ry M TH ) e T _
-T(Mz’x+ K, M +.T My +.9~z)+ », = 0 e .(C-7c)

Equations (C-7) represent the equilibrium of forces in the direc-
tions é‘;‘, 63',, and é‘;, respectively. There is still the moment equa-
tion, in the é‘;‘ direction that must be satisfied, which is:

Mx’x - = M -k, M +q =0 . (c-8)

Equations (C-7) and (C-8) are accurate and contain no approxima-
tions. These four equations (three of (C-7) and one of (C-8) must be
gsolved in order to investigate the problem of the deformed rod. In order
to obtain a solution, it is necessary to express the moments in téms of

the derivatives of the displacements and the rotation of the cross »
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section about the elastic axis.

This reduces the problem to one contain-

ing four equations and four unknowns.

In trying to simplify the equations, use can be made of the order-

ing scheme.

implies:

T

+ K M
»X Yy 2,x

M +7(k M + K M)
zZ YiX y Yy z z

* Ky 9 - Kz qy TP °

-M
%y XX

- (nz

» X

+ TR )M -k M -
y'x

Z  X,X

T

’X

M
y

2
- 2T M + T M + KT - -7 +
Y,X z y qz)x qy py

M+ (r

Y, xx

Y,X

-TK )M + Kk M -
z"x y

Xy X

T

X

M -2 M
z 2

2
-T M + Kz T + qy’x -T qz + pz = (Q

M -

X, X

The underlined terms in Equations (C-9b) and (C-9¢)-can be . . _

neglected according to the ordering scheme.

K

M

y

y

- nz Mé + qx = 0

» X

Performing the differentiation in Equations (C-Ta - c¢)

0

-

As an example, consider

(C-9a)

(c-9p)

(C-9¢)

(c-9a)

Equation (C-9b). The underlined terms 7° M, can be neglected, com-

pared to the term

-M
z

)

which also appears in the equation.

As a

clarification, recall that according to the ordering scheme one can

write:

M

Mz(l -9 .
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If both sides of the last equality are differentisted twice with respect

to x, it implies:

-~ 2
Mz,xx Mz,xx - Mhn 4,2 B th,x w,x - ZMz(‘p,x"' w,xx)

The underlined terms in the last equality are negligible compared
2 . . 2
to Mz,xx' The term -2Mz Q,x is of the order of magnitude of T Mz
and so neglection of the underlined tez_'ms in Equations (C-9) is justi-
fied. It is clear that the last argument is correct only if deflections
and force and moment resultants are changing gradually along the span

and do not have very high gradients.
Substitution of the expression for M__ from Equation (c-94d)
: , R
into Equations (C-9b,c), and using the ordering scheme, implies the fol-
lowing set of equations: h ‘

- K K
T,x+ % Mz,x K My,x+ 7( v MY_+ K Mz)+ v 9

- K = - -
2 O+ By 0 (c-10a)
-M - +TE )M - (T +k K )M -2T M
Z,XX- 2, Yy x ’ z 'y - - »X
. - T - = - :
+ K THK q qQ -9,  *t P 0 (c-10p)
M + (x “TK )M - (T _ -k K )M ~2TM
¥HrxxX ’ Z' x ’ z' 2z ’
- K - = -
+5, T v % qu+qy,x+pz 0] (c-10¢)
Mx,x - Ky My - Kz Mz + q = 0] . (c-104)
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Sometimes it is more convenient to write the equations of equi-
1ibrium in the undeformed directions (Qx,Qy,éz), instead of the
directions after the deformation (é‘;{,é};é‘;) as was done in the previous
part of this Appendix. The general relation between the two systems is

given in the form:

A' = Fa) + ~ ”~

ex ex S12 ey + Sl3 eZ

A' - ~ A ~ -

e Sy1 € * e, + 8,3 €, . (c-11)
A' = A + ~ A

e 551 ex 832 v + ez

Two such transformations, belonging to the class of transformations
containing the inherent assumption that quantities of | order of 62 are

negligible compared to unity, are presented in Appendix B as Equations

(B-13) and (B-14). The components Sij are of order, E, or less.

The resultant elastic force on a cross section of the rod is given

in an analogous manner to Equation (B-28), by the expression:

e F_=.T & +V 8.+ V.e. . .. .. (caz)

and the resultant elastic moment, which acts on a cross section of the

rod is given in an analogous manner to Equation (B-37), by the expression:
M = Mx + My e‘ + M e . (C-13%)

Equations (C-12), (C-13), (B-28) and (B-37) together with Equation

(c-11) imply:
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T4V + S Y (c-14)

and

M = S M + S 'Y -
My L+ My 2 M, (c-15)

The distributed force P and distributed moment q per unit length

are given by (compare to Equation (C-3)):

P = p Etp &+ 6
(c-16)
Q = qxex+qyey+qzez *

From the equilibrium of forces (Equation (C-1)) the following equa-

tions are obtained:

T,x + px = 0

Vv _+p =0 Cc-1
¥, x Py ’ ( 7)
vz,x + pz = 0

and the equilibrium of moments (Equation (C-2)) implies:
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Mx,x-313vy+ S2 V,*q, = O
My,x+ s13 T - V, + q, = o] . (c-18)
Mz,x_slz T + Vy + qzh = 0

From Equations (C-14), neglecting terms of order 62 compared to
unity, one obtains:
)v . (c-19)

i"='1'+(s )v+(s

51 23 21 32

- The second and third expressiops of Equations (c-18), together

with (C-l9 ), yields, after neglecting terms of the order 82 compared

to unity:
Vy = _ﬁz,x+ S12(831 S21 32)M
+ 5y, T - Ez +8)5(85) = 8,y 32)qy , (c-20a)
v, = ﬁy’x (s 831 23)M + 85T S
- sl'3(s21 31 23)q + qy (c-20v)

Substitution of Equations (C-19) and (C-20) into (C-17) and the

first expression of Equations (C-18), yields:

(T - (821 s31.8’2.‘3)ﬁz,x * (331 - SZiSBE )ﬁy,x],x
- [(sy, - S 25)q] + [(S31 2132)qy] = 0 , (c-21a)
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['Mz,x+ S12 (831 21832 )My,x],x (812 T) ’X

- E’z,x + [8,,(85) - 85, 32)qy] =0 » (c-21p)
[My,x - 813(821 Ss51 25)Mz,x ,x T (s 513 T)

+ qy,x - [813(821 - S31§23)qz],x+ pz = O‘ ’ (c-21e)

~ ~ ~ ~ ~

x* Sl3 Mz,x + 8, My,x + 8, q, + Sl5 q +a = o . (c-21a)

=

According to the assumption that quantities of the order of Ez are

negligible éémpared to unity, and the» orthonormality of the transformation

represented by Equation (C-11), one has:

21~ 5353 = Sz '

ne

S -

533 7 5218 = 543

Slz+ 831832 = -821

813 % 83155 = =55

~ } . (c-22)

Sp3 = 512551 = Sp

S5 = 8135, = =53

Sp0 * 81353 = -8

S.. + S..8.. = -§

51 1273 13 '
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Making use of Equations (C-23), Equations (C-2la - d) turn out

to be:

(T + 512 Mz,xf SlB},My,x),x ‘
+ (312 qz)’x - (s13 qy),x+ p =0 | (23a)
('Mz,x - S12813 My,x),x * (512 T),x " 9%, x

- (512513 qy)’x+ P, = 0 (c23b)

~ ~

(My,x M S12S13 Mz,x),x * (SlB T),x+ qy,x

+ (

51213q)x+p = 0 (C23c)

~ ~ ~ ~ ~

Mx,x * 813 Mz,x+ S].Z My,x+ S12 qy+ Sl} 9 + qx = 0. (c23a)

Substitution of Equations (C-15) into Equations (C-23), using
Equation (c-2kd) also, to substitute for Mx <’ and neglecting terms
9

of order 82 compared to unity, ylelds:

{T - S21 Mz,x+ s}l My,x B SlB(S ),x Mz+ Slz(s ),x Yy
+ [slz(su),x-sn(s ) x] x},x (s,, qz),x— (815 q_y),x+ p =0 (c-2ka)

- {Mz,x * (315),:: Mot [(823),1: - Sl (821),x]My - Sy My,x},x

* (812 T),x - ;z,x+ (815 ;x),x+ py. =0 (c-2kv)



M+ (Snz),x M_+ (s )’ 12(Sﬂ) M,

-5, M -
’ 23 Z,X},x

+ (813 T),x - (812 qx),x+ q'y,x+ p, = 0, (c-2ke)
’

+ [(8y0) L+ 8y3(8y5) I+ [(557) _+ 8p,(85,) Iu,

+aq + S, qy+‘ su‘q2 -0 . , (c-24a)



Fig. C-1. Forces and Moments on Segment of the Deformed Rod
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APPENDIX D
DERIVATION OF THE EQUATIONS OF EQUILIBRIUM BY THE

USE OF THE PRINCIPLE OF VIRTUAL WORK

D.l Principle of Virtual Wor_k Applied to a Rod

Usually, in a structural system subject to loads, internal forces
develop between the various components of the system as a result of the

I)

and that of the externsl forces WE‘, then the principle of virtual work

external locads. If the work of the internal forces is denoted by W
can be simply expres'sed as:
e N = - 89 (D'l)

where &WI and SWE are the work done during a virtual displacement by

the internal and external forces, res_pectively.

In the case of an elastic system,
U = -W (p-2)

where U 1is the elastic energy in the system. Therefore, Equation (D-l)

becomes :
(D-3)

Using Equations (D-2) and (D=3) implies (for example, Eq. (9-125)

s



of Wempner, Ref. '11), the following expression for a continuous ‘bo'd.y:

W. = = /]] [0&+c$+a$
T XX XX Yy . yy %2 2%

Volume of the
body

+ ZTWBEW + Zsz &xz + 27T vz yz]d.x0 dy,, dz, . (D-k)

For the case of a slender rod of length £ and cross section

' *
A, within the framework of the Bernoulli-Fuler assumptions

Equation (D-4) becomes:
xo""‘l -
-f =0 _/:/- [oxx Ex? 21:0' SE:x.v"’,z'rxz 88ch]d'xo dy, dzg - (-5)

_The virtua.l displa.cement of the rod is given by a displacement

BW (xo) of every point on the elastic axis, a.cccmpanied by rotation
86 (xo) of the triad ex,ey,ez at every point of the deformed rod. The
virtual rotation 8O can be described in this case as a vector because
it is infinitesimal. Tﬁe rod is acted upon by a2 distributed force, D,
per unit length of its undeformed axis, which includes body forces,

surface tractions and inertia ‘loading, and it acts at the elastic axis

%*
The fact that ey'z = 0  emerges from the assumption that strains within

the cross sections of the rod are neglected.
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as described in Appendix C. There is also a distributed moment, gq, per
unit length of the undeformed axis of the rod. It includes body couples,
moments of surface tractions and moments of intertial loading. This

moment also acts at the elastic axis of the rod. It is clear, therefore,

that:

ot
Jx0=o

BW., =

. (p-8W+q- sé)dxo . (D-6)

Equations (D-3), (D-5) and (D-6) imply:

xo=t .

€ T € T €

fx():o u[f [Uzocsxx+23w6w+zxzaxz]dy0dzo
A

-pe8W -q+80 jdax, = O . | (p-7)

According to Equations (B-23) of Appendix B:

BCx = BExx " Vo B fy =% B,
= - -
BE - 5 2,87 . (p-8)
= 1
88xz = zY% o7

In deriving Equatica (D-8), use was made of the assumption that
in the case of & slender rod with closed cross section, the influence of

warping is negligible and, therefore, the virtual work is taken as that
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performed during a rigid body motion of a slice of the rod, and thus, B3¢
is assumed to be zero. The'terms WSK& and ¢6nz are also neglected as

& consequence of assuming the warping to be negligibvle.

Substitution of Equation (D—8) into (D-7), use of Equations (B-38)

from Appendix B, and neglecting the influence of warping, implies:
(Toe _ + M, 8K - M BK_+ M BT - D.5W - q+88)ax, =0, (0-9)

where Bg;x, BKY, 8k and ST are functions of 8W and = 50. After

substitution of the appropriate values for Bg;x’ bk _, an and 5T, . the

y
equilibrium equations and boundary conditions are obtained by performing an

integration by parts of Equation (D-9).

In Chapter 2 of>thislstudy'it was shown that the equilibrium -
equations can be obtained with respect to different directions. In the
Present case, the definition of 5W and 50 determines the directions in

which the equations will be valid.

D.2 Equilibrium Equations in the Directions of the

Deformed Rod Coordinates (é},é},é;)

In this case, the virtual displacement is chosen as:
BW -= Bu'.e' +8v' e +8w &' ... . - (D-10)
x Yy z

The virtual rotation is given in the form:
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- = ~y ~y Ay v ’ -
50 n éy+tn & +n & , ~(p-11)

where nx,ny and nz are the components of the virtual rotation.

Due to 5W and 56 the triad é‘)'c,é;,é; is rotated to a new

Ll a1l

triad é\;" » ey ’ ez » given by:

&' = é'+50xe' = &'+n &' -n_ e

x x zZ 'y Yy

" = &' +50xe&' = -n &'+ e' +n_ e . (p-12)
y Y Yy z x Ty Xz

A~ A - ~ A ~ A~

e = o'+B30xXxe' = n e'-n e'+ e

z Y °x x 2z

It is clear that n_=38 9, however n, and "riz "are determined by BW.
In order to find ny and n, let us consider an element d.xo of the
deformed elastic axis, which is shown in Figure D-1. Before the virtusl
displacement, the element is in position AB, described by d.xo é‘;c. :

After the virtual displacement, the element is in position A'B', given

by:

A'B!

R+ dx, _é‘;c +8W + aﬁ_,x dxo) - (R + 5W)

Ay - V ‘ . )
(& + 5w,x)dx0 . (p-13)
Substitution of expression (D-10) into (D-13), and performing the differ-

entiation, while using Equation (B-17) of Appendix B for the derivatives

of the unit vectors, implies:
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A'B' = [(1 +8u' -K Bv' =K 8w')é‘l
X y z b 4

+ (&' + x Bu' - Tdw')e'

»X Y Y

+ (8w,'x AL Su' + T Bv')é\;]d.xo . (D-14)

Recalling that the virtual displacement 5W is as small as desired, then
from Equation (D-14), one obtains after neglecting products of virtual
terms:

e" = ée'+ (&' +«k Bu' - TBw')e'
X X »X Yy y

[ ' t \ Ot ‘_
+ (8wﬂ(+nzau + THv kz . (D-15)

Comparing Equation (D-15) with the first of Equations (D-12),
the quantities ny and n, are determined. Thus, the rotation components

are:

n = B¢

= -(®w' + Kk bdu'
» X z

=
I

n = (&v' + k _du' -7TBw')
z » X Y

Using definitions (B-15) from Appendix B, then:

9
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An A

K +8k = e L )
Yy y X, X Yy
= an e om ‘
*2 + t?’Kz ex,x ¢z * (>-17)
T +8T = @g"_ + @"
Yr»Xx z

Differentiation of expressions (D-12), using Equations (B-1T7)
of Appendix B, yields:

= kK e'+ kK @'+ K - Kk e
XX y & z &2 (ny z "2 y)ex

¢y, TRIEE (ny +Tn )8, (D-18)

~ A' A' I\'
= -K e +Te - \n + n K )e
¥ X Yy x z ( Z,X x z) x

- ‘ A'
(nx T+n lty)ey + (nx

FEES RN STy

Substitution of Equations (D-18) and (D-12) into Equation

(D-17), and neglecting nonlinear terms in L and n_, implies:

Bk = n + K n + Tn
. zZ X Y

y Z,X

K - -K + T .
6r, = nox " %y My n, (p-19)
8T = n - K -k n

Substitution of expressions (D-16) into (D-19) yields:

Bk = Bv' + (k _8u') - (r&w')
y ,n y ’x ’x

+ K 80 -TBW' -THK au'-‘rzbv‘, (D-20a)
z »X z



8k = Bw' + (k Bu') + (T3dv')
z , XX z X )X

2
-k 3+ T8v'_ + Tk Bu' -7 bW D-20
Y X Y ’ ( b)
BT = 6% + K Bw' + K K Bu' + Kk TBv!
' X Y X Yy 2 y
-k Bv' -k K Bu'+ K THW . (p-20¢)
z  ,X Yy 2 z

From Equation (D-14) it is clear that (neglecting products of components

of the virtual displacement):

~

BE = 8u' -~k Bv' - k_Bw' (p-21)
xx » X Y z

The load P and couple q are given with respect to the de-

formed system, in the form of Equations (1) and (2), as:

- = A' A' A'
P = p & +p &+p & ,

Substitution of expressions (D-10), (p-11), (D-16), (D-20),

(D-21), and (D-22) into Equation (D-9) implies:

X =4 :
1 t _ ' 4 '
fxo=0 (1 au!x T &y 8v Tk, 8w + M sv’n»f Mz(Ky 8u ),x

2
' ® . v . ' - '
Mz(‘r 5w ),x + Mznz ) Mz‘r Bw, Mz'r Kz Bu Mz‘r 8v

- By' - K 8u' - T3v' + Mk 3% - MTBY' =
M Bw' My(z,u)’x my( v)’x L SR A

’
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2 .
- 1 ' ¢ ' '
My-r nyau + MyT Sw' + be ,x+ Mxnyaw’x+ Mx nynz 8u
+ M kT8v' =M ¥ By' =M kK Bu'+ M Kk 7T8w'
Xy X Z X X Yy Z X z
- -p 8V -p BV - q 8%+ q Bw' +q K Bu'+ qT8v'-q B
P Bu' -y 8V - p 8V - g qy Vixt Gy R Bt qTdvicq,
-qzn 8u' +qz‘r8w')d.xo . ' (p-23)

Integration by parts of Equation (D-23) gives the following

variational expression:

£
(-R, 5u' - R, 8v' = R, 8w' - R, 6¢)
fso Ry du’ - Ry v’ - RyBw’ - R, B%lax,

xo
%~ = =2
+ @lbu'szgo+ [132 SVJ: _B}&r:l [}34 50':'::=0
* @5 5”11;'::: v !}6 °",';lxo:0 =0 (D-24)

where the various expressions in (D-24) are:

By = T .+ Ky(Mz,x+ ™ + qz) - K_z(My,x - TM 4 qy) +D (D-25a)

R, = -(Mz’x+ KM+ 'rMy+ qz),x+ ke T
- T(M + KM -TM + + D-2
(M o+ "M =™, + q )+ p , (p-25p)
R, = (M +kM -TM +q) +Kk T
3 (y,x Yy X z  Y/,x z
--r(-Mz’x+ nzMx+ 'rMy+ q_z)+pz _ ) , (D-25¢)
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"
=

R, _— KyMy - KMo+ Q. (D-25a)

and

1 Yy = zZ'y

B, = =-(M xt 2T My K, M+ qz)
B M + Kk M -2T M +

3 ° Ty,x Yy x z qy

. (D-26)

Bh = 'Mx

B5 = Mz
B6 = "My

With the virtusl displacement being arbitrary, the equilibrium

equations turn out to be:

Ry, =0, By =0, R, =07 T~ - = ~D-27)~

Substitution .of Equations (D-25) into (D-27) yields exactly the same

equations of equilibrium (C-7,8), which were obtained in Appendix C.

The boundary conditions for this problem can be obtained directly
from Equation (D-24), subject to the assumption that the boundary condi-

tions are not varied during the loading.
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B2 =0 or v=20

B, =0 or w=20

. (p-28)
- ¢ -
Bh 0 or 0
B. =0 or v =0
5 )X
B6 = O or w’x = O

The boundary conditions of free edge and rigid clamping, as
stated by Equations (9) and (10) of Chapter 2, are in agreement with
Equations (D-28). There is only one item which should be noted. In
Equation (9) the boundary condition of u = 0 at Xy = O is neglected.
This is due to the fact that T is used in the equilibrium equations,
instead of u. As a result of this'difference the first equation con-~
tains the first derivative of T 1instead of a second derivative of wu. If
expression (B-32) of Appendix B is inserted in the equilibrium equations
instead of T, using Equation (B-22) for g;x’ the boundary condition,

u=0 at X5 = 0, 18 needed when the unknown T is replaced by u.

De3 Equilibrium Equations in the Directions of the

Undeformed Coordinates of the Rod (é;,é&,é;)

As pointed out in Appendix C (Equation (C-11)), in general:
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e, = ex+ S].Z ey + 813 z
~y = LA A 3 ~ "
e Sy1 €t &+ Sp3 €, . (D-29)

Because of the orthonormality conditions, Equations (D-29) imply:

~ = A. /\'

ex ex+821e +S31 z

~ = ~y 'A' ~y

& Syp &5 + &y + 832 e, . | (p-30)
”~ A' I\' A'

ez = Sl} ex + 823 ey + ez

The curvatures and twist, using definitions (B-15) of Appendix B are:

- ol . 1 =
Ky ex,x ey (Sl2 ),x M (Slj),x 823
= . 1 = -
"2 *,x %z (813),x Y ),x 2 ) ° (0-31)
I . dani-Sl o B — = ~ ). -
T ey,x ez (S ), + (521),:: 5 e

In this particular case, the virtual displacemenf is chosen as

(compared to (D~10)):

BW = buex+8vey+8wez . (D-32)

Using Equations (D-13), (D-30) and (D-32), implies (compared with

(p-1W)):
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A7E"

A A
é&'+8u € +5v e +8w _e
X »X X »x Y X Z

sw e

e}
V,x+ Sl} XX

1+ Su,x + 8,

Ny
21 Su,x + Sv,x + 323 Bw’x)ey

A' -
3 80+ S5 B+ 5w’x)ez . - _ (p-33)

Neglecting virtual terms compared to unity in Equation .(D-35), implies

(similar to (D-15)):

A = /\' A'
e, ey + (821 Bu’x + Bv,x + 823 Sw’x)ey

+ (831 Bu,x + 832 bv’x + Gw,x)e; . (D-34)

' The virtual rotation around the elastic axis is 89 é‘}'{, thus,

\
according to Equation (D-12), one obtains:

n = 59

n, = (S5 Bu + S5 0v o+ sw’x) . (D-35)

m = S,,5%5u _ + 8v +8235w

Z 21 X 1 X X

Using (D-19), together with (D’-}l) and (D-35), implies:

5ny =8v + (821 8u ) - (825),:: 831 Su’x+ (S23 Bw

- [(8p3) o+ (8p) y S5y) W+ [(5y3) ,+ (1) 5 S5p) 8 (D-368)
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B, =5w,xx + (S51 Bu,x),x + (525),x 8,9 bu,x + (sz Bv,x),x
v [(8y5) (¥ (Sp)) ( Sylov = ((8)5) (+ (85) | Sp5180 (D-36b)
- , o o
BT = 80 4 “%2ﬁx(3ﬂ 8,155 ) (;D%x(s zjilnaux
- (SD)’x BY o * (S]_Z},x &W . 7 . (D-36¢)
From Equation (D-33), one obtains:
BE . = Su, + 8, 6v,x+ S.3 Sw,x . (D-37)

The virtual rotation components are given by Equations (D-35) with

respect to the rotated triad (é‘}'c,é‘}',,é‘;). Using Equation (D-29), implies:

89 = [B50¢ - (s2 - 523331) <* (s51 Sp1 32) 8v ]e
+ [-dw - (857 ~858,))8u + 5, 80le,
+ [Bv’x+ (s -323s51) <t 513 z‘;c»]ez . (D-38)

With Equation (D-29) and the assumption that terms of order £ are

neglected compared to unity:

e

521 7 53355 = -5y
(D-39)
B3 = S3p8;; = -85 -
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The load p and moment q are given with respect to the undeformed

triad (é‘x,é‘y,é‘z), as in Equation (C-16) of Appendix C:

P = px€x+py€y+pz€z ,
(D-ko)
q = qx6x+qy€y+qz€z .

Substitution of Equations (D-32), (D-36), (D;-57), (D-38) and (D-ho)

into (p-9), and using (D-39), implies, after integration by parts:

=2 : )
fxoo E'il&u-izav-ﬁjw'ghbﬂ%- [ﬁlmzl:'o

xg =
= =4 =4
e Bl Bl
~ %! g - B -
) [B5 Bu";-lxo'ﬂo ) [}6 M’;':'o - @7"»’3:;0
. (D-41)

where:

Ry = (T =8y M, o+ 85y M = (Sp35) o Sy M- (Sp3) , 85y M,

+ M (85) L 81y - (Bpp) L 85500 o

+ Py - (85 E'y),x+ (845 Ez)’x | , (D-i2a)



R,

.

s

= {Mz,x+ (813),3! Mx+ [(323), M (3 ) 32 Y:x}:x
* (812 T),x+ py * (SlB qx),x - qz,x » (D-42v)
[My,x+ (Slz),x (s ) + (321),1: sﬂmz-s23 Mz’x}’x
+ (313 T),x+ Pt 4y x” (812 qx),x » (p-l2e)
Mex ~ [Bys) o+ (81) ) Sl - [81) o+ (8y3)  Spsltly
* gt Sy At Sz, , (D-b2d)
By = T-Sp M+ 8y M -(8y5) Sy M -(S35) S,
+M [(8)5)  Bpp- (8pp) | Syl -850+ Spp qp 5 (D-b3)
B, =M , (s, )“*M = [(sz' N A );‘ij]My** e -
T (s, T),_x -a,+ 55a , (D-43b)
By = M+ (512),;: Mx-[(825)’x+ (s )x 1M,
a a , (D-43c)

- Sz M, 83T+ a -5 q
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B, = M o (p-434)

X
'55 = Sy M+ S Mo, (D-k3e)
Bg = Syp M+ M, , (-43¢)
'1'3'7 = M . S5 M, . o (D-43g)

 The virtual displacements are arbitrary, thus, the equations of -

equilibrium become:
Ry =0; R, =05 Rg=0; R, =03 (D-kk)

while the boundary conditions (assuming that the boundary conditions are
not changed during loading) are:

§l=0 or
%80 or
']'3'3:0 or
§h=07 or . (D-15)
§5=0  or
5680 or
§7=0 or

The equilibirum equations (D-4l) are identical to (C-24) of Appendix

g0



¢, within the framework of the assumption that terms of order E° are

neglected compared to unity, which implies:

“5p1 Mgfx - 813(8 ),x M, = -S21 Mz,x - S31(82 ),x M, (D-46a)
S35 My’x + 8, (s2 )’x My E S5y Moy - 321(825),:; My , (D-46b)
[(5,5) o+ (py) (831 % [(85) - 85(s,0) 1, (p-lse)
'[(313),;: + (SJZ),x Syl # [(531),;: + 8, (332),,:] ) (p-h64)

= . (D-46e)

-6, L+ (sn),x 5,5 [(557) o * 5y3(53) ]

From the boundary conditions (D-45) it seems that due to the change

of the coordinate system a new boundary condition appears. BS' =0 or

u = 0. However, upon checking the sixth and seventh condition, it is
2

clear that in the case of a clamped edge, v x =V x =0, or a free
’ ’

edge, M =M, =0, the condition B. =0 4s satisfied automatically.

5
Thus, the fifth condition is satisfied, by satisfying the other boundary

~ conditions.~ — -~ - - - T e
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Fig. D1. Displacement of Element on the Elastic Axis During the Virtual Displacement
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