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ambient-temperature lithium primary systems based on the Li-V205,

Li-S02 , Li-CF, and Li-SOU2 couples.

Developmental status of these systems is described in regard to

availability and uncertainties in the areas of safety and selected per-

formance characteristics.

The new lithium systems are shown to exhibit three unique charac-

teristics which make them more attractive than existing primary systems.

First, they are lightweight and compact, and deliver up to 600 W-hr/Kg

and 1 W-hr/cm 3, respectively. Second, they have the potential of long

active wet lives to periods of 10 years. Third, they can operate over a

broad temperature range of -54°C to 74°C. By comparison, the best exist-

ing primary battery, the silver-zinc battery: a) delivers about 25% of

the above gravimetric and volumetric energy densities, b) exhibits a max-

imum wet life of about 1 to 2 years, and c) operates effectively over a

temperature range of 10% to 70°C.

Studies have shown that use of lithium batteries would enhance a

variety of missions and applications by decreasing power system weight

and thereby increasing payload weight. In addition, the lithium batter-

ies could enhance cost effectiveness of the missions. Among these mis-

sions are:

a) those dealing with planetary probes

b) those dealing with exploration of Mars

c) the Long Duration Exposure Facility

d) the Shuttle Launched Research Vehicle.

Among the applications are:

a) launch vehicles

b) scientific balloon flights

C) a variety of uses on the Shuttle.
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SECTION I

INTRODUCTION

Ambient-temperature primary lithium batteries are of interest for

four reasons. First, the batteries are known to be extremely lightweight

and compact, thereby saving appreciable mass and volume in a spacecraft

power system. Second, the batteries have the potential of long storage

life, which is essential for nearly all missions. Third, the batteries

can operate effectively over a wide temperature range, which is highly

desirable in several missions. Fourth, the batteries will help reduce

spacecraft cost and contribute to cost effectiveness of future missions.

For the above reasons, JPL has been carrying out a program aimed

at developing these batteries for future NASA missions. The overall pro-

gram objective is to demonstrate a 330 W-hr/Kg primary lithium battery

by the end of FY-82.

A subtask of this program involved a "Missions Application Study",

with the objective to establish: a) which of the potential future mis-

sions could employ lithium batteries, b) how the batteries are to be

employed on the missions, and c) the benefits that will accrue from use

of these batteries.

Although this report is primarily concerned with the results of

the Mission Application Study given in Section IV, Section II provides

a description of these new lithium cells and their development status.

Section III compares performance of these new cells with existing pri-

mary cells and also deals briefly with their cost aspects.

1-1
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SECTION II

DESCRIPTION AND DEVELOPMENT STATUS OF LITHIUti CELLS

Interest in ambient-temperature primary lithium cells began in

the 1960's and has continued to the present time. A great deal of

progress has been made in the development of these cells, some of

which are now available commercially. A brief description and develop-

mental status of the more promising types are given below:

A. LITHIUM — VANADIUM PENTOXIDE (V205)(1,2)

This cell is comprised of a lithium anode, a carbon/V 205 cathode,

and an organic electrolyte. Overall cell reaction is given by the

following:

2Li + V205 -+ Li 2 V205

The cell exhibits three plateaus during discharge. The first of these

occurs at a potential of 3.0 volts, the second at a potential of

2.4 volts, and the third at a potential of 2.0 volts. The cells are

best suited for low rate applications, with discharge times greater

than 20 hours. Under these conditions, the cells deliver up to

220 W-hr/Kg and 20 W/Kg. The cells have been shown to deliver 94 per-

cent of original capacity after 2-year storage at 24°C. The cells are

compact and deliver about 0.7 W-hr/cm3 . Cells are available "off the

shelf" in sizes to 30 AH. Larger sizes can be specially ordered.

B. LITHIUM — SULFUR DIOXIDE (Li-SO 2 ) (1,2,3,4)

This cell is comprised of a lithium anode, a carbon/S0 2 cathode,

and organic electrolyte. Overall cell reaction is given by the

following:

2Li + 2SO 2 -> Li 2 5204

e
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Open circuit voltage is 2.92 volts. The cell exhibits a "flat"

discharge profile through 90 percent of its life. Operating voltages

range from 2.5 to 2.8 volts, depending on discharge rate and tempera-

ture. The cells are best suited for moderate to low rate applications,

with discharge items greater than 20 hours. Under these conditions,

the cells deliver up to 264 W-hr/Kg and 7 to 11 W/Kg. The cells can

deliver higher power densities of 26 W/Kg, but with a reduced energy

density of 220 W-hr/Kg. The cells have been shown to exhibit zero per-

cent loss in capacity after 1 year at 22%, and a 20 percent loss in

capacity after 1 year at 71°C. Project storage life at room tempera-

ture is 10 to 12 years, provided the cells are hermetically sealed.

The cells are compact and deliver up to 0.4 W-hr/cm3 . The cells oper-

ate effectively at low temperatures and can deliver 50 percent of their

room temperature capacity at -54°C. Cells are available "off the shelf"

in sizes to 30 AH. Cells with larger capacity to 500 AH can be specially

ordered.

C.	 LITHIUM — CARBON MONOFLUORIDE [Li - CF1 (516)

This cell is comprised of a lithium anode, a (CF) n cathode, and

organic electrolyte. Overall cell reaction is given by the following:

Li_+CF-C+LiF

Open circuit voltage is 2.8 volts. The cell exhibits a "flat"

discharge profile throughout its life. It does, however, exhibit a

sharper voltage slope than other lithium cells at the end of life.

Operating voltages range from 2.3 to 2.6 volts, depending on discharge

rate and temperature. The cells are best suited for moderate to low

rate applications with discharge times of 10 hours or more. Under

these conditions, the cells deliver 220 W-hr/Kg and 22 W/Kg. They can

be operated at higher power densities of 44 W/Kg, but with reduced

energy density of 176 W-hr/Kg. Limited storage life data has been

obtained on this cell. At 71% it is reported to exhibit a 20 percent

loss in capacity after two months of storage. On this basis, the Li-CF

2-2



i
cell would appear to have a shorter life than the Li-S0 2 cell. The

cells are compact and deliver 0.3 to 0.4 W-hr /cm3 . The cells are made

on special order to any given size specification.

D.	 LITHIUM - THIONYL CHLORIDE (Li-SOC12)(1,2,7,8,9,10,11,12)

This cell is comprised of a lithium anode and a SOC1 2 /C cathode.

(The SOC1 2 serves both as solvent and "active" cathode material.) Over-

all cell reaction is given by the following at temperatures from -20°C

to 100°C.

4Li + 2SOC1 2 -^ 4LiCl + S02 + S

Open circuit voltage is 3.63 volts. The cell exhibits a "flat"

discharge profile like the Li-SO 2 cell over about 90 percent of its

life. Operating voltages range from 3.2 to 3.5 volts, depending on

rate and temperature. The cells can be designed either for low or

high rate applications. The low rate versions deliver from 330 to

660 W-hr/Kg (for large cells) at power densities of about 5 W/Kg. The

high rate versions deliver from 260 to 330 W-hr/Kg at power densities

up to 150 W/Kg.

Very limited storage life data has been made available on this

cell. In a 2-year storage test at room temperature, a cell was reported

to have lost no capacity when discharged at low rates and a 20 percent

capacity loss when discharged at a higher rate. More storage-life

data will be made available during the la?:ter part of 1978. The cells

are extremely compact and deliver up to 1.1 W-hr/cm 3 . Both active

and reserve cells are made to special order in sizes up to 15,000 A.H.

These large sizes are contemplated for use in missile silo applications

by the U.S. Air Force.

e

a
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E.	 UNCERTAINTIES

It is well to point out here that r"though a great deal is already

known about the overall performance characteristics of lithium cells,

there remains yet some degree of performance uncertainty with respect

to:

(1) safety, especially in the case of the Li-SOC1 2 system, since

these cells have, under certain conditions, been observed to

vent, explode, or catch fire (15,16)

(2) thermal characteristics of these cells, i.e., internal heat

generation rate as a function of load (17)

(3) passivation, i.e., voltage delay of the onset of discharge (18)

(4) ultimate life capability

(5) a realizeable high rate discharge capability.

Numerous programs are underway at both industrial and governmental

organizations, including NASA, to study all of the above areas. Pro-

gress has been quite rapid, and it is anticipated that all of the uncer-

tainties will be resolved within the next few years. At this point,

all the previously described types of lithium cells may be confidently

considered for use in the missions and applications described herein.

2-4



SECTION III

COMPARISON WITH EXISTING PRIMARY CELLS

This section compares performance of the new lithium systems with

performance of existing primary systems, including silver-zinc, mercury-

zinc, and zinc-manganese dioxide.

A. GRAVIMETRIC ENERGY DENSITY

Figure 1 provides a comparison of graaimetric energy densities of

the lithium and existing systems. Inspection of this figure reveals

that the Li-SOC1 2 system is far superior to any other system in gravi-

metric energy density. The Li-SOU 2 system stores over twice the energy

per unit mass of the other lithium systems and four times the energy

per unit mass of the previously employed aerospace type silver-zinc

system. Further the Li-SOC1 2 system stores six times the energy per

unit mass of the mercury-zinc system and ten times the energy per unit

mass of the manganese dioxide system (which is commonly referred to

as the LeClanche Cell).

B. VOLUMETRIC ENERGY DENSITY

Figure 2 provides a comparison of volumetric energy densities of the

lithium and existing systems. Inspection of this figure reveals that

the Li-SOCI,, system yields appreciably hightr volumetric energy density

than any of the lithium or existing systems. The Li-SOU 2 system stores

four times the energy per unit volume of the silver-zinc system and

over twenty times the energy per unit volume of the manganese dioxide

system.

C. POWER DENSITY

The lithium cells are bent suited for low rate applications, with

discharge times of 20 hours or more. At these rates, the lithium sys-

tems typically deliver from about 5 to 20 W/Kg, depending on the speci-

fic type. A high rate version of the Li-SOC1 2 system is available.

This particular version can be discharged in 2 hours and deliver about

,0 W/Kg, but with some sacrifice in energy density. The mercury-zinc

3-1
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and manganese dioxide :systems are beat suited for low rate applications

and deliver from l to 10 WJKg, depending on type and rate. The silver-

zinc system, on the other haitd, can be designed for very high rate appli-

cations, with discharge times of 1 hour or leas. Under these conditions,

the silver-zinc system to capable of delivering outputs in the range vi

200 to 300 W/Kg.

O.	 STORAGE LIFE

Storage life of existing cells is in the range of 1 to 4 years,

depending or specific: type and ambient temperature. {1} Storage life

of hermetically sealed lithium cells is projected to be 10 years.tl}

Both reel-time and accelerated tests are in progress at Honeywell(),

PCI
(4)

, GTE	 MalloryMallory
(10) r 

and Altus
(12) , 

to substantiate these claims

on the lithium cells. Reserve-type versions of silver-zinc cells have

been demonstrated to have life of at least 10 years. 
(13) 

Reserve-type

versions of lithium dells should have comparable lives of at least

10 years depending on the type of electrolyte. (14)

E.	 OPERATING VOLTAGES

Typical operating; voltages of the lithium and existing cells are

given in Table 1.

Table 1. Operating Voltages

Typical Operating
Cell Type Voltage

`	 Li-SOC12 3.4V

Li-V205
3.0-2.OV

Li-SO2 2.7V

Li-CF 2 5V

Zn-AgO 1.5V

2n-HgO 1.2V

Zn-MnO2 1.4V
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Inspection of Table 1 reveals tha: the lithium cells exhibit

markedly higher operating voltages than the existing cells. Based on

cell voltages, a battery comprised of lithium cells would require about

one-half the number of cells as a battery comprised of conventional cells.

F.	 COST CONSIDERATION

Lithium batteries appear attractive from a cost point of view for

several reasons. First, the basic cell costs are significantly less than

those of the currently employed silver-zinc cells. In large quantities

of 100 or more, the costs of the Li-SO 2 and Li-SOC1 1 cells are about

$0.251W-hr and $0.50/W-hr, respectively. By comparison, the cost of a

silver-zinc cell is $2.501W-hr, or 5 to 10 times that of the lithium

cells. Next, the lithium batteries are maintenance-free and require no

costly labor or equipment to keep them in operating condition. The

Goddard Space Flight Center, for example, has found the cost of condi-

tioning and testing silver-zinc cells to be an order of magnitude greater

than readying lithium batteries for balloon flights. 
(27) 

The lithium

batteries are simply installed in the Gondola-like flashlight batteries,

whereas the silver-zinc batteries require lengthy discharge tests fol-

lowed by recharges and top-off charges for each cell before flight.

Long-duration planetary missions would require expensive and intricate

remote-activation systems for silver-zinc batteries, while no such sys-

tems would be required for lithium batteries. Alternatively, costly

cooling systems would be required for active silver-zinc cells for

these long-duration missions, while no such systems would be required

for lithium cells. The long-life features of lithium batteries should

bring about additional cost savings by allowing NASA to purchase them in

large quantities at reduced prices, store them, and use them as

required. This approach is more cost effective than purchasing them as

required in small quantities at higher prices. Further, the costs

associated with qualifying the cells from a single large-production run

are much less than the costs associated with qualifying the cells from

numerous small-production runs. Finally, it is well to point out that

the lightweight features of lithium batteries would permit increased

payload weight. This, in turn, could enhance the effectiveness of the

mission by permitting increased return of scientific information. Since

N

3-4



a monetary reward may be ascribed to this additional information, it may

be stated that the use of lithium batteries increases the cost effective-

ness of the mission, i.e., more information per dollar spent on the

mission.
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SECTION IV

APPLICATIONS

This section describes a number of candidate missions that have

been studied, and discusses how and where lithium batteries may be

advantageously employed on these missions.

A.	 GALILEO (24,21,34)

The Galileo mission (scheduled for launch in 1982) is being

designed to gather scientific data on the composition and structure of

Jupiter's atmosphere and cloud cover and the radiative energy balance

within the atmosphere. The mission will be carried out by launching

(from the Shuttle) a spacecraft containing a highly instrumented atmos-

pheric entry probe. After approximately three years of interplanetary

cruise, the spacecraft will approach planetary encounter. At this

point, the probe will separate from the spacecraft and be directed on

a trajectory towards the planet, while the spacecraft will proceed to

orbit the planet. About 54 days after separation from the spacecraft,

the probe will enter the atmosphere and transmit data to the orbiting

spacecraft for a period of about 1/2 to 1 hour. The spacecraft will

relay a portion of the data to Earth and store some data for later

transmission. The spacecraft will then continue orbiting and transmit-

ting additional data for an additional two years.

The primary power supply for the spacecraft will be a Radioisotope

Thermoelectric Generator (RTG). In the event of an undervoltage condi-

tion during a fault, (such as switching from main to standby inverter

or a load fault), an auxiliary power source will be required for computer

memory protection. Cann idate power sources for this application are

batteries or capacitors. If batteries are to be employed, a promising

type is a long-life lithium battery. This is because existing active

silver-zinc and mercury zinc batteries cannot meet the 7-year life

requirement (2 years' shelf life prior to launch, plus 3 years' cruise,

and 2 years in orbit). Rechargeable nickel-cadmium batteries could be

employed, but require a charging system which adds complexity and dimin-

ishes reliability.



The power supply for the probe must be a lightweight battery that

is capable of delivering several hundred watts after a 5-year shelf life.

These requirements limit the choice to either a remotely activated silver -

zinc or a lithium battery. The remotely activated silver-zinc battery

showed promise of meeting these requirements during the study phase of a

prior JPL program. (29) Further, the silver-zinc system was deemed most

appropriate at the time because more was known about it than the rela-

tively new lithium systems. The program was unfortunately canceled

shortly after the study phase and it was not possible to demonstrate its

capabilities. Since that time, more has become known about the lithium

systems, and they now appear attractive for Galileo, especially because

of their lightweight characteristics. Li-SO2 batteries have tentatively

been selected for this application.

B.	 SATURN ORBITER DUAL PROBE (21,36,37)

The Saturn Orbiter Dual Probe Mission (a potential mission for

launch in 1987) would gather scientific data on the composition and

structure of the atmosphere of both the planet Saturn and one of its

moons, Titan. The mission is similar to the Galileo mission, except

that in this case the spacecraft will be launched from the Shuttle with

two probes. After 6-1/2 to 7 years of interplanetary cruise, the space-

craft would approach planetary encounter. At this point, the two probes

would separate from the spacecraft, and the spacecraft would proceed to

orbit the planet. One of the probes would be directed on a trajectory

towards Jupiter and the other on a trajectory towards Titan. After

about 60 days from the time of separation from the spacecraft, the

probes would enter their respective atmospheres and transmit data to the

orbiting spacecraft for a period of 1/2 to 1 hour. The spacecraft would

relay a portion of this data to Earth, and store some data for later

transmission. The spacecraft would then continue orbiting and transmit-

ting additional data for several more years. It is possible that the

Titan exploration may be performed with a lander and would continue to

transmit data for several hours, or perhaps even several days, from the

Titan surface.

The primary power supply for the spacecraft would, again, be an

RTG. In the event of an under voltage condition (as above), a small

4-2
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auxiliary battery may be selected for computer memory protection. 	 Due

- to the extremely long lifetime of the spacecraft, this battery can be

- a long-life lithium system.

= The power supply for the Saturn probe must be a lightweight battery

that can withstand a 7-year life and be capable of delivering several

hundred watts after this period of time. 	 These requirements again limit

the choice to either a remotely activated silver-zinc or a lithium 1
battery.	 The lithium battery would be the lighter and simpler of the

two, as above, and would therefore be the logical candidate for this

r application.

The power supply for the Titan probe or lander will depend upon its

anticipated active life after entry.	 If this period of time is from a

fraction of an hour to a few hours, the supply will logically be a long-

`_ life lithium battery for the reasons given above.	 If this period of

= time is several days or more, the power supply will logically be an RTG.
^E

C.	 URANUS - NEPTUNE FLYBY WITH PROBES (21,35)

This potential mission (launch in 1987-1990) is to gather scien-

tific data on the atmospheres of Uranus and Neptune. Cruise time for

this mission would be 12 to 20 years, depending on the trajectory. The

mission has not been studied in as much detail as those given above.

By analogy, however, it should be similar to the Galileo and Saturn

Orbiter Dual Probe Missions. On this basis, there would again be a

need for long-life and lightweight batteries for computer memory protec-

tion on the bus and as the main probe power supply. As above, lithium	 t

batteries would be best suited for and would most likely be employed in

this application.

.	 D.	 MARS SAMPLE RETURN (22)

The Mars Sample Return Mission, as its name implies, is a poten-

tial mission designed to gather samples of the Martian soil and return

them to Earth for scientific analysis (launch date in 1988). The mis-

sion would be carried out, using the Shuttle as a launch vehicle for the

Sample Return Spacecraft. After approximately 1-112 years of cruise, the

4-3



vehicle. The lander capsule would gather the sample and transfer it to

the ascent vehicle. The ascent vehicle would then rendezvous with and

transfer the sample to the Earth-Return Capsule (ERC) attached to the

orbiting spacecraft. The spacecraft would, in turn, return the ERC to

Earth orbit and eject the ERC for eventual pickup by the Shuttle.

Minimum mass is an essential requirement for the spacecraft,

especially for its lander capsule. The power supply for the Lander must,

therefore, be the lightest available. In all likelihood, this power

supply may be a lithium battery; and, in particular, the high energy

density Li-SOC12 type. This battery will be used to supply power during

insertion and during surface operations. During insertion, the battery

would be required to deliver about 120 watts for three hours from sepa-

ration to descent for telecommunications and about 800 watts for the

1/2 hour during entry and landing for deorbit burn, engine valve drivers,

and radar. During surface operations, the battery would be required to

deliver about 50 watts for 48 hours for sample acquisition and process-

ing. Estimated mass of a Li-SOC1 2 battery for this application is about

5 Kg. By comparison, the required mass of the best existing silver-zinc

battery would be about 18 Kg for this application. Furthermore, the

lithium battery would be better suited than the silver-zinc battery to

the low temperatures to be encountered on the planetary surface.

E.	 MARS AIRPLANES (23,33)

The Mars Airplane Mission is a potential mission designed to

gather a much broader range of information on Mars than the Mars Sample

Return Mission. The Airplane Mission would be carried out, using the

Shuttle as a launch vehicle for several spacecraft, each of which would

contain four highly-instrumented airplanes with a wing-span of about

21 meters and an overall weight of about 300 Kg. After about 1-1/2

years of cruise, the spacecraft would encounter and begin orbiting the

planet. The spacecraft would then eject a descent system containing

the airplanes. The airplanes would then be deployed with parachutes in

a manner proven in the Viking Mission. At a predetermined altitude, the

1
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airplanes would initiate a low-altitude, terrain-followTg cruise,

possibly using technology developed on the Cruise Missile Program.

Instrumentation on the airplanes would be employed for photography,

sounding, altimetry, magnetic survey, meteorology, and site selection.

The airplanes would also pe used to deploy packages consisting of seis-

mometers, magnetometers, instruments for meteorology and geochemical

analysis, as well as penetrators and mini-rovers.

The power plants originally contemplated for these propeller-driven

aircraft were mechanical hydrazine engines. Subsequent analyses, how-

'

	

	 ever, revealed that electrical power plants based on advanced batteries

and do motors would weigh less and perform much better than the mechani-

cal power plants and should be much simpler than the mechanical power

plants. Furthermore, the electrical power plants would give apprecia-

bly more range, cost less, have less vibration, and have fewer thermal

problems than the mechanical power plant. Also, the electrical power

plant would not exhaust products that could interfere with science

instruments.

The electric motor to be employed here is of the permanent magnet-

type and is based on a new samarium-cobalt material. The motor is

extremely lightweight and delivers about 1.5 kW/Kg (1 hp/lb). Size of

the motor for this application is about 15 W. The battery to be

employed here is the Li-SOC12 sysrem. Twenty-seven cells, each with a

capacity of 1000 AH, would be required per battery. Total battery

mass would be about 123 Kg (270 lbs). It is well to point out that the

technology for r':.is application may be transferred directly from a

current Navy program for development of 1000 AH ' Li-SOC12 cells. (30)

F.	 LONG-DURATION EXPOSURE FACILITY (LDEF) (24)

The LDEF is designed to serve as a facility for carrying out a

number of experiments in space. The first LDEF will contain 72 experi-

ments in such fields as fibre optics, thermal coatings, solar plasma,

solar cells, heat pipes, materials, etc. The LDEF will be placed in

Earth orbit for periods up to 11 months and will then be retrieved and

returned to Earth by the shuttle.
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Power will not be available on the LDEF so that each of the

experimental packages must, if necessary, contain its own power supply.

Altogether, a total of 16 such experiments will require battery power

supplies. In addition, a battery power supply will be required to

operate a data acquisition system.

The batteries must be as compact as possible. They will be sub-

jected to a wide temperature range, from -34°C to +65°C while on board

the LDEF. In addition, the batteries will be required to have a life of

about 1-1/2 years, including six months on the Earth and eleven months in

orbit. These constraints ruled out use of existing batteries consisting

of silver-zinc, mercury-zinc, and LeClanche cells. On this basis,

NASA-Langley decided some time ago to employ Li-SO 2 batteries, which

were then available and were known to be capable of meeting the temp-

erature and life requirements. Electrical requirements call for voltages

from 7.5 to 20 volts and capacities from 1 to 45 AH. These requirements

are met by packaging the appropriate number of "D" size cells. The

Langley Research Center is currently in the process of qualifying these

Li-S02 batteries for the 16 experimental packages.

The Marshall Space Flight Center has designed and is fabricating

two additional packages for the LDEF Mission. Both of these are powered

by Li-CF rather than Li-S0 2 batteries. The first, located aboard the

LDEF, is an experimental package designed to study thermal control. This

is designated as the Thermal Control Surfaces Experiement (TCSE). The

second, located aboard the orbiter, is a device designed to monitor

chemical and radiation contaminants aboard the orbiter. This is

designated as the Induced Environmental Contamination Monitor (IECM).

Plans have not been formulated as yet for the second LDEF. It

is possible, although unlikely, that this spacecraft will have central

power for all experiments. In all likelihood, the second LDEF will

again require individual battery power supplies. These may again be

the Li-S02 cells, or perhaps the more advanced Li-SOC1 2 cells, which

should be qualified by launch time of the second LDEF.

r	
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SHUTTLE LAUNCHED RESEARCH VEHICLE (SLRV) (25)

The SLRV is a miniature orbiter that would be launched from the

Shuttle. It is designed for research purposes only. One such purpose

is to gather data on performance of new engines. Another is to gather

aerodynamic data upon re-entry. Yet another is to study materials for

re-entry purposes.

Duration of the SLRV missions is quite short, in the range of

three to six hours from Shuttle launch through re-entry.

The power supply for the SLRV must operate at 28 volts and deliver

from 12 to 20 kWH. Present plans call for use of silver-zinc batteries

to supply this power. Appreciable weight savings and increased payload

weight could result from use of lithium batteries, especially Li-SOC12

batteries to supply this power. Second generation SLRVs may very well

employ such lithium batteries.

H.	 SHUTTLE APPLICATIONS (25,28)

There are a variety of applications of lithium batteries for the

Shuttle. A number of these are described below.

One of these is to supply power for the Integrated Upper Stage

(IUS) which will be used to launch a number of planetary spacecraft in
3

the 1980s and 1990s. From liftoff through orbit insertion of the

Shuttle, battery power is required on the IUS to operate gyros,

avionics, and thermal control systems. During deployment of the IUS,

battery power is required for guidance, control, telemetry, thermal t
control, and firing of solid propellant motors. Present plans call for 	 =

use of silver-zinc batteries aboard the IUS to supply this power.

The mass of the IUS vehicle is extremely important, since it

directly influences payload mass of the spacecraft. A significant

increase in payload mass could be achieved if the silver-zinc batteries

were replaced by Li-SOC1 2 batteries. In the case of the Galileo Mis-

sion, the payload mass could be increased by lb Kg with M-SOC1 2 batter-

ies in the IUS. (38) In the case of the Venus Orbiter Imaging Radar Mis-

sion, the payload mass could be increased by 4b Kg with Li-SOC12

batteries in the IUS. (38)
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IV

In addition to the above, the Shuttle will be used to launch a

number of Earth-orbiting satellites into a higher orbit than that planned

for the Shuttle. The device that will be used to launch these spacecraft

is designated as the Payload Assist Module (PAM). The PAM is similar to

the IUS, but somewhat smaller in that the spacecraft that it launches are

somewhat smaller. Like the IUS, the PAM must contain its own power

supplies for telemetry, firing a motor, and an active nutation control

system. Present plans call for use of primary silver-zinc batteries

for this application.

Mass of the PAM is important since it directly influences payload	 .

weight of the spacecraft. Any reduction in mass of the PAM is therefore

beneficial. Li-SOC1 2 batteries could be substituted for the silver-zinc

batteries to reduce mass of the PAM and increase payload capability.

Another application is to provide power for the Extravehicular

Mobility Unit (EMU). Two such units will be located within each Shuttle.

These are personal back-pack-type life support systems for the astronauts

when they emerge from the Shuttle. Power is required to drive vent fans,

operate valves for oxygen. operate sensors, etc. The units are designed

to operate for periods up to three hours. Electrical requirements call

for currents up to 8 amps at 16.8 volts and a capacity of 18 AH. Cur-

rent plans call for use of silver-zinc batteries to supply this power.

Appreciable savings in mass and, perh^ps more importantly, in volume on

the EMU would result from use of Li-SOCK batteries in this application.

Another application is to provide power for the Manned Maneuvering

Unit (MMU). These are small personal propulsion devices that enable the

astronauts to maneuver outside the Shuttle. Power is required for the

opening and closing of gas valves and ocher control functions. Present

plans call for use of silver-zinc batteries to supply this power. As

above, appreciable savings in mass and volume on the MMU would be

realized if power were supplied by Li-SOC1 1 batteries.

In addition, the compact and lightweight features of lithium

batteries make them very attractive for use in a variety of equipment
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items for the crew aboard the Shuttle. Among these items are flashlights,

tape recorders, hand-held radios, survival radios, wireless microphones,

calculators, portable saws, and portable drills. It is well to point

out that lithium batteries were already used for a camera drive on the

Skylab and a light on the Apollo-Soyuz Test Projects.

I. LAUNCH VEHICLE APPLICATIONS (:6,31,32)

Compact batteries are required for launch vehicles for two reasons.

The first is for range-safety purposes. In this case, the battery is

used to trigger an arming device to destroy the Solid Rocket Booster

(SRB) in the event of a mulfunction. The second is for location-aid

purposes. In this case, the battery is used to deploy an antenna and

transmit signals from the SRB and also power flashing lights on the SRB.

Four range-safety batteries and two location-aid, or "frustrum," batter-

ies are required per flight. Altogether, eight such batteries are

required per Shuttle launch. Electrical requirements for both types of

batteries are identical. These must operate at 28 +4 volts and have a

capacity of 18 AH.

The Li-CF type battery has been selected by Marshall Space Flight

Center for these applications. MSFC has conducted extensive electrical

and mechanical tests on these batteries and has qualified them for

flight. In the unlikely event that MSFC deems it necessary to upgrade,

performance, they might consider use of the Li-SOC1, type battery which,

as noted previously, would offer more volume saving than the Li-CF

type battery.

J. BALLOON APPLICATIONS (27,39)

Goddard Space Flight Center (GSFC) designs and builds a variety

of scientific balloon systems. These are used to conduct several types

of experiments in the upper atmosphere. Typical experimental packages

installed on the balloons consist of ultra-violet spectrometers and gamma

ray detectors for stratospheric research, high energy physics, and
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cosmic ray studies. The Jet Propulsion Laboratory also conducts a variety

of balloon flights to gather data on solar cells and to study composi-

tion of the atmosphere. The balloons are launched by the National Sci-

entific Balloon Facility in Palestine, Texas. Altitudes attained in the

flights are in the vicinity of 40,000 meters, and typical flight times

are 8 to 40 hours.

Power is required aboard the balloons to operate the science

equipment and telemetry. Requirements for the power system are that it

be light weight, low cost, and capable of operating over a temperature

range of -45°C to +59°C. For these reasons, GSFC has recently selected

the Li-S02 system to replace the silver-zinc system as a power source

for these balloons. 30 AH hermetically sealed Li-S0 2 cells are arranged

in series to provide a 28-volt battery which delivers required currents

to 8 amps. Mass and cost of the Li-S0 2 battery are about one-third that

of comparable silver-zinc batteries.
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CONCLUSIONS

Lithium batteries appear very attractive for space applications

because they are exceptionally lightweight, compact, and have projected

long storage life. The batteries are, however, relatively new and

.	 uncertainties exist about their safety, thermal, passivation, and rate

capability characteristics. Work is in progress to resolve these

uncertainties and then qualify them for flight.

Lithium batteries would enhance a number of candidate future NASA

missions and applications by increasing payload mass and size by extend-

ing life and by decreasing cost. The missions identified include:

a) planetary probes and landers, b) exploration of Mars, c) the LDEF, and

d) the SLRV. Applications aboard the Shuttle have been identified as:

a) for crew equipment. b) for the RNs and the MMUs, and, c) for the IUS,

and PAM. Additional applications have been identified for launch vehi-

cles and for scientific balloon flights.

ra
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