
r

--- -
i

·1'

..
r

I

/

\ /

--......... -- -

L.:,.-
, ' '(-,

11
3 1176 00155 3347

-ly

" '\ I

1~'''«,j'/~''

JF>LPUBLICATION 78~104>-

: ' " ,

.J -

- , -,

i "

,
'-

-! ..

!) , -- '. 1 1 -

- .. ~, - \

-\

) .

f '/"

__ ~ : __ 'Nfisf}~,,~~~ lo.ff;~3p
__ 1/ . '- -.: -) I • __ ' _ ,_\" ,._ ,... I': ..

.. -----:

-"

1 ;; "

- \" ---' -/ ..

NASA-CR-158230
19790011562

.,',:i

\)
-~ "

-\

. '. \---:------:co-~--,--~-----:--cc__----:-:-------~
j_..i< (,'\,:,--.~~

(., -- ,-

':'--

-. ./ ;: ,-,-
-'-.

l·

'. i

/'--':

.... '-'

.) \

,",'--

'----' "-

- ','--

'Z'
'.- \-

_ -c

',I,r' .'

I' ,

~ i

\.

., .

" .

/
I

, - I

"'~. f 'J ;.< Fe~ruary)5(197~.
J _~ ..

-, (

National Aetonauticsi and' "
:Sp'ace Administration - .",

'j

--~'-' .. ,-,

,)' --<:-
.. \. ;

. .. '~, : :' ,'-. ~ "/.~ -, _\ \'--' ..

,', \ t / .' _-'. Jet propulslo!1 Labgrator,y
California Institute of Technology
Pasadena, California ~_ I '

, \ -r ... ,~-:

_'I/~ ,/

----.
~ -.~,

< i .. /_---' ,
~. ..

> ,

/
~\", ----.;/ j __ ~ :;- I!---'\

\ ,'" ~ , \ - ,

./

.------ \"--.,

'/
----'-.1. ,.

r,/ ---

1
\

.. I" '-,

, ' /

/

I,

, I

, ,

.. -~ '~.-~--

/

--,':; ,,\.,
1"

\ Illillil lin IIII nllllmi Ilnl 11111 IIIIInl
NF01289

,,-

'._-- ,

https://ntrs.nasa.gov/search.jsp?R=19790011562 2020-03-21T23:28:59+00:00Z

JPL PUBLICATION 78-104

Faster Fourier Transformation:
The Algorithm of S. Winograd

Shalhav Zahar

February 15, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

N?CJ-I<f73371-

The research described in this publication was carried out
by the Jet Propulsion Laboratory, California Institute of
Technology, under NASA Contract No. NAS7-100.

-.

iii

NOTE REGARDING PUBLICATION DATE

The first version of this paper was completed in March 1977.

Subsequently, following the publication of [10], a few changes

were implemented. These are pointed out in the text and footnotes.

The paper was finalized in its present form in May 1977. The delay

in publication to February 1979 was due to factors beyond the author's

control.

iv

ABSTRACT

The new DFT algorithm of S. Winograd is developed and presented

in detail. This is an algorithm which uses about i of the number of

multiplications used by the Cooley-Tukey algorithm and is applicable

to any order which is a product of relatively prime factors from the

following list: 2,3,4,5,7,8,9,16. The algorithm is presented in

terms of a series of tableaus--one for each term in this list-­

which are convenient, compact, graphical representations of the

sequence of arithmetic operations in the corresponding parts of the

algorithm. Using these in conjunction with Tables 5-6 (pp. 80, 84),

makes it relatively easy to apply the algorithm and evaluate its

performance.

The organization of the paper allows skipping a large part of it

on a first reading (see p. 3).

J'

v

TABLE OF CONTENTS

I. Introduction 1

II. Strategy Development•....................•.•.........•... 4

III. The Basic LCT Algorithms

IV. The Basic DFT Algorithms

V. The Basic DFT Algorithms

......................
for Prime N
for N=4,9

13

28

36

VI. The Basic DFT Algorithms for N=8,16•.......•.....•...•...• 46
K

VII. The DFT Algorithm for N = II N
k

••••••••••••••••••••••••••••••• 63
k=l

VIII.

IX.

Appendix:

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Speed Analysis .. 79

Concluding Remarks .. 86

Polynomial Congruences .. 88

FIGURES

Algorithm for LCT of order 2 •...•...•••.•.••..•..••........... 17

Algorithm for LCT of order 4 .••.••..••....•.•••..•.•.....•.•.• 19

Stages in the development of the algorithm for LCT of order 6 . 25

Algorithm for LCT of order 6 •.•...••.••..••.•..•.••...•.•.•••• 27

Algori thm for DFT 0 f order 3 •...••••••••••••••.••..••••...•.•• 31

Algorithm for DFT of order 5 •.••..••.•••.•.••..••..••.•..•..•. 31

Computation of w. 's for the DFT algorithm of order 7•..•. 34
1

Algori thm for DFT 0 f order 7•...•..••.•.............. 35

Algorithm for DFT of order 2 ..•..•.•.••.••..........•.•....... 37

Algorithm for DFT of order 4 ...•........•••...•..•.•.......... 39

Computation of w.'s for the DFT algorithm of order 9 .•.....•.• 42
1

Index permutations in assembling Fig. 13 ..•........•..•.....•.. 43

Algorithm for DFT of order 9 ..•......•........................ 45

Algorithm for DFT of order 8 ...•..............•..•............ 51

Intermediate tableau for the computation of F! for the -
1

DFT of order 16 ...•..........•..•••...•.•.•...•......•........ 54

E matrix for the computation of F.-F! for the DFT of order 16 . 58
1 1

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table Al.

Table A2.

vi

FIGURES (Cont'd)

Algorithm for DFT of order 16 ..•..••.••..••.•.......•..•..•.

Schematic representation of the basic DFT tableaus ••••..•...

Input square of the 8-th order modified tableau for -
example (7.12)

Subdividion of the Y matrix for example (7.29)

Algorithm for DFT of order 30 (example (7.29))

TABLES

60

65

73

73

75

Rational Factorization of xn - 1 •.••••...................•.. 14

Modular Representation of v in Example (7.12); Nl = 8; -
N 2 = 3; N 3 = 5 •• 69

Scrambling for Example (7.12); n vs. v = (vl ,v2 ,v3) •....•... 70

The DFT Tableau Multipliers (w. N)••••.••••.....•.•.•... 77
. 1, .

Summary of Basic DFT Tableaus •....••.•...••••••••...•..•••.. 80

Summary of DFT Algorithms •.•..••.•••••..•....•••••...•••.•.• 84

S (x) mod m(x) .••.•..••.•.••••.••••••.•..•••....•..•...•..•. 90
n

{P(x)Q(x)} mod m(x)•.•••••.•...•..••...•..••...•...••.• 92

-1-

I. Introduction

Ever since the discovery of the FFT algorithm [lJ, the following ques~

tion must have been phrased in many minds: "Does the FFT algorithm represent the

ultimate in the fast computation of the discrete Fourier transform (DFT) or is there

a still faster algorithm yet to be discovered?" One answer was provided in 1968

by Yavne [2J who showed that the number of multiplications could be halved while

leaving the number of additions unchanged. More recently (1976), a significant

step along this path was taken by S. Winograd [3J who developed an algorithm

which reduces the number of multiplications of the radix-2 FFT algorithm [lJ by

a factor of about 5. This reduction is accompanied by a small increase or

decrease in the number or additions. In most cases, the increase does not exceed 20%.

Our basis for comparison both here and later on is the "nominal" performance

of the Cooley-Tukey (FFT) algorithm, namely, the computation of an N-th order DFT

of complex data with ~T real mUltiplications and ~CT real additions where

He adopt (1.1) as the basis for comparison for all N.

Winograd's algorithm then performs the above task using about
vf{CT

5

la

(1.1)

real multiplications. We devote the rest of this section to a description of the

capabilities and constraints of the algorithm so that the reader could assess its

suitability to his needs before delving any deeper.

At its present state of development,
K

the algorithm is applicable to any N
satisfying

in which the N 's
k

N = n Nk
K=l

are relatively prime factors taken from the following list

Nk = 2,3,4,5,7,8,9,16

(1.2)

(1. 3)

The maximal N is therefore. 16·9·7·5 = 5040. All of the N values satisfying the

above prescriptions are listed in the summary of the algorithm presented in Table 6

(p. 84). The actual multiplication reduction factor is listed there for eachN,

under the heading Goo' Note that the average of G for all N> 140 is about 5.5.
00

with such a large reduction in the number of multiplications, it is quite obvious

that the new algorithm will run faster than the Cooley-Tukey algorithm in most sys­

t~E' To make a more specific claim, we must know the basic system parameter .~

Eqn. (1.1) is adopted as a convenient yardstick. Lt shoutd be borne ln mind
that in addition toYavne's algorithm, there are other FFT variants which are
somewhat more efficient than (1.1).

-2-

which is the ratio of the time taken to execute one real multiplication to the time

taken to execute one real addition. (The term "real" is used here as opposed to

"complex"; not as opposed to "integer" in the Fortran language). For very large

~ (microprocessors, software multipliers, etcJ, the speed gain approaches Goo

asymptotically. For lower values of ~, the gain would be smaller. Denoting the

speed gain by G, it will be shown (pp. 85, 79) that

~+ 1.5
~+R

where R is another parameter listed with Goo in Table 6. Obviously, it is now a

trivial matter to compute the speed gain for any system and any permissible N.

(1. 4)

Since R > 1.5 for all practical N values, it is obvious that the advan­

tage of this new algorithm diminishes with decreasing ~. Yet, it is interesting

to note that even in the extreme case of ~ = 1, the new algorithm is still the

faster one for all N values of Table 6.

The main disadvantage of the algorithm is its need for a large memory.

We express this in terms of the param~ter L4t of Table 6. For the processing

.of complex data we have to have a storage array of 1. 5Jt real words. ..Jt varies

from about 2N at the lower end of the table to about 4N at its upper end. Thus,

for high N values, we require a storage array of size 6N. This is 4N more than

the minimal requirements of 2N for storing the input vector.

Of the total memory requirement of 1. 5..A{ real words, O. 5.At are needed

for the storage of precomputed constants. Since not all of these constants are

distinct, it is probably feasible to reduce this part by the use of a more involved

addressing scheme.

Another probable disadvantage of the new algorithm is that, in comparison

with the Coo1ey-Tukey algorithm, it might require more bits per word to maintain a

prescribed level of precision. This effect is discussed in some more detail in

section IX but the whole subject merits further study.

The development of the algorithm consists of two distinct parts. In

the first part, fast DFT algorithms for the low orders listed in (1.3) are

developed as a set of building blocks. The second part introduces a combining

algorithm which integrates groups of these building blocks into the desired final

structures, namely, DFTa1gorithms for orders N prescribed by (1.2).

The low-order algorithms of (1.3) are derivable from algorithms of orders

2,4,6 of another type of transformation called LCT (Left-Circulant Transformation).

Hence, the following structure of the paper: Section II is devoted to the DFT-LCT

interrelationship. This is followed by the three LCT algorithms in Section III

-.

-3-

and the seven DFT algorithms derived from them in Sections IV, V, VI. Section VII

tackles the integration of these low order algorithms into the desired algorithm

for order N satisfying (1.2). Section VIII is devoted to performance evaluation

and Section IX concludes with an overview and some comments regarding "in-place"

transformation.

The treatment of the subject is detailed and relatively complete, aiming

to provide a sound basis for further development of the subject. Naturally, this

demands a substantial investment of time. It should be pointed out, however, that

a reasonable grasp of the basic ideas and their application can be obtained by

skipping the detailed derivations of the low-order algorithms. If this is

acceptable, the following parts of the paper may prove sufficient: Section II, first

part of Section III (up to the treatment of the left circulant of order 4 on p. 18),

the introduction of the n vector on p. 40, the tableau generalization in Section VI

(portion bounded by eqns. (6.16), (6.17) on p. 49), Section VII, last part of

Section VIII (following eqn. (8.9) on p. 83), and Section IX.

~ve conclude this introduction with a few words regarding the circumstances

that initiated work on the' present paper. 'Winograd's description of his algorithm

[3] is very short (l~ pages) and, partly because of that, hard to follow. However,

even with the necessary mathematical background and a full mastery of the paper,

actual implementation would still be out of reach without a lot of additional hard

work. This is partly due to the fact that the basic building blocks comprising the
Ib

algorithm are only sketched in general outline--not actually constructed. It turns

out that, for some of these, the transition from outline to end product is far from

trivial.

The work reported here was started as an effort to understand and be able

to apply what appeared to be--and is in fact--a highly promising, fascinating,

algorithm. It was in the course of this work, as the various difficulties were

being overcome and the different pieces of the puzzle were beginning to form a coherent

overall picture, that the prospect of sharing the knowledge thus acquired, began to

have merit. There is no question that the absence of a fuller treatment of the

algorithm constitutes a serious obstacle to its wider dissemination and use. This

is where the present paper comes in. We present Winograd's algorithm in detail, we

construct the required building blocks and we show how to incorporate them in the

overall algorithm. In short, we provide the missing links that would allow immediate

implementation of the algorithm.

lb
Since the submission of this paper for publication, a summary of the algorithms did
appear in print [10], though still without derivation. This helped to shed light on
two points of discrepancy between Winograd's stated results [3) and the first version
of this paper. For further details see footnotes 8 (p. 26) and 9 (p. 41).

-4-

II. Strategy Development

The cornerstone of Winograd's algorithm is a theorem [4J providing the

solution to a seemingly unrelated problem: Given the two polynomials A(x), B(x),

what is the minimal number of mUltiplications required to compute

{A(x)B(x)} mod C(x) (2.1)

Ie
where C(x) is a given monic ~olynomial. The connection with the DFT consists

of two links: Firstly, the DFT matrix is shown to be related to another special

transformation in which the transforming matrix is a left-circulant (exact defi-

nit ion follows later). Secondly, the evaluation of this transformation is

shown to be identical with the evaluation of (2.1). Thus, the minimization of

the number of multiplications in (2.1) leads via the above two links to a mini­

mization of the number of multiplications in the computation of the DFT.

We proceed now with some required definitions. A Hankel matrix is one

in which the value of element a .. is a function of (i+j). In such a matrix,
1J

one encounters identical elements as one moves along any diagonal sloping down

and to the left. Obviously, the matrix is completely determined by its first row

and last column.

The matrix we will be concerned with here is a special case of a Hankel

matrix, namely, a Hankel matrix for which (for order n and index range 0,1, .•• ,

n-l)

. a = a (1 < P < n-l)
p ,n-l O,p-l -- (2.2)

that is, the last column is a trivial rearrangement of the elements of the first

row. Hence, this matrix is completely prescribed by its first row. Indeed, the

second row is obtained from the first one by a circular left shift (element shifted

out on the left, reappears on the right), the third is derived the same way from
. 2

the second and so on. We call such a matrix a left-circulant or, equivalently,

l~f C(x) is of degree n, it is said to be monic when the coefficient
of xn is l.

2This is based on the term circulant which is commonly used to describe
a matrix generated from its first row by circulaf right shifts.

-5-

an LC matrix. Similarly, the linear transformation effected by such a matrix

will be referred to as an LCT (Left-Circulant-Transformation). Finally, a

matrix which is not LC but contains a submatrix which is, will be called a

quasi-Ieft-circulant matrix (QLC).

We turn now to the LCT-DFT link. As will become obvious later on, we

should concern ourselves with a trivial modification of the DFT defined as follows:

21T
-i

F
u

W = e

N-I nL:
v=O

N
(2.3)

(u = 0,1, ... ,N-l) (2.4)

n in (2.4) is an arbitrary complex constant. When n
standard DFT.

1, (2.4) reduces to the

Let N, the order of the DFT, satisfy

(p prime; k

(p odd)

(p = 2)

integerll
(2.5)

We proceed to show now that for such N, eqn. (2.4) can be brought into the form

of a QLC matrix3. The derivation follows [5J and is based on the number

theoretic idea of a primitive root. g, the primitive root of N (satisfying (2.5»

is an integer whose integral powers (mod N) generate all integers in the interval

(l,N) except multiples of p.

The number of multiples of p in the above interval is

N - =
P

k-l
p

Therefore, the number of integers generated by g is

n = pk_pk-l = (p_l)pk-l

and we may say that the sequence

{l mod N} (p= 0,1, ... ,n-l)

(2.6>"

(2.7)

(2.8)

is just a permutation of those integers in the interval (I,N) which are not mul­

tiples of p.

3This is true for a range wider than (2.5). However, (2.5) is sufficient
for our purpose.

-6-

We use these ideas now to relabel the indices of (2.4) as follows. All

indices which are not mUltiples of p will be represented as in (2.8). Speci­

fically, denoting

we define

a
s = g

mod N l
mod N'

(o,a =O,l, ... ,n-l)

B =F; b =f (O,a=O,l, ..• n-l)
ora s

The indices which are mUltiples of p are now used to define

(i mod p = 0)

With these definitions we embark now on the elimination of F ,f
u v

(2.9)

(2.10)

(2.11)

from (2.4).

In doing this, we split the summation of (2.4) into two parts. In the first

part v = mp (m integer), that is, v mod p = O. In the second part v = s. The

1 . 4 resu t 1.S :

where

N-n-l 2 n-l a
F = ~ '"' vrtp

b +~ Lw
tPg

b B (tp) tp ~ (mp) a=o a

" B = B + B'
P 0 0

N-n-l 0
B =~ L w

mpg
b

o m=O (mp)

(0 O,l, ••. ,n-l)

(0 O,l, ... ,n.,..l)

(0 = 0,1, ... ,n-l)

(t=O,l, ••. ,N-n-1)

(2.12)

(2.13)

(2.14)

(2.15)

The term (0+0) identifies (2.15) as a Hankel transformation, that is, if we

write down (2.15) with p and a as the row and column indices, respectively,

then the matrix transforming b into B' is a Hankel matrix. More than that,

it is that special kind of a Hankel matrix referred to earlier as a left-circu­

lant. To see this, note that in view of the LC condition (2.2) , our Hankel

4 We take here advantage of the fact that (2.3) ensures w(m mod N) vr.

.-

matrix would be an LC if

p+n-l
g

-7-

p-l
g mod N

But since the primitive root of N always satisfies5

n
g 1 mod N

(2.16)

(2.17)

It is obvious that (2.16) is indeed true and (2.15) is an LCT. We conclude that the

permutations (2.9)-(2.11) will transform any DFT matrix of order N prescribed by

(2.5), into a QLC matrix whose LC portion is of order n.

Of particular interest is the special case in which N is prime, that is,

k=l; N=p, so that (2.7) yields

n = N-l (2.18)

and the sequence (2.8) is just a permutation of the integers 1,2, ••. ,n. In

this case, eqns. (2.12), (2.14) simplify as follows:
n-l

B(O) = rI(b(O) + Lbo)
0=0

B
p rib (0) (p = 0,1, ... ,n-l)

(2.19)

(2.20)

To illustrate these ideas, consider the case of N=7. The least positive

primitive root of 7 is 3 [6J. Indeed, direct computation yields

p 0 1 2 3 4 5

3P mod 7 1 3 2 6 4 5
(2.21)

Applying (2.9)-(2.11), we get the following form

5In the standard treatment of primitive roots, (2.8) is usually replaced by

{gP mod N} (p=1,2, ..• ,n) (2.8').

Congruence (2.17) shows that the two formulations are equivalent. To prove (2.17)
assume gm = 1 mod N for m < n. It follows then that gm+l = gl mod N and thus two of
the terms in sequence (2.8') are equal. Hence the contradiction that g is not a
primitive root. Conclusion: m = n.

-8-

F
O B(O)

WO wO wO H·O wO wO wO
b (0) b(O) fO

Fl B
O

wO WI W3 W
2

W6 W4 ws bO
b

O fl

F3 Bl
wO W

3
W

2
W6

W
4

W
S HI bl

bl f3

F2 B2 =n wO H2 H6 W4 ws WI W3 • b2
b2 f2 (2.22)

F6 B3 wO W
6 H4 ws WI W3 W2 b

3
b

3 f6

F4 B4 wO W
4

ws
.W

l
W3 W

2
W6 b

4 b4 f4

Fs Bs wO ws WI W3 W2 W6 W4 b
s

b
s fs

The LC structure is quite apparent here.

So far,we have established the first link to problem (2.1) for N satis­

fying (2.5). This constraint on N will be relaxed later on. We turn now to the

second link, namely, showing that evaluation of an LCT is equivalent to evaluation

of (2.1). We intend to establish this equivalence ~nd, from it, derive algorithms

for some general low-order LC transformations. It should be pointed out, however,

that the LC matrix we are concerned with is one obtained by permuting a DFT submatrix

and, ~ suc~ is still a function of only one variable (W) whereas the general LC

matrix of order n is a function of n variables. This suggests further simpli­

fications in our case which will indeed be realized later on.

The matrix multiplication we are considering is shown in (2.23) where

the LC pattern is clearly visible.

t
m

t m-l

t
m-2

b
m-2

b
m-l

b
m

(2.23)

;

-9-

We introduce now the auxiliary polynomials. (NOTE: The polynomial subscript indi­

cates its degree.,)

Consider the product polynomial

A (x)
m

B (x)
m

T (x)
m

m

=2:

=t
i=O

i
t.x

1.

V2 (x) = A (x) B (x) m m m

2m

L:
i=O

i v.x
1.

(2.24)

(2.25)

(2.26)

(2.27)

It is easy to see that the coefficients of this polynomial are obtainable by the

matrix product (2.28).

v2m 0 0 0 0 0
,/ /

/ /
0 0 ,/ / a a

m
_

l ,/ / /"

0 /' /' ,/ am_2 /' ,/

/ ,/ ,/
,/

/ ,/
,/

',/ ,/
,/

0 / ,/ a2 ,/ ,/

0/ ,/
vm+l

a a 2 a l m
(2.28)

v a am_l
a
m

_
2 .. ;-a2 /al

a
O

b
O m m

,/ /'
vm_1

a
m

_
1 am_2

,/ / aO /0 b
i /' /

//' /' ,/ ,/

am_2
,/ ,/ ,/ 0 b2 ,/ ,/ ,/ /

,/ / / / ,/ ,/ /'
/' ,/ ,/

/ /
'/ ,/ ,/

a2 /' / / ,/ 0 b .
,/ / / / m-2

....- a'/ / / 0 0 b a l 0 / / m-l
0/

/'

Vo aO 0 0 0 0 b m

-10-

Comparing this to (2.23), we see that interchanging the two indicated triangular

sections in (2.28) will transform the matrix of (2.28) into a trivial augmentation

of the matrix of (2.23). This fact can be translated to the following relation-

ship between T (x)
m

and V2m(x):

ntH
Tm(x) = V2m (x) - (ambl+am_lb2+ .•• +albm) (x -1)

ntH
x(x -1)

m-I-l .
T (x) = V2 (x) - (x -1) F lex) m m m-

where F lex) is the indicated polynomial of degree (m-l).
m-

V
2

(x) m .

xm-l-l_l

T (x)
m

Fm_l (x) + m-I-l
x -1

(2.29)

(2.30)

Hence

(2.31)

Note that, in the quotient on the right, the denominator degree is higher than

the numerator degree. This means that T (x) is just the remainder obtained
m

when dividing V
2m

(x) by (xm+l_l). In other words,

. T (x) = {A (x) B (x)} m m m
mod (xn_l) (2.32)

We have made use here of the fact that the order of the LC matrix in (2.23) is

n = m-I-l (2.33)

Eqn. (2.32) is a prescription for performing the LCT of (2.23) through poly­

nomial manipulations identical with those of (2.1). This, then, establishes

the second link.

Consider now the number of multiplications required to evaluate (2.23).
2 Straight matrix multiplication requires n· scalar multiplications. A much

-11-

lower value is prescribed by Winograd's theorem [4J. In its narrower appli­

cation to the present case, the theorem states that if (xn_l) is representable

as

k(n)

n
i=l

m. (x)
1.

(2.34)

where the mi(x) are distinct polynomials irreducible over the field of rationals,

then the minimal number of multiplications is (2n-k), provided multiplications by

rational numbers are not counted.

The exclusion of rational multiplications merits an explanation. Suppose

we have a minimal realization of T (x) of the following form
m

T (x) = m '

R

L(K
Jr

)
r=l r'

F (x)
r (2.35)

where J, K are integers and in which F (x) involves no rational multipli-r r r
cations. According to the theorem, the F 's will require a total of (2n-k)

r
multiplications and we are essentially being told that the additional R rational

multiplications appearing in (2.35) do not 'count. To see what is involved here,

let us clear fractions in (2.35). Let K be the least cornmon denominator and let

Hence,

J J'
r r

K= K
r

R

K T (x)
m L

r=l
J' F (x)

r r

(2.36)

(2.37)

Each of the multiplications by Jr can be implemented as J;-l additions so

that KT (x) does not require any multiplications above the (2n-k) used in m

-12-:-

computing the F 'so Finally, we compensate for the multiplication by K on
r

the left, by prescaling the a matrix, that is, replacing ai' Am(x) by

Thus, (2.32) is now replaced by

T (x)
m

a.
1

K

A

A (x)
m

m

K{A (x) B (x)} mod (xn-l) . m m

(2.38)

(2.39)

and we see that multiplications by rationals can always be eliminated without an

increase in the number of irrational multiplications.

It should be pointed out that while this argument is theoretically

sound, practically, one should be concerned with the cost in terms of the extra

additions introduced to eliminate the rational multiplications. Obviously, when

these extra additions take longer than the multiplications they replace, we

would be better off leaving the multiplications in. This will, indeed, be the

case when n is large. Therefore, the algorithm taking advantage of Winograd's

theorem, has to be constructed in such a way that a DFT of large order is br'oken

down into many LC transformations of low order. As a matter of fact, all the

DFT orders appearing in Table 6

mations of orders 2, 4, 6.

(N = 5040) call for just three LC transfor­
max

The factoring of (xn_l) for these three cases is shown in Table 1 in

which the last column gives the minimal number of multiplications as stated by

Winograd's theorem. In the next section we develop the specific algorithms which

realize these minima. These three algorithms serve as a foundation for the sub­

sequent construction of DFT algorithms for all orders listed in (1.3).

-13-

III. The Basic LCT Algorithms

Our approach here is to present the general method first in sufficient

detail so that its application to the three specific n values can be subsequently

presented as a mostly self-explanatory sequence of equations.

The starting point is (2.39) in which K is left indeterminate till the

very end of the derivation. The factoring of xn_l is spelled out in Table 1

which identifies the m. (x) factors of (2.34). With the m. 's available, we
~ ~

evaluate Tm(x) in a two-phase scheme based on the polynomial version of the Chinese

Remainder Theorem [7]. In phase 1 we compute

u. (x) = {A (x) B (x)} mod m. (x) 0.2)
~ m m ~

for,all i of (2.34). This is based entirely on results established in the Appendix

and summarized in Tables AI, A2 there. In phase 2 we use the polynomial version

of Garner's algorithm [7J to construct

the auxiliary functions c .. (x), v.(x)

T (x) from the
m

u.'s. This calls for
1

introduced below. Their utilization in
~J ~

the construction of Tm(x) is spelled out in 0.6).

vl(x) u
l

(x)

(definition of c .. (x»
1J

v. (x)
1

(("'<:[(Ui(X)-Vl(X))Cl.i(X)-V2(XiJC2.i(X)-V3(X~C3.i(X)- •••. ,­

-v. l(x» c. 1 .(x)} mod m.(x)
1- 1- ,1 1

k(m-l)

Tm (x) = KJvl (x) + L: v. (x) l i=2 1

yt m.(x)t
j=l J J (k from Table 1)

The computation of c .. (x) is trivial when m.(x) is of degree 1, that
1J J

From (A.5) in the Appendix, we see that, in this case, x-x .•
J

is,

0.3)

0.4)

(3.5)

(3.6)

-14-

Table 1

Rational Factorization of xn_l

n xn_l k 2n-k

2 (x-I) (x+l) 2 2

4
2 (x-I) (x+l) (x +1) 3 5

6 (x-I) (x+l) (x2+x+l) (x2-x+l) 4 8

-15-

m.(x.)c .. (x.) = 1 (3.7)
1. J 1.J J

Now, any c .. (x) satisfying (3.3) (and hence (3.7» would do. Choosing the
1.J

lowest degree we get

c .. (x)
1.J

1
c ..

1.J
(3.8)

With these derivation outlines spelled out, we turn now to specific cases. To

establish the evolving pattern, we follow these outlines even in the low order

case (n=2) where direct derivation could be simpler.

Phase 1

Left-Circulant Transformation of Order 2 (Fig. 1)

= (aO+a1)(bO+b1)
'-v- --......-.

a1 (31

(aO-a1) (bO-b1)
~~

a 2 62

02 = u = a 6 2 2 2

mod [}x-1) (x+1[] ---------­m1 m2

(see (A.S»

(3.9)

(3.10)

Phase 2

1 1

-16-

1
2

1 1
v2 {C02-0 1)C- z)} mod (x+l) = 2(01-0 2)

KE1+ ICo l -02) (X-l~ = ~Col-02~x + ~col+02~

The obvious choice here is K = 2 so that the final result is

(3.11)

The algorithm is summarized graphically in the tableau of Figure 1. The conven­

tions adopted here are quite simple and are also the ones adopted in the more com-

plex tableaus presented later on. We defined Si as a linear combination of

the b.'s. The S. row lists the Cnon-zero) coefficients of this linear combination.
J 1

Similarly, we found that t.
1

is a linear combination of the O. 'so

column lists the coefficients of this linear combination.
J

The left

The t.
1

corner arrow

indicates that the S.'s are derived from the b 's and not the other way
1 j

around. Usually there is no directional ambiguity so that the arrows may be

omitted. The equations O. S.a. appear explicitly in the tableau using the
1 1 1

Fortran multiplication symbol.

Finally, recall that the basic eqn. (2.39) is fully symmetric with

respect to

duced here.

Hi.}, {b.}.
J J

We have taken advantage of this in the terminology intro-

Thus, coupled with each which is a specific function of {b
j

}

(say, <P.C{b.}» spelled out in the tableau, there is the variable a.
1 J 1

which is

exactly the same function of {a. }, that is,
J.

a = i ~i(!tD
This convention is adhered to throughout the paper., Practically, this means that

bo b1

1 1
1 -1

-17-

11 r- tl to
(31 81 1 1

(32 82 -1 1

a I = cI> d { a~ })

f31=cI>l ({bj })

n=2 (2M;4A)

Fig. 1. Algorithm for LeT of order 2

-18-

a.
the left part of the tableau has to be run through twice. First, with {~}

K
replacing {b.} and thus yielding {a.} instead of {B

1
.}, then we run through the

J 1

full tableau with {b.} as input. Note, however, that in spite of the mathematical
a· J

symmetry between {~} and {b
j
}, practically, there is an important difference

between them. a is considered a constant matrix transforming a number of dif-

ferent data vectors b. Therefore, the a 's may be precomputed once and for
i

all, their computation being ignored in accounting for the cost of transforming

one data vector b. With this in mind, we count only the number of explicit

arithmetic operations in the tableau, arriving'at 2 multiplications and 4 addi­

tions, for which we adopt the designation (2M; 4A) appearing in the figure.

Note that the 2 mUltiplications are the minimum prescribed by Winograd's theorem

(right column in Table 1).

Left Circulant Transformation of Order 4 (Fig. 2)

In this and all other tableaus derived in this paper, it is suggested

that the reader consider the tableau as he follows its derivation, noting the

graphical representation of each mathematical statement as the algorithm evolves.

a.
t3 a3 a 2 a l a

O b
O

" 1
a i = T

t2 a
2

a
l

a
O

a3 bl " t" i
tl a l a

O
a

3
a 2 b2

A3(x) = aix
(3.13)

i=O

to a
O

a
3

a 2 a
l b3

3

B3(x) 2)i
xi

i=O

Phase 1

mod{(x2+l) (x+l) (x-I)}
------- -------- (3.14)

, ~""--......---

bo 1
b1

bz 1

b3

'- c~

1

1

1
1 1

-1

1 -1

Cz c3 c4 ,
1 f31

-1 f3z
CD f33

CD f34

1 1 f35

-19-

*a, =
*a2 . =
*2a5 =

*2{a4-a3) =
*(-2a4) =

aj = <PI {a~}

,81 = <Pi {bj}

i
81

8z
83
84

85

1

1

e1

1

-1

"=4 (5M;15A)

1 1

1 -1

e2 e3
1

1
1

1

Fig. 2. Algorithm for LeT of order 4

1 t3
t2

-1 tl
to

e4 J

1
1

-20-

(a
O
-a

1
+a2-a3) (b

O
-b

1
+b 2-b3)

... . '-~---';::".....--

. 8
2

a2 82

u1 (x) is evaluated in two steps:

A3 (X) mod (x
2
+1) (a1-a3)x +(ao-a2)!

a3 a4
B3 (x) mod (x2+1) (b1-b3)x +(b

O
-b2)

83 84

(from Table A1)

Note that the tableau of Fig. 2 defines 83 ,84 indirectly in terms of

Thus,

b -b o 2

83. = c
3

; 8 = c
44

(3.15)

so that no arithmetic operations are involved in the last two equations. When­

ever this is the case, we circle the .relevant terms in the tableau to stress

this fact.

Now we combine the two results of (3.15) using Table A2 (a
3

= PI; 83 = qi;

etc.) getting

We introduce now

Hence,

I
- 2~o4+o5) x

e4

-21-

Phase 2

1

Adopting

K = 4,

3 2
T 3(x) = «\-02+e4)x +(Ol+Oi+e3)x +(Ol-02-e4)x +(Ol+02-e3)

Introducing now

we get the final result

1 1
2

(3.16)

A count of arithmetic operations in the tableau (excluding the a, manipulations)
1

yields S multiplications and IS additions 6 , again realizing the multiplication

minimum of Table 1.

Left-Circulant Transformation of order 6 (Fig. 4)

ts as a
4

a
3

a
2 a 1

a
O

b
O

a, A 1 a, =-
t4 a4 a 3

a 2 a 1 aD as bl 1 K
S

t3 a 3 a
2

a
1 a

O as a 4 b2 AS (x) LA i = a,x

t2 a2 a 1 a as a4 a
3 h3 1=0 1 (3.17)

0
t1 a l a

O as a
4 a3 a 2 b4

S

BS (x) L::>i
xi

to a
O as a

4
a3 a 2 a 1

bS i=O

6The author wishes to acknowledge here the help of Dr. R. G. Lipes of

JPL in reducing the number of additions from 16 to IS.

Phase 1

-22-

AS(l)BS(l)

C
l

= b
3
+b

O
;C 2 = b

S
+b2 ; c

3
= b

4
+b

l

S

(~ai) u =
4

U 3 = AS (-l)BS (-1) = \(-aO+al-aZ+a3-a4+aS;~ -bO+bl-bZ+b3-b4+bS)j

X6 B6

U3 = a6(~6+cS-c4)

66

Ul(X) , u 2(x) are evaluated in two steps

(3.18)

-23-

We introduce now:

S7 = S3-S2 = °1-°2+°2-°3 = C1-03}

0.
7

= 0.
3

-0.
2

7 and use these to transform (3.19) into

u2 (x) = (o.2f3 3+o.
7

f3
2

) x + (o.
7

f3
2

+o.
3

f3
7

)
.... ~ '-' ~"-""

2 BS(X) mod (x -x+l)

:. ul (x)

Introducing

f38 = f3S+f34 c5+c 4+c 6-cS

CJ.8 = CJ.
5
+a

4
,

we transform (3.22) into7

-e3 e2

(o.Sf34+o.8f35)x + (a4f38-o.8f3S)
..... ~~--........,....

e4 e5
Phase 2

{ml (x)c12 (x)} mod m2(x) = 1

Let c12 (x). = Ylx+ YO

• (Yl-YO-YO+Yl)x + (YO-YO+Yl+Yl) = 1

1 1
Yl = YO ="'2; c12 (x) = "'2(x+l)

(from Table AI)

(3.19)

(from Table A2)

(3.20)

(3.21)

(from Table AI)

(3.22)

(from Table A2)

(3.23)

(3.24)

l The ei's defined here, do not appear in the final tableau and are used only in the
intermediate steps.

-24-

1 1 1 1 1
1 c l3 m1 (x3) m1(-1)

= _. c23 3' m
2

(x
3

) m
2

(-1)

1 1 1 1 1 1 1 1 c14 m1 (x4) m
1

(1) l' , c
24 m2 (x

4
) = -- c

34
=--=-m

2
(1) 3' m3(x4) m3 (1) 2

v1 e4x+ e
S

v 2 = Q-e x+ e -e x- e).!.(x+1U mod(x2+x+1) 324 S 2

v 2 = } ~(e4+e3)x2 +(-e4-e3+e 2-eS)x +(e2-eS~ mod(x2+x+~)

(from Table A1)

v 4 = }{(cc\ -e4x-eS) - }Qe2-eS)x+(e2+e3+e4 -eJ > ~- %(-3e3-e4 -2eS+20 6) }mod(x-1)

1 = 6 (ol-e2+e3-e4+eS-06)

Collecting equal power terms yields the desired t.'s. We make now the obvious
1.

choice K=6 and present the results in the tableau format in Fig. 3a. We note

here that the coefficients of t and t3 have identical magnitudes. On the left
o .

of the bisecting line, the coefficients themselves are identical whereas to the

right of it, they have opposite signs. This holds true also for the pairs

(t
1

, t 4), (t
2

, t
S
)' Taking advantage of these symmetries, we can reduce the

number of additions as shown in Fig. 3b.

The final manipulations involve the elimination of the e.'s from Fig. 3b.
1.

This is based on their definitions (3.21), (3.24) and on a judicious application

of (3.20), (3.23) as follows:

·-25-

1 -1 1 -1 1 -1 ts 1 -1 ts
1 -1 -2 -2 -1 1 t4 1 -1 t4
1 2 1 -1 -2 -1 t3 1 -1 t3
1 -1 1 1 -1 1 t2 1 1 t2
1 -1 -2 2 1 -1 t1 1 1 t1
1 2 1 1 2 1 to 1 1 to
81 e2 e3 e4 es 86 ,J ~ ~ g2 g3 g4 gs g6 j

81 1 1 1
e2 -1 2 -1
e3 1 1 -2
e4 2 1 1
es 1 2 -1
86 -1 1 1

(a) (b)

Fiq. 3. Stages in the development of the algorithm for LeT of order 6

-26-

gl-ol=e3-e2=-2a782-a2(87+82)-a387=82 (-a3-a7)+87 (-a2-a3)
~~

02 07

g6-06=e4-eS=aS(8S-8S)+2aS8S-a48S = 8S(aS+a4)+8s(aS-a4)
-.::........;;-~

Os Os

g2-01=2eZ+e3=a7 (83-87)-az83+za387=83(a7-a2)-87 (-aZ-a3)
~~

°3 °7

gS-06=ZeS+e4=-aS(8S-84)+aS84+2a48S=84(a8+aS)-8S(aS-a4)
~~ °4 . Os

g3-0 1=-eZ-Ze3=a78 z+za283-a3 (83-82)=-82(-a3-a7)-83 (a7-a2)
"-v ., ~

02 03

g4+06=eS+Ze4=aS8S+2aS84+a4 (8S+84)=84 (as+aS)+8S (as+a4)
~~ °4 Os

This completes the detivation~

(3.2S)

(3. Z6)

(3.27)

(3.2S)

(3.29)

(3.30)

SThe corresponding tableau derived in the first version of this paper contained 6
extra additions. The subsequent appearance in print of the prescription of Winograd's
algorithm [10], provided the clue to the specific manipulations «3.25), etc.)
utilized here to eliminate these extra additions.

bo 1

b1

b2 1
b3 1
b4
b5 1

c
1

c2

1 1

-1

1 -1

1

-1

1 -1

-1

1

1 1

1
c

3
c4 c5 c6

1

1

-1 1

1 1

-1 1 1

-11
1 1

/31

/32

/33

/34
/35

/36

/37

/3e

-27-

* a 1 =

*(- a3-'a7) =
*(a7 :-a2) =
*(ae+ a 5) =
*(ae +a4) =
*a6 =
*(-a2 -a3) =
*f a 5- a4) ~

a i = 4>1{{~})
, Pi = 4>i ({bj})

1

1

91

81 1
82 1
83
8A

85
8

6

87 1

88

n = 6 (8M, 34A)

1

1 I

92

1

1

-1

Fig. 4. Algorithm for LeT of order 6

-1 t5

1 -1 t4
-1 t3

1 t2
1 1 t1

1 to
93 94 95 96

1

-1

-1

1 1
1 1

-1 1 1

-1 1

-28-

IV. The Basic DFT Algorithms for Prime N

In this section, we apply the tableaus just derived to obtain the DFT

algorithms for the odd prime ·terms of list (1.3), namely, 3, 5, 7. As indicated in

Section I, these will serve as building blocks for higher order DFT's.

We have seen in section II that with the proper relabeling, an N-th

order DFT matrix displays an n-th order LC submatrix (2.7). The main part of the

contribution of this submatrix to the overall transformation is spelled out in

(2.15) repeated here

B'
P

(P = 0,1, ... ,n-l)

On the other hand, the LC tableaus of the last section are based on the (2.23),

(2.33) formuation of the n-th order LC transformation. Therefore, in applying

the LCT tableaus to the LC transformation expressed in (4.1), we must adopt the

following identifications

B' = t (p = 0,1, •.. ,n-l)
p n-l-p

a
(n-l..p)

=5"lW g (p = 0,1, ... ,n-l)
p

(4.1)

(4.2)

(4.3)

Note the effect of (4.3). The LeT tableaus, being general, provide only a pre-

scription for the computation of the a., 's
1

from the a, 'so However, since (4.3)
1

provides an explicit formula for the ai's, the

Specifically, the a., 's are expressible as
1

a., 's
1

may actually be computed.

a., = 5"le: ,
1 1

(4.4)

in which the

and for all.

E: 's
i

are functions of ,i,N only and can thus be precomputed once

We copy now the remaining equations of the relabeled DFT «2.13), (2.19),

(2.20))

B
p

B +B' P p

5"lb(O)

(P = 0,1, ... ,n-l)

(p = 0,1, ... ,n-l)

Note that eqns. (4.6), (4.7) are valid only for the special case of prime Nand

are based on

(4.5)

(4.6)

(4.7)

-29-

n = N-l (4.8)

Eqns. (4.1)-(4.5), on the other hand, are quite general and will also be applied

in the next two sections where N is not prime.

Our first step in the construction of the DFT tableau for prime N is

the computation of the E .(N) constants. This is done by evaluating the a 's
1 P

from (4.3) and then using them in the LCT tableau of order N-l to compute the

ai's, and hence the Ei'S (4.4).,

The next step is to copy the LCT tableau of order N-l into the DFTtab­

leau of order N. This is equivalent to the implementation of (4.1) and yields a

tableau transforming the b.'s
1

Now, using (2.9)-(2.11), (4.2)

we replace these variables by

into the tj's.

f . 's and F . 's.
1 J

The input and output index sequences

we get at this point will usually be non-monotonic. Therefore, we now permute the

rows/columns of the input and output squares to achieve index monotonicity.

It should be pointed out that the variable changes (2.9)-(2.11) were

introduced to expose the LC structure and thus allow the application of (2.39).

Once this has been done, however, we want the resulting DFT tableau to be expressed

in terms of the original variables F ,f
u v

with standard monotonic index sequences

since this simplifies the integration of the tableau into the algorithm for

larger N.

We turn now to the implementation of (4.7). Since all three LeT tab­

leaus satisfy
n-l

L
i=O

eqn. (4.7) is equivalent to

b. ,
1.

(4.9)

(4.10)

Finally, in order to efficiently realize (4.5), we examine the three LCT tableaus to

see whether they contain a term which appears as a component with coefficient +1 of

all This term turns out to be

Hence,rep1acing 01

will convert the output from B'
p

to B .
P

by

(4.11)

Note, however, that the term rib (0) is

-30-

already included in B(O) computed in (4.10). This raises the possibility of

eliminating one of the two multiplications evident in (4.11). Indeed, combining

(4.10) with (4.11) yields (using (4.4»

(4.12)

The multiplier of 8
1

is seen here to be the product of ~ and a function of N.

This turns out to be the general pattern for all 8
i

in all the DFT tableaus yet

to be derived. Hence, we introduce now the notation

~. = (u).~)8.
1. 1. 1.

(4.13)

where w.
1.

is a f~~ction of i,N only. 8
i

is always initially transformed as

in (4.13). Hence one of our tasks in constructing the DFT tableaus is the deter-

mination of the numerical values of the w. constants. As we shall see in the
1.

course of the developments, the underlying LCT tableaus in conjunction with (4.4),

(4.13), always uniquely determine the

w = € -1·
1 l'

w. 's.
1.

In the case of (4.12)

So far, we have considered the LCT-DFT transition in general terms. We

turn now to specific cases:

DFT of order 3 (Fig. 5)

Eqn. (4.10) is explicitly stated in the tableau. From (4.3) (with W

g = 2) we get

ao W2 -1
2 W

~ ~

""z = -
2

a
l WI WI

2 L

(4.14)

e

_i 27T
3

(4.15)

where fir is the complex conjugate of \oJ.

tableau (Fig. 1), we find

Hence, applying the second order LCT

ful
2

~1
2

1 1 a
1

~ 1 1. -1
3

€l
= __ e W = -Z 2 2' 1

1 -1 a
2 i 13~; s2 = ./j ; w2 =s2 ./3 1.-

2 2 1.T

ro
f1 1 1

f2 1 1

f3 1 -1

f4 1 -1
c1 c2 c3 c4

1 1
1 -1

I(i)
'(1)

1 1

-31-

, , r(fO

+ r* n = jl
Ifol f1 f2

f31

~
1 1
1 -1 /32

*(-3/2)fl.+ Fa=
*(jj3'/2)n =

N =3 (3M; 6A)

81

82

Fl F2

1 1
-1 1

Fig. 5. Algorithm for DFT of order 3

f31

f32

f33

~

I~

*W n + E= 1 0

-XW
2
n =

*W3 n ~

*~n =

81

82
83
84

815

N =5 (6M; 17A)

1

1
e1

1
-1

1
Fa

1 F1
1 1 F2
1 -1 F3

-1 F4
e2 e3 e4

1
1

1
1

1 1

Fig.6 Algorithm for DFT of order 5

W =-~
1 4

W
2

= -~ (cos 36°+ cos 72°)
w3 = i (sin 36° + sin 72°)

w4 = i{sin36°- sin 72°)
W s =-isin36°

DFT of order 5 (Fig. 6)
.2n

-32-

-1.5
W = e ; g = 2. Hence, from (4.3),

ao W3 -2 W

1 a 1 _ st w4
il WI

- -4 =
4

W2 4
W2 a2

a 3 WI WI

The a. 's are determined from the following prescription of Fig. 2: 1.

st -2
1 1 -W

4
st

36° c 1 =-2 cos

st -1 -W 1 1 4
st

72° c· = 2 cos 2

g W2
4 1 -1 c = 3

w. 2 S1.n 72°

g WI 1 -1 4
ist sin 36° c =-4 2

c
1 ~ c

3 c
4

1 1 st
a

1 --4

1 -1 a
2

st
(cos 360+cos 72°) =--

2

CD a 3
ist

sin 72° =2

CD a 4 ·
ist sin 36° =-
2

1 1 a 5
ist

(sin 36° +sin 72°) =2

(4.4) and (4.17) prescribe the 8 i 'S. Finally, from (4.14) and the

Si multipliers in Fig. 2 we get

(4.16)

(4.17)

All

W

-33-

= £ -1 S
wI = 1 4

1 a
72

0
) w2 = £ 2 = - - (cos 36 +cos 2

W3 = 2e: S = i (sin 36
0
+sin 72

0
)

w4 2(£4-£ 3) = i(sin 36
o
-sin 72

0
)

Ws = -2£4 = -i sin 36
0

DFT of order 7 (Fig. 8)

.2rr
-17 . 3. Hence from (4.3) = e , g =

a O wS W2

a l W4 -3
W

1 a 2 n W6 n Wi
= - = -

6 6
W2 6

lV,2 a3

a4 W3 W3

as WI Wi

Ct. 's are expressible in terms of the angle
1

8
900

=--
7

and its multiples. The prescription of Fig. 4 for the computation of the

is shown in Fig. 7 and the final tableau based on that is shown in Fig. 8.

(4.18)

(4.19)

(4.20)

Ct. 's
1

.0.-2 1 -w 6

.0.-3 1 -1 -w 6

.0.-1 1 -w 6

gw2
6 1

.0. w3
6 1 1

.0. Wi
6 1

Cl C2 C3 C4

1 1 1

-1 1

1 -1

1

-1

1 -1

1

-1

-1

1

1

C5 c6

°1

a2

a3

-1 1 a4

1 a5

1 1 a
6

a..,

1 as

=-

=-

.0.
'6

~(COS 28+cos 48)

=-~ (sin 8 + cos 48)

-i~(COS8-sin48) =

= -i ~(Sin 28 -+ sin 48)

WI = ft a1 - 1 = -~

w2 = -h(a3t a 7) =~(2 sin 8 - cos 28-+cos 48)

1 . 1
W3= li(a7-a2) ='3(-sin8t2cos28+cos48)

w
4

= ft(aS+a5) =-i(cos8+ 2sin28+sin 48)

w5= h(aS+a4)=-~(2Cos8+sin28-sin48)

=-i~(COS 8-sin 28+ sin 48) ; w6 = 11. a6 =-i(cos8-sin 28+sin 48)

= -~(sin 8 - cos 28) w7 = -fi (a2-1'a 3) = ~ (sin 8 + cos 28+ 2cos 48)

= -i~(COS8+ sin 28)

Fig. 7. Computatjon ofwj's for the DFT algorithm of order 7

I
\J.)
"l:::.
I

-35-

So
~ tr----- (fo + ~1) * n = Fo --------~+

ro
fl 1

f2

f3

f4

f5

f6 1
c

1

1

1

1

90° 8=-7

1
1
1

1

c
2

c
3

1 1

-1 1
-1

-1

-1
-1

-1

1

1
1

c4 c
5

c6

~l
~2
~3

-1 1 ~4
1 1 ~5

-1 1 1 ~6
~7

1 1 {3a

*W1,Q+ ~ =

*w2n =
*w3 .{l =
*w4 n =

*w5n =
* wsn ~
*w7 D. =
* wa,Q =

81

82
83

84
85

86

87
8a

1

1

91

1

1

1

N=7 (9M;36A)

1

1
1

1

92 93
1 1

-1

1 -1

-1

T l:2.
-1 Fl

-1 F2

-1 F3

1 F4

1 F5

1 F6

94 95 96

1 1

1 1
-1 1 1

-1 1

W1=- ~ i w5=-~(2cos8+sin28-sin48)

W2 = j(2sin8-cos28+cos48) i W6 =- ~(cos8-sin28+sin48)

w3= i(-sin8 +2cos28+cos49l;W7 = ~(sin8+cos28+2cos48)

W4 = -1(cos 8 +2sin 28 + sin 48) i wa=-~(-cos 8+sin 28+ 2sin 48)

Fig. 8. Algorithm for DFT of order 7

-36-

v. The Basic DFT Algorithms for N = 4,9

From (1. 2) we see that with the tableaus of the last section, the

highest realizable N would be 105(=3·5·7). With this in mind, we add now

the trivial algorithm for N = 2 (Fig. 9) thus increasing the maximal N to

210.

If we want still higher N, we may either generate new tableaus for suc­

cessively higher primes (11, 13, 17, .•.), or devise new tableaus for N = pk

(p prime). We adopt the latter course here.

DFT of order 4 (Fig. 10)

N=22, yielding (2.7),
n=2 (5.1)

The primitive root of 4 is 3. Hence,

o 1
(5.2)

1 3

The number of rows excluded from the LC pattern is 2. This number increases still

further in the subsequent tableaus, reaching 8 for N = 16. This calls for some

new and some modified terminology to facilitate handling the non-LC part of

the matrix.

First we extend the definition of r so that (2.10) will now include

(2.11)

p 0 1 (0) (2)

(5.3)
r 1 3 0 2

Similarly, for the column indices cr, s, we now have

cr 0 1 (0) (2)
(5.4)

s 1 3 0 2

In subsequent derivations, here and in the next section, we shall assume without

explicitly so stating that the definitions of r,s have been extended, as

indicated here, to cover all indices. Next, we complement (2.13)-(2.15) with

-37-

fo fl.
1 1 130
1 -1 /31

N =2 (2M; 2A)

Fig. 9. Algorithm for OFT of order 2

F'
r

B'· F
o ' r

-38-

B' F P , r F +F' r r

Finally, recalling that the (r,s) element of the DFT matrix (2.4) is

we introduce the "exponent matrix" E,

E =. (r s) mod N
r,s

which we find very convenient in accounting for the contribution of the non-LC

part.

In the present case

s -+ o 2 1 3

a -+ (0) (2) o 1

0 0 0 0 (0) 0

0 0 2 2 (2) 2
E

0 2 1 3 0 1

0 2 3 1 1 3

t t
P r

Note that we have added here both kinds of row and column indices. One simple

of obtaining E is directly from its definition (5.6) . In writing it down,

we make sure that the non-bracketed o,a indices would follow the sequence

0,1,2, This will bring out the LC structure. The sequence of the other

indices is immaterial.

(5.5)

(5.6)

(5.7)

way

We observe that (5.7) displays a second order LC submatrix as was to be

expected. We handle the effect of this submatrix with the LCT tableau of Fig. 1,

starting with the evaluation of the a 's
i

a O \-13 i

1 rl rl
2 =z 2

a
l wI -i

Hence (From Fig. 1)

a l = 0; a
2

= irl

We conclude that only the B2 row contributes to Fi and we copy it into the B3

row of Fig. 10.

(5.8)

(5.9)

fo f1 f2 f3
1 1

1 1

1 -1
1 -1

f30

f31

f32

f33

-39-

*n=
*n=
*n=
*in=

i
80
81
82
83
L..

Fo F2
1 1
1 -1

"70 "71

N=4 (4Mj8A)

Fl F3

1 1
-1 1

"72 "73

Fig. 10. Algorithm for DFT of order 4

-40-

Note that the output vector F appears scrambled in Fig. 10. In section IX

we point out the advantage of certain tableau structures which allow storage economies

in implementing the algorithm. The tableaus generated up to this point have both this

desirable structure and an unscrambled output F. From here on, it seems impossible

to realize both these desirable features simultaneously and we opt for the more impor­

tant memory conserving structure. Hence, the scrambled output. The scrambling here

is quite simple but becomes complex for N=16. To facilitate prescribing and hand­

ling of this, we have added the vector n to the affected tableaus. The scrambled

F is identical with the unscrambled n. (see Fig. 10)

(5.7)

We return now to the realization of the remainder of the E matrix

F -F'
r r

F = F'+o
r r 2

(r=1,3) (5.10)

We have used here the fact that for N = 4,
2

W =-1. Equations like (5.10) can be read

off directly from the E matrix. Such equations will henceforth be presented with-

out any comment.

r2{(fO+f2)+(fl +f3)} = r2S0 + r2f\ ---- -- --- -.,-
So Sl 8a <\

This completes the derivation.

DFT of Order 9 (Fig. 13)

N 32 . Hence (2.7),

n = 6 (5.11)

The primitive root of 9 is the primitive root of 3, namely, 2. This leads to

p 0 1 2 3 4 5

r = 2P mod 9 1 2 4 8 7 5
(5.12)

Hence, the following E matrix

-41-

s -+ 0 3 6 1 2 4 8 7 5

cr -+ (0) (3) (6) 0 1 2 3 4 5

0 0 0 0 0 0 0 0 0 (0) 0

0 0 0 3 6 3 6 3 6 (3) 3

0 0 0 6 3 6 3 6 3 (6) 6

E
0 3 6 1 2 4 8 7 5 0 ·1

(5.13)
0 6 3 2 4 8 7 5 1 1 2

0 3 6 4 8 7 5 1 2 2 4

0 6 3 8 7 5 1 2 4 3 8

0 3 6 7 5 1 2 4 8 4 7

0 6 3 5 1 2 4 8 7 5 5
t t
P r

With n = 6, Fig. 4 will be applicable here. We consider the ct. 's first. The E
~

matrix (5.13) clearly displays the a. sequence (this is also in agreement with
~

(4.3)) . Hence,

ao w51 -4 W

a l W7 -2
W

a
2 W8 -1

1 n n W
= - ="6 (5.14) 6 a

3 6 W4 W4

a
4 W2 W2

a5 WI WI

The computation of the

nology of Figs. 4, 11

ct 's
i

and w 's
i

is shown in Fig. 11. Note that, in the termi-

ct = 0
6

(5.15)

This means that in the realization of F! which is eff'ected by copying Fig s. 4, 11 into
~

Fig. 13, the terms associated with ctl ,a6 , should be eliminated. 9 In the actual

9Fig . }3 seems to indicate that these terms have not been eliminated. This is mislead­
ing as the terms supporting this impression are those added later on. Winograd [3J
appears to be unaware of (5.15). This leads to 2 extra multiplications in his algor­
ithm for N = 9.

.0.-4 1 -w 6

.0.-2 1 -1 -W 6

.a-I 1 -w 6

fb W4
6 1

~W2 1 1

.aWl
6 1

C1 C2 C3 C4

1 1 1

-1 1

1 -1

I 1

-1

1 -1

1

-1

-1

1

1

Cs c6

°1

°2

a3

-1 1 °4

1 as

1 1 °6

a7

1 °a

C =-g cos 20°
1 3

C2= ~ cos 40°

%=~ sin 10°

c4 =-i~ cos 10°

c5=-i~ sin 40°

c6=-i~ sin 20°

= ~(sin 10°-cos 200+cos 40°)= 0

=~(sin 10°- cos 40°) ; w
2
=- ~ (03+a7)=%(sin 100+2cos 20°+ cos 40°)

=-~(CoS 20°+ cos 40°) ; w3= ~ (a7-02) =-%(2 sin 10°+ cos 20°-cos 40°)

=-i ~(sin 200-sin40°);

=-i ~(cos 100+sin 40°);

=-~(sin 100+cos 20°) ;

=-i~(COS 100+sin 20°) i

W4 = ~(aa+ os> =-~(2COS 10°+ sin 200+sin 40°)

W5=ft(Oa+a4) =-~(cos 100+2sin 20°-sin 40°)

W7=-A(02+03)=-§(-sin 10°+ cos 20°+ 2cos 40°)

wa= i (05- 04) =-~(cos 10°-sin 20°+ 2sin 40°)

Fig. 11. Computation of wi's for the OFT algorithm of order 9

I
+::>
I\,)

I

-43-

copying from these figures, we also apply some permutations in addition to the obvious

ones involving the input and output variables. These permutations are spelled out in

(Fig. 12). Note that the permutation &i -t- gj

(Example: g -t-e -t-g)9a 193
gi -t- e

J
.; e. -t- g ..

J J

Figs. 4, 11 index (i) 0 1 2

b. -+- f. 1 2 4
1 J

4 c. -+-c. 1
1 J

w. -+-w.; 8i -+- 8 j ; O. -t-o. 4
1 J 1 J

g. -+-e.
1 J

9 4

e.-t-g.
J J

3 4

t. -t-F 5 7 8
"1 j

is shown in two sequential steps:

3 4

8 7

2 7

2 7

2 7

2 7

4 2

5 6

5

5 8

5

5 10

5 6

1

7 8

9 10

[...

, ..

~
Fig. 13
index (j)

Fig. 12. Index permutations in assembling Fig. 13.

We turn now to account for the rest of the matrix using (5.13) as our guide. In doing

that we encounter the following constants

which we use in the following.

r = 1; 4; 7

9a
f -+- we introduce two canceling sign changes. In the case 0 g3-t-e2 g2'

-44-

We withhold implementation and proceed to the next group

r = 2; S; S

Compared to the previous case we have here interchange of W
3

At this point we implement both groups as shown in Fig. 12.

Next we implement F3 ,F6 . From CS.13),

6 -3 with W (=\.v).

F3 =Q{(fO+f3+f6)-Ct+ il{) Cf l +f4+f7)-Ct- il{) (f2+f S+f S)}

=Q{fO + (f6+f3) -tr(fs+fl)+(f7+f2)+(fs+f4)] + -.- _____ L~ ---..- ~
So S3 cl c2 c4

+ il{ ~fS-fl)-(f7-f2)+CfS-f4)]}
~~--. Cs c7 Cs

= QSO+QS3 -~Ccl+c2+c4) + il{ QCcS-c7+cS) =
'-,..- --.,,- - -------

Cb 203 Sl Ss

We turn now to F6• The only difference here is the interchange of W3 with

w6
C=W3). Hence

Finally,

This completes the derivation.

F6 = g +g
1 S

Hence,

With the two additional tableaus developed in this section, the maximal

realizable N has been ~ushed to 1260 (4.S.7.9). We push it still higher (S040)

with the tableaus of the next section.

fo

fl

f2

f3

f4

fs

f6

f7
fa

ICD 1 2

1 -1 1 -1
1 -1 -1 1

1 -1 1 1
1 -1 1 1

1 1 1 1
1 1 1

1 1 -1 1
1 1 I ill

Co c
1

c2 c3 c4 c
5

c6 c7 ca eo e
1

e2 e 3 e4 e
5

e6 e7 ea e g

CD f30

1 1 1 f31

1 -1 f32

(!) (33

1 -1 (34

1 1 f3s

CD (36

-1 1 f37

1 -1 1 f3a
1 -1 f3g

1 1 :f3w

*n =
*(l/2)n =

*w2n =
*{l/2)n =

*w n = 4

*"w n = 5

*Hj3/2)n=
*W7n =

* (-i/3/2)n=

*Wgn

*"W10n

=
=

80

8l

82

83
84
85

86
87

88

89
8

10

1 1
Q)

1 1
2 -1

1
1

I@
1 1

@
-1

-1

w2 =-j{2sin 10°+ cos 20°-cos 40°); w7 =-i(2cos 10°+ sin 200+sin 40°)

w. = % (sin 10° + 2 cos 20° + cos.400) ; w9 = i (- sin 10° + cos 20° + 2 cos 40°)

Ws = --k (cos 10° + 2 sin 20° - sin 40°) ; w1o=-i (cos 10°- sin 20° + 2 sin 40°)

. Fig. 13. Algorithm for Df:"T of order 9'

1

1

Fo

go IJ)
gl

g2

g3

g4

gs

1 g6

g7

g8

e~ '70

1

1

F3 F2 Fl F. Fs Fa

1
1

1 1
1 1

-1 1

-1 1
-1

-1
'7l 1'12 1'13 1'1 .. 1'15 1'16

N= 9 (11M; 44A)

F7

1

1

1'17

Fs

1

1

1'18

I
+:>
U1
I

-46-

. VI. The Basic DFT Algorithms for N = 8,16

In developing the tableaus for N = 8, 16, we face a complication due
to the fact that

N = 2k (k> 2) (6.1)

has no primitive roots. In other words, unlike the N = 4 case, there is no integer

whose powers (mod N) would generate all of the odd numbers in the interval (l,N).

We can, however, generate half of these with powers (mod N) of the number 3 [9J.
We proceed now to modify the relabeling scheme to handle this case. First we

modify (2.9) to read as follows:

r = 3P mod :} N
(p,a 0,1, ... --1)

3
a 4

s = mod
(6.2)

r ~ -3: mod N}
(p,a N

0,1, ... --1)
s = -3 mod N 4 (6.3)

Note that we have introduced here (6.3) a new type of index so that we now have three

kinds: (i) ;1, i. We illustrate this with the case N = 8

p 0 T 0 1

r = 3 P mod 8 - - 1 3 (6.4)

r = -3 P mod 8 7 5 - -

It should be stressed that the bar or parentheses have no effect on the

numerical value of the index. Their only effect is on the choice of the functional

relationships connecting the new entities
i Consider for example the expression g B ..

1

ba,Bp to the original variables fs,Fr •

If we evaluate it for i = 1, its value

is glBl ~ glF3 ~see (6.4».

we get g IT = g F5 ·

If, on the other hand, we want its value for

Eqns. (2.10), (2.11) now read

F
r

Bp; fs = ba (r,s odd) }

B(r); fs = b(s) (r,s even)

i=T

(6.5)

-47-

so that the overall r,p functional relationship can be summarized as follows

- -
p 0 1 0 1 (0) (2) (4) (6)

r 7 5 1 3 0 2 4 6

with an identical table relating s to o.

Eqns. (6.2)-(6.5) are now applied to eliminate

analogous treatment in section II.)

F , f u v from (2.4).

B
P

A

B
P

B' =
p

A

B + B' • P , F B •
p'

F'

1

P r

(N-2)
n L

m=(O), (2), .•.

(N-2)
L n

m=(O), (2), ..•

N --1
4

n L
0=-0

N --1
4

n L
0=0

r

-m3 P
W b

P
Hm3 b m

B'
p

m

N --1 o 4
W- 2t3 b + n L o

0=0

o
W2t3 b o

(t = O,l,.·.i -1)

(r odd)

-- N
(p=O, 1, •.• '4" - 1)

N
(P=0,1' ... '4 -1)

-- N
(p=0,1' •.• '4 -1)

N
(p=O,l, .•• '4"- 1)

(See

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

It is obvious that all four matrix products appearing in (6.10) are Hankel
N transformations (p+a) of order 4. We prove now that they are also LeT's. To do

this, we must show that (see (2.2), (2.16»

N
P+4- l p-l

3 = 3 mod N (N (6.11)

-48-

or equivalently,

mod N (6.12)
n

We prove (6.12) by induction on k. 4 Assume it to be true for N = n, then 3 = mn+l
(2n)

so that 3~ = 1 mod (2n)" (m integer). Squaring yields

n

32 = (m2i) (2n) +m(2n)+1

and (6.12) is true for N = 2n. Finally, (6.12) is obviously true for k = 3.

Thus, (6.10) involves four LC matrix products. Furthermore, these four LC

matrices comprise a second order compound matrix which is an LC itself. All

these features stand out quite clearly in the two cases to be developed now.

DFT of Order 8 (Fig. 14)

Applying the permutation of (6.6), we get the following E matrix

E

s ~ 0 4 2 6 7 S 1 3

a ~ (0)(4)(2)(6) 0 1 0 1

-
0 0 0 0 0 0 0 0

0 0 0 0 4 4 4 4

0 0 4 4 6 2 2 6

0 0 4 4 2 6 6 2

0 4 6 2 1 3 7 5

0 4 2 6 3 1 S 7

0 4 2 6 7 S 1 3

0 4 6 2 S 7 3 1
'-

-

-

We turn now to an explicit representation

the lower right quarter of E. Denoting

" ~k wk ~ ,

we get
'" '" a1 a O

I F' wI w3 w7 Ws f7
£1

7

F' fS S w3 wI Ws w7

\
F' w

7 Ws wI w3 fl '" 1
to

F' f3 3 Ws w7 w3 wI

(0) 0

(4) 4

(2) 2

(6) 6
(6.l3)

0 7

1 S

0 1

1 3
t t
P r

of the submatrix corresponding to

(6.14)

I bO

(6.lS)

!
'" b

l

-49-

We see here four second-order LC submatrices, two each, of types

the terminology introduced here, we write down the equivalent second-order compound

matrix

(6.16)

Note that (6.16) is also an LeT. We propose now to evaluate (6.16) through a direct

application of the tableau of Fig. 1. Some elaboration is in order here. The

tableaus in this paper have been derived with the implied assumption that the

variables appearing in them are all scalars. This is not really necessary. Review­

ing the derivations, one concludes that the tableaus are also valid under the

following generalized interpretation:

1. The row (column) elements (fi,ci,Si,oi,ei,Fi , ••• etc.) are column submatrices

2.

3.

4.

ai,ai , n are square matrices

w. is still a scalar constant
1

The tableau entries

10 should be interpreted as the following matrix products

S.*a. = °1.; 1 1
=0

i

a.S. = 0.; w.ns. = 0.
1 1 111 1

We introduce this generalization here with the immediate goal of evaluating (6.16).

However, its importance transcends this immediate application. It is this generaliza­

tion which elevates the tableaus from the rather theoretical realm of fast algorithms

for very low order DFT's into the very practical realm of high-order, high-speed

DFT algorithms. The specific way in which this is done is presented in detail in

section VII.

We return now to the evaluation of (6.16). Applying Fig. 1 we get

A

B1 bO
A A

t1 to

A A

1 1 131 * °1 1 1
A A

1 -1 132 * °2 -1 1

(6.17)

10This "modified interpretation" can be avoided by using row matrices instead of
column matrices. Note in this context that the n matrix we will be concerned with
is symmetric.

1 " 1 " "2 a o "2 a 1

1 1

1 -1

~ = ex B = i YI1[l
2 2 2 1

" a
1

" a 2

-50-

r 1 -;1;
t1 ~

" r7
+

f

1J f3 = = 1
fS+f3 [::J

We turn now to the realization of the remaining parts of (6.13)

r = l;S

F' '+ (")Q = F'+g
r HI-'4 r 4 ---

r = 3;7

(6.18)

fo f1 f2 f3 f4 f5 fs f7
1 1 Co

1 1 c1
1 1 c2

1 1 C 3
1 -1 c4

-1 1 c5
-1 1 C s

-1 1 c7

1 1

1 1

.1 -1

-1 1
1 1

1

i -I

-1

eo e1 e2 e3 e4 e5 es
1 1

Q)
1 -I

1 -1

CD
1 i

CD

1

1
e7

I@

f3. I 0
f31

f3 2

/33
/34
f35

f36

f37

*n' =

* (l/./2')n=

*n =

*n =

*n =
*n =
*n =

*(i/j2')n=

7]0 leD
7]1
7]2

7]3
7]4

7]5

"1s

"17
go

80 ,~
81
82
83
84
85
8s
87

N= 8 (8M; 26A)

Fig. 14. Algorithm for OFT of order 8

1 1

®
CD

-1 1

CD

gl g2 g3 g4 g5

1

®
CD

CD
CD

1

1 -1

1 1
g6 g7

1

(D
-1

Fo
F1

F2
F4

F5
Fs
F3

F7
I

\JI
I

-S2-

F6 = rl{(fO+f4) - (fZ+f6)-i(f7-fl)+i{fS-f3)} = rl{(cO-cZ)+i(cS-c7)}

------- ------- -----Co Cz c 7 Cs e Z eS

F6 = rl(:Z+ieS) = rlSS = gs

Ss

FZ = rl(eZ-ieS) = rlS2 = gz

Sz

= rl(e -e) = rlS . 0 3 3 -------
S3

FO = rl(eO+e3) = rlSO = go ---
This concludes the derivation.

DFT of Order 16 (Fig. 17)

The permutation is controlled by the following table

- - - -
p 0 1 Z 3 0 1 Z 3

r = 3P mod 16 - - - - 1 3 9 11

r= -3 P mod 16 IS 13 7 S - - - -

Applying this we get the foll~wing E matrix

(6.19)

-53-

s + a 4 8 12 2 6 10 14 15 13 7 5 1 3 9 11

a + (0) (4) (8) (12) (2) (6) (10) (14) a 1 2 3 a 1 2 3

r-
a a a a a a a a 0 a a a a a a a (0) a
0 a a 0 8 8 8 8 12 4 12 4 4 12 4 12 (4) 4

a a 0 0 0 0 0 0 8 8 ,8 8 8 8 8 8 (8) 8

0 0 0 0 8 8 8 8 4 12 4 12 12 4 12 4 (12) 12

0 8 0 8 4 12 4 12 14 10 14 10 2 6 2 6 (2) 2

a 8 a 8 12 4 12 4 10 14 10 14 6 2 6 2 (6) 6

0 8 0 8 4 12 4 12 6 2 6 2 10 14 10 14 (10) 10

E =
0 8 0 8 12 4 12 4 2 6 2 6 14 10 14 10

0 12 8 4 14 10 6 2 1 3 9 11 15 13 7 5

(14) 14
(6.20)

0 15

0 4 8 12 10 14 2 6 3 9 11 1 13 7 5 15 T 13

0 12 8 4 14 10 6 2 9 11 1 3 7 5 15 13 "2 7

a 4 8 12 10 14 2 6 11 1 3 9 5 15 13 7 3" 5

0 4 8 12 2 6 10 14 15 13 7 5 1 3 9 11 0 1

a 12 8 4 6 2 14 10 13 7 5 15 3 9 11 1 1 3

0 4 8 12 2 6 10 14 7 5 15 13 9 11 1 3' 2 9

a 12 8 4 6 2 14 10 5 15 13 7 11 1 3 9 3 11
L- -

t t

P r

In view of the complexity of the present case, we derive the tableau in two

stages. Fi, the contribution of the LC submatrices, is considered separately in the

intermediate tableau of Fig. 15 which is then copied into the final tableau of Fig. 17.

Following the previous case, we write down explicitly the LC part

fl f3 fs f7 f9
1

1

1

1 1
1-- -- --

-1 1
-1

-1
-1

fu f13 f15
1 cl

1 c3 1

1 Cs -1
c7 -- -- -- --c9

1 Cu
1 Cl~

1 Cl~

es
IQ)

1

1 :
I
I
I
I

-11 __ 1_- --I 1 I

11
I

11
I 1 I

e 7 :e13 e15

:
CDI

1(1)
I 1(1) I

1 I
I

: 1 1

/35
1,97

,9U

1,81!

l1e
~

*Ws.o. =
*"7.n=
*w13.n =

* "'15.n =

* "'16.n =
*w17 .n =

85

87
%
815

~e
~7

Fl'l F:' 9 F' 3 F' 5 F' 1 F13
1 1 h5 r0) [i5

1 1 h7 ED ICD
-1 1 hu rm rtU

-1 1 hI_
g5 g7 g~ g15
1

1

1

1
1 1

1 1
g5 g7 ~3 ~5 Fl~ F:' 9 F' 3 F:' 5 F' 1 Fi~

Ie!) ..
8ll' 1

Ie!) I ~ 1 1 I

I~ 8~ 1

@ I ~ 1 1 I
1-'"- ----Ii!) -- -- ----I I~ 1 I

leD
..
82, 1 -1

I lEi) ~ 1 I

'@l I~: 1 -1 • - _1_- __ ___ __ _ ___ _

Fi g. 15. I ntermedi ate tab I eau for the computati on of Pi for the 0 FT of order 16

F' 7

~~

F' 7

1

--

-1

F15

1~1

F,'
15

1

--
-1

I

I

I
U1
~
I

-SS-

A A al
a
O

I
.A

\1
A

'\ -
Fl.S W

l W3 W9 W11 W1S W13 W7 Ws f lS

Fi3 W3 W9 W
ll

Wl
W13 W7 Ws W

1S f13
"-

F'
7 W9 W

ll
Wl W3 W7 Ws W1S W13 f7

bO

F'
S

wll WI w3 w9 Ws w
lS w13 w7 fS

F'
1 wis w13 w7 Ws wl w3 w9 w

ll fl

F' w13 w7 Ws wlS w3 w9 w
ll

wl f3 3 "-

F' f9
b

l
9

w7 Ws wlS w13 w9 w
ll

wl w3

Fl.l Ws w1S w13 w7 w
ll

wl w3 w9 f11

that is,

We handle (6.22) via the tableaus (6.17), (6.18). It is obvious from (6.18) that

a
l
,a

2
will be LC matrices. Hence, it is sufficient to compute their first rows

only. We express these in terms of the basic angle

I!irst row of alJ = n 1"£os 8

I!irst row of a 2J = ill ~in 8

Turning to (6.17), we get

f 15+f1

f13+f 3

~l =
f7 +f9

f5+f11

360
0

8 = -- = 22.So
16

sin 8 -cos 8'

cos 8 -sin 8

f 15-f1

f 13-f3
"-

82=
f7 -f9 =

f5 - ~l

-sin ~

-cos ~

CIS

c13

-c9

-cll

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

-56-

The next step in (6.17) calls for the evaluation of two LeT's of order 4, namely,

g.
1

A A

a..B.
1 1

(i = 1,2)

We adopt now the following notation for the components of g
i

A

°iO
A

Oil
A

0. A

1 °i2
A

°i3

These will be determined now by applying the tableau of Fig. 2.

Implementation of 61 = &l~l-

rl 8 1 1 - - sin
4

rl 8 1 1 - 7; cos

rl . 4" S1n 8 1 -1

rl 8 1 -1 4" cos

0 0
rl rl . 8 - zcos8 -is1n

1 1 0

1 -1 0

0) rl
8 - zcos

CD rl . 8 - - S1n 2 =€ rl·w =2(€ -€)=(cos8-sin8)
7 ' 7 7 5

1 1 - ¥(cos8+sin8)

Note that the vanishing of the first two multipliers means that only a portion of

Fig. 2 is required, namely, the portion involving the rows of B3 ,64 ,65 . This is

copied into rows of 65 ,67 ,616 , respectively, in Fig. 15 (Hence the adopted

W indices). Note further that Fig. 15 shows two alternative paths leading from

(6.27)

(6.28)

(6.29)

-57-

gi to F;. The upper path should be ignored for now.

has derived that portion of the tableau leading to 81j •

Implementation of 82 = a2~2-

W
8 1 1 --z;-cos

H~ 0 1 1 - -;-sin
4

H~ 8 1 -1 --z;-cos

H~
f;Sin 8 1 -1

0 0
iQ . 8 -ZSl.ll iQ

-- cos8 2

1 1 0

1 -1 0

@ W. 8 -ZSl.ll

CD W 8 - --zeos

1 1 - i
2
Q(sin8+cos8)

The preceding discussion
A

We turn now to 62j •

The situation here is very similar to the 8
1

case. The rows of B
3

,B
4

,8
5

of

Fig. 2 are now copied into the rows of B13,815,817' respectivelY,of Fig. 15.

With 81 ,82 now available, we apply (6.17) to obtain £1'£0 as shown in

the lower part of Fig. 15. The transition from gi to F; is shown there requiring

8 additions. The upper part realizes the same transformation with only 4 additions

and is the version copied into Fig. 17. The identity of the two paths can be easily

verified by inspection. For example, the upper part prescribes Fi = g7+g15 but so

(6.30)

does the lower part. Verifying such agreements for all 8 outputs, establishes the identity.

We implement now the remaining parts of (6.20). To bring out clearly the

various symmetries we are exploiting here, we show an explicit form of the remaining

part of the permuted DFT matrix in Fig. 16. It is shown here for convenience as the

sum of two matrices and expressed in terms of the constant

1
Y = 72 (6.31)

5- 0 4 8 12 2 6 10 14 15 13 7 5 1 3 9 11 o 4 8 12 2 6 10 14 15 13 7 5 1 3 9 11
CT-(O) (4) (8) (12) (2) (6) (10) (14) 6 1 2 "3 0 1 2 3 (0) (4) (8) (12) (2) (6) (10) (14) 6 I 2 '3 0 1 2 :3 - - r- -

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (0) 0

1 1 1 1 -1 -1 -1 -1 i -i i -i -i i -i i (4) 4

1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 (8) 8

1 1 1 1 -1 -1 -1 -1 -i i -i i i -i i -i (12) 12

1 -1 1 -1 -i i -i i Y -y Y -y Y -y Y -y iy iy iy iy -iy -iy -iy -iy (2) 2

1 -1 1 -1 i -i i -i -y Y -y Y -y Y -y Y iy iy iy iy -iy -iy -iy -iy (6) 6

1 -1 1 -1 -i i -j i -y Y -y Y -y Y -y Y -iy -iy -iy -iy iy iy iy iy (10) 10

y- y' =
1 -1 1 -1 i -i i -i Y -y y -y y -y y -y

1 i -1 -i Y -y -y Y
+

-iy -iy -iy -iy iy iy iy Iy

iy iy -iy -iy

(14) 14

6 15
I

U1

1 -i -1 i -y Y Y -y iy iy -iy -iy I i 13
OJ
I

1 i -1 -i Y -y -y Y iy iy -iy -iy 2 7

1 -i -1 i -y Y Y -y iy iy -iy -iy "3 5

1 -i -1 i Y -y -y Y -iy -iy iy iy 0 1

1 i -1 -i -y Y Y -y -iY -iY iY iY 1 :3

1 -i -1 i Y -y -y Y -iY -iY iY iY 2 9

1 i -1 -i -y Y Y -y -iY -iY iY iY 3 11
'-- - - - t t

p r

Fig. 16. E matrix for the computation of F. - F'. for the D FT of order 16
I I

(I

-59-

We define now

and proceed with the evaluation as follows:

r = 1;9

Fr-F; = n (:S-ic12) - y Q,C14-ClO! + i(c14+cI0~] = ~q -iyn(~14- ielQ)

S12 . e lO e14 ° 12 Sil!O

r = 5;13

F = 1f' + (g12+glO) = F'+hlO r r ~ r

h10

r = 3~1l

Fr-F~ = n{~cS+:c12! +Y[~C14-ClO? - i:CI4+C10!]}=

Ss e10 e14

°s- i)QB14 = gs - °14 = gs -g14 = hS
~'''- --
gs °14 g14

F = F'+h
r r S

Fr=F~ + ~gS+gI4)= F~+hI4

h14

We define now

r = 7;15

nBs-iyS"2(eI4+iel0)
-.,.-' , ,

Os B14

c

• 0 1 2 3 4 5 6 7 8 9 10 11 12 1314 ~ 15 -
I 1 o 1 1

1 1 1 1 1

1 1 2 1 1
1 1 3 1 1

1 1 4 1 -1

1 1 5 1 -I

1 1 6 1 -I

1 1 7 1 -I

1 -I 8 1
-1 1 9 -1

1 -I 10
-I 1 11

1 -I 12 i

-1 1 13

1 -1 14
-1 1 15 1

o 1 2 3 4 5 6 7 8 9
1 1

1 1
1 -1

1 -I
1

D
1

1
1

1

1

1 1

1

-1
-1 1

-i

1 1
1

10 11 12 13

1
-i

-1
1

I

i

1

1
1

1
1

1415 _e
.a(O}

13!ll
13(2}

13(3}

13(4}

13(5}

13(6}

13(7}

I3(B}
13(9}

1 13 (lO)
13m}
13(l2}
13(l3}

1 13(l4}
1 13(l5}

13(16)

1 13 (l7)

*n
*n

*n
*,..n =
*n =
*w(5ln =
*in =
*w(7ln =
*n =
*i,..n =

*iyn =
*in =
*n =
*w(l3}n

*i,..n =
*w(15ln

*w(l6}n

*w(17}n

1

CD

g- o 1
!l(O} 1
8(l} 1
8(2}

8(3}
8(4}
!l(5}

8(6}
8(7}
8(B}

a(9}
8UO}

8(Ill
8(l2}

• 8U3}

8U4}

SUS}
8(l6}

S(l7l

N= 16 (laM; 74A)

1
1 1

1 -1

1
1 1

1

1
-1 1

-1

1
-I

2 3 4 5 6 7 8 9

1
1

1
1

1
1

1
1

1 1

Fig. 17. Algorithm for DFT of order 16

h

• • 0 e 4 10 2 11 6 9 3 14 5 12
o 1 1

1 1 -1

2 1 1
3 -I 1

4 1 1
1 5 -I 1

6 1 1
1 7 -1

-1 8 1 1

9 1 -I

1 1 10 1
1 11 1 -1

-1 1 12 1
1 13 1

1 14
1 15

1011 12 13 1415 o 1 2 3 4 5 6 7 8 9 1011

Y·l/./'l
() = 22.5°
w(5)= -(cos () + sin ()
w(7}=cos()-sin()

w(13}= -i(sin () + cos ()}

w(15}= i(sin ()-cos()}

1
w(16} = sin ()

1 wU7}=i cos()

1
1

1

1

1 1

I'

1 13

1

1

1
-1

12 13

7 15

1 1
1 -1

1415

--F

--7]

I
0'
o
I

-61-

g4 +r2 {-i(C2-C6) +Y[(c7 +c1)
~ --- + i(cIS-c9) + i(c13-c ll)]} ---86 el eg ell

g4 - i086 +y0(e1-e3)+iyO(e9+ell) = g4 - 06 +y083 + iy 08g= g4 -g6+03 + 0g ---- --- --- ~ --- --..-°6 83 8g g6 03 09

= (g4-g6) + (gg +g3) = h4+h3 ----
Noting which columns in Fig. 16 are associated with each of the four g. 's comprising

1

F2' we observe that F6 , FlO' Fl4 involve the same gi's but with different sign

combinations. Specifically,

F 6 (g44-g6) + (gg -g3) ---
Finally we consider the upper four rows

FO = o {(CO+C
4

) + (c2+c6) + (c
7
+cl) + (c

S
+c3)} ---- ---- -..--- ~ eO e2 e1 e3

0{(eO+e2) + (e1+e3)} ---- ~ 80 81

080 + OR1 00 + 01
- -,- .--..-

°0 °1 go gl

-62-

~{(eO-e2) + i[\ClS-C9)-(c13-cll[1}

s---2

= !£ + on hZ + gIl = hZ + hll

hn

= ~62 + i~(e9-ell) = 02 + i~6ll ---- -.....-......,....--....--~

°2 611 g2 °Il

This completes the derivation. Note that the size of this tableau imposes certain

notational peculiarities. In particular, w(i) = wi' 6(i) = 6i , etc.

VII. The DFT Algorithm for

-63-

N
K lla

n Nk
k==l

At this point, we finally are in possession of DFT tableaus for all

orders listed in (1.3). Our immediate goal is their integration into a DFT

algorithm of order

N
K n Nk

k=l
(Nk's relatively prime) (7.1)

In the subsequent derivations, we will also need the following partial products

of these factors

K

V. n Nk (0 < i < K)

1
1

k=i+l

V = 1 (7.2)
K

K

n Nk
N

(7.3) n.
Ni 1 k=l

k,;i

Let us introduce now a set of matrices which figure prominently in

the development of the algorithm. Consider a matrix whose order N satisfies

(7.1) • We denote by o.
1

its upper-left submatrix of order V .•
1

Note that

(7.2) implies the existence of a sequence of these submatrices

The matrix order decreases to the right. 0
0

on the left is of order Nand

is thus identical with the overall matrix. o on the right is of order 1
K

and is thus the upper-left element of the overall matrix.

The second item we introduce here is the graphical representation of

the tableaus shown in Figure 18. We describe this in terms of the generalized,

compound-matrix, interpretation of the tableaus (see discussion following

(6.16)). Let the tableau variables f.,B.,o.,F., .•• etc. represent m-
111 1

dimensional vectors. Then, the tableau of order N is applicable to any matrix

transformation of order mN in which the transforming matrix, Y, when regarded

as a compound matrix of order N, is the N-th order DFT matrix (2.4). In this

lla
The basic idea underlying the developments in this section is commonly

attributed to 1.J. Good [Ii]. Here, we find it more convenient to avoid
Good's explicit use of the Kronecker matrix product.

-64-

case, the ~ parameter of the tableau is the m-th order upper-left submatrix

of Y.

Examination of the tableaus reveals that they all consist of three

parts corresponding to three distinct phases of the algorithms they describe.

In phase 1, the mN-dimensiona1 input vector f is operated upon to yield the

m-dimensiona1 S. vectors. In phase 2, a scalar multiple of the ~ submatrix
1 11

transforms Si into f,;i according to (4.13) (t,;i = (wi~)Si; i=O,1, •.. ,M-1).

M is the number of multiplications appearing in the tableau designation. Obvious­

ly, this is also the number of S. vectors generated in phase 1. Finally,
1

in phase 3, the m-dimensiona1 ~. vectors are operated upon to yield
1

the mN-dimensiona1 output vector F. The three phases are represented

schematically in Fig. 18. The conventions adopted here are as follows:

All lines represent vectors. We may attach an integer to a line to

indicate the dimensionality of the vector it represents (see Fig. 21).

Phase 1 is represented by a circle, phase 3 by a square. In either case, the

symbol inside designates the matrix transforming the "circle. input" to the

"square output". Note that the only arithmetic operations involved inside

either the circle or the square, are additions and subtractions.

With these preliminaries out of the way, we are ready now to consider

a set of scrambling guidelines that would allow a simple implementation of the

DFT of order N satisfying (7.1). Denoting the scrambled matrix by Y, we pro­

pose the following set of sufficient conditions:

11

\ I

1. Y(=~O) should be a compound DFT matrix of order N
1

• This will

allow the implementation of phase 1 of the Nl tableau. Phase 2

calls for the determination of (wi~l)Si' Hence,

2.

1 of

ing

3.

to ~

~1
the

~2'

~2

K-1

should be a compound DFT matrix of order N
2

• We apply phase

N2 tableau and are led, in phase 2 to a transformation invo1v­

Hence,

should be a compound DFT matrix of order N3 and so on down

which should be a DFT matrix of order N.
K

For most i values, t,;i = 0i of the tableaus but not for all of them. For

example, the N = 5 tableau implies t,;O = FO' °
1

= t,;l+;O'

PHASE 1

PHASE 2

PHASE 3

-65-

f

[
UPPER-LEFT]

!j=W j SUBMATRIX OF Y {3j

y

F

Fig. 18. Schematic representation of the basic DFT tableaus

-66-

All this can be summarized as follows: A convenient relabeling scheme

would be one which satisfies the following set of K constraints:

Submatrix n
k-l

of Y should be

a compound DFT matrix of order

Nk • This should hold for all (7.4)

l<k< K

While an algorithm following the above outline would be quite convenient to

implement, it is not at all clear that a scrambling scheme that would simultaneously

satisfy all K constraints of (7.4) does, in fact, exist.

We proceed now to develop a relabeling scheme which comes very close

to (7.4), adding only a minor complication to the above algorithm outline. We

start with the standard DFT matrix ({2.4) with n = 1).12

N-l
A

L wuv~ (u=O,I, ••. ,N-l). F = (7.5)
u v

v=o

Let·

A A

~ F u' qn f
v

(7.6)

where

u = A{m); v = A{n) (m,n = O,l, ••• ,N-l) (7.7)

and the function A is yet to be specified. This transforms (7.5) into

I: wA(m)A(n)
N-l

Qm
= qn L Y mnqn (m=O,I, •.. ,N-l)

n=O n=O
(7.8)

The function A will be defined in terms of a modular representation

[7J of U,v. In other words, the relabeling depends on the entities

u mod Nk 1
v mod Nk

(k = 1,2, .•• , K) (7.9)

According to the Chinese Remainder Theorem [7J, these remainders uniquely deter-

mine any O'::'(u,v)<N. Hence, we may adopt the following representation for u,v

1~e use here
variables Fu,fv.

A " F ,f
u v to distinguish these entities from the tableau

-67-

u =
(7.10)

v

The function A is now defined in terms of the following combination

of (7.7), (7.10)

A(n)

A(n) should be such that as n follows the sequence O,l, •.• ,N-l, each v
k

should follow a periodic repetition of the sequence 0,1, ... ,Nk-1, starting

(7.11)

with v
k

= O. vk
This means that v1

should be stepped with every Vk-increment of n (see (7.2)).

varies very slowly, v2 varies faster and so on, up to

v which varies in step with n.
K

To illustrate this scrambling, consider the following example

K = 3; N1 = 8; N2 = 3; N3 = 5; :. N = 120

for which part of the index sequence would look as follows:

n v

· · · · · · 3 48 = (0,0,3)

4 24 = (0,0,4)

5 40 = (0,1,0)

6 16 = (0,1,1)
· · · · · · 62 12 = (4,0,2)

63 108= (4,0,3)

64 84 = (4,0,4)

65 100 = (4,1,0)

66 76 = (4,1,1)
· · · · · ·

(7.12)

One could use modular arithmetic subroutineB to determine this sequence on a com­

puter. Alternatively, it could be determined in a scheme using neither computers

nor computations. All that is called for is some tedious writing down of

-68-

repetitive sequences. We illustrate this method for our example (7.12) in Tables

2,3. First we write down the sequence 0,1, ... ,N-l as shown in Table 2 under

the heading v. Then we write down next to this column, under the heading v
k

'

a periodic repetition of the sequence O,l, ••• ,Nk-l and repeat this for all

l<k< K. This yields representation (7.10) for all v's. The particular

arrangement in Table 2 saves some writing and is convenient for the next step

which is just a reordering of Table 2 in the desired sequence.

To simplify the process, we let Table 2 determine the order in which

Table 3 is being filled in. For example, the first v

Table 2 into Table 3 are 0,40,80,8,48,88,16,56, ..• etc.

values copied from

Table 3 then pre-

scribes the index sequence of the scrambled input vector for (7.12), namely,

To facilitate the analysis of the adopted scrambling, we introduce now

E, the exponent matrix of Y. Recall that (7.8) implies

Y = if (m)A (n)
mn

Hence we define the exponent matrix E as follows:

E
mn

A(m)A(n) = uv

(7.13)

(7.14)

Similarly, paralleling the SG
k

submatrices of Y we define ~ as the upper­

left vk-order submatrix of E.

Let us examine now the structure of ek- l , starting with the distri­

bution of uk,vk • The scrambling prescribes that, starting with the value zero

at the upper-left corner, uk should be increased by one every Vk
rows. Similarly, vk should increase by one every vk columns. This, then

defines a subdivision of ek-l into submatrices of order vk • ek- l can now

be regarded as a compound matrix of order N (=Vk-~ whose (r,s) "element"
k v

k
I

is characterized by

(7.15)

The (0,0) element of this compound matrix is obviously identical with e
k

• Let

us pick now an element in an arbitrary position in ek. Its u,v will have the

form

u =

v

(0 , ••• , 0 , u k+ 1 ' u k+ 2' • • . , u J I
(0, ••• ,0, v k+ l' v k+2 ' ••• ,v K)

(7.16)

vI v v2

0 0 0

1 1 1

2 2 2

3 3 0

4 4 1

5 5 2

6 6 0

7 7 1

f- - - - -
0 40 1

1 41 2

2 42 0

3 43 1

4 44 2

5 45 0

6 46 1

7 47 2

f- - - - -
0 80 2

1 81 0

2 82 1

3 83 2

4 84 0

5 85 1

6 86 2

7 87 0

-69-

Table 2

Modular Representation of v in Example (7.12)

Nl =8; N2=3; N3=5

V3 v v2 v3 v v2 v3 v v
2 v3

0 8 2 3 16 1 1 24 0 4

1 9 0 4 17 2 2 25 1 0

2 10 1 0 18 0 3 26 2 1

3 11 2 1 19 1 4 27 0 2

4 12 0 2 20 2 0 28 1 3

0 13 1 3 21 0 1 29 2 4

1 14 2 4 22 1 2 30 0 0

2 15 0 0 23 2 3 31 1 1

- - - - - - - - - - - - - - - - -
0 48 0 3 56 2 1 64 1 4

1 49 1 4 57 0 2 65 2 0

2 50 2 0 58 1 3 66 0 1

3 51 0 1 59 2 4 67 1 2

4 52 1 2 60 0 0 68 2 3

0 53 2 3 61 1 1 69 0 4

1 54 0 4 62 2 2 70 1 0

2 55 1 0 63 0 3 71 2 1

- - - - - - - - - - - - - - - - -
0 88 1 3 96 0 1 104 2 4

1 89 2 4 97 1 2 105 0 0

2 90 0 0 98 2 3 106 1 1

3 91 1 1 99 0 4 107 2 2

4 92 2 2 100 1 0 108 0 3

0 93 0 3 101 2 1 109 1 4

1 94 1 4 102 0 2 110 2 0

2 95 2 0 103 1 3 111 0 1

v v2 v3

32 2 2

33 o. 3

34 1 4

35 2 0

36 0 1

37 1 2

38 2 3

39 0 4

- - - - -
72 0 2

73 1 3

74 2 4

75 0 0

76 1 1

77 2 2

78 0 3

79 1 4

- - - - -
112 1 2

113 2 3

114 0 4

115 1 0

116 2 1

117 0 2

118 1 3

119 2 4

0 1

0 105

96 81

72 57

48 33

24 9

40 25

16 1

112 97

88 73

64 49

80 65

56 41

32 17

8 113

104 89

-70-

Table 3

Scrambling for Example (7.12)

n vs. v = (vI' v 2 ' v 3)

vI

2 3 4 5 6

90 75 60 45 30

66 51 36 21 6

42 27 12 117 102

18 3 108 93 78

114 99 84 69 54

10 115 100 85 70

106 91 76 61 46

82 67 52 37 22

58 43 28 13 118

34 19 4 109 94

50 35 20 5 110

26 11 116 101 86

2 107 92 77 62

98 83 68 53 38

74 59 44 29 14

v2 v3
7

15 0 0

111 0 1

87 0 2

63 0 3

39 0 4

55 1 0

31 1 1

7 1 2

103 1 3

79 1 4

95 2 0

71 I 2 I 1
!

47 ! 2 i 2 I I

23 I 2 3

119 ! 2 4
J

-71-

Now, the adopted scrambling scheme guarantees that all elements of ~k-l

occupying the same identical position in the other submatrices of e
k

-
l

, have

ui,vi which differ from (7.16) only in uk,vk and these satisfy (7.15). This

means that the difference between an element in submatrix (r,s) of ~-l and

the corresponding element in :k (submatrix (0,0)) is just ([7J (7.14))

~E(r,s) = (O, ••• ,O,rs mod Nk,O, .•• ,O).
t

k-th position

(7.17)

We notice the important fact that the difference is independent of the specific

common location of the two paired elements in their respective submatrices.

Hence, the difference is constant throughout the (r,s) submatrix. In other

words, the (r,s) submatrix of e
k

_
l

could be generated from §k simply by

adding the constant ~E(r,s) to all its elements.

We are interested in an explicit expression for this important con­

stant. Considering its implicit formulation (7.17), we conclude that it must

be some integral multiple of nk (7.3). Specifically,

~E(r,s) n(r,s)nk

where the integer n satisfies

Eqn. (7.20) is a linear congruence for the unknown n for which there is an.

explicit solution [8J, namely,

13 n
where

(rs') mod Nk

s' (s~k) mod Nk

~ =
¢(Nk) -1

mod Nk k
nk

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

The result we have established for the submatrices of ~k-l trans-

lates as follows for the submatrices of nk_l : The (r,s) submatrix of n
k

_l

13¢(n) is the Euler Totient function defined as the number of integers not
exceeding, and relatively prime to, n.

W
6E (r,s)n

k
· is just H

Denoting now

we get

-72-

Applying (7.18), we find that
. 2n () -1. N n r,s

W6E (r , s) :: e k

.2n
-1.-

Nk
e

W6E (r,s) = W nCr,s)
k

so that the (r,s) "element" of the compound Nk-th order r.l
k

- 1 is

W (rs') mod Nk r.l =W rs'r.l
k k k k

(7.24)

(7.25)

(7.26)

This is very similar to the (r,s) element of the DFT matrix (2.4) of order Nk

with r.l = r.l
k

• The only difference is that s' has now replaced s. This,

however, is a trivial difference involving only column permutations. To prove

this, it is sufficient to show that there is a one-to-one correspondence between

sand s' so that when s goes through the values O,1, ••• ,Nk-1, s' goes through

a permutation of them. This will, indeed, be the case if sk (in (7.22» is

relatively prime to Nk • But this is guaranteed by (7.23) since nk is rela­

tively prime to Nk (see (7.3».

We conclude that a trivial modification of the DFT tableau of order

N
k

, will evaluate the transformation effected by r.l
k

_l • Specifically, we should

modify the input square of the Nk tableau by permuting the fi rows/columns

so that the i sequence would be identical with the s' sequence (instead of

the natural number sequence (s) of the unmodified tableau). We refer to such

a tableau as a "modified tableau" and use this term from now on, only with this

restricted, precise, meaning.

(7.12)

Hence

We illustrate now the tableau modification with k=l in our example

nl = N2N3 = 15; <P(Nl):: <P(8) = 4

Z;; = 154- 1 mod 8:: (_1)3 mod 8 = 7
1

-73-

fo fl f2 f3 f4 f5 fs f7

1 1 Co
1 1 C

1

1 1 c
2

1 1 c
3

1 -1 c4

1 -1 c
5

1 -1 Cs
1 -1 c7

Fig. 19. Input square of the 8-th order modified tableau for example (7.12)

Fig. 20. Subdivision of the Y matrix for example (7.29)

-74-

s 0 1 Z 3 4 5 6 7
(7.27)

s '=(7s) mod 8 0 7 6 5 4 3 2 1

The modified input square called for by (7.27) is shown in Fig. 19.

Note that, in this case, the modification involves only sign changes.

The result we have established may be summarized as follows:

Submatrix ~k-l of Y is a column

permutation of the compound DFT

matrix of order Nk (2.4) with

~ = ~k. This is valid for all

1 < k < K.

This differs from (7.4) in the column permutation. But, as we have just

pointed out, this only means that' in the algorithm for order N (7.1), the

standard tableaus should be replaced by the modified tableaus. This is the

minor complication referred to earlier.

(7.28)

We turn now to a simple example to illustrate the algorithm developed

here. The example chosen has the following parameters:

K=3; N
1

=3; N
Z

=2; N3=5; :.N=30 (7.29)

The first step is the scrambling of the input vector f to yield the vector q.
A

This and the concurrent scrambling of the output F, transform the DFT matrix

into the Y matrix of (7.13). Y is now subdivided as indicated sc~ematica11y in

Fig. 20 (the indicated "measurements" refer to the number of rows/columns). The

next step is to regard Y (=~o) as a compound third-order matrix (Nl = 3) and

apply the third order modified DFT tableau with the tableau's ~ identified with

~l of Fig. 20. The application of the tableau is shown in Fig. 21 which utilizes

the schematic tableau representation introduced in Fig. 18. Phase 1 is shown at

the top (circled ~), phase 3 is at the bottom
o

(~ in a square)
o

and phase 2

is all the region in between. Phase 1 requires separation of the input vector

into its three "components". This is implemented in the following straight­

forward manner:

5

flo

Fig. 21. .Algorithm for OFT of order 30 (example (7.29))

5.

I
-.....I
U'1
I

-76-

f = o (7.30)

The outputs of phase 1 are the three Si vectors of dimensionality 10. Before con­

sidering phase 2, we have to introduce the generalized notation we use there

for the w. 's. W. for the
~ ~

DFT tableau of order N is referred to now as W. N.
~,

(w. N' also appearing in Fig. 21, will be defined later). These constants are
~,

either explicitly listed in the tableaus or are inferred from the convention

that every S. is mUltiplied by
~

order 5 states explicitly wI ,5 =
(wi S'2) •
5 -4".

For example, the DFT tableau of

Implicitly, we infer w 5 = 1. All
0,

the w .. 's are, tabulated in Table 4 for convenience. The values there have
~J

been computed on a 10-digit calculator. For m'ore precise values, one should

refer to the exact expressions in the tableaus.

Returning now ,to Fig. 21, we find that phase 2 of the third order

t'ableau requires the evaluation of ~i = (wi3nl)Si' Here we apply again result

(7.28) which implies (with k = 2) that the transformation (wi3S'2l)Si could

be evaluated with the modified second order DFT tableau (with the tableau's S'2

identified with (wi3S'2 2) (see Fig. 20». Each of the three 10-dimensional

S. 's is therefore shown in Fig. 21 as the input to phase 1 of a second order
~

tableau. In each of these applications of the second order tableau, phase 1

yields a pair of 5-dimensional S vectors. Consider now the specific 5-dimen­

sional S vector on the extreme left of Fig. 21. It has been generated by

phase 1 of the tableau implementing the transformation based on the matrix

(W03S'21). Therefore, phase 2 calls for its transformation by the matrix

wOZ(w03S'22)· Fig. 21 shows, instead, the matrix w02n2 • We have adopted here

the following somewhat unusual terminology:

w.. w .. *(the first n
k

multiplier met in moving
~J ~J

against the arrows in the upper half of

Fig'. 21)

Thus, Wij is only defined with respect to a specific diagram. Furthermore,

the same symbol may have a different numerical value at a different location

(7.31)

Table 4

The DFT Tableau Multipliers (w k ~ ,

~ 2 3 4 5 7 8 9

0 1 1 1 1 1 1 1

1 1 -1.5 1 -1.25 -1. 1666667E-f) 7.0710678E-1 0.5

2 i8.6602540E-1 1 -5. 5901699E-1 5.5854267E-2 1 -1. 7364818E-1

3 i il.5388418E-0 7.3430220E-1 1 0.5

4 -i3.6327126E-1 -iB.7484229E-1 1 9. 3969262E-1

5 -i5.8778525E-1 -i5.3396936E-I 1 -i3.4202014E-1

6 -i4.4095855E-I 1 -i8.6602540E-1

7 7.9015647E-I i7.0710678E-l -i9.8480775E-l

8 -i3. 408 7293E-I -i8.6602540E":'1

9 7. 6604444E,...1.

10 -i6.4278761E-l

11

12

13

14

15

16

17

NOTE: Numbers shown in 3 digits or less are exact.
-1 All other numbers are in Fortran E-format (3.4E-l 3.4 x 10).

16

1

1

1

7.0710678E-I

1

-1.3065630E-O

i

5. 41196l0E-l

1

i7.0710678E-1

i7.0710678E-I

i

1

-il.3065630E-O

i7.0710678E-1

-i5.4119610E-1

3.8268343E-1

i9.2387953E-1

---- -

I
.......
.......
I

-78-

in the diagram. For example, we have just seen that on the extreme left,

W
02

= w02w
03

• This symbol appears in two other places to the right. The first

the second equals W02W23 •

Returning now to the main line of the argument, each one of the S­

dimensional S vectors should now be input to a modified DFT tableau of order S.

This time, the S "vectors" generated in phase 1 are of dimensionality 1,

namely, scalars. They are to be multiplied by WiSn3 = WiS (n3 is the scalar

I). At this point, the multiplications are actually carried out and the numerical

values of the multipliers are needed. Their "determination is straightforward.

Consider for example the multiplier on the extreme left of Fig. 21

" A

WOS WOSW02 = WOSW02W03

Similarly, for the multiplier on the extreme right

and in general, the value of the multiplier at a specific node is the product of

all the w •.
1.J

terms (stripped of their circumflex) which one encounters in moving

from that node up the (inverted) tree structure to the stem.

The multiplications are indicated by the half-circle, half-square

shapes stringed along the center line of Fig. 21. (These can be regarded as rep­

resenting the combined three phases of the DFT algorithm of order 1 with

n = W
iS

).

The 36 terms we get after performing the multiplications comprise

6 independent groups resulting from the 6 separate applications of the modified

tableau of order 5. The terms of each of these groups are now combined as pre­

scribed in phase 3 of the 5-th order tableau to yield six 5-dimensional vectors. Each

of these is actually a term of the form ~i2n2Si required to complete the computa­

tions in the three applications of the second order tableau. These computations now

Yield, as tableau outputs, three lO-dimensional vectors which are identical with

wi3n1Bi of the third order tableau. Combining these as prescribed by phase 3 of

this tableau yields the 30-dimensional Q vector which is just a scrambled version

of the desired vector F.
Fig. 21, though directly applicable to example (7.29) only, is char­

acteristic of all N values. For larger N ~ there might be one more level of

branching in each half of the diagram and the number of branches per node may be

higher. Otherwise, the structure is identical with that of Fig. 21.

-79-

VIII. Speed Analysis

In sections IV-VI we constructed the basic DFT tableaus. In section VII

we showed how to use them in an efficient algorithm for certain N values. Our pur­

pose in this section is to determine just how fast the resulting algorithm is and

present a summary (Table 6) of the pertinent parameters for all orders realizable

with the constructed tablearis. The basis for these developments is Table 5 which

presents a summary of the tableau parameters. These have been collected from the

tableau designations and have been fully explained earlier. The values appearing here
14 [are in general agreement with Winograd's results (Table 1 of 3J). The only dif-

ference is in the number of multiplications in the tableau of order 9. Winograd uses

13; we use 11. This means that, using this tableau in the computation of any DFT

whose order is divisible by 9, will yield a 15% reduction in the number of multipli­

cations as compared to Winograd's results (see (8.3)). In most of these cases there

is also a reduction in the number of additions (see (8.9)).

K

Consider now the algorithm of order

data15 • For each Nk , we read off from Table 5

multiplications Mk and complex additions

N = 11. Nk as applied to complex

the corresponding number of complex

~. We are interested in two func-

tions of these variables, namely, the total number of real multiplications vI(and

the total number of real additions <4 for the overall algorithm realized in the

order implied in (7.1) (phase 1 of the N1 tableau realized first; phase 1 of

the N tableau realized last). With this goal in mind, we turn now to a mathe-
K

matical formulation of some of the characteristics of the algorithm structure which

are quite evident in Fig. 21.

We note that the output of phase 1 of the Nl tableau is a set of Ml

vectors (Si) of dimensionality VI. Each of these now generates (at the output of

phase 1 of the N2 tableau) M2 vectors of dimensionality V2 ' and so on. It is

obvious therefore that

The total output of phase 1 of all the

tkbleaus of order Nk consists of

(
.nMi) vectors of dimensionality Vk (7.2)
1=1

14bur M values, representing the total number of multiplications, should be
compared to the sum of Winograd's two multiplication columns.

15 The computation of the number of arithmetic operations for real data is more

involved and will only be briefly discussed later on.

(8.1)

-80-

Table 5

Summary df Basic DFT Tableaus

Total Number of
Number of Mu1tipli-

Tableau Multipli- cations Number of Tableau Tableau
Order cati'1ns by 1 or i Additions Figure Page

N M m A

2 2 2 2 9 37

3 3 1 6 5 31

4 4 4 8 10 39

5 6 1 17 6 31

7 9 1 36 8 35

8 8 6 26 14 51

9 11 1 44 13 45

16 18 8 74 17 60

-81-

As each one of these vectors is fed to phase 1 of an Nk+1 tableau, this is also the

number of tableaus of order Nk+1 or, equivalently,

The number of tableaus
k-l (8.2)

order Nk is n Mi
i=l

The simplest application of these results is the determination of the

number of multiplications. Let ~K be the total number of (complex) scalar mul­

tiplications in phase 2 of the algorithm realized as a cascade of K stages. The

variables which are multiplied are the I-dimensional S.'s
1

generated
K

in the last

stage of the cascade (NK). From (8.1) we know that there are n M. such terms.

Hence

.A(K

K n Mi
i=l

. 1
i=l

(8.3)

To get the total number of real ~ultiplications in the overall cascade (va), we note

that in each of the counted multiplications, only one of the two factors is complex,

the other being real or imaginary (see Table 4). Therefore,

ull = 2 ~~ t/n K

We have seen in Section VII that each of the overall multipliers for

the cascade is a product of Ktab1eau multipliers, one from each tableau of the

cascade. Since each tableau has, at least, one multiplier whose value is 1 or i

(8.4)

(m ?: 1 in Table 5), some of the uti K overall multipliers will be 1 or i. A

consideration of the structure of Fig. 21 shows that the number of such multipliers

1·,,16 .,
P

K (8.5)
i=l

l6A11 permissible N values are expressible as N = H2r (H odd; 0 ~r ~4).

Using this with the values of m
i

listed in Table 5, yields P = 2r + 0
K o,r

-82- .

Therefore, if one accepts the somewhat more complex programming involved in

the special handling of these P trivial multipliers, the DFT can actually
K

be computed with the smaller number of real multiplications

The summary in Table 6 covers both cases (8.4), (8.6»).17

(8.6)

We turn now to the additions count. Let oAK be the total number of (com-

plex) scalar additions in a cascade of K stages.

of real additions is

oA = 2A
K

Hence, the corresponding number

(8.7)

The simplest way to determine.AK is through a recursive argument. Assume that we

have the result for a cascade of length K- 1 and we add to it one more stage at

position K. This has tw~effects •. First, the additions in the first K-l stages

will now involve vectors whose dimensionalities are NK times the~r previous values.

additions of scalars. Hence, the number of scalar additions in the last stage is

.U A and the total is vnK_l K

l70ne could argue that in a binary machine, multiplication by t is also trivial

and should be excluded from the multiplication count. If this attitude is

adopted, then the 9th order tableau will have 3 trivial multiplications (m = 3).
A

The effect of this will be quite pronounced for N = 144, reducing u« from 380

(Table 6) to 348.

-83-

.A.K = Jiv 1 ~ tH. 1 A - K K- K

.A=A·.A(=M
1 l' 1 1

(8.8)

lve have added here a recursive rephrasing of (8.4) as well as the initial conditions

to provide a complete prescription for the simultaneous computation of both ~ and

u((K' (8.8) also yields explicit formulae for Ji
K

• For example

~ = AlN2N3N4+

+M
1
A

2
N

3
N

4
+

+M
l
M2A

3
N

4
+

+MIM2M3A4 (3.9)

An important fact clearly indicated by (8.9) ~s that Jl
K

, unlike uh
K

, is also a

function of the order of the Nk's comprising N. Thus, it is important to find

the cascade order minimizing A· K

With eqns. (8.3)-(8.8) and Table 5 at our disposal, we can now compute J1,~4t

for any N satisfying (7.1). Table 6 presents the results of such computations

implemented by a simple computer program which also provides information for the

selection of the most efficient cascade ordering. This Nk sequence appears

in the last columns of Table 6. We provide here room for two sequences since, in

some cases, the same values of ~,J1 are obtained with two different Nk

sequences.

efficiency.

In this case,the choice could be governed by arguments other than

Each Nk value appears with a bracketed number to its right. This is the

sk of (7.22). Thus, Table 6 provides both the sequence of tableaus to be realized

and the permutation required in the input square of each tableau (see discussion

preceding (7.27).

Note that adoption of the order prescribed in Table 6 is quite important.

For example, with N = 240, Table 6 states Jl = 5016 with the prescribed order

3; 16; 5. If, instead, we adopt the order 5; 16; 3, the number of real additions

jumps' to 5592--an increase of 11%.

We turn now to the two remaining columns of Table 6, namely, G, R. These
. 00

are the two parameters mentioned in section I and are required to determine the speed

advantage in a specific system.

Multiplications by 1 and i,
included in count

Order Speed-Gain
of Function Number
DFT Parameters of Real

G()-G ~ Mu1tipli-
II 00 II+R cations

N Goo R .At

2 1.000 1.000 4
3 1.585 2.000 6
4 2.000 2.000 8
5 1.935 2.833 12
6 2.585 3.000 12
7 2.183 4.000 18
8 3.000 3.250 16
9 2.594 4.000 22

10 2.768 3.667 24
12 3.585 4.000 24
14 2.961 4.778 36
15 3.256 4.500 36
16 3.556 4.111 36
18 3.412 4.818 44
20 3.602 4.500 48
21 3.416 5.556 54
24 4.585 5.250 48
28 3.739 5.556 72
30 4.089 5.333 72
35 3.325 6.167 108
36 4.230 5.636 88
40 4.435 5.542 96
42 4.194 6.333 108
45 3.744 6.167 132
48 4.964 5.889 108
56 4.517 6.528 144
60 4.922 6.167 144
63 3.804 7.111 198
70 3.973 6.815 216
72 5.048 6.659 176
80 4.683 6.259 216
84 4.972 7.1ll 216
90 4.426 6.848 264

105 4.352 7.463 324
ll2 4.706 7.198 324
120 5.756 7.208 288
126 4.440 7.747 396
140 4.621 7.463 432
144 5.214 7.364 396
168 5.750 8.083 432
180 5.108 7.530 528
210 5.000 8.111 648
240 5.857 7.741 648
252 5.076 8.384 792
280 5.269 8.273 864
315 4.401 8.759 1188
336 5.802 8.580 972
360 5.790 8.383 1056
420 5.648 8.759 1296
504 5.713 9.179 1584
560 5.260 8.831 1944
630 4.931 9.290 2376
720 5.753 8.970 2376
840 6.296 9.569 2592

1008 5.644 9.727 3564
1260 5.462 9.820 4752
1680 6.173 9.984 5832
2520 5.992 10.483 9504
5040 5.798 10.939 21384

-84-

Summary of DFT Algorithm

(II = time for one real multiplication)
time for one real addition

Multiplications by 1 and i,
excluded from count

Speed-Gain
Function Number of Number
Parameters Real of Real

G()=G 11+1.5 Multipli- Addi-
II ",);T" cations tions

A R .- .J 1 Goo ".It

- - 0 4 2(1)
2.377 3.000 4 12 3(1)

- - 0 16 4(1)
2.322 3.400 10 34 5(1)
3.877 4.500 8 35 3(2)
2.456 4.500 16 72 7(1)

12.000 13.000 4 52 8(1)
2.853 4.400 20 88 9(1)
3.322 4.400 20 88 2(1)
5.377 6.000 16 96 3(1)
3.331 5.375 32 172 2(1)
3.447 4.765 34 162 3(2)
6.400 7.400 20 148 16(1)
3.753 5.300 40 212 2(1)
4.322 5.400 40 216 4(1)
3.548 5.769 52 300 3(1)
6.113 7.000 36 252 3(2)
4.206 6.250 64 400 4(3)
4.330 5.647 68 384 3(1)
3.387 6.283 106 666 7(3)
4.653 6.200 80 496 4(1)
5.069 6.333 84 532 8(5)
4.355 6.577 104 684 3(2)
3.802 6.262 130 814 9(2)
5.828 6.913 ·92 636 3(1)
4.927 7.121 132 940 8(7)
5.212 6.529 136 888 3(2)
3.843 7.184 196 1408 9(4)
4.048 6.943 212 1472 2(1)
5.417 7.146 164 ll72 8(1)
5.058 6.760 200 1352 y,(13)
5.163 7.385 208 1536 3(1)
4.494 6.954 260 t808 2(1)
4.379 7.509 322 2418 3(2)
4.951 7.571 308 2332 16(7)
6.006 7.522 276 2076 3(1)
4.485 7.827 392 3068 2(1)
4.708 7.604 424 3224 4(3)
5.434 7.674 380 2916 16(9)
5.914 8.314 420 3492 3(2)
5.187 7.646 520 3976 4(1)
5.031 8.161 644 5256 3(1)
6.005 7.937 632 5016 3(2)
5.128 8.469 784 6640 4(3)
5.343 8.390 852 7148 8(3)
4.409 8.774 1186 10406 9(8)
5.899 8.724 956 8340 3(1)
5.856 8.479 1044 8852 8(5)
5.683 8.814 1288 11352 3(2)
5.756 9.249 1572 14540 8(7)
5.303 8.905 1928 17168 16(ll)
4.940 9.305 2372 22072 2(1)
5.792 9.031 2360 21312 16(5)
6.326 9.614 2580 24804 3(1)
5.669 9.771 3548 34668 16(15)
5.471 9.836 4744 46664 4(3)
6.190 10.011 5816 58224 3(2)
6.000 10.496 9492 99628 8(3)
5.802 10.948 21368 233928 16(3)

Tableau Realization Sequences

Nk(1;k)

k k

2 3 4 1 2 3 4

2(1) 2 (1) 3(2)

5(3)
4(3) 4(3) 3(1)
7(4)
5(2)

9(5)
5(4)
7(5)
8(3) 8(3) 3(2)
7(2)
2(1) 5(1) 2(1) 3(1) 5(1)
5(3)
9(7)
5(2)
2(1) 7(6) 2(1) 3(2) 7(6)
5(4)

y,(11)
7 (1)
4 (3) 5 (3) 4(3) 3(2) 5 (3)
7 (4)
7 (5) 5(4)
9(8)
5(1)
4 (1) 7 (3) 4 (1) 3(1) 7 (3)
9(1) 5 (2) .
7(1) 5(1)
7(4)
8(7) 5(4) 8(7) 3(1) 5(4)
9(2) 7(2)
7(6) 5(2)
9(4)
8(5) 7(5) 8(5) 3(2) 7(5)
9(5) 5(1)
2(1) 7(4) 5(3) 2(1) 3(1) 7 (4) 5(3)

16(15) 5(2)
9(1) 7(1)
7(3) 5(1)
7(5) 5(2)

16(13) 7(6)
9(7) 5(3)
4(1) 7(2) 5(4) 4(1) 3(2) 7(2) 5(4)
9(5) 7(4)
7(5) 5(3)
9(4) 7(6) 5(1)
9(8) 5(4)
8(1) 7(1) 5(2) 8(1) 3(1) 7(1) 5(2)
9(7) 7(2)
9(2) 7(3) 5(3)

16(9) 7(4) 5(1)
9(1) 7(5) 5(4)
9(5) 7(6) 5(2)

Let -85-

time for one real multiplication
time for one real addition

in the specific system considered. We define the gain G, of the present algorithm

over the (nominal) Cooley-Tukey algorithm by

lJ .AtCT + .A. CT
G = --.::..::;;..-----=:..=......

lJuH/- J!1
(8.10)

where .A(CT,.ACT are the Cooley-Tukey paramete~s introduced in (1.1). Obviously, G

is the ratio of the time required by the Cool~y-Tukey algorithm to the time required

by Winograd's algorithm. We refer to it as the speed gain. It is a function of lJ

and the four parameters appearing in (8.10). Eqn. (8.11) is a more convenient two­

parameter formulation (see (1.1».

G(lJ) = G lJ+1. 5
00 lJ+R

where

Goo
.AlCT

.AI

R
J!1

.At

(8.11)

(8.12)

(8.13)

G is the asymptotic speed gain that is approached with large
00

R prescribes a

pole of the G(lJ) function (at lJ =-R) and thus determines the second asymptote.

Adding to these two· the zero of G(lJ) (at lJ = - 1. 5) makes it very easy to sketch
. f . 18 G(lJ) and get a sufficiently precise estlmate 0 It.

We conclude with a few words regarding the real data case. The number of

arithmetic operations here is not half the number in the corresponding complex data

case. The main reason for that is that as the DFT of a real vector is, in general,

complex, some of the intermediate entities will be complex too. For example, the

8-th order DFT tableau prescribes

(8.14)

and thus 8
5

is complex even for real data. This means of course that the tableaus

realizing ~5 = ~8j have complex data inputs.

Another factor to consider is the fact that the construction of a complex

number, given its two components, does not involve any arithmetic addition in spite

of the appearance of the plus symbol. In the example previously cited, both e 2
and e5 are real when the

(8.14) is frt'e.

f. 's are real.
1

Hence, the "addition" appearing in

l~n eqns. (8,10) - (8.13), replacing ,//1. of (8.4) by v« of (8.6), yields the
A A A

circumf1exed entities G, Goo' R appearing in Table 6.

-86-

IX. Concluding Remarks

We have tried to present here an orderly development of Winograd's DFT

algorithm, starting with the general concept, continuing with the construction of

the necessary building blocks and culminating in a detailed description of their

incorporation into the overall algorithm.

In applying the algorithm, Table 6 (p. 84) is the starting point

as it lists all the permissible N values with their associated performance param­

eters. Having chosen a particular N, the next step is to consult Table S (p. 80)

in order to locate the specific tableaus called for in Table. 6. In the actual

implementation, one starts with the scrambling of the input vector and then

applies phase 1 of the tableaus (in the order prescribed in Table 6) to smaller

and smaller segments of the data vector in its various partially transformed states.

This culminates in single component "segments" finally being multiplied by constants

in phase 2. From here on, the process is reversed in the application of phase 3

of the tableaus: The scalars appearing at the output of phase 2 are combined into

vectors of higher and higher dimensionality, finally culminating in an N-dimensional

vector which is just a scrambled version of the transformed input vector.

The present paper contains sufficiently detailed information upon which

one could base a direct, straightforward, implementation of the above process in

either hardware or software. There are, however, some less obvious implementations

which have various advantages. These are the subject of a forthcoming paper and

will not be discussed here. Nevertheless, attention should be called to a certain

feature of the tableaus specifically designed into them to facilitate the applica­

tion of these special techniques. We are referring here to "in-place" transforma­

tion. Consider, for example, the 7-th order tableau (Fig. 8). Note

that the input components f 2 ,fS are used to compute c
2

,c
S

and nothing else.

Hence, there is no need to assign additional storage for c2 ,c
S

• They may be stored

back into the f array, overwriting f 2 ,fS ' The only requirement is for a tem-

porary storage for, say, f2 so that after we store c 2 we still have f2 avail-

able for the computation of cS ' Note that even if f2 represents a vector, we

still need only a one-word temporary store since the computation is carried out one

component at a time.

This property which we have illustrated here with the (f2,fS) -+ (c2 ,c
S

)

transformation is common to all variables in the DFT tableaus of orders 2, 3, 5, 7.

.. ~ .

-87-

It is also valid for the remaining tableaus, if we regard n as the output vector. The

only deviation from the above pattern is that,in some cases, groups of 3 components

(rather than 2) have to be considered. In the above tableau, the computation of

6
1

,6
2

,6
3

is such an example. Note however, that, even in this case, a one-word tem­

porary store is sufficient.

It should be pointed out that in those applications in which this "in­

place" feature is not utilized, the tableaus of orders 4,9,8,16, may be simplified

somewhat by permuting the

unscrambled output vector

pensed with.

F.
1.

F.

rows/columns in the output square to yield an

In this case, of course, the vector n may be dis-

We turn now to a brief consideration of the precision disadvantage men­

tioned in section I. We have already seen in Appendix A (last paragraph) that some

of the manipulations generating the tableaus have a detrimental effect on precision.

A similar situation afflicts the computation of °1 in some of the tableaus.

Examination of eqns. (4.11), (4.12) reveals that the adopted formulation (4.12)

involves addition and subtraction of ~6l. Hence if 1~6ll» 1011 we are

bound to have problems, namely, loss of significant bits in floating point arithmetic

and tendency to overflow in fixed-point arithmetic. Similar addition-subtraction

manipulations are dispersed in various disguises throughout the tableaus' deriva­

tions.

The effect of these peculiarities of the tableaus is that to guarantee a

certain measure of precision in the transformation, we probably need more bits per

word than in the Cooley-Tukey algorithm. We do not analyze this effect here but it

should be pointed out that the structure of the algorithm as displayed in Fig. 21

makes such an analysis relatively simple •

Finally, we conclude with yet another important aspect of the algorithm

brought forth in Fig. 21, namely, the suitability of its structure to the applica­

tion of various schemes of parallel processing and pipelining. Indeed, there is

fertile ground here for all sorts of ingenious designs and variations. As the

algorithm becomes more widely known, more and more of these will undoubtedly mater­

ialize.

Acknowledgement

The author wishes to express his thanks to Dr. L. D. Baumert of JPL for his

helpful comments regarding some number-theoretic aspects of this work.

Appendix:

where

-88-

Polynomial Congruences

The derivations in section III require numerous evaluations of

R(x) = S (x) mod m(x)
n

(A.1)

(A.2)

and m(x) is a monic polynomial of degree 1 or 2, whose roots lie on the unit

circle. We establish here all the needed results.

1. m(x) = x-xO (xO = ±l)

R(x) must be of degree 0

R(x)

and (A.1) is equivalent in this case to

(A.3)

(A.4)

where Qn-1 (x) is a polynomial of degree (n-1). Substitutiong x = Xo in (A.4) we

find

(A.5)

Note that with Xo = ±1, rO is a multiplication -free algebraic sum of the coef­

ficients of S (x).
n

2. 2 m(x) = x -2x cose +1= (x-xo)(x-xoL

R(x) must be of degree 1

and (A.1) is equivalent to

S (x)
n

Hence

Note that

Sn(xo) = rO+r1xO

Sn(xO) rO+r1xO

cose + i sine ie
e

(A.6)

(A.7)

(A.8)

(A.9)

(A.IO)

-89-

Hence, subtracting (A.9) from (A.8) yields

n
2 i r l sin8 Sn(xO)-Sn(xO) ~ (ik8 -ik8) sk e -e

k=O

I n . k8 •. r l = sin8 ~Sk sin
=0

n

rl ~skUk_1 (cos 8)
k=l

where U (x) is the Chebyshev polynomial of the second kind.
m

(A. H)

To get r O ' we multiply (A.8) by Xo and (A.9) by Xo and then subtract,

getting
n

" (-i(k-l) 8 i(k-l) 8) L...J sk e -e
k=O

n

= 2isOsin8 -2i~ sk sin(k-I)8
k=2

s -o (A.12)

The specific m(x) polynomials for which R(x) is required are listed in Table

Al with the corresponding 8 values. Note that for these values of 8, Uk(cos8)

takes only the values 0, ±l. Hence, both rO and rl are multiplication-free

algebraic sums of the coefficients of S (x). The results for all required degrees
n

of S (x) are shown in Table AI.
n

A specific application of Table Al is the following: Given

P(x) mod m(x)

Q(x) mod m(x)

Find

G(x) = glx+gO = {P(x)Q(x)} mod m(x)

G(x) can be expressed in terms of (A.13) (A.14) as follows:

(A.l3)

(A.14)

(A.IS)

m(x) e 5
2

(x)

2
x -x+1 60

0
(81+82)x + (8 0-8 2)

x
2
+1 90

0
8

1
x+ (8

0
-8

2
)

2
x +x+1 120

0
(8

1
-8

2
)x+ (8

0
-8

2
)

-

Table AI:

5 (x)
n

5 (x) mod m(x)
n

53 (x)

(8
1
-8

3
)x.+ (8

0
-82)

(8
1
-8

2
)x + (8

0
-8

2
+8

3
)

5
S

(x)

(sl+82-8 4 -8~X + (8 0-82-83+85)

(sl-82+84-8S)x+ (8 0-8 2+8 3-8S) I
\0
o
I

-91-

G(x) ={!]> (x) mod m(xU @(x) mod m(xU} mod m(x)

(A.16)

Identifying the bracketed polynomial with S2(x) in Table AI, we get the following

results

G(x) ~l (qO+ql)+POqJ x+ (POqO-Pl ql) (m(x)
2

(A.l7) = = x -x+l)

G(x) (PI qO+POql)x + (POqO-Pl ql)' (m(x) i+l) (A.18)

G(x) ~l (qO-ql)+POq~ x + (POqO-Pl ql) (m(x) 2 x +x+l) (A.19)

Starting with Pi,qi' each of these formulae requires 4 multiplications. However,

wi th the proper rearranging of terms, we can replace one of these mUltiplication's

with an extra addition, thus getting faster computation. This is accomplished by

adding and subtracting poqo from the term. This is sufficient for (A.17),

(A.19). In (A.18) we also modify the go term by adding and subtracting POql.

The results are summarized in Table A2 and, as we see there, 3 multiplications

are now sufficient. The x
2
+l case, however, seems to indicate that the price

is higher than previously stated, namely, 3 extra additions. In general this is

indeed true. However, we intend to apply this result to a situation where arith­

metic operations involving PO,Pl only, do not count (precomputation). Under

these conditions, the price is indeed 1 extra addition.

It should be noted that the higher speed realized by the formulae of Table

A2 is accompanied by the disadvantage of requiring more bits per word. In fixed

point arithmetic we will need more bits to prevent overflow of the intermediate

results. In floating point arithmetic, we will need more bits to prevent loss of

precision. Consider the extreme case in which poqo »gl· (A.17) would not be

affected by that b~t, in floating point, Table A2 could yield a value for gl

. which would be pure noise.

m(x)

2
x -x+l

x 2+l

x 2+X+l

Table A2: {P(x)Q(x)} mod m(x)

P(x) mod m(x) = plx+P
O

Q(x) mod m(x) = qlx+qo

{P(x)Q(x)} mod m(x)

[CPl+PO) (ql+qO)-Poq~x+ (poqo-P l ql)

[CPl-PO)qO+ (ql+qO)P~x+ (ql+qO)PO-(Pl+PO)ql

[CPl-PO) (qO-ql) + poq~x+ (POq6-Pl Ql)

I
\0
N
I

[2J

[4J

[5]

[SJ

[9J

IlQ]

-93-

REFERENCES

J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation
of complex Fourier series", Math. of Comp. Vol. 19 (1965), pp. 297-301.

R. Yavne, "An economical method for calculating the discrete Fourier
transform", AFIPS Conference Proceedings, Vol. 33, part 1, pp. 115-125.

S. Winograd, "On computing the discrete Fourier transform", Proc. Nat.
Acad. Sci. USA, Vol. 73, No. 4 pp. 1005-1006, April 1976, Mathematics.

S. Winograd, "The effect of the field of constants on the number of
multiplications", Proceedings of the 16th annual symposium on founda­
tions of computer science, 1975, pp. 1-2.

C. M. Rader, "Discrete Fourier Transforms When the Number of Data
Samples is Prim~", Proc. IEEE, Vol. 56, pp. 1007-l00S, June 1965.

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, New
York, Dover, 1965, p. S64.

D. E. Knuth, "The art of computer programming", Vol. 2, Addison Wesley~
1969 (section 4.3.2).

T. Nagel, "Introduction to Number Theory", John Wiley, 1951.

W. J. LeVeque, "Topics in Number Theory", Vol. 1, Addison-Wesley, 1955.

H. F. Silverman, "An introduction to programming the Winograd Fourier
Transform Algorithm (WFTA)", IEEE Trans. Acoust. Speech, Signal Pro­
cessing, Vol. ASSP-25, pp. 152-165, April 1977.

1. J. Good, "The Interaction Algorithm and Practical Fourier Analysis",
J. of the Royal Statistical Society, Series B, Vol. 20, pp. 361-372,
1955.

,NASA-JPl-Coml., LA., Calif.

End of Document·

