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PSP RESINS, NEW MATRICES WHICH CAN BE HARDENED BY
THERMAL TREATMENT FOR USE IN COMPOSITE MATERIALS
RESISTANT TO HEAT AND FIRE

M. Ropars, B. Bloch and B. Malassinel

I. Introduction

In aeronautics and space technology, ways are being sought
to replace the conventional metallic substances currently used
in the construction of certain vehicular structural elements
with reinforced plastics. This alternative offers several ad-
vantages, but the fundamental attraction is most often the ex-
cellent performance/density ratio of these new substances.

Nevertheless, wider use of these products still depends on
the ability of currently available commercial resins to embody
a variety of characteristics which will enable them to meet the
needs of the aeronautics and space sector. Such substances must
have excellent mechanical properties, and must retain these prop-
erties regardless of environmental stress {(e.g., humidity, in
particular), and in spite of the high temperatures encountered
during supersonic flight. 8Such substances should also meet the
obvious fire resistance requirements. Determining factors in-
clude inflammability, the density and toxicity of gases released
during combustion, and mechanical resistance to burning for a
limited period of time. Furthermore, since industrial develop-
ment of various high-performance polymers will be pursued pri-
marily for economic reasons, the proposed resins should be such

lR@pars, Bloch: National Rerospace Study and Research Bureau
(ONERA} , Chatillon-sous-Bagneux, Hauts-de-Seine, France.
Malassine: Bouchet Research Center of the National Powder
and Explosives Society (SNPE), Vert-le-Petit, Essonne, France.

*Numbers in the margin indicate pagination in the foreign text.
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that they can be prepared from simple and relatively inexpensive
compounds using nonrestrictive technologies.

PSP resir. (Ropars and Bloch French Patent No. 2,261,296 -
1974 and U.S. Patent No., 3,994,862 - 1976), which is the subject
of this report, appears to have qualities and properties which
meet the above-mentioned requirements. The resin was discovered
and studied at the ONERA Organic Synthesis and Composite Materi-
als Laboratory. Development work at the SNPE Bouchet Research
Center in collaboration with ONERA and with the assistance of
the IRCHA Materials Laboratory has made the synthesis and exper-
imental use of this resin possible at the industrial level.

II. Prepolvmer and Pure Resin

PSP prepolymers are thermosetting oligomer mixtures obtained
by polycondensation of aromatic aldehydes with methylated pyri-
dine derivatives (Figure 1). Strong attraction between hetero-
cycles, double bonds and benzene rings tend to favor thermosta-
bility and resistance to fire,

Polycondensation can be interrupted at various points dur-
ing synthesis, thus engendering a variety of products with dif-
ferent viscosities. These products range from impregnation sol-
utions to injection resins and powders which can be molded.

These prepolymers are entirely soluble in the polar aprotic
solvents such as DMF, DMAc and NMP (or, under certain conditions,
in alcohols and keto-alcoholic mixtures), on which are based the
6032 and 6022 PSP resins developed Wy SNPE for industrial impreg-
nates.

Since polymerization takes place only above 150°C, the prep-
aration and consequently the preimpregnates derived therefrom are
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extremely stable at ambient temperature; the latter are also im-
pervious to humidity, even under highly hygrometric conditions.

Figure 2 shows the physical properties of the pure resin af-
ter the powder has been heated and pressure-molded. The curves
in Figure 3 indicate that the thermal breakdown of this substance
begins at 300°C, and increases rapidly as the temperature ap-
proaches 450°C, In an inert atmosphere, the pure resin yields a
65% pyrolytic residue at approximately 1000°C.

III. Production of Laminates

A. Impregnation

The use of raw synthesized resin as an impregnation liquid
for PSP 6030 was abandoned due to the methyl-pyridine odor emit-
ted during pressure-molding. Furthermore, utilization of resin-
ous solutions with aprotic solvent bases was discontinued, since
such solutions inhibit the extensive procedures at high tempera-
tures which are required in order to eliminate all traces of sol-
vents whose presence would cause porosity of the conpounds and a
consequent degradation of the latter's thermal and mechanical
properties. Finally, since the solubility of alcohols in the
resin is limited, industrial impregnates cannot be prepared at
ambient temperature with such solvent-based resins.

One notable characteristic of the 6032 and 6022 impregnation
resins 1s that in solution, their viscosity can be varied in a
non-toxic keto-alcoholic mixture with a low boiling point, which
can easily be removed at about 200°C. Preferred viscosity values
are from 200 to 500 cp. Industrial impregnates have been pre~
pared by SNPE in continuous carbon-core strips 34 cm wide, and by
Genin in fiberglass strips 1.2 m wide. The preimpregnate thus ob-
tained is flexible, has a low volatile material quotient and can
be stored for several months at ambient temperature.
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B. Preparation of Preimpregnates

Pressure molding of preimpregnates can be carried out in 3
hours at 200°C. Pressure on the order nf 5 kg/cm2 is applied
after the firet hour, but is reduced as the gel point is neared.
While pressure is being applied, the countermold is held away
from the prepreg in order to avoid any creepage at this stage.

Auntoclave pressure molding is also carried out in two steps.
A vacuum is obtained both inside and outside the bag during the
first hour, Subsequently, the vacuum outside the bag is re-
placed by air pressure of 5 kg/cm2 for a period of 2 hours.

It has been found that the introdction of thixotropic agents
into the prepolymer in order to modify the flow rate has no effect
on the mechanical properties of the laminate.

Subsequent to either molding method, the geometrical stabil-
ity of the laminate above 110 to 120°C and its maximum thermosta-
bility are obtained by means of non-pressurized treatment at 225
to 250°C., These post-treatments are carried ouf on the mold in
order to avoid flow deformation of the pieces.

C. Other Preparation Methods

Experimental forming attempts by means of injections of suit-
ably condensed prepolymers and by filament spinning have been
most encouraging, and these techniques should become viable in
the near future.

IV. Properties of Laminates

A. Initial Mechanical and Thermal Properties

The thermomechanical properties of PSP laminates were esti-
mated by measurement at various temperatures of the laminates’



resistance to flexure rupture and interlaminary shear, and of
their flexure modulus according to ASTM standards D790-66 and
D2344-72. Test pieces were cut from planar sheets 2.5 and 3 mm
thick with volumetric fiber contents on the order of 55 to 60%
and with nil porosity or porosity less than 3%.

With regard to carbon-reinforced laminates, Figure 4 illus-
trates the importance of preceding the 250°C post-treatment (which
is essential in order for the substance to have adequate reris-
tance at high temperatures) by a short period at 225°C in order
to preserve the gquality of flexure rupture resistance at ambient
temperature.

Figure 5 summarizes the results of mechanical teasts carried
out at ambient temperature and at 250 or 200°C with various types
of reinforuvement. The values obtained agree well with the resis-
tances of the reinforcing agents themselves except in the case of
Kevlar 49, which did not stand up to treatments at or above 200°C
and for which compression entailed a degree of defibrination.

B. Resistance to Thermal Aging

The curves in Figure A illustrate the evolution of flexure
“upture resistance of Courtaulds HTS Grafil unidirectional PSP
carbon laminates as a function of the length of time the test
pieces were subjected to various temperatures. The values shown
were taken at the temperatures at which aging ogccurred.

The value of 1250 MPa obtained at 200°C remained constant for
10,000 hours (the duration of testing). A decrease on the order
of 10% was observed after 300 hours at 250°C, and this value was
likewise hardly affected after 100 hours at 300°C. As illustrated
in Figure 7, the maintenance of flexure rupture resistance between
350 and 400°C is such that missile applications can be envisioned.
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Figure 8 shows the evolution of interlaminary shear rupture
resistance during aging at 250°C.

The result shown in Figure 9 were obtained for laminates with
AS carbon fiber reinforcement.

The thermal resistance of type 1581 A-~1100 fiberglass-rein~-
forced PSP laminates in continuous use appears to be somewhat less,
However, results indicated that flexure and shear rupture resis-
tance values obtained from tests equivalent to 1000 hours at 150°C
should remain satisfactory for longer periods, and probably also
at slightly higher temperatures.

C. Resistance to Humidity

The effect of humidity on the mechanical and thermal proper-
ties of HTS industrial carbon-fiber PSP laminates was ascertained
by a series of tests involving immersing unprotected samples in
beiling water. The absorption of water observed was very slight,
and occurred almost entirely during the first few hours of test~
ing. The quantity of water absorbed did not exceed 0.7% of the
mass of the laminate. Similarly, in spite of the rigorousness of
this test, no drop in flexure rupture resistance was noted, eith-
er at ambient temperature or at 250°C. Shear resistance was also
very stable at ambient temperature, while a decrease of not more
than 20%, dating from the beginning of immersion, was noted at
250°C (Figure 10).

5

A more conventional test was carried out on T300 carbon- /6

reinforced laminates. Pre-cut test pieces were subjected to ag-
ing for 700 hours at 70°C and 95% relative humidity. Resistance
to shear of 97 MPa at ambient temperature was obtained for test
pieces with an initial value of 108 MPa.

Analogous tests are currently being carried out on type 1581
A~1100 fiberglass-reinforced PSP laminates.



D. Resistance to Mechanical and Thermal Fatique

During three-point wave flexure testing at ambient tempera-
ture, HTS unidirectional carbon PSP-6030 laminates remained unaf-
fected by 3 x 107 cycles at a frequency of 25 Hz under maximum
stress equivalent to 70% of the rupture value. During alternat-
ing symmetrical flexure tests with one end of the sample piece
fixed in place, stress of +650 MPa was applied at a frequency of
25 Hz for 4 x 107 cycles, the extreme flexure moment decreased
no more than 5%.

An initial estimate of the resistance to thermal fatigue was
made by means of tests at 1500 to 2000 cycles from ambient temper-
ature to 225°C, with 5~minute stages at each temperature. These
tests apparently caused no decrease in mechanical and thermal prop-
erties.

E. Resistance to Chemical Agents

With respect to mechanical properties, immersion testing of
6030-Courtaulds HTS unidirectional laminates in acidic and basic
mediums for 7 days at ambient temperature in accordance with ASTM
standard D543-43 illustrated the complete imperviousness to chem-
cal agents of these laminates. PFigure 1l also illustrates the on-
ly slight weight gain as well as good resistance of the laminates
to alkaline agents, which is usually the weak point of polyimide
resins.

F. Fire Resistance

In order to make comparisons with current industrial resins,
the PSP resins whose fire behavior was studied were in the form of
laminates,

The limit oxygen value, which measures the minimum oxygen con-
tent necessary to sustain combustion with flame, was determined
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according to AFNOR standard T51-071 (comparable to ASTM standard
D2863~-70) for test pieces 2.5 mm thick. The AS T300 unidirection-
al carbon-reinforced PSP laminates had a limit oxygen value of 60%
+1%. The limit oxygen value of laminates with fiberglass rein-
forcements was found to be 90% +1%,.

Other tests utilizing the most widely Kknown current techniques

for determining the fire resistance of organic compounds intended
for aeronautic construction were carried out by the Toulouse Aero-
nautics Testing Center. Fiberglass-reinforced PSP resins were
studied with respeact to both self~extinguishability and toxic gas
or smoke emission. Inflammability tests were carried out on ver-
tical elements with lighting times of 60 seconds and 12 seconds,
corresponding respectively to tests on structural hatchways (class
"a") and cabin walls (class "b"). Emission toxicity tests were
carried out witn and without flame in an NBS chamber equipped with
Draeger detection tubes.

The results obtained are summarized in Figures 12, 13 and 14,
which include comparisons with other fiberglass~reinforced resins.

The results appear to indicate that the behavior of PSP lam-
inates is significantly better than that of polyimides, and is al-
most equivalent to that of phenolic resins, whose mechanical and
thermal properties are distinctly inferior.

It should be noted that self-extinction is virtually instan-
tanecus, and is very rapid for thin layers subjected to prolonged
lighting. The length of the substance burned is either nil or
very short, and the emission of fumes is slow. The fumes emitted
are not dense, and have a low carbon monoxide content. For a ni-
trogenous resin, the quantity of hydrocyanic acid and nitrous gas-
es released is remarkably small, The pyrolysis gas value of 50,
estimated by a NASA test at 119 to 130, confirms the value of this
substance.



Poesible utilization for thermal protection was studied in
plasma stream and/or oxyacetylene torch tests. Results indicate
that between 1800 and 3000°C, the test pieces retain their cohe-
sion and preserve a portion of their mechanical properties.

V. Conclusion

As matrices for composites, PSP thermosetting resins combine
a variety of worthwhile properties, especially with respect to
the aeronautics and space industry. Their thermostability, fire
resistance and resistance to humidity may enable these resins to
£i1l a currently vacant position in the field.

Economic forecasts appeer to indicat excellent competitive
potential for this type of product. The prepolymer can be pre-
pared easily from simple compounds; it can be obtained in varying
degrees of visgosity, thus permitting utilization of different
forming techniques; it can be prepared at low pressure, and vol-
atile components can be easily removed. Due to these properties,
the resins appear to be immediately practicable raw materials,
not only for high-temperature applications but also for use in
conjunction with substances utilized at or near ambient tempera-
ture.

The resins are prepared at the pilot level by SNPE, and in-
dustrial carbon-fiber and fiberglass impregnates have already
been realized.
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Fig. 1. Chemistry of PSP resins.

Fig.

KEY:

(1)
(2)
(3)

(4)

(1) VOI-H:::\“ 1,94

coefficient 5
(2) |de dilatatiod 6.107"/ec
linfaire

résintince h
la rupture

(3) Jon flexion 100 MPs
A
1'ambiante

odule de
(4) |riexton 2500 WPa

2. Properties of the pure resin.

Volumetric mass

Linear expansion coefficient
Flexure rupture resistance at
ambient temperature

Flexure modulus



perte de poids(%) (1)

20

-~
-
e ———

40 1

601

80 4

00 b temperature (°C)
0 200 00 600 600 1000

Fig. 3. Thermogravimetric analysis of PSP resins in
argon (a) and in air (b) after post-treatment.

KEY:
i}, Weight loss in percent
3Y) 2) sans 3 @) e
Résistance b 1o rupture (MPs) ’oot-t::ito'nnt 16 T 250%¢ 2n/zzs:gr: 81/250°C
—— Y 1'.ta}.nt- 1800 1250 1700
(5) A ﬁci-c ~ 400 1300 1300
en chnumnt' ' “m“" o B »
(8) L gy ~ % 70 70

Fig. 4. Effects of post-treatments on thermomechan-
ical properties of Courtaulds HTS 6032 uni-
directional carbon laminates.

KEY:

(1) Rupture resistance (MPa)

(2) Without post-treatmens

(3) After 16 hours at 258 C =
(4) After 2 hours at 225°C and 8 hours at 250°C
(5) Flexure

(6) At ambéent temperature

(7) At 250°C

(8) Shear



sieq QT 3I® SInOY Z pue D _00Z 3I© sinoy p
Jo a1240 :uorjeubaidur utuUdn - mmeu ZZ09 Y3ITM
uotrjeubaidut YHONI - UTS3I ZEQ9 YITM

(puei3s

000°9/00€-1) uorieUbaIdUT FINS - UTS3I ZEO9 UITM

0,00 3 " 3INSEIHs
#S O3 0§
LAyeutweriasar
ieays

SNINPON

08S O3 0%S

2I1nxard

(v1)
(ET)
(Z1)
(17)
(01)
(6)

(8)

(2) (0T6-4L) .d. SSETD
:Hu aOOHAI‘w IN: Wmﬂﬁmv
(00TT-¥) u3. SSETD

uoiog

sar1313doad TedrueyOaW
saouelsqns T8GT 2dAL

S3juaWadI0JUTII
TeUOTIDAITPTUN

"0,05¢C pue

2,0z 3® (ZZ09 “ZE09 ‘0€09) XT1i3ew gsd e yaim
mwuacﬂima Jo (edW ut) sarjisadoad TecTuRyYOAIW °G

(sleqp) s80e 3,527 ¥ 4T ¢ 2,000 ¢ W MM - ujue) wopIesbiide) - 2709 SuUISPI doay  (I)
oM voryeubdide] - z{Oe TSI doay  (q)

(117 0009-"0(L) JJns wojIeubarlag - Zro9 UISP2 J2ay (¥)

(2)
(q)

(e)

(L)
(9)
(s)
(%)
(€)
(Z)

(1)
A3

om.w-m

(vD)

24007 ® Pinsow g

1 7
-Ianﬂi it wor - os 4] o0 I oe | ot | 2.8z [ZT) Frievrwersnaer
¥ v oS " os o os 0% os o oot | a0z | (TT) awssstrienis
== #000‘0c | go00 ‘o0 - — Jooehies] -- |ooo‘ors| ooo'os| s.0sz JOLT
oo0’sz ooo'or| ooo'or| ooo'os| = | osefeei| wosi | coo'ors | coo'os| 3.0z e
(6) 2005 | 9000 1 006 1 | om 1 — Juszt |ooo 1 | d.0sz =
s roes | o 0ot | 000 foot oot Joot s Jooet [oow s | dwor [PUTIEIE (8) 4
3) (7] iw) )
tois m .qu—ﬂ: v Sga—m.-u. o |(P) o - - a1my sanbruwopm
3 e 3 J4e3A | 3 3wdiA | wvIAGE | Jwoa NOQEYD -e13deay 82121 2doag
Z) 195t otkae wosers sTawworiaeapiun s3105us (T) (€)

12



Fig.

Fig.

KEY:

6.

7.

(1)
(2)
(3)
(4)
(5)

(MPs)
uoo'”
200°c
1ROON S T Ssel t »10,000 A
1000190 °C \\fso%: Ss..225%C
\ e
800 \ e
\ AN
600 \
400
200
CEE— » - —— T E—— ""'__“ QL
0 1000 2000 3000 4000 5000

Evolution of flexure rupture resistance of
6030-Courtaulds HTS unidirectional laminates
as a function of the duration of thermal
aging

BEET < 60F =T, <3F

Measured at the aging temperature.

Résistance A la rupture

Tempers ture en flexion
@ (e
Aprds 20 mn Retention
{2)
350%C sovees 1000 B850 aprée 1'4):f
J‘oo.c ..... ”0 900 -Pl'.l ah(‘]

450 aprés 16h(5]

450°C ..unes 200 -

=S

Thermomechanical limits of oU.0-Courtaulds
HTS unidirectional laminates.

Flexure rupture resistance (in MPa)
After 20 minutes

850 after 24 hours

900 after 8 hours

450 after 16 hours

13



14

_mesures 4 250°C (2)

-,

\\\
60 -
4 ~
N, .
" t (A
o 200 é00 600 800 1000

Fig. 8. Evolution of shear rupture resistance of

6030-Courtaulds HTS unidirectional laminates
as a function of the duration of aging at

24507C.
KEY:
(1) Measured at ambéent temperature
(2) Measured at 250°C
—
Temps de vicillissement
a 250°C (1) o SCO h| 1000 h [ 1500 h | 2000 h
rP.rtt de poid.. en % (2) o " | 2,54 3.5% 3.5%
Résistance en 20°C 1550 93s 955 923 27
(3) | t1exion (wpa) | 200°c 1300 066 864 848 814
------ -' - - -
Kodule de 1 200 106200 108750 | 98780 | 95750 | 110690
(4) ] t1exion (wpa) ' 200°c 94660 |104250 | 96410 | 921960 | 96260
e ——— o, - p—
- Cisaillement ,  20°C 103 | 66,5 64 52 63.4
(5) (MPa) ¢ 200%C 74,5 | &7 s8.6 | 8.8 64,5
|

Fig. 9. Aging at 250°C of AS/6030 unidirectional
carbon laminates.

KEY:

(1) Aging time at 250°C (4) Flexure modulus (MPa)
(2) Weight loss in percent (5) Shear ({MPa)
(3) Flexure resistance

(MPa)



Durée d'immersion dans 1'eau bouilluntolli] o |100n | 3s50m | 7T50n | 1000m
‘ ]

.‘.‘(%zn T 1 .bllnli)l 1650 1700 1650 1600 1650

stance (3) A —
agiamsd A 250°C (S)I 1200 | 1200 | 1200 1250
(mpa) A 1l'asbian ! 90 90 95 86 Be

vn cisaillement t‘)l

(N Absorpticn d'esu o [o.m |07 | 0,7 | O7%

Fig. 10. Accelerated humid aging of 6030-Courtaulds
HTS unidirectional laminates.

KEY:

(1) Immersion time in (4) At ambéent temperature

boiling water (5) At 250°C

(2) Rupture resistance (MPa) (6) Shear

(3) Flexure (7) Water absorption

Agent el:uiqut Mlz‘)h follll
concentration
(2]

HC1 1C ¥ 1.4
HNOy 10 % 1.0
B80, 30 % 0.9
WE, 08 10 % 0.4

WaOE 10 % 0.2

Atmosphire 0.2

= .

lante ( 3)

Fig. 11. Resistance of 6030-Courtaulds HTS laminates
to chemical attack after immersion for 7 days
at ambient temperature.

KEY:

(1)
(2)
(3)

Chemical agent and concentration
Water intake in percent
Ambient atmosphere

15



16

(1) |Ree D'EXTINCTION | LONGUEUR BRULEE
— Noabre (sec) (2) () (3)
de plis claoe & |class b |class a|class b
‘ o " ‘ .1 o.‘
PSP . . 5 ° °
poLYeae | 4 g 2 5.9 o
PHENOLIQUE ) 3 0 ! Sl 38
(4)

Fig. 12. Inflammability tests on type 1581 fiberglass-
reinforced laminates according to FAR-2532-
25853 standard for classes (a) and (b).
(Lighting times: 60 seconds and 12 seconds.)
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Fig. 14. Toxicity of combustion gases of type 1581 fiber-
glass-reinforced laminates measured in an Aminco

NBS chamber, with flame (AF) and without flame
(SF) .
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