View metadata, citation and similar papers at core.ac.uk

ESTIMATED SHUTTLE LOADING EMISSIONS

by

Thomas E. Bowman

Mechanical Engineering Department Florida Institute of Technology Melbourne, Florida 32901

ABSTRACT .

As Space Shuttle tanks are loaded with N_2O_4 , pressurization gas is displaced and at the same time N_2O_4 entering the tank evaporates and mixes with the pressurization gas remaining in the tank. Further addition of N_2O_4 to the tank requires venting of this mixture of N_2O_4/NO_2 vapor and pressurization gas, which must be scrubbed prior to atmospheric release.

A computer analysis was performed to estimate concentrations, flow rates, and total quantities vented during the planned fast fill/slow fill cycles of 125 gallon and 640 gallon Space Shuttle tanks. With helium as the pressurization gas, total vent quantities were estimated to be 4.5 and 24 pounds N_2O_4 , respectively, for the two tank sizes.

ESTIMATES OF SHUTTLE LOADING EMISSIONS

by

Thomas E. Bowman Mechanical Engineering Department Florida Institute of Technology

1. STATEMENT OF THE PROBLEM

The functional parameters pertinent to Space Shuttle hypergol loading operations are given in Table I. Essentially we are concerned with two types of tank for each propellant: 125 gallon tanks that are fast filled at 35 psig and then slow filled at a pressure that rises to 125 psig and stays there, and 640 gallon tanks that are fast filled and slow filled at 35 psig.

TABLE I

· · ·	IIyp	ergor system	Tunctional I		· · · ·	
Orbital System	Propellants On- Board (Gallons)		Flowrate	(GPM)	Ullage Pressure (PSIG)	
	ММН	N ₂ O ₄	Fast Fill 0-90%	Slow Fill 90%-100%	Fast Fill	Slow Fill
FRCS	125	125	10	2	35	125
LH ARCS	125	125	10	2	35	125
RH ARCS	125	125	10	2	35	125
LH OMS	640	640	60	10	35	35
RH OMS	640	640	60	10	35	35
РВК	3x640	3x640	60	10	35	35

Hypergol System Functional Parameters

Assume that we start with a propellant tank full of helium at 35 psig, 70°F, and begin to flow liquid propellant into the tank at a constant rate. As the first propellant enters, evaporation occurs, and liquid continues to evaporate as the tank fills until the gas over the propellant is saturated. At the same time, the vent is open and propellant vapor and pressurization gas are removed from the tank at a rate sufficient to maintain the desired ullage pressure. An estimate of the total quantity of propellant vapor discharged through the vent, as a function of time, is required.

2. FIRST APPROXIMATION

A very simple analysis may be performed by assuming that the mass of propellant vented is simply equal to the mass of saturated propellant vapor that will completely fill the tank minus the amount in the ullage at the end:

$$\mathbf{v} = \frac{\mathbf{p} \operatorname{sat} (\mathbf{V} - \mathbf{V}_{ull})}{\mathbf{R}_{p} \mathbf{T}}$$

where V is the total tank volume, V_{ull} the final ullage volume, T the temperature of the gas mixture, and R_p and p_{sat} the gas constant and saturation pressure for the propellant in question. This approximation is based on a simplified model in which the tank is assumed to fill instantly with saturated vapor — without any venting being required — and then the saturated vapor is steadily pushed out the vent by the entering propellant. No further evaporation occurs because of the saturation condition.

Saturation pressure of N_2O_4 at $70^{\circ}F$ is 14.71 psia, and the molecular weight (corrected for dissociation to NO_2 , assuming an equilibrium mixture of $N_2O_4 - NO_2$ at $70^{\circ}F$, 35 psig) is 87.82, giving $R_p = 17.597$ ft-lbf/lbm - $\circ R$. We are concerned with two tank sizes: $(V - V_{ull}) = 125$ gal and 640 gal. The results are:

125 Gallon N₂O₄ Tank:

m

p.v. =
$$(14.71)(144)(125)(.1337) = 3.798$$
 lbm
(17.597)(529.67)

640 Gallon N₂O₄ Tank:

 $m_{p.v.} = \left(\frac{640}{125}\right)$ (3.798) = 19.45 lbm

It should be noted that these calculations do not take account of the increased pressures during the last 10% of fill of the 125 gallon tanks. In the actual fill, the vent would close for a period of time to allow pressure to increase, and hence the quantity vented would be less than that calculated. After compression, the ullage gas still contains the same amount of propellant, but it is less than saturated because of increased temperature. No further evaporation occurs, however, because the liquid propellant is still at 70°F and its vapor pressure is now less than the partial pressure of the propellant in the compressed ullage.

Beyond this consideration, however, it is not possible to ascertain whether this model is conservative or not. It has a conservative aspect, in that the gas being vented always contains the maximum possible concentration of propellant. It also has an anti-conservative aspect, in that the gas flow rate out of the tank is always taken to be its lowest possible value — equal to the volume flow rate of liquid into the tank. Any time evaporation is occurring, the volume flow of gas out of the tank must exceed the liquid volume flow in — a fact not taken into account by this always-saturated approximation.

Because of the fact that evaporation of the propellant in the tank might cause the results found above to be substantially too low, a more careful analysis was undertaken. This analysis is best described as a "second approximation," however, for reasons discussed later. It represents a preliminary estimate of the vent propellant quantities.

3. SECOND APPROXIMATION

3.1 Formulation

At any point in time, the volume occupied by gas in the tank is decreasing due to the addition of liquid to the tank, corrected by the amount of liquid that is evaporating:

 $\frac{dV}{dt} = -\left(\dot{Q}_{in} - \frac{\dot{m}_{evap}}{liq}\right)$

(1)

where

V(t) = Tank ullage volume
 Q_{in} = Volume flow rate of liquid into the tank
 m_{evap} = Rate at which liquid is evaporating, mass per unit time
 liq = Liquid density

The volume flow of gas out the vent is equal to the rate at which the ullage volume is decreasing, plus a term to account for the generation of gas due to evaporation. We assume that the temperature and pressure of the gas mixture remain constant during evaporation, and that both components act as perfect gases. Consider a system composed of the gas molecules near the liquid-gas interface, with new molecules entering the system as liquid evaporates and no molecules leaving the system. This system will therefore be expanding. Its total volume can be treated as the sum of the partial volumes of each component gas because of the perfect gas assumption; the partial volume of the helium is constant (constant mass, temperature, and mixture pressure), while the partial volume of the propellant increases because of mass addition:

$$V_p = M_p R_p T/p$$

 $m_{evap} R_p T/p$

where

Vp= partial volume of propellant vapormp= mass of propellant vapor in the systemRp= gas constant for the propellant vaporT= mixture temperaturep= mixture pressure

 $dV_p =$

Since the partial volume of the helium is constant, the total volume of this system is increasing at a rate given by dV_p /dt. This term is added to the rate at which the ullage volume is shrinking to give the volume flow of gas out the vent:

$$\dot{Q}_{out} = -\frac{dV}{dt} + \dot{m}_{evap} R_p T/p$$
 (2)

The portion of this volume flow that is propellant vapor varies with time because of the non-uniform distribution of propellant vapor in the ullage. Since the vent is the farthest point in the tank from the evaporating liquid surface, the propellant vapor concentration there should always be less than or equal to the average (uniform distribution) concentration, and hence a conservative result will be obtained by assuming a uniform distribution of propellant vapor in the tank at all times. With this assumption, the density of propellant vapor at the vent is

$$p = \frac{p_p}{R_p T}$$

where the partial pressure of the propellant vapor, which the assumption says is uniform, is given by

$$\mathbf{p}_{\mathbf{p}} = \mathbf{m}_{\mathbf{p}} \mathbf{R}_{\mathbf{p}} \mathbf{T}/\mathbf{V} , \qquad (4)$$

 m_p being the total mass of propellant vapor contained in the ullage. The mass flow of propellant out the vent is the product of the total volume flow at the vent and the propellant vapor density at the vent:

$$\dot{m}_{p_{out}} = \dot{Q}_{out} / p$$
 (5)

Finally, we have a continuity equation which provides a second relation between m_{pout} and m_{p} : $dm_{p} = m_{even} - m_{p}$ (6)

$$\frac{dm_{p}}{dt} = \dot{m}_{evap} - \dot{m}_{pout}$$
(6)

Equations (1) through (6) constitute 6 equations - including first order differential equations - for the 6 unknown functions of time, V, \dot{Q}_{out} , $\swarrow p$, p_p , m_p , and \dot{m}_{pout} , in terms of the parameters \dot{m}_{evap} , \dot{Q}_{in} , $\swarrow liq$, T,p, R_p .

Equations (2) through (6) are readily combined:

$$\frac{dm_{p}}{dt} = \dot{m}_{evap} - \dot{Q}_{out} p$$

$$= \dot{m}_{evap} - \left(-\frac{dV}{dt} + \dot{m}_{evap} R_{p} T/_{p}\right) \left(m_{p/V}\right)$$

$$= \dot{m}_{evap} \left(1 - \frac{p}{V} + \frac{R_{p} T}{p}\right) + \frac{m_{p}}{V} \frac{dV}{dt} (7)$$

Equations (1) and (7) now constitute two first order differential equations for the two unknowns m_p and V; for solution, two initial conditions will also be required.

Before looking at the initial conditions, we should examine \dot{m}_{evap} more closely. Evaporation is expected to be maximum when there is no propellant vapor. For the purpose of this analysis, then, we assumed \dot{m}_{evap} to be given by an equation of the form where

А

 p_{sat} (T) = saturation pressure for the propellant

= "Evaporation rate coefficient" defined by this equation

 $\dot{\mathbf{m}}_{evap} = \mathbf{A} \left(\frac{\mathbf{p}_{sat}}{\mathbf{p}_{p}} \right)$

- 1

Substituting this expression into equations (1) and (7), with p_p given by (4), results in

$$\frac{dV}{dt} = -\left(\dot{Q}_{in} - \underline{A}_{liq} \left(\frac{p \ V}{m_p R_p T} - 1\right)\right) \quad (8)$$

$$\frac{\mathrm{dm}_{\mathrm{p}}}{\mathrm{dt}} = A \left(\frac{\mathrm{p} \, \mathrm{v}}{\mathrm{m}_{\mathrm{p}} \mathrm{R}_{\mathrm{p}} \mathrm{T}} -1 \right) \left(1 - \frac{\mathrm{m}_{\mathrm{p}} \mathrm{R}_{\mathrm{p}} \mathrm{T}}{\mathrm{p} \, \mathrm{v}} \right) + \frac{\mathrm{m}_{\mathrm{p}}}{\mathrm{v}} \frac{\mathrm{dV}}{\mathrm{dt}} \quad (9)$$

3.2 Initial Conditions

Two initial conditions are required. One condition, $V=V_{tank}$ at t=0, is quite straightforward. If we try to apply the condition $m_p = 0$, t=0, however, there is an obvious problem with equation (9). This problem can be resolved by considering that as $t \rightarrow 0$, $m_p \rightarrow 0$ and $p_p \rightarrow 0$, and therefore

$$\mathbf{m}_{evap} \neq A \quad \frac{\mathbf{p}_{sat}}{\mathbf{p}_{p}} = A \quad \mathbf{p}_{sat} \quad (T) / \quad (\mathbf{m}_{p} \mathbf{R}_{p} T / V_{tank})$$

so that with

 $Q_{out} = 0$ at t=0, we have:

$$\lim_{t \to 0} \left(\frac{dm_p}{dt}\right) = \frac{A_p_{sat} V_{tank}}{m_p R_p T}$$

which can be readily integrated to give

$$\lim_{t \to 0} {m_p} = \left(\frac{2A p_{sat} V_{tank}}{R_p T} t\right)^{1/2}$$
(10)

which can be applied at some small finite time $\mathcal{S}t$, and hence is quite appropriate for the finite difference method of solution that will be applied to obtain the simultaneous solution of equations (8) and (9).

There are two limitations on the initial m_p that must also be considered:

1. The initial m_p cannot exceed the total propellant mass that has entered the tank in the initial time step c_t ,

 $\begin{array}{ccc} m_{p} \leqslant \dot{Q}_{in} & \scale{plant}{2} \end{array} \tag{10'} 2. & The initial m_{p} cannot exceed the mass of propellant present when the tank is full of saturated vapor, } \end{array}$

$${}^{m}_{p} \leqslant \frac{{}^{p}_{sat} {}^{(T)} {}^{V}}{{}^{R}_{p} {}^{T}}$$
(10'')

3.3 Slow Fill Analysis

The slow fill presents no problems in the 640 - gallon tanks, where the fill and outflow rates simply decrease after 90% loading with no change in ullage gas properties. In the 125-gallon tanks, however, the vent closes for a period while the pressure increases.

During the vent-closed period, we assume that the gas undergoes an isentropic compression, with no evaporation or condensation occurring. We further assume that it is a perfect gas with constant specific heats. These assumptions yield the equations

$$v_{2} = v_{1} \left(p_{1/p_{2}} \right)^{1/\gamma}$$
(11)
$$T_{2} = T_{1} \left(p_{2/p_{1}} \right)^{\frac{\gamma-1}{\gamma}}$$
(12)

for final volume and temperature, V_2 and T_2 , in terms of volume V_1 , temperature T_1 , and pressure p_1 at the beginning of the compression, and final pressure p_2 . \checkmark is the ratio of specific heats, which for a mixture of perfect gases can be expressed as

$$\mathcal{F} = \frac{\begin{cases} \leq p_i & \hat{c}_{p_i} \\ i & p_i & \hat{c}_{v_i} \end{cases}}{\underset{i}{\leq} p_i & \hat{c}_{v_i}}$$
(13)

where

partial pressure of the ith component

c_{pi} =

pi

the molal specific heat at constant pressure of the i^{th} component

 \hat{c}_{vi} = the molal specific heat at constant volume of the ith component

At standard temperature and low pressure, the specific heats have the following values:

Helium

 N_2O_4 ¹

 $c_p = 5.00$ Btu/lb mole - ^{O}R $c_v = 3.000$ Btu/lb mole - ^{O}R

$$c_p = (.2033) (87.82) \text{ cal/gmole} - {}^{0}\text{K}$$

 $\hat{c}_v = \hat{c}_p - \text{R} = [(.2033) (87.82) - 1.986] \text{ cal/gmole} - {}^{0}\text{K}$

It should be noted that in the case of N_2O_4 , the frozen equilibrium heat capacity was chosen as being the only one consistent with the perfect gas assumption. The equilibrium molecular weight at 70°F (87.82) was used in the equations above to obtain the molal heat capacity from Fan and Mason's value of .2033 cal/gram - °C.

Partial pressure of the N_2O_4 vapor is given by equation (4) above. Helium partial pressure is found by subtracting the appropriate propellant vapor partial pressure from the tank pressure. The resultant ratio of specific heats, equation (13), is:

If we use the saturation pressure at 70° F for the N₂O₄ vapor partial pressure, we obtain the value

 $\gamma_{N_2O_4} = 1.293$ ullage

and substituting this value into equations (11) and (12), with

 $V_1 = 17.91 \text{ ft}^3 - (.90) (125 \text{ gal}) (.1337 \text{ ft}^3/\text{gal})$ = 2.869 ft³ $T_1 = 70^{\circ}\text{F} = 529.67^{\circ}\text{R}$ $p_1 = 35 \text{ psig} = 49.7 \text{ psia}$ $p_2 = 125 \text{ psig} = 139.7 \text{ psia}$ gives the results:

$$v_2$$

N₂O₄ = 2.869 $\left(\frac{49.7}{139.7}\right)^{\frac{1}{1.293}}$ -1.290 ft³
ullage

1. Fan, Stephen S.T., and David M. Mason, "Properties of the System $N_2O_4 \rightleftharpoons 2NO_2$ $\rightleftharpoons 2NO+O_2$." J. of Chem and Eng. Data, Volume 7, pp. 183-186 (April 1962).

$$\Gamma_{2}$$

$$N_{2}O_{4} = 529.67 \left(\frac{139.7}{49.7}\right)^{1.293} = 669.4^{\circ}R = 210^{\circ}F$$
llage

From these results we deduce two important facts:

1. Since the final ullage volume in the 125 gallon tanks is

$$17.91 - (125) (.1337) = 1.20 \text{ ft}^3$$

11

maximum pressure will be reached before the tank is "full", and the vent will re-open to release some gas at 125 psig.

2. The saturation pressure of an equilibrium mixture of N_2O_4 and NO_2 calculated for $210^{\circ}F$ is 14,920 mm Hg or 288.4 psia, and since the actual partial pressure of this constituent will increase in proportion to the tank pressure, the final partial pressure is well below saturation, and hence condensation at the relatively cool liquid and solid surfaces, although it will occur, can probably be neglected.

Numerical Solution

3.4

Equations (8) and (9) were written as difference equations:

$$\Delta V = -\left(\dot{Q}_{in} - \frac{A}{\sqrt{liq}} \left(\frac{P_{sat}V}{m_{p}R_{p}T} - 1\right)\right) \Delta t \qquad (14)$$

$$\Delta m_{p} = A\left(\frac{P_{sat}}{m_{p}R_{p}T} - 1\right) \left(1 - \frac{m_{p}R_{p}T}{pV}\right) \Delta t + \frac{m_{p}}{V} \Delta V \qquad (15)$$

and solved incrementally; that is, at each time step, the changes in V and m_p were calculated using the values of V and m_p calculated at the preceding time step. Initial values of V and M_p were found as described in Section 3.2.

Values used were the following:

$$p = 7156 \ lbf/ft^2$$

$$T = 529.67^{\circ}R$$

$$\Delta t = 1.0 \ sec$$

$$P \ liq = 90.35 \ lbm/ft^3$$

$$p_{sat} = 2118.24 \ lbf/ft^2$$

$$R_p = 17.597 \ ft - lbf/lbm - ^{\circ}R$$

$$\widehat{c}_p = 17.85 \ cal/mole - ^{\circ}K$$

Calculations were performed, in all cases, for five values of the "evaporation rate coefficient" defined on page 9:

A = .01, .1, 1.0, 10.0, 100.0 lbm/sec

(The effect of varying surface area on evaporation rates was not taken into account). The following sets of values were used for the two tank

sizes:	Initial V _{tank}	Final Propellant Volume (liq)	(Q _{in}) _{fast}	(\dot{Q}_{in}) slow
Small tank	17.91 ft ³	125 gal	10 gal/min	2 gal/min
Large tank	89.5 ft ³	640 gal	60 gal/min	10 gal/min

The procedure was as follows:

1. For the initial time step, an average mass was calculated using equation (10). The average was found in the usual way,

$$(m_{p})_{ave} = \int_{0}^{\Delta t} \int_{0}^{m_{p}} (t) dt$$
$$= \frac{4}{3} \left(\frac{A p_{sat} V_{tank}}{R_{p} T} \Delta t \right)^{1/2}$$

2. The limiting value of m_p from eqn (10') was calculated and compared to the preceding value. If smaller, it replaced it.

3. The limiting value of m_p from eqn (10") was calculated and compared to the preceding value. If smaller, it replaced it.

4. Outflows for the first time step were calculated using the resultant value of m_p .

5. Volume and mass increments were calculated from equations (14) and (15) using these initial values of V and m_p , and used to find new values of V and m_p .

6. This finite difference procedure was continued until either the ullage was saturated with propellant vapor, or the liquid volume in the tank reached 90% of its final value. Flow rates were calculated at each step using equations (1), (2) and (5), and a running total -

 $\sum \dot{m}_{p_{out}}$ ∆t

was kept. At each step, a check was made to ensure that the ullage had not become saturated and that a negative value was not being used for \dot{m}_{evap} .

7. As soon as the ullage became saturated with propellant vapor, the finite difference procedure was terminated. The remainder of the fast fill was analyzed using equations (1) through (6) with

$$1_{evan} = 0$$
.

In this case the equations are readily solved analytically, and numerical methods are not required.

8. Following the completion of the fast fill, the slow fill was analyzed. For the 640 gallon tanks, this simply amounted to changing the value of \dot{Q}_{in} and preceding as before. For the 125 gallon tanks, an isentropic portion was calculated using equations (11), (12), (13a) and (13b), after which the last stage of venting was analyzed as described in steps 6 and 7,

p = 20116 lbm/ft^2 T = T_2 (just calculated) \dot{Q}_{in} = 2 gal/min

and starting with $V = V_2$, the value found for the isentropic compression.

The results for total propellant vent masses are summarized in Figures 1 and 2. More detailed results, including a listing of the computer program, are presented in the Appendix.

4. Discussion of Results

with

No attempt was made to select realistic values of A, which will depend on the liquid propellant surface area and hence will vary with time, especially in the case of a spherical tank. The results varied with A throughout the range of values of A that were investigated. It is likely that realistic values of A will fall within this range; however, a more thorough study would be required to define the vent masses with a high degree of certainty.

Two other shortcomings of the analysis should be pointed out:

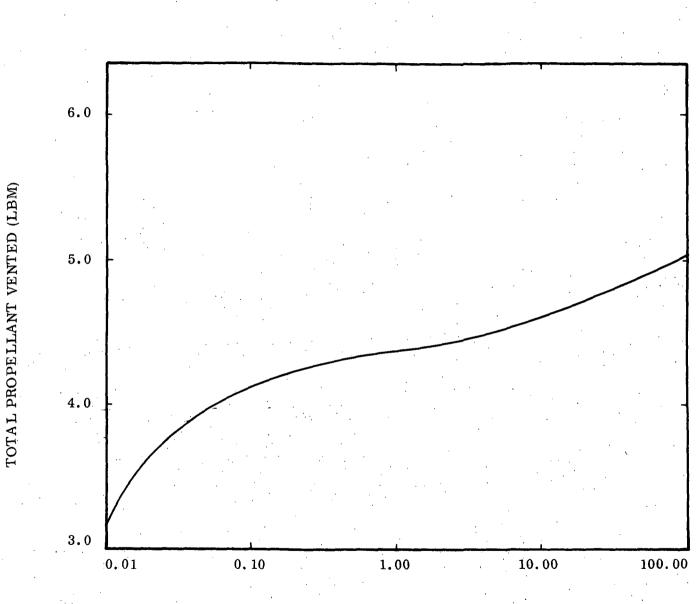
1. Some discrepancies exist in the way V, m_p , and m_{sat} are handled in the first time step.

2. The slow fill analysis for the 640 gallon tanks does not allow for the possibility that the ullage might not be saturated.

It should be emphasized that this analysis was intended only as a "second approximation," and was a fast-reaction exercise of very limited duration. We did not have time or funding, at the time this work was done, to refine the analysis beyond the point where consistent and reasonably reliable results were being obtained. Our approach and results, including emphasis on the deficiencies of the analysis, are presented here since we are not aware of the existence of anything better, and for the benefit of anyone who might wish to develop this computer code further.

Figures 1 and 2 are cross-plots of the total amounts vented for each tank versus A. Figure 1 in particular indicates that the propellant mass vented might well grow without bound as the evaporation rate increases. At these high values of propellant vapor mass however, it would be necessary to take account of cooling due to evaporation; this cooling would reduce the vapor pressure and hence the amount evaporated. In addition, we should remember that these high values occur as a result of the very rapid evaporation at early values of time, accompanied by an assumed instantaneous diffusion throughout the tank, with the result that large amounts of propellant are lost out the vent before the gas is saturated. A final consideration: examination of the computer output shows that the curves would stop rising at only slightly higher values of A than those calculated because of the limitations represented by equations (10') and (10'').

With these considerations in mind, it was decided to select the approximate inflection points in the two curves to estimate the total vent quantities:


125 gallon N_2O_4 tank: $m_{p.v.} = 4.5$ lbm

640 gallon N_2O_4 tank: $m_{p,v} = 24.0$ lbm

The 640 gallon figure corresponds to a higher value of A than the 125 gallon figure, which is appropriate since A should be proportional to surface area.

These values are 18.5% and 23.4% greater, respectively, than those obtained with the first approximation. They are also 5 - 10% smaller than the maximum values calculated.

The complete flowrate history (hypergol vapor vent flow rate versus time) calculated by this program is presented in Figure 3.

EVAPORATION RATE COEFFICIENT (LBM/SEC)

Figure 1: N₂O₄ vent mass, 125 gallon tank

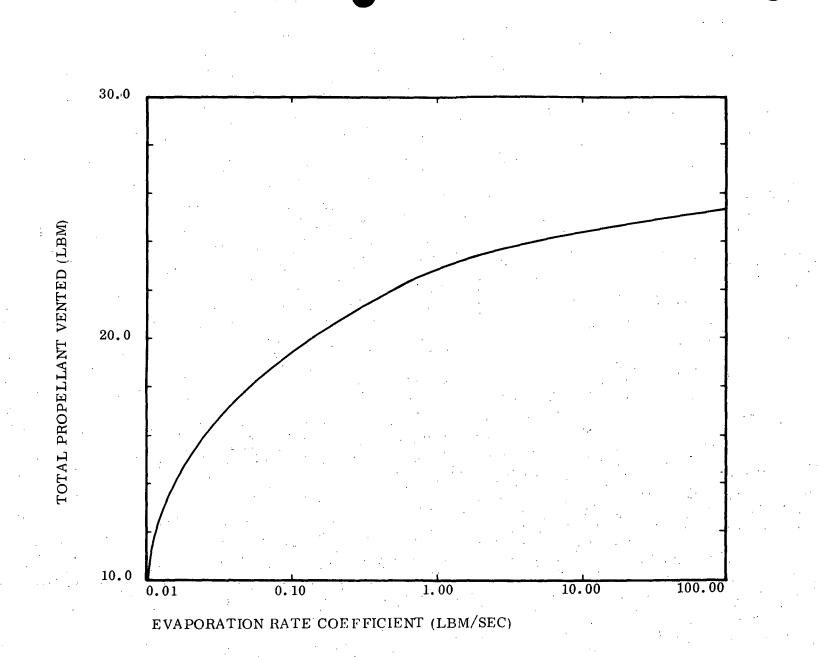


Figure 2 : N_2O_4 vent mass, 640 gallon tank

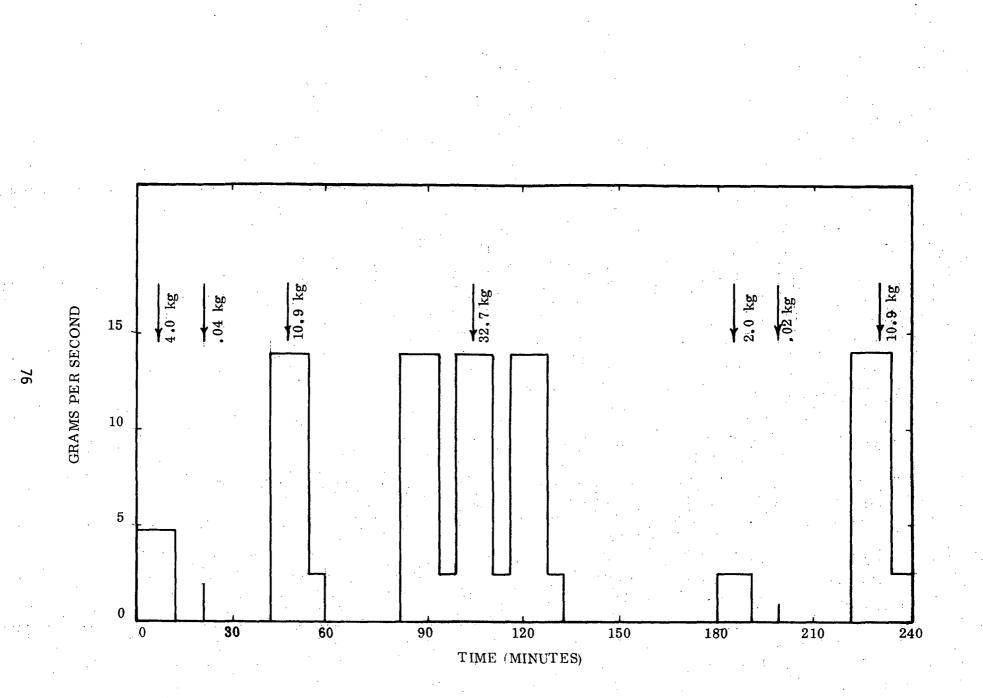


Figure 3: Baseline Flowrate History, $N_2O_4 - NO_2$ vapors vented during pad servicing operations - does not include holium flow

APPENDIX

VENT FLOW RATE PREDICTIONS FOR LC-39

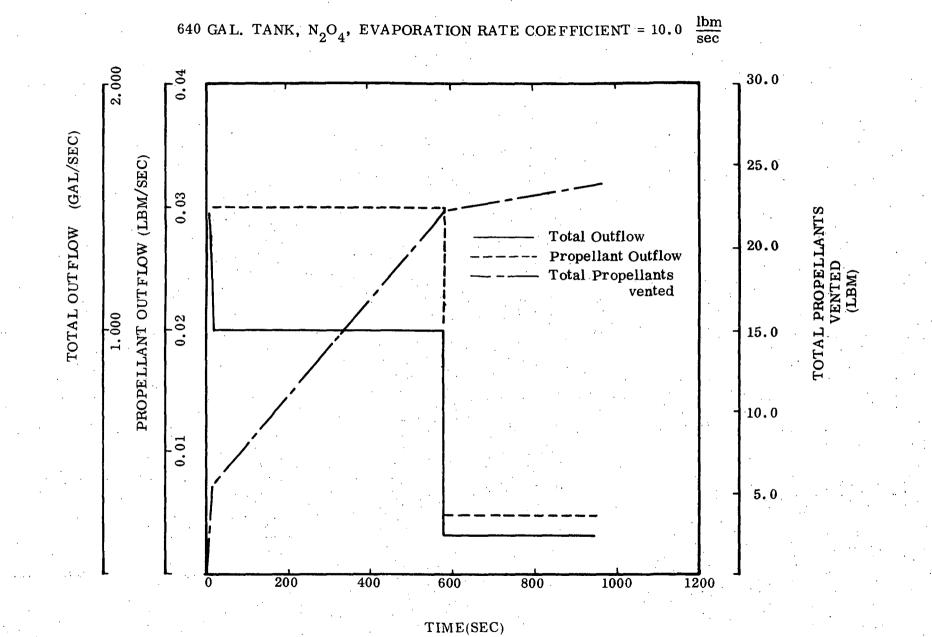
(NORMAL OPERATING CONDITIONS)

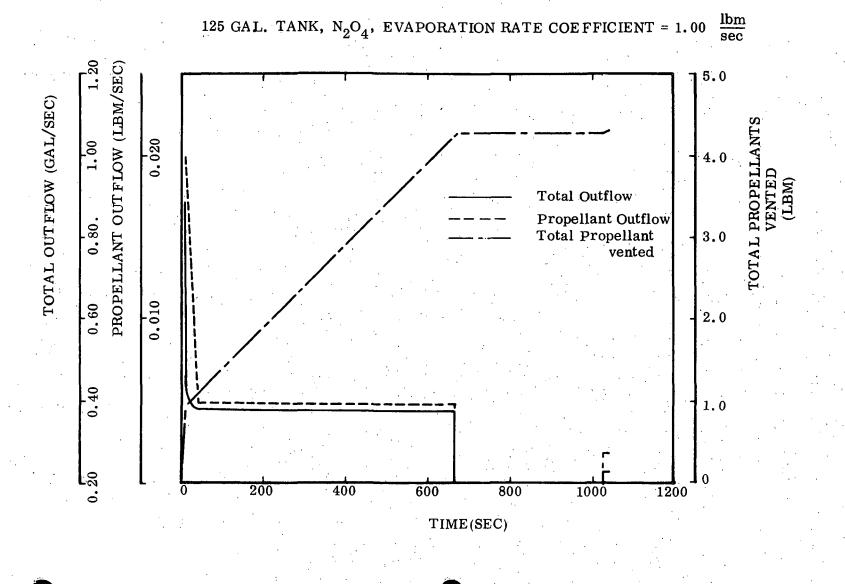
This Appendix includes a listing of the computer program used for these calculations, and results for selected values of the "evaporation rate coefficient," A, defined in Section 3.1.

	DIMENSION A(5).VO(4).RHG(2).PSAT(2).R(2).TITLE(10).QDOTJ(4).
	I VTOT(4).CP(4)
÷.,	
	$\frac{\text{READ} (IN, 1) (A(I) \cdot I = 1, 5) \cdot (VO(J) \cdot J = 1, 2)}{\text{READ} (IN, 3) (VTOT(J) \cdot J = 1, 2)}$
	READ (1N,3) ($QDQTJ(J), J=1,4$)
	READ ($1N,3$) ($CP(K),K=1,2$)
	FCRMAT (8F10.3)
Ť	T=529.67
	PMIX=7156.
	PMI X2=20116
	DELT=1.
	RHO(1)=54.8
·	RH0(2)=90.35
	PSAT(1)=111.456
	PSAT(2)=2118+24
	R(1)=33.536
	R(2)=17.597
• •	DD 100 K=1.2
	READ (IN.2) (TITLE(L).L=1.9)
	WRITE (IOUT.10) (TITLE(J).J=1.9)
ar f	DC 100 J=1,2
	WRITE (IOUT.11) VO(J) DC 100 I=1.5
	WRITE (IDUT,12) A(I)
	WRITE (1001,14)
·	TIME=DELT
	KOUN T=1
	AA=A(1)
	ULLAGE=VTDT(J)9+V0(J)+.1337
•	QDOT=QDOTJ(J) *.1337/60.
	V=VTCT(J)
	EMM=CDCT+DELT+RHO(K)
-	EMM2=SQRT(8./9.*AA*PSAT(K)*V*DELT/R(K)/T)
	IF (EMM2.LT.EMM) ENN=ENN2
	EMM2=PSAT(K)*V/R(K)/T
	IF (EMM2.LT.EMM) ENN=ENM2
•	FLOW=ODOT+EMM*(R(K)*T/PMIX-1./RHC(K))/DELT
	FLAW=FLOW/.1337
	SCRU9=EFFLUX*DELT
44	PARA=PSAT(K) * V/EMM/R(K)/T
	IF (PARA-LE-1-) GO TO 66
	EVAP=AA*(PARA-1,)
•	TEST=ODDT+RHC(K) IF (EVAP+GT+TEST) EVAP=TEST
	AF, LEVAFOUIDIEDIJ EVAFEIEDI

DELV=(EVAP/PHC(K)-GCOT)+DELT	
DELV=EVAP+(1PSAT(K)/PMIX/P	
•	
22 TIME=TIME+DELT	
EMM=EMM+DELM	•
V=V+DELV	
PP=EMM+R(K)+T/V	
FLOW=QDOT+EVAP+(P(K)+T/PMIX-	1./RHC(K))
FLAW=FLOW/.1337	
EFFLUX=FLOW+EMM/V	
SCRUB=SCRUB+EFFLUX #DELT	
KCUNT=KCUNT+1	
IF (KOUNT.LT.10) GO TO 33	
VOUT=V/+1337	,
POUT=PP/144.	
WRITE (IOUT+13) TINE+ENM+VCU	T. BOUT . FLAW . FEELUY . SCOUR
KCUNT=0	
33 IF (V.GT.ULLAGE) GO TO 44	
VOUT=V/•1337	· · ·
POUT=PP/144.	
GO TO 88	
66 EMM=PSAT(K) + V/R(K)/T	
PP=PSAT(K)	
VCUT=V/.1337	
POUT=PSAT(K)/144.	general second
WRITE (IOUT.13) TIME.EMM.VOU	T.POUT.FLAW.EFFLUX.SCRU8
CHEK1=PSAT(K) #ULLAGE/R(K)/T	
TIDE= (V-ULLAGE)/QDOT	
TIME=TIME+TIDE	
VOUT=ULLAGE/.1337	
POUT=PSAT(K)/144.	
FLAW=QDOT/.1337	
EFFLUX=ODCT+PSAT(K)/R(K)/T	•
SCRUE=SCRUE+EFFLUX+TIDE	
CHEK2=EMM-EFFLUX+TICE	*
IF (ABS(CHEK1-CHEK2).GT01*	CHEK1) WRITE (IOUT.15)
EMM=CHEK1	
88 WPITE (IOUT.13) TIME.EMM.VCU	T. PCUT.FLAW.EFFLUX.SCRUB
QDOT=QDOTJ(J+2) *.1337/60.	
ULOLD=ULLAGE	
ULLAGE=VTOT(J)-V0(J)+.1337	
IF (J.EQ.1) GC TC 99	
EMM=PSAT(K) +ULLAGE/F(K)/T	
TIDE=V0(J)*+01337/QCOT	·
TIME=TIME+TIDE	
VOUT=ULLAGE/.1337	
FLAW=QDOT/.1337	
EFFLUX=CDOT+PSAT(K)/R(K)/T	· · · · · ·
SCRUB=SCRUB+EFFLUX+TICE	
WRITE (ICUT.13) TIME.EMM.VOU	I + PUUI , FLAW + EFFLUX + SCRUB
GO TO 100	
99 WPITE (INUT,16)	
GANMA=(PP*CP(K)+(PMIX-PP)*5.)/(PP*(CP(K)-1.986)+(PMIX-PP)+3.)
PCW1=1./GAMMA	
VISEN=ULOLD*(PMIX/PMIX2)**PC	1911 - Carl State (1917) -
IF (VISEN.LT.ULLAGE) GC TO 1	00
TIME=TIME+(ULCLD-VISEN)/QDCT	
VOUT=VISEN/.1337	
PP=PP+PMIX2/PMIX	en an anna an Air an Air an Air an A

PQUT=PP/144.
FLAW=0.
EFFLUX=0.
WRITE (10UT.13) TIME.EMM.VCUT.POUT.FLAW.EFFLUX.SCRUB
WRITE (ICUT+17)
PDW2=(GAMMA-1.)/GAMMA
T2=T+(PMIX2/PMIX)++POW2
TIDE={VISEN-ULLAGE}/ODDT
TIME=TIME+TIDE
VOUT=ULLAGE/.1337
FLAW=QCOT/.1337
EFFLUX=COOT+PF/R(K)/T2
SCRU8=SCRU8+EFFLUX=TIDE
ENM=EMM+EFFLUX+TICE
WRITE (IDUT.13) TIME.EMM.VOUT.POUT.FLAW.EFFLUX.SCRUB
100 CONTINUE
STOP
1 FORMAT (5F10.3/4F10.3)
2 FORMAT (9A4)
10 FORMAT (1H1.9A4)
11 FORMAT (///' FINAL FROPELLANT VOLUME = .F6.0, GALLONS ./)
12 FORMAT (/' EVAPORATION RATE COEFFICIENT =*,F7.2, *LBM/SEC*/)
13 FORMAT (F8.0,F11.3,F11.2,F1C.3,F11.3,F12.4,F12.3)
14 FORMAT (//3X, TIME PROPELLANT ULLAGE PARTIAL TOTAL PR
IROPELLANT
2 OUTFLOW OUTFLOW PROPELLANTS //14X, (LRM) (GAL) (PSIA
JA) (GAL/SEC) (LEM/SEC) VENTED(LBM)*/)
15 FORMAT (' OOPS')
16 FORMAT (* VENT CLOSES*)
17 FORMAT (VENT OPENS)
END


 N_2O_4 results - 125 gallon tank


					·	· · ·
TIME	PROPELLANT	ULLAGE	PARTIAL	TOTAL	PROPELLANT	TOTAL
(SEC)	VAPOP MASS	VOLUME	PRESSURE	CUTFLEW	CUTFLOW	PROPELLANTS
(320)	(LBM)	(GAL)	(PSIA)	(GAL/SEC)	(LBM/SEC)	VENTED (LBM)
10.	3.862	132.66	14.095	0.691	0.0201	0.876
20.	3.958	131.01	14.626	0.234	0.0071	0.984
30.	3.927	129.35	14.698	0.176	0.0053	1.043
40.	3.879	127.68	14.708	0.168	0.0051	1.094
50.	3.829	126.01	14.710	0.167	0.0051	1.145
58.	3.788	124.68	14.710	0.167	0.0051	1+186
677.	0.652	21.46	14.710	0.167	0.0051	4.322
ENT CLO	SES	· ·	• • • •	• •		
1032.	0.652	9.65	41.351	0.000	0.0000	4.322
ENT OPE	NS			•		
1052.	0.605	8.96	41.351	0.033	0.0023	4.369

$N_{2}O_{4}$ results 640 gallon tank

	·					
TIME	PROPELLANT	ULL AGE	PARTIAL	TOTAL	PRCPELLANT	TOTAL
(SEC)	VAPOR MASS	VOLUME	PRESSURE	CUTFLOW	OUTFLOW	PROPELLANTS
	(LBM)	(GAL)	(PSIA)	(GAL/SEC)	(LBM/SEC)	VENTED (LBM)
10.	20.029	661.26	14.663	1.477	0.0447	5.112
20.	19.788	651.27	14.709	1.006	0.0306	5.441
30.	19.485	641.27	14.710	1.000	0.0304 -	5.746
31.	19.455	640.27	14.710	1.000	0.0304	5.776
578.	2.838	93.41	14.710	1.000	. 0.0304	22.392
962.	0.894	29.41	14.710	0.167	0.0051	24.337

Slow fill commences at 578 sec, ends at 962 sec.

