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1. SUMMARY
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Springborn Laboratories is engaged in a study of evaluating poten-

tially usefu:. encapsulating materials for Task 3 of the Low-Cost Silicon

Solar Array project (LSSA) funded by DOE. The goal of this program is

to identify, evaluate, and recommend encapsulant materials and proces-

ses for the production of cost-effective, long-life solar cell modules.

During this quarter the technical activities were directed toward

the assessment of encapsulation processes for use with ethylene/vinyl

acetate (EVA) copolymer as the pottant. Potentially successful formula-

tions wet:e prepared (during the previous quarter) by compounding the raw

polymer with ultraviolet absorbers and crosslinking agents to give sta-

bilized and curable compositions. The compounded resin was then conver-

ted to a more useful form with an extruder to give pottant in sheets that

could be more easily used in lamination.

After experimenting with various techniques, the vacuum-bag process

was found to be an excellent encapsulation method. Miniature single-

celled and multi-celled solar modules of both substrate and superstrate

designs were prepared by this technique. The resulting modules were of

good appearance, were bubble-free, and successfully passed the JPL

thermal cycle test.
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2. INTRODUCTION

The goal of this program is to identify and evaluate encapsulation

materials and processes for the protection of silicon solar cells for

service in a terrestrial environment.

Encapsulation systems are being investigated consistent with the

DOE objectives of achieving a photovoltaic flat-plate module or concen-

trator array at a manufactured cost of $0.50 per peak watt ($5/ft 2 ) (1975

dollars), with a projected first year production rate of 500 peak mega-

watts. This project has a target date of 1986.

To insure high reliability and long-term performance, the functional

components of the solar cell module must be adequately protected from the

environment by some encapsulation technique. The potentially harmful ele-

ments to module functioning include moisture, ultraviolet radiation, heat

build-up, thermal excursions, dust, hail, and atmospheric pollutants. Ad-

ditionally, the encapsulation system must provide mechanical support for
the cells and corrosion protection for the electrical components.

Module design must be based on the use of appropriate construction

materials and design parameters necessary to meet the field operating re-

quirements, and to maximize cost/performance.

The materials cost for encapsulating a 1986 module is targeted at

25 cents per square foot (or $8/meter 2 , including frame), with the encap-

sulation system providing protection to assure outdoor system performance

for at least 20 years. Successful system performance is defined as a decay

in electrical power output not exceeding 50 percent of original value over

this time.

Photovoltaic modules are presently envisioned as being composed of

six recognizable construction elements. These elements are (a) outer cov-

ers, (b) structural and transparent superstrate materials, (c) pottants,

(d) substrates, (e) back covers, and (f) adhesives. Current investigations

are concerned with identifying and utilizing materials or combinations of

materials for use for each of these elements.



1
'.N	Properties considered are cost, transparency, weatherability, and ap-

plicability of processing.
c

This report presents the results of technical activities of the past

quarter, directed toward the investigation of encapsulation processes for

use with ethylene/vinyl acetate (EVA) copolymer as the pottant.
T

v

R.
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3. DISCUSSION OF ETHYLENE/VINYL ACETATE
ENCAPSULATION MATERIALS

ETHYLENE/VINYL ACETATE MATERIALS

Pottants are materials which provide a number of functions, but pri-

marily serve as a buffer between the cell and the surrounding environment.

The pottant must provide a mechanical or impact barrier around the cell to

prevent breakage, must provide a barrier to water which would degrade the

electrical output, must serve as a barrier to conditions that cause cor-

rosion of the cell metallization and interconnect structure, and must

serve as an optical coupling medium to provide maximum light transmission

to the cell surface and optimum power output. Pottants must obviously

have very high transparency, with the exception of superstrate bonded

designs in which cells are in intimate contact with the transparent super-

strate and have no pottant over the front surface.

After an extensive investigation of transparent plastics, ethylene/

vinyl acetate (EVA) was selected from a class of low-cost polymers as being

a likely candidate potting compound for use in the fabrication of solar cell

arrays. Its selection was based on cost (approximately $0.50 per pound)

and an appropriate combination of high optical transparency and easy pro-

cessing conditions. This polymer also shows the most promising properties

for immediate use with a small amount of modification, but without extensive

development efforts. In subsequent studies, Springborn Laboratories pro-

ceeded to formulate and compound a useful grade of this material to yield a

polymer with the desired properties*. The base resin selected was Elvax

150 (DuPont), a high melt flow compound with 34% vinyl acetate comonomer

composition.

Various cure systems were investigated to give low creep, high-trans-

parency, low scorch with long processing times, and rapid cure at elevated

temperatures. Aliphatic additives were also employed to avoid the intro-

duction of UV-absorbing species that might promote degradation. Aromatic

compounds conventionally used for crosslinking EVA (triallyl cyanurate,

* Springborn Laboratories, Inc., Ninth Quarterly Progress Report,
"Investigation of Test Methods, Material Properties, and 'Processes for
Solar Cell Encapsulants" October 1978
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dicumyl peroxide, Vulcup-R, etc.) are known to be W absorbers and could

possibly promote instability to weathering.

Three formulations were finally developed for experimental encap-

sulation  	 er studies one clear one cle ar with stabilix s d W ab 1,,Sor s	 an	 s	 er

to improve outdoor weathering; and a third compound containing white pig-

ments to serve as a reflective background in substrate design modules to

improve the efficiency.

a;
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EXTRUDER STUDIES

Any material to be used in the construction of solar modules must

first have the required physical, thermal, optical, and electrical prop-

erties; but second must be available in a form that is amenable to fabri-

cation. In order to use polymeric materials as pottants, it is necessary

that the physical form of the polymer be appropriate to the encapsulation

technique being employed.

Plastics are commercially available in four basic forms: liquid,

pellets, powder and bulk (chunk). Some polymers are restricted to handling

in a specific manner, others may be converted to more useful forms suited

to the particular application. Ethylene/vinyl acetate is a versatile poly-

mer that is manufactured in pellet form but may be converted to other forms

such as liquid (injection molding) or sheets (extrusion). The sheet form

has been found to be the most useful to date and is suited to a wide variety

of lamination techniques.

Preliminary investigations of the conversion of EVA copolymer into a

useful precompounded sheet form were conducted on a small scale in the

laboratory using a Brabender "Plasticorder". This device consists basically

of an electric motor, a gear reduction unit, and a miniature single-screw

extruder attachment. This equipment was used to determine the basic extru-

sion conditions for three EVA compounds: clear, clear-stabilized, and pig-

mented (white).

The temperature profile, back pressure, and screw speed were determined

initially with the "Plasticorder" adapted to a 3/4 inch diameter extruder

with a 6 inch width film die. All three compounds were found to extrude

easily.at die temperatures of only 75-80 0C. The die back pressure

remained fairly constant at 1600 psi and the screw speed was maintained

at 60 rpm. The extruded sheet was very clear and manageable; however,

the thickness was variable and could not be set precisely using the

particular die construction in use.

The preliminary conditions established in the laboratory were then

used towards a large-scale pilot plant production. A major extrusion

effort was conducted using a Hartig 2^ inch extruder with a two-stage

screw containing a mix zone for resin blending.

s
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Large amounts (200-300 pounds) of both clear/stabilized and pig-
	 4

mented compounds were prepared by ribbon blending and were run directly

into the extruder hopper.. The highest temperature used was 95 -100OC at

the mix zone and 750C at the die. The back pressure was 2400 psi for

the clear formulation (A8326) and about 3000 psi for the white compound

(A8320-B).

The following table lists the: average extrusion conditions Bound for

both resins: (Sec also Figure 1)

TABLE 1

EVA Extrusion Conditions

Extruder:	 Hartig, 2y inch diameter
Screw:	 Two stage, L/D 24:1
Screen pack:	 (mesh) 20+100+80+20 (at the nozzle)
Die:	 Deckel set 0.025 inches

Temperature Profile (FO)

T

Barrel Nozzle Die

Zone 1	 2	 3	 4	 5 8 9	 10	 11

Set
Temp.	 (FO ) 190	 200	 205	 175	 175 175 175	 175	 175

Run
Temp.	 (F°) 195	 205	 205	 220	 170 175 175	 180	 175

Back Pressure: 	 2400 psi (clear, 3000 psi (white)
Take up roll, temp.: No. 1,2 42 0F, No. 3,4 530F (5-10°C)
Final sheet width:	 23.5 inches
Sheet thickness:	 0.018 inches, + 0.001 inches
Interleaf paper:	 Carter 25W-202

The sheet was extruded at a rate of about 8 feet per minute and was

taken up on chrome rollers cooled to 5-10 0C. The thickness was uniform

across the 24 inch wide sheet at 0.018" +0.01". The sheets were wound on

cardboard cores with release paper interleaving. The interleaving is nec-

essary to prevent the wound sheet from "blocking" or sta-king to itself so

that the plies are difficult to separate.

- 7 -
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The sheet quality was excellent ane no cure advancing of the resin

was found to have occurred. Blending of the ingredients was found to be

uniform in the clear formulation, but the white eoiapound showed some signs

of pigment streaking, indicating that the ribbon blending prior to ex-

trusion provides insufficient compounding for this formulation.

The rolled sheets of both polymers were stored in a cool, dry lo-

cation and used for subsequent experiments in module fabrication.

a

— 8 —

4

^.	 d

i



-r7R

li
MODULE FABRICATION ATTEMPTS

Several approaches to module fabrication were attempted, the object

being to encapsulate the cell by a fast, reproducible process that did

not damage the call or incorporate bubbles, voids, or any other defect

that could serve as a locus for failure. All the techniques attempted

were variations of a process employing heat to fuse the EVA pottant and

vacuum to remove trapped air and bubbles.

Standard fabrication test modules were constructed measuring 3110"

and containing one solar cell (57 mm diameter); these were used through-

out the range of experiments with only minor variation.

Simple laminates were prepared by assembling layers of the raw ma-

terials composing the encapsulation package. For substrate-based designs

these laminates consisted of 3"x3" squares of the following materials in

order, from topside to underside:

Clear EVA, Formula A8322A(a)

24 in. Diameter Solar Cell, Active, Face up

Clear EVA, Formula A8322A

White EVA, Formula A8320B

Super-Dorlux, Vacuum Dried

For superstrate designed modules the materials consisted of, from

^V,	top to bottom:

Soda-Lime Glass, Primed

Clear ZJA A8322A

24 in. Diameter Cell, Face up, Active

Clear EVA A8322A

White EVA A8320B

(a) A8322A is a formula for compounded EVA containing only curing

agents, but no W stabilizers. This compound was used for

Initial. fabrications in order to provide specimens for de-

gradation studies.

The lamination processes attempted with the preassembled modules went

through a number of changes before evolving to•a viable encapsulation

method. The processes used and the modifications made are described as

follows:

9 --
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A. Vacuum Oven

The first technique tried was that of simply placing the preassembled

module into a preheated vacuum oven and permitting the module to come to

fusion temperature under evacuation. The vacuum step is necossary, as

modules fused in a circulating-air oven fuse with large amounts of

trapped air.

A full vacuum of 30 in. Hg was applied to the oven immediately after

loading the module and the fusion temperature was reached in about half an

hour.

Laminates prepared in this manner failed due to bubbling and blistering

of the molten resin.	 The highest temperature obtainable before the onset

of this difficulty was found to be 70 0C + 50 .	 Single sheets of EVA re-

sponded in the same manner indicating that in part the degassing was also

a property of resin composition.	 Increases in temperature to 90 or 1000C

made the situation worse.	 Modules removed below the 70 0C temperature were

poorly fused with irregular surfaces, some large bubbles of entrapped air

and poor appearance.	 Variations in the time-temperature-pressure profile

brought no	 'I.hg;lovement.

B.	 Vacuum Fusion-With Backfill

In an attempt to reduce the degassing and inhibit bubble formation,

the vacuum oven was operated at full vacuum until primary fusion had taken

place at about 700C and was then backfilled with nitrogen to ambiend pres-

sure.	 Nitrogen was used as the Backfill gas because the oxygen component

of air tends to inhibit the cure of peroxide crosslinked systems. 	 It was

' expected that the increase in pressure at the fusion point vDuld solve the

nubble problem by reducing the vapor pressure of the resin, however, no

success resulted from this approach.	 The highest temperature attainable

was 800C, at which point the onset of irreversible bubbling occurred again.

Additional problems included the absence of cure (due to low temperature),

cell shifting, and excessive loss of resin over the edges of the substrate.

C.	 Vacuum Pack

In order to take further steps towards the suppression of bubbles, a

y direct contact approach was tried. 	 Pos;tive pressure was applied directly

I
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	 to the surface of the module LI assembling a sandwich "pack" of sheet ma-

terials around the module. Varying pressures could then be applied to the

assembly by placing weights on the top surface. The "pack" consisted of

the following assembly:

Top Section:	 Weight

Aluminum support plate, 6"x6"xl/16"

Cardboard, 6 "x6"xl/8"

Silicone rubber, 6"x6"x1/32"

FEP film, 311x3"x0.01"

Middle Section:	 Cell lay-up, as in (A)

Bottom Section: Cardboard, 6 "x6"xl/8"

Aluminum, 61Ix6"xl/16"

Cardboard, 6"x6"xl/8"

Aluminum plate, 61Ix6"xl/16"

Each material was included to provide a specific function.

The FEP film was placed over the module surface to serve as a release

surface, the cardboard served to slow down the heat transfer, allowing a

ijnger evacuation time (before fusion); and the aluminum plates serves as

rigid support members. The final assembly was taped over the edges to

prevent the assembly from shifting.

Loading this Fuck into the vacuum oven with 0.2 to 0.5 psi (resultant

weight on the 3 11x3" module surface) pressure resulted in much improved

modules with flat surfaces. The limiting temperature was found to be ap-

proximately 700C, as before. up to this temperature modules could be

produced entirely bubble-free, well fused, and of good appearance. Above

700C degassing began, again resulting in bubble inclusions, although not

quite as severely as previously.

The module inside the pack assembly is estimated to reach 70 0C in

about 45 minutes in the vacuum oven.

The main problem remaining was still that of raising the module to a

sufficiently high temperature to cure the EVA encapsulant without the de-

r'
	 structive degassing.

I
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'^. The pottant in the modules produced by any of the preceding processes

was found to be uncured and completely thermoplastic. Curing does not ap-

pear to occur at 70°C - 100°C regardless of how long the resin remains at

temperature.

D. Vacuum Pack with eackfill

A combination of the preceding methods was tried. The module "pack"

'

	

	 assemblies were fused under full vacuum to a temperature of 70 °C and the

oven backfilled with nitrogen to ambient pressure as before. The tem-

perature was then raised to 150°C for an additional period of two hours

and the modules removed. About 209 of the modules resulting from this

process were well fused, bubble-free and showed no signs of cell damage.

The remainder were failures and although they had some bubbles, failed

more from excessive resin exudation (loss of encapsulant) than any other

difficulty. Additionally, the pottant had low levels of cure. Although

the polymer was found to cure well in compression mold at 150°C, vacuum

packs at the same temperature showed almost no crosslinking. This was

then thought to be due to slow and ineffective heat transfer.

E. Vacuum Pack-Air Oven

Successfully fused and bubble-free modules prepared by procedure (c)

were left in their pack assemblies and cure was attempted in a circulating

oven. Loading into an oven directly at the desired 150°C resulted in the

usual bubbling problem, so a more gradual approach was taken. Module

packs were removed from the vacuum oven at 70°C and placed in an air oven

at 80°C. The temperature was then raised 10°C every 1%2 hour until 150°C

was reached. Most modules survived well, with only 209 (appx.) failure

rate due to bubbling and degassing. Despite adequate time for equilibra-

tion at a sufficiently high temperature, the cure of the EVA ti.s still

found to be marginal at Gel contents of 10-209. These modules did not

survive temperature cycling at 90°C and .flowed to destruction.

These results suggest that the presence of air inhibits the high

temperature cure, even in a pack lay-up; and that a rapid heat transfer

is necessary to overcome inhibition effects.

12 -
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F. Autoclave

s r	 A few experiments were run with a miniature laboratory scale auto-

clave that could be pressurized with nitrogen.

Superstrate cell lay-ups with no pack as described in (A) were placed

in a preheated autoclave at 1200C and immediately evacuated to 30" Hg. Af-

ter a length of time under vacuum to remove entrapped air, the autoclave

was backfilled with nitrogen to a pressure of 280-300 psi and left for

half an hour. The air was to back£ill at the nset of fusion and elim-

inate bubble formation with the high pressure atmosphere. Modules pres-

surized after 5, 10 and 15 minutes of vacuum still gave poor results with

bubbling and degassing of the EVA.

Thron„ghout the six approaches summarized so far, the following

problems were encountered:

(1) Bubble formation - occurring in all cases except (E).

(2) Incomplete cure - occurring in all cases.

(3) Lack of adhesion - occurring in most cases.

(4) severe resin flow and cell shifting.

(5) Pigmented resin overlapping cell surface - partially solved

by using lightly cured pigmented resin.

- 13 -
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VACUUM-BAG FABRICATION

i
r A successful and reproducible module fabrication technique was final-

ly achieved using a vacuum bag. 	 The "Bag" consisted of an aluminum picture

frame supporting a flexible silicone rubber diaphragm. 	 This frame was then

placed on a solid aluminum support plate covered with a thin layer of grease

a
and the whole assembly evacuated through a piece of tubing in the side of

the frame.	 (See Figure 2.)	 Module lamination was achieved by assembling

a "lay-up" of materials as before: (superstrate example)

PEP Film -	 release film

Pigmented EVA -	 reflective rear pottant

Clear EVA - transparent pottant

Solar Cells (Face Down)
M

Clear EVA - transparent pottant

Soda-Lime Glass - superstrate

This assembly was then placed between the support plate and the dia-

phragm held on the picture frame. Applying the vacuum (30 in.Hg) resulted

in removal of air trapped between the sheets of encapsulant and also com-

pressed the asembly to 14.7 psi from the action of the diaphragm. While

under vacuum, the entire vacuum bag was loaded between the preheated

(1500C) plattens of a hydraulic press which served as the heat source.

The ram pressure was just sufficient to close the press and insure good

heat transfer to the vacuum bag. The time required for adequate fusion

and cure was determined by placing a micro thermocouple over the module

assembly. Twenty minutes of cure time was allowed after a temperature of

1400C is reached. Samples of encapsulant from modules prepared in this

manner show adequate cure and gel contents in excess of 75%. A graph of

the time-temperature-pressure cycle is attached, see Figure 3.

It is necessary to mention that the edges of the module lay up were

sealed with masking tape first to prevent the EVA polymer from filling the

inside of the vacuum bag. Although the edges were securely taped, entrapped

air appears to diffuse through with no difficulty under evacuation.

Solar Power Corporation has recently used'this technique to prepare

glass-superstrate modules of 11" by 15" dimensions and containing 11 elec-

trically active cells. These modules are fully cured, bubble free, of good

- 14 -
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i'	 appearance and show no cell damage. Additionally the use of recently
1^.

discovered GE4179 primer results in excellent adhesion. Glass/EVA

specimens using this primer have survived three weeks of water immersion

with no signs of delamination.

Springborn Laboratories concentrated on the vacuum bag fabrication of

one-celled modules to be used in accelerated degradation experiments (see

?igure 4) and Solar Power Corporation (under subcontract) constructed most

of the large multi-celled modules (see Figure 5). The modules produced

by this method were of two types: superstrate with soda-lime glass, and

substrate on Super-Dorlux. Both constructions were of good quality, well

fused, crosslinked, and almost bubble-free. One special module was pre-

pared with a cover of Korad X201R acrylic film as an integral part of the

encapsulation process (see Figure 6).

The fabrication steps followed in the vacuum bag process may be sum-

marized as follows:

(1) Assemble module construction materials, including the FEP

release film (10 mil), and seal the edges firmly with masking

tape.

(2) Place the preassembled module between the diaphragm picture

frame and lower support plate.

(3) Evacuate the entire assembly through the side connection for
d'

at least 5 minutes, and, with vacuum still applied.

(4) Place the vacuum bag between the heated plattens of a hydraulic

press or any other heat source capable of making intimate

contact.

(5) Allow to cure for 20 minutes after a temperature of 140 00 has

been reached. Vacuum evacuation is continuous throughout

process.

(6) Cool to room temperature, release vacuum, remove completed

module.

The advantages found with this encapsulation method may also be briefly

summarized, and are as fol••lows:

(a) Rapid fabrication, appx. 1-hour cycle

(b) Free of bubbles and voids

15 -
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(c)	 Ease of materials handling

(d)	 Good cure of the resin

(e)	 Good adhesion (with the primers used to date)

(f)	 No cell shifting

(g)	 Minimal loss of encapsulant during fusion

(h)	 No cell or interconnect damage
tY,

(i)	 Potential for automation
i

The large 11 in. x 15 in. modules have successfully passed the JPL

thermal cycle test, JPL document LSA 5101-65.

+'- A brief cost analysis was conducted for both substrate and superstrate

i
modules prepared by this method.	 calculations were realistically based on

actual measurement of the thickness of the pottant layer and determination

of the amount of resin used. 	 For a properly prepared module, the total

encapsulant profile was found to be in the order of 0.045 inch. 	 This

figure excludes the thickness of the substrate or superstrate.

After fusion, the module surface is quite flat and it is assumed that

the pottant has become evenly distributed throughout the module. 	 Of the

measured 0.045 in. profile, 0.015 layers of pottant reside above and below

the cell surface with an additional 0.015 in. layer filling the space

between the cells. 	 Subtracting the volume of the cells (at a 708 packing

factor) from the encapsulant layer, the volume of pottant used was cal-

culated to be 5 cubic inches per square foot of module surface. 	 The cost

of the pottant may be found by multiplying this figure by the cost per unit

volume of the resin.	 The cost of the EVA compound was determined by simply

adding the costs of the individual components in the formulation times

their respective weight fractions.	 This was calculated to be $0.7408 per

lb.	 ($0.0267 per cu, in.) for the clear compound and $0.6985 per lb. 	 ($0.0252

per cu. in.) for the pigmented compound.

i'-	 An estimation of the total encapsulation cost can be calculated by ad-

ding in the costs of the other construction elements, as follows in Table 2.
i

A

- 16 -

J..



it
^i r

TABLE 2

i

a

Estimated Module Encapsulation Costs

7 ,

$/Ft2

Material Superstrate Substrate

EVA, clear 0.0889 0.0889 3

EVA, pigmented 0.0419 0.0419

Primer, SS-4179 (1) 0.0066 0.0066

Soda-lime Glass (90 mil) 0.26 ---

Hardboard, Super-dorlux (1/8 in.) --- 0.10

Total Encapsulation $0.397/ft2 $0.237/ft2

(1)	 Primer applied at a weight of 0.5 gram (0.001 lb.) per ft2.

23

i.,	

T



n .

y^

ADHESIVES/PRIMERS

.	 Adhesives and primers or some other mechanism must be responsible for

the high reliability bonding of the assembly components to each other in

order to insure the structural integrity and long life of the module. Few

combinations of materials have been evaluated so far because the bond

strengths obtained have been satisfactory. An advantage is presented by

the use of ethylene /vinyl acetate copolymers because these materials are

adhesives to begin with and are widely used in industry for the formulation

of hot melt adhesives.

In substrate module constructions, the EVA to Super-Dorlux bond is

found to be satisfactory ( 7.4 lbs/in., 1.3 Kg/cm) after molding and curing

without the use of any adhesion promoters. when these two components are

forcibly separated, the failure occurs principally within the immediate

surface of the hardboard and the EVA pulls away with a thin covering of

Dorlux attached to it. Soaking in hot (60°C) toluene for several hours

followed by forced separation leaves a layer of strongly adhering EVA on

the surface of the hardboard that appears to be chemically bonded.

Adhesion to glass does not occur as readily, however. EVA molded

and cured directly over glass has essentially no adhesion (0.3 lbs /in.) and

consequently a primer or adhesive is required. Three candidates were se-

r ,	lected from the class of silanes, as these materials are especially for-

mulated as coupling agents for glass surfaces. only one has been success-

ful to date, GE SS -4179, and has been used for all module fabrication in-

volving the bonding of EVA to glass. In use, this primer is swabbed onto

the surface of glass that has been precleaned with detergent, acetone and

rinsed in distilled water. The coating weight (wet) is approximately 0.5

grams or .001 lbs per square foot. After an air dry period of half an hour

at ambient temperature the glass is ready for lamination. Average peel

strengths have not been fully investigated yet but are estimated to be in

excess of 10 lbs /in. and the polymer pulls away from the glass with great

difficulty leaving a film on the surface. Experimental modules prepared

in this manner have withstood three weeks of water immersion with no

evidence of delamination or reduction in bond strength.

i
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I'ii Due to the immediate success in finding a high quality primer, tech-

nical efforts were directed towards other phases of this program. It is

realized, however, that a more critical evaluati^n of primers, lamination

techniques and bond permanence is required to establish predictable per-

formance.

t
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OUTER COVERS

fi

	

	
Soft elastomeric materials must be used for pottants in order to pre-

vent cracking of the silicon cells due to stresses resulting from thermal

expansion differences. Soft materials are prone to soiling and dust re-

tention, however, which reduces the light transmission and impairs the
is	 module efficiency. Hard coatings are therefore desirable to avoid this

H problem. Additionally, the function of UV screening anticipated for the

outer cover in order to reduce the effects of photolytic degradation and

provide the maximum useful lifetime for the pottant and other components.

i,	 The properties of an idealized outer cover may be stated as follows:

(1) High optical transparency (if used on the sunlit side).

(2) Compatible refractive index properties to the pottant that

favor optical coupling (if used on the sunlit side).

(3) Chemical compatibility with either the pottant or a suitable

primer or adhesive to insure a high reliability bond that will

not delaminate during the useful lifetime of the module.

(4) Inherent weatherability.

(5) Ultraviolet light screening properties to protect the under-

lying pottant ( if used on the sunlit side).

(6) Anti-reflective properties to increase the total light trans-

mission (if used on the sunlit side).

(7) Resistance to thermal cycling without melting, cracking, or

deforming.

(8) Surface hardness sufficient to retard soiling and to withstand

cleaning processes in routine maintenance.

(9) Abrasion resistance to prevent loss of material or e-fficient

haze to impair the transmission characteristics.

The outer cover of current use and interest is Korad X201 -R, supplied

by Xcel Corporation, Newark, New Jersey. This product is an acrylic film,

available only in a 3 . 0-mil thickness and not yet commercial; however, com-

mercial development is currently under way. This copolymer film has the

following properties:

Tensile strength, psi	 4400

Yield strength, psi	 4200

- 20 -
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Elongation,	 130

Light transmission,	 92

Haze, $	 1.3

Gloss at 600	92

Glass transision (Tg)	 880C

In the recent module fabrication experiments, 201-R was incorporated

into the encapsulation package prior to vacuum-bag fusion and cure. The

film was placed as a cover over the top piece of EVA in the substrate con-

struction, based on Super-Dorlux. After vacuum-bag lamination the film was

found to be physically unaffected, formed a smooth transparent coating over

the EVA, and was strongly bonded to the surface. A miniature module was

immersed in water for a one-week period. No evidence of delamination of

the Korad film could be noticed.

No primers or adhesives were used with the film in the lamination

process. The bonding is thought to be a result of the cure mechanism of

the EVA. Free radicals generated by the decomposition of the peroxide

cause the crosslinking of the EVA by abstracting a hydrogen atom from

the polymer chain and then permitting the polymer macroradicals to re-

combine, thereby forming the crosslink. This is also a known effect in

polymers of acrylates, which are probably a component of the Korad film.

`

	

	 It is suspected that the film is chemically crosslinked to the EVA

surface in the fusion/cure process and requires no further adhesive aid.

Critical and quantitative studies of adhesion and permanence will follow.

The cost of the 203.-R film is expected to be in the order of $0.05 per

square foot.

An additional possibility for this film is that of chemical modi-

fication of the surface. Saponification of the surface with dilute alkali

may be used to regenerate carboxylic acid functionalities which could then

be ion exchanged with an ion such as aluminum. There may then result sur-

faces with improved properties such as increased abrasion resistance, rain

and humidity resistance, and more closely matched refractive index charac-

0:	 teristics.
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1	 4. FUTURE WORK

t	 Plans for the following quarter will include the following technical

activities:

(1) Reformulation of EVA to lower the cure temperature and time

and if possible, remove the volatile components that may con-

tribute to gassing and bubble formation. The properties to

	

e	 be improved may include:

(a) Lower temperature cure
i

(b) Faster cure time

(c) Fewer ingredients, if possible

(d) Lower content of volatile components to reduce the

possibility of bubbling

'a	 (e) Optimization of the internally compounded W

stabilization system

(f) The possible incorporation of compounds such as silanes

to improve the adhesion to substrate or superstrate

i
surfaces

(2) Evaluate a new product being released by DuPont called Elvaloy

F

	

	 837 and 838. This compound is a high molecular weight modified

ethylene/vinyl acetate in powder form that mry permit other

4C

	

	 methods of encapsulation such as fluid bed coating to become

possible.

(3)

	

	 Construction of 11 inch by 15 inch modules containing 11 cells

of 90 mm diameter. These modules will be based on the best EVA

".

	

	 formulation and encapsulation technique to date and will be

laminated to a UV screening acrylic outer cover. These modules

will undergo performance evaluation at JPL.

(4) Adhesive studies will be emphasized in the following quarter and

the factors determining the success of bonding EVA to other ma-

	

'	 terials such as glass, wood and metals will be determined.

j	 (5)	 Experiments with the surface modification of acrylic outer cover

materials will be conducted to improve surface hardness, abrasion

A °	 resistance and resistance to water permeability.
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1 
(6) Preliminary work with other potentially useful potting com-

pounds such as athylone-propylene rubber, acrylic rubber and

PVC plastisol will be started.

(7)	 Artificial accelerated aging experiments with the RS-4 sun-

lamp and weather Ometer will be continued to assess the effects

of UV degradation on a variety of materials including:

Uncrosslinked (unstabilized) EVA

Crosslinked, Unstabilized EVA

Crosslinked, Stabilized EVA

Crosslinked, Stabilized EVA with Acrylic/UV

stabilized Coating

Crosslinked, Stabilized EVA with Glass Cover

Unstabilized Polyethylene Control

Zinc Oxide Stabilized Polyethylene Control

A new window material, H-270 glass, will be e:,posed and evaluated

for solarization effects and general suitability for use in the carbon

are Weather-Ometer. This glass has been supplied by JPL and exhibits a

sharp wavelength cut-off at 290 nanometers. Its purpose is to replace

conventional Corer: filters that transmit light below 290 ran.

- 23 -
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Figure  1

S 7

EVA EXTRUSION OPERATION

Nartiq 2-1/2" Extruder

Two-Stag* Screw - 24-Inch Die
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Figure 2
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Figure 3
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Figure 4

t

ONE-CELLED MODULE FABRICATION
(SPRINGBORN LABORATORIES)
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VACUUM BAG ASSEMBLY
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Figure 5

VACUUM BAG EQUIPMENT

SOLAR POWER CORPORATION

VACUUM BAG AND MODULE
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Figure 6

MINIMODULE

GLASS SUPERSTRATE DESIGN
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