
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~ 111I1I1~1I111111111111111111
3 1176 00156 0011

NASA Technical Memorandum 79111

LEWIS HYBRID COMPUTING SYSTEM -

USERS MANUAL

NASA-TM-79111 19790012581

William M. Bruton and David S Cwynar

Lewis Research Center

Cleveland, OhlO

April 1979

L

111
NF00489

https://ntrs.nasa.gov/search.jsp?R=19790012581 2020-03-21T23:12:03+00:00Z

1 Report No I 2 Government AccesSion No 3 RecIpient 5 Catalog No

NASA TM-79111

4 Title and Subtitle 5 Report Date

LEWIS HYBRID COMPUTING SYSTEM - USERS MANUAL Aprll1979
6 Performmq Organization Code

~-
7 Author(sl B Performing Organization Report No

WIlham M Bruton and DaVld S Cwynar E-9938

10 Work Unit No

9 Pt'rform!ng Organ11atlon Name and Address

Nahonal AeronautIcs and Space Admmistrabon ~. 11 Contract or Grant No
LeWIS Research Center
Cleveland, OhlO 44135

13 Type of Report and Period Covered
I---12 Sponso"nq Agency Name and Address Techmcal Memorandum

NatIonal Aeronautics and Space AdmmlstratIOn
14 Sponsoring Agency Code

Washmgton, D C 20546

15 Su pplementary Notes

16 Abstract

The LeWIS Research Center's Hybrid SImulatIOn Lab contams a collectIOn of analog, dIgItal,

and hybrid (combmed analog and dIgltal) computlllg eqUlpment sUltable for the dynamlc

slmulatIon and analysls of complex systems Thls report lS llltended as a gUlde to users of

these computmg systems The report deSCribes the avallable equlpment and outlllles pro-

cedures for lts use PartIcular attentIon lS given to the operatIon of the PACER 100 dlgItal

processor System software to accomplIsh the usual dlgltal tasks such as compIlIng, edltlllg,

etc and LeWIs-developed specIal purpose software are descrlbed

17 Kpy Words (Suggestpd by Author/51 I 1 B DIStribution Statement

Hybrid computer; SlmulatIon; Operatlllg UnclasslfIed - unlImlted

system; Software, Processor; Function STAR Category 60

generatIon, Data processlllg; Interrupts

- - -- ------- ----- -- ---
lCJ (,'fIHny (1.\\" (ofthISfeporl)

1

20 Security Class,f (of thIS l>dgel 121 No of Pages 122 Price'

UnClaSSIfIed UnclasslfIed
-

, For sale by the National Technlcallniormatlon Sefvlce Springfield Virginia 22161

COi~TBNTS

INTRODUCTION.............. 1
PACER HYBRID COl1PUTI~G SySTEM................. ••••• 2

l?ACER 100 DIGITAL SYSTE:1 ~...... 2
680-681 A~ALOG SYSTE:1S ••••• _......... •••• •••••••• 3
693 INTERFACE SYSTEM •• ~ •••••••••••••••••••••••••• 5
CENTRAL TRUNKING SYSTEM •••••••••••••• _........... 6

How To Use The Trunklng System ••••••••••••••••• 10

PACER USER'S GUIDE •• · 15
MOVING HEAD DISK •• _ ••••••••••••••••••••••• _ •••••• 15
OPERArIN~ SYSTE~ 16
FILE TyPES ... 17
DEVICE NUMBERS.. 18
SYSTEM STARTUP.. 19
S Y S T E £1 S:I U T DOW N.. 20
r'lONITOR ENTRy ... 21
MONITOR COMMANDS_.~ - 22
CONTROL OPTION PROCESSOR (.COP)_ •••••••••••••••• - 23

.C02 standard Optl0ns •••••••••••••••••••••••••• 23
.. COP Cornman ds... • 24

MONITOR AND .COP SYSTEM RESPONSES •••••••••••••••• 26
INTERACTIVE UTILITY ?ROGRAr1 (MIU) •• _.............. 27

Listing Files.. 28
User Identi£lcatioll of FlIes ••••••••••••••••••• 30
Return to r10NITOR............................... 31

OEDIPUS DEBUG PROGRAM (OED) •••••••• ~.............. 32
HYBRID DEBUG PROGRAM (HYDBG) •••••••••••••• _...... 33
OTHER EAI PROGI:AMS ••••••••••• _ ••••••••••••••••••• 34
COMMA~ D SU MMARY •• _.... • • • •• • • • • ... •• • • • • • • •• ••• ... • •• 35
LEWIS FACILITY SOFT~ARE ••••••••••• oO'.''''''.''.-'' 36

B.1Vdriate-Function Routlne (11A.!?,UAPL) •••••••••• 36
Data Transfer from PActR to IB~ 360
(SFDD3, FDDC, FDDR) _.......................... 45
IBM 029 Card Punch ConverSl0n for
PACER (CV29PT) _ 51
Interactive Data Collection & Dlsplay {INFOE.~'1}. 53

SUBROUTINES INFORl1, SAAPLE, DATAO, CLPSMP •••••••• 55
Interrupt Ennronmen t for INFORN (EXEC1}oO'."'" 64
Core Image Load of I:~FORM (OPSYS 1) • ••••••• ••••• 85

REFERENCES _.,. ••• •• •• • •••• 88

~
/V'79-2t>7SZ l

00
M
m
m
I
~

The LeW1S Research Center's HyLr1d Sl~uldt10n LaD is located
1n the 8X6 swr Research and Coctrol BU1ldlny. The Slmulatlon Lab
cOlltalns a collectlon of andlot], dlg1tal, and hybr1d (comolned
analog and dlgital) computing equ.lpment sU1tdllle for t.he dynamic
simulation and analysis of complex systems. The prlnclple use of
this equlpment lS for the simulat10n of the steady-stdle dlJd
trans1ent performance of alrbreathlng propulslon systeA~ and
their components. Because of the computlng power avallaole,
slmulat10ns can be constructed in great detdll anj can frequently
run in real-time. Th1S allows the slmulatlons to De used to
develop, evaluate, and check out control modes and to predlct
propulsion system performance and stabl.llty III conjuctlon with
maJor experimental programs. simUlation results can
sign1f1cantly affect the detalls of experlmental prograrr.s, o::tel.
reduclng the required amount of testlng.

There are two hybrid computlng systems wlthln the Slffiulatlon
Lab. Each hybrid =omputlng system conslsts o~ a dl.gitdl
processor, two analog processors, and d comnunlCdt.lons lntcrEace
for control of and data exchange oetweec the dlgltal dud analog
processors. The Simulatlon Lab also contalcs a centrdl trunking
system, WhlCh allows commun1cation between the two comput11lg
systel'ls.

Th1S report is 1ntended as a gUlde to users of thpse
simulat10n Ldb faclilties, supplemectlng the numerous detaIled
manuals and operatIng l.nstruct10ns that are aVdllable to the
users (references 1-4). While thlS report does LiescrlDC both the
analog and d1gital ~Iocessors, it pr1mdrlly deals wlth the use of
the PACER 100 d1g1tal processor. ThlS l.S because the PACEr 100
1S a relat1vely new add1t1on to the S1!aulatioll LdO alia] l .. as
felt that a general, Introduct.)ry gUlue to lts operatIon WdS

needed. The report covers the structu["e of the PACER 100 systel"
and describes the supporting software that l.S dvailavle. Th1S
includes system software to accom~llsh the usual d~gltdl tasks of
source creat10n, editlng, complling, loadlng, and execut1ng.
Also d1scussed lS software develo~ed at LeW1S to a1d users of the
system. ThlS lLcludes fUDCtlOC generatlon routlnes and ddta
collection and dlsplay programs.

A large part of this report 1S devoted to descr1blng the
capabllit1es of INFORM, which is d softwdre pdcka1e developed for
the PACER 100. INFORM cac prov1de the user wlth the =apao111tles
for l.nteractlve data collection alld display. Th~s rer:o["t
out11nes procedures for organ1ziny user's proJrdffis for operdtlon
in a tlme-shared interrupt eIlVl.rOnmEnt. An eX1stlng progrdm
called EXEC1, WhlCh allows the user to pxecut~ three different
programs at three dlffeLent prlorlty levels, ~3 uescrlbed. One
of these programs may be INFOR~ and 1t ~ay be operdted as rt

background task, w1thout 1nterrupt1ng Ilormal progran cxecutlon,
to provl.de 1n te rac t1 ve da ta collect laC ald3. di3 play caparall t 1e5.
The use of EXEC1 and INFORct are descr1bed 10 ietail l~ reference
5.

1

There are two PACER 600 hybrid comput~ng systems,
manufactured by Electron~cs Assoc~ates, Inc. (EAI), in the LeRC
Hybr~d S~mulat~on Lab. Each system cons1sts of a PACER 100
d~gital processor, two PACER 681 (680) parallel analog
processors, and a PACER 693 communications interface for control
and data exchange between the dig~tal and analog processors.

The d~g~tal processors are 32K, 16 b1t computers.
Per~pherals ava~lable for each system are a dual disk system, a
CRT term1nal as a control console w~th a hard cop~er, a l~ne
pr~nter, a card reader, and a paper tape reader/punch wh~ch 15
used pr1marily as a backup system for the disk.

The following sections descr~be the available equipment in
the digital, analog an] interface systems. Also descr~bed ~s the
central trunking system wh~ch allows communicat~on between the
two hybr1d comput1ng systems. References 1-4 describe the
d~g~tal, analog, and interface systems in deta~l.

PACER 100 DIGITAL SYSTEM

Total Memory 32768 words at 16 bits/word
Cycle Time 1.0 M~croseconds
Mov~ng Head D~sk Two platters for 2.2 m~ll~on words total
tard,Reader 300 Cards per m~nute
Line Printer 165 Characters per second
H~gh Speed Paper Tape Reader 300 Characters per second
H1gh Speed paper'Tape Punch 120 Characters per second
Tektron~x 4010 CRT ter~~nal
Hard Cop1er for Tektronix 4010 Crt term~nal

2

680-681 ANALOG SYSTEMS

Cl; N ~)OL ES A1,I3I,I32

Integrdtor-~ummer

Track/store-summer
Zero 11mlt-~ummer
SJ-INV (interfdc(?)
S.J-INV (FJ..xed DFG)
QSM-Inverter
QSM-HG amplifl.er
VDFG-Inverter

Total ampll.flers

S5 Pots (2-terrnl.nal)
S5 Pots (3-terml.nal)
H5 Pots (2-terminal
Dlg. Coef. Attenuators (DCA's)

Total attenuators

Mul tipliers
DCFG's (Digital)
V DFG' s (Analog)
Fixed DFG's (Analog)
Variable Limlter Networks

comparators
Functl.on Relays
D/A switches
General-purpose regl.sters
"AND" gates
BCD counters
~onostdble timers
Logic dl.fferentiators

30
12
24
24

I'
'.1

60
30

0

180

64
16
12
40

132

30
8
G
o

12

24
24
24

6
3(,

3
6
()

CONSOLI:

30
1...;
1J.
l4

')

"-

4 t~
24

6

158

<.J6
24
12
o

132

24
()

L

12

24
24
24

(,

36
J
6
U

A2

The following table should prove useful to ldentify the
component complement on each of the analog consoles.
It should dlso prove lnvaluable for producl11g SlrUUldtloIlS WhlCh
can run on any console. Programmlng l11 th1s manner
wlll lnsure that you wl.ll be able to rUL whGn dny console 1S
avalldcle l.nstead of havlng to wa~t for a s~eciflc console.

cotJ SatE NUllBER
A 1 A2 81 I32

!!l£&QATQli~
~g£YQ._~QLgQt§

p~Q - P39 X X X x
240 - P79 X

P80 P119 X X X X

IQ~£_Q~g££~nl_lllY££l~llg_Qf!~§
l?40 - P79

lig!lQ§.et_RQ1§
Q - 2,4,7,9,12,14,17,19,22,24,27,29

AMl:11Il~.B'§
~~~illg£§LInlggralQ£§ 

A - 0,2,5,7,10,12,15,17,20,22,25,27 
A - 30,35,40,45,50,55,60,65,70,75 
A - 80,85,90,95,100,105,110,115 

InY~.1er§ 
A - 4,9,14,19,24,29,34,39,44,49 
A - 54,59,64,69,74,79,84,89,94,99 
A - 1 04 , 109 , 11 4 , 11 9 

11~11~Ql~g£§ 
A - 3,8,13,18,23,28,33,38,43,48 
A - 53,58,63,68,73,78,83,88 
A - 93,98,103,108,113,118 
A - 92,97,102,107,112,117 

IL~~Qlliillg£§LLim~lg£§. 
A - 1,11,21,31,41,51,61,71,81,91,101,111 

Zg££_1!~it ~ummg£§ 
A - 6,16,26,36,46,56,66,76,86,96,106,116 
A - 32,37,42,47,52,57,62,67,72,77,82,87 

FUli£llQ~_~~M~B!IOR~ 
DCIg~§ 

FOO - F07 
llI~§_1not_£g£Q~~gn~gQ_for_Q§gL 

A - 32,37,42,47,52,57 
~i!lgL£Q§6n~[~£liQll_~g!lg£at££§ 

1\62, A92 

bQfilf 

x x x 

x x x x 

X X X X 
X X X X 
X X X X 

X X X X 
X X X X 
X X X X 

X X X X 
X X X X 
X X X X 
X X X 

X X X X 

X X X X 
X X X 

X X X 

X 

X 

Log~c is as shown on patchboard for all patchboards except 
for: SCOPE, RECORDER, and DIS Drown areas; 
ERS-1, ERS-2, Yl, Y2, Y3, Y4, and D/A transfer control. 
Also the analog input port to the CRT terminals ~s 
ava~lable on consoles A1 and Bl only. 

4 

.. 



693 INTERFACL SYS1EM 

Analog-to-digital cOllver tees (/\DC I,;) 
Dlgltal-to-analog cocverters (DAC's) 
control I1nes on each analog console 
Sense llnes on each analory consol~ 
General purpose lntt'rrupb ... per COll~301p 

Interface clock 

SYSTE11 

32 
24 
16 

U 
8 
1 

A SYSTEf'l [3 

4B 
24 
16 
e 
!3 
1 

Note 1.: All ADC's are 14 bltS plus sign. ADC's do not invert. 

Note 2: All DAC's are 14 Olts plus sign. DAC's do Il0t lIlvert 
and all 24 are multiplying DAC's (DAM's). 

The following table is also lIltended to help in produclng 
slmulatl0ns WhlCh can run on any console. 

AD~~2 
Console A1 - Numbers 0-31 as shown on patchbodrd. 
Console A2 - None. 
Console B1 - Numbers 0-31 as shown on Fatchbodrd. 
Console B2 - Numbers 32-47 shown on patchbodrd as numbers 

0-15. 

DA~~2LQ!!1~§ 
Console Al - JAM's #0-23 havt-" lnputs/olltPllts dS shown on 

pa tchbodJ:'d. 
Console A2 - None 
C0nsole B1 - DAI'l's #0 - 23 have lnputs/outputs as shown on 

patchboard. 
Console B2 - NOLe 

5 



CENTRAL TRUNKING SYSTEM 

The new trunking system for the hybr1d facility should offer 
numerous advantages to the user. The trunklng caDles have been 
upgraded to a three W1re 22 gauge system. The increased gauge 
S1ze over the old system should reduce reslstlve losses dnd the 
additlon of the third Wlre should lncrease system stablllty 
through reduced cable inductance and improve problem signal to 
nOlse ratio's because of lmproved shlelding. To take full 
advantage of these benefits, however, the dlrectlon of signal 
flow over your trunks must proceed in the dlrectlon we have 
assigned to each trunk. That is, there are in~ut trunks and 
output trunks. Trunks are grouped by tens and placed ln a cable. 
All trunks wlthln the cable are treated identlcally and the cable 
becomes the fundamental patching unit, each trunk ln the cable 
be1ng patched from the same source to the same destinatlon. 

A slgnal which orlglnates on console number one (from an 
ampllfler output) and 1S received by console number two should be 
patched through an output cable on console number one to the 
trunklng station then to an lnput cable for console number two. 

The trunking station conslsts of two open back cablnets 
where the trunk cables containlng ten slgnals from each console 
termlnate 1n h1ghly re11aole, rapld dlsconnect, multl-p1n 
connectors. Patch1ng 1S accompllshed by interconnecting these 
cdbles to one another through short "patch" cables which have 
appropriate matlng conectors on each end. When trunk cables from 
1ndiv 1dual consoles are connected together Vla these "pa tch" 
caDles, the console's trunks are vlrtually hard-wired together. 
The reduced connection pOlnts over a conventlonal patch board 
system increases the reliab111ty of connection three fold. 

The patchlng of the ten-trunk cables through the terminat1ng 
connectors makes erroneous cable interconnectlon h1ghly unljkely. 
The connectors themselves make it impossible to 1nadvertenly 
short a s1gnal by reverse patching (h1gh to low or V1ce versa) as 
frequently occurs on conventional patchboads employing a three 
W1re system because of the ease of twisting a three W1re patch 
cord. 

The impact of such a system to the user 1S that he must now 
group all his s1gnals in blocks of ten, with all slgnals 
or1g1nat1ng, for example, on console number one and terminat1ng 
on console number two being placed in the same group. Likew1se 
s1gnals originatlng on console number two and termlnating on 
console number one should be grouped and placed in a different 
block of ten trunks. In a similar fashion, slgnals WhlCh 
or1g1nate on console number one and go to two different consoles, 
for example, console number two and the SEL 810B should be 
grouped and placed in a different block of ten. The latter b10ck 
will require Spllttlng the output cable from console number one 
so that it may go to two input cables, namely one to console 
number two and one to the SEL 810B. This can be accomplished by 
using one of the six tie points available on the central trunking 
sta t10n. 

6 



Slnce most problems! have d su~plu~ of trlnks, wasting trunks 
by ha vlng unfllled blocks of ten should be 110 probleiil. L.1rger 
simulatlons, ho.ever, may regu1.re :nore careful ~lannlllg. tJr: 
those sltuatlons where lt lS l~posslble to udke dll 
interconnections w1thout spllttlng a gr:oup of ten, d convent1onal 
AMP patch panel with 12 ten-trunk cables gOIng to the central 
trunking station is av~ilable for cross Pdtching between cables. 

A list showing the avallable trunks at the central trunkloy 
statlon and thelr arrangement 1.n cabl0~ lS rrovlded at the end of 
thls section. Not1ce that the 11~t shows all 1nputs and outputs 
avallable for trunking In the facll1ty. ~ote also that there 1S 
no longer aey hard-w1red trunks het~€en consoles. Also note that 
the consoles are numbered one throllgh fOllr lnstead of by thelr 
usual designatlons A1, A2, 31, and 62. Th1S 1S becalse mo~t 
problems are no longer tied to a glven console but can run on 
either system. Hence, when yOJ SlgC up for a console, the 
availaDle consoles wlll de~lne Wh1Cl l5 nu~ber one, whlch lS 
number two, etc. 

A user conveys hlS patchleg conflguratlon to the hybr~d 
facility technicians (who will do the patching) V1d a trunking 
setup sheet or block d1agram. The user should flll out one or 
the other for his problem. The setup sheet or block ::hagraDI 
should specify the user's patch panel number(s). Thls 
informatlon, together with the computer schedule vOdrd, WhlCh 
asslgns the patch panel to a pdrtlcular console, allow~ for the 
proper patchlng of facil~ty trunks by the techn~cidns. 

7 



J.O. ______ _ 

OA7E ______ _ 

Sltee t '(15 2 

c.CJtJ ~CJL. " E 5 1-'( T~'{8 II.'I-z. ra I.(S 1t,3 

(It I, 11~, GI,62.) 

IN Pllf5 " IJ r PlJr.s 'iVpvH '111 PIJ'(j IAlp/Jr~ #1) r '''T!J 

76-79 0-9 l5'~ "I c-' j~. 3-' ,,'!j 

8 "-B9 I() -/9 ~ 5'"'33 16 -/"1 J.jo-l./G Lt? -/"J 

9,,-9' ~"'29 t.(?,~1] 

""-/D9 j,,-j~ 

11# -Jl9 II,,·", 
Av~ 0-9 5,,·S' 

""." , , 

IAulIt 1~"17 I 
; 

,,~(. "I 

(lEe. II~ I 

! 

SEI. ! '" IJ 
ptf.f~ ,..,,11 AI"1I'S ""AGo rlltPlf 

" .. 
1~'lIn 'tJT flvrs 1I,.'c.r,."., I Wf'vrs DcJrpvrJ IAlpcJrS "",r,..,rJ 

i \lfl' t r"( , 
o .~ ! "., " . ., ",0. I C'' f)-I:) lI .. j I 

",.. ... 1 rV 
IC)-I, 

I ~ ." I • • ,$' 1(1 -,' I~"/ J , 
I" 'I' '" "/3 

"~-1' 1," .. ~ 
, i 

2"'1" ;:() -.<- , 

,D-), 't..,-j1 'f:--" 
, 

3D ." 

""J - ":J 1.","9 I "~''I' ""''f~ 
: I 

S~ .-<'J _1',.{:) !'v' ~., J', -5' ' I . 

r-------- ----------- ---------- -
~---------------------~~----
'------ --_.---_._-----:...--------------! 
i ------------------------------

--- - .. _------------
, --------- -------------- - -. - ----- ----
---_._----------



J.c. _____ _ 
OAiE ______ _ 

S It t!. t. t:: z --5 Z. 

(JftoJ5H 
A,-t P 'A6c. • .$ eA6&.ES CA6U5 C,f6L1J 

AD. '(v ,(t D~ S , "reH TO T# TD 11 
(l,ulllfj PAl'ln 1Mr P5'-

t .. · ) PSI. 
" ~/I 

C.44"~ .. C"") TrJi~"'t 1;2 '1-'1 CA6~' "., 
".~ 

FACILITY 

(.~O) 

/AI ",,'(, IUN1'" *1 ~"c.E «, () '9 ~'9 "., " "9 
C1.~ 

IL, 
" -2 10 -/, 10"/9 ,o'liJ It} "/9 

1It~ " IlJ 1.~ ·.z9 ~'''29 2. ~ • .zl) Z"'2' 

()UTPvrj " 4l'l ~" -.39 ~# ·'9 '3""3' '#'31) 

0" I C."AI~" E • % 
/I oJ~ 1(6 .J.j~ 0/1'1/7 'I" ''1,) o/tJ -'17 

JJ, fI t(, 5"'" 
-2. 1/ ~, 'D-69 

/I Itl/ 7t1 .. JiJ 

I tJN~"/.1 .. ~ II 'Cj 8"~~ 

I It, , Illf) ~~-" 
"2, " "/l 

I " t,z 
I{. .... .s..",. 1'1 

6, 
II;. 

,Sf!- $111!J 

It, 

IJ.~ 

! S.,~f"'" */1 

""/ 

N ... S ... • C _ 80 19 ( 10. 2 ... 5 I ) 

9 



How To Use The Trunklng System 

To help elimlnate confusion which mlght occur when using the 
system for the first time, we offer the followlng organlzational 
procedure for develof1n9 your trunking system. Flrst, list all 
signals WhlCh need to be trunked. Second, list next to each 
slgnal its source and all ltS ultlmate destinatl0ns. If all 
signals which wll1 reach a destination must go through a commpn 
pOlnt for pre-processlng (such as an attenuatl0n ampllfler before 
gOlng to the tape recorder) only the lnitlal destlnatl0n need by 
listed (ie. the attenuator ampllfiers), as the remalnlng 
destlnatlons will automatlcally follow. Third, group the signals 
WhlCh follow a common source-to-destlnation path. At this point 
drawlng a diagram slmllar to flgure 1 showlng the number of 
trunks in each group wll1 be helpful. 

You are now ready to asslgn the signals to the trunks. Use 
a new cable of ten trunks for each new group. A good method for 
keeplng track of which slgnals are on which trunks is to 
construct a table such as the one provlded at the end of thlS 
section. Maklng assignments on such a table wlll further ease 
cable layout, as the table clearly shows how signals can be 
grouped lnto cables anj WhlCh cables have unused trunks available 
for further expansl0n. Furthermore, this table, coupled with 
your dlagram, will provide good documentatlon of your system for 
traclng slgnals. 

If you run out of cables at either a source or destlnatlon, 
you wlll have to split a cable which has some unused trunks. 
ThlS was the case in flgure 1 where the AMP crosspatch panel was 
used for Splltting a cable from PSL. If you avold asslgnlng 
slgnals to such SpIlt cables until after all groups of ten have 
been dssigned, lt will become obvious which signals you want to 
put on the split cable. Becase of potentlal conflicts wlth other 
users dnd the additl0nal patching reguired, we dlscourage use of 
the amp crosspatch panel unless absolutely necessary. Rather we 
encourage use of tle points to route a source to two dlfferent 
destlnatlons. ThlS may result ln sending slgnals to places where 
they dren't needed, but this lS of no concern as long as there 
are sufficient trunks at the destination to handle the unused 
slgnals. In the example of figure 1, the crosspatch panel was 
requlred because both the PSL 1 & 2 cables and the SEL Utllit¥ 
cables were fully used. In general, thls should be a rare 
sltuatlon. We must also mention that no major catastrophy will 
occur if a trunk within a cable is used backwards, that is using 
an output cable for an input. The practice should be avoided, 
however, as differentlal ampllfers may pick up millivolt offsets. 

Lastly, if you want the facllity technlclans to patch your 
problem for you when you sign up for a console, you will have to 
translate the cable assignments to a ~runk setup sheet or block 
dlagram as shown ln figure 1. 

10 



J.O. ____ _ 

DA:E _____ _ 

e""'MPL.e O~ "'~\lNI,{ "~S\'-N,¥EJ(f".s fo~ fl\Ul.\'\· (QNSOU: P~ ENG.~ 1 o~ z... 

St1/J~c.c I DfjTJNATJw 
--""' 

~~ 

PSI.. SEt. .sEI.. I'f"''' 
616N'At.. "'I.. rAP£ 

< 

I . 5r::J", C () 0 

, 
PL.A I 1 I 
~L ~ ~ t. 

/111'1 .3 J 3 
c., III/ 'f If 1./ 

PI3 .5' ~ ~ 

ri,f " .f-. ,,-
Revv "7 

, 7 
.,.,.~ ~ 

I 
'I ~ J 

-rr~~ 9 I I , :7 
-- -

?rJsc. I /0 
I 

I' /11 i 

pr~~11 /I /I II 

oP:J~c. J~ 12. 12,. 

~1":J.5tf ,~ /"} /} 

Pr'). 1'1 1"- III 
I vfr-fJ 15' /S I 

pr-1.C- I" If, 

AT '7 ,7 

Pft-H ,g /f 

Po 19 " IMt. Co 2D ~'" 
t=A~'" ').1 ~, 

"" ¢..,. b .,. 22 ~2. 

PrS!!~ 2' 'l3 
fAJ-f.IJG U 'If) 2._'1 
-rQ A Cit \)-11 '2.5" 

.Elf.:! V-/~ ~" 
bP/PTIl~ U .. " I ~7 

i "I. raWI U -14 2'0 
FTL1T~/M v",; ~, 

,p~ ':!:,,,,, v .. () r;D 
NASA,C.8019( 10.24.51) 

11 



I . 
J.O. _____ _ 

DA~ _____ _ 

I 
I , 
h 

~~N\M or TSIJ,.a1,( "S~t~MQJT~ foR. M\X..T\-CO.sur p@ceueA1 ENG. s~ 2. o4=- 1... 

So"~ CI! ... 1~1"AlA ! 'r,O..." --
j4oot~" 

pSI.. Sf'- PsL SEI- 1"/1,. t! 
5161141" 

I"" f 'VII ~ II -, I _,j I 

l1t1r~ hA6 u-2, ~:l 

~f FWII' v-, ,~ 

Rc.vlJ ':1.,46 v''! 'JY 
~.hlv FLA6 II -5' 'J£ 
",. fill,.. u ... t- ')f, .'H,r ~,.(, 
141' tlJ,., 

~7 
, 

ILl,." If.11f& u .... 7 , 
fl,floA't v-, "8' 

, 
CI.I1~E 

s .... 8/~tJ 
s~/r A,.., lJ"~ '39 

, 
5ce;.l"" I 0-0 ~D 

IA1 s&.('~ (!j - I IlL I 
A l' ~11"'" 0 .... 2, Lt:J. 

'-'I/V t,M 0-' '13 I 

w':t.~M : 0-'1 , 1{'1 
I fCC.lloJ ,,.., i I i , 

0·5 I i "f ,J-

Df':J5 € I " -" , 
If" I , 

OP:5-r (J-7 I 
'17 

! 

I 
: 

I I 

I , : I 
I 

iP __ 

----- --- -------_._---- - ---' . -_.-
----_._--------

-_._---- -------------- --.--

---~--- -----------
-- - -----------------

----_.------ .- ---------_._--------
------- .-- -- ------_._-

, 

, 

~ 

I ~ 



\. 

.... 
w 

• • 

(70-89) (0-19) 
In (0-19) 

Prestons 
Out (0-19) First In (0-13) Mag 

r--- console tape 

(0-19) In (0-19) 

Crosspatch 
(20-29) Cable #3 20-23 20-23 Cable #1 In (20-29) 

PSL 2~5 
1 & 2 

Cable #2 Utility (10-15) 
SEL 

(30-39) Uti Jity (0-9) 

(40-47) 
~------

Out (0-9) 

Figure 1. - Patching block diagram for a tYPical job requiring splitting of a cable. 



w~th the new trunking system you are no longer restr~cted to 
two Brush reco~ders per console. Normally, however, you w~ll use 
the two ~ecorde~s adjacent to a console as the Brush recorders 
for your problem before expand~ng to more recorders. Hence, 
these recorders w~ll normally be patched as if they were 
hard-w~red. When you run your problem on different consoles, you 
w~ll automatically shift to the Brush recorder adjacent to that 
console without hav~ng to patch anything on tpe central trunking 
system (assuming you used the recorder input holes on the 
console's patch board). If you use more than two recorders or ~f 
you want the four recorders associated w~th a two console problem 
to be patched as three on the f~rst console and one on the 
second, you w~ll have to ~ndicate same on the trunk setup sheet. 
The normal Brush recorder patch~ng ~s permanently shown on these 
sheets. To reguest the removal of a normally patched cable, draw 
a circle around the dot and put an X through the circle on the 
trunk setup sheet. 

If you have a one console problem but need three recorders 
you w~ll have to "steal" one from an available console. Hence, 
you should fill out the setup sheet as if you were us~ng a 
recorder from console number two. Likewise you should "steal" 
the add~t~onal recorder from console number three ~f you have a 
two console problem, etc. Which recorder you actually get each 
day you run will depend on which recorder is ~vailable at the 
time. The aux~liary 10-17 output cable from an analog console is 
~deally su~ted for use in trunking to the th~rd Brush recorder. 

14 



The dual disk system is a two platter system w1th both 
hardware and software protect features. Each platter has a 
hardware protect switch which, when on, prevents any output 
(writing) to that disk. One platter (platter number 1) 1S a 
removable disk cartridge, which conta1ns user-der1ved files, and 
is normally not hardware protected (sw1tch off). The other 
platter (platter number 2) 1S a f1xed dlSk platter, WhlCh 
contains system files, and 1S normally hardware protected (swltch 
on). Software protection is prov1ued by MONITOR commanus to be 
discussed later. 

15 



OPERATING SYSTEM 

Assoc1ated with the disk 1S what 1S known as the Mov1ng Head 
D1Sk Operat1ng System (MHDOS). Th1s software system cons1sts of 
a system loader, ~ONITOR, MONITOR 1nput/output (I/O) routines and 
system programs. 

The d1sk MONITOR is the executlve system routine that 
enables the user to d1rect control of the dlgital processor 
through the CRT term1nal keyboard or the card reader. The MHDOS 
also 1ncludes the Control Opt10n Processor (.COP), a non-resident 
control command processing program- capable of 1nterpret1ng 
control command records to set processor and I/O opt10ns, load 
programs, and execute them as requ1red. 

The system programs consist of language processors, run-time 
library (RTL), debugging aids, diagnostlcs, and various utility 
rout1nes. These programs are ava1lable in two types of format, 
Core Image (CI) and Relocatable ObJect (OB). CI programs can be 
loaded d1rectly into memory by the MONITOR and occupy flxed 
memory locations. The Core Image Generator (CIG) may be used to 
generate a CI version of the relocatable programs wh1ch MONITOR 
can load d1rectly. 

16 



FILE TYPES 

The system programs and user-d£r1ved programs eX1st on d2sk 
as named files. In addition to Core Image (CI) and Relocatable 
Object (OB) f11es, Source (SO) and Data (DA) files may also be 
output to d2Sk by the user. The var10US file types a~e refe~~ed 
to in the software by number. The f1le type numbers are g1ven 1n 
the following table: 

FILE TYPE 

Source (SO) 
Relocatable ObJect (OB) 
Core Image (CI) 
Data (DA) 

FILE TYPE NUMBER 

o 
1 
2 
3 

The file type numb/ers, WhICh must be entered by the user for 
some commands, cannot be 1nterchanged. That 1S, d CI f11e 15 

always type 2. 

17 



DEVICE NUMBERS 

It ~s somet~mes necessary for a user to specify a dev~ce 
number (or a logical unit number in the case of d~sk f~les) when 
enter~ng a command. The follow~ng table lists the peripheral 
dev~ces and the correspond~ng logical un~t number. Wh~le all 
numbers are octal numbers, they are not entered as octal (i~e., 
no apostrophy preceding the nUMber) when using the operat~ng 
system programs. 

DEVICE 

CRT screen 
CRT keyboard 
Paper tape reader 
Paper tape punch 
card reader 
L~ne pr~nter 

LOGICAL UNIT NUMBER 

1 
2 
4 
5 
6 

Disk (logical units) 
20 

21-24 

Wh~le the disk logical unit numbers can sometimes be used 
~nterchangeably, ~t is recommended that users adhere to a 
spec~f~c convent~on. In the following table, the recommended 
d~sk log~cal unit number for each type of file ~s l~sted. 

FILE TYPE 

Core Image (CI) 
Relocatable ObJect (DB) 
Source (SO) 
Data (DA) 

LOGICAL UNIT NUMBER 

18 

21 
22 
23 
24 



, 
I . 

SYSTEM STAf.TtJP 

1. Press the 681 (680) analog "PO\\ER ON" button. The analog 
console will go to Pot Coefflclent mode (PC). 

2. Press the "ENG" button to lnsure that tl:e patch boards are 
properly engaged. 

3. Check the "REF", "MODE", and "DIGITAL COl'lPUT I/O" sla ve 
sWltches located behind logic readout panel. Select the 
proper comblnation. 

4. Press the digital mode control "R". In this mode all Loglc 
elements (s uch as "AND" gates and campa ra tors) operate 
normally. 

5. Select the analog time scale by pressing "StC" and elther "t-l" 
or "F" (":1S" is normally used tor analog Rep-op problems). 
See reference 1 for further explanatlon. 

6. Turn on the PACER di gl tal unit. Be sure t hat "3X EC UTE/RUN" 
and "RESET I/O" and "COMP" have put the d1g1ta 1 lH the "REST" 
mode. I f the c ompu ter is not lI. "R EST", be su re that 
"EXECUTE/RUN" is in the IIDOWN" 1,OS1 tlon and tha t "RESET I/O" 
and "COMP" have been momentarlly depressed. 

7. Turn on the CRT (switch lS under J<eyboa rd) • 
8. Turn on the disk unit. Place It In the "READY" mode by 

depresslng the "RUN" button. About two minutes lS needed to 
get the "READY" ligh t. 

19 



SYSTEM SHUTDOWN 

1. Place the dl.sk l.n the "SAFE" mode by depressl.ng the "SIOP" 
button. wait about 20 seconds for the dl.sk "SAFE" light to 
come on. 

2. Be sure the digital l.S in the "REST" mode. Turn off the disk 
and dl.gital. 

3. Turn off the CRT (and Hard Copier, if on). 
4. Turn off the analog consoles. 

20 



MONITOR f..?-.TRY 

1. P lace the disk in the "READY" mode by depr ess~n g the disk 
"RUN" button. 

2. Release the "EXECUTE/RUN" sw~tch (down posit~on). 
3. Momentar~ly depress the "RESET 1/0" and "CaMP" sw~tches. 
4. Enter '77777 in the P register 
S. Place" E.XECUTE/RUN" in the up posi t~on. 

NOTE: If MONITOR appears to be "bombed", double check that the 
disk is "READY" before referr~ng to page 2-1 ~n reference 
2 for us~ng the Bootstrap Loader to reload MONITOR. 

21 



MONITOR COMMANDS 

In the following table, the more common MONITOR commands, 
w~th examples, are listed and briefly described. Additional 
commands and more detail may be found ~n chapter 2 of reference 
2. 

In the table below, LU refers to the d~sk log~cal un~t 
number; ADR to the start~ng octal address of the program; DEV to 
the per~pheral dev~ce number; X,A,Q,K (in #R command) to the four 
hardware registers which have to be set prior to executing some 
system programs; and T to the file type. All names may cons~st 
of up to six alphanumer~c characters. 

MONITOR COMMAND FUNCTION 
(EXAMPLE) 

#L,NAME,LU Locate and load CI file (named JONES) 
(#L,JONES,21) 

#G,ADR Execute program in core (start~ng at '1000) 
(#G,1000) 

#X,DEV Transfer control to .COP (at keyboard) 
(#X,2) 

#R,X,A,Q,K Set hardware reg~sters (X=0,A=2,Q=1,K=O) 
(#R.,2,1) 

#S,NArlE,LU Secure CI file (named JONES) - software protect 
(#S,JONES,21) 

#U,NAME,LU Unsecure CI f~le (named JONES) - un protect 
(IU,JONES,21) 

#P,NAME,LU Posit~on to a source f~le (named SMITH) 
(#P,SMITH,23) 

#N,NAME,LU,T Create a new source f~le (named SUB) 
(#N,SUB,23,0) 

#D,ADR1,ADR2,LU Dump memory (between 0 and 23141) ~n CI format 
(#D,0,23141,21) 

#C,LU 
(#C,23) 

#D,DEV 
(#1,6) 

Close the open f~le (source) 

Change input device (to card reader) 

22 



CONTROL OPTION PROCESSOR (.COP) 

W~th the above MONITOR commands, the user can load and 
execute a CI file. However, if he des~res to create a new 
program, considerable effort can be avoided by using the Control 
Option Processor (.COP) for compil~ng (or assembl~ng) and form~ng 
CI files. 

.COP Standard Options 

Source input dev~ce for Compiler or Assembler - Card Reader 
Source listing device for Comp~ler or Assembler - L~Ile Pr~nter 
Object output device for Complier or Assembler - D~sk LU 22 
Object input device for Core Image Generator (CI~)- Disk LU 22 
Core image output dev~ce for CIG - D~sk LU 21 

Source statement listing 
Map listing 
Error message listing 
No symbolic listing 
Write object output on d~sk 
In-line assembly processor act~ve 
Card reader driver active 
Paper tape input drlver actlve 
Format error scanner active 
No ~n-line assembly coding for ~ntegers and scaled fract~ons 
No in-line assembly coding for float~ng po~nt processor 

No pause between passes 
Scratch file on disk LU 24 

Zone Zero base starts at '00000 
Top of common is '60000 
Program execution address is '1000 
Memory map listing included (set SSw A to suppress) 

23 



.COP Commands 

Exceptl0ns to the above .COP optlons can be made by the user 
for a speclfic Job by lssulng .COP control commands. In the 
followlng table the more common .COP control commands, wlth 
examples, are llsted and brlefly described. Additional commands 
and more detail may be found in chapter 3 of reference 2. 

.COP COMMAND 
(EX AMPLE) 

$JOB 
($JOB) 

$IN,DEV 
($IN,4) 

$IN,LU,NAME 
($IN,23,S:1ITH) 

$OU'I,LU,NAME 
($OUT,21,SUB) 

$FOR,"OPTION STRINGII 
(.sFOR, NOL, NOM, NOO) 

$FOR NAME,IIOPTION STRINGII 
($FOR SUE,I) 

$FILE,LU,NAME 
($FILE,22,LINKNl 

$LOAD 
($LOAD) 

$RENAME wLU,NAM1,NAM2 
($RENAME#21,CRMG,MINE) 

liMON 
($MON) 

FUNCTION 

Initlallze .COP for batch Job 

Specify lnput device (as Paper Tape 
Reader) 

Specify lnput device (as dlSk) with 
source file name (SMITH) for use with 
ComplIer or Assembler 

CI file (named SUB) lS created, 
identlfled, and positloned 

Complle (with no Source list, no Map, 
and no obJect, i.e., Er~or llSt only) 

Compile (with In-line assembly codlng 
for Integers and Scaled Fractions; 
file name wlll be SUB) 

Specify file other than RTL for CIG 
loadlng; (specify linkage routlnes) 

Create a Core Image file 

Change name (of dlSk flle CRMG to MINE) 
(cannot be used for secured flIes; 
use #U MONITOR command first) 

Return control to MONITOR. 

24 



No more than five $FILE commands may be glven for a specl£lc 
job. If more than five files, ln additlon to the maln program 
and the RTL, are required, .COP cannot be used. See section 2.9 
of reference 2 for using the CIG dlrectly. 

Wh1le the $OUT command (and $fOR for ObJect flIes) can be 
used to name ObJect and Core Image flIes. It lS normally 
recommended that names not be speclf1ed inlt1ally. If no name 1S 
specified, the default names; OBJTAA through OBJTZZ for ObJect 
files, and CRMGAA through CRMGZZ for Core Image flIes, wll1 be 
assigned by .COP. If it is then determ1ned that the flle 1S to 
be retained, the file can be renamed w1th the $RENAME command. 
The pr1mary reason for taking this approach 1S to slmplify the 
disk housekeeping chores to be discussed later. 

Following a $LOAD (.COP command) the Core Image Generator 
(CIG) lS loaded by .COP and control passes to the CIG. If the 

CIG detects an error, control passes to the user dt the Keyboard. 
This is indicated by the printing of an asterisk (*) on the CRT 
terminal. The user must, before eX1ting from the CIG, close the 
output file with a #M command. 

25 



RESPONSE 

M 

LINKN OB P2 

YOURS SO P1 

• COP C1 P 1 

LD 

FR 

? 

CE 

DE 

KB 

PV 

UN 

OP 

('L 

~ONITOR AND .COP SYSTEM RESPONSES 

MEANING 

~ONITOR entered and waiting. 

Posltloning successful for ObJect flle, LINKN, 
on platter 2. 

Posltlonlng successful for Source file, YOURS, 
on platter 1. 

Posltlonlng successful for Core Image flle, .COP, 
on platter 1. 

Successful load. 

.COP entered • 

• COP waiting. 

Free area of disk found. 

Flle not found, dupllcate file name, or command 
error. 

Core Image error (wrong type flle followlng #L 
command) • 

Disk hardware error, try agaln. 

Card Reader not ready. 

Keyboard control. 

Protect violatlon. 

unit error (not 21,22,23, or 24) 

Last file on platter still open. 

The last flle left open was just closed. 

See chapter 2 of reference 2 for addltional error and 
recovery procedures for ~ONITOR and the CIG, and chapter 3 for 
.COP messages. 

26 



INTERACTIVE UTILITY PROGRAM (~IU) 

The Interact~ve Utility (MIU) program ~s used prlmarlly for 
disk housekeep~ng chores. If some of these chores are not taken 
care of, the d~sk space would rap~dly be used up. MIU can be 
used for many functions, However, the average user need oDly 
concern himself with a few of the tunctlons; listing flles on 
disk, deleting files that are no longer of value, and posslbly 
prov~ding a user ident~fication for f1les. 

The load~ng and executing of MIU 1S accompllshed wlth 
MON~TOR commands as follows: 

#L,MIU,21 
#R,,2,1 
#G,1000 

Load KIU. 
Set requ1red reglsters. 
Execute MIU. 

After MIU is entered, the user responds to messages at the 
CRT terminal. The user response to the flrst message informs the 
MIU control program that the dlsk is on the Direct Memory Access 
channel (DMAC). The lnitial message and response 1S: 

DMAC? 
D 

MIU request. 
User response. 

MIU then asks the user what task is to be performed and on what 
logical unit the desired function subroutlne can be found. 

27 

/ 



L ~sti ng F ~les 

If the user wanted to llst all files on platter 1 at the CRT 
term~ndl, the messages and user responses would be: 

TASK DESIRED,UNIT 
LIST,21 
FROM,TO 
0,21,1 
WHICH i?LATTER 
1 

MIU request. 
User response for list. 
MIU request. 
User response (from d~sk to CRT). 
MIU request. 
User response for platter 1. 

The LIST subroutine of MIU would then llst all files by 
name, giving file type number, track number, and sector number. 
If the user just wanted to list those files following and 
lncludlng a partlcular file, named HIS for example, the message 
and response would be: 

TASK DESIRED, UNIT 
LIST,HIS,21 

Slmllarly if it was desired to list only those files between 
and ~nclud~ng HIS and HERS, the message and response would be: 

TASK DESIRED,UNIT 
LIST,HIS,HERS,21 

If the user now wanted to delete a file, named HIS, from 
platter 1, the messages and responses would be: 

TASK DESIRED, UNIT MIU request 
DEL,21 User response for delete 
FROM MIU request 
~ User response for dlSk 
IlHICii PLATTER MIU request 
1 User response for platter 1 • 
NAMES TO BE DELETED MIU request 
illS User response to delete file HIS. 

One important point to note here ~s that any time a delete 
command lS glven, all flIes g~ven default names; OBJTAA through 

28 



OBJXZZ and CRMGAA through CRMGZZ, by .COP, are also deleted. If 
more than one named file is to be deleted, up to eight may be 
deleted at once by responding with a string of names. For 
example, the message and response to delete four files mlght be: 

NAMES TO BE DELETED 
HIS,HERS,MINE,YOURS 

29 



User Ident1fication of Files 

Two ways to protect d1Sk files have been d1scussed. 
IIardw,lrd protect10n (V 1a the protect switches) will not allow 
anyth1ng to be written or changed on disk. Software protection 
1S provided by the ~S (secure) MONITOR command and prevents 
inadvertent wr1t1ng on the protected file. However, it does not 
prevent deletion of the f11e with the MIU delete function. A 
safeguard aga1nst this poss1bility is prov1ded w1th the use of a 
user 1dent1ficat10n for a file. 

To provlde the user 1dent1f1cat10n, MYFILE, for a file, 
named SUB, on platter 1, the messages and responses would be: 

TASK DESIRED,UNIT 
USERID ,21 
WHICH PL ATTER 
1 
FILES TO BE GIVEN OSERID 
SUB 
USER ID FOR FILES 
MYFILE 

MIU request 
User response for ID. 
MIU request 
User response for platter 1 
MIU request 
User response for file SUB. 
MIU request 
User response with ID for f11e SUB. 

Once a file has a user ID, it can only be deleted by 
respond1ng to a request for the user ID by MIU when using the 
delete function. It should also be noted that a user ID can only 
be changed by delet1ng the file and placing it back on the disk. 

It is up to the user whether or not to provide user ID for 
h1S files. However, 1t 1S generally not considered necessary. 

30 



Return to MONITOR 

, At the completion of each MIU task, MIU requests a new task .. 
To return to' ~ONITOR, the message and response is:' 

TASK DESIRED, UNIT MIU request 
MO,21 ' User rebponse to return to ~ONITOR. 

! 

1 
~ . For additional information on MIU, see chapter 11 of 

reference 3. 

31 



OEDIPUS DEBUG PROGRAM (OED) 

The OEDIPUS DEBUG program is a uti11ty rout1ne operated 
on-110e in a conversational mode. Commands from the CRT terminal 
prov1de for storage readout, correction, search, save and dump, 
trap setting, and program 10ad1ng. 

The loading and execution of OEDIPUS DEBUG 1S accomplished 
with MONITOR commands as follows: 

#L,OED,21 
#G,70100 

Load OEDIPUS DEBUG. 
Execute OEDIPUS DEBUG 

OE.D.I?US types "OK" and waits for a term1nal command from the 
user. Commonly used commands, where N 1S an octal argument, are: 

N: 
N; 

NG 
G 

NA 
NQ 
NX 
NK 

SPACI: BAR 
NL 
NU 
NB 
NZ 
NT 
NW 
W 
ND 

RUB OUT KEY 

Open a cell and display 1t. 
Open and display relative-addressed cell 
Open next cellon next 11ne. 
Open next cellon same line. 
Open prev10us cell 
Go to address N. 
Execute from last trap encountered 
Set accumulator to N 
Set Q register to N. 
Set Index register to N. 
Set K register to N. 
D1splay A, Q, X, and K registers. 
Set lower lim1t of block to N. 
set upper limit of block to N. 
set base address. 
Set zone zero locat10n for trap p01nter. 
Set trap at N. 
W1pe out trap at N. 
W1pe out all traps. 
Dump with N columns 
Delete current d1git str1ng. 

For addit10nal information on OEDIPUS DEBUG, see chapter 6 
of re ference 3. 

32 



HYBRID DEBUG PR~GRA~ (HYDBG) 

HYBRID DEBUG is a utility routine which serves as a 
debugging aid for the Hybrid user. It is s1m11dr in many 
respects to OEDIPUS DEBUG. The follow1ng functions may De 
performed: storage readout, stordge dump, storage correct1on, 
storage search, breakpoint set, load ~AC, l1st ADC or sense 
lines, set or reset control lines, read or set pots and DCA's, 
and program timing. 

The loading and execution of hYBRID DEBUG 1S accomp11shed 
with MONITOR commands as follows: 

#L,HYDBG,21 
#G,61000 

Load HYBRID DE3UG. 
Execute HYBRIJ DEBUG. 

HYBRID DEBUG outputs a carr1age return and 11ne feed and 
wa1ts for a terminal command from the user. Commonly used 
digital commands, where N 1S a? octal argument, are: 

B 
D 
LF 
N: 

N,B 
N,G 

RUB OUT 
$B: 
$E: 

"Up Arrow" 
/ 

Clear breakp01nt 
Dump memory between $B and $E (8 per line). 
Open next cellon new line 
Open and display N. 
Set breakpoint at N. 
Transfer control to N. 
Delete characters. 
Set lower l1mit of Block. 
Set upper lim1t of block. 
Display previous cell. 
D1splay effective address of opened cell. 

Commonly used Hybr1d commands are: 

wADXX,L 
wCKKK=.XXXX 
wEKKK=.XXXX 
wDAXX=.LLLL 
w1,K 
wXXXXX,YYYYY,E 

L1st value of ADC channel xx. 
Set pot KKK to the value .XXXX 
set DCA KKK to the value -.XXXX 
Output to DAC channel XX the value .1LLL 
Select console 1. 
Time program execut10n from XXXlX to YYYYY. 

For addit10nal 1nformation on HYBRID DEBUG, see chdpter 7 of 
reference 3. 

33 



OTHER EAI PROGRAMS 

BdS1C Text Ed1tor (BTE) - Discussed in reference 3, chapters 1-5. 

IIytran Operat10ns Interpreter (HOI) - Discussed 1n reference 4, 
chapters 11-15. 

Core Image Generator (CIG) - Discussed 1n reference 2, chapter 2. 

34 



PROGRAM NAME 

.COP 

MIU 

HOI 

COMMAND SUi1MARY 

LOA J A :~IJ 
EXECUTE COI1:1i\NDS 

#X,2 

#L,MIU,21 
#R,,2,1 
#G,1000 

#L,HOI,21 
ltR",70000 
#:G,1000 

fiETUR}, TO 
MON I TOR COM1'I 1\ NDS 

$110l'. 

MLl, 21 

R; 

BASIC TEXT EDITOR #L,BTE,21 M 
#R",17GOOO 

OEDIPUS 

HYBRID DEBUG 

SETUP 

#G,1000 
If edlting from/to dlSk do: 

#L,BTE,21 
#R",170000 
#P,OLDNAME,22 Note thdt these unlt nUmD€rS 
#N,NEWNAME,23 must Glffer 
#G,1000 

#L,OED,21 71777,G 
#G,70100 

#L,HYDBG,21 77777, ,; 
#G,61000 

#L,SETUP,21 ~nd of prog ram or 
#G,1000 PACER control panel 

GENERAL USER PROGRAM #L,NAME,21 "Call :JONOUT" or 
#G,1000 ?ACLR control panel 

Once a user's program has been loaded, reentry to hlS 
program can be accompllshed at the dlgltal console wlthout 
returning to MONITOR. Simply enter '1000 1n the P reg1ster and 
place the "Execute/Run" SWl tch ln the up posit 10n. It 1S 
recommended that when the disk lS no longer needed, that it be 
placed In the "SAFE" mode. 

35 



LEWIS FACILITY SOFTWARE 

Blvarldte-Functlon Routine (MAP, MAPL) 

Name: File- MAPS 

Subroutlnes- MAP, MAPL, ~OOR, DATAIN 

Common - MAPDAT,MAPVAL 

Type: Fortran callable subroutlnes 

Locat~on: PACER A and B Moving Head Disks 

Length.: (MAP,MAPL) - '322 

MOO.R - '164 

DATAIN - '1655 

MA?DAT - Variable 

MAPVAL - '3 

Programmer: W~lllam M. Bruton 

Source: (MAP, MAPL) - Assembly language cards 

MOOR, DATAIN - Fortran cards 

Date: August 1978 

Subroutlnes Requlred: (MAP, ~APL) - MOOR 

~OOR- LINKN and Fortran RTL libraries 

DATAIN - Fortran RTL llbraries. 

Loadlng Sequence: MAPS, LINKN, the Fortran RTL Llbrarles. 

A new £ortran callable function subprogram has been written 
to replace "MAP2" for generatlng functions of two variables. 
ThlS new Frog ra m, called si mply "MAP", is m ore general than 
"MAP2" ln that it does not make use of flxed data array sizes. 
The user speclfles the Slze of all data arrays or tables. 

";']AP" may be used for any functlon of two varidbles, but was 
wrltten speciflcally to handle functlons that cannot be defined 
over d rectangular array. That lS, each curve, Y, does not have 
to extend over the entlre range of points, X. "MAP" performs 

36 



radial interpolation of the map data and updates MAP 
interpolation search ~nd~ces prior to returning to the call1ng 
program. Upon reentry for each map, the search beg1Ils 1n the X 
and Y ~ntervals previously used for that part1cular map. 

Some bas~c requirements of "MAP" follow. (1) Each curve of 
a given map must have an equal numcer of breakpo1nts. The 
assumption 1S then made that corresponding po~nts on the curves 
are functionally rela ted. (2) For each map, t he curves, (Y 
values) and for each curve, the pOInts (X values) must De entered 
in increas~ng order. (3) Consecut1ve scaled values of X, Y, and 
the output, Z, must differ 1n magn1tude by less than 1.0. This 
appl~es to consecutive values of X aGd Z on the same curve as 
well as X and Z values in correSpO:lG1ng positions all consecutive 
curves. 

If more than one function. (i. e., Z 1, Z2, ••• , Zn) W1 th 
common ~nputs, X and Y, are required, a second entry pO~Gt to 
"MAP", called" MAPL", may be used. Th~s appl~es only 1f 
identical X and Y values are used. Cons1derable processor time 
and core requirements can be saved by uS1ng ":1APL".. If "MAPL" 1S 
used, it must be called before cdll~ng "MAP" for a d~fferent 
function. "MAPL" looks up and calculates fUnct10n outputs only. 
No searching 1S done. It deper,ds on the preced1ng entry to "MAP" 
to find the correct table entr1es. The number of common 
funct10ns is limited only by the amount of computer memory 
available. 

The computation time for one "MAP" funct10n 1S 280 
microseconds if the inputs renain 1n the Sdme data Intervals. If 
an input moves to a new interval, 20 to 30 microseconds of 
additional time is required per Intervdl change. The computat10n 
time for "MAPL" is 80 microseconds. 

For each map (i.e., set of X and Y input values), two arrays 
must be declared. The f1rst array ~s an integer taDle of length 
5. If two or more maps are involved, then an egual number of 
integer arrays must be declared. These arrays must be 
dimensioned consecutively (i.e., no other d1mens10ns 1n between 
these arrays). 

The second array for each map is a scaled fract10n data 
table. The length of this table depends on the numDer of curveS 
(NCV), number of points per curve (NPT), and the number of 
funct10ns with common inputs (NFCT). The table size for edch map 
can be determined by using the follow1ng formula: 

TABLE SIZE = NCV * (NFCT * !lPT + NP'I + 1) 

If two or more maps are ~nvolved, then, as for the integer 
arrays, an equal number of sca~ed fraction drrays would have to 

37 



be declared consecut~vely w~th no other scaled fraction 
declarat~ons ~n between the arrays. 

In add~tion to any problem variables that are declared 
scaled fractions, MAP and MAPL, ~f used, must also be scaled 
fract~ons. 

The call to the subprogram "MAP" contains four arguments 
wh~ch are ~n order; the ~nteger array, the scaled fract~on arEay, 
the X ~nput var~able, and the Y ~nput variable. For example: 

ZB1 = MAP(NB,FB,XB,YB) 

If a second function with common 1nputs 1S ~ncluded, only 
one argument 1S conta1ned 1n the call, namely the scaled fraction 
array. For example: 

ZB2 = MAPL (FB) 

To be used 1n conjunction with "MAP" and "MAPL" are two 
subrout~nes; "DATAIN", wh1ch is called to read map data from 
cards, and "MOOR", which 1S called to determine what map., if any, 
has gone out of range. 

The call to the subroutine, "DATAIN", contains two 
arguments, the 1nteger array of the first map and the scaled 
fract~on array of the 1~£~i map. For example: 

CALL DATAIN(NA,FA) 

"DA TA IN" reads cards which, 1n add1 tion to the unscaled map data, 
lncludes the size of the map array, the scale factors of the 
data, and the formats 1n wh1ch the scale factors and data are to 
be read. The subrout1ne then scales the data and f~lls the 
~nteger and scaled fraction arrays for each map. It cont~nues to 
read maps until a Ql~nk card is read wh~ch in1t1ates a return to 
the call1ng program. The subroutine can accommodate up to 25 
curves per map, 25 points per curve, and 4 fUnctions with common 
~nputs. An example of map data follows. A descr1pt~on of what 
1S on each card follows the example. 

NAP NUMBER ONE 

38 



• < 

1 3 5 1 
(3F8.1) 15F8.1) 
50. 0 20000.0 
4000.0 8000.0 
0.0 20.0 
0 .. 02 0.02 
0.0 5 .. 0 
0 .. 04 0.04 
0.0 5.0 
0 .. 06 0 .. 06 

MAP NUMBER TWO 

2 3 5 
(5FB.1) 
1 .. 0 
0.2 
0.0 
0 .. 3 
0 .. 15 
0 .. 225 
0 .. 0 
0.6 
0.30 
0 .. 450 
0.0 
0.9 
0 .. 45 
0.675 

3 
(5FB.1) 
1.0 
0.4 
0.2 
0 .. 3 
0.15 
0.225 
0.4 
0.6 
0.30 
0.450 
0.6 
0.9 
0.45 
0.675 

(3FB .. 1) (5FB.2) 
o. 1 

12000 .. 0 
35.0 
0.02 

15 .. 0 
0.04 

10 .. 0 
0.04 

(3F8 .. 1) 
1.0 
0.6 
0.3 
0.2 
0.10 
0.150 
0.5 
0.4 
0.20 
0.300 
0.7 
0.6 
0.30 
0.450 

40.0 
0.01 

27. S 
0.02 

1S.0 
0.02 

(5FB.1) 
1.0 

0.4 
O. 1 
0.05 
0.075 
0.6 
0.2 
0.10 
O. 150 
O. B 
0.3 
0.15 
0.225 

MAP NUMBER THREE 

3 3 S 
(3FB. 1) 
1.0 
0.2 
0.00 
0 .. 2 
0.00 
0 .. 4 
0 .. 00 
0.6 

1 
(SFB.2} 
1 .. 0 
0.4 
0.30 
0 .. 2 
0 .. 20 
0.4 
0.10 
0.6 

(3FB.1) 
1.0 
0.6 
0.55 
0.2 
0.30 
0 .. 4 
0.20 
0.4 

(SFB. 1) 

0.70 
0.2 
0.5S 
0.2 
0.30 
0.2 

45.0 
D.DG 

40.0 
0.00 

2 0.0 
O. GG 

(5Fo.2) 
1.0 

0.5 
0.0 
0.00 
0.000 
0.7 
0 .. 0 
0.00 
0.000 
0.9 
0.0 
0.00 
0.000 

0.90 
0.0 
O.BO 
0.0 
0.40 
0.0 

Y VALUES 
X VALUES - CURVE 1 
Z1 VALUES - CURVE 1 
X VALUES - CURVE 2 
Z1 VALUES - CURVE 2 
X VALUES - CGRVE 3 
Z 1 VALUES - CURVE 3 

(5FB.3) 

Y VI,LUES 
X VALUES - CJJVE 1 
Z1 VALUES - CURVE 1 
Z2 VALUES - C~RVE 1 
Z3 VALUES - CURVE 1 
X VALUES - CURVE 2 
Z1 VALUES - CUtVE 2 
Z2 VALUES - CURVE 2 
Z3 VALUES - CURVE 2 
X VALUES - 'CURVE 3 
Z1 VALUES CURVE 3 
Z2 VALUES - CURVE 3 
Z3 VALUES - CURVE 3 

Y VALUES 
X VALUES­
Z1 VALUES -
X VALUES­
Z1 VALUES -
X VALUES­
Z 1 VAL U ES -

CURVE 1 
CURVE 1 
CURVE 2 
CuRVE 2 
CURVE 3 
CURVE 3 

Note: A blank card must follow the last data card of the last 
map .. 

The first card for each map conta~ns the ~dP n~mber, the 
number of curves, the number of points per curve, and the nUffiner 
of common functions ~n 413 format. 

The second card for each map contains the fJrmats for the 

39 



scale factors, the X input values, the Y 1nput values, and the Z 
output values. The format of the card 1S 16A2 for one funct~on, 
20A2 for two functions, 24A2 for three functlons, and 28A2 for 
four functions. 

The third card for each map contains the X, Y, and Z scale 
factors in the format as speclfled on card two. 

The remaining cards for each map conta~n the Y values, X 
values, and Z values in formats as specifled on card two. 

One lmportant consideratlon, when preparlng data, should be 
noted. Data blocks should not be merged on the same card. 
Referring to the example, if the X values of map number one had 
been read in a 4F8.1 format (instead of SF8 .. 1) , the f1rst four 
values would appear on one card and the fifth value on a second 
card. The Z1 values would then start on a third card. 

If functlons arlse where the data ~s such that for each 
curve the points may be defined by ~dentically the Sdme X values, 
these values need only be 1ncluded once, immedlately following 
the Y values. To identify this case for "DATAIN", a non-zero 
integer in I3 format should be added to the first card o~ the map 
data. The first card for that map would then be 1n 513 format. 

This will save some cards, but it-w11l not reduce the scaled 
fraction data table size. That is, "DATAIN" will flll the data 
table with one X value for each Z1 value. Th~s ~s necessary 
because of the manner ln which "MAP" manlpulat es t he data. 

The subroutine, "MOOR", 1S called both by "{lAP" and the 
user's program. It is used to inform the user when a map ~nput 
has gone out of range and which map it is. 

Some logic patchlng on the analog board lS required for 
"MOOR" to function. The specl.f~c pa tch~ng lS .show n ~n flg ure 2. 

If a map variable has exceeded the data range, 1t 1S called 
to the attent1.on of the user by the BCD counter lamps flashing on 
the analog 10glC indicator panel. To determ~ne wh~ch map cas 
gone out of range, the user pulses a logic pushbutton (PBS) "OfF" 
at Wh1Ch time the map number and values of the ~nput varlables 
are displayed on the CRT screen. Note that once the CRT screen 
is filled, the term1nal will either overwr1 te or, lf the "BUS Y" 
switch is on, lock up the dlgital computer. To avoid th1S 
problem when running a s1.mulation, 1t is recommended that the 
"BUSY" switch be "OFF" and the "BREAK" button be pushed WhlCh 
allows the terminal to "AUTOPAGE" or clear the screen when it ~s 
full. 

Two of the 10g1.c components lilustrated must be speclf1.cally 
used, control line 9 (CL9) and sense l1.ne 6 (SL6). SLx may be 

40 



~ 
V') 

• 
0::: 
0 
0 
2 
Q) 

c: 
~ 
:J 
0 
s-
oC 
:J 
VI 

s-
.E 

\0 
....J 

....J 0 C') 

V') u c: r-i 

co .- qt 

.c: u -~ 
u .~ 

C') 

.9 

. 
C"J 
Q) 
s-
:J 
C') 

u: 

0' 
....J 
U 



any other sense l~lle, but ~t must correspond to the cod~ng in the 
user's program wh~ch w~ll be d~scussed later. The "AND" gates, A 
and B, may be any "AND" gates, the BCD counter may be any 
counter, and PBx may be any logic pushbutton on the console. The 
10 PPS (10 pulses per second) term1nal on the patch panel ~s 
recommended so that the lamp flash~ng of the BCD counter ~s more 
prom~nent. 

Control line 9 and sense l~ne 6 are used ~n "MOOR". when 
"rlOOR" is called by "MAP", sense line 6 is tested. If no map out 
of range message ~s pending, sense line 6 is "LOW" and control 
l~ne 9 is set which initiates the BCD counter and sets sense l~ne 
6 "HIGH." The map number and input variables are stored. "MOOR" 
returns to "MAP" to continue computatl.on of an output variable 
Ils~ng the calculated "OUT OF RANGE" data value as the 1.nput 
value. No extrapolat1.on of the data is performed by "MAP". 

If sense l~ne 6 is "HIGH," there ~s a pending message from a 
prev~ous call to "MOOR". "MOOR" ~mmediately returns to "MAP" and 
the program cont~nues as above. Once the user interrogates via 
the log~c pushbutton, the pend~ng message is d~splayed and 
control line 9 ~s reset, which in turn resets the BCD counter. 
"MOOR" then returns to the user's program. 

The only Fortran cod~ng requ~red ~n the user's program to 
obtain map out of range messages is a logical declarat1.on and two 
executable statements. The executable statements are: 

CALL QRSLL (5, PB5 ,IER) 
IF(PB5) CALL MOOR(O,X,y) 

In the first statement QRSLL ~s a Hybrid L~nkage subroutine 
for test~ng sense lines. The subrout~ne arguments are the sense 
l~ne number (0-5 or 7), a logical variable which will be "TRUE" 
1£ the sense l1.ne ~s "HIGH" and "FALSE" if the sense l~ne ~s 
"LOW," and an error flag which is requ1.red for all linkage 
rout~nes. In the example above, sense 11.ne 5 was used and the 
log~cal varl.able was PBS, which must be declared logical at the 
beg1.nn~ng of the program. 

The second statement ~s a logical test. If the variable ~s 
"TRUE", "MOOR" is called which allows display of the map out of 
range message and then cont1.nues. If the var~able 1.S "FALSE", 
the program contl.nues. In thl.s statement the arguments of the 
subroutine, "MOOR", must be the integer. zero, and any two scaled 
fract~on var~ables. these varl.ables are dummy variables that are 
~gnored by "MOOR" ~f the f~rst argument is zero. 

All of the sun programs, discussed above, are contained on 
one d1sk f~le, named "MAPS". 

A program that w1.l1 provide CRT plots of map data 1.S also 
ava1lable. This program reads the map data 1dentically to the 
uata l.nput subrout~ne discussed above. The disk f11e name of 

42 



this program 1S "MAPLOT". 

A sample hybrid program follows to 111ustrate the calls to 
"MAP", "MAPL", "DATAIN", and "1100~1I: 

43 



C*****SAMPLE HYBRID PROGRAM USING MAP AND MAPL 8/22/78 WMB 
C ••••• INTEGER ARRAYS FOR THREE MAPS 

DIMENSION NA(S) ,NB(S) ,NC(S) 
C ••••• SCALED FRACTION ARRAYS FOR THREE MAPS 

SCALED FRACTION FA (33) ,FB (63) ,FC (33) 
C ••••• SCALED FRACTION DECLARATION FOR PROBLEM VARIABLES 

SCALED FRACTION XA,YA,XB,YB,XC,YC,ZA,ZB1,ZB2,ZB3,ZC,MAP,MAPL 
C ••••• LOGICAL VARIABLE USED TO DETERMINE WH~CH MAP WENT OUT OF RANGE 

LOGICAL PBS 
C ••••• INITIALIZE HYBRID SYSTEM 

CALL QSHYIN(IER,681) 
C ••••• DESELECT ALL CONSOLES 

CALL QSC(O,IER) 
C ••••• SELECT CONSOLE 1 ONLY 

CALL QSC(1,IER) 
C ••••• CALL MAP DATA INPUT ROUTINE 

CALL DATAIN(NA,FA) 
C •• _ •• READ ADC'S 

10 CALL QRBADS(XA,0,6,IER) 
C •• _ •• CALL MAP FOR FUNCTION A 

ZA=MAP(NA,FA,XA,YA) 
C ••••• CALL MAP FOR FUNCTION B 

ZB1=MAP(NB,FB,XB,YB) 
C ••••• CALL MAPL FOR SECOND B FUNCTION 

Z a2=MAPL (FB) 
C ••••• CALL HAPL FOR THIRD B FUNCTION 

ZB3=MAPL (FB) 
C ••••• CALL MAP FOR FUNCTION C 

ZC=MAP(NC,FC,XC,yC) 
C ••••• WRITE DAC'S OR DAM'S 

CALL QWBDAS(ZA,O,S,IER) 
C ••••• TRANSFER DAC'S OR DAM'S TO ANALOG CONSOLE 

CALL QSTDA 
C ••••• PULSE PUSHBUTTON 5 "OFF" SWITCH FOR MAP OUT OF RANGE MESSAGE 
C ••••• TEST SENSE LINE 5 

CALL QRSLL(5,PB5,IER) 
C ••••• TEST LOGICAL VARIABLE; IF HIGH, CALL MAP OUT OF RANGE ROUTINE 
C FOR CRT MESSAGE 

IF (PBS) CALL MOOR (O,XA,YA) 
C ••••• RETURN TO READ ADC'S AGAIN 

GO TO 10 
END 

44 



Data Transfer from PACER to 1uM 3bO (SFDJ3, FOOC, FDDR) 

Name: SFOD3, FDDC, FOOR 

Type: Fortran callable subroutlnes 

Location: PACER A and B Movlny Hedu D1Sks 

Length: 142 

Programmer: Dav1d S. Cwynar 

Source: Assembly language cards. 

Date: June 16, 1978 

Subroutines Required: CIPHER 1/0 llbrary, JISK or NODISK, 

The Fortran RTL. 

Loading Sequence: SFDD3, CIPHER 1/0 library, DISK or ~ODISK, the 

Fortran RTL. 

NOTE: MONITOR must res1de 1n core at run tlme If 

uS1ng the movlng head dlSk (le. DISK). 

DescriEtion 

These three Fortran callable soubrout1nes dre used to 
transfer floating point data from the PACER 100 to the IBM 360 or 
similar computers by producing a $3 type formatted data dump. 
The device to contain the dump may be paper tape, floppy dlSk, 
moving head disk, or any other dev1ce acceptable to the AOP 
subroutine of the CIPHER 1/0 library. 

45 



As of th~s date, the required CIPHER I/O l~hrary d~sk dr~ver 
r:outllles (01 SK) are not available, however, they W' ~ll be 
~mplemented shortly so a description of their use w~ll be given 
here. 

The f~rst dec~s~on to be made, before these routines (SFDD3, 
FDDC, FDDR) can be used, lS how one wlshes to format one's data. 
A s~ng1e record (ie., length of paper tape, disk file etc.) may 
conslst of one or more data blocks. Each data block of a record 
must contain the same number of words (ie. the same number of 
float~ng pOlnt numbers). The purpose of breaklng the data record 
intc blocks lS for ease of locating errors when reading the data 
lnto the 360_ ~hen an error lS detected, the message received 
refers to a 11ne number wlthin a given block. If there are many 
Ilnes w~thin a block, a lot of line counting could be required 
when searching the paper tape to correct the error. On the other 
hand, if blocks are too small, the read-in time will be excessive 
necause of a large number of "overhead" lines which are created 
for each data block. The user can decide on the data block s~ze 
to use by studying the $3 format described at the end of this 
program description. Experience has lndicated that blocks 
between 100 and 200 words are a "nice" size, wlth up to 500 words 
not belng overly long. The maXlmum number of data blocks is 
Ilmited to 100 by the $3 format. The maximum number of words per 
data ~lock that the PACER 100 can handle lS 32767. 

Once you have dec~ded on the data block Slze and number of 
data blocks/record, you are ready to program calls to the SFDD3, 
FDDC, and FDDR subrout~nes into your main program. Your main 
program w~ll also have to contain the log~c to ~nit~ate a dump, 
accept operator commands (such as file names etc.) or any other 
spec~al operatlons necessary for controlling the dump process. 
The sequence of events from the start of a dump to completion of 
a s~ngle record must occur as follows: 

1) Inltiate the output device to accept data by: 

CALL FOPENO(IUNIT,NAMEXX) 

Where: IUNII is the logical unlt number (an integer) of the 
de v ~ c e to be use d (1 7 ( , 2 1), 1 8 ( , 22), or 1 9 ( , 23 ) for the 
moving head olsk, 5 for high speed paper tape punch, 
20('24) for floppy disk, 16('20) for the llne printer, 
etc.) • 
BAME!! lS a six character alphanumeric file name. It must 
be exactly 6 characters long. Any unused characters 
should be defined as spaces. Failure to provide at least 
6 characters will result ln unknown characters being 
plcked up and used- hence you won't know the name of your 
f11e and may never be able to access it again! 

I! ~Slng flQEEY Qb§~, the file name lS used to 
lndlcate the track and sector on which wrltlng or reading 
w11l start as well as to select which of two poss~ble 
dlSks will be used. Hence, NAMEXX must have the format: 

46 



SECTOR 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

FDXYYZ, where X, YY, and Z ~Ld~cate d1sk number (1 or 2) , 
track number (00 thru 63), and sector respectively. The 
symbols to be used for sectors are listed in Table 1. If 
you wish to manually be able to access the starting 
sector, such as when redd1ng data into the 360, you must 
specify sector 00 by makllllJ Z the "ii)" symbol. For 
example, to write on disk #1 starting at track 55 sector 
0, NAMEXX would be as follo~~: FD155ill. To wr~te dlSk #2 
start1ng at sector 0 trdck 00, NAMEXX woulj be: FD200w. 

Tdblp- 1 

Symbols for Floppy d~sk sector numbering 

# SYMBOL SECTOR # SY;1 BO L 
ill 16 p 

A 17 Q 
B 18 R 
C 19 S 
D 20 T 
E 21 U 
F 22 V 
G 23 ;-1 
H 24 X 
I 25 Y 
J 26 Z 
K 27 RIGHT JRACKET 
L 28 FORM 
M 29 LEFT i3RACKET 
N 30 Ui?-ARROio1 
0 31 UN DERSCRO E 

To simplify the software and make manual reading posslble, 
there 1S no d1rectory for the floppy d1sk. Hence, you must keep 
accurate records of the startlng and end1ng track/sector for each 
file. Ending track numbers are easily read from the front panel 
1ndicator on the d1sk unit when all wr1ting to floppy d1sk has 
been completed. One need only keep records of track numbers if 
all files start at sector 0 of the next avallaole track. 

The call to FOPENO, as descr1bed above, ~s opt10ndl (but 
recommended) 1f you are using the paper tape pur.ch. ThlS unlt 
may be readied manually at run time by pressing the "FEED" button 
before the machine beg1ns its dump. Hence, the progrd~ need not 
call FOPENO. 

2) Put the header on the dump by: 

CALL SFDD3(IUNIT,N?TS,Ni3LOCK) 

Where: IYNIT is the logical unlt number (an integer) of the 
device used ana must be 1dentical to that supplled to the 
FOPENO subroutine. 
liRTS lS an lnteger = to the r.umber of words per data 
block. 
li~LO~li is an integer = to the number of the last data 
block 1n the record. 

47 I 
- r 

I 



Once you have completed the above two proGedures, the dump 
lS properly started. You must then dump the data by repetitively 
call1ng the followlng subroutlnes as described below. The value 
of ICDAN must start at o. 
3) Put the block identification number at the start of a data 

block by: 

CALL FDDC(ICDAN) 

Where: ICHAN = the integer block number. 
4) Dump the data by calling FDDR NP1S times (i.e., once for each 

data word of the block). 

CALL FDDR (REAL) 

Where: li~!~ = a single preclslon flcatlng pOlnt real value to be 
placed on the dump. 

5) Close the data block by: 

CALL FDDEND 

6) If another data block remains to be dumped, add one to ICHAN 
and repeat steps 3 thru 5. That lS, steps 3 thru 5 should be 
performed up to and lncluding the tlme when ICHAN = NBLOCK. 

7) Instruct the output device to empty its buffer and close its 
flle by: 

r here: 

NOTE: 
as the 
close. 

CALL FCLOSE(IUNIT) 

IU!!! = the logical unit number (an lnteger) of the devlce 
belng used and must be the same as was used ln the call to 
FOPENO. 
step 7 lS optlonal (but recommended) if uSlng paper tape, 
paper tape punch has no buffer to empty and no file to 

An excerpt from a program using the above subroutines to 
dump :reguency response data from arrays FREQ, X~AG, and PHASE lS 
given below. Here, the number of words per data block (NPTS) dnd 
number of the last data block (NBLOCK) lS selected by the program 
from the internal parameters NFREQ and NCHAN. Note that the 
program decides to lnitlate a dump by checklng sense sWltch 5. 
Hence, sense switch 5 serves as a means for operator control. 
Note also that the program allows the operator the freedom to 
choose any I/O devlce and file name. 

48 



I ~ 

DI~ENSION MYNAME(3} 

57 IF (.NOl. SENSW (5» GO TO 20 
C INPUT UNIT AND NAME FROM OPERATO" 

TYPE 40 
40 FORMAT (3X.32HENTER UNIT ~UMb~h AND FILE NAME./) 

ACCEPT 50,IUNIT,MYNAME 
50 FORMAT(I5,A6) 

C INITIATE OUTPUT DEVICE 
CALL FOPENO(IUNIT,MYNAM~ 

C START THE DUMP 
CALL SFDD3(IUNIT,NFREQ,2*NCHA~) 

C DUMP FREQUENCIES AS FIRST BLOCK (BLOCK #0) 
CALL FDDC (0) 
DO 60 I=1,NFREQ 

60 CALL FDDR(FREQ(I» 
CALL FDDEND 

C DUMP MAGNITUDE AND PHASE DATA FOR EACh CrlANNEL AS 
C ODD AND EVEN NUMBERED BLOCKS. 

DO 80 1=1, NCHAN 
CALL FDDC(2*I-1) 
DO 70 J=1,NFREQ 

70 CALL FDDR(XMAG(I,J» 
CALL FDDEND 
CALL FDDC(2*I) 
DO 75 J=1,NFREQ 

75 CALL FDDR(PHASE(I,J» 
CALL FDDEND 

80 CONTINUE 
C CLOSE THE OUTPUT FILE 

CALL FCLOSE(IUNIT} 
C WAIT FOR OPERATOR TO RESET SENSE SWITCH, THEN CONTINUE 

90 IF(.NOT.SENSW(5}}GO TO 20 
GO TO 90 

20 XXXXXXX (program cont1nues) 

49 

'j 
I 
'\ 



1st l~ne 

2nd Ilne 

3rd Ilne 
4th thru 

The number of points per channel occurs twice ~n 
Format 216. 

A coded ~nteger appears In format 16. Th~s ~ntege~ 
equals the first block number times 100 plus the last 
block number. 
A repeat of the 2nd line in format 18. 

last Ilnes Blocks of data as follows: 
1st llne-The channel number in 16 Format. 
2nd 11ne-The channel number In 18 Format. 
next N~---N lines of data followed by a checksum in format 

12 (16,13) ,18. The checksum is the sum of the 
preceeding 12(16,13) lnteger palrs. It represents 
the sum of 24 integers. 

2nd last--An odd length line for left over data. 
last line-The checksum for the odd length Ilne. ThlS Ilne does 

not appear if there lS no odd length line. No odd 
length I1ne will occur if there is no remalnder when 
dlvlding the number of words per data block by 12. 

50 



IBM 029 Card Punch Conversion for PACER (CV29PT) 

Name: CV29PT 

Type: core-image dump 

Locat~on: PACER B mov~ng-head disk. 

Program starting address: '1000 

Core -lsed-: '1000 - '1761 and '0 - '1 

Programmer: David S. Cwynar 

Source: Assembly language cards 

Date: June 28,1978 

Subrout~nes Required: None 

Load~ng Procedure: None 

Th~s program reads a deck of cards punched on an IBM029 card 
punch, converts the symbols to 8 bit non-parity check~ng ASCII 
and punches a paper tape sUltable for use by the Fortran ComplIer 
or the Assembler. Symbols or multlple-punches which have no 
ASCII equivalent are punched as rubout ('377). 
!!§g 

Only the Core Image dump program is currently available to 
hybrld users. To use It; 1) Load CV29PT uSlng the EAI software 
MONITOR. 2) Place cards in card reader and start reader. Note 
the last card of the deck should be an 8-4 multiple punch In 
column 1 to put an "m" slgn on the end of the deck as is required 
of all EAI source decks used by the Fortran Compiler and the 
Assembler. 3) Turn on high speed paper tape punch and manually 
run out some leader. 4) Start program execution at location 
'1000 by lssulng; #G,1000 in MONITOR. 

The program will begln reading cards and punching paper 
tape. Execution wlll continue until either the card hopper 
becomes empty or a card wlth an 8-4 multlple punch ln column 1 is 
read. If execution stops on the 8-4 multlple punch card, the 
program wl1l pause, at WhlCh tlme a second deck can be processed 
by dOlng: release run-single-run (le. the program will start 
over). If termlnation occurs because the card hopper becomes 
empty, executlon will automatically continue when new cards are 
placed ln the hopper. 

51 



To exit the program you must release run, reset I/O and 
return to the ~ONITOR. Also, no trailer 1S punched by the 
program. Hence, you must manually run out the traller when ypur 
progrdm 1S complete. Note th1S operat10n should be carried out 
prior to resetting the I/O slnce, on occas10n, an I/O reset 
causes d noise character to be punched on paper tape. 

52 



Interactlve Data Collection and Dlsplay (INFORM) 

INFORM was developed to meet the needs of englneers 
developlng real-time dlgital programs under time and hardware 
constrdlnts demandlng the use of lnteger arlthmetic and scaled 
parameters. Initlally, INFORM was developed to meet the 
steady-state data dlsplay requlremer.ts of such programs. 
Subsequently, an lnteractive mode was provided for dynamlc 
dlsplay programmlng as well as debugging and program 
modiflcatlon. Sampllng and data output subroutines were 
developed to meet dynamic data collection and real-tlme data 
display requlrements of transient data. 

Reference 5 describes the overall capablllties of the 
INF03~, DATAO (data output) and SAMPLE (sampllng) subroutines and 
how they are lntended to operate wlthln a user's system. 
Reference 5 also describes their operation. Detalls on the use 
of the interactive command structure for accomplishlng the 
posslble tasks are presented and examples are glven to lilustrate 
the use of the software within a user's system. 

The INFORM package is structured into three basic parts; 
INFOR~, DATAO# and SAMPLE. Specifics of the call1ng seguences 
and use of each subroutlne are given in reference 5. Although 
they may be called by any main program, they are primarlly 
lntended to be executed on the lowest or "spare time" levels of a 
pr10r1ty interrupt system, where the maln function of the 
computer, (for example, a process control algorithm), is executed 
on higher levels. These higher levels are usually dr1ven by 
recurring external 1r.terrupts such as those of a real-time clock 
or 1nterval t1mer. When used 1n this fashion, the command 
structure made avallable to the operator by INFORM creates an 
lnteract1ve operatlng enV1ronment for any paSSlve real-tlme 
program. Furthermore, the programmer creates th1S environment by 
slmply defin1ng the lnterrupt structure and executing a slmple 
"CALL INFORM" statement on the lowest level. 

The INFORM subrout1ne provldes an "on-l1ne" display and da ta 
manlpulation capabllity for single precislon lnteger values 
retalned 1n absolute memory_ The operator programs the display 
while the program is runn1ng 1n the interactive mode. Memory 
locatl0ns are referred to by operator assigned, one to five 
character, alphanumeric names. Values for these named locations 
may be dlsplayed 1n engineer's units (EU) or octal. INFORM 
deter~lnes these EU values by multlplYlng each integer value by a 
scale factor associated with the name. Once defined, the names 
and the1r assoclated locations and scale factors rema1n f1xed 
unless re-defined by the operator. 

If the system also utilizes the digital computer for data 
collectlon, a slmple call to SAMPLE where the stor1ng of data 
would normally be programmed glves the INFORM subroutlne 
lnterdct1ve control over the data collection process. Th1S gives 
the operator the option to store any parameter available withln 
the mach1ne at the t1me of call. The operator also gains the 
ab1l1ty to re-structure the available storage. For example 200 
tlme p01nts of 20 variables, 800 t1me pOlnts of 5 varlables, or 

53 



one time pOlnt of 4000 varlables are all posslble with 4K words 
of storage. In addltl0n, using the SAMPLE subroutlne 
automatlcally provides a means for transferrlng the stored data 
to a bulk storage device via INFORM's interactlve command 
structure. 

It a slmilar manner, dynamlc dlsplays of system varlables 
may be controlled by the INFORM subroutine if the programmer uses 
the DATAO subroutine for hlS displays. The programmer need only 
lnsure that all parameters to be dlsplayed are ln core and that a 
call to DATAC lS executed in his interrupt environment every tlme 
he wishes to update the display. All programmlng lS then 
complete to glve the operator lnteractive control over the 
display. The operator may then select which parameters are 
dlsplayed and expand or compress scales at wlll wlthout concern 
for scallng or re-calibration of the dlsplay recorders. As 
wrltten, DATAO is lntended for use with fixed callbration analog 
dlsplays using 2ero to ten volt inputs, but may be modifled to 
work with any dlsplay which can be driven to ltS scale 
cxtremltles by system dlg1tal to analog converters (DAC's). 

A complete descrlptl0n of the INFORM program and its use lS 
g~ven in reference 5. It is imperative that any hybrid 
programmer, desiring to use INFORM, or its supporting routlnes, 
EXEC1 and OPSYS1, consult reference 5 before attempting to use 
them. 

The addltional information in thlS manual on INFORM and its 
use primarily emphaslzes differences from and additions to 
reference 5, incorporated for hybrld users. 

54 



Subrout1nes INFORM, SAMPLE, DATA, and CLRS~P 

Name: INFORM (version #2), SAMPLE, DATAO, CLRSMP 

Aux111ary entry p01nts/names: 

NAVG, EROR, LOC, SPCE, PNAM, CRLF, GSF2, PRFX, CRCM, NAME, 

SUFX, MATH, CKCR, INPTS, PRFX2, PNUM, UNIT, OPNT, C21, ISF, 

FIND, SF, ADRS, NAM2, NAM1, GSF, RTRN, IOSET, CMDS 

Type: Subroutine obJect module 

Locat1on: PACER A & B mov1ng head disk(MHD) "INFORM" file. 

Lenqth: '10467 

Aoso.l..o.lte core used: '7ij267 thru '74661 

Source program: PACER B "SINFOR" MHD source file. 

Programmer: Dav1d S. Cwynar 

Ddte: June 1978 

S~broo.lt1nes required: 

AlP, AOP, CLOSEl, CLOSEO, CLOSEX, FDDEND, FDD11, FDD22, 

LOAD1 MESAGE, OPE~I, OPENIX, OPENIX, OPENO, 

OPE~OX, OUTDO, OUT22, OUT77, PUNCH, TTYR, TTYR2, VERIFY, 

.A22, .C12, .C21, .C27, .C72, 

.D22, .H22, .H55, .L22, .L55, .N22, .S22 

LOdJUlg procedure: 

~a1n which calls INFORM, SAMPLE, etc; INFORM, CIPHER, the 

Fortran RTL. 

55 



A com~lete descr~pt~on of thls program is given ln 
reference 5. Aux~liary comnands or features whlch dlffer 
from that publication are glven below. 

:>lfferences 

1) Fl oatlng pOlnt numbers havE the unprinted decimal point on the 
left of the mantlssa instead of on the right. That is; 
12345 00 lS 0.12345 declmal, not 12,345.0. 

~) The "space" deflne/re-define varlable name and "/" list core 
commands have been extended to include an offset Farameter as 
descr1bed under "Additlonal Features" below. This offset 
pdrameter (Os) lS treated like part of the scale factor and 
represents the engineerlng unlt value to be applied to a zero 
value in core. In accordance wlth this, the scale factor '(Sf) 
retalns its orlg~nal meaning. That lS, lt stlll represents 
the number of engineering units per machlne count. This 
offset parameter ~s used by the program whenever 
scallng/descallng lS encountered and is also ~ncluded when 
calculating DATAO dlsplays so that n2-£h~~g§_in-2E~ra~lgn are 
apparent to the user. The only exceptlon lS the lncluSlon of 
an extra operand for the "space" and "/" commands. The new 
eg~atlon used by INFORM to generate englneerlng unit (EU) 
values from machine counts (MU) lS: 

EU = MU*Sf + Os 

Note that If Os = 0.0 no change of operatlon eXlsts. 
3) In keep1ng w1th the additlon of an offset parameter as part of 

the scaling, the $1 dump format for SAMPLE collected data has 
been changed. The second Ilne of a channel's data block now 
contains two nUMbers ln the Fortran format of 2(16,13). The 
f1rst number lS the scale factor as before, the second is the 
offset and represents the EU value for zero sampled data. The 
th1rd line of the data block now represents the checksum for 
both numbers on the second line, and is the algebraic sum of 
the two 16 values plus the two 13 values. It is stlll in the 
Fortran format.of 17. Note that 1f the offset is 0.0, no 
change 1n format will be apparent to eXlsting programs uSlng 
the $1 format. 

4) The operator's mode select switch is sense sW1tch H. Settlng 
sense sWltch H selects the passive mode. Leavlng sense sWltch 
H reset will select the interactive mode. 

5) The numerical value of the default unlt numbers used by 
Vd~10US comlliands have been changed to match the PACER unit 
numbers for the intended device. That lS, the line printer 1S 
'20 lnstead of '5 etc. 

6) The execution tlme for SAMPLE, in the non-averag~ng mode, 1S 
dpproxlmately 19 mlcroseconds plus 31 microseconds per channel 
sampled. The averaging mode regulres 19 microseconds plus 
49.8 m1croseconds per channel. The tlming for CLRSMP lS 28.4 
mlcroseconds plus 36 mlcroseconds per channel. The time 

56 



required to execute DATAO is approx~mately 8 m~croseconds plus 
51.4 m1croseconds per channel displayed. INFORM reguires 15.2 
microseconds per named location to collect the data for a data 
taoie pr1ntout. A time lag of approx1mately 52.8 microseconds 
plus 37.2 m1croseconds per named location occurs between the 
entry of subrout1ce INfORM and the start of data collect1on. 

Add1t1onal Commands 

In keep1ng w~th the command description format of Appendix C 
of reference 5, the new formats for the "space" and "/" commands 
are g1ven below. Also given are descr1pt10ns for two additional 
commands- #1 and 4J. 

The #1 and #J commands are used to change the command 1nput 
device. Whenever the command input is changed from the CRT 
keyboard (un1t '2) to some other device such as the card reader 
(un1t '6), the ~nput stream from the new device must terminate 
w1th a #1,2 command to restore command input to the keyboard. If 
an error 1S encountered in the new dev1ce command stream, command 
1nput 1S automat~cally restored to the keyboard, and reading of 
the d~xiliary dev1ce ~nput stream ceases. If the operator w1shes 
to cont1nue input from the auxiliary device w1thout "rew1nding" 
the 1nput f11e, he should use the #J command, S1nce emploY1ng the 
#1 command will reinitialize the input device. If the auxil~ary 
dev~ce is the card reader, emploY1ng the #1 command w11l force 
the program to ignore the rema1nder of the defective card and 
start with the next card in the hopper. Note, a card reader must 
be fully buffered and include Hollerith to ASCII conversion in 
hardware to be useable as an auxiliary input device. Currently 
only the PACER B system has the reguired reader. In the 
follow1ng command descr1pt10ns, SFAE refers to a 
sequentially-formed arithmetic expression. References to 
appenJ1ces refer to reference 5. 

L1St core 

I 
I KEY CHARACTER I OPERANDS I 1 ___________ J ___ 1-________________________________________ 1 

I I I 
I / I {Ad1}, [Ad2),{x},[Sf},{Os},{DF11} I 
l ______________ L_________ _ _________ 1 

Ad1: An SFAE for the starting octal/decimal address. See 
Append1x B for acceptable formats. 

Default value: Last non-defaulted Ad1 used by th~s 
command. Init1al value=O. 

Ad2: An SFAE ~or the endinJ octal/dec~mal address. 
Default value: Last non-defaulted Ad2 used by th1s 
command ~f Ad1 was defaulted. Ad2 defaults to Ad1 1f 
Ad1 was entered. In1t1al value=O. 

x: Data/d~splay type. Th1s ASCII character should be "0" 
for an octal d1splay of 1n teger data, "1" for a dec1mal 

57 



dl.splay of l.nteger data, "2" for a floatl.ng pOl.nt 
dlSpldY of slngle precl.sl.on, floatlng pOl.nt real data, 
"4" for a decimal display of scaled fraction data, "6" 
fOL a floatlng pOlnt display of double precision integeL 
data, "7" for a decimal.l.nteger dlsplay of double 
pLeC1S1.0n lnteger data, and "B" fOL an ASCII dump of 
core, the cOLe belng interpreted as containl.ng 2 ASCII 
characters per word. 

Default value: Last non-defaulted x used by this 
command. Initial value=O. 

sf: An SFAE for an octal/decimal scale factor to be appll.ed 
to the data. See Appendix B for acceptable formats. 

Default value: Last non-defaulted Sf used by this 
command. The initial value assumed lS 1.0_ Note: 
This value is ignored for display formats 0, 7, and B. 

Os: An SFAE for an offset value. The offset value lS the 
engl.neerl.ng unit value for a zero value in core. The 
offset value as curLently defl.ned is used as the 
numerical value for names occurring wlthln the SFAE. 

Default value: Last non-defaulted Os used by this 
command. The inltial value assumed is 0.0. 

DF11= octal/decimal number for an output devlce. 
Default value: The operator's console (unit #1). 

DESCRIPTION: 
Core startlng at location Adl up to and including Ad2 is 
dl.splayed on the device selected by DF11. The value for x 
determl.nes how the data is to be l.nterpreted (lnteger, floatl.ng 
pt. real, scaled fraction or ASCII), and what klnd of dlsplay 
lS to be produced. Prior to the dlsplay, the data is 
multl.plied by Sf. Sf is ignored for ASCII data. 

PROGRAMMER'S FLOWCHART REFERENCE: LIST 

58 



Defl.ne a name 

I I 
I PRLFIX KEY I ADDITIONAL 
I OPLRAND I CHARACTER I OPERANDS I 1 _________ 1-__________ 1 ___________________________________ 1 
I I I I 
I (Na} I "space" I (Ad}, (Sf} , (Os} I 
1 _________ 1---________ 1__ 1 

Na: A one to f1ve character name for a named location. See 
Appendl.x B for acceptable formats. 

Default value: the no-name parameter. 
AJ: An SFA1 for an octal/decl.mal address. See Appendl.x B for 

acceptaple formats. 
Default value: One greater than the address for that 
of the last used name operand of previous commands. 
If Ad l.S defaulted, the machine will dl.splay the 
default value prior to accepting the Sf entry (see 
note below). 

Sf: An SFAE for an octal/decl.mal scale factor. See Appendl.x 
B for acceptable formats. 

Default value: The same scale factor as that of the 
last used name operand of previous commands. 

Os: An SFAE for an offset value. The offset value 1S the 
engineering unit value for a zero value l.n core. The 
offset value as currently defl.ned 1S used as the 
numerical value for names occurring within the SFAE. 

Default value: The same offset as that of the las~ 
used name operand of previous commands. 

Note: If Na l.S defaulted, the no-name parameter becomes the 
default name operand for following commands. 

DESCRI?'I ION: 
This command l.S used when it l.S desired to define a named 
location. 'Ihe default option for Na, or the no-name parameter, 
l.S especl.ally useful when making program patches or doing 
ranJom searches durl.ng debugging. It allows the operator to 
maul.pulate the core wl.th all the power associated Wl.th named 
varl.ables, but wl.thout clutterl.ng the defined name list with 
temporary defl.nl.tl.ons. The no-name variable 1S overwritten 
each tl.me this command l.S used, but the ensul.ng defl.nitl.on l.S 
used to determine the default values of subseguent commands. 
'Ihat is, the nc-name parameter becomes the last used name 
operand for these commands until a predefined name is used. 

PROGRAM~ER'S FLOWCHART REFERENCE: DEFN 

The following examples l.llustrate the use of this command for 
~~splaYl.ng the cor.tents of core and for making program patches. 
Ir. the examples, the underscores denote system responses and 
J 's denote carriage returns. Also note the use of the = 
command, whl.ch dis[-lays the contents of a spec1fl.ed core 
locatl.on, and the" command, whl.ch d1splays the contents of a 
specl.fl.ed core location and opens that locatl.on permitting 1t 
to De changed. The use of these commands is explal.ned l.n 
detal.l in reference 5. 

59 



To dlSpldY the contents of core locatl0n numner , uSlng a scale 
factor of O. (octal value dlsplayed) wlth no offset, one would 
lSS <Ie t he follow i ng command s: 

_" spdce.!::" , 0, OJ 
-=-~QQQQQQ 

In thlS case the no-ndme parameter WdS used. To asslgn the 
name SPEED to core 10catl0n number 2 and to dlsplay the 
c on ten ts of that loca t ~on (again, ln octal W 1 th no of fset) , we 
would lssue the followlng commands: 

_SPEED"spacel,!,!,_~QQQOO.f_J 

_=_~Q33~12 

In thlS case Ad was defaulted, therefore, a value of 1 + 1, or 
2, became the default locatlon and was displdyed by the 
machine. The default Sf and Os values became zero as 
prevlously defined for the no-name parameter. 

60 



Re-define a name 

I I I 
I PREFIX I KEY I ADDITIONAL 
I O:.'ERAND I CHARACTER I OPERANDS I 1 _________ 1 ___________ 1 ___________________________________ 1 

I I I I 
I {Na} I "space" I {xxxxx}, [Ad}, (Sf} , [Os} I 1 _________ 1 ___________ 1 ___________________________________ 1 

Na: A one to f~ve character name for a named 10catl0n. See 
Appendix B for acceptable formats. 

XXXXX! A one to flve character name for a named location to 
replace name Na. xxxxx may be the same as Na but 
otherwise must be un1que. See Append~x B for acceptatle 
forma ts. 

Default value: The name used for Na (l.e., the name 
sta ys the sa me) • 

Ad: An SFAE for an octal/dec1~al address. See Append~x B 
for acceptable formats. 

Default value: The address currently dei1ned for Na 
(i.e., the address rema~ns unchanged). 

SF: An SFAE for an octal/dec~mal scale factor. See Appendlx 
B for acceptable formats. 

Default value: the scale factor currently deflned for 
Na (l.e., Sf wlll rema~n unchanged). 

Os: An SFAE for an offset value. The offset value ~s the 
engineerlng unit value for zero in core. The offset 
value as currently def1ned is used as the numerlcal 
value for names occurr~ng wlth1n the SFAE. 

Default value: The offset currently deflned for ~a 
(i.e., Os w1l1 rema1n unchanged). 

DESCRIPTION: 
Th~s command 1S used to re-define d named location. All 
occurrences of variable Na 1n any tables will now te replaced 
w1th var~able xxxxx, and the new locat~on and scale factor as 
def1ned will be used. The only exception to th1S rule 1S when 
Na occurs in a DATAO table. Here, the new name and location 
wlll be used, but because addit10nal values are der~ved from 
the scale factor when build1ng DATAO tables, the old scal~ng 
for Nd w111 be applled to xxxxx ln DATAO outputs. Hence, the 
DATAO table entry must be re-entered. See Append1x D for 
commands to revise the DATAO tables. 

?ROGRAMMER'S FLOWCHART REFERENCE: DhFN(OVLY) 

change the command ~nput device 

I I 
I KEY CHAF ACTEE I OPERANDS I 1 ______________ -L _______________________________ 1 

I I I 
I #1 , Un I 1 _____________ L __________________________________ 1 

Un: The unit number of the devlce from WhlCh commands are to 
be obtained. 

DESCRIPTION: 

61 



ThlS command 15 used to change the command lnput stream from 
the current devLce to any alternate devLce. Issulng thLS 
command LnitlalLzes the new devlce by openLng lts file •. 
Commands are then read from the new devlce. The character 
stream from the devlce must be ASCII characters WhLCh 
correspond exactly to those characters an operator whould enter 
fer commands belng accepted from the operator's keyboard. Note 
that 1f the operator's console 1S not selected, prompt 
characters WhlCh the program normally lssues durLn~ the 
acceptance of commanus are suppressed (l.e., the ** receLved 
for name deflnltlons, etc.). If an error lS detected ln the 
command Lnput stream, the command input devLce auto~atlcally 
reverts back to the operator's console. 

?ROGrtAMMER'S FLOWCHAFT REFERENCE: SYSTM 

62 



I I 
I KEY CHARACTE~ I OPERANDS I 
1 _______________ 1 _________________________________________ 1 
I I I 
I #J I Un I 
1 _______________ 1-________________________________________ 1 

lIn: The unl t 11 umbe r of the dev lce from wh lch commands are to 
be obtalned. 

DE SCR I PT1 Oil: 
Th1S command lS sim1lar to the #1 ccmmand, wlth the except10n 
that the lnput devlce lS not lnlt1al1zed by openlng 1ts flle. 
This command lS used 1n place of the #1 command 1f the lnput 
devlce flle 15 already open. ThlS wlll be the case when the 
command 1nput was aborted from the new device because an error 
was detected 1n the command input stream. Hence, the #J 
command can be used to restart command 1nput from such aborts 
by cont1nuing where the input stream left off. 

PROGRA~MER'S FLOWCHART REfERENCE: SYSTM 

63 



Interrupt Environment for INFORM (EXEC1) 

Name.: EXEC1 

Type: Assembly Language main. 

Locatl0n: PACER movlng head disks (MHO). 

Length: '1073 

Source: Assembly language cards 

Programmer: Oavld S. Cwynar 

Date: June 16,1978 

Subroutines required: 

System's programs: (OPS YS 1 and OPLIB 1) or (OP SYS 2 and OPLIB2) 

User's programs: BTASK, LOOP, INITAL, LEVELO 

Loading Procedure: Special- see "How to Load Your Program" below. 

Note: MONITOR must reslde in core lf uSlng the movlng head 

disk. 

Sense sWltches: 

H- INFORM's mode select sWltch. 

Reset = command mode. 

Set = Execute BTASK lnstead of INFORM as background job. 

(Note; you must eXlt INFORM flrst using "." command) 

G- Set = Do not update the OATAO dlsplay. 

Analo g faclll tles required: (m ust all be on sa me console) 

1) 10 KHz pulse train patched into the Cl lnput of the 

Real time clock. 

2) Control lines 8, 10, 11, 12. 

3) Extern al interrupts #0, 3, 7. 

64 



This program estab11shes a t1me-shared interrupt enV1ronment 
for the Fortran or AssernDly language programmer. EXEC1 provides 
the user w1th the ability to execute three different programs at 
three different pr10rity levels. One of these programs gets 
executed as a background or lowest pr10r1ty task and may be 
executed in place of INFORM which ~s normally run there. EXEC1 
also hds provis~on for cdl11ng a user's setup program which 
normdlly is executed only once prior to sett1ng up and start~ng 
the interrupt environment execut10n. In order to use EXEC1, all 
programs must be ~n the form of subroutines so that they may be 
called at the proper t1me by EXEC1. The subroutine names the 
user must use, and restr1ct10ns on the programs will be discussed 
later. 

EXEC1 also enaDles the user to execute the user's program 1n 
a ma1n loop wh11e executing INFORM, SAMPLE, and DATAO subroutines 
at assigned priority levels to produce steady state and dynamic 
display of scaled fract10n and/or 1nteger data wh~ch are PACER 
generated or sampled. INFORM may be used to 1nteractively change 
the data d1splays w1thout hav1ng to place a hybr1d s1mulat~on in 
"HOLD" or otherwise interrupt normal program e xecu tion. I NFO.RM 
also provides program debug features, and allows the user to 
collect transient data wh1ch ~s present ~n the PACER 100. Th1s 
1S accomplished through the use of the SAMPLE and DATAO 
subrout1nes which are controlled by INFORM. Note that INFORM, 
DATAO, and SAMPLE are part of OPSYS1 or OPSYS2. 

INFORM controls SAMPLE by def1n1ng wh1ch varlables are to be 
sampled, and how many p01nts for each var1able are to be saved. 
EXEC1 gives control of the sampling process to the user through 
the use of external clock and tr1gger s~gnals. The DATAO portion 
of the program 1S 1ntended to dr1ve Brush recorders through 
DAC's/DAM's from data within the PACER 100. INFORM has control 
over the DATAO d1splay 1n terms of which variables are d1splayed 
and on which DAC's/DAM's they are output from the PACER. 
Automatlc scaling 1S prov1ded. That is, the operator can select 
the recorder calibration by specifY1ng ~ngineer1ng unit values 
for the Brush recorder zero and plus ten volt levels. Proper 
operation is automatically assured prov1ded the Brush recorders 
are set up to display zero volts on the r1ght and plus ten volts 
on the left. The computer can fully compensate for these flxed 
levels and both positive and negative engineering unit values can 
be d1splayed. 

1) Segment your program 1nto subroutines. Prov~sions for 
descaling and displaying scaled fractl0n or 1nteger, data 
will lli2! be necessary Slnce this job is handled by INFORrl. 
l10st programs w11l have three sections: (A) An 
in1t11ization and setup sect10n (INITAL) which gets 
executed once pr10r startup; (B) The ma1n loop (LOOP) 
which gets updated continually at a fixed rate; and (C) A 
background task (BTASK) to do things in spare time while 
LOOP is runnlng. For example, BTASK may change integrator 

65 



1n1tlal condlt10ns, etc. These sectlons mg§l be 
~~~£QQt1rr~ ~ilh n~m~ ~~ 1nd~atg£ above and must conform 
to the restrlctl0ns placed upon them as described ln the
"creating User Subroutines" section (pg. 69).. They should
also be programmed ln accordance w1th the conslderations
l1sted under "Programffil.ng In An Interrupt Environment"
(pg .. 84).

To use INFORM effectlvely, INITAL should contain
COM~ON blocks WhlCh deflne ~11 y~£~ablg§ as explained
under "NOTES" (pg. 811' Advanced programmers may also
wlsh to create a subroutlne called LEVELO. Novice user's
may use the system's dummy LEVELO by loadlng it at the
proper tlme.

2) compile your subroutlnes lndependently. That lS, make
three l~dependent Object flIes. Although INITAL may be
combined w1th either LOOP, BTASK, or LEVELO, we don't
recommend it because it can lead to undetected
non-reentrant subroutine confllcts WhlCh won't
automatlcally get resolved by the standard loading
procedure given below.

3) Create a Core Image verSlon of EXEC1 and your subroutlnes
uSlng the procedure outl.l.ned under "Creatlng The Core
Image File".

4) Using Monltor, load your Core Image file (Example:
#L,MYPROG,21).

5) Using MONITOR, load OPSYS1 (or OPSYS2) WhlCh contalns
INFORM, SAMPLE and DATAO. The command lS: #L,OPSYS1,21.
The verSlon you load wlll depend upon whether or not you
wish to aval1 yourself of INFORM's dlSk file manlpulatl0n
commands. OPSYS2 lS the version being developed for d~sk
manipulatlon, but note that you must have planned for its
use when you created your Core Image fl1e or OPSYS2 may
overflow lnto your COMMON storage areas. Refer to
"creating The Core Image File" (pg. 71).

6) Start execution of your program by lssu1ng #G,1000 from
MONITOR.

7) After your inltlallzation subroutlne (INITAL) runs to
completion, EXEC1 will ask for the loop update time in
seconds. If you have a 10 KHz pulse traln patched lnto
the Cl input of the real-tlme clock, you can enter thlS
time directly. For example, enter .010 for a 10 ms.
update lnterval. Your LOOP program wlll start executlng
following receptlon of the carrlage return. Therefore,
sense sWltches G and H should be set prl0r to enter1ng the
carriage return. Sense sWltch G controls the DATAO
dlsplay. Sense sWltch H is the INFOF~ mode centrol
switch. The sense switch functl0ns are dlscussed below
and in reference 5. The update time must be at least as
long as the longest time 1t takes your LOOP program to
execute. To determine this tlme, EXEC1 provldes tlming
slgnals on control 11nes 10, 11, and 12 WhlCh can be used
to determlne the execution tlme of each lnterrupt level.
Llne 11 goes high when LOOP starts execution, and goes low
when LOOP flnishes. Lines 10 and 12 do slmilar thlngs
for SAMPLE and DATAO. An oscliloscope plugged lnto
control line 11 on the system console can be used to

66

obtain the needed ~nformat~on. As a first cut, a long
update ~nterval, say 0.1 to 0.5 seconds, may be used tp
~nsure that the program w~ll run. You can change this
value dt any t~me by stopping the PACER and start~ng
execut~on over. To avo~d execut~ng the INITAL program
over such abrupt program stops, start execut~on at
location '1001 ~nstead of '1000 as stated prev~ously.

8) To restart without call~ng your INITAL subrout~ne, start
at location '1001. To restart w~thout re-~nitializ~ng the
~nterrupt structure (not recommended), start at location
'1002. The programmer can plan for system crashes when
programm~ng the INITAL subroutine, by providing a sense
sW1tch (not G or H!) for re-initial~zat~on of only those
~tems which may need re-setting 1f the program "bombs". A
clever programmer will place latches in common core which
can alter the execution of LOOP, BTASK, or LEVELO. Then,
by using INFORM's scale and store command, the operato4
can dynamically change program execution w~thout ever
hav~ng to stop running. This feature allows the user to
put disturbances ~nto the system to see how controls
react, etc. Any parameter listed in CO~MON core ~s
subject to INFORM's scale and store operation. Hence, you
can quickly change control ga~ns, mod~fy MAP curves, etc.,
without having to ever stop program execut~on.

9) The full capab~l~t~es and use of the INFORM, SAMPLE, and
DATAO package are given in reference 5.

67

Although EXEC1 takes care of most of the complications
involved in producing an lnterrupt enVlronment (such as reglster
savlng, establishing level priorlties, etc.), the programmer must
exerClse some care when produclng his programs. In a non-stack
machlne such as the PACER 100, lt lS very difficult to program
reentrant subroutines. What this means is that any subroutlnes
used by a program operating on one priority level may not be used
by a program operatlng on a different prl0rlty level. Any
software supplied by EAI, such as the Fortran run time library
(RTL) or the hybrld llnkage routines (LINKN) are either
non-reentrant or call non-reentrant routlnes. Hence, all Fortran
complIed programs runnlng on different lnterrupt levels must have
thelr own copy of the run time library, hybrld linkage routlnes,
or comnonly used subroutines. Th1S lS easily taken care of by
using the #S command of the Core-Image Generator. The procedure
lS gl ven in "Creat1ng The Core Image File" (pg. 71) •

A sirnllar problem of usage by dlfferent prlor1ty level
programs occurs for all input/output operations from the PACER
100 to the analog console, CRT, ADC's, DAC's, line printer etc.
The PACER I/O structure demands that all operations te performed
ln three steps. Flrst, the device lS placed ln the Froper I/O
mode, second the device is tested for readiness, and lastly, the
I/O operation 1S performed. During thlS last step, the malnframe
freezes. Therefore, lt lS imperatlve that a device be properly
set up and ready before I/O is performed.

:n general, you should not command slmllar I/O devlces from
more than one interrupt level. It 1S perm1ssable to use the same
dev1ce on two dlfferent levels, however, 1f ltS use by the two
routlnes is mutually exclUSlve (l.e., when routlne A is uSlng
JeVlce X, routine B will not attempt to use X untl1 A has
flnished). This is usually the case when the operator manually
requests dumps or pr1ntouts.

For the purpose of determln1ng simllar I/O dev1ces, they are
grouped as follows:

1) All ADC channels Wl thin a system (i.e., both consoles) a];e
considered as one unlt.

2) All DAC I s w lthin a system unless the "jam speciflc DAC"
("DO '140-' 167" instructl0n) or QWJDAR and Ql\TJDAS routlnes
are used.

3) Reading/wrltlng any ltem on either console wlth1n a system
WhlCh involves console select10n and/or an analog address,
although console selection may be treated as independent
from address selectl0n and the read/write operatlons. That
is, lt is not necessary that rout1ne A must perform all
three functl0ns of console selection, address selection and
the actual read/wrlte. It is permlssable for routlne A to
perform console selectl0n excluslvely and routlne B to
select addresses and read/write on the console selected by

68

routl.ne A..
4) The CRT, keyboard and floppy dl.sk.
5) The ll.ne prl.nter
6) The hl.gh speed paper tape reader
7) The high speed paper tape punch
8) The mov1ng head d1Sk (un1ts '21 thru '24 all count as one).
9) The card reader.

Sl.nce the INFORM program uses several of the above I/O
groups, one might assume that one could not employ use of sl.milar
devl.ces in one's higher level programs. This need not be the
case Sl.nce INFORM's I/O drl.vers (the CIPHER I/O ll.brary) is
designed to be interruptl.ble while awal.tl.ng a keyboard input.
Hence, no confll.ct wl.ll occur providing that INFORM is "idling"
l.n the command l.nput mode waitlng for a keystroke from the
operdtor whl.le the user's program 1S accessl.ng the cammon
devl.ces. If the operator knows when the user's program 1S about
to access an INFORM devl.ce he need merely stop entering command
keystrokes untl.l the user's access is complete. This
pre-supposes# however, that the operator has sufficl.ent warnl.ng
so that the processl.ng of any prl.or INFORM commands Wh1Ch use the
device have time to run to completl.on before the user's program
sta rts.

Each of the subroutl.nes ll.sted below must be provl.ded. They
must be named as l.ndicated, have no arguments except through
COMMON, and should perform the functions as descrl.bed. If you
have no need for a partl.cular subroutl.ne, create a dummy
subroutine of the proper name which contains the sl.ngle statement
"RETURN".
NAME: INITAL
PURPOSE: To perform those functl.ons which need be executed only

once prior to the start of the Mal.n loop. It should
also contain provl.sl.on for re-initl.ll.zation of the
program in the event l.t "bombs" or forces the console
into overload. This routine l.S called only once by
EXEC1 prl.or to startlng the loop calculations.

RESTPICTIONS: None, except that INITAL must select a system
console and eXl.t wl.th thl.s console selected. The
systeffi console l.S defined as the one on whl.ch the
10 KHz clock, control lines, and external
l.nterrupts are located.

NAME: LOOP
PURPOSE: This routine is the mal.n calculation loop whl.ch gets

updated at a fixed update interval as selected by the
operator from the allowable field of .0001 to 3.2767
seconds l.n .0001 second l.ncrements.
RESTRICTIONS:

1) LOOP Must not use I/O devl.ces used by INFORM as
descrl.bed under "programml.ng in the Interrupt

69

Environment ll • In any case, the calculation tlme of
LOOP must not expand beyond ltS allotment or it wlll
cause an update =allure. No I/O should De done to slJW
devices (l.e., anythlng except DAC's and ADC's). Such
I/O should be reserved for subroutlne BTASK.

2) LOOP must not select or deselect a -console.
Furthermore, lt should not depend upon a console being
selected or deselected to operate. currently the
restrlctlon on console switchlng lS to prevent errors
of the real tlme clock (l.e., the update tlmer) and the
system control line indlcators. The clock functl0n lS
vital and should not be dlsturbed unless a fluctuatin~
update lnterval lS acceptable. Theoretically, patchlr.g
the same clock lnto the ci input on both consoles (vla
a dlgltal trunk) should result ln mlnlmal disturbanoe
(one count), and thus allow console sW1tch1ng.
However, 1n the future, INFORM may do console select10n
to read ampliflers, set pots etc., and you may also
w1sh to do this in your BTASK rout1ne. Therefore, 1t 1S
a good idea to use DAC's and ADC's only in LOOP.

3) LOOP must not use any OP5YS1 routlnes accessed through
OPLIB 1.

4} LOOP must also take care of inputtlng data from the
ADC's for the SAMPLE and DATAO subroutlnes. For
detalls, see liTo Produce a DATAO D1splay" (pg. 73) and
liTo Collect Sampled Da tall (pg. 80).

NAME: BTA5K
PURPOSE: To perform auxlliary functlons wh1le LOOP is runn1ng.
RESTRICTIONS:

1) Cons1derat1ons must be glven to the problems assoclated
with general reentrant subroutines and I/O devlce
sharing wlth LOOP as described under "Programming in
the Interrupt Envlronment" (pg. 68).

2) BTASK must not enable, dlsable or otherWlse affect any
lnterrupt or interrupt masks, either on the system
console or lnternal to the PACER 100.

N AM E: LEVELO
PURPOSE~ To perform operations Wh1Ch requlre temporar1ly stopplng

LOOP from executing. ThlS routine has hlghest priorlty
and 1S entered within 70 usec. of when the system
console lnterrupt line 0 1S pulsed.

RESTRICTIONS! None, except those listed under "Programming in the
Interrupt Environment" (pg. 68).

70

You must use the Core Image Generator to properly link your
complled programs into an executable Core Image program. Do not
use .COP. Startlng from MONITOR, the procedure is as follows:

#L,CIG,21
#N,MYPROG,21,2
#R,XXXXX,101000,21000
#G,1000 where:

MYPROG is a name you assign to your Core Image file,
XXXXX lS '56430 if you intend to use OPSYS1. Note: XXXXX wlll
be dlfferent for future versions of OPSYS. A future version wlll
be regulred to allow use of INFORM's disk drlver commands. You
must use INFORM if you wish to manually manipulate dlSk files,
Slnce MONITOR w1lI not run in a time-shared enV1ronment.
Furthermore, execut1ng MONITOR whlle OPSYS is ln core will
destroy the OPSYS 1nput/output buffers. Hence, any pend1ng I/O
from INFORM will be lost. The OPSYS program, however, will
remain intact and need not be re-loaded.
The follow1ng commands are for the Core Image Generator. The
aster1sk (*) preceeding each command is generated by the Core
Image Generator. See reference 2 for a more deta1led descr1pt1on
of the Core Image Generator commands which follow:

*#L,EXEC1,22
*#L,XXXXX,22 where:

XXXXX lS the flle name of your compiled INITAL subroutlne. IF
your INITAL subroutlne calls other subroutines, load them all now
by repetlt1vely d01ng:

*#L,YYYYY,22 where:
YYYYY lS the name of a disk file or flIes Gontaing the
subrout1nes. NOTE: YYYYY must not conta1n ~OOP or LEVELO except
under special circumstances.

Follow these loads with
*#L,ZZZZZ,22 where:

ZZZZZ 1S the d1Sk file name of your BTASK subroutlne. If you~
BTASK subroutine calls other subroutines, load them all now by
repet1 t1 vely doing: #L, YYY YY, 22 as before. Note that YYYYY must
not contaln LOOP or LEVELO except under spec1al clrcumstances.
Cont1nue with:

*#L,OPLIB1,22
*#L,LINKN,22
*#L,RTL,22

Now do:
*#UL

to llst any unloaded subroutines. The 2Bly names that should
show up are LOOP and LEVELO. If more or less names occur you
ha ve either; (1) forgot ten to load a YYYYY library, or (2)
viola ted the ca 11 conven tlons llsted under "programming in the
Interrupt Envlronment" (pg. 68). If (1) is your problem, simply
load YYYYY and try #UL again. If all is now OK you may proceed.
If not, YYYYY probably had to be loaded prlor to LINKN, RTL, or
some other YYYYY. At this point, the load should be restarted.
Do *#M to exit the Core Image Generator. Use .COP to rename
MYPROG to JUNK, go back to MONITOR and start over w1th #L,CIG,21

71

etc. If (2) 1S your problem, clean up the disk file by doing;
*#M dnd uSLng .COP to rename MYPROG to JUNK as above. Now go
back and read the "Usc" and "Programming 1n the Interrupt
Env 1ro r.ment" sec tlons.

If the #UL command looks OK you proceed by:
*#S

th1s 1S an 1mportant step to resolve reentrant subroutine
confl1cts - don't leave it out!

*#L,AAAAA,22 where:
AAAAA is the d1Sk f11e name of your LOOP suDroutlne. If your
LOOP subrout1ne calls other subroutines, load them all now by
repetltlvely dOlng: #L, YYYYY,22 as before, NOTE: YYYYY must
QQ! be SYSLIB. Follow these w1th;

*#L,LINKN,22
*#L,RTL,22

Now do: *#UL as before. The only name that should appear lS
LEVELO. If 1t doesn't, there is an error. See the preceding
paragraph for actlons when the #UL listing is 1ncorrect.

Complete the load by:
*#S
*#L,BBBBB,22 where:

BBBBB 1S the dlSk file name of your LEVELO subrout1ne. If you
don't have a LEVELO SUbroutine, do: #L,LEVELO,22 and skip the
next paragraph.

If your LEVELO subroutlne calls other subrout1nes, load them
all now by repetit1vely dOlng: #L,YYYYY,22 as before. Also load
LINKN, and RTL, 1f needed, as before.

When you are done, the Core Image Generator should type "DN"
at the term1nal. If lt doesn't, there 1S an error. The
corrective action is the same as described prev10usly when the
#UL 11st1ng is lncorrect. If all 1S OK, finish wlth:

*#EL
*#11

Your Core Image file is now complete. Check the listing produced
by the #EL command to see if you've exceeded the PACER 100 co~e
capac1ty. MMTOP must be less than COBOT and ZZTOP must be less
than '610. If they're not, you wl11 not be able to use INFORM.

Ar. example of a Core Image file formation and 11stlng of the
four maln subrout1nes, INITAL, LOOP, BTASK, and LEVELO, are given
ln fl'Jur-e 3.

rhe Core Image file was named Fl00. After EXEC1 was loaded,
the f11e FlODIN was loaded. This fl1e contained the subroutine,
INITAL, which selected Console 1 where the 10 KHz clock, control
lines, and external interrupts were patched. In add1t10n to
llnkage and run tlme 11brary routines, INITAL also called the
subroutines, DATAIN, MOOR, and FLIGHT. The flle, MAPS, contained
DATAIN and MOOR which was loaded next.

At this point the file, FLTCND, containing the subroutine,
FLIGHT, could have been loaded. However, FLIGHT was also called
by BTASK. Since, in thlS case at least, non-reentrant subroutlne

72

conf11cts between INITAL and BTASK should not occur, the file
FLTCND was loaded after the f11e, F100BT, which conta1ned BTASK.
BTASK also called the subrout1ne, STATE1. The f11e of the same
name WdS loaded next. It should be p01nted out that whether the
f1le, FLTCND, was loaded before or after F100BT made no
d1fference. The overall library requirements would have been
satisfied.

OBLIB1, LINKN, and RTL were loaded next. The 11st of
undef1ned external references was obta1ned at this p01nt with the
#UL command. S1nce only LEVELO and LOOP ftere miss1ng, the name
table was restructured through the #S command.

The file, F100LP, contain1ng the subrout1ne, LOOP, then was
loaded. The only I/O devices that LOOP used were ADC's and
DAC's. The only rout1nes, called by LOOP (except for 11nkage dnd
run t1me 11brary routines), were MAP and MAPL. Both of these
rout1nes were contained in the file, MAPS, wh1ch was loaded
aga1n.

LINKN and RTL were reloaded to satisfy LOOP's requirements.
The #UL command demonstrated that only LEVELO was still m1ssing,
as 1t should be. The #S command once aga1n restructured the name
table.

The f11e, F100LO, was loaded to get the subrout1ne, LEVELO.
The only funct10n of LEVELO was to display a map out of range
message wh1ch required the call to the subrout1ne, MOOR. Since
the file, MAPS, contained this subroutine, it was loaded followed
by a third loading of LINKN and RTL.

The Core Image Generator s1gnalled that all requ1rements
were satisfied by typing "DN". The complete memory rrap l1sting
was obta1ned w1th the command #EL. The #M command returned
control to the mon1tor and closed the Core Image File, F100.

Proceed as follows to produce a DATAO display:
1) The data you w1sh to d1splay through DATAO must be 1n the

PACER 100 core. Hence, LOOP should sample or perform any
calculations needed just pr10r to eX1ting. If there is too
much data to collect or calculate, stagger 1t and do only a
port10n each pass. Better yet, use the DMA (Direct memory
access controller, subroutine QRDMAS) which requires only 10
uSoc/po1nt and allows the PACER 100 to continue running while
the data are being sampled. If you do use QRDMAS, however,
JOU must also use QRDMSI to make sure the DMA is finished
pr10r to the first ADC read in LOOP, or else LOOP may generate
an I/O conflict on the ADC's by attempting to start a new
update before the data being input from the last update 1S
f1n1shed. See reference 4 for information on the use of
QRDMAS and QRDMSI.

2) Set up the DATAD channel uS1ng INFORM's command structure as
described in reference 5.

3) Connect the Brush recorders, cali crated to display zero volts

73

4tL. C I G. 2:1
CIG CI P2
LO
#N, F.100, 21. 2
FR
F:108 eI P1
~L
#R.56438,181088.2:1800
~L
ttG,:1000
*ttL EXEC:1. 22
EXEC1. DB 1.
LI
*#L F1.80 I N. 22
F1.001N 08 Pi
LI
*#L.MAPS.22
MAPS DB P2
LI
*#L.F.108BT,22
F1.08BT 08 P 1_
LI
*#L FL TCNO. 22
FLTCNO DB P1.
LI
*#L.STATE:.1.22
STATE1. DE: P1
LI
of'ttL OPL I B 1. 22
OPLIB1. OB P:1
LI
*#L. LIN~:.~~, 22
LINKN 08 P2
LI
*#L RTL. 22

RTL OB P2
LI
*ttUL
*"#5
*#L,F:100LP.22
F:11!l0LP 08 P1
LI
*'ttL, ~1APS. 2~'
NAPS DB P2
LI
*-#L, L I t'.n(N. 22
LINKN DB P?
LI
*#L, RTL, 22
RTL OB P2
LI
*44-UL
-+:4lS
*#L.F:100L~.22
Fi00L0 (lB P1
LI
*#L MAPS. 22
NAPS OB P2
LI
*#L. L I N~<N. 22
LINKN OB P2
LI
*#L. RTL 22
RTL OB p~~

ON
>t#EL
*#M
~L

-- ------ - - -

Figure 3. - Example of core image file formation using the
EXECl system.

..,A

PAGE :1 C t .. ·.f" .. *F1.00 I NIT I AL I ZAT I ON SUBROUT I NE 1.0 1.9 78 WNB

FORTRAN COMPILER REV LEV 300

SUBROUTINE INITAL
SCALED FRACTION YI(24)
SC~_ED FRACTION H.M0.PO.P2.T2.T0.M0RTT0
SCALED FRACTION F1.(322).F2(322).F3C3S0).F4CS1.8).FS(224).F6(224)
COI'1I'10U/~lAPDAT ".'N1.(S). N2(S). N3(S). N4(S). NS(S). N6CS).

1. F1..F2,F3.F4.FS.F6
COMMON/FLT/H. MO.P0.P2.T2.T0. NORTT0
LOGICAL PBS
CALL QSCC0. IER)
CALL QSCC1.. IER)
T'-r'PE 1.

1. FORI1AT C 3X. 48HPLACE DATA CARDS FOR MAPS AUD DAC I CS I N READER.)
TYPE 2

2 FOR~1ATC~r~. 1.7HTHEN TYPE RETURN ".')
ACCEPT 3.3

::; FORI'1AT C 12)
CALL DATAINCN1..F1.)

C ... READ DAC INITIAL VALUES
READC6.4)(YI(I).I=1..24)

4 FORMAT«S(SX.S7»)
C. . INITIALIZE DACS

CALL QWBDASCYI. 0. 24. IER)
CALL QSTDA
TYPE 5

5 FORNAT(..... 3X.42HIGNORE FOLLOWING NAP OUT OF RANGE MESSAGE.)
CALL NOOR(99. 05 •. 05)
CALL MOORC0 •. 05 •. 0S)

C PLACE ANALOG IN IC MODE
TYPE 7

7 FOR~1AT C 3X. 48HSLAVE CONSOLE 2 TO CONSOLE 1. MANUALLY GO TO I C.)
TYPE 8

8 FORNATC 3X.49HTYPE RETURN TO PROCEED TO DYNAMIC PART OF PROGRAN)
ACCEPT 3.3

C ESTA8LISH ENGINE FLIGHT CONDITIONS
CALL QRBADSCH.0.2. IER)
CALL FLIGHT

KK=K-1.
CALL QWCLLCKK. FALSE .• IER)

10 COtHINUE
CALL QRSLLC5.PB5, IER)
RETURN
EHD

PROGRAM SIZE = '4S4

75

PAGE 1 C~~~~*F1ee BACKGROUND TAS~ SUBROUTINE 1e/~9/78 WMB

FORTRAN COMPILER RE~ LEY. J0e

c.

C

SUBROUTINE BTASK
LOGICAL SENSW
SET SSW E FOR INITIAL CONDITION UPDATE
IF(SENSW(S» CALL STATE1
SET SSN D FOR NEW FLIGHT CONDITIONS
IF(SENSW(4» CALL FLIGHT
RETURN
~D

PROGRAM SIZE = '17

PAGE 1. C*·t-.***F1.I313 MAIN LOOP SUBROUTINE :113/1.9/78 WMB

FORrRAN COMPILER REV LEV. .1130

SUBROUTINE LOOP
C FLIGHT CONDITION VARIABLES

SCALED FRACT I ON P0, P2, T2, Te, ~10RTT0
C ~1AP DATA TABLES

SCAI_ED FRACTION F:1(322), F2(322), F3(350), F4(51.8), F5(224), F6(224)
C ADC VARIABLES

SCALED FRACTION X0,X:1,X2,X3,X4,X5,X6,X7,X8,X9,X:10,X:11.,X1.2,X:13,
1. X:14,X~5,X1.6,X:17,X1.8,X:19,X20,X2:1,X22,X23

C. . .. DAC VARIABL~S
SCALED FRACTION Y0,Y1.,Y2,Y3,Y4,Y5,Y6,Y7,YS,Y9,Y:10,Y1.:1,Y:12

C ... OTHER VARIABLES
SCALED FRACTION MAP,MAPL,V4,V7,V8,V9,V:1e,R~Y,AR,PRsue,OPR,PE,

:1 PRE, PRSUP, FRO, RT4, RT4:1, AE,A, DY7, PRC:1,PRC2,Y6SQ,Y7SQ
COMMON/OUTVAR/X2,X3,X4,X5,X6,X7,XS,X9,X:10,X:1:1,X:1.2,X:13,X:14,

:1. X:1.5,X:16,X:17,X:1.8,X:19,X20,X21.,X22,X23,Y0,Y:1,Y2,Y3,Y4,Y5,Y6,
2 Y7,YS,Y9,Y:1e,Y:1:1,Y:12,V7,VS,V9,V1.0,REY

COI1MON/11APDAT/N:1(5), N2(5), N3(5), N4(5), N5(5), N6(5),
:1 F:1JF2,F3,F4,F5,F6
C0t-1~10N/FL T /X0, X:1, P0, P2, T2, T0, ~10RTT0

20 CALL QRBADS(X2,2,3, IER)
Y7=MAP(N4,F4,X3,X4)
Y5=11APL < F 4)
IF<>O:2. LT .. 135) X2=. as
A=MAP<N:1,F1.,X2,X4)
Y7=(Y7*<.5S+.5S*A»/.5S
DY7=. 135
REY=(.567:15S*P2*<.9S*T2+.:17S74S»/(T2*T2)
IF(REY. LT .. 3e584S) DY7=-. a2626S*REY+. 1308035
IF(REY. LT .. :1421325) OY7=-. :150775*REY+. 13257:15
Y7=Y7-DY7
Y3='I',
CALL QW,JDAS(Y3,3, IER)
CALL QW,JOAS(Y5,5, IER)
CALL QW,JOAS(Y7,7, IER)
CALL QRBAOS(X5, 5, 3, IER)
IF(X5.LT .. 05) X5=.13S
V4=MAP(N2,F2,X5,X6)
Y6=~1AP(N3. F3. X7. X6)
Y6=(Y6*(. 5S+. 5S*V4»/.5S
Y2=Y6
CALL QW,JOAS(Y2,2, IER)
CALL QW,JOAS(Y6,6, IER)
CALL QRBADS(X8, 8, 3, IER)
RT4=5SQRT(X8)
'17=(. 79567S"'X:1e)/RT4
Y8=MAP(N5,F5,X9,V7)
V9=MAPL(F5)
Y9=(V9*RT4)/. 782595
CALL. QW,JOAS(Y8,8, IER)
CALL QW,JOAS(Y9,9, IER)
CALL QReAD5(X~1.,1.1.,3, IER)
RT41.=SSQRT(X:12)
\lS=(. 826955*X1.1.) ·RT4:1
Y1.e=11AP<N6. F6, X:13, VS)

77

PAGE 2 C*****F:1.00 ~1A I ~~ LOOP SUBROUT I NE :1.0 :1.9 78 WI'1B

V:1.0~11APL C F6)
Y:1.i=CV:1.0*RT4:1.)/ 467:1.5S
CALL QWJDASCY:1.0.:1.0. IER)
CALL QWJDASCY:1.:1..:1.:1., IER)
CALL QRBADSCX22, 22, 2, IER)
Y4=X22 ... X23
CALL Q~lJDASCY4, 4, lER)
CALL QRBADSCXi4,:1.4,5. IER)
IF C ><::1.. GT . 22000S) GO TO 2:1.
AE=. e4:1.62S*Xi4-. e8:1.24S+. 73465S*X:1.7
GO TO 22

2i AE= e2585S*X:1.4-.e5837S+. 80875S"'Xi7
22 AR=AE/X:1.7

DPR=C. 69683S*AR*AR-AR+. 32094S)/. ie5675
PRSUB=. 52828S-DPR
PE=PRSU8*X:1.8
FRD=X:1.6*l'1eRTTe/. 792375
IFC. 200005*P0. LT.PE) GO TO 23
PRE=. 20000S*pe/X:1.8
Y:1.2=CCX:1.5*SSQRTCC. 25785-. 25785 ... PRE)*X:1.4» 7652S-FRD) 34933S
GO TO 24

23 PRSUP=. 52828S+DPR
PE=PRSUP*X:1.8
Y:1.2=C <X:1.5*SSQRT< <. 47303S-PRSUP ge:1.e65+ 85e65S*PR5UP*PRSUP)

:1. *X:1.4» 69633S-FRD-CAE*C 20eeeS ... pe-PE» 42935) 349335
2-1 Y75Q=Y7*Y7

Y0= 87889S*Y7SQ-. ee605S*Y7+. 23e58S
Y0= C '1'0-X3) Y0
Y6SQ Y6*'r·6
PRC:1.=. 922e7S*Y6SQ-.262:1.2S*Y6+. 2:1.e:1.5S
PRC2:. i:1.866S*Y65Q- :1.47055+. 9:1.948S*Y6
Yi=C 93333S"'PRC:1.*<. 99999S-X5)+X5*PRC2) 93333S
Y:1.=CY:1.-.90:1.2:1.S*X7) Y:1.
CALL QWJDASCY:1.2,:1.2, IER)
CALL QWJDASCY0,0.IER)
CALL QWJDASCY:1.,:1., IER)
CALL QRBADSCX0,0,2, IER)
CALL. QRBADSCX:1.9, :1.9, 3, IER)
RETURN
END

PROGRAl't SIZE = ":1.3e:1.

78

PAGE :1 C*****F1.ee I NTERRUPT ROUT I NE FOR MOOR :10/:12/78 "1~lB

FORTRAN CmlPILER REV. LEV. ..Jee

SUBROUTINE LEVELe
LOGICAL PBS

C ... PULSE PB5 FOR ~lAP OUT OF RANGE ~lESSAGE
CALL QRSLL(S,PB5, IER)

C. . .. t'Ul'll'1Y CALL TO MAP OUT OF RA~mE ROUT I HE
IF(PBS) CALL ~100R(e,. es, . es)
RETUR~j

END

PROGRAM SIZE = '26

79

on the ~ight and plus ten volts on the left (~ed buttons
dep~essed), to the selected DAC's.

4) DATAO w~ll update as quickly as possible fo~ the time
ava~lable and will attempt to p~oduce an update fo~ each pass
th~ough LOOP. If 1nsufficient t1me ~ema~ns to update all
channels, no time w1ll be left over for INFORM and its
ope~ating speed will be extremely slow. To get back to
INFORM, depress sense switch G which stops the DATAO updates.
To resume the updates, release sense switch G. An alternative
1S to increase the update t~me by stopping tbe PACER and
restarting at '1001.

Proceed as follows to sample and store PACER data:
1) Patch a clock into external ~nterrupt line 3 wh1ch goes high

at the rate you wish to collect samples. It is net necessa~y
to turn this clock off when not collect~ng samples, as EXEC1
pe~forms this operation automatically by 19nor1ng the
1.n terru'Pt.

2) Set up SAMPLE for data collect~on by issu~ng the Froper INFORM
commands as described in reference 5. Don't forget to set the
block size and dveraging mode by us~ng the "B" command first.

3} Pulse interrupt line 7 to start a read~ng.
4) The data to be sampled must be ~n the PACER 100 core. This is

a Job for your LOOP or LEVELO subroutines. Which you use will
depend on the prior~ty of your samples. If you do them in
LOO? (as is the usual case) the samples will be syr.chron~zed
with your LOOP update, the start of each new sample starting
immed~ately following the first complete update interval wh~ch
follows the clock rise on interrupt line 3. EXEC1 prov1.des a
logical variable called STIME which goes "TROE" for the one
update pass through lOOP which W1.11 precede the taking of the
f~~st sample. Hence, STIME can be tested by LOOP to determine
if ADC1s should be commanded to sample var1ables not already
~n core. To gain access to STIME by a Fortran LOOP program,
declare STIME as logical and define STIME as being location
1670. The statements are:

LOGICAL STIME
DEFINE ST IME (167 O)

You need not set STIME false after the samples
EXEC1 will do this as soon as you leave LOOP.
STIME altogethe~ if your samples are always in
completion of each pass of LOOP.

are taken since
You can ignore
core at the

5) After the first sample is taken, EXEC1 w~ll raise control line
10. Control line 10 w~ll stay high until the last sample of
the first entire transient 1S in. Hence, it makes a good step
distu~bance generator for starting transients to be sampled.
EXEC1 detects when SAMPLE has been placed in the averaging
mode by the operator, and ~ncrements the average number
accord~ngly. If no averaging is be~ng used (ie. only a Single
tranS1ent instead of mult~ple identical transients is being
sampled per run), EXEC1 will automatically turn off the

80

sampling process at this point and the operator can dump out
the samples using one of the INFORM commands.

If the averaging mode has been selected, control Ilne 10
will go low as soon as the first transient 1S complete, and a
new transient will start on the next rise of the clock on
interrupt llne 3. If the simulation needs tlme to settle out
between transients, the user must use the 10glC area of the
680 analog console to detect the falling edge of control llne
10 and use it to hold the clock connected to 1nterrupt Ilne 3
low until the simUlation is ready to go agaln. This process
will repeat until the number of averages spec1f1ed by the
operator through the "B" INFORM command have been taken.
Don't forget that the averag1ng mode may also be used to
filter noise from steady state data by specifing the number of
samples as 1, and asking for, say, 1024 averages. If this lS
your mode of operation, you can forget about the r1se and fall
of control line 10 and Just keep the clock gOlng 1nto
interrupt line 3. Don't set the clock rate too h1gh, though,
as you may choke the system by allowing insufficient time to
collect samples. You can look at control lines 10 and 11 on a
scope to see how fast you can go. Also, for good noise
f~ltering, the samples should be spaced out over several
seconds ..

If a s~tuat1on occurs where the 1nterrupt structure loses
its integrity, the message; "SYSTEM CRASH" followed by an
appropriate message wlll occur on the CRT term1nal. To recover
from such an error you must re-initalize the interrupt as
described in paragraph 8 of the "Use" sect1on. If INFORM is
operatlng in the variable trip mode with the halt opt1on
selected, the message "I NTE RRUPTS ABORTED!" w 111 be received when
the trip occurs. This means that all 1nterrupt process1ng has
stopped and that any interrupt levels WhlCh were ~n progress when
trip occurred have been left and shall not be cDmpleted. The
only routine running after receipt of this message w1ll be the
INFORM or BTASK subroutine as selected by the state of sense
switch H immediately following the printout of this message. The
situation 1S temporary, however, and normal execut10n will resume
when INFORM or BTASK are exited (use the INFORM 11.11 command).
The above message and operation will also occur any time the
PACER executes a trap instruction of number 0 thru 10. Hence,
BTASK can halt program execution at any time by execut1ng a TRAP
o instruction.

1) At present, INFORM, SAMPLE, and DATAO can only manipulate
scaled fract10n or integer data, although INFORM's L1St
Core command can display any data type on a one at a t1me
or one block at a time basis.

2) You must know the core 10cat1on (by number) of all data
you wish to manipulate.. Hence, you should place var1ables
in COMMON core. Place all ~nputs/outputs, map
inputs/outputs and any key 1ntermediate calculatl0ns there
since you never know what may be useful to observe when

81

debugglng d malfunctlonlng program.
3) Bu~lding the def~n~tion table for a new program, although

no more diff~cult than typlng up a program, is not easy.
Hence, you only want to do it once and you only want to
make changes to ~t when your ~rogram gets updated. You
can accompl~sh th~s through the use of INfOR~'s
relocatable load/dump feature lf your asslgned COMMON
locations rema~n f~xed. In the PACER, COM~ON is assigned
from the top of core down. The last-def1ned COMMON block
of the f~rst loaded proyraw occurs f~rst. COMMON
statements not contained In the first loaded program are
appended to the table from the top down. The CO~MON WhlCh
lS defined last in the new program, appears f1rst or at
the flrst core location below the f1rst COMMON blocks
loaded. Therefore, to be dble to add new variables to
COMMON as your program expands or chdnges wlthout hav~ng
all your COMMON Sh1ft because you lncreaseJ or decreased
the length of a COMMON block, your f1rst program loaded
should conta1n ~11 your COMMON statements. You may then
add CadMaN to any subroutllle or pnrt10n of your pr.ogram by
add~ng var~ables to the f1f:§i ~nd ..Q1!1.Y lh,g f1Ist COMMON
block deflned by this prograr.. Alternately, you may add a
new CO:111GN block def in~ tion to the fran t (1. e., precedlng
any ex~stlng COMMON block deflnltion) of this "master"
program. If you wlsh to keer your CCMMON blocks segmented
lnto nlce blocks, lt IDlght not be a bad ~dea to bUlld
expansion room lnto each block by addlng several dummy
locatiocs to each COMMON block. It's e~sy enough. Just
add a dummy dimens~oned vdrlable to the elld of the COMMON.
You should stlll follow the procedure outllned above,
however, Just ~n case you run out of expans~on room.

'L

•

The priority granted each routine fro~ highest to lowest is
as follows:

LEVEL
o
1
2
3
4
5
6
7
8
9

10

SIGNAL TO CAUSE INIERROP:
EXTERNAL #0
REAL TIM Z CLOCK

EXTERNAL #3

NONE (LOOP completion)

EXTERNAL #7

ROUTINE CALLED
lEVELO

LCOP

SAMPLE

DATAC

CLESr1?
I:lFO:t:1 or- a'J:ASK

Note that the level 9 inter-r-upt calls CLP.SMP, wh~ch ~s a~
auxiliar-y subroutine prov~ded ~n INFO~~ for- clear-~ng all SAJ?LE
storage blocks. It ~s also used to ~r.~tiate t~e sum~at~on ~n the
averag~ng mode. Details of the INFORM ope=at~ons and o?t~ons ar-e
provided in reference 5 •

83

Iadicato~s and OEe~atin~_~iY£g2

1) Pulse interrupt line 7 to clear the SAM?LE co~e and sta~t a
new reading.
2) Pulse interrupt line 3 at least once fo~ each sample point
(i.e., the sample clock goes he~e). This clock may ce continuous
as the prog~arn uses pulses only when sampling.
3} Control l~ne 8 is an update failure indicator.
4) Control line 10 comes high after the first sample ~f a ~eaJ~ng
is taken and goes low when the ~ead~ng of the fi~st block ~s
complete. If SAMPLE is ope~ating in the ave~ag~ng mode, this
line will go low once fo~ each ave~age taken.
5) Cont~ol line 11 goes high when a new update th~ough LOOP
starts, and goes low when the pass ~s complete.
6) Cont~ol l~ne 12 goes high when DATAO sta~ts a display update,
and goes low when complete.

84

•

•

Name: 01'5Y51

Type: Core Image dump less main.

Location: PACER A-and B moving head disk (~HD).

Core used: • 56q33 - '73521 and '466 - '616

Programmer: David S. Cwynar

Source: None

Date: August 1978

Loading sequence: NONE

O1'SY51 is a Core Image load of I~FOR~ (vers~on ;1) and a~l
its required subroutines.

The sole purpose of O1'SYS1 is to save the user of INFORM a
lengthy loading procedure and to shorten the lengtc of Core Image
modules which use INFORM by having all such modules share a
common INFORM load- namely O1'5Y51.

The load sheet used to produce O1'5Y51 1S given 1D f1gure 4.
It shows the entry address of all the CI1'HER I/O l~Drary ~out~nes
and external references available from this loa~. Tr.ese external
names and addresses are duplicated in an ODJect =~le called
OPLIB1 where each name ~s eguated to its corresponding locat~on
in the O1'5Y51 dump. Hence, a user's program can avail ~tself of
any subroutine or external name resident in OP5YS1 by s1mply
programming in the same manner as he would for any normal
subroutine or external name and loading OPLI31 instead of the
subroutine when creating his Core Image file. O1'LIB1 will
generate the address required by the Core Image Generator to
satisfy the user's call or external statement. Note that the
rou~ne which is present 1n O?SY51 wil: not beco~e part of tne
user's Core Image f11e, but the user's program will execute a
part of O1'5YS1 whenever a call to an CPSYS1 su~rout~ne is
encountered. Hence, when the user wishes to run his Frogra~, r.e
must load O1'5Y51 in addit10n to loading his Core Image file.
Note further that h1S Core I~age f11e mus~ not ~n=r~r.ge on
locations used by O1'5YS1 as listed above unless t~e user ~s s~~e

85

that the portion of OPSYS1 he overlays will not be required by
his program.

OPSYS1 contains the version 2 INFORM Object module wh1ch
does not include the auxiliary # commands used for controlling
the moving head disk. Also, NODISK was loaded in place of DISK
to produce an error message whenever attempts to read/write any
of the disk units is attempted.

Note that since INFORM is strictly a subrout1ne, the OPSYS1
file is not a complete program since it is missing a main program
to call INFORM. INFORM, and hence OPSYS1, may be treated as a
complete program which requires no main for execution prov1d1ng ~
that it is run strictly in the interactive mode. Therefore,
OPSYS1 may be run as a main program provided that the operatox's
mode select switch(sense switch H) is set permanently to
interactive mode (reset) and providing that the "." INFORM
command to exit INFORM is never used. The return address for the
"." command has been set to produce an error if the "." command
is issued when executing I~FORM (or OPSYS1) str1ctly as a ma1n
program. To operate OPSYS1 as a main program, the starting
address is that as listed for CMOS on the load sheet.

86

U:":, 2
. COP CI Pt
LD
C_
!:tIN, 22, IUFORtol
!$FILE,22,B5568,F
!$FILE, 22, CIPHER
!$t=ILE,22,NODI5K
!$LOAD,S56433,Z466,C77777
FR
FR
CRMGAA CI Pi
CIG CI P2
LD
I NFORt1 OB Pi
LI
85568 08 Pt
LI
CIPHER 08 Pi
LI
NODI5K OB Pi
LI
RTL 08 P2
DN
. COP CI P:1
LD
C_
!$RENAME,21,CRMGAA,OPSYS:1
CRI'1GAA C I Pi
FR
CRt'1GAA C 1 Pi
OPS'T'S:1 C I P:1
! :i"ASt'l
FR
FR

OBJ 1 AA (1(-: P j
ASSEt'1 Cl I-'~'
I l)
I-f.:'

COl-' l J 1-' j
LD

I t:RE::.UAt'U::, 22., (IB ... 1 fAA., (JPL 18.t
08J fFif-t m·: F-':t
FR
OBJTf-tA OF.: I-'j
OPL IEU Of: 1-'1

Figure 4. - OPSYSlload sheet.

87

1. 681 Parallel Analog Processor Refence Handbook. Publ. No.
00800.2014-0, Electronic Associates Inc., Jan. 1974.

2. PACER 100 Digital Computing System Movlng Head Disk Softwdre
System Manual. Publ. No. 00827.0061-1, Electronic Assoc~ates
Inc., May 1975.

3. PACER 100 Digital Computing System Llbrary and ut~lity Manual.
Publ. No. 00827.0052-4, Electron~c Associates Inc., Apr. 1975.

4. PACER 100 Digltal Computing System Applicatlons Programming
Manual. Publ. No. 00827.0051-3, RD-1, Electronlc Associates
Inc., Oct. 1977.

5. Cwynar, Davld S.: INFORM: An Interactive Data Collectlon and
Display Program with Debug Capabillty. NASA TP-1424, 1979.

88

End of Document

