@ https://ntrs.nasa.gov/search.jsp?R=19790012581 2020-03-21T23:12:03+00:00Z

Nass 7Tm— 7707/

QLI

00156 0011
NASA-TM-79111 19790012581

NASA Technical Memorandum 79111

LEWIS HYBRID COMPUTING SYSTEM -
USERS MANUAL

William M. Bruton and David S Cwynar
Lewis Research Center'
Cleveland, Ohio

April 1979

ARLE YA G0

NF00489

1 Report No 2 Government Accession No 3 Recipient s Catalog No
NASA TM-T79111
4 Title and Subtitle 5 Report Date
LEWIS HYBRID COMPUTING SYSTEM - USERS MANUAL April 1979
6 Performing Organization Code
7 ;u:r_\or(s) o 8 Performing Organization Report No
William M Bruton and David S Cwynar E-9938
10 Work Umt No
8 Performing Organization Name and Address
National Aeronautics and Space Administration T o o Grant No
Lewis Research Center
Clevela.nd, Ohio 44135 13 Type of Report and Period Covered
12 Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration
14 Sponsoring Agency Code
Washington, D C 20546
15 Supplementary Notes
16 Abstract
The Lewis Research Center's Hybrid Simulation Lab contains a collection of analog, digital,
and hybrid (combined analog and digital) computing equipment suitable for the dynamic
simulation and analysis of complex systems This report 1s intended as a guide to users of
these computing systems The report describes the available equipment and outlines pro-
cedures for 1ts use Particular attention 1s given to the operation of the PACER 100 digital
processor System software to accomplish the usual digital tasks such as compiling, editing,
etc and Lewis-developed special purpose software are described
17 Key Words {Suggested by Author(s}) 18 Distribution Statement
Hybrid computer; Simulation; Operating Unclassified - unlimited
system; Software, Processor; Function STAR Category 60
generation, Data processing; Interrupts
19 ‘,uJnlay“(il:.;r_(;l.lmsvepovl) o 20 Securnity Classif (of this page) 21 No of Pages 22 Pnce’
Unclassified Unclassified

" For sale by the National Technical Information Service Springfield Virginia 22161

CONTENTS

INTRODUCTION ceewreaneneaswcanscnsnsanssannnsneanosns
PACER HYBRID COMPUTING SYSTEM.eeeecasoaavasccsvnaes
PACER 100 DIGITAL SYSTEMa cmvcccascsvoncnossmcanens
680-681 ANALOG SYSTEMSeeeaeensescasvsnsoasnscssnsan
693 INTERFACE SYSTEN.cwecocesancncccasnsssnsnnons

CENTRAL TRUNKING SYSTENeeeeescsssascsanmasscnss

How To Use The Trunking SySteMecececscesessssen

PACER USER'S GUIDEeeeenseemecsssmsssacnmscnnemsse

e e w »

MOVING HEAD DISKeewmeecomosncssvssnsssascsmscnsnsoss

OPERATING SYSTEMewcecocasassacncnccncoscccnens
FILE TYPESuaweenowtsocsosceesosnmasacsanscsssmusnse
DEVICE NUMBERS.eewceswcssassnssscasancovansccscess
SYSTEM STARTUPweceevecsasssasscsensnscnncnsonnas
SYSTEM SHUTDOWN. weaeeewenssvescesasnscsccsncsvesns
MONITOR ENTRYeeeeemecenesosasnaascnssesncensnnna

MONITOR COMMANDS e cevecevevonsscnnsoscscsanscoanmomanss

CONTROL OPTION PROCESSOR (aCOP)aceceevecacesas

*e e -

.COP Standard OpPt1ONSe.ceceaencsssssssanssacsss

.COP Commandscn....-.---.-.-..-..---.---.-.

MONITOR AND .CCP SYSTEM RESPUNSESeecmcaccavss

INTERACTIVE UTILITY PROGRAM (MIU)ewwescosscean
Listing Files....‘.-ﬂl......l.-.I....l"."'
User Identification 0f FlleSeeeececsncwooses

Return to MONITOR ceeeenecennvscncscnnsnesnes

OEDIPUS DEBUG PROGRAM (OED) ececoevemeccssnces
HYBRID DEBUG PROGRAM (HYDBG)eeeeeaeenaocenass
OTHER EAI PROGIAMS . et eesoanvemenscncsssnasnssnsse
COMMAND SUMMARY e ewnsceevcsnosscscnsecssososcsssannans
LEWIS FACILITY SOFTWARE: e eeascasnnecscemsososns
Bivariate-Function Routine (MAP,MAPL) cvee..
Data Transfer from PACLR to IB¥ 360
(SFDD3, FDDC, FDDR) e ecvmsceccennonnnnanonss
IBM 029 Card Punchk Conversion for

PACER (CVZQPT)-..-.l...‘.'.'-.--....... S® w9 @& & & v o
Interactive Data Collection & Display (INFOR).

SUBROUTINES INFOR4, SAJPLE, DATAO, CLPSHKP....

o™ w .

Interrupt Environment for INFORN (EXEC1).......
Core Image Load of INFORM (OPSYST)eeeceaceceocns

REFERENCES e ecsevcessmcsvosonmenssossansascansanascse

N7 I-Z2p752 kad

45

51
53
55
64
85
88

E-9938

INTRODUCT ION

The Lew1s Research Center's Hybraid Simulation Lap is located
in the 8X6 SWT Research and Control Buildiny. The Simulation Lab
contains a collection of analoy, digital, and hybrid (compined
analog and digital) computing equipment suitable for the dynamic
simulation and analysis of complex systems. The principle use of
this egquaipment 1s for the simulation of the steady-state and
transient performance of airbreathing propulsion systems and
their components. Because of the computing power availaople,
simulations can be constructed in yreat detail and can frequently
run in real-time. This allows the simulations to be used to
develop, evaluate, and check cut control modes and to predict
propulsion system performance and stabilaty 1ia conjuction with
major experimental programs. Simulation results can
significantly affect the details of experimental prograns, oftew
reducing the required amount of testing.

There are two hybrid computing systems withan the Simulation
Lab. Each hybrid computaing system consists of a digital
processor, two analog processors, and a comnunications interface
for control of and data exchange petweer the digital and analog
processors. The Simulation Lab also contairns a central trunking
system, which allows communication between the two computing
systens.

This report is intended as a guide to users of these
Simulation Lab facilities, supplementing the numerous detailed
manuals and operating instructions that are available to the
users (references 1-4)., While this report does descrivc both the
analog and digital processors, it primarily deals with the use of
the PACER 100 digital processor. This 15 because the PACEI 100
1s a relatively new addition to the Simulation Lab aud 1t was
felt that a general, introductory guide to 1ts operation was
needed. The report covers the structure of the PACER 100 systen
and describes the supporting software that 1s availapvle. This
includes system software to accomplish the usual digitel tasks of
source creation, editing, compiling, loading, and executing.

Also discussed 1s software develolped at Lewis to aid users of the
system. This 1includes functiorn generation routines and data
collection and display progranms.

A large part of this report 1s devoted to describing the
capabilities of INFORM, which is a software package developed for
the PACER 100. INFORM car provide the user with the capapilities
for interactive data collection anada display. This report
outlines procedures for organizing user's projraxss for operation
in a time-shared interrupt environment. An existing program .
cailed EXEC1, which allows the user to execute three different
programs at three different priority levels, 15 described. One
of these prograns may be INFORM arnd 1t may be operdted as «
background task, without interrupting normal gprogran cexecution,
to provide interactive data collectior ané display capasilities.
The use of EXEC1 and INFORM are described in letail 1n reference
5.

PACER_HYBRID COMPUTING SYSTEM

There are two PACER 600 hybrid computing systenms,
manufactured by Electronics Associates, Inc. (EAI), in the LeRC
Hybrid Saimulation Lab. Each system consists of a PACER 100
digital processor, two PACER 681 (680) parallel analog
processors, and a PACER 693 communications interface for control
and data exchange between the digital and analog processors.

The digital processors are 32K, 16 bit computers.
Peripherals available for each system are a dual disk system, a
CRT terminal as a control console with a hard copier, a line
printer, a card reader, and a paper tape reader/punch which 1s
used praimarily as a backup system for the disk.

The following sections describe the available equipment in
the digital, analog ani interface systems. Also described is the
central trunking system which allows communication between the
two hybrid computing systems. References 1-4 describe the
digital, analeog, and interface systems in detail.

PACER 100 DIGITAL SYSTEHM

Total Memory 32768 words at 16 bits/word

Cycle Time 1.0 Microseconds

Moving Head Disk Two platters for 2.2 million words total
Card Reader 300 Cards per minute

Line Printer 165 Characters per second

High Speed Paper Tape Reader 300 Characters per second
High Speed Paper Tape Punch 120 Characters per second
Tektronix 401710 CRT terminal

Hard Copier for Tektronix 4010 Crt terminal

680-681 ANALOG SYSTEMNS

CUNSOLES Al,BI,B2 CONSOLLE AZ2

Integrator-sumnmer 30 30
Track/store-sumner 12 1.
Zero limit-summer 24 12
SJ-INV (interface) 24 2u
SJ-INV (Fixed DFG) 9 2
QSM-Inverter 60 4
QSM-HG amplifier 30 2
VDFG-Inverter 0 &

Total amplifiers 180 158
SS Pots (2-terminal) 64 96
SS Pots (3-terminal) 16 24
HS Pots (2-terminal 12 12
Dig. Coef. Attenuators (DCA's) 40 0

Total attenuators 132 132
Multipliers 30 24
DCFG's (Digital) 8 0
VDFG's {(Analog) G ¢
Fixed DFG's (Analog) 0 2
Variable Limiter Networks 12 12
Comparators 24 24
Function Relays 2L 24
D/A switches 24 24
General-purpose registers 6 f
WAND" gates 36 3¢
BCD counters 3 3
Monostable timers 6)
Logic differentiators 6)

The following table should prove useful to i1dentify the
component complement on each of the analog consoles.

It should also prove invaluable for producing simulations which

can r©un on any console. Programning 1in this mannerc
w1ll insure that you will be able to run when any console 1s
availaple instead of having to wa:t for a specific console.

CONSOLE NUIBER
A1 A2 Bl
ATTENUATORS
Servo_Set Pots

P00 - P39 X X X
240 - P79 X
280 - P119 X X X

B

L

Four Quadrant Invertaing DCA's

P40 - P79 X X X
Handset Pots
Q - 2,4,7,9,12,14,17,19,22,24,27,29 X X X X
AMPLIFIERS

Sumnmers/Iinteqrators

A-290,2,5,7,10,12,15,17,20,22,25,27 X X X X
A - 30,35,40,45,50,55,60,65,70,75 X X X X
A - 80,85,90,95,100,105,110,115 X X X X
Inverters
A - 4,9,14,19,24,29,34,39,44,49 X X
A - 54,59,64,69,74,79,84,89,94,99 X X X X
A - 104,109,114,119 X X X
Multipliers
A - 3,8,13,18,23,28,33,36,43,48 X X X X
A - 53,58,63,68,73,78,83,88 X X X X
A - 93,98,103,108,113,118 X X X X
A - 92,97,102,107,112,117 X X X
T/S_Summers/Limiters
A-1,11,21,31,41,51,61,71,81,91,101,111 X X X X
Zero_Limit_ Summers
A-6,16,26,36,46,56,66,76,86,96,106,116 X X X X
A - 32,37,42,47,52,57,62,67,72,77,82,87 X X X
FUNCTION GENERATORS
DCFG's
FOO - FO7 X X X
DFG's (not recommended for use)
A - 32,37,42,47,52,57 X
Sine/Cosine Function_Generators
A62, AS2 X
LOGIC

Logic is as shown on patchboard for all patchboards except
for: SCOPE, RECORDER, and DIS prown areas;

ERS-1, ERS-2, Y1, Y2, Y3, Y4, and D/A transfer control.
Also the analog input port to the CRT terminals 1is
available on consoles A1 and B1 only.

SYSTZEM A SYSTEM B
Analog~to-digital converters (ADC's) 32 ug
Digital-to-analog converters (DAC's) 24 24
Control lines on each analog console 16 16
Sense lines on each analoqg console 8 & '
General purpose interrupts per console 8 & i

Interface clock

Note 1: All ADC's are 14 bits plus sign. ADC's do not invert.
Note 2: All DAC's are 14 pits plus sign. DAC's do not invert
and all 24 are multiplying DAC's (DAU's).

The following table is also intended to help in producing
simulations which can run on any cornsole.

ADC!'s
Console A1
Console A2
Console B1
Console B2

CAC's/DAM's
Console Al

Console A2
Console Bl

Console B2'

693 INTERFACL SYSIEN

1 1 :

.

Numbers 0-31 as shown on patchboard.

None.

Numbers 0-21 as shown on patchboard.

Numbers 32-47 shown on patchboard as numbers
0-15.

DAM's #0-23 have 1nputs/outputs as shown on
patchboard. :

None

DAM's #0 - 23 have 1nputs/outputs as shown on
patchboard.

NoLne

CENTRAL TRUNKING SYSTEU

The new trunking system for the hybrid facility should offer
nunerous advantages to the user. The trunking caples have been
upgraded to a three wire 22 gauge system. The increased gauge
si1ze over the old system should reduce resistive losses and the
addition of the third wire should i1ncrease system stability
through reduced cable inductance and improve problem signal to
noise ratio's because of improved shielding. To take full
advantage of these benefits, however, the direction of signal
flow over your trunks must proceed in the direction we have
assigned to each trunk. That is, there are input trunks and
output trunks. Trunks are grouped by tens and placed 1n a cable.
All trunks within the cable are treated identically and the cable
becomes the fundamental patching unit, each trunk in the cable
being patched from the same source to the same destination.

A signal which originates on console number one {from an
amplifier output) and 1s received by console number two should be
patched through an output cable on console number one to the
trunking station then to an 1nput cable for console number two.

The trunking station consists of two open back cabinets
where the trunk cables containing ten signals from each console
terminate 1in highly reliable, rapid disconnect, multi-pin
connectors. Patching 1s accomplished by interconnecting these
cables to one another through short "patch" cables which have
appropriate mating conectors on each end. When trunk cables from
individual consoles are connected together via these "patch"
caples, the console's trunks are virtually hard-wired together.
The reduced connection points over a conventional patch board
systemn increases the reliability of connection three fold.

The patching of the ten-trunk cables through the terminating
connectors makes erroneous cable interconnection highly unlikely.
The connectors themselves make it impossible to inadvertenly
short a signal by reverse patching (high to low or vice versa) as
frequently occurs on conventional patchboads employing a three
wire system because of the ease of twisting a three wire patch
cord.

The impact of such a system to the user 1s that he must now
group all his signals in blocks of ten, with all signals
originating, for example, on console number one and terminating
on console number two being placed in the same group. Likewise
signals originating on console number two and terminating on
console number one should be grouped and placed in a different
block of ten trunks. In a similar fashion, signals which
originate on console number one and go to two different consoles,
for example, console number two and the SEL 810B should be
grouped and placed in a different block of ten. The latter block
will require splaitting the output cable from console number one
so that it may go to two input cables, namely one to console
nunber two and one to the SEL 810B. This can be acconmnplished by
using one of the six tie points available on the central trunking
station.

Since most problems\have a surplus of trinks, wasting trunks
by havaing unfilled blocks of ten should be no problem. Larger
simulations, however, may require more careful planning. For
those situations where 1t 1s 1impossible to ndake all
interconnections without splitting a group of ten, a conventional
AMP patch panel with 12 ten-trunk cables goiny to the central
trunking station is available for cross patching between cables.

A list showing the available trunks at the central trunking
station and their arrangement in cables 1s provided at the end of
this section. Notice that the list shows all i1nputs and outputs
available for trunking in the faciiity. UNote also that there 1is
no longer ary hard-wired trunks ketween consoles. Also note that
the consoles are numbered one through four instead of by thear
usual designations A1, A2, 31, and B2. This 1s becauise most
problems are no lonqger tied to a given console but can run on
either systen. Hence, when youa sigr up for a cousole, the
availaple consoles will define which 1s nunmnber one, which 1s
number two, etc.

A user conveys his patching confiquration to the hybrid
facility technicians (who will do the patching) via a trunking
setup sheet or block diagram. The user should £1ll out one or
the other for his problem. The sectup sheet or block diagram
should specify the user's patch panel number(s). This
information, together with the computer schedule poard, which
assigns the patch panel to a particular console, allows for the
proper patching of facilaty trunks by the technicians.

4

J.C.

DATE
AVAILADBLE TRUNKS-CENTRAL TRUNKING STATIon Sheet Jos 2
consonEs 1oy TRY8|%1+2 TRuwe| ¥3
(a1, 42|01, 62)
INPVTS | ovTPvTS INBUTS | avTpuUTS IMPUTS | surpuTS
20-79 o-2 15-RY o-9 30-39| 0-3
8o-89 | 10-19 25-33| 10-14 Yo=46 | 4o -19
90-99 | 20-29 20-29
100-/p9 | 30-39
0o =119 | Yo-43
Aux -9 | S0-59
bo-69 '
: Aux_10-l7
peec
Rec *2
TAPS
ai-
WPVTS ovT PUTS | pi1RECTIeamd] IMPVTS ovrpurs INBVUTS | ovrTs
{ vinTY
| 0-9 | o-9 0-9 e-% | c'3 -9 | 0-)
/10-19 12-19 v/r:':/'.;’(0°:9 1019 0-13 VAL)
20-232 22-29 20 Jo ke
36-39 20239 22:39 30-39 ‘
dy -9 bvg &9 | Lko-v9 ve-49
_ Se-g3 5083 Sv-59 ye-59
#9023 2zc % : i s 03 063
' 22-23 2ge Y2) l
| G0-%3 tez %3 ;

NASA

e -

- AVA|LABLE TRUNKS- CENTRAL TRUNKING STATIoN

J.c.

DATE

Sheet 2 o5 2

Am P cAdes S CABLES CAbLES CAbBLES
AD- YV 9“"'::'“’ CRos$PATEH 70 ¢ 70 7¢
Reces pAvEL | WT Pt pse 10 %00
‘::‘;u, EAcH ToRBE | ap
009 (‘:"‘; FAciLTY ¥
(e8)
[VOVTS conjone Yy case %7 9-9 0-3 o-3 °-3
09 "I n “2 10-/9 10-/9 10-79 10-/9
‘2 W 83 2,.29 | 20-29| 20-29 | 20-29
PUTPUTS 0 by | 30-39 [30-39| 30-39| 30-39
0-9 owsor g 2 no Y& Ho-Y9 YooY | Yo-42 Yo -4
o 2| 50-59
%2 v #y | Go-69
" “y 70-79
tawsoré ¥ o kg | 80-§9
£ v Bol 9e-%
42 "o 8y
1] g'z
Consnr Iy
¥
vz
SEL 818
£
‘2
STAT 19w ‘/[
“

NASA-C.8018(10.24-51)

How To Use The Trunking Systenm

To help eliminate confusion which might occur when using the
systen for the first time, we offer the following organizational
procedure for develoring your trunking system. First, list all
signals which need to be trunked. Second, list next to each
signal its source and all 1ts ultimate destinations. If all
signals which will reach a destination must go through a common
pornt for pre-processing (such as an attenuation amplifier before
going to the tape recorder) only the 1nitial destination need by
listed (ie. the attenuator amplifiers), as the remaining
destinations will automatically follow. Third, group the signals
which follow a common source—to-destination path. At this point
drawing a diagram similar to figure 1 showing the number of
trunks in each group will be helpful.

You are now ready to assign the signals to the trunks. Use
a new cable of ten trunks for each new group. A good method for
keeping track of which signals are on which trunks is to
construct a table such as the one provided at the end of this
section. Making assignments on such a table will further ease
cable layout, as the table clearly shows how signals can be
grouped into cables and which cables have unused trunks available
for further expansion. Furthermore, this table, coupled with
your diagram, will provide good documentation of your system for
tracing signals.

If you run out of cables at either a source or destination,
you w1ll have to split a cable which has some unused trunks.
This was the case in figure 1 where the AMP crosspatch panel was
used for splitting a cable from PSL. If you avoid assigning
signals to such splat cables until after all groups of ten have
been assigned, 1t will become obvious which signals you want to
put on the split cable. Becase of potential conflicts with other
users and the additional patching required, we discourage use of
the amp crosspatch panel unless absolutely necessary. Rather we
encourage use of tie points to route a source to two different
destinations. This may result in sending signals to places where
they aren't needed, but this 1s of no concern as long as there
are sufficient trunks at the destination to handle the unused
signals. In the example of figure 1, the crosspatch panel was
required because both the PSL 1 & 2 cables and the SEL Utility
cables were fully used. In general, this should be a rare
situation. We must also mention that no major catastrophy will
occur if a trunk within a cable is used backwards, that is using
an output cable for an input. The practice should be avoided,
however, as differential amplifers may pick up millivolt offsets.

Lastly, 1f you want the facility technicians to patch your
problem for you when you sign up for a console, you will have to
transiate the cable assignments to a trunk setup sheet or block
diagram as shown in figure 1.

10

J.0.
DATE
EXAMPLE OF TRUNK ASSIGNMENTS FoR MULTI-C(ONSOLE PROPAEBM o SHEET { ©F 2.

SovecE —> __ \pestwAnew —>
PsL S€L SEL M4
SlevAL Pst TAPE
e ———— R Y R N N R I S N O EIE SRt
A o o o
PnA ! ! {
ML R e 2
~vH 3 2 2
Sivy ¥ v CA
PO 5 5 5
FTuT A 2 le
Revv ? 7 7
Tra_| ¢ 4 ¥
72 ic, 9 | 9 J e
pPrasc /0 le d 5
PI25H i 7 //
prasec |)2 12 2
PPASH 13 L2 12
pra | 4 1y LY
wELH 15 15
PTlec 1o Lk
AT 17 12
PreH A1 1L ¥
- 2 9 | R I S+ M S
pgéLc 20 20
FaenN 2! al
weTeT R2 A2
prsaz 22 23
'i"‘“":,,j u-ie 2Y
TRACK v=i 25
Feesze V=12 2¢
BP forew U3 27
yL TRim Y=y 2%
T,
how

NASA-C.8018(10-24.51)
11

-

J.0.

DATE
EXAMPLE o TRUNK ASIENMSNTS R MXT\-(OUSD L PRBUEM puc SHNEET 2 o L
SOVRCE —2 PEsTINA T 10~ —
MAG
ps. | SE- Pse | SEL | rppn
SlevAL
WEF A6 v-1/ I/
OLEED FAb v-2 22
RY_FeAG v-3 32
RevY_FL46 v-y 3
ST.Y) v-s 235
wp T
J%?erfﬁ Vel 26 *
vl FLdé u-? 27 ;
L EVAY ;
CLosSE v-s 38 ;
5:'&- 8let U': 39 |
e g 0 -0 o .
AT Bre o~/ v/
AICem o-2 b2
vy em 0-3 43 |
wEComM | o-Y LYYy
Rew cm | o-5 | gy !
PEASE o=~ .y -
pPIstT -7 7 X
!
; |
F i L . PSSR SRS LI
i
[
| . T
i

ettt e e At e e et ot o0
.

+

NASA T

€T

PSL
1&2

(70-89) (0-19)
in (0-19) Prest Out (0-19) First In (0-13)] Mag
restons console tape
0-19) . In (0-19)["
Crosspatch

(20-29) Cable #3 20-23 20-23] Cable #1 In (20-29)
9499 ~—10713] cable #2 Utility 10-15)) o

(30-39) Utility (0-9)

(40-47) Qut (0-9)

Figure 1. - Patching block diagram for a typical job requiring splitting of a cable.

Brush_Recorders

With the new trunking system you are no longer restricted to
two Brush recorders per console. Normally, however, you will use
the two recorders adjacent to a console as the Brush recorders
for your problem before expanding to more recorders. Hence,
these recorders will normally be patched as if they were
hard-wired. When you run your problem on different consoles, you
w1ll automatically shift to the Brush recorder adjacent to that
console without having to patch anything on the central trunking
system (assuming you used the recorder input holes on the
console's patch board). If you use more than two recorders or if
you want the four recorders associated with a two console problenm
to be patched as three on the first console and one on the
second, you will have to indicate same on the trunk setup sheet.
The normal Brush recorder patching 1s permanently shown on these
sheets. To reqguest the removal of a normally patched cable, draw
a circle around the dot and put an X through the circle on the
trunk setup sheet.

If you have a one console problem but need three recorders
you will have to "steal" one from an available console. Hence,
you should £ill out the setup sheet as if you were using a
recorder from console number two. Likewise you should "steal"
the additional recorder from console number three 1f you have a
two console problem, etc. Which recorder you actually get each
day you run will depend on which recorder is available at the
time. The auxiliary 10-17 output cable from an analog console is
1deally suited for use in trunking to the third Brush recorder.

14

(1]

PACER_USER!'S_GUIDE
MOVING HEAD DISK

The dual disk system is a two platter system with both
hardware and software protect features. Each platter has a
hardware protect switch which, when on, prevents any output
(writing) to that disk. One platter (platter number 1) 1s a
removable disk cartridge, which contains user-derived files, and
is normally not hardware protected (switch off). The other
platter (platter number 2) 1s a fixed disk platter, which
contains system files, and 1s normally hardware protected (switch
on). Software protection is provided by MONITOR commands to be
discussed later.

15

OPERATING SYSTEM

Associated with the disk 1s what 1s known as the Moving Head
Disk Operating System (MHDOS). This software system consists of
a system loader, MONITOR, MONITOR input/output (I/O) routines and
system programs.

The disk MONITOR is the executive system routine that
enables the user to direct control of the digital processor
through the CRT terminal keyboard or the card reader. The MHDOS
also 1includes the Control Option Processor (.COP), a non-resident
control command processing program capable of interpreting
control command records to set processor and I/0 options, load
programs, and execute them as required.

The system programs consist of language processors, run-tinme
library (RTL), debugging aids, diagnostics, and various utility
routines. These programs are available in two types of format,
Core Image (CI) and Relocatable Object (0B). CI programs can be
loaded directly into memory by the MONITOR and occupy fixed
memory locations. The Core Image Generator (CIG) may be used to
generate a CI version of the relocatable programs whaich MONITOR
can load directly.

16

v ey g

FILE TYPES

The system programs and user-derived programs exist on disk
as named files. In addition to Core Image (CI) and Relocatable
Object (0B) files, Source (S0) and Data (DA) files may also be
output to disk by the user. The various file types are referred
to in the software by number. The file type numbers are given 1in
the following table:

FILE TYPE FILE TYPE NUMBER

Source (SO)

Relocatable Cbject (OB)
Core Image (CI)

Data (DA)

WK -O

The file type numbers, which must be entered by the user for
some commands, cannot be interchanged. That 1s, 4 CI file 1s
always type 2.

17

DEVICE NUMBERS

It 1s sometimes necessary for a user to specify a device
number (or a logical unit number in the case of disk files) when
entering a command. The following table lists the peripheral
devices and the corresponding logical unit number. While all
nurbers are octal numbers, they are not entered as octal (i.e.,
no apostrophy preceding the number) when using the operating
system progranms.

DEVICE LOGICAL UNIT NUMBER

CRT screen

CRT keyboard
Paper tape reader
Paper tape punch
Card reader

Line printer 20
Disk (logical units) 21-24

AN EDN -

While the disk logical unit numbers can sometimes be used
interchangeably, 1t is recommended that users adhere to a
speci1fic convention. In the following table, the recommended
disk logical unit number for each type of file 1s listed.

FILE TYPE LOGICAL UNIT NUMBER
Core Image (CI) 21
Relocatakle Object (OB) 22
Source (S0) 23
Pata (DA) 24

18

2.
3.

SYSTEM STAERTUP

Press the 681 (680) analog "POWER ON" button. The analog
console will go to Pot Coefficient mode (PC).

Press the "ENG" button to insure that the patch boards are
properly engaged.

Check the “REF", "MODE", and "DIGITAL COMPUT I/O" slave
switches located behind logic readout panel. Select the
proper combination.

Press the digital mode control "R". In this mode all logic
elements (such as "AND" gates and comparators) operate
normally.

Select the analog time scale by pressing "SiC" and either "A"
or "F" ("uS" is normally used tor analog Rep-op problens).
See reference 1 for further explanation.

Turn on the PACER digital unit. Be sure that "ZXECUTIE/RUN"
and "RESET 1,/0" and "COMP" have put the digaital in the "REST"
mode. If the computer is not 11 "REST", be sure that
"EXECUTE/RUN" is in the "DOWN" position and that "RESET I/O"
and "COMP" have been momentarily depressed.

Turn on the CRT (switch 1s under xeyboard).

Turn on the disk unit. ©Place 1t 2an the "READY" mode by
depressing the "RUN" button. About two minutes 1s needed to
get the "READY" light.

19

SYSTEM SHUTIDOWN

Place the disk in the "SAFE" mode by depressing the "STOP"
button. Wait about 20 seconds for the disk "SAFE" light to

come oOn.
Be sure the digital 1s in the "REST" mode. Turn off the disk

and digital.
Turn off the CRT (and Hard Copier, if on).
Turn off the analog consoles.

20

1.

2.
3.
4.
S5«

MONITOR EMNTRY

Place the disk in the "REALY" mode by depressing the disk
YRUN" button.

Release the "EXECUTE/RUN" switch (down position).
Momentarily depress the "RESET I/C" and "COMNP" switches.
Enter '77777 in the P register

Place "EXECUTE/RUN" in the up position.

NOTE: If MONITOR appears to be "bombed", double check that the

disk is "READY" before referring to page 2-1 in reference
2 for using the Bootstrap Loader to reload MONITOR.

21

MONITOR COMMANDS

In the following table, the more common MONITOR commands,
with examples, are listed and briefly described. Additional
commands and more detail may be found in chapter 2 of reference
2.

In the table below, LU refers to the disk logical unit
number; ADR to the starting octal address of the program; DEV to
the peripheral device number; X,A,Q0,K (in #R command) to the four
hardware registers which have to be set prior to executing sone
systen programs; and T to the file type. All names may consist
of up to six alphanumer:ic characters.

MONITOR COMMAND FUNCTION

(EXAMPLE)
#L,NAME,LU Locate and load CI file (named JONES)
(#L,J0NES,21)
#G, ADR Execute program in core (starting at *'1000)
(#G,1000)
#X,DEV Transfer control to .COP {at keyboarad)
(#X,2)
#R,X,A,0,K Set hardware registers (X=0,A=2,0=1,K=0)
(*Ry,2,1)
#S,NAHE,LU Secure CI file (named JONES) - software protect
(#s5,J0NES,21)
#U,NAME,LU Unsecure CI file (named JONES) - unprotect
(#U,J0NES,21)
#P, NANE,LU Position to a source file (named SMITH)
(4P ,SMITH,23)
#N,NAME,LU,T Create a new source file {(named SUB)

(#N,SUB,23,0)

4D ,ADR1,ADR2,LU Dump memory (between 0 and 23141) in CI format
(#D,0,23141,21)

#C, LU Close the open file {source)

(#C,23)

#D,DEV Change input device (to card reader)
(#I,6)

22

CONTROL OPTION PROCESSOR (.COP)

With the above MONITOR commands, the user can load and
execute a CI file. However, if he desires to create a new
program, considerable effort can be avoided by using the Control
Option Processor (.COP) for compiling (or assembling) and forming
CI files.

.COP Standard Options

Source input device for Compiler or Assembler - Card Reader
Source listing device for Compailer or Assembler - Line Prainter
Object output device for Compiler or Assembler - Disk LU 22
Object input device for Core Image Generator (CIG)- Disk LU 22
Core image output device for CIG - Disk LU 21

COMPILER OPTIONS

Source statement listing

Map listing

Error message listing

No symbolic listing

Write object output on disk

In-line assembly processor active

Card reader driver active

Paper tape input driver actaive

Format error scanner active

No in-line assembly coding for integers and scaled fractions
No in-line assembly coding for floating point processor

ASSEMBLER_OPTIONS

No pause between passes
Scratch file on disk LU 24

CORE_IMAGE GENEEATOR_(CIG) OPTIONS

Zone Zero base starts at '00000

Top of common is '60000

Program execution address is '1000

Memory map listing included (set SSW A to suppress)

23

.COP Commands

Exceptions to the above .COP options can be made by the user

for a specific job by 1ssuing .COP control commands.
following table the more common .COP control commands,
examples, are listed and briefly described.

In the
with
Additional commands

and more detail may be found in chapter 3 of reference 2.

.COP COMMAND
(EXAMPLE)

$JOB
($J0B)

$IN,DEV
($IN,4)

$IN,LU,NAME
($IN,23,SMITH)
$0UT,LU,NAME
($ouT,21,SUB)

$FOR,"OPTION STRING"
(3FOR,NOL,NOM,NOD)

$FOR NAME,"OPTION STRING"
($FOR SUEB,I)
$FILE,LU,NAME
($FILE, 22, LINKN)

$LOAD
($LOAD)

$RENAME,LU,NAM1,NAM2
(SRENAME, 21,CRMG,HMINE)

$MON
($MON)

FUNCTION

Initialize .COP for batch job

Specify input device (as Paper Tape
Reader)

Specify 1nput device (as disk) with
source file name (SMITH) for use with

Compiler or Assembler

CI file (named SUB) 1s created,
identified, and positioned

Compile (with no Source list, no Map,
and no Object, i.e., Error list only)

Compile (with i1n-line assembly coding
for Integers and Scaled Fractions;
file name will be SUB)

Specify file other than RTL for CIG
loading; (specify linkage routines)

Create a Core Image file
Change name (of disk file CRMG to MINE)
(cannot be used for secured files;

use #U MONITOR command first)

Return control to MONITOR.

24

No more than five $FILE commands may be gaiven for a specific
job. If more than five files, 1n addition to the main program
and the RTL, are required, .COP cannot be used. See section 2.9
of reference 2 for using the CIG directly.

While the $0UT command (and $FOR for Object files) can be
used to name Object and Core Image files. It 1s normally
reconmended that names not be specified initially. If no name is
specified, the default names; OBJTAA through OBJTZZ for Object
files, and CRMGAA through CRMGZZ for Core Image files, w1ill be
assigned by .COP. If it is then determined that the file 1s to
be retained, the file can be renamed with the $RENAME ccmmand.
The primary reason for taking this approach 1s to simplify the
disk housekeeping chores to be discussed later.

Following a $LOAD (.COP command) the Core Image Generator
(CIG) 1s loaded by .COP and control passes to the CIG. If the
CIG detects an error, control passes to the user at the keyboard.
This is indicated by the printing of an asterisk (*) on the CRT
terminal. The user must, before exiting from the CIG, close the
output file with a #M command.

25

MONITOR AND .COP SYSTEM RESPONSES
RESPONSE MEANING

M MONITOR entered and waiting.

LINKN OB P2 9051tlonin§ successful for Object file, LINKN,
on platter 2.

YOURS SO P1 Positioning successful for Source file, YOURS,
on platter 1.

.COP CI P1 Positioning successful for Core Image file, .COP,
on platter 1.

LD Successful load.
C .COP entered.

! .COP waiting.

FR Free area of disk found.

? File not found, duplicate file name, or command
error,

CE Core Image error (wrong type file following #L
command).

DE Disk hardware error, try again.

AR Card Reader not ready.

KB Keyboard control.

PV Protect violataion.

UN Unit error (not 21,22,23, or 24)

op Last file on platter still open.

CL The last file left open was just closed.

See chapter 2 of reference 2 for additional error and
recovery procedures for MONITOR and the CIG, and chapter 3 for
.COP messages.

26

INTERACTIVE UTILITY PROGRAM (MIU)

The Interactive Utility (MIU) program 1s used pramarily for
disk housekeeping chores. If some of these chores are not taken
care of, the disk space would rapidly be used up. MIU can be
used for many functions, However, the average user need ouly
concern himself with a few of the functions; listing files on
disk, deleting files that are no longer of value, and possibly
providing a user identification for files.

The loading and executing of MIU 1s accomplished with
MONITOR commands as follows:

#L,MIU,21 Load MIU.
$R,,2,1 Set required registers.
#G,1000 Execute MIU.

After MIU is entered, the user responds to messages at the
CRT terminal. The user response to the first message informs the
MIU control program that the disk is on the Direct Memory Access
channel (DMAC). The 1nitial message and response 1S:

DMAC? MIU request.
D User response.

MIU then asks the user what task is to be performed and on what
logical unit the desired function subroutine can be found.

27

Listing Files

If the user wanted to laist all files on platter 1 at the CRT
terminal, the messages and user responses would be:

TASK DESIRED,UNIT MIU request.

LIST, 21 User response for list.

FROM,TO MIU request.

D,21,1 User response (from disk to CRT).
WHICH PLATTER MIU request.

1 User response for platter 1.

The LIST subroutine of MIU would then list all files by
rame, giving file type number, track number, and sector number.
If the user just wanted to list those files following and
including a particular file, named HIS for example, the message
and response would be:

TASK DESIRED,UNIT
LIST,HIS,21

Similarly if it was desired to list only those files between
and rncluding HIS and HERS, the message and response would be:

TASK DESIRED,UNIT
LIST,HIS,HERS,21

If the user now wanted to delete a file, named HIS, from
platter 1, the messages and responses would be:

TASK DESIRED,UNIT MIU request

DEL,21 User response for delete

FROMNM MIU request

D User response for disk

WHICH PLATTER MIU request

1 User response for platter 1.
NAMES TO BE DELETED MIU request

HIS User response to delete file HIS.

One important point to note here 1s that any time a delete
command 1s gaven, all files given default names; OBJTAA through

28

OBJTZZ and CRMGAA through CRMGZZ, by .COP, are also deleted. If
more than one named file is to be deleted, up to eight may be
deleted at once by responding with a string of names. For
example, the message and response to delete four files might be:

NAMES TO BE DELETED
HIS,HERS,MINE,YOURS

29

User Identification of Files

Two ways to protect disk files have been discussed.
Hardward protection (via the protect switches) will not allow
anything to be written or changed on disk. Software protection
1s provided by the #S (secure) MONITOR command and prevents
inadvertent writing on the protected file. However, it does not
prevent deletion of the file with the MIU delete function. A
safeguard against this possibility is provided with the use of a
user identification for a file.

To provide the user i1dentification, MYFILE, for a file,
named SUB, on platter 1, the messages and responses would be:

TASK DESIKED,UNIT MIU reguest

USERID,21 User response for ID.

WHICH PLATTER MIU request

1 User response for platter 1

FILES TO BE GIVEN USERID MIU request

SUB User response for file SUB.

USER ID FOR FILES MIU request

MYFILE User response with ID for file SUB.

Cnce a file has a user ID, it can only be deleted by
responding to a request for the user ID by MIU when using the
delete function. It should also be noted that a user ID can only
be changed by deleting the file and placing it back on the disk.

It is up to the user whether or not to provide user ID for
his files. However, 1t 1s generally not considered necessary.

30

s v
.

Return to MONITOR

. At the complétion of each MIU task, MIU requests a new task.
To return to’ MONITOR, the message and response is:

TASK DESIRED,UNIT) _ MIU request
M0, 21 ’ User response to return to MONITOR.

For additional information on MIU, see chapter 11 of
reference 3.

31

OEDIPUS DEBUG PROGRAM (OED)

The OEDIPUS DEBUG program is a utility routine operated
on-line in a conversational mode. Commands from the CRT terminal
provide for storage readout, correction, search, save and dump,
trap setting, and program loading.

The loading and execution of OEDIPUS DEBUG 1s accomplished
with MONITOR commands as follows:

#L,0ED,21 Load OEDIPUS DEBUG.
#G, 70100 Execute OEDIPUS DEBUG

OEDI?US types "OK" and waits for a terminal command from the
user. Ccmmonly used commands, where N 1s an octal arqument, are:

N: Open a cell and display 1t.
N; Open and display relative—addressed cell
R Open next cell on next line.
' Open next cell on same line.
- Open previous cell
NG Go to address N.
G Execute from last trap encountered
NA Set accumulator to N
NQ Set Q register to N.
NX Set Index register to N.
NK Set K register to N.
SPACLE BAR Display A, Q, X, and K registers.
NL Set lower limit of block to N.
NU Set upper limit of block to N.
NB Set base address.
NZ Set zone zero location for trap poainter.
NT Set trap at N.
NW Wipe out trap at N.
W Wipe out all traps.
ND Dump with N colunmns

RUB OUT KEY Delete current digit strang.

For additional information on OEDIPUS DEBUG, see chapter 6
of reference 3.

32

HYBRID DEBUG PRUGRAM (HYDBG)

HYBRID DEBUG is a utility routine which serves as a
debugging aid for the Hybrid user. It is samilar in nmany
respects to OEDIPUS DEBUG. The following functions may bpe
performed: storage readout, storage dump, storage correction,
storage search, breakpoint set, load DAC, list ADC or sense
lines, set or reset control lines, read or set pots and DCA's,
and program timing.

The loading and execution of hYBRID DEBUG 1s accomplished
with MONITOR commands as follows:

#L,HYDBG, 21 Load HYBRID DE3UG.
#G,61000 Execute HYBRID DEBUG.

HYBRID DEBUG outputs a carriage return and line feed and
waits for a terminal command from the user. Conmmonly used
digital commands, where N 1s an octal argument, are:

B Clear breakpoint
D Dump memory between $B and $E (8 per line).
LF Open next cell on new line
N3 Open and display N.
N,B Set breakpoint at N.
N,G Transfer control to N.
RUB 0OUT Delete characters.
$B: Set lower limit of Block.
$E: Set upper limit of block.
"Up Arrow" Display previous cell.
/ Display effective address of opened cell.

Commonly used Hybrid commands are:

OADXX,L List value of ADC channel XX.

D?CKKK=, XXXX Set pot KKK to the value .XXXX

DEKKK =, XXXX Set DCA KKK to the value -.XXXX
?DAXX=.LLLL Output to DAC chanrel XX the value .LLLL
21,K Select console 1.

DXXXXX,YYYYY,E Time program execution from XXXxX to YYYYY.

For additional information on HYBRID DEBUG, sSee chapter 7 of

reference 3.

33

Basic Text Editor (BTE)

OTHER EAI PROGRAMNS

- Discussed in reference 3, chapters 1-5.

Hytran Operations Interpreter (HOI) - Discussed 1in reference 4,

chapters 11-15.

Core Image Generator (CIG) - Discussed in reference 2, chapter 2.

34

"

COMMAND SUMMARY

LOAD AND RETURM TO
PROGRAM NAME EXECYTE COMNMANDS MONITOR COMJANDS

.COP $X,2 $U0N

MIU #L,MIU,21 Mo, 21
#R,, 2,1
#G,1000

HOI #L,H0I,21 R
%R,,,7C000
#G,1000

BASIC TEXT EDITCR #L,BTE, 21 M
#R,,,170000
#G,1000
If editing from/to disk do:
4L,BTE, 21
#R,,, 170000
#P,0LDNAME,22 Note that these unit numpers
#N,NEWNAME,23 must ciffer

#G,1000
OEDIPUS
#L,0ED, 21 71777,6
#G,70100
HYBRID DEBUG #L,HYDBG, 21 77777,6
#G,61000
SETUP #L,SETUP, 21 tnd of program or
#G,1000 PACER control panel
GENERAL USER PROGRAM #L,NANME, 21 "Call YONOUT" or
#G, 1000 PACER control panel

Once a user's program has been loaded, reentry to his
program can be accomplished at the digital console without
returning to MONITOR. Simply enter '1000 in the P register and
place the "Execute/Run" switch in the up position. It 1s
recommended that when the disk 1s no longer needed, that it be
placed in the "SAFE" nmode.

35

LEWIS FACILITY SOFTWARE

Bivariate-Function Routine (MAP, MAPL)

Statistics
Name: File- MAPS
Subroutines- MAP, MAPL, MOOR, DATAIN
Common - MAPDAT,MAPVAL
Type: Fortran callable subroutines
Location: PACER A and B Moving Head Disks
Length: (MAP,MAPL) - '322
MOOR - '164
DATAIN - *1655
MAPDAT - Variable
MAPVAL - '3
Programmer: William M. Bruton
Source: (MAP,MAPL) - Assenbly lanquage cards
MOOR, DATAIN - Fortran cards
Date: August 1978
Subroutines Required: (MAP,MAPL) - MOOR
MOOEK~ LINKN and Fortran RTL libraries

DATAIN - Fortran RTL libraries.

loading Sequence: MAPS, LINKN, the Fortran RTL Libraries.

Descraiption

A new fortran callable function subprogram has been written
to replace "MAP2" for generating functions of two variables.
This new program, called simply "MAPY, is more general than
"MAP2" 1n that it does not make use of fixed data array sizes.
The user specifies the size of all data arrays or tables.

"MAP" may be used for any function of two variables, but was
written specifically to handle functions that cannot be defined
over a4 rectangular array. That 1s, each curve, Y, does not have
to extend over the entire range of points, X. '"MAP" perforns

36

radial interpolation of the map data and updates MAP :
interpolation search indices prior to returning to the calling
program. Upon reentry for each map, the search begins in the X
and Y intervals previously used for that particular map.

Use

Some basic requirements of "MAP" follow. (1) Each curve of
a given map must have an equal numper of breakpoints. The
assumption 1s then made that corresponding points on the curves
are functionally related. (2) For each map, the curves, (Y
values) and for each curve, the points (X values) must pe entered
in increasing order. (3) Consecutive scaled values of X, Y, and
the output, Z, must differ in magnitude by less than 1.0. This
applies to consecutive values of X and Z on the same curve as
well as X and Z values in corresponding positions on consecutive
curves.

If more than one function. (i.e., 21, 22, .-.., Zn) with
common inputs, X and Y, are required, a second entry point to
"MAP", called "MAPL", may be used. This applies only if
identical X and Y values are used. Considerable processor tinme
and core requirements can be saved by using "¥APL". If "MAPL" 1s
used, it must be called before callaing "MAP" for a different
function. M"MAPL"™ looks up and calculates function outputs only.
No searching i1s done. It depends on the preceding entry to "MAPY
to find the correct table entries. The number of common
functions is limited only by the amournt of computer memory
available. , e)

The computation time for one "MAP" function 1s 280
microseconds if the inputs remain i1n the same data intervals. If
an input moves to a new interval, 20 to 30 microseconds of
additional time is required per irnterval change. The computation
time for "MAPLY is 80 microseconds.

For each map (i.e., set of X and Y input values), two arrays
must be declared. The first array 1s an integer taple of length
5. If two or more maps are involved, then an egual number of
integer arrays must be declared. These arrays must be
dimensioned consecutively (i.e., no other dimensions in between
these arrays).

The second array for each map is a scaled fraction data
table. The length of this table depends on the numper of curves
(NCV) , number of points per curve (NPT), and the number of
functions with common inputs (NFCT). The table size for each map
can be determined by using the following formula:

TABLE SIZE = NCV * (NFCT * NPT + NPT + 1)

If two or more maps are anvolved, then, as for the integer
arrays, an equal number of scaled fraction arrays would have to

37

be declared consecutively with no other scaled fraction
declarations in between the arrays.

In addition to any problem variables that are declared
scaled fractions, MAP and MAPL, 1f used, must also be scaled
fractions.

The call to the subprogram "MAP" contains four arguments
which are in order; the integer array, the scaled fraction array,
the X i1nput variable, and the Y input variable. For example:

ZB1 = MAP (NB,FB,XB,YB)

If a second function with common inputs 1s 1included, only
one argument 1s contained i1n the call, namely the scaled fraction
array. For example:

ZB2 = MAPL (FB)

To be used 1in conjunction with "MAP" and "MAPL" are two
subroutines; "DATAIN", which is called to read map data fronm
cards, and "MOOR", which 1s called to determine what map, if any,
has gone out of range.

Data Input Subroutine {(DATAIN)

4

The call to the subroutine, "DATAINY", contains two
arguments, the integer array of the first map and the scaled
fraction array of the first map. For exanple:

CALL DATAIN(NA,FA)

"DATAIN" reads cards which, in addition to the unscaled map data,
tncludes the size of the map array, the scale factors of the
data, and the formats in which the scale factors and data are to
be read. The subroutine then scales the data and fills the
integer and scaled fraction arrays for each map. It continues to
read maps until a blank card is read which initiates a return to
the calling program. The subroutine can accommodate up to 25
curves per map, 25 points per curve, and 4 functions with common
inputs. An exanmple of map data follows. A descriptaion of what
1s on each card follows the example.

MAP NUMNBER ONE

38

1 3 5 1
(3F8.1) (5F8.1) (3F8.1) (5F8.2)

50.0 20000.0 0.1

4000.0 8000.0 12000.0 Y VALUES
0.0 20.0 35.0 40.0 45.0 X VALUES
0.02 0.02 0.02 0.01 0.00C Z1 VALUES
0.0 5.0 15.0 27.5 40.0 X VALUES
0.04 0.04 0.04 0.02 0.00 Z1 VALUES
0.0 5.0 10.0 15.0 20.0 X VALUES
0.06 .06 0.04 0.02 0.6G06 Z1 VALUES

MAP NUMBER TWO

2 3 5 3
(5F8.1) (5F8.1) (3F8.1) (5F8.1) (5F6.2) (5F8.3)

1.0 1.0 1.0 1.0 1.0

0.2 0.4 0.6 Y VALUES
0.0 0.2 0.3 0.4 0.5 X VALUES
0.3 0.3 0.2 0.1 0.0 Z1 VALUES
015 0.15 0.10 0.05 0.00 Z2 VALUES
0.225 0.225 0.150 0.075 0.000 23 VALUES
0.0 0.4 0.5 0.6 0.7 X VALUES
0.6 0.6 0.4 0.2 0.0 21 VALUES
0.30 0.30 0.20 0.10 0.00 Z2 VALUES
0.450 0.450 0.300 0.150 0.000 23 VALUES
0.0 0.6 0.7 0.8 0.9 X VALUES
0.9 0.9 0.6 0.3 0.0 Z1 VALUES
0.45 0.45 0.30 0.15 0.00 Z2 VALUES
0.675 0.675 0.450 0.225 0.000 Z3 VALUES
MAP NUMBER THREE

3 3 5 1

(3F8.1) (5F8.2) (3F8.1) (5F8.1)

1.0 1.0 1.0

0.2 0.4 0.6 Y VALUES
0.00 0.30 0.55 0.70 0.90 X VALUES
0.2 0.2 0.2 0.2 0.0 Z1 VALUES
0.00 0.20 0.30 0.55 0.80 X VALUES
0.4 0.4 0.4 0.2 0.0 Z1 VALUES
0.00 0.10 020 0.30 0.40 X VALUES
0.6 0.6 0.4 0.2 0.0 Z1 VALUES

CUORVE
CURVE
CURVE
CURVE
CUBVE
CURVE

CJIVE
CURVE
CURVE
CORVE
CURVE
CURVE
CURVE
CURVE

‘CURVE

CURVE
CURVE
CURVE

CURVE
CURVE
CURVE
CURVE
CURVE
CURVE

Note: A blank card must f£ollow the last data card of the last

map.

The first card for each map contains the map namber, the
number of curves, the number of points per curve, and the nunper

of common functions in 4I3 format.

The second card for each map contains the formats for the

39

WWWWNNMNN D G- WAWNN -

W W NN s

scale factors, the X input values, the Y input values, and the Z
output values. The format of the card 1s 16A2 for one function,
2082 for two functions, 28A2 for three functions, and 28A2 for
four functions.

The third card for each map contains the X, Y, and Z scale
factors in the format as specified on card two.

The remaining cards for each map contain the Y values, X
values, and Z values in formats as specified on card two.

One important consideration, when preparing data, should be
noted. Data blocks should not be merged on the same card.
Referring to the example, if the X values of map number one had
been read in a 4F8.1 format (instead of 5F8.1), the first four
values would appear on one card and the fifth value on a second
card. The Z1 values would then start on a third card.

If functions arise where the data 1s such that for each
curve the points may be defined by 1dentically the same X values,
these values rneed only be included once, immediately following
the Y values. To identify this case for "DATAIN", a non-zero
integer in I3 format should be added to the first card of the map
data. The first card for that map would then be ain 5I3 format.

This will save some cards, but it-will not reduce the scaled
fraction data table size. That is, YDATAIN" will fi1ll the data
table with one X value for each Z1 value. This 15 necessary
because of the manner in which "MAP" manipulates the data.

Map Out of Range Subroutine (MOOR}

The subroutine, "MOOR", 1s called both by "MAP'" and the
user's program. It is used to inform the user when a map i1nput
has gone out of range and which map it is.

Some logic patching on the analog board 1s required for
"MOOR" to function. The specific patching 1s shown in figure 2.

If a map variable has exceeded the data range, 1t 1s called
to the attention of the user by the BCD counter lamps flashing on
the analog logic indicator panel. To determine which map Las
gone out of range, the user pulses a logic pushbutton (PB5) "OFF"
at which time the map number and values of the i1nput variables
are displayed on the CRT screen. Note that once the CRT screen
is filled, the terminal will either overwrite or, 1f the "BUSY"
switch is on, lock up the digital computer. To avoid thas
problem when running a saimulation, 1t is recommended that the
"BUSY" switch be "OFF" and the "BREAK" button be pushed which
allows the terminal to "AUTOPAGE" or clear the screen when it 1s
full.

Two of the logic components 1llustrated must be specifically
used, control line 9 (CL9) and sense line 6 (SL6). SLx may be

40

iy

*YOOW aulno.agns Joj Buiyoyed 21607 - g 84nbid

Sdd 01

19

dodg

L=

prd
X1S Xdd <]

<

915 619

any other sense line, but 1t must correspond to the coding in the
user's program which will be discussed later. The "AND" gates, A
and B, may be any "AND" gates, the BCD counter may be any
counter, and PBx may be any logic pushbutton on the conscle. The
10 PPS (10 pulses per second) terminal on the patch panel 1is
recommended so that the lamp £flashing of the BCD counter is more
prominent,

Control line 9 and sense line 6 are used in "MOOR". when
"MOOR" is called by "MAP", sense line 6 is tested. If no map out
of range message 1is pending, sense line 6 is "LOW" and control
line 9 is set which initiates the BCD counter and sets sense line
6 "HIGH." The map number and input variables are stored. "MOOR"
returns to "MAP" to continue computation of an output variable
using the calculated "OUT OF RANGE" data value as the input
value. No extrapolation of the data is performed by "MAP".

If sense line 6 is "HIGH," there 1s a pending message from a
previous call to "MOOR". '"MOOR" immediately returns to "MAP" and
the program continues as above. Once the user interrogates via
the logic pushbutton, the pending message is displayed and
control line 9 1s reset, which in turn resets the BCD counter.
"MOOR" then returns to the user's progran.

The only Fortran coding regquired in the user's progranm to
obtain map out of randge messages is a logical declaration and two
executable statements. The executable statements are:

CALL QRSLL (5,PB5,IER)
IF(PB5) CALL MOOR({0,X,Y)

In the first statement QRSLL 1s a Hybrid Linkage subroutine
for testing sense lines. The subroutine arguments are the sense
line number (0-5 or 7), a logical variable which will be "TRUE"
1f£ the sense line 1s "HIGH" and "FALSE" if the sense line 1is
"LOW," and an error flag which is requaired for all linkage
routines. In the example above, sense line 5 was used and the
logical variable was PB5, which must be declared logical at the
beginning of the program.

The second statement 1s a logical test. If the variable ais
"TRUE", 'MOOR" is called which allows display of the map out of
range message and then continues. If the variable 1is "FALSE",
the program continues. In this statement the arguments of the
subroutine, "MODR", must be the integer, zero, and any two scaled
fraction variables. these variables are dummy variables that are
ignored by "MOOR" 1f the first arqument is zero.

Disk Files (MAPS, MAPLOT)

All of the sunprograms, discussed above, are contained on
one disk file, named YMAPSY,

A program that will provide CRT plots of map data 1s also

available. This program reads the map data i1dentically to the
data 1nput subroutine discussed above. The disk file name of

42

this program 1s "MAPLOT".

A sample hybrid program follows to 1llustrate the calls to
“MAP", “MAPL", "“DATAIN", and "MOOR":

43

Cx%%%*SAMPLE HYBRID PROGRAM USING MAP AND MAPL 8/22/78 WMB
Ce-.--INTEGER ARRAYS FOR THREE MAPS
DIMENSION NA{S5),NB(5),NC(5)
Ceve~<SCALED FRACTION ARRAYS FOR THREE MAPS
SCALED FRACTION FA(33),FB(63),FC(33)
Cueveee+.SCALED FRACTION DECLARATION FOR PROBLEM VARIABLES
SCALED FRACTION XA,YA,XB,YB,XC,¥C,2ZA,ZB1,ZB2,2B3,2C,MAP,MAPL
Commne LOGICAL VARIABLE USED TO DETERMINE WHICH MAP WENT OUT OF RANGE
LOGICAL PBES
Cewwe-INITIALIZE HYBRID SYSTEM
CALL QSHYIN(IER,681)
Cevee.DESELECT ALL CONSOLES
CALL QSC(0,IER)
C..+«-SELECT CONSOLE 1 ONLY
CALL QSC(1,IER)
Ceee.-CALL MAP DATA INPUT ROUTINE
CALL DATAIN(NA,FA)
Cee~e.READ ADC'S
10 CALL QRBADS(XA,0,6,IER)
Cewwe.-CALL MAP FOR FUNCTION A !
ZA=MAP (NA,FA,XA,YA)
Covmns CALL MAP FOR FUNCTION B
ZB1=MAP (NB,FB,XB, YB)
Ceee..CALL MAPL FOR SECOND B FUNCTION
ZB2=MAPL (FB)
Ceve..CALL MAPL FOR THIRD B FUNCTION
ZB3=MAPL (FB)
Ceeee.CALL MAP FOR FUNCTION C
ZC=MAP (NC,FC, XC,YC)
Cee..-WHRITE DAC'S OR DAM'S
CALL QWBDAS(ZA,0,5,IER)
Cee...TRANSFER DAC'S OR DAM'S TO ANALOG CONSOLE
CALL QSTDA
Ceeas.PULSE PUSHBUTTON 5 "OFF" SWITCH FOR MAP OUT OF RANGE MESSAGE
Cev...TEST SENSE LINE 5
CALL QRSLL (5,PB5,IER)
Ceewe-TEST LOGICAL VARIABLE; IF HIGH, CALL MAP OUT OF RANGE ROUTINE
C FOR CRT MESSAGE
IF (PB5) CALL MOOR (0,XAa,YA)

C.ew--.RETURN TO READ ADC'S AGAIN
GO TO 10
END

44

e

(»

Data Transfer from PACER to IsM 360 (SFDD3, FDDC, FDDR)

Statistics

Name:; SFDD3, FDDC, FDDR
Type: Fortran callable subroutines
Location: PACER A and B Moving Head Disks
Length: '42
Programmer: David S. Cwynar
Source: Assembly language cards.
Date: June 16, 1978
Subroutines Required: CIPHER I/O library, DISK or NODISK,
The Fortran RTL.
Loading Sequence: SFDD3, CIPHER I/0 library, DISK or XNODISK, the
Fortran RTL.
NOTE: MONITOR must reside in core at run time 1f

using the moving head disk (1e. DISK).

Description

These three Fortran callable soubroutines are used to
transfer floating point data from the PACER 100 to the IBM 360 or
similar computers by producing a $3 type formatted data dump.

The device to contain the dump may be paper tape, floppy disk,
moving head disk, or any other device acceptable to the AOP
subroutine of the CIPHER I/0O library.

45

As of this date, the regquired CIPHER I/0 library disk draver
routines (DISK) are not available, however, they will be
1mplemented shortly so a description of their use will be given
here.

The first decision to be made, before these routines (SFDD3,
FDDC, FDDR) can be used, i1s how one wishes to format one's data.
A single record (ie., length of paper tape, disk file etc.) may
consist of one or more data blocks. Each data block of a record
nust contain the same number of words (ie. the same number of
floating point numbers). The purpose of breaking the data record
intc blocks 1s for ease of locating errors when reading the data
into the 360-. When an error 1s detected, the message received
refers to a line number within a given block. TIf there are many
lines within a block, a lot of line counting could be regquired
when searching the paper tape to correct the error. On the other
hand, if blocks are too small, the read-in time will be excessive
pecause of a large number of "overhead" lines which are created
for each data block. The user can decide on the data block size
to use by studying the 33 format described at the end of this
progran description. Experience has indicated that blocks
between 100 and 200 words are a "nice" size, with up to 500 words
not being overly long. The maximum number of data blocks is
limited to 100 by the $3 format. The maximum number of words per
data pnlock that the PACER 100 can handle 1s 32767.

Once you have decided on the data block size and number of
data blocks/record, you are ready to program calls to the S¥DD3,
FDDC, and FDDR subroutines into your main program. Your main
program will also have to contain the logic to 1initiate a dump,
accept operator commands (such as file names etc.) or any other
special operations necessary for controlling the dump process.
The sequence of events from the start of a dump to completion of
a single record must occur as follows:

1) Initiate the output device to accept data by:

CALL FOPENO(IUNIT,NAMEXX)

Where: IUNIT is the logical unit number (an integer) of the
device to be used (17('21), 18('22), or 19('23) for the
moving head dask, 5 for high speed paper tape punch,
20(*24) for floppy disk, 16('20) for the line printer,
etc.).

NAMEXX 1s a six character alphanumeric file name. It must
be exactly 6 characters long. Any unused characters
should be defined as spaces. Failure to provide at least
6 characters will result in unknown characters being
picked up and used- hence you won't know the name of your
file and may never be able to access it again!

I1f using floppy disk, the file name 1s used to
indicate the track and sector on which writing or reading
will start as well as to select which of two possible
disks will be used. Hence, NAMEXX must have the format:

46

FDXYYZ, where X, YY, and Z indicate disk number (1 or 2),
track number (00 thru 63), and sector respectively. The
synbols to be used for sectors are listed in Table 1. If
you wish to manually be able to access the starting
sector, such as when reading data into the 360, you must
specify sector 00 by making Z the "3a" symbol. For
example, to write on disk #1 starting at track 55 sector
0, NAMEXX would be as follows: FD155@. To wraite disk #2
starting at sector 0 track (0, NAMEXX would be: FD200a.
Table 1

Symbols for Floppy disk sector numbering

SECTOR # SYMBOL SECTOR +# SYMBOL
0)] 16 P
1 A 17 Q
2 B 18 R
3 c 16 S
4 D 20 T
5 E 21 U
6 F 22 v
7 G 23 N
8 H 24 X
9 I 25 Y
10 J 26 Z
" K 27 RIGHT 3RACKET
12 L 28 FORM
13 M 29 LEFT BRACKET
14 N 30 UP-ARROW
15 0 31 UNDERSCEKOE

To simplify the software and make manual reading possible,
there 1s no directory for the floppy disk. Hence, you must keep
accurate records of the starting and ending track/sector for each
file. Ending track numbers are easily read from the front panel
indicator on the disk unit when all wrating to floppy disk has
been completed. One need only keep records of track numbers if
all files start at sector 0 of the next available track.

The call to FOPENO, as described above, 1s optional (but
recommended) 1f you are using the paper tape purch. This unit
may be readied manually at run time by pressing the "FEED" button
before the machine begins its dump. Hence, the program need not
call FOPENO.

2) Put the header on the dump by:
CALL SFDD3(IUNIT,NPTS,NBLOCK)

Where: IUNIT is the logical unit number (an integer) of the
device used and must be 1dentical to that supplied to the
FOPEND subroutine.

NPTS 1s an integer = to the rnumber of words per data
block.
NBLOCK is an integer = to the number of the last data

block in the record.

47

Once you have completed the above two procgedures, the dump
1s properly started. You must then dump the data by repetitively
calling the followaing subroutines as described below. The value
of ICHAN must start at O.

3) Put the block identification number at the start of a data
block by:

CALL FDDC {ICHAN)

Where: ICHAN = the integer block nunber.
4) Dump the data by calling FDDR NPTS times (i.e., once for each
data word of the block).

CALL FDDR (REAL)

Where: REAL = a single precasion flcating point real value to be
placed on the dump.
5) Close the data block by:

CALL FDDEND

6) If another data blocck remains to be dumped, add one to ICHAN
and repeat steps 3 thru 5. That 1s, steps 3 thru 5 should be
performed up to and including the time when ICHAN = NBLOCK.

7) Instruct the output device to empty its buffer and close its
file by:

CALL FCLOSE (IUNIT)

there: IUNIT = the logical unit number (an integer) of the device
being used and must be the same as was used in the call to
FOPENO.

NOTE: Step 7 1s optional (but recommended) if using paper tape,

as the paper tape punch has no buffer to empty and no file to

close.

An excerpt from a program using the above subroutines to
dump frequency response data from arrays FREQ, XNAG, and PHASE 1s
given below. Here, the number of words per data block (NPTS) and
number of the last data block (NBLOCK) 1s selected by the progran
from the internal parameters NFREQ and NCHAN. ©Note that the
progran decides to initiate a dump by checking sense switch 5.
Hence, sense switch 5 serves as a means for operator control.
Note also that the program allows the operator the freedom to
choose any I/0 device and file name.

48

DIMENSION MYNAME (3)

-

57 IF(.NOT.SENSW (5)) GO TO 20
C INPUT UNIT AND NAME FROM OPERATOu
TYPE 40
40 FORMAT (3X,32HENTER UNIT NOUMEDLL AND FILE NAME./)
ACCEPT 50,IUNIT,MYNANME
. 50 FORMAT (IS5, A6)
C INITIATE OUTPUT DEVICE
CALL FOPENO(IUNIT,MYNAME)
C START THE DUNP
CALL SFDD3(IUNIT,NFREQ,2*NCHAN)
C DUMP FREQUENCIES AS FIRST BLOCK (BLOCK #0)
CALL FDDC (0)
DO 60 I=1,NFREQ
60 CALL FDDR(FREQ(I))
CALL FDDEND
C DUMP MAGNITUDE AND PHASE DATA FOR EACH CHANNEL AS
C ODD AND EVEN NUMBERED BLOCKS.
DO 80 I=1,NCHAN
CALL FDDC (2%I-1)
po 70 J=1,NFREQ
70 CALL FDDR{XMAG(I,J))
CALL FDDEND
CALL FDDC (2*I)
po 75 J=1,NFREQ
75 CALL FDDR(PHASE(I,J))
CALL FDDEND
80 CONTINUE
C CLOSE THE OUTPUT FILE
CALL FCLOSE(IUNIT)
C WAIT FOR OPERATOR TO RESET SENSE SWITCH, THEN CONTINUE
90 IF{.NOT.SENSW(5))GO TO 20
GO TO 90
20 XXYXXXX (Program continues)

49 \

Format of a _$3 Type Formatted Data Dump

1st line The number of points per channel occurs twice 1in
Format 216.
2nd line A coded integer appears in format I6. This integer
equals the first block number times 100 plus the last
block number.
3rd line A repeat of the 2nd line in format 1I8.
4th thru
last lines Blocks of data as follows:
1st line-The channel number in I6 Format.
2nd line-The channel number in I8 Format.
next N:---N lines of data followed by a checksum in format
12(16,I3),I8. The checksum is the sum of the
preceeding 12(I6,I3) 1integer pairs. It represents
the sum of 24 integers.
2nd last--An odd length line for left over data.
last line-The checksum for the odd length line. This line does
not appear if there is no odd length line. No odd
length line will occur if there is no remainder when
dividing the number of words per data block by 12.

50

IBM 029 Card Punch Conversion for PACER (CV29PT)

Statistics

S

Name: CV29PT

Type: Core-image dunp

Location: PACER B moving—-head disk.
Program starting address: '1000

Core uased: *1000 - *1761 and '0 - ']
Programmer: David S. Cwynar

Source: Assembly language cards
Date: June 28,1978

Subroutines Required: None

Loading Procedure: None

Description

This program reads a deck of cards punched on an IBM029 card
punch, converts the symbols to 8 bit non-parity checking ASCII
and punches a paper tape suitable for use by the Fortran Compiler
or the Assembler. Symbols or multiple-punches which have no
ASCII equivalent are punched as rubout ('377).

Use

Only the Core Image dump progranm is currently available to
hybrid users. To use 1t; 1) Load CV29PT using the EAI software
MONITOR. 2) Place cards in card reader and start reader. Note
the last card of the deck should be an 8-4 multiple punch ain
column 1 to put an "@" sign on the end of the deck as is required
of all EAI source decks used by the Fortran Compiler and the
Assembler., 3) Turn on high speed paper tape punch and manually
run out some leader. #4) Start program execution at location
'1000 by issuing; #G, 1000 in MONITOR.

The program will begin reading cards and punching paper
tape. Execution will continue until either the card hopper
becomes empty or a card with an 8-4 pultiple punch in column 1 is
read. If execution stops on the 8-4 multiple punch card, the
program will pause, at which time a second deck can be processed
by doing: release run-single-run (1e. the program will start
over). If termination occurs because the card hopper becomes
empty, execution will automatically continue when new cards are
placed 1n the hopper.

51

To exit the program you must release run, reset I/0 and
return to the MONITOR. Also, no trailer i1s punched by the
program. Hence, you nust manuvally run out the trailer when ypur
program 1s complete. Note this operation should be carried out
prior to resetting the I/0 since, on occasion, an I/0 reset
causes a noise character to be punched on paper tape.

52

Interactive Data Collection and Display (INFORM)

INFORY was developed to meet the needs of engineers
developing real-time digital programs under time and hardware
constraints demanding the use of integer arithmetic and scaled
parameters. Initially, INFORM was developed to meet the
steady-state data display requiremernts of such progranms.
Subseguently, an interactive mode was provided for dynamic
display programming as well as debugging and program
modification. Sampling and data output subroutines were
developed to meet dynamic data collection and real-time data
display requirements of transient data.

Reference 5 describes the overall capabilities of the
INFORK, DATAO (data output) and SAMPLE (sampling) subroutines and
how they are intended to operate within a user's system.
Reference 5 also describes their operation. Details on the use
of the interactive command structure for accomplishing the
possible tasks are presented and examples are given fto 1llustrate
the use c¢f the software within a user's systen.

The INFORM package is structured into three basic parts;
INFORM, DATAO, and SAMPLE. Specifics of the calling sequences
and use of each subroutine are given in reference 5. Although
they may be called by any main program, they are primarily
1ntended to be executed on the lowest or "spare time" levels of a
priority interrupt system, where the main function of the
computer, (for example, a process control algorithm), is executed
on higher levels. These higher levels are usually driven by
recurring external ainterrupts such as those of a real-time clock
or interval timer. When used in this fashion, the command
structure made available to the operator by INFORM creates an
interactive operating environment for any passive real-time
program. Furthermore, the programmer creates this environment by
simply defining the interrupt structure and executing a simple
"CALL INFORM" statement on the lowest level.

The INFCRM subroutine provides an "on—-line'" disglay and data
manipulation capability for single precision integer values
retained in absolute memory. The operator programs the display
while the program is running in the interactive mode. Memory
locations are referred to by operator assigned, one to five
character, alphanumeric names. Values for these named locations
may be displayed 1in engineer's units (EU) or octal. INFORM
determines these EU values by multiplying each integer value by a
scale factor associated with the name. Once defined, the nanmes
and their associated locations and scale factors remain fixed
unless re-defined by the operator.

If the system also utilizes the digital computer for data
collection, a simple call to SANMPLE where the storing of data
would normally be programmed gives the INFORM subroutine
1interactive control over the data collection process. This gives
the operator the option to store any parameter available withan
the machine at the time of call. The operator also gains the
abi1lity to re-structure the available storage. For example 200
time points of 20 variables, 800 time points of 5 variables, or

53

one time point of 4000 variables are all possible with 4K words
of storage. In addition, using the SAMPLE subroutaine
automatically provides a means for transferring the stored data
to a bulk storage device via INFORM's interactive command
structure.

Ir a similar manner, dynamic displays of system variables
may be controlled by the INFORM subroutine if the programmer uses
the DATAO subroutine for his displays. The programmer need only
insure that all parameters to be displayed are in core and that a
call to DATAC 1s executed in his interrupt environment every tinme
he wishes to update the display. All programming 1s then
complete to give the operator interactive control over the
display. The operator may then select which parameters are
displayed and expand or compress scales at will without concern
for scaling or re-calibration of the display recorders. As
written, DATAO is i1ntended for use with fixed calibration analog
displays using zero to ten volt inputs, but may be modified to
work with any display which can be driven to 1ts scale
extremities by system digital to analog converters (DAC's).

A complete description of the INFORM program and its use is
given in reference 5. It is imperative that any hybrid
programmer, desiring to use INFORM, or its supporting routines,
EXEC1 and OPSYS1, consult reference 5 before attempting to use
them,

The additional information in this manual on INFORM and its

use primarily emphasizes differences from and additions to
reference 5, incorporated for hybraid users.

54

Subroutines INFORM, SAMPLE, DATA, and CLRSMP

Statistics

Name: INFORM (version #2), SAMPLE, DATAO, CLRSMP

Auxiliary entry points/names:
NAVG, EROR, LOC, SPCE, PNAM, CRLF, GSF2, PRFX, CRCH, NANME,
SUFX, MATH, CKCR, INPTS, PRFX2, PNUM, UNIT, OPNT, C21, ISF,
FIND, SF, ADRS, NAM2, NAM1, GSF, RTRN, IOSET, CMDS

Type: Subroutine object module

Location: PACER A & B moving head disk (MHD) "INFORM" file.

Length: v10467

Apso.dte core used: '74267 thru '74661

Source program: PACER B "SINFOR" MHD source file.

Programmer: David S. Cwynar

Date: June 1978

Sabroatines regquired:

AIP, AOP, CLOSEI, CLOSEC, CLOSEX, FDDEND, FoD11, FDD22,
LoAD, MESAGE, OPENI, OPENIX, OPENIX, OPENO,

OPENOX, OUTO0, OUT22, OUT77, PUNCH, TTYR, TTYRZ, VERIFY,
.A22, .Cc12, .c21, .c27, .C72,

.D22, .H22, .H55, .L22, .L55, .N22, .522

Loading procedure:

dain which calls INFORM, SAMPLE, etc; INFORM, CIPHER, the

Fortran RTL.

55

1)

3)

4)

3)

6)

Description

A complete description of this program is given 1in
reference 5. Auxiliary comnands or features whaich differ
from that publication are given below.

Differences

Floating point numbers have the unprinted decimal point on the
left of the mantissa instead of on the right. That is;

12345 00 1s 0.12345 decimal, not 12,345.0.

The '"space" define/re-define variable name and "/" list core
commands have been extended to include an offset rarameter as
described under "Additional Features" below. This offset
parameter (0s) 1s treated like part of the scale factor and
represents the engineering unit value to be applied to a zero
value in core. In accordance with this, the scale factor '(Sf)
retains its oraiginal meaning. That 1s, 1t still represents
the number of engineering units per machine count. This
offset parameter 1s used by the program whenever
scaling/descaling 1s encountered and is also included when
calculating DATAO displays so that no changes_in_operation are
apparent to the user. The only exception 1s the inclusion of
an extra operand for the "space" and "/" commands. The new
egaation used by INFORM to generate engineering unit (EU)
values from machine counts (MU) is:

EU = MU*Sf + Os

Note that 1f Cs = 0.0 no change of operation exists.

In keeping with the addition of an offset parameter as part of
the scaling, the $1 dump format for SAMPLE collected data has
been changed. The second line of a channel's data block now
contains two numbers in the Fortran format of 2(I6,I3). The
first number 1s the scale factor as before, the second is the
offset and represents the EU value for zero sampled data. The
third line of the data block now represents the checksunm for
both numbers on the second line, and is the algebraic sum of
the two I6 values plus the two I3 values. It is still in the
Fortran format.of I7. Note that 1f the offset is 0.0, no
change 1n format will be apparent to existing programs using
the $1 format.

The operator's mode select switch is sense switch H. Setting
sense switch H selects the passive mode. Leaving sense switch
E reset will select the interactive mode.

The numerical value of the default unit numbers used by
various comnands have been changed to match the PACER unit
numbers for the intended device. That 1s, the line printer 1s
120 1nstead of '5 etc.

The execution time for SAMPLE, ir the non-averaging mode, 1s
approxaimately 19 microseconds plus 31 microseconds per channel
sampled. The averaging mode requires 19 microseconds plus
49.8 microseconds per channel. The timing for CLRSMP 1s 28.4
microseconds plus 36 microseconds per channel. The time

56

required to execute DATAQO is approximately 8 microseconds plus
51.4 microseconds per channel displayed. INFORM requires 15.2
microseconds per named location to collect the data for a data
taple prantout. A time lag of approximately 52.8 microseconds
plus 37.2 microseconds per named location occurs between the
entry of subroutine INFORM and the start of data colliection.

Additional Commands

In keeping with the command description format of Appendix C
of reference 5, the new formats for the "space" and "/" commands
are given below. Also given are descriptions for two additional
commands- #I and #J.

The #I and #J commands are used to change the command input
device. Whenever the command input is changed from the CRT
keyboard (unit '2) to some other device such as the card reader
(unit '6), the input stream from the new device must terminate
with a #I,2 command to restore command input to the keyboard. If
an error 1s encountered in the nevw device command stream, command
input 1s automatically restored to the keyboard, and reading of
the auxiliary device 1nput stream ceases. If the operator wishes
to continue input from the auxiliary device without "rewinding"
the i1nput file, he should use the #J command, since employing the
#I command will reinitialize the input device. If the auxiliary
device is the card reader, employing the #I command will force
the program to ignore the remainder of the defective card and
start with the next card in the hopper. Note, a card reader must
be fully buffered and include Hollerith to ASCII conversion in
hardware to be useable as an auxiliary input device. Currently
only the PACER B system has the required reader. In the
following command descriptions, SFAE refers to a
sequentially-formed arithmetic expression. References to
appendices refer to reference 5.

List core

KEY CHARACTER OPERANDS

-

/ {Ad 1}, {ad2}, {x},{Sf}, {Os},{DF11}

p— —— p— —
Y Y.

!
|
L
|
I
1

Ad1: An SFAE for the starting octal/decimal address. See
Appendix B for acceptable formats.
Default value: Last non-defaulted Ad1 used by this
command. Initial value=0.
Ad2: An SFAE for the ending octal/decimal address.
Default value: Last non-defaulted Ad2 used by this
command 1f Ad1 was defaulted. Ad2 defaults to Ad71 1f
Ad1 was entered. Initial value=0.
x: Data/display type. This ASCII character should be "Q"
for an octal display of integer data, "1" for a decaimal

57

display of integer data, "2" for a floating point
display of single precision, floating pornt real data,
"yn for a decimal display of scaled fraction data, "6
for a floating point display of double precision integer
data, "7" for a decimal 1integer display of double
precision i1nteger data, and "8" for an ASCII cdump of
core, the core being interpreted as containing 2 ASCII
characters per word.
Default value: Last non-defaulted x used by this
command. Initial value=0.
An SFAE for an octal/decimal scale factor to be applied
to the data. See Appendix B for acceptable formats.
Default value: Last non-defaulted Sf used by this
command. The initial value assumed 1s 1.0. Note:
This value is ignored for display formats 0, 7, and 8.
Os: An SFAE for an offset value. The offset value 1is the
engineering unit value for a zero value in core. The
offset value as currently defined is used as the
numerical value for names occurring within the SFAE.
Default value: Last non-defaulted Os used by this
command. The initial value assumed is 0.0.
DF11: Octal/decimal number for an output device.
} Default value: The operator'!s console (unit #1).
DESCRIPTION:
Core starting at location Ad1 up to and including Ad2 is
displayed on the device selected by DF11. The value for x
determines how the data is to be interpreted (integer, floating
pt. real, scaled fraction or ASCII), and what kind of display
1s to be produced. Prior to the display, the data is
muitiplied by Sf. Sf is ignored for ASCII data.
PROGRAMMER'S FLOWCHART REFERENCE: LIST

w
tn
L]

58

Define a name

	I	
PREFIX	KEY	ADDITIONAL
OPCRAND	CHARACTER	OPERANDS
i 1		
I I | |
l {Na} | ‘"space" | ({ad},{Sf},{0s} I
L | 1 l

Na: A one to five character name for a named location. See
Appendix B for acceptable formats.
Default value: the no—-name parameter.
Ad: An STAL for an octal/decimal address. See Appendix B for
acceptaple formats.

Default value: One greater than the address for that

of the last used name operand of previous commands.

If Ad 1s defaulted, the machine will display the

default value prior to accepting the Sf entry (see

note below).
An SFAE for an octal/decimal scale factor. See Appendix
B for acceptable formats.

Default value: The same scale factor as that of the

last used name operand of previous commands.

Os: An STAE for an offset value. The offset value 1s the
engineering unit value for a zero value in core. The
offset value as currently defined 1s used as the
numerical value for names occurring within the SFAE.

Default value: The same offset as that of the last
used name operand of previous commands.
Note: If Na 1s defaulted, the no-name parameter becomes the
default name operand for following commands.

[
tn
se

DESCRIPTIONz

This command 1s used when it 1s desired to define a named
location. The default option for Na, or the no-name parameter,
1s especially useful when making program patches or doing
random searches during debugging. It allows the operator to
manipulate the core with all the power associated with named
variables, but without cluttering the defined name list with
temporary definitions. The no-name variable 1s overwritten
each time this command 1s used, but the ensuing definition 1is
used to determine the default values of subsequent commands.
That is, the nc-name parameter becomes the last used name
operand for these commands until a predefined name is used.

PROGRAMMER'S FLOWCHART REFERENCE: DEFN

The following examples 1llustrate the use of this command for
aisplaying the corntents of core and for making program patches.
In the examples, the underscores denote system responses and

4 1's denote carriage returns. Also note the use of the =
command, which displays the contents of a specified core
location, and the " command, which displays the contents of a
specified core location and opens that location permitting 1t
to pe changed. The use of these commands is explained 1in
detail in reference 5.

59

To display the contents of core location numper 1 using a scale
factor of 0. (octal value dispiayed) with no offset, one would
1ssae the following commands:

_"space*x1,0, 04

_=_1000000

In this case the no-name parameter was used. To assign the
name SPEED to core location number 2 and to display the
contents of that location (again, in octal with no offset), we
would 1ssue the following commands:

SPEED"space"**, 1000002 4

_=_1033475

Iin this case Ad was defaulted, therefore, a value of 1 + 1, or
2, became the default location and was displayed by the
machine. The default Sf and COs values became zero as
previously defined for the no-name parameter.

The following sequence 1llustrates the use of the INFORM
commands to patch machire instructions in locations *400
through '405.
_"space"*%*'4006,0,04
"'000400_was_=_'000000_'22, _now_=_'000022
_"space"*%, 1000401 _J
"'000401 was_=_1'0000C01_'032404, _now_=_'032404
_"space"**, 1000402 1
" 1000402 was = '111010_*10405, _now = _'010405
_"space"x*x, '000403 4

—_—— ————— e

"space'**x, '0D040u+

_=_1007776
_"space"*%, 1000405_1/32768
_"_1000405 _was_=_'123456 0.5, _now_=_1'040000

60

Re-define a nane

| | | |
| PREFIX | KEY { ADDITIONAL |
] OPERAND | CHARACTER | OPERANDS |
| i 1 L
| | | |
| {Na} | ‘“space" | {[xxxxx},({Ad}, (Sf}, {Os)} |
| I 1 L

Na: A one to five character name for a named location. GSee
Appendix B for acceptable formats.

Xxxxx: A one to five character name for a named location to

replace name Na. XXXXX may be the same as Na but
otherwise must be unique. See Appendix B for acceptatle
formats.
Default value: The name used for Na (1.e., the name
stays the same).

Ad: An SFAE for an octal/decimal address. See Appendix B
for acceptable formats.

Default value: The address currently derfined for Na
(i-e., the address remains unchanged).

SF: An SFAE for an octal/decimal scale factor. See Appendix
B for acceptable formats.

Default value: the scale factor currently defined for
Na {(r.e., Sf wi1ill remain unchanged).

Os: An SFAE for an offset value. The offset value 1s the
engineering unit value for zero in core. The offset
value as currently defined is used as the numerical
value for names occurraing within the SFAE.

Default value: The offset currently defined for Ya
(i.e., Os will remain unchanged).

DESCRIPTION:

This command 1s used to re-define a named location. All
occurrences of variable Na 1in any tables will now ke replaced
with variable xxxxx, and the new location and scale factor as
defined will be used. The only exception to this rule 1s when
Na occurs in a DATAO table., Here, the new rname and location
w1ll be used, but because additional values are derived from
the scale factor when building DATAO tables, the old scaling
for Na will be applied to xxxxx in DATAO ocutputs. Hence, the
DATAC table entry must be re—entered. See Appendix D for
commands to revise the DATAO tables.

2ROGRAMMER'S FLOWCHART REFERENCE: DEFN(OVLY)

Change the command 1input device

KEY CHARACTER OPERANDS

I
I
L
I
|
1

| |
| |
| L
| |
#I | Un |
| L

Un: The unit number of the device from which commands are to
be obtained.

DESCR1PTION:

6l

This command 1s used to change the command input stream from
the current device to any alternate device. Issuing this

command initializes the new
Commands are then read from
stream from the device must
correspond exactly to those
fer commands beaing accepted

device by opening a1ts file.

the new device. The character

be ASCII characters which
characters an operator whould enter
from the operator's keyboard. Note

that 1f the operator's console 1s not selected, prompt
characters which the program normally 1ssues during the
acceptance of commands are suppressed (i.e., the ** received

for name definitions, etc.).

If an error 1s detected ain the

command input stream, the command input Jdevice automatically
reverts back to the operator's console.
PROGRAMMER'S FLOWCHART REFERENCE: SYSTH

62

KEY CHARACTEZ OPERANDS

o e e e ——

! I

I I

1 - - |

| |

#J | |
i

- -

Un: The unit number of the device from which commands are to
be obtained.

DESCRIPTIOWN:

This command 1s similar to the #1 ccrnmand, with the exception
that the 1nput device 1s not initialized by opening 1ts file.
This command 1s used 1n place of the #I command 1f the input
device file 15 already open. This will be the case when the
command i1nput was aborted from the new device because an error
was detected in the command input stream. Hence, the #J
conmand can be used to restart command input from such aborts
by continuing where the input stream left of&.

PROGRAMMER'S FLOWCHART REFERENCE: SYSTHM

63

Interrupt Environment for INFORM (EXEC1)

Name: EXEC1
Type: Assenbly Language main.
Location: PACER moving head disks (MHD).
Length: '1073
Source: Assembly language cards
Programmer: David S. Cwynar
Date: June 16,1978
Subroutines required:
System's programs: (OPSYS1 and OPLIB1) or (OPSYS2 and OPLIB2)
User's programs: BTASK, LOOP, INITAL, LEVELQ
Loading Procedure: Special- see "How to Load Your Program'" below.
Note: MONITOR must reside in core 1f using the moving head
disk.
Sense switches:
H- INFORM's mode select switch.
Reset = command mode.
Set = Execute BTASK instead of INFORM as background job.
(Note; you must exit INFORM first using "." command)
G- Set = Do not update the DATAO display.
Analog facilities required: (must all be on same console)
1) 10 KHz pulse train patched into the Ci 1input of the
Real time clock.
2) Control lines 8, 10, 11, 12.

3) External interrupts #0, 3, 7.

Description

64

This program establishes a time-shared interrupt environment
for the Fortran or Assenply language programmer. EXEC1 provides
the user with the ability to execute three different programs at
three different priority levels. One of these programs gets
executed as a background or lowest priority task and may be
executed in place of INFORM which 1s normally run there. EXECI1
also has provision for calling a user's setup program which
normally is executed only once prior to setting up and starting
the interrupt environment execution. In order to use EXEC1, all
programs must be in the form of subroutines so that they may be
called at the proper time by EXEC1. The subroutine names the
user must use, and restrictions on the programs will be discussed
later.

EXEC1 also enaples the user to execute the user's program 1in
a main loop while executing INFORM, SAMPLE, and DATAO subroutines
at assigned priority levels to produce steady state and dynamic
display of scaled fraction and/or integer data which are PACER
generated or sampled. INFORM may be used to interactively change
the data dasplays without having to place a hybrid simulation in
"HOLD" or otherwise interrupt normal program execution. INFORM
also provides program debug features, and allows the user to
collect transient data which 1s present in the PACER 100. Thais
1s accomplished through the use of the SAMPLE and DATAO
subroutines which are controlled by INFORM. Note that INFORM,
DATAO, and SAMPLE are part of 0OPSYS1 or 0OPSYS2.

INFORM controls SAMPLE by defining which variables are to be
sampled, and how many points for each variable are to be saved.
EXEC1 gives control of the sampling process to the user through
the use of external clock and trigger signals. The DATAD portion
of the program is intended to drive Brush recorders through
DAC's/DAM's from data within the PACER 100. INFORM has control
over the DATAO display in terms of which variables are displayed
and on which DAC's/DAM's they are output from the PACER.
Automatic scaling 1s provided. That is, the operator can select
the recorder calibration by specifying engineering unit values
for the Brush recorder zero and plus ten volt levels. Proper
operation is automatically assured provided the Brush recorders
are set up to display zero volts on the right and plus ten volts
on the left, The computer can fully compensate for these fixed
levels and both positive and negative engineering unit values can
be displayed.

Use

1) Segment your program into subroutines. Provasions for
descaling and displaying scaled fraction or integer, data
will not be necessary since this job is handled by INFORI!.
Most programs will have three sections: (A) An
initilization and setup section (INITAL) which gets
executed once prior startup; (B) The main lcop (LOOP)
which gets updated continually at a fixed rate; and (C) A
background task (BTASK) to do things in spare time while
LOOP is running. For example, BTASK may change integrator

65

2)

3)

4)

5)

6)

7)

initial conditions, etc. These sections must be
subroutines with names as indicated above and must conform

to the restrictions placed upon them as described in the
"Creating User Subroutines'" section (pg. 69). They should
also be programmed 1n accordance with the considerations
listed under "Programming 1ln An Interrupt Environment"

(pg. 8Y4).

To use INFORK effectaively, INITAL should contain
COMMON blocks which define all variables as explained
under "NOTES" (pg. 81,. Advanced programmers may also
wish to create a subroutine called LEVELO. ©Novice user's
may use the system's dummy LEVELO by loading it at the
proper taime.

Compile your subroutines independently. That 1s, make
three i1ndependent Object files. Although INITAL may be
conbined with either 10OP, BTASK, or LEVELO, we don't
recommend it because it can lead to undetected
non-reentrant subroutine conflicts which won't
automatically get resolved by the standard loading
procedure given below.

Create a Core Image version of EXECT and your subroutines
using the procedure outlined under "Creataing The Core
Image File",

Using Monitor, load your Core Image file (Example:
#L,MYPROG,21).

Using MONITOR, load OPSYS1 (or OPSYS2) which contains
INFORM, SAMPLE and DATAO. The command 1s: #L,0PSYS1,21.
The version you load will depend upon whether or not you
wish to avail yourself of INFORM's disk file manaipulation
commands. OPSYS2 1is the version being developed for disk
manipulation, but note that you must have planned for its
use when you created your Core Image file or OPSYS2 may
overflow into your COMMON storage areas. Refer to
"Creating The Core Image File" (pg. 71).

Start execution of your program by 1issuing #G,1000 from
MONITOR.

After your inatialization subroutine (INITAL) runs to
completion, EXEC1 will ask for the loop update time in
seconds. If you have a 10 KHz pulse train patched 1into
the Ci input of the real-time clock, you can enter thas
time directly. For example, enter .010 for a 10 ms.
update 1interval. Your LOOP program will start executing
following reception of the carriage return. Therefore,
sense switches G and H should be set prior to entering the
carriage return. Sense switch G controls the DATAQ
display. Sense switch H is the INFOPM mode ccntrol
switch. The sense switch functions are discussed below
and in reference 5. The update time must be at least as
long as the longest time 1t takes your LOOP program to
execute. To determine this time, EXEC1 provides taiming
signals on control lines 10, 11, and 12 which can be used
to determine the execution time of each interrupt level.
Line 11 goes high when LOOP starts execution, and goes low
when LOOP finishes. Lines 10 and 12 do saimilar things
for SAMPLE and DATAO. An oscilloscope plugged into
control line 11 on the system console can be used to

66

obtain the needed information. As a first cut, a long
update interval, say 0.1 to 0.5 seconds, may be used to
insure that the program will run. You can change this
value at any time by stopping the PACER and starting
execution over. To avord executing the INITAL program
over such abrupt program stops, start execution at
location '1001 instead of '1000 as stated previously.

8) To restart without calling your INITAL subroutine, start
at location '1001. To restart without re-initializing the
interrupt structure (not recommended), start at location
'1002. The programmer can plan for system crashes when
programming the INITAL subroutine, by providing a sense
switch (not G or H!) for re-initialization of only those
1tems which may need re-setting 1f the program "bombs". A
clever programmer will place latches in common core which
can alter the execution of LOOP, BTASK, or LEVELO. Then,
by using INFORM's scale and store command, the orperator
can dynamically change program execution without ever
having to stop running. This feature allows the user to
put disturbances 1into the system to see how controls
react, etc. Any parameter listed in COMMON core 1is
subject to INFORM's scale and store operation. Hence, you
can quickly change control gains, modify MAP curves, etc.,
without having to ever stop program execution.

9) The full capabilities and use of the INFORM, SAMPLE, and
DATAO package are given in reference 5.

67

Proqramming in the Interrupt Environment

Although EXEC1 takes care of mcst of the complications
involved in producing an interrupt environment (such as register
saving, establishing level prioraities, etc.), the programmer must
exercise some care when producing his programs. In a non-stack
machine such as the PACER 100, 1t 1s very difficult to progranm
reentrant subroutines. What this means is that any subroutines
used by a program operating on one priority level may not be used
by a program operating on a different priority level. Any
software supplied by EAI, such as the Fortran run time library
(RTL) or the hybrid linkage routines (LINKN) are either
non-reentrant or call non-reentrant routines. Hence, all Fortran
compiled programs running on different interrupt levels nust have
their own copy of the run time library, hybrid linkage routines,
or comnonly used subroutines. This 1s easily taken care of by
using the #S command of the Core-Image Generator. The procedure
1S given in "Creating The Core Image File" (pg. 71).

A similar problem of usage by different prioraty level
programs occurs for all input/output operations from the PACER
100 to the analog console, CRT, ADC's, DAC's, line printer etc.
The PACER I/O structure demands that all operations ke performed
in three steps. First, the device 1s placed in the proper I/0
mode, second the device is tested for readiness, and lastly, the
1/0 operation 1s performed. During this last step, the mainfranme
freezes. Therefore, 1t 1s imperative that a device be properly
set up and ready before I/0 is performed.

In general, you should not command similar I/0 devices from
more than one interrupt level. It i1s permissable to use the same
device on two different levels, however, 1f 1ts use by the two
routines is mutually exclusive (i1.e., when routine A is using
device X, routine B will not attempt to use X until A has
finished). This is usually the case when the operator manually
requests dumps cr printouts.

For the purpose of determining similar I/O devices, they are
grouped as follows:

1) All ADC channels within a system (i.e., both consoles) are
considered as one unit.

2) All DAC's within a system unless the "jam specific DAC"
("DO *'140-'167" instruction) or QWJDAR and QWJDAS routines
are used.

3) Reading/writing any item on either console within a systen
which involves console selection and/or an analog address,
although console selection may be treated as independent
from address selection and the read/write operations. That
is, 1t is not necessary that routine A must perform all
three functions of console selection, address selection and
the actual read/write. It is permissable for routine A to
perform console selection exclusively and routine B to
select addresses and read/write on the console selected by

68

routine A.
4) The CRT, keyboard and floppy disk.
5) The line pranter
6) The high speed paper tape reader
7) The high speed paper tape punch
8) The moving head disk (units '21 thru '24 all count as one).
9) The card reader.

Since the INFORM program uses several of the above I/0
groups, one might assume that one could not employ use of similar
devices in one's higher level programs. This need not be the
case since INFORM's I1/0 drivers (tkhe CIPHER I/0 labrary) is
designed to be interruptible while awaiting a keyboard input.
Hence, no conflict will occur providing that INFORM is "idling"
in the command i1nput mode waiting for a keystroke from the
operator while the user's program 1s accessing the cocmmon
devices., If the operator knows when the user's program 1is about
to access an INFORM device he need merely stop entering command
keystrokes until the user's access is complete. This
pre-supposes, however, that the operator has sufficient warning
so that the processing of any praior INFORM commands which use the
device have time to run to completion before the user's progranm
starts.

Creating User Subroutines

Each of the subroutines listed below must be provided. They
must be named as indicated, have no arquments except through
COMMON, and should perform the functions as described. If you
have no need for a particular subroutine, create a dumny
subrodtine of the proper name which contains the single statement
"RETURN",

NAME: INITAL
PURPOSE: To perform those functions which need be executed only
once prior to the start of the main loop. It should
also contain provision for re-initilization of the
program in the event 1t "bombs" or forces the console
into overload. This routine 1s called only once by
EXEC1 prior to starting the loop calculations.
RESTFICTIONS: None, except that INITAL must select a systenm
console and exit with this console selected. The
system console 1s defined as the one on which the
10 KHz clock, control lines, and external
interrupts are located.

NAME: LOOP

PURPOSE: This routine is the main calculation loop which gets
updated at a fixed update interval as selected by the
operator from the allowable field of .0001 to 3.2767
seconds 1n .0001 second increments.
RESTRICTIONS:

1) LOOP Must not use I/0 devices used by INFORM as

described under "Programming in the Interrupt

69

2)

3)

4)

Environment". In any case, the calculation time of
LOOP must not expand beyond 1ts allotment or it waill
cause an update failure. No I/0 should pe done to slow
devices (1.e., anything except DAC's and ADC's). Such
I/0 should be reserved for subroutine BTASK.

LOOP must not select or deselect a -console.
Furthermore, 1t should not depend upon a console being
selected or deselected to operate. Currently the
restriction on console switching 1s to prevent errors
of the real time clock {i1.e., the update timer) and the
system control line indicators. The clock function is
vital and should not be disturbed unless a fluctuating
update interval 1s acceptable. Theoretically, patching
the same clock into the Ci input on both consoles (via
a digital trunk) should result 1in minimal disturbance
(one count), and thus allow console switching.

However, in the future, INFORM may do console selection
to read amplifiers, set pots etc., and you may also
wish to do this in your BTASK routine. Therefore, 1t 1s
a good idea to use DAC's and ADC's only in LOOP.

LOOP must not use any OPSYS1 routines accessed through
OPLIB1.

LOOP must also take care of inputting data from the
ADC's for the SAMPLE and DATAO subroutines. For
details, see "To Produce a DATAO Display" (pg. 73} and
"To Collect Sampled Data" (pg. 80).

NAME: BTASK
PURPOSE: To perform auxiliary functions while LCCP is running.
RESTRICTIONS:

L)

2)

Considerations must be given to the problems associated
with general reentrant subroutines and 1I/0 device
sharing with LOOP as described under "Programming in
the Interrupt Environment" (pg. 68).

BTASK must not enable, disable or otherwise affect any
interrupt or interrupt masks, either on the systen
console or internal to the PACER 100.

NAME: LEVELO
PURPOSE: To perform operations which require temporarily stopping

LOOP from executing. This routine has highest priority
and 1s entered within 70 usec. of when the system
console interrupt line 0 1s pulsed.

RESTRICTIONS: None, except those listed under "Programming in the

Interrupt Environment" (pg. 68).

70

Creating The Core Image File

You must use the Core Image Generator to properly link your
compiled programs into an executable Core Image program. Do not
use .COP. Starting from MONITOR, the procedure is as follows:

#L,CIG,21

#N,MYPROG, 21,2

#R, XXXXX,101000,21000

#G, 1000 where:

MYPROG is a name you assign to your Core Image file,

XXXXX 1s '56430 if you intend to use OPSYS1. ©Note: XXXXX will
be different for future versions of OPSYS. A future version will
be reguired to allow use of INFORM's disk driver commands. You
must use INFORM if you wish to manually manipulate disk files,
since MONITOR will not run in a time-shared environment.
Furthermore, executing MONITOR while OPSYS is 1in core will
destroy the OPSYS input/output buffers. Hence, any pending I/O
from INFORM will be lost. The OPSYS program, however, will
remain intact and need not be re-loaded.

The following commands are for the Core Image Generator. The
asterisk (*) preceeding each command is generated by the Core
Image Generator. See reference 2 for a more detailed description
of the Core Image Generator commands which follow:

*%L,EXEC1,22

*#L,XXXXX,22 where:

XXXXX 1s the file name of your compiled INITAL subroutine. IF
your INITAL subroutine calls other subroutines, load them all now
by repetitively doing:

*#L,YYYYY, 22 where:

YYYYY 1s the name of a disk file or files containg the
subroutines. NOTE: YYYYY must not contain LOOP or LEVELQO except
under special circumstances.

Follow these loads with

*4$L,22222,22 where:
222272 1s the disk file name of your BTASK subroutine. If your
BTASK subroutine calls other subroutines, load them all now by
repetitively doing: #L,YYYYY,22 as before. Note that YYYYY must
not contain LOOP or LEVELO except under special circumstances.
Continue with:

*#L,0PLIB1, 22

*#L,LINKN, 22

*%L,RTL, 22
Now do:

*%UL
to list any unloaded subroutines. The only names that should
show up are LOOP and LEVELO. If more or less names occur you
have either; (1) forgotten to load a YYYYY library, or (2)
violated the call conventions listed under "Programming in the
Interrupt Environment" (pg. 68). If (1) is your problem, simply
load YYYYY and try #UL again. If all is now OK you may proceed.
If not, YYYYY probably had to be loaded prior to LINKN, RTL, or
some other YYYYY. At this point, the load should be restarted.
Do *#M to exit the Core Image Generator. Use .COP to rename
MYPROG to JUNK, go back to MONITOR and start over with #L,CIG,21

’

71

etc. If (2) is your problem, clean up the disk £file by doing;
*#M and using .COP to rename MYPROG to JUNK as above. Now go
back and read the "Use" and "Programming in the Interrupt
Envirornment" sections.

If the #UL command looks OK you proceed by:

*#S
this 1s an i1mportant step to resolve reentrant subroutine
conflicts - don't leave it out!

*#1,,AAARA, 22 where:
AAAAA 1is the disk file name of your LOOP subroutine. If your
LOOP subroutine calls other subroutines, load them all now by
repetitively doing: #L,YYYYY,22 as before, NOTE: YYYYY must
not be SYSLIB, Follow these with;

*$L,LINKN, 22

*#L,RTL,22
Now do: *#UL as before. The only name that should appear 1is
LEVELO. If 1t doesn't, there is an error. See the preceding
paragraph for actions when the #UL listing is incorrect.

Complete the load by:

*3#S

*#L,BBBBB, 22 where:
BBBBB 1s the disk file name of your LEVELO subroutine. If you
don't have a LEVELQO subroutine, do: #L,LEVEL(O,22 and skip the
next paragraph.

If your LEVELO subroutine calls other subroutines, load them
all now by repetitively doing: #L,YYYYY,22 as before. Also load
LINKN, and RTL, 1f needed, as before.

When you are done, the Core Image Generator should type "DN"
at the terminal. If 1t doesn't, there 1s an error. The
corrective action is the same as described previously when the
#UL listing is incorrect. If all 1s OK, finish with:

*#EL

*#M
Your Core Image file is now complete, Check the listing produced
by the #EL command to see if you've exceeded the PACER 100 core
capacity. MMTOP must be less than COBOT and ZZTOP must be less
than '610. If they're not, you will not be able to use INFORM.

Anrn example of a Core Image file formation and listing of the
four main subroutines, INITAL, LOOP, BTASK, and LEVELO, are given
1n figure 3.

The Core Image file was named F100. After EXEC1 was loaded,
the file F100IN was loaded. This file contained the subroutine,
INITAL, which selected Console 1 where the 10 KHz clock, control
lines, and external interrupts were patched. In addition to
linkage and run time library routines, INITAL also called the
subroutines, DATAIN, MOOR, and FLIGHT. The file, MAPS, contained
DATAIN and MOOR which was loaded next.

At this point the file, FLTCND, containing the subroutine,

FLIGHT, could have been loaded. However, FLIGHT was also called
by BTASK. Since, in this case at least, non-reentrant subroutine

72

conflicts between INITAL and BTASK should not occur, the file
FLTCND was loaded after the file, F100BT, which contained BTASK.
BTASK also called the subroutine, STATE1. The file of the sane
name was loaded next. It should be pointed out that whether the
file, FLTCND, was loaded before or after F100BT made no
difference. The overall library requirements would have been
satisfied.

OBLIB1, LINKN, and RTL were loaded next. The list of
undefined external references was obtained at this point with the
#UL command. Since only LEVELO and LOOP were missing, the name
table was restructured through the #S command.

The file, F100LlP, containing the subroutine, LOOP, then was
loaded. The only I/0 devices that LOOP used were ADC's and
DAC's. The only routines, called by LCOP (except for linkage and
run time library routines), were MAP and MAPL. Both of these
routines were contained in the file, MAPS, which was loaded
again.

LINKN and RTL were reloaded to satisfy LOOP's requirements.
The #UL command demonstrated that only LEVELO was still missing,
as 1t should be. The #S command once again restructured the name
table.

The file, F100L0, was loaded to get the subroutine, LEVELO.
The only function of LEVELO was to display a map out of range
message which required the call to the subroutine, MOOR. Since
the file, MAPS, contained this subroutine, it was loaded followed
by a third loading of LINKN and RTIL.

The Core Image Generator signalled that all requirements
were satisfied by typing "DN". The complete memory rap listing
was obtained with the command #EL. The #M command returned
control to the monitor and closed the Core Image File, F100.

DATAO Display

Proceed as follows to produce a DATAO display:

1) The data you wish to display through DATAO must be 1n the
PACER 100 core. Hence, LOOP should sample or perform any
calculations needed just prior to exiting. If there is too
much data to collect or calculate, stagger 1t and do only a
portion each pass. Better yet, use the DMA (Direct memory
access controller, subroutine QRDMAS) which requires only 10
usec/point and allows the PACER 100 to continue running while
the data are being sampled. If you do use QRDMAS, however,
Jou must also use QRDMSI to make sure the DMA is finished
prior to the first ADC read in LOOP, or else LOOP may generate
an I,/0 conflict on the ADC's by attempting to start a new
update before the data being input from the last update 1is
finished. See reference 4 for information on the use of
QRDMAS and QRDMSI.

2) Set up the DATAC channel using INFORM's command structure as
described in reference 5.

3) Connect the Brush recorders, calitrated to display zero volts

73

#-, CIG, 21

CIG CI P&

LD

#N. F18a, 21, 2
FR

FiBa CI F1

M.

#R, 56436, 1618688, 219460
M

#G. 1908

*#l, EXEC1. 22
EXECL OB PF1
LI

FL1OQIN OB Fi1
LI

*#L, MAPS, 22
MAPS OB F2

LI

#*#L, F1OBET, 22
F188BT OB P1
LI

*#$L, FLTCND, 22
FLTCHD OB P1
LI

*#L., STATEL, 22
STATEL OFE P11
LI

+8#L, OPLIEL, 22
OPLIBL OB Pi1
LI

*#L, LINKMN, 22
LINKN OB F2
LI

*#$L, RTL, 22

RTL OB P2

LI

UL

+H#S

w#l, F1B6LF, 22
FiaelLP OB P1
L.I

+#L., MAPS, 22
MAFS OB P2
(|

#H#L, LINKN, 22
LIMKN OB F&
LI

+#lL, RTL, 22
RTL OB P2

LI

*HUL.

1S

*#, F186LY, 22
FigalLe OB FP1
LI

+#L, MAPS, 22
MAPS OB P2
LI

#$l LINKN, 22
LIMKMN OB F2
LI

+#L. RTL, 22
RTL. OB P2

DN

+HEL

#$M

M.

Figure 3. - Example of core image file formation using the

EXEC1 system.

O

FAGE

i Cra44F168 IMITIALIZATION SUBROUTIME 16/12/78 WMB

FORTRAM COMFILER REW LENY JB6

O

a (N RN

=4

et

SUBRQUTIME INMITAL

SCALLED FRACTIOM YIC24)

SCARILED FRACTION H. Ma, PB. P2, T2, TE, MORTTA

SCALED FRACTION F1(322), F2(322>, FZ(Z307, F4<{518>, F5{(224 >, F&E(224>
COMMONA/MAPDATANLIS), N2CS5>, N2(5), MN4{5), NS5, N5(5),
1 F1,FZ2,F3, F4, FS. FS

COMMOMASFLTAH, M3, P8, P2, T2, TG, MBRTTA

LOGICAL. FBS

CALL asC(a, IERD

CALL @SCdl, IER?

TYFE 1

FORMAT /72X, 48HPLACE DATA CARDS FOR MAPS AND DARC ICS IM REARDER. 2
TYPE 2

FORMAT(ZM, L7HTHEN TYPE RETURN A2

ACCEPT =, J

FORMAT(IZY

CALL. DATAINCNL, F1)

. READ DAC IMITIAL YALUES

READCE, 42 <Y ICID, I=1, 240

FORMATCCSCOR, S7202
. INITIALIZE DACS

CALL QMEDASIYI, B, 24, IERD

CALL QSTDA

TYFE S

FORMAT (A2x, 42HIGHNORE FOLLOMWING MAP OUT OF RANGE MESSAGE. >
CALL MOORCSS, @S,. 85>

CALL HMOORLE, . 85,. 85)

PLACE AMNALOG IM IC MODE

TYFE 7

FORMAT (/3K 4SHELAYE CONSOLE 2 TO CONSOLE 1 MANUALLLY GO TO IC. >
TYPE 8

FORMAT (/2R 42HTYPE RETURNM TO FROCEED TO DYNMAMIC PART OF PROGRAMAD
ACCEPT 3, J
. ESTABLISH EMGINE FLIGHT COMDITIONS

CALL ORBADSIH, B, 2, TERD

CALL FLIGHT

DO 1@ K=1, 1%

FK=K~1

CAL L QUWCLLCKK, FALSE. , IER?

CONTINUE

CALL @RSLLLS, PES, IER?

RETURM

EMD

FPROGRAM SIZE = ‘454

75

PRAGE 1 CHt+4+F108 BACKGROUND TARSK SUBROUTIME 18/712/72 WMB

FORTRAM COMPILER REY. LEY. Ja@

SUBROUTIMNE BETRSHK

LOGICAL SEMSH
C. SET S5 E FOR INITIAL COMDITIOM UPDATE
IF(SEMSWCSY Y CALL STATEL
SET SSW D FOR MEW FLIGHT CONDITIONS
IFCSENSHMC4> > CALL FLIGHT
RETURM
END

0

FROGRAM SIZE = 717

PAGE 1 CretF1lE0 MAIM LOOP SUBROUTIME 18/19/78 WMB

FORTRAM COMPILER REY LEY. J@9

SUBROUTINE LOOP

. FLIGHT COMDITION YARIABLES

SCALLED FRACTIOM P8, P2, T2, T8, MBRTTO

co.... MAP DATA TABLES

o

SCRLED FRACTIOM F1(322), F2(322), F3(358), F4{(518), F5(224), F6{224)

.. ADC VYARIABLES

SCALLED FRACTION X8, X1, K2, X3, K4, X5, K6, K7, %8, X9, K18, X114, X12, X13,
1 X14, ¥AS5, K16, X17, K18, X193, K28, K21, K22, X23

DAC YARIABLFES

SCALED FRACTIOM ¥4, Y1, ¥2, ¥3, ¥4, ¥S, Y&, Y7, ¥8, ¥9, Y10, Y11, vi2

.. OTHER YARIABLES

28

SCALED FRACTIOMN MAP, MARPL., V4, V7, V8, ¥, ¥10, REY, AR, PRSUE, DFR, PE,
1 PRE., PRSUP, FRD, RT4, RT44, RE, A, D¥'?, PRC1, PRC2. YE£Q, Y750
COMMOM/OUTVARAKZ2, X3, K4, BD, KB, X7, X8, K, K18, K14, 12, X13, X14,
1 H15, K46, K17, ¥18, X139, K20, K24, K22, ¥23, ¥9, YL, Y2, ¥3, Y4, v'S, Y&,
2 Y7, Y2, ¥9, ¥10, Y11, Y12, V7, V8, ¥9, V10, REY
COMMOM/MAPDATANAL(S), N2<¢3), N3<(5), N4¢(S), NS(5), N&({5),
1 F1,F2,F2,F4,F5,F6
COMMOM/FLT /X8, ¥4, PG, P2, T2, T8, MORTTS

CALL BORBADSC(X2, 2, 3, IER>

Y7=MAP (N4, Fd, ¥3, X4>

YS=MAPL(F4>

IFCX2. LT, . 8S) X2=, 65

A=MAF <ML, F1, X2, X4)

YP=C(Y7TH({ 35+ S5SHAII/, 55

D¥Y7=. 85

REY=(, S6TL5S#P2#(, 3S#T2+. A7874S) D/ (T2%T2>
IFC(REY. LT. . 23@5845)> DY7=-. B26265+REY+. 888835
IFCREY. LT. . 142025) DY7=-—. 1S877S+*REY+. 325715
Ye=Y7-DvY?

Y2="Y7

CALL QWJIDASCYR, 2. 1IERY

CALL QAWJDASCIYS, S, 1IERY

CALL GQWJIDARSCY?, 7, IER?

CALL GRBADSCKS, 5, 3, 1ER)

IFCHS. LT. . 8S) X5=. 85

Y4=MAPCNZ, F2, X35, X6)

YE=MAPCMZ, F3, X7, X&)

Ye=({Yex(, 55+, SSaVY4))/, S5

Y2=Y5

cALl. QWIDARSIYZ, 2, IERY

CALL GWIDASCYS, 6, 1IERD

CALL QRBADS(XS, 8, 3, IERY

RT4=SSQRT(XE>

Y7=¢(. 795675S+¥18>/RT4

YS=MAP (NS, F3, X9, ¥7>

VI=MAPLCFS)

YI=(YI*RT4)/ 732595

CALL. QWJDASC(YS, 8, IER)

CALL QWJIDARSCYS, 9, IERY

CALL GQREBADSC(X11, 11, 3, IER>

RT41=SSART(X12)>

Y38=(, 826355+ ¥%11)-/RT41

Y10=MAP<{NE, F&, X13, ¥8)

77

PRGE

21
22

23

24

2 CHriekkFL88 MAIM LOOP SUBROUTINE 18/12/78

vig=1RFPLCFE2

Yil=C(V18¥RT41)/ 4£715S

CALL QWJIDASCYL8, 19, IERD

CALL QMJIDASCYLL, 11, IERD

CALL QREADSCX22Z, 22, 2, IEFD
Ya=H224K23

CALL GUJIDAS (Y4, 4, 1IERD

CALL GQRBADS{X14, 14, 5. IER)

IFC(HL. GT . 22880S> GO TO 21

AE=. B11E25+K14—- B8124S+, 7¥I4655+KX17
GO TO 22

AE= B2585S+#X1i4~. @SS3ITS+. BBB7SSHHLY
AR=ARZ/X17?

DPR={. 69683S+AR+AR-AR+, 220945)> /. 18567%
PRsSUB=. S28285-DPR

PE=PRSUB*X18

FRD=X154MBRTTA/. 7I227S

IF<, 2000a5+Pa. LT. PE> GO TO 23
PRE=. 20088S+P9./X18

WMe

Y12=C((X15%SSERT((, 25785—. 2572S+FPRE>*XH14) 2/, 7E525-FRD)/, 249335

GO TO 24
PRSUP=. 52228S+DPR
PE=FRSUP+X18

Y12=((R1T4SSART (. 47IOZS5-PRSUP/. 281865+ SSOESS+PREUP+PRSUP)
1 #KX14))/. 69633IS-FRD-CARE+{ 20008S+PA-FE>)/ 422250/, 349335

YTESR=Y7+Y?

Y@= 272825#Y7Se-. 88SO5SkYr+. 230585
Ya=(Ya-+X3>/YQ

PESEmYERY'S

PRC1=. 92287S+YESE~-, 26212S+YE+, 216155
PRC2=. 1186ES*YESH— 147855+, 91.3485+Y5
Y1=¢ 93ZIZIZIS+PRCLKC. 39939S-KTI+HD4PRCZI A, 333358
Yi=(Y¥i-. 90121S+X7> /Y1

CALL GQWJIDAS(YLZ, 12, IERD

CALL QWJIDASCYS. 8, IERD

CALL QWJDASCYL, 1, IERD -
CALL GRBADS(XAB, 8, 2, IER)

CALL. GRBADS(X19, 139, 3, 1ER)>

RETURN

EMD

PROGRAM SIZE = “1z201

78

PAGE 1 CHboktF10@ IMTERRUPT ROUTIME FOR MOOR 18/712/72 LMB

FORTRAM COMPILER REVY. LEVY. Joa

SUBROUTINE LEVELQ
LOGICAL PBS

C ...PULSE PBS FOR MAP OUT OF RAMGE MESSAGE
cALL GRSLL(S, PES, IERD

C.... DuMMY CALL TO MAP OUT OF RANGE ROUTIME
IF<PBS> CALL MOORCE,. 8S,. 9%5)
RETURM
END

PROGRAM SIZE = “2&

79

4)

on the right and plus ten volts on the left (red buttons
depressed), to the selected DAC's.

DATAO will update as quickly as possible for the time
available and will attempt to produce an update for each pass
through LOOP. If insufficient time remains to update all
channels, no time will be left over for INFOERM and its
operating speed will be extremely slow. To get back to
INFORM, depress sense switch G which stops the DATAO updates.
To resume the updates, release sense switch G. An alternative
1s to increase the update time by stopping the PACER and
restarting at *1001.

Data Samrling

1)

2)

3)
4)

5)

Proceed as follows to sample and store PACER data:
Patch a clock into external interrupt line 3 which goes high
at the rate you wish to collect samples. It is nct necessary
to turn this clock off when not collecting samples, as EXEC1
pecforms this operation automatically by ignoring the
interrupt.
Set up SAMPLE for data collection by issuing the proper INFORM
commands as described in reference 5. Don't forget to set the
block size and averaging mode by using the "B" command first.
Pulse interrupt line 7 to start a reading.
The data to be sampled must be 1n the PACER 100 core. This is
a job for your LOOP or LEVELO subroutines. Which you use will
depend on the priority of your samples. If you do them in
LOoC? (as is the usual case) the samples will be synchronized
with your LOOP update, the start of each new sample starting
immediately following the first complete update interval which
follows the clock rise on interrupt line 3. EXEC1 provides a
logical variable called STIME which goes "TRUE" for the one
update pass through LOOP which will precede the taking of the
first sample. Hence, STIME can be tested by LOOP to determine
if ADC's should be commanded to sample variables not already
in core. To gain access to STIME by a Fortran LOOP progranm,
declare STIME as logical and define STIME as being location
'670. The statements are:

LOGICAL STIIME
DEFINE STIME('670)

You need not set STIME false after the samples are taken since
EXEC1 will do this as soon as you leave LOOP. You can ignore
STIME altogether if your samples are always in core at the
completion of each pass of LOOP.

After the first sample is taken, EXEC1 wi1ill raise control line
10. Control line 10 will stay high until the last sample of
the first entire transient 1s in. Hence, it makes a good step
disturbance generator for starting transients to Le sampled.
EXEC1 detects when SAMPLE has been placed in the averaging
mode by the operator, and increments the average rumber
accordingly. If no averaging is being used (ie. only a single
transient instead of multiple identical transients is being
sampled per run), EXEC1 will automatically turn off the

80

sampling process at this point and the operator can dump out
the samples using one of the INFORM commands.

If the averaging mode has been selected, control line 10
will go low as soon as the first transient 1s complete, and a
new transient will start on the next rise of the clock on
interrupt line 3. If the simulation needs time to settle out
between transients, the user must use the logic area of the
680 analog conscle to detect the falling edge of control line
10 and use it to hold the clock connected to interrupt line 3
low until the simulation is ready to go again. This process
will repeat until the number of averages specified by the
operator through the "B" INFORM command have been taken.
Don't forget that the averaging mcde may also be used to
filter noise from steady state data by specifing the number of
samples as 1, and asking for, say, 1024 averages. If this 1is
your mode of operation, you can forget about the rise and fall
of coatrol line 10 and just keep the clock going into
interrupt line 3. Don't set the clock rate too high, though,
as you may choke the system by allowing insufficient time to
collect samples. You can look at control lines 10 and 11 on a
scope to see how fast you can go. Also, for good noise
filtering, the samples should be spaced out over several
seconds.

If a situation occurs where the interrupt structure loses
its integrity, the message; "SYSTEM CRASH" followed by an
appropriate message will occur on the CRT terminal. To recover
from such an error you must re-initalize the interrupt as
described in paragraph 8 of the "Use" section. If INFORM is
operating in the variable trip mode with the halt option
selected, the message "INTERRUPTS ABORTED!"™ wi1ill be received when
the trip occurs. This means that all interrupt processing has
stopped and that any interrupt levels which were in progress when
trip occurred have been left and shall not be conmpleted. The
only routine running after receipt of this message will be the
INFORM or BTASK subroutine as selected by the state of sense
switch H immediately following the printout of this message. The
situation 1s temporary, however, and normal execution will resunme
when INFORM or BTASK are exited (use the INFORM ".'" command).

The above message and operation will also occur ary time the
PACER executes a trap instruction of number 0 thru 10. Hence,
BTASK can halt program execution at any time by executing a TRAP
0 instruction.

Notes

1) At present, INFORM, SAMPLE, and DATAO can only manipulate
scaled fraction or integer data, although INFORM's List
Core command can display any data type on a one at a time
or one block at a time basis.

2) You must know the <core location (by number) of all data
you wish to manipulate. Hence, you should place variables
in COMMON core. Place all inputs/outputs, map
inputs/outputs and any key intermediate calculations there
since you never know what may be useful to observe when

81

3)

debugging a malfunctionaing program.

Buirlding the definition table for a new program, although
no more difficult than typing up a program, is not easy.
Hence, you only want to do it once and you only want to
make changes to 1t when your program gets updated. You
can accomplish this through the use of INFORA's
relocatable load/dunp feature 1f your assigned COMIMON
locations remain fixed. In the PACER, COMMON is assigned
from the top of core down. The last-defined COMMON block
of the first loaded proyranr occurs first. COMNON
statements not contained in the first loaded program are
appended to the taple from the top down. The COMMON which
1s defined last in the new program, appears first or at
the first core location below the first COMMON blocks
loaded. Therefore, to be able to add new variables to
COMMON as your program expands or changes without havaing
all your COMMON shift because you increased or decreased
the length of a COMMON block, your first program loaded
should contain all your COMMON statements., You may then
add COMMON to any subroutine or portion of your program by
adding variables to the first and only the first CONUMON
block defined by this program. Alternately, you may add a
new COANUN block definition to the front (1.e., preceding
any existing COMMON block definition) of this "master"
program. If you wish to keep your CCMMON blocks segmented
into nice blocks, 1t might not be a bad 1dea to build
expansion room 1nto each block by adding several dummy
locations to each COMMON block. It's easy encugh. Just
add a dummy dimensioned variable to the end of the COMMON.
You should still follow the procedure outlined above,
however, Jjust i1n case you run out of expansion roon.

The priority granted each routine from highest to lowest is
as follows:

LEVEL SIGNAL TO CAUSE INTIERXUPT ROUTINE CALLED

0 EXTERNAL #0 LIVELO

1 REAL TIMZ= CLOCK LCOoP

2 P ————— -

3 ________________

4 EXTEZRNAL #3 SAMPLZ

5 ——————-—-——— ee—————

6 ——— v —— - e —————

7 NONE (LOOP completion) DATAC

8 ———— e e e—————

9 EXTERNAL #7 CLxSH?

10 ——————m——— INFORA or BTASK

Note that the level 9 interrupt calls CLRSMP, which 1s an
auxiliary subroutine provided in INFORM for clearing all SA4?LE
storage blocks. It 1s also used to iritiate the summation 1in the
averaging mode. Details of the INFCXM operatrons and ogptions are
provided in reference 5.

83

Indicators_and Orerating Features

1) Pulse interrupt line 7 to clear the SAMPLE core and start a
new reading.

2) Pulse interrupt line 3 at least once for each sample point
{i.e., the sanmple clock goes here). This clock may ke continuous
as the program uses pulses only when sampling.

3) Control line 8 is an update failure indicator.

4) Control line 10 comes high after the first sample 1f a reading
is taken and goes low when the reading of the first block 1is
conplete. If SAMPLE is operating in the averaging mode, this
line will go low once for each average taken.

5) Control iine 11 goes high when a new update through LOOP
starts, and goes low when the fass 1s complete.

6) Control line 12 goes high when DATAO starts a dispiay update,
and goes low when complete.

84

tatistics:

Name: OPSYS1

Type: Core Image dump less main.

Location: PACER A-and B moving head disk (MHD).
Core used: '56433 - '73521 and '466 - '616
Programmer: David S. Cwynar

Source: None

Date: August 1978

Loading seguence: NONE

Descripticn:

}-4
,_.J

OPSYS1 is a Core Image load of INFORM (version #1) arnd a
its required subroutines.

Use:

The sole purpose of 02S¥S1 is to save the user of INFCRM a
lengthy loading procedure and to shorten the lengtk of Core Image
nodules which use INFORM by having all such modules share a
conmon INFORM load- namely OPSYS1.

The load sheet used to produce 0PSYS1 1s given in f£igure 4.
It shows the entry address of all the CI?HER I/O lipbrary routines
and external references available from this load. These external
names and addresses are duplicated in ar Opject Zi1le called
OPLIB1 where each name 1s eguated to its corresponding location
in the OPSYS1 dump. Hence, a user's program can avail itself of
any subroutine or external name resident in OPSY¥S1 by simply
progranming in the same manner as he would for ary normal
subroutine or external name and loading CPLI31 instead of the
subroutine when creating his Core Image f£file. OPLIB1 will
generate the address required by the Core Image Generator to
satisfy the usert!s call or external statement. Note that the
routine which is present in C2SYS1 will not become part of tne
user's Core Image file, but the user's program will execute a
part of OPS5YS1 whenever a call to an CPSYS1 sucroutine is
encountered. Hence, when the user wishes to rurn his program, ke
nust load OPSYS1 in addition to loading Lkis Core Image £ile.
Note further that kis Core Image file nust not infringe on
locations used by OPSYS1 as listed aktove unless the user 1s suare

85

that the portion of OPSYS1 he overlays will not be required by
his progranm.

OPSYS1 contains the version 2 INFORM Object module which
does not include the auxiliary # commands used for controlling
the moving head disk. Also, NODISK was loaded in place of DISK
to produce an error message whenever attempts to read/write any
of the disk units is attempted.

Note that since INFORM is strictly a subroutine, the OPSYS1
file is not a complete program since it is missing a main program
to call INFORM. INFORM, and hence 0OPSYS1, may be treated as a
complete program which requires no main for execution providaing
that it is run strictly in the interactive mode. Therefore,
OPSYS1 may be run as a main program provided that the operator's
node select switch(sense switch H) is set permanently to
interactive mode (reset) and providing that the ®." INFORM
command to exit INFORM is never used. The return address for the
"." command has been set to produce an error if the "." command
is issued when executing INFORM (or OPSYS1) straictly as a main
program. To operate OPSYS1 as a main program, the starting
address is that as listed for CMDS on the load sheet.

86

[y

()

ﬂ'("-.- [

.COP CI FL

LD

c.

Y¥IM, 22, INFORM
'$FILE, 22, BSSEE, F
1$FILE, 22, CIPHER
1$CILE, 22, NGDISK
1%L OAD, S56432, 2466, CP7ve7T?
FR

FR

CRMGAR CI F1

CIG CI P2

LD

INFORM OE P1

LI

BSS6S OB PL

LI

CIPHER OB PF1

LI

NODISK OB P1

LI

RTL OB Pz

DN

.COFP CI P1

Lo

C.-

| $REMAME, 21, CRMGAA, OF5YS1

CRMGAA CI P1
FR

CRMGAA C1 Fi1
oFPsSYs1 CI PA
'FASH

FE

FR

OBJIAA OB K1
H5SEM 1 P
1 b
FF
L [S ol
L
L.
' ERENAME, 22, OBJITAHA, UFL1ED
OBJTHAH OB F1

FR
OBJTHA OB HI
OFLIEL OB H1

Figure 4. - OPSYS1 load sheet.

5.

REFERENCES

681 Parallel Analog Processor Refence Handbook. Publ. No.
00800.2074-0, Electronic Associates Inc., Jdan. 1974,

PACER 100 Digital Computing System Moving Head Disk Software
System Manual. Publ. No. 00827.0061-1, Electronic Associates

Inc., May 1975.

PACER 100 Digital Computing System Library and Utility Manual.
Publ. No. 00827.0052-4, Electronic Associates Inc., Apr. 1975.

PACER 100 Digital Computing System Applications Programming
Manual. Publ. No. 00827.0051-3, RD-1, Electronic Associates

Inc., Oct. 1977.

Cwynar, David S.: INFORM: An Interactive Data Collection and
Display Program with Debug Capability. NASA TP-1424, 1979.

88

End of Document

