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Abstract

There exists a number of mathematical procedures for designing
discrete-time compensators. However, the digital implementation of
these designs, with a microprocessor for example,has not received
nearly as thorough an investigation. The finite-precision nature of
the digital hardware makes it necessary to choose an algorithm
(computational structure) that will perform 'well-enough' with re-
gard to the initial objectives of the design. This paper describes
a procedure for estimating the required fixed-point coefficient
wordlength for any given computational structure for the implementation
of a single-input single-output LQG design. The results are compared
to the actual number of bits necessary to achieve a specified
performance index.
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1. introduction

The design of discrete-time compensators through the use of

optimal regulators, pole-placement concepts, observer theory, optimal

filtering [1,2] and also via classical control theory [3] has received

a great deal of attention in the literature. In the past such designs

have usually been implemented on large, expensive, floating-point

computer systems. However, the number of applications that could

effectively use small-scale hardware control systems that work in real

time has greatly increased, especially with the advent of the

inexpensive microprocessor.

While the recent advances in digital hardware capabilities have

opened many new possibilities for control system implementations,

they have also raised new issues. A number of these involve the pro-

blems that arise in dealing with the fixed-point arithmetic and

finite wordlengths (limited storage) of small-scale digital systems.

As these problems are not addressed at all in the idealized mathematical

design procedures that have been developed to date, a methodology must

be established for treating the digital implementation of a design.

The mathematical design procedure, only a first step, produces an

infinite-precision compensator that is 'ideal,' at least with respect

to all finite-precision implementations. The job of the implementation

step will be to specify and order the critical computations that must

take place in the compensator so that the end result ( finite-precision)

performs as close to the 'ideal' as is consistent with the expense and

'I



and speed requirements of the application. The implementation step

will also include a specification of the hardware, architecture and

components. It is important to note that the mathematical design and

the implementation phases are not totally independent, since the im-

plementation can be very important in determining an acceptable sam-

pling rate and the number of operations that can be performed per

sampling period.

Some effort has been directed to the implementation phase of an

overall controller design, but it has been quite limited. Knowles

and Edwards [4] have considered some roundoff noise questions for a spe-

cific classical controller design. Sripad [5] has looked at the roundoff

noise and coefficient sensitivity of the Kalman filter. Rink and

Chong [6] have derived bounds on the quantization error in floating

point regulators.

Our approach will draw on the field of digital signal processing

[7], which has generated many results concerning the realistic imple-

mentation of digital filters. The finite precision effects of coef-

ficient quantization, limit cycles, and quantization noise have been

reviewed (for filters) in [8], [9], and [10]. These results are very

important for control applications, since a control system can be

viewed as a digital filter (compensator) imbedded in a feedback loop

through a plant. Our work is a first step towards bridging the gap

between the digital filtering results (no external feedback) and the ideal
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controller design procedures. This paper bring the techniques for

digital filter implementation to bear on the fixed-point compensator

coefficient wordlength issue.

Approximating the coefficients of an implementation with a finite

number of bits will cause a degradation in the system's performance as

compared to the ideal. Assuming that a given quantitative performance

measure is provided, we can measure the tradeoff in the number of bits

vs. the degradation. Then, assuming that we specify an acceptable

amount of degradation, one must determine the minimum number of coef-

ficient bits needed to meet this goal. Clearly a straightforward way

to determine this wordlength is to simply reevaluate the measure of

performance over a number of different rounded wordlengths, and to

choose the smallest wordlength meeting the design specification.

This brute force method can be quite time-consuming. The concept of

a (simpltz) statistical estimate of the wordlength originated in the

study of digital filters with the work of Knowles and Olcayto [111.

Avenhaus [121 applied this idea to the digital filter power transfer

function (as a performance measure), and later Crochiere [13,141 used

the concept with the filter transfer function magnitude and a word-

length optimization procedure. All three of these studies chose dif-

different performance measures, none of which seem to be particularly

appropriate for control problems where the compensator phase is critical.

In this paper we will adapt the statistical wordlength concept to the

steady-state linear-quadratic-Gaussian (LQG) control problem, using the



-4-

^	 F

LQG penalty function as our measure of performance. After discussing

the LQG configuration,a notation for specifying different implementa-

tions will be presented, followed by the actual statistical wordlength

procedure. Examples demonstrating this procedure and comparing it to

the brute-force method follow.

2. The LQG Controller Problem

This section will present the single-input single-output LQG

control configuration and the mathematical (ideal) design of the

compensator. The discretized plant equations are described as follows

(assume a given sample rate):

x(k+l) = Ox (k) + ru(k) + wl (k)	 (1)

y 	 - Lx (k) + w2(k)

where (D(nxn) is the transition matrix, r(nxl) and L(lxn) are the

input and output gains, and w  and w 2 are discrete white Gaussian

noise sequences with covariance matrices 01 (nxn) and 02 (1x1) respect-

ively. The control law is chosen to minimize the following performance

index: (the discretized version of a continuous-time performance

index)

1	
+i

J = E lim	 (x' (k)Qx(k) + x' (k)Mu(k) + Ru 2 (k) )^	 (2)
i-MO 2i k=-i

where Q is nxn, M is nxl, and R is 1x1. The result is the following

regulator/Kalman filter compensator:
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x(k+l) - 0x (k) + rGW + K(y(k) - Lx(k))

(3)
u(k) --Gx(k)

Note that the equations in (3) base the current control u(k)

only on past outputs y(k-1), y(k-2) ,...,[1]. A real compensator

(one that can be implemented) cannot allow u(k) to depend on y(k),

since a finite amount of computation time must elapse before y(k)

can affect the output u. Thus y(k) can affect u(k+l) but not u(k).

The gains G(lxn) and K(nxl) can be found by solving the fol-

lowing two algebraic Ricatti equations [l]:

P - (o-rR 
1
M')'P{I-r(R+r'Pr) -1r' P}(o-rR 1M') + Q-MR 1M1

E = O{I - EL' ( O2+LEL") -1L}EV + 01
	 (4)

and

G = (R+r'PI') -1r P((D--rR 1M') + R 1M'	 (5)

K = (DEL'(02+LEL') -1

Figure 1 presents a simple block diagram of the system and its

(infinite-precision) compensator. This ideal compensator (3) can

be described by an infinite-precision map (transfer function) in the

digital frequency domain:
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Y(z) _ 
_G (z - o+KL + rG) -1K	 (6)

The digital filter transfer function (6) must be Implemented

in finite precision with as little degradation in some system per-

formance measure as possible. In the setting of a steady-state LQG

problem, it is convenient to select the performance .index J in (2) as

the measure of performance, since it reflects the weighted steady-

state RMS state and control fluctuations. it would also have been

possible to choose a criterion such as phase margin, output noise

power, or any combination of stability or noise measures. if the

problem under consideration was simply a Kalman filter, then a

suitable performance measure would be the trace of the error covariance

matrix. We have chosen J in order to present our results in a

specific context. These results extend in a simple and direct fashion

to other measures. It should also be noted that the selection of a

single-input single-output system has only been done for convenience,

and the following analysis can be easily extended to the multiple-

input multiple-output case.
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3. Algorithm and Structures

In order to discuss different implementations, one must have

an accurate notation that reflects these differences. The term

'algorithm' or 'structure' will be employed to specify the exact finite-

precision procedure by which the compensator output samples u are

generated from its input samples y. All structures for implementing

a given filter or compensator would perform identically under infinite-

precision arithmetic, but will produce different quantization noise,

coefficient quantization effects, and limit cycles given the

(realistic) finite-precision environment. A good review of some of

the structures used to implement digital filters can be found in

[141, [151, and [161.

In order to demonstrate the finite-precision effects of different

structures, consider the following example. Assume that an ideal

compensator has been designed, and that its (infinite-precision) trans-

fer function is given in (7).

U(z)	
z-1	

(7)
Y(z)	

1+1.11z-1+0.2872 2

one possible structure for implementing this filter is the direct

form II [7]. Figure 2 -A shows a signal flow graph of this filter

where the coefficients b  and b 2 can be read directly from (7), the

unfactored ideal transfer function. Given finite precision fixed-

point aritr:«etic (say 10 bits total per coefficient), the ideal



bl: 1.11 (ideal, co bits)
1.109375 (10 bits)

b 	 0.287 (ideal)
2 0.28515625 (10 bits)

Y

U
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A: Direct Form II

B: Cascade Form

a _ x.41 (ideal)
1 0.41015625 (10 bits)

a2.0.70 (ideal)
10.69921875 (10 bits)

Figure 2: Example Structures
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coefficients values of b  and b2 must be quantized (assume rounding).

Reserving two bits for the integral portion of the coefficient word

(bits to the left of the binary point) and 8 bits for the fractional

portion, the rounded coefficient values would be 1.109375 and 0.28515625.

Figure 2-B shows the flow graph of another common structure,

the cascade form. Mere we realize (7) by a series cascade of two

first-order filter sections. The coefficients a l and a2 can be found

by factoring the denominator of (7). Again, the ideal values must be

rounded to fit 10 bit words, producing a l=0.69921875 and

a2=0.41015625.

Now let us examine the performance of these two structures given

their respective finite-precision coefficients. The (10-bit) direct

form 11 and the cascade have the transfer functions shown in (8)

and (9) respectively.

U (z) _	 z-1	 (8)
Y(z)	 1+1.1093752-1 + 0.28515625z-2

U 	 z 1	 (9)
Y(z) = 1+1.109375z-1 + 0.28678894404296875

Clearly these two structures produce slightly different transfer

functions under finite precision, and we have not even mentioned

their respective quantization noise and limit cycle behavior. Thus

different structures will in general result in different finite-

precision performance even though their infinite-precision

t
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counterparts have equivalent performance (that of the ideal design)

In order to deal with these different structures, it is important

to have an accurate way in which to represent the operations involved.

The modifif d state-space of Chan 1151 is tho most convenient method.

Consider a filter (compensator) with input y, output u, and state vector

v. Then the coefficierts and the sequence of multiplies and critical

additions in any structure can be specified with the following

representation:

[

v (k+l) 	 v 

u W q*q-1	 1 y (k)	
(10)

Two important points make (10) useful:

(1) Each (rounded) coefficient in the structure occurs once

and only once as an entry in one of the ^ i matrices. The remainder

of the matrix entries are ones and zeros.

(2) The concept of a precedence to the operations (multiplies,

adds, and quantizations) is maintained. The ordering of the
v {k)

matrices implies that the.operations in computing w 1 y(k) are

v(k)
completed first, then ^ 2 ^ 1	 next, and so forth. The

y (k)

parameter q ..pecifies -the number of such precedence levels.

Consider the example of the last section. The direct form II

in Figure 2-A has a onQ-level modifed state space representation as
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shown in (11), while the cascade (12) requires two levels to describe

its operations (even though its multiplies can be confined to one

level):

v(k+l)	 0	 1	 0	 v(k)
(11)

u 	
-b2 -b1 1	 y 

	

%.0	 1	 0

v(k+l)	 1	 0	 0	 -a1 	0	 1	 v(k)

u(k)	 1	 1	 0	 0	 -a2	 0	 y (k) (12)

	

0	 0 1	 0	 1	 0

Thus any two structures will have associated with them two

different sets of ^ matrices. Let the coefficients in each y i matrix

be replaced by their infinite -precision counterparts (their values

before rounding), :nd define y^ to be the infinite-precision product

yq!P I '"' y
1 . This matrix W„ will then be identical (within a

similarity transform) for all structures - it depends strictly on the

idea: design and choice of states v(k). It is also notationally

convenient to partition y.. into a state-space representation, with no

feedthrough term. (see section 2.)

I
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v (k+l)	
X11
	 X12 v (k )

(13)
u 	

CO	 ^21
	 0	 y (k)

Thus (13) represents the ideal compensator's input-output behavior

in a state-space form, and any factorization (10) of ^.Or with the

resulting coefficients rounded, will repre6ent a specific finite

precision structure for implementing the ideal transfer function.

4. Statistical Wordlength

The need for a coefficient wordlength estimate is twofold.

First, the computation of an estimate should be simpler than directly

evaluating the performance measure over and over as'the number of

coefficient bits is varied. More importantly, if the estimate is

continuous in nature (not confined to integral numbers of bits)

then it is possible to apply simple optimization techniques to syn-

thesize better structures. The statistical wordlength estimate can

fulfill both these aims.

The remainder of this section will review the basic development

of the statistical wordlength measure. [13) Consider a general

measure of performance f. With a finite-precision implementation, the

resulting f will then depend on the coefficients (cl,c2,...,cm) of the

structure. The value of f associated with any particular finite-

precision structure will reflect a degradation in performance as
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compared to the ideal (unrounded coefficients) case f . This
Go

degradation df can be expanded in a Taylor's series about the ideal

value. To first order

df(cl•cZ•...,cm) 	 L	 8c.	
dci	(14)

J=1	 i

where c  is the ith coefficient to be rounded, dc  is the error due

to quantization, and 
ac	is the first partial derivative of f1 00

evaluated with the unrounded coefficient values. Note that coef-

ficients such as 3,2,1, 2 .... are not normally affected by rounding
and s_-ild not be included in the sum (14).

If A is the quantization step size (the fraction represented by

the least significant bit of the fixed-point coefficient word), then each

dci must lie between + 2' (rounding assumed). Given the partial derivatives
in (14), we could then(upper)bound the error df, producing a very

pessimistic wordlength estimate.

The basic statistical wordlength idea is to treat an ensemble

of structures. Over this ensemble, the coefficient errors dc  can

be described as uniformly-distributed zero-mean uncorrelated random

variables, each of variance A 2/12. The error df is therefore also

zero-mean, with a variance:

I
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2	 D2	 m	 2
3f	

(15 )'df - 12	 i^l aci

For large m, the central limit theorem can be applied to

justify a Gaussian distribution for df. Thus with a given confidence

level (probability), say 95%, one can predict the variance a2df
needed for the error df to remain within some prescribed bound.

In other words, 95 out of 100 of the structures in the ensemble will

result in systems where df remains within this bound.

From a table of the Gaussian distribution,

Pr(ldfl< 2adf) _ .954	 (16)

If the . quantity of interest f is constrained to lie within + Eo

of the ideal fc. then (16) implies that Qdf equal Eo/2. This

result can be combined with (15) to produce an estimate of the

parameter A:

V E
^	 o

71 (-aci (^

Given Q, the statistical wordlength can be defined to be

SWL = Q + log2 1	
(18)

(17)
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The first term in (18) represents the number of bit necessary

to represent the integer portion of the coefficients (bits to the

left of the fixed-point binary word 'decimal point') and the second

term gives the number of bits necessary for the fractional portion

of the coefficient word (bits to the right of the binary point).

In the digital filter area, Crochiere [13,14,16] presents a

number of results comparing the statistical wordlength of structures

using the transfer function magnitude as the performance measure f.

Since this choice of f is frequency-dependent, the resulting estimate

is also frequency-dependent. The final wordlength can be selected

as the maximum of the estimates over the frequency range of interest.

In the examplestreated by Crochiere, the statistical wordlength

estimate was always 1 to 3 bits conservative as compared to the actual

minimum number c" bits necessary to just meet the transfer function error

limit In a related work by Chan and Rabiner [17], which considered a

large number of finite-impulse-response filters and a similar statistical

approach to coeff ,,cient wordlength, the resulting 95% confidence level

estimates were also observed to be conservative. Crochiere [13] was

also able to use statistical wordlength as the basis for an optimi-

zation procedure involving the filter-specification filter-order

tradeoff.
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S. Statistical Wordlength and the Performance Index J

As mentioned above, it is convenient to use the performance index

J in (2) as the measure of performance f in an LQG setting.

Using the approach of the previous section, the change in J would be

estimated by:

m (2—jdJ(c1,c2, .... cm) 	 L	 ac.	 dc)	 (19)
i=1	 i

However, the optimal nature of the LQG control problem forces all

the sensitivities 
aj
	to be zero. Therefore a higher-order
i

approximation is necessary:

M	 m (32J
di 2	 G	 ac. ac.	 dcidcj	(20)

i=1 j-1	 1

The use of second-order terms (not seen in digital filter analysis)

will make the statistical wordlength expression for LQG compensators

unique, and as will be shown, quite complex to compute.

Proceeding from (20), the mean of di will no longer be zero:

EW) =	 a2J2	 E[(dci)2]	
(21)

i=1 ac 	 00

For convenience, define the random variable E to be the square of

dci . Its mean and variance can be shown to be 212/12 and A4/180.

The second moment and variance of di can now be found:

:j
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E I Oil 2 3 M e2 ^ 
82J2 

+ (E)I^a2J2a2J2
1=1 aCi	

,^y
1 I ( ĉi	 aCj

00	
i#k	

CO	 00

2

	

c	 ma2J	 (22)
+ 2 (E)	 L	 G

i=1 j=1 ac ac
i

	

i#j 	
j 00

2
m	 2	 _ mC
	

m	 2a2 = Q2 	C	 a J	
+ 4 (E)2 G	 G	 a2J

dj	 G i=1 ac. 2	i=1 j=1ac 3c	
(23)

1 00	
i>j	

i _.
lam

The same Gaussian assumption and confidence level approach can

be applied to this higher-order foxmulltion, as shown in Figure 3.

Since the value of J can only increase under coefficient quantization,

we need only have a specification on its maximum allowed value

J00 + Eo . If we choose two standard deviations around the mean, then

we can write

JCQ + E  = JGo + dJ + 2 a W	 (24)

This choice of 
adJ 

gives a 97.5% confidence level in terms of

remaining below the allowed deviation E o . Combining (22), (23),

and (24) we can derive an expression for 02:

y

L
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Figure 3: Probability Density of W
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Q2 	 1	 C	 32J	 + 1 C a2
J (

L	 L

	

3Eo i t	 1 ac
i aci 	 5 i

=1 ac.2
i>j00	 00

+ 1	 me
	 32J

L
12E  i=1	 ac.2

Using (18), the SWL can then be written:

SWL R, + 2 log2 1

The use of second-partial derivatives in approximating

dJ in (20) has given rise to a complex expression for the

statistical wordlength. Efficient methods for evaluating (26)

will be discussed in the next section.

6. Computational Procedure

In order to compute the derivatives of JO. , the infinite-

precision (ideal ) performance index, it is convenient to use the

trace form of equation (2): (18]

JOD = trace [S Z]

The 2nx2n matrices S and Z are defined by (28) and (29):

Q	 *21
S = (28)

^21M'	^21R^21

i

P

F
f

I

(25)

(26)

(27)
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x 

	

Z - E	 [W(k) v'(k)]	 (29)
v (k)

where Q,M, and R are the performance index parameters described in

	

(2) and 
X21 is the lower left-hand portion of 1P. as described in (13).

	 :M

The matrix Z, the covariance matrix for plant and compensator states,

can be shown to satisfy the following Lyapunov equation:

O1	 0

Z - AZA' +	 (30)

	

0	
^12021P12

where

A	 r^21

*12L 	*11

Note that (27)-(30) depend on the infinite-precision (ideal)

compensator and on the selection of compensator state variables v.

The resulting J., 	 be independent of structure. However, the

partial derivatives of J, (evaluated for ideal coefficients) will

depend on the structure since each coefficient c,
i 

resides in one

of the structure ' s i matrices. Taking the partial derivatives of

(27) will produce: (assume all partials are evaluated at the ideal

values of the coefficients)
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a 
2 
1	

trace ate—_ z + trace 21 
as + as aZ

aci ac	 aciacj	 ac  acj acj acj

_	 2

+ trace S aciacj

At first glance, ( 31) represents a great deal of computation.

The first term requires the solution of (30) for Z. However, the

second trace term involves the first partial derivatives of Z:

.,A

(31)

	az	 az
Dc  ' 

A 
ac.i 

A,
+ Qi

where

0

Qi 	 ac	
ZA' + AZ

 ac.+
1	 1	 0

0

(

3^12
 02W12 + X1202 ac121	 1

(32)

(33)

Evaluation of the second trace term in (31) for all i or j will

imply solving m Lyapunov equations of the form shown in (32). The

final term of (31) requires second partials of Z:

2	 2

acZac	 A aciacj A' 
+ Ci jj

where the 2nx2n matrix Cij involves partial derivatives of A, Z, and

t . with respect to the i th and j th coefficients. Solving (33) for all

i and j would require m(m+l)/2 more Lyapunov solutions.
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Fortunately, this burden can be substantially reduced.

Specifically, the concept of adjoint operators can be used [11 to

simplify the last term of (31). If we take the trace of the product

of two matrices to be an inner product on the space of matrices, and

L to be a matrix operator, then:

trace(L(X) U) - trace(X 	 L (U))	 (34)

where L is the adjoint operator of L. For L(X) - X-AXA', the

operator L can be derived from (34):

trace((X-AXA') U) - trace(XU) - trace(AXA'U)

- trace(XU) - trace(XAIUA)

	

- trace(XtU-A'UA)) 	 (35)

r
Thus L (u) - U-A'UA. This adjoint operator can be used to simplify

the last term of (31) if X is a2 z	 and L (U) equals S. Since
ac. 3c.

	

2	 1 J

L 
2cZac	

equals Cij, we can rewrite (31):
1 j

a21a
2

- trace a S	 Z + trace 
c aZ + as	 aZ	 + trace(UC. )

	ciac	 ac ac

	

j	 ij	 ac ac	 ac	 ac. 	 ij

(36)

where U satisfies U-A'UA-S. Thus the last term of (36) requires only

one Lyapunov solution.
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There is still the problem of the m Lyapunov solutions needed in

term 2. By using the Lyapunov solution method of Barraud [19], this

computation can also be simplified. Consider the general Lyapunov

equation (37)s

X - FXF' +C
	

(37)

Barraud's method breaks into two distinct parts, one which transforms

F into the upper Schur form, and one which back substitutes using the

transformed F matrix and C. The major portion of this computation

involves the initial F transformation. Thus , if there exists several

Lyapunov equations with identical F matrices but different C matrices,

then the F transformation need be done only once. This is exactly the

situation for the Lyapunov equations (30) and ( 32) needed for the

first two terms of ( 31). Typically, 50-90% of the Lyapunov computation

time can be saved, depending on the particular matrices.

Further computational time savings are possible. Certain partial
c

derivatives involved in the Q i , Cij , and 
a 

expressions are known to

be zero and need not be computed. As an example, the term	
00

ac. ac.
3

M st bit zero if the i th and j th coefficientsare in the same

precedence level, Suppose ^M equals * 1Y 3 (three precedence levels

exist). The nature of the modified state-space representation

guarantees that each of these coefficients may be a -jingle entry in

only one precedence level. Assume that c, and cj are both in
1

)
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Taking the partial derivative with respect to ci:

ac	 '11 ace 	 0	
(38)

i	 i

a,y
The matrix a*2 must be an all-zero matrix excluding a single unit

i

entry at the same location as c  in ^ 2 . The expression in (38) is

a2 ^m
now independen t of c,, implying that 

acjacl 
equals zero.

The specific details of the computational procedure (heavily

involving the use of trace identities to simplify expressions) and

the program itself pan be found in the appendices of (20].

7. An LQG Example

The following sixth -order example was chosen to test the

statistical wordlength algorithm. It is adapted from the bngitudinal

control system design done for the F8 digital fly-by-wire flighter

[211.

Continuous Time Svstem Parameters:

-4-0.6696 5.7x10 -9.01 0 -15.77 0

0 -0.01357 -14.11 -32.2 -0.433 0

-41 -1.2x10 -1.214 0 -0.1394 0

A l 0 0 0 0 0

0 0 0 0 -12 12

0 0 0 0 0 0



7
-26-

B= [0	 0 0 0 0	 11

C	 1 1	 0.003091 31.28	 1	 3.592	 01

Continuous-Time Performance Index Parameter.

Q

6.637 0 0 0 0 0

0 2.6554x10-7 2.686x10-3 0 3.085x10-4
0

0 2.686x10-3 27.174 0 3.121 0

0 0 0 27.174 0 n

0 3.085x10-4 3.121 0 0.3585 0

U 0 0 0 J 0

R =	 5.252

Continuous-Time Noise Covariances

.1 = diag [0 0 0 0 10 -6 i0-6

°2 = 0.00368825

This continuous-time system was discretized at a sample rate of

10 HZ and the optimal regulator and Kalman filter designed. The

double-precision par=aeters 0, i, L, ¢, M, R, 0 1, 8 2 , G, and K can

be found in f201.
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Four structures for implementing the ideal compensator transfer

function (6) were examined. The first three are regular filter

structures -the direct form II, the cascade form, and the parallel

form. The coefficients of the direct form II structure (recall

Figure 2) jome directly from the unfactored transfer function (39);

the 12 coefficients and one precedence level 
^1 

are shown in (40).

-1	 -2	 -3	 -4	 -5	 -6
a 

1 
z +a2z +a 3z +a4z +a5z +a6z

H(z) _	 _	 _
1+b1z-1+b2z 2+b3z

-
3+b4z 

4 +b 5 z-5 +b6z-6
(39)

^l

0 1 0 0	 0 0	 0

0 0 1 0	 0 0	 0

0 0 0 1	 0 0	 0

0 0 0 0	 1 0	 0

0 0 0 0	 0 1	 0

-b6 -b5 -b4 -b3	-b: -bl	1

a6 a5 a4 a3	a2 al	0

(40)

The actual a  and b  values, and the ideal coefficient values for

the other 3 structures can be found in (20].

The second structure, the cascade (see Figure 2), derives its

coefficients from a multiplicative factorization of (39) and breaks

into 3 series direct form II second -order sections. The factored

transfer function (twelve coefficients) and the two precedence level

matrices ^1 and ^2 
are shown in (41) and (42):



1 0 0 0 0 0	 0

0 1 0 0 0 0	 0

0 0 1 0 0 0	 0

0 0 0 1 0 0	 0

0 0 0 0 1 0	 C

0 0 0 1 0 1	 C

1. 0 0 0 1 0 1	 3

(42)
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(riz 
1
+r2z2 ) (1+r3z 1+r4z 2) (1+r5z -1
	

-2
H(Z) _

(l+clz 1+ c2z 2 )(l+c3Z-1+c4z 2)(l+c5z-1+c6z 2)
(41)

i

1

0 1 0 0 0 0 0

0 0 0 0 1-c2 -c1

0 0 0 1 0 0 0

0 0 0r2 r1 -c4 -c3

0 0 0 0 0 1 0

0 0 0r4 r3 -c6 -c5

0 0 0 0 0- r6 r5

The third structure, the parallel form, corresponds to a partial-

fraction expansion of (39) and breaks into parallel direct form II first

and second-order sections. The expanded transf=r function (also 12

.oefficient* and the one precedence level 'W 1 are shown in (43) and (44):

-1	 -2	 -1	 -1	 -1	 -1
ez +e 

2 
z	 ez	 ez	 e 

5 
z	 e 

6 
z

H(z)	 1	 + 3	 + 4	 _ +	 +	 (43)
1+c1z-l+c2z 2	 1+d3z-1 1+d4z 

1 
1+d5 2-1 

1+d6z 1

L_ .
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0	 1	 0 0 0 0	 1

-c2 	-cl 	0 0 0 0	 1

0	 0	 -d3 0 0 0	 1

^l 0	 0	 0 -14 0 0	 1

0	 0	 0 0 -d5 0	 1

0	 0	 0 0 0 -d6	 1

e2	 e1	
e 3 e4 e5 e6	 0

(44)

The fourth structure (herein referred to as the 'simple'form

is taken directly from the original LQG compensator equations (3).

The parameters of	 K, L and G are taken to be the coefficients

of this structure. The form of the transfer function containing

these coefficients is shown in (45), and the modified state-space

representation of the structure (two precedence levels ) is shown

in (46) :

8(z) _ -G(z-o+KL+rG) -1K
	

(45)

E
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' 0
-K 0I6 

0
2^1	 0

1	 1	
------

	

_	

----000000 0	 -1	 L	 j -1

G	 0

Table 1 presents data concerning the statistical wordlength

estimate for the four structures described above. For this system,

a five percent degradation was specified as the maximal deterioration

allowable in the measure of performance J.

	

SWL	 TWL
Structure (eqn)	 !C bits (time)	 bits (time)	 coefficients

direct-II ( 40) 3	 26.68(.75) 27(1.18)	 12

cascade (42) 1	 16 .78 (.81) 15(l.34)	 12

parallel(44) 1	 12.65(.71) 12(.77)	 12

simple (46) 5	 22.50(4.2) 21(.76)	 47

TABLE 1: SWL Results for the F8 Example

The effect of structure on coefficient wordlength is evident

from Table 1. The direct form II stri!cture requires by far the most

bits, while the cascade and parallel forms require the least. Both of

these results are also typical of digital filters [7]. The simple

form structure derived directly from the LQG compensator equations

(46)
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requires an intermediate number of bits, but its most undesireable

property is its 47 coefficients, implying many hardware multipliers

or a long calculation time (low system sample rate).

As an estimate, the statistical wordlength for this LQG example

is between -.32 and +1.78 bits of the true wordlength (TWL). With

this error range, the statistical wordlength estimate is quite useful

both for the comparison of different structures and for the deter-

mination of an acceptable design wordlength. For comparison, the

digital filter examined by Crochiere [14] has statistical wordlength

estimates (based on transfer function magnitude) that were between

1 and 3 bits conservative.

Before interpreting the computation times listed in parentheses

in Table 1, the method for determining the true wordlength must be

described. The performance index J is roughly a monotonic function in

the number of coefficient bits. This fact allows a binary search type

of algorithm to be used, re-evaluating the index J until the degradation

specification is met with a minimum number of bits. Unfortunately,

there are several problems that can arise. First, when rounded coef-

ficients produce an unstable closed-loop system, J can be below its 
JCO

value and even be negative. Even when this situation does not occur,

J is not necessarily montonic; certain valuesof J can be slightly

smaller then the J value using 1 more coefficient bit. These two pro-

blems can slow down (or 'tie up') the search algorithm used in
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determining a true required wordlength, and explains the 1.18 and

1.34 second computation times for the direct and cascade structures'

true wordlengthi .

Comparing the computation times for the statistical and true

wordlengths, we see that the statistical wordlength is somewhat

faster to compute in all cases except the simple form. This excep-

tion is due to the strong computational dependence of the statistical

estimate on the number of coefficients. However, as mentioned above,

this simple form would probably never be considered due to the

hardware implications of computing 47 multiplies per sample period.

S. Conclusion

This paper constitutes a first step in examining the issues

involved in the digital implementation of control compensators. To

deal with these issues, we have sought to ally the fields of digital

signal processing and control and estimation, a fairly novel approach.

More specifically, this paper treats the statistical coefficient

wordlength issue for the LQG compensator using fixed-point arithmetic.

After reviewing the LQG design procedure and defining the notion of

an implementation structure, the statistical wordlength concept for

digital filters was described. In adapting this concept to a control

and estimation problem, we stressed the importance of selecting a

good performance measure. The index J was chosen for the LQG problem,

although the method readily extends to other measures (for example,
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the covariance matrix trace for Kalman filter problems). Finally

an efficient computational method was discussed and an illustrative

example presented.

Our results demonstrate the feasibility of using the statistical

approach in determining a sufficient LQG compensator coefficient

wordlength. one application of this technique would be in the com-

parison of different structures for implementing a design. In

addition, the statistical wordlength is also an accurate criterion

for selecting the wordlength once a specific structure is chosen.

Perhaps of more importance, the continuous 'closed-form' nature

of the statistical wordlength estimate makes it possible to synthesize

minimum coefficient wordlength structures in a straightforward manner.

Chan [15] has described such a technique, using the modified state-

space notation, for digital filters. This idea can be easily extended

to the LQG statistical wordlength estimate presented in this paper. F201

Finally, as a general technique, the statistical measure of coef-

ficient w ►,,:dlength can be applied to a variety of control and estimation

problems, using whatever measure of performance seems appropriate

(gain margin, phase margin, transfer function magnitude and phase, a

covariance matrix trace, etc.). Within the computational formulation

of sections4 and 5, suboptimal LQG compensators or Kalman filters can

be considered simply by including first derivative terms in the analysis

(with a moderate increase in computation). These and related questions

are considered in more detail in (201.

4



-34-

REFERENCES

[1] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems,
J. Wiley & Sons, New York, 1972.

[2] J.C. Willems and S.K. Hitter, "Controllability, Observability,
Pole Allocation, and State Reconstruction," IEEE Trans.
on Aut. Control, V. AC-17, Dec. 1971, pp. 582-595.

(3) B.C. Kuo, Analysis and Synthesis of Sampled-Data Control Systems,
Prentice-Hall, Englewood Cliffs, New Jersey, 1963.

[4] J.B. Knowles and R. Edwards, "Effect of a Finite-Word-Length
Computer in a Sampled-Data Feedback Systems," Proc. IEE
V.112, No.6, June 1965, pp. 1197-1207.

[5]. A.B. Sripad, "Models for Finite Precision Arithmetic, with
Application to the Digital Implementation of Kalman Filters,"
Sc.D. Dissertation, Washington Univ. Sever Institute,
Jan. 1978.

(6]	 R.E. Rink and H.Y. Chong, "Performance of State Regulator
Systems with Floating-Point Computation," to be published.

[7] A.V. Oppenheim and R.W. Schafer, Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

[8] T.A.C.M. Claasen, W.F.G. Mecklenbriuker, and J.B.H. Peek, "Effects
of Quantization and Overflow in Recursive Digital Filters,"
IEEE Trans. Acoustics, Speech, and Sick. Processing, V.ASSP-24,
No.6, Dec. 1976, pp. 517-529.

[9] J.F. Kaiser, "on the Limit Cycle Problem, "Proc. IEEE Inter.
Conf. Acoustics, Speech, and Sig. Processing, 1976,
pp. 642-644.

[10] A.V. Oppenheim and C.J. Weinstein, "Effects of Finite Register
Length in Digital Filtering and the Fast Fourier Transform,"
Proc. IEEE, V. 60, August 1972, pp. 957-976.

[11] J.B. Knowles and E.M. Olcayto, "Coefficient Accuracy and Digital
Filter Response," IEEE Trans. Circuits and Systems, V.
CAS-15, March 1968, pp. :31-41.



-35-

[12] E. Avenhaus, "On the Design of Digital Filters with Coefficients
of Limited Word Length," IEEE Trans. Audio & Electroacoustics,
V. AU-20, Aug. 1972, pp. 206-212.

[13] R E.Crochiere, "A New Statistical Approach to the Coefficient
Word Length Problem for Digital Filters," IEEE Trans. Circuits
and System, V. CAS-22, N6.3, March 1975, pp. 190-196.

[14] R.E. Crochiere, "Digital Network Theory and Its Application to
the Analysis and Design of Digital Filters," Ph.D. Dissertation,
MIT, Dept. of EE, April, 1974.

[15] D.S.K. Chan, "Theory and Implementation of Multidimensional
Discrete Systems fo_ Signal Processing," Ph.D. Dissertation,
MIT, Dept. of E:; i, CS, May 1978.

[16] R.E. Crochiere and A.V. Oppenheim, "Analysis of Linear Digital
Networks," Proc. IEEE, V.63, No. 4, April 1975, pp. 581-595.

[17] D.S.K. Chan and L.R. Rabiner, "Analysis of Quantization Errors in
the Direct Form for Finite Impulse Response Digital Filters,"
IEEE Trans. Audio Electroacoustics, V. AU-21, August 1973,
pp.354-366.

[18] G.K. Roberts, "Consideration of Computer Limita--ions in Imple-
menting On-Line Controls," MIT ESL-R-665, Cambridge, Ma.,
June 1976.

[19] A.Y. Barraud, "A Numerical Algorithm to Solve ATXA-X=Q," IEEE

Trans. Aut. Control, V. AC-22, No.5, Oct. 1977, pp. 883-685.

[20] P. Moroney, "Issues in the Digital Implementation of Control
Compensators," Ph.D. Dissertation, MIT, Dept. of EE & CS,

in progress.

[21] A.E. Bryson,Jr., Guest Ed. Mini-Issue on the F-8 DFBW, IEEE
Trans. Aut. Control, V. AC-22, No. 5, Oct. 1977,
pp. 752-806.


	GeneralDisclaimer.pdf
	0037A02.pdf
	0037A03.pdf
	0037A04.pdf
	0037A05.pdf
	0037A06.pdf
	0037A07.pdf
	0037A08.pdf
	0037A09.pdf
	0037A10.pdf
	0037A11.pdf
	0037A12.pdf
	0037A13.pdf
	0037A14.pdf
	0037B01.pdf
	0037B02.pdf
	0037B03.pdf
	0037B04.pdf
	0037B05.pdf
	0037B06.pdf
	0037B07.pdf
	0037B08.pdf
	0037B09.pdf
	0037B10.pdf
	0037B11.pdf
	0037B12.pdf
	0037B13.pdf
	0037B14.pdf
	0037C01.pdf
	0037C02.pdf
	0037C03.pdf
	0037C04.pdf
	0037C05.pdf
	0037C06.pdf
	0037C07.pdf
	0037C08.pdf
	0037C09.pdf

