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SUMMARY

The thesis deals with the development of an analytical technique

for predicting the acoustic performance of turbofan inlets carrying a

subsonic axisymmetric steady flow. The Finite Element Method (FEM) in

_	 combination with the Method of Weighted Residuals has been chosen as

the solution tec`,,imue for predicting the acoustic properties of vari-

able area, annular ducts with or without acoustic treatments along

their walls.

An approximate solution for the steady inviscid flow field is

obtained using an integral method for calculating the incompressible

potential flow field in the inlet with a correction to account for com-

pressibility effects.

The accuracy of the finite element technique in predicting the

acoustic properties of annular ducts has been checked by comparison with

available analytical solutions for the problems of plane and spinning

wave propagation through a hard walled annular cylinder with a con y =)it

mean flow.

For a fixed number of triangular elements in the finite element

scheme, the number of nodes per wavelength decreases as the frequency

of oscillation increases, resulting in a loss in accuracy in the numeri-

cal results. Accuracy at highf.r frequency can be recovered by increas-

ing the number of nodes per wavelength, either by increasing the number

of linear elements (3-nodes per triangle) or by utilizing a more

elaborate description of the dependent variable over each element as is
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xv

he case when quadratic elements (6-nodes per triangle) are used. It

s clearly demonstrated for the case of plane wave propagation in a

iardwalled annular cylinder containing a uniform steady flow that for

an equal number of triangular elements, quadratic representation is

superior to linear representation in handling high frequency wave propa-

gation the reason being, the use of quadratic elements effectively

doubles the number of nodes per wavelength as compared to an equal num-

ber of linear elements.

The accuracy of the developed finite element solution is again

confirmed by comparing.its predictions with those obtained by a finite

difference solution approach. In this study, the results of the FEM

for the case of sound propagation in an acoustically lined annular

cylinder of a large radius of curvature and thin annular spacing carry-

ing a uniform steady flow are compared with the comprehensive results

of Baumeister for the equivalent case of a rectangular duct carrying

a uniform flow. The duct attenuation and the acoustic pressure dis-

tributions obtained by both the methods are found to be generally in

good agreement.

Since exact values of the impedance at the open end of a duct

are generally not known, simple impedance boundary conditions such as

"no reflection" impedance conditions are used to date in most cases.

However, in the absence of a steady flow an integral solution approach

developed by Bell, Meyer and Zinn provides the "exact" impedance con-

dition at the open end of the duct. In order to compare the solution

technique for the study of non-uniform ducts without steady flows, the

finite element solutions were required to satisfy the impedance boundary



xvi

conditions obtained using the above mentioned integral solution approach

and the resulting finite element solutions for the QCSEE (Quiet, Clear,

Short-haul, Experimental, Engine) inlet are compared with those obtained
i

for the same inlet using the integral solution approach. The results

obtained by the finite element program using the "exact" impedance con-

dition are found to be in excellent agreement with the results of the

integral solution approach for plane wave propagation in hard and soft

walled QCSEE inlet carrying no mean flow. The wave structure within

the inlet obtained by prescribing the simple "no reflection" impedance

boundary condition is quite different from the one obtained by prescrib-

Sr i the "exact" impedance boundary condition for low frequencies of wave

p.jpagation. However, as frequency increases the two impedance boundary

conditions approach one another and so do the corresponding wave struc-

tures. The propagation of high frequency plane waves in the inlet could

be approximated as the wave propagation in a ray tube where the reflected

component is negligible, in which case, the "no reflection" impedance

condition indeed approaches the "exact" impedance condition and so also

the corresponding wave structures.

Results are presented comparing low frequency plane wave propa-

gation through the hard walled QCSEE inlet containing a one-dimensional

steady flow with the same inlet containing a fully two-dimensiona'

axisymmetric steady flow. It is shown that when one-dimensional steady

flow is assumed to exist in the inlet, the plane wave propagates with

relatively little distortion. However, propagation of a plane wave

through the fully two-dimensional flow field in the inlet produces

severe distortions due to the excitation of higher order modes.
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To estimate the sensitivity of inlet curvature, center body and

mean flow gradients on duct attenuation, acoustic calculations for soft

walled QCSEE inlet, a straight cylinder and a Bellmouth inlet of the

same overall dimensions are performed for various frequencies for the

cases of zero mean flow an,4 fully two-dimensional axisymmetric mean flow.

The liner impedance values chosen are the same for each inlet at a

particular frequency and they correspond to the near opt V..um impedance

values for a plane pressure wave input into an infinitely long circular

duct with zero mean flow. At high frequencies focusing of the sound

wave toward the duct axis occurs for both zero mean floc, and non-zero

mean flow cases and hence the duct attenuation falls rapidly with

increase in frequency for all the three inlets. Attenuation of law

frequency plane waves is found to be more sensitive to inlet curvature,

center body and mean flow gradients (for the non-zero mean flow case)

compared to that of high frequency plane waves. The approximate method

proposed by Rice to obtain the near optimum liner impedance values for

the flow case is found to be reasonable for high frequency plane waves

but leads to a rapid drift in the optimum values for the low frequency

plane waves resulting in a considerable reduction of duct attenuation.



1.1 General

As evidenced by the recent surge in commercial aviation mainly due

to Federal deregulation of price control on air travel by the US Civil

Aeronautics Board (C.A.B.), the aircraft industry has come up with a

new generation of aircrafts to meet the record high demands of domestic

and international air travel. The new series Boeing 767 and 757 air-

crafts, the modified Lockheed L 1011 aircraft and the shorter version

INTRODUCTION

CHAPTER I

e

of French Airbus A300B aircraft will be put into airline service in

early 1980s to satisfy the growing needs of air transportation. With

the increase in air traffic and consequent congestion in airport opera-

tions, it has become increasingly apparent to government, industry and

other research and development organizations that major efforts must be

undertaken to improve the general community environment affected by

the commercial and also military air transportation. The recent legis-

lation of the Federal Act FAR 36 (1978) calls for very stringent meas-

ures to be taken by aircraft industries to reduce the overall noise

levels of their aircraft. Since the aircraft engines are the major

contributors to the overall aircraft noise, one has to develop a capa-

bility to accurately predict the noise levels due to various components

of the aircraft engines, which in turn will enable the engine designer

to develop a viable design capable of meeting the new lower noise levels



2

without adversely affecting the performance of the power plant.

Aircraft generated noise sources can be divided into two groups;

namely the externally generated noise produced by the jet exhaust, and

the internally generated noise that is primarily due to the rotating

turbomachinery blades and the combustion process. The utilization of

energy efficient, high bypass ratio turbofan engines in the present

day civil and military aircraft reduce the jet velocity and hence jet

noise compared to earlier low bypass turbofan or turbojet engines.

The pure tone turbofan noise emitted by these engines now becomes the

major source of noise pollution. Sound absorbing liners have been

designed and utilized in the engine inlets to reduce the emitted turbo-

fan noise mainly on the basis of costly trial and error development

.programs. Hence, the need for an efficient analytical technique which

can predict the acoustic properties of complex shaped .2 nlet ducts with

sound absorbing liners and carrying a multidimensional mean flow for a

variety of practical noise source inputs is more apparent now than ever

before. The development of such an analytical technique utilizing the
t

Finite Element Method (to be denoted henceforth by FEM) is the object

of this work.

1.2 Literature Review

An extensive survey of the acoustics of aircraft inlets has been

presented by Nayfeh, Kaiser, and Telionis I including a comprehensive

bibliography. Of particular interest are the use of numerical methods

such as finite differences  and integral techniques 3 in the study of

acoustic propagation in variable area hard walled ducts without mean
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flow. Due to the additional complications created by the presence of

a steady flow, most studies of sound propagation in annular ducts with

varying cross sectional area containing a mean flow employ one or more

simplifying assumptions such as one-dimensional mean flow, 4 quasi-one

dimensional mean flow, 5 or slowly varying cross sectional area. 6 In

many instances, however, practical considerations call for the use of

relatively short ducts having large transverse and streamwise velocity

gradients. Under such conditions, the predictions of existing theoreti-

cal approaches in which the mean flow is assumed to be one-dimensional

or nearly one-dimensional is open to question. Thus, there is a need

for an analytical method that can determine the acoustics of duct sys-

tems involving multidimensional flows.

The relative merits of the various numerical techniques are

evaluated in this section. The application of the method of finite

differences by Baumeister, 2 to solve the wave propagation problem is

restricted to the simple geometry of a rectangular duct carrying a uni-

form steady flow. The finite difference method employs a uniform rec-

tangular grid structure which can not adequately represent complex duct

geometries encountered in aircraft inlet design. Bell, Meyer and Zinn3

have developed an integral approach using Green's functions to solve

the Helmholtz equation for an arbitrarily shaped body. In this method,

the dimensionality of the problem is reduced by one (e.g. a three dimen-

sional problem is reduced to a two dimensional surface integral equation,

an axi-symmetric problem is reduced to a line integral equation, etc.

The integral solution technique is, however, limited to dealing with

acoustic problems involving either no or constant mean flaw. The Galerkin,
4

which is a special application of the method of weighted residuals, was
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applied by Unruh and Eversman
7
 to solve the wave equation in a duct.

In this method the solution is sought in terms of a complete set of

orthogonal basis functions which individually satisfy the natural bound-

ary conditions and collectively satisfy the forced boundary conditions

of the problem. The unknown coefficients of the basis functions are

solved for by requiring the resulting residues to be orthogonal to each

of the basis functions. This yields a system of linear algebraic equa-

tions for the coefficients which can be solved by standard matrix methods.

The disadvantage of the method is that a new set of basis functions has

to be determined by solving the corresponding eigenvalue problem for

each frequency. For ducts with complex geometries and acoustic liner

configurations the evaluation of the basis functions is quite compli-

cated and time consuming. Hence, a parametric study of ducts for a

range of frequencies and liner configurations can not be efficiently

conducted by employing this method. The method of asymptotic expansions 

has been used to study the problem of wave propagation in ducts which

slightly deviate from the simple geometry of a cylinder or a rectangle

and the resulting mean flow also slightly deviates from a one dimen-

sional flow. This method obviously can not be used if the duct has

large variations in shape resulting in a multi dimensional mean flow.

The finite element method (to be denoted by FEM) which has its

roots in the field of structural mechanics has been gaining popularity

in other fields of mechanics because of its ability to deal with complex

"real life" geometrical shapes and to handle mixed boundary conditions.

The application of the FEM to the solution of Helmholtz's equation  in

a waveguide indicates the versatility of this method in treating various

two and three dimensional problems subject to mixed boundary conditions.

In the finite element method the region of interest is subdivided into



a number of elements of simple shapes (e.g. triangles for two dimen-

sional problems and tetrahedrons for three dimensional problems) of

variable sizes which can be arranged to represent complex shapes. This

flexibility to utilize a variable mesh distribution of the elements

for an efficient yet adequate representation of the geometry makes the

FEM a powerful numerical tool. The FEM is generally thought of in

connection with variational problems. However, since a variational

form of the problem of duct acoustics has not been established, the

governing differential equations are converted to integral equations by

the Galerkin process.

1.3 Objectives of Research

The research work described in this work was initiated for the

purpose of predicting the acoustic properties of practical turbofan

inlets carrying high subsonic Mach number mean flows. The inlet config-

urations chosen for study are the Quiet, Clean, Short-haul Experimental

Engine (to be henceforth denoted as QCSEE) inlet 9 and the Bellmouth

inlet 
10 

(see Figures la and lb). The QCSEE inlet was designed jointly

by General Electric Co., Douglas Aircraft Company and NASA Lewis

Research Center for the purpose of developing the technology for a

turbofan engine intended for application to short take-off and landing

(STOL) aircraft. The Bellmouth inlet has been used extensively at

NASA Lewis Research Center as a standard reference base to compare

experimentally the acoustic performance of realistic aircraft inlets

because of its simple geometry. The Bellmouth inlet acoustic studies
i

are conducted for static cases, the mean flow being created by suction
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at the fan plane of the inlet (sea Figure lb).
i

i To achieve the objectives of this research work, it is necessary

to develop solution techniques that are capable of predicting the acous-

tic properties of variable area, annular ducts with or without acoustic

treatments along their walls, subjected to a variety of practical sound

excitation conditions. Such a solution technique should be capable of

properly accounting for the reflection processes at the inlet entrance

plane, the space dependence of the noise source at the fan plane (see

Figure 1), the odd shape geometry of the ducts under consideration, the

multidimensionality of the steady flow and the mixed boundary conditions

(e.g., partial lining) at the duct walls. The above requirements

obviously preclude the development of an analytical solution for the

duct under consideration and one must resort to the development of an

efficient numerical solution approach. It will be shown in this work

that the application of the Finite Element Method (FEM) (see Reference

it for a general discussion of this method), in conjunction with the

Method of Weighted Residuals can indeed provide the needed solutions.
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CHAPTER 11

FORMULATION OF THE PROBLEM

2._1 Differential Equations

To develop the needed solution technique, the problem of acous-

tic wave propagation through either one of the duct configurations shown

in Figure I will be considered. The duct carries a two dimensional,

axisymmetric mean flow which is assumed to be inviscid, non heat con-

ducting and irrotational. Body forces are neglected. To derive the

needed nondimensional conservation equations, velocities, lengths and

time are respectively normalized with respect to the ambient speed of

sound co, a characteristic duct diameter d*, and drlc o. The density p

and pressure p are respectively normalized with the ambient density p*
0

and po co. The velocity potential ^ is normalized with respect to co d 

and the frequency with respect to c */d r . Under these conditions, ito

can be shown 12 that the behavior of the flow in the duct is described

by the following nonlinear partial differential equation for the flow

potential m:

a A+ a't {vm • vm) + 2 v® • vtv^•vm) = c2v2^ 	 tl)
dt

where

and y is the ratio of specific heats. Rewriting Eq. (I) in a cylindrical
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stem (i.e., r, e, z) with the z-axis coinciding with the

t axis yields.

	

(e rr + rr + 0

	

®zz) #tt

20 + 2—' t + 2 ^z + 2 O rrr rt	 r	 z L	 r

2

e f	 2ee	 2	 -r^e^re+ r — + 
#z #zz +
	

r2	
+ 2^r^z4rz

+ 2^z—,2 	 r-- ---
r	 r

where the subscripts indicate partial differentiation with respect to

the subscripted variables.

To obtain the needed acoustic solutions, the flow potential is

rewritten as the sum of a steady-axi-symmetric mean flow potential O(r,z)

and an acoustic potential O'(r,e,z,t); that is

m(r,e,z,t) - O( r , z ) + ¢' ( r ,e, z , t )	 (3)

Because of the rotational nature of the fan and compresser,13

they tend to generate sound that is characterized by spinning acoustic

modes. in order to account for spinning modes, the acoustic potential

is assumed to have the following form

®(r,e,z,t) . o(r,z)e-i(wt-me)
	 (4)

where 4,(r,z) is a complex quantity; that is

't . m + i^
	

(5)

(2)



Substituting Eq. (3) into Eq. (2), neglecting the nonlinear products of

the acoustic quantities and separating the resulting equation into its

real and imaginary parts leads to the derivation of the following two

linear,coupled, partial differential equations for f and f:

(c2 ` ^rJ^ rr + (c2 • ^z JmzX - 2jr^z^rz

	-2 	
02

+ (- (Y+l )err#r 	 2irz^z + r ` (Y-1) ^ - ( Y-1); mrzZJmr

• (- (Y+l  zzjz - 2j	 (-Y-- (Y` 1 );rr;z - (r' 1)L 
fir J mz

• (w2 - m2 c2J4 - 2wy r - 2w;ziz
r

W (Y-1)1; rr +	 + m 22J^ - 0	 {b)

(c2	 ^r); rr + (c2

+ ( -(Y+1);rr;r

+ (-(Y+1);zz;z

+ (w2 - m2 Z2
r

;2z)izz _ 2;z ;r^rz

-2	 m2

	

2 ^ rz®z 4-r - (Y- i) ^	 (Y - 1 )^ r® 2z l4 r

2i rz m r - (Y-1) m rr@ z - (Y-1) 
Y r 

3 Z

}i + 2 i i r^ r + 2w^z0z

and

where

+ w (Y- 1 }(m rr + - + m ZZ J^ - 0
	

(7)

Z2 	 Y' 1 (m 2 + ;212	 r	 z
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It should be pointed out that in the development of Eqs. (6) and (7)

the following expression for the sound velocity perturbation (c 2)' has

been used:

(c2)' s -(Y-1) (-ice' + ;zfz + ;r^,]

Since the steady flow is axisymmetric, the linearized e-momentum equa-

tion can be integrated to give a relationship between the pressure and,

velocity potential:

p ' _ -P ( -imp' + ^z^z +;'Or)

2.2 Boundary Conditions

Before proceeding to obtain the needed solutions, the geometry

and boundary conditionf for the problem under consideration must be

established. The geometry of typical turbofan inlets are shown in Fig-

ure 1 where due to the geometry of the inlets, only a single meridional

plane is shown. The boundary of the inlets may be divided into three

distinct sections, each described b, a diff.-- gent boundary condition. The

inlet exit plane represents the interface between ;he inlet and the

remainder of the engine; it is referred to as the inlet exit plane as it

is the location where the steady flow leaves the inlet. This plane also

represents the location at which the fan-compressor noise is introduced

into the inlet. In view of the earlier mentioned spinning nature of the

sound excitation at the inlet exit plane, the boundary condition describ-

ing the normal acoustic velocity, 0z , at this plane can be r- pressed in

the following form

= f(r)e -i(wt-me)
; f ( r ) = f ( r ) + if ( r )	 (',)

Zexit

where the complex quantity f(r) describes the radial dependence of the
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q. (5), Eq. (9) can be rewritten as follows

Oz	 a NO	 (10)
exit

O	 f(r)	 (11)
Zexit 

e

The sound excitation at the inlet exit plane could also be prescribed

in terms of a spinning pressure wave expressed as follows

pI s 
g(r)e- i (wt-me); g(r) 

= y(r) + i g(r)	 (12)
exit

where g(r) represents the radial variation of the pressure source.

Suppressing the t and 0 dependence in Eq. (12) and separating into real

and imaginary parts yields

	

pexit _ 9(r)
	 (13)

	

pexit = g(r)
	 (14)

For the study of plane velocity wave propagation (i.e., m=0) the

condition f(r) = a constant applies and similarly for a plane pressure

wave propagation the condition g(r) = a constant applies. For a more

general excitation, an appropriate combination of higher order spinning

modes, (i.e., Besse] functions 13 ) must be used to describe the sound

source.

At a hard wall of the duct boundary, the appropriate boundary

condition is

^n = 0	 (15)

Equation (15) expresses the fact that fluid can not penetrate the wall.
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To absorb the emitted turbomachinery noise in the front and

aft ends of jet engines, various types of sound absorbing liners have

been developed by the aircraft industry. For example, point reacting

liners which are essentially a series of sharply tuned Helmholtz

resonators and bulk reacting liners which provide a broad hand noise

reduction by virtue of their porous lining have been developed. Though

the point reacting liners are effective absorbers of sound over a

narrow range of frequencies, they are better suited to sustain the

operating conditions of a jet engine compared to the bulk reacting

liners. To estimate the liner performance, the appropriate boundary

conditions need to be applied at the interface of a point reacting

liner. A good deal of controversy exists in the literature about the

correct boundary condition to be applied across the liner in the pres-

ence of a grazing flow, as to whether particle displacement or particle

velocity normal to the liner is continuous. Matched asymptotic expan-

sion studies by Eversman and Beckemeyer 4 and Tester 15 indicate that in

the limit of zero boundary layer thickness, the results using the shear

flow model approach the no shear model employing the condition of par-

ticle displacement continuity. Nayfeh et al. 
16 

confirmed the conclusions

of References 14 and 15 numerically.

A physically meaningful explanation of the continuity of particle

displacement is as follows. Consider an interface between two fluids

being in relative motion. When a sound wave is incident on this inter-

face from one of the mediums, it generates ripples on the interface and

also creates a reflected wave in the original medium and a transmitted

4
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wave in the other medium. The interface is a stream surface common to

the flows in the two media. The boundary conditions at the interface are:

(a) The pressure must be equal on both sides, and

(b) The stream surface slopes must be equal on both sides. if S(r,t)

is the equation of the interface which deforms with respect to time,

the statement corresponding to condition (b) is

DSFt 	 (16)

where pt ) is the substantial time derivative or time derivative fol-

lowing the fluid particle. Equation (16) states that the adjacent fluid

particles on ,either side move along the interface which indeed is the

statement' of particle displacement continuity. For the case of a rela-

tive motion across the interface, continuity of particle displacement

does not imply continuity of acoustic particle velocity, since acoustic

particle velocity is the time derivative of particle displacement fol-

lowing the fluid particle, it receives contributions from the convective

terms which are different on either side of the interface.

Hence the appropriate boundary conditions across the liner

interface are:

P1 = pP	 (17)

C	 (18)

where V is the acoustic particle displacement and subscript p refers

to the liner side. The equivalent condition to Eq. (18) in the continuum
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Is Eq. (16) which states that any particle on the interface S(r,t)

remains on it for all times, i.e.,

as
at + (V-V)S	 0

and	 at S	 0	 (19)

as

at + (-P
V -V)S = 0

For the special case S(r,t) - n - E(k)e
-iWt

 where n is outward normal

coordinate and s is the coordinate along the boundary of the wall, Eqs.

(19) become

+ (;s+^ a + (fin+^')an+ (fig8)a0=0
at	

(20)

as + (
-

+ ^' ) 
—1—S+ a 

+	 ) aS + (^ + ) as = 0
at	 s	 s p as	 n	 n p an	 8	 8 p d8

Since the normal and azimuthal components of the mean flow are zero

and the mean flow is assumed to be identically zero on the liner side,

the above equations yield

iw^Ne
- iwt _ -s ass) a-iwt -r ^ I = 0

iwE (s)e- iwt + 0 ' = 0
n
P

The specific acoustic impedance of the liner is defined by

1	 PpZ k _ _ _	 of
C p	 n
W w	 p

(21)

(22)
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where p and c
W 

respectively describe the values of density and sound
W 

speed at the wall. Substituting Eqs. 07), : 08), and (22) into Eqs.

(21) yields

n 
pWcWZR	 W as pwcWZx

It is assumed that p WcW2t is a piecewise constant function of s. Hence

Eq. (23) becomes

PCZ 
^	

pW W k 
n	 W as

As seen above, the condition of particle displacement continuity and

that of particle velocity continuity are identical if there is no rela-

tive motion between the two fluids on either side of the liner (i.e.,

cp s = 0).

For a general liner impedance p Wc WZk = 8R + ixQ , Eq. (24) can be

rewritten by equating real and imaginary parts separately as

ern - x0n = P - s ^	 (25)

0 + 80 n = p + ws ai	 (26)

Decomposing velocities along and normal to the wall and noting that the

normal component of the mean flow velocity is zero at the wall, Eq.

(8) after separating into real and imaginary parts becomes

p = -P w + ¢ s ^ s )	 (27)

p s 'P[-W^ + 0 5 ^ s )	 (28)

(24)
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Substituting Eqs. (27) and (28) into Eqs. (25) and (26) yields the

following desired lined wall boundary condition in terms of the

velocity potential and its derivatives only:

e+n _ x0n ' 'P W + ^ s^ s l + P w 
('wa s + ^ss 0 s + 0s^ss]

2 P ac Ls	+ (Y-1 _ as w (-wi + $ sus ]	 (29)
c

and

	

xOn +-60 = 'P [-wj + Os ^ s ]	 P	 (wa s +	 ^ss^s + 0s^ss]

	

c521) 
P as ws [wa + s^ s ]	 (30)
c

Due to the complex nature of the reflection process at the

inlet entrance plane, the precise form of the boundary condition at

this location is currently not known. Rice 
17 

has argued that except

for modes near cut off frequencies the assumption of no reflection of

"internal" duct waves at the inlet entrance plane is a reasonable one.

As the primary objective of the present analysis is the development of

the needed solution technique, the inlet entrance plane boundary condi-

tion in the present study is specified in the following form

p' = -p c Z  O2	 (31)

where p and c are the local steady flow density and sound speed at

the entrance plane and Z  is the local impedance. The analytical solu-

tion for the propagation of a single acoustic mode, with cut-off fre-

quency S, in a cylindrical or annular duct with constant mean flow Mach



number M is known. This solution provides the following impedance

condition for transmission without reflection:

W +; 3 w 2 - s2(1-i2)

Ze	 z	 Z_	
(32)

O zw + 3w 2 • s 2 0 - ^z)

and values of 0 are available in Reference 13. For plane waves, the

cut-off frequency, g, equals zero and Eq. (32) reduces to the more

familiar result

Z	 1
e

Since in the inlet case the steady flow velocity is not uniform at the

inlet entrance plane, there will be a partial reflection of the principle

mode. Furthermore, any additional modes excited by duct cross sectional

area variations and steady flow velocity gradients will be also partially

reflected.

A general radially varying radiation impedance condition at the

inlet entrance plane can be described by

	

Z e (r) = e e (r) + ixe (r)	 (33)

Application of Eqs. (8) and (33) to Eq. (31) yields the following,

equivalent boundary conditions:

^ Z (ce e - O z ) - c xe0z = WO + Y r	 (34)

	

m Z c x  + $ Z (c 8 e - O- Z ) 3 -w$ + Y r	 (35)
F
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CHAPTER 111

METHODS OF SOLUTION

3.1 The Inlet Steams Flow

3.1.1 Analysis of the incompressible Potential Flow

Analytical solutions for the nonlinear equations describing

the steady compressible flow in axisymmetric, axially nonuniform

passages are not generally available and complex numerical solution

approaches must be employed to obtain the desired flow description.

Since the main objective of the current study is the description of

the acoustic flow field, for which the steady flow is needed as an

input, an approximate solution was used to obtain the needed steady

inlet flow description. The approximate steady flow computation con-

sists of a potential flow solution with a correction accounting for

compressibility effects. An integral solution technique was used to

compute the inlet potential flow utilizing a computer program developed

earlier at Georgia Tech, 
18 

and Lieblein's correction 
19 

was utilized to

account for compressibility effects.

The incompressible potential flow is governed by Laplace's equa-

tion and is subject to boundary conditions specifying the magnitude of

the velocity normal to the inlet. The component of velocity normal to

the solid surfaces of the inlet must be zero. A finite velocity distri-

bution may be prescribed at the inlet fan plane as the forcing boundary

condition for this boundary value problem. The governing equations in
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a doubly connected region, R bounded by the inlet surface, B and a

spherical surface of infinite radius, B' are

V 2 ^ - 0 in R	 (36)

	

VO -Al a - F - V. • A le	 (37)

and

I VOI B , - 0	 (38)

where ® is the velocity potential created because of the inlet, n is

unit normal vector pointing away from region R and F is the prescribed

velocity normal to the inlet surface B.

The method developed by Smith et a1.
20
 to solve the linear

incompressible potential flow problem for bodies of arbitrary shape

consists of transforming the differential equation (36) subject to the

boundary conditions (37) and (38) into a linear surface integral equa-

tion.	 in this method, the flow field created due to the inlet is

thought of as due to a continuous distribution of sources and sinks on

the inlet surface. Hence, the potential at a point p due to the source

distribution on the inlet is

	

0 (P) - ! B rc P> P> dB

	
(39)

where a(p') is the unknown source strength distribution on the inlet

surface, B and r(p,p') is the distance between points p and p'. 	 It

can be easily verified that the velocity potential given by Eq. (39)
t

satisfies Eqs. (36) and (38) for a finite value of ;7(p'). The source



distribution a(p') is determined by requiring it to satisfy Eq. (31)

which leads to the formulation of the following surface integral equa-

tion 
18,21 

for a

2no ( p ) - f a ( p ' ) V [-r p- I p,^-) • n dB - F ( p ) - VW • n p	 (40)
B

The first term in Eq. (40) is the velocity normal to the inlet induced

at p by the source at p'. The second term is the normal velocity compo-

nent at a point p due to the source distribution over the remainder of

the inlet surface.

For flows past axisymmetric or two dimensional bodies Eq. (40)

reduces to a line integral equation in a single plane. Furthermore, a

numerical solution to the line integral equation is sought by assuming

that the inlet surface is made up of many small straight line segments

and that the source strength a is constant over each segment. The above

discretization procedure leads to a set of linear simultaneous algebraic

equations for source strengths over each segment which can be solved by

standard matrix routines. The velocities on and off the inlet surface

are calculated from the computed source distribution (see Reference 18

for a detailed mathematical development).

3.1.2 Superposition of Solutions

Since the Laplace equation (36) is linear, the principle of

superposition can be utilized to obtain solutions for various free stream

velocities and inlet flow rates from the following two basic solutions

(see Figure 2):
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r
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v	 1
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zfan
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v 0
v

-fan

Case 2

Figure 2. Superposition of Incompressible Potential Flow
Solutions for a Free Stream Velocity and
Inlet Flow Rate.
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Let the computed velocities for Case 1 be denoted by ( ) and
1

for Case 2 by (I V )	 since VF is the reference velocity for Case 2. The

F2
principle of superposition for these two cases yields

V	
A(V ) + 8(vF )( V )	 (41)

V^	 Vm 1	
VW	 2

The constants A and 8 are obtained by using the boundary values of V

atZ-= and Z=ZF.

That is,

V

Lim V= 1= A x l+ 8-(VF ) x 0 = A	 (42)
Z-).-z m

Since (v ) tends to zero as Z-,, 	 as the velocity created at Z 	 -,

F2

due to a suction at the fan is zero. And at ZF,

V
	 v

= 1 x l+ B(
V
F ) x l= VFV.

IzF

or

V

VF
	 (43)

V

Since from Case 1 (V ) at Z F is VF . Substituting Eqs. (42) and (43)
CO 1	 m

into Eq. (41) one obtains

V

	

V = (^) + (VF - 1) (_L) 	 (44)
CD	 0 1	 M	 F 2

V

The ratio of the two reference velocities VF is determined by the pre-
en

scribed free stream velocity and the mass flow rate through the fan.
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1.3 Compressibi.iity Correction for Mean Flow

Next, since the inlet will be operating at high subsonic Mach

numbers during takeoff or landing configurations, the incompressible

solution obtained earlier needs to be corrected to account for compres-

sibility effects using the semi-empirical equation proposed by Lieblin

and Stockman. 
19 

The justification for such an ad hoc approach to arrive

at a compressible mean flow description within the inlet is that obtain-

ing solutions to the exact nonlinear compressible potential flow equa-

tion in a complbx duct shape is beyond the scope of the present study.

The empirical equation developed in Reference 19 to obtain "com-

pressible" velocity, V  from incompressible velocity, V i at a point is

v,lv.

V	 V. (	 )	 (45)
c,	 i	 -

PC

where V i is the area weighted average incompressible velocity across the

duct at a given station, p i is the incompressible density which is also

equal to the stagnation density and p c is the average compressible den-

sity across the flow passage. 	 if the duct were a circular cylinder, the

exponent V i /V i equals unity and Eq. (45) is a statement of continuity.

However, because of area variations in an aircraft inlet V i /V i does not

equal unity and it expresses the influence of geometry on the "compres-

sible" velocity distribution.

The unknowns V  and p c in Eq. (45) are related through the isen-

tropic gas dynamic relations as follows. Principle of mass conserva-

tion at an axial station requires that
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p i V i = PC Vc	 (46)

:q. (46) by the critical velocity V` and using the gas dynamic

relations (^3) one obtains

V* 
= PC [Y+̂ { i - (p c )Y-1 },

1 l2
(47)

V	 p i 	 pi
C

V.
The ratio —^^ can be related to the free stream Mach number by making

V
use of the ^sentropic gas dynamic relations again and one can show that

V = Vi x d Y21 x	 M°°	 (48)

V 
	 Go	 3 i + Y21 M2

V i 	 pc
Denoting for simplicity 	 as a and — as g equation (47) reduces to

V" 	 Pi
C

the following nonlinear algebraic equation for S:

2	 Y+I	 (Y+i )a2S	 S	 _ 	 = 0	 (49)

Equation (49) is solved by the classical Newton-Ralphson scheme as

follows:

Setting

F((i) = s2 - s Y+l - ( Y- ! a24-;

one obtains

F' = dg = 2s - (y+l )S 2
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ation scheme is

0 _
	

)F {6 n

n+1	 n	 F' 

able guess for the initial value, 6 o is 0.9 and the iteration

scheme converges very rapidly to a physically meaningful value. Know-

ing 0 the compressible velocity is calculated by using Eq. (45)

3.2 Finite Element Solution of the Acoustic Equations

Due to its apparent advantages, the application of the FEM in

the solution of a variety of engineering problems has been rapidly grow-

ing in recent years. A detailed discussion of the FEM can be found in

Reference 11. Due to its suitability for handling problems involving

complex geometries and mixed boundary conditions the FEM is used in the

present investigation in the solution of the inlet wave equations.

Any numerical procedure developed to solve a problem in the realm

of continuum mechanics essentially converts the problem with an infinite

number of degrees of freedom to one with a finite number of degrees of

freedom. The solutions so obtained are expected to approach the exact

solutions as the number of degrees of freedom is increased. In the

finite element method the continuum region under consideration is sub-

divided into a number of elements and the variation of the fiela varia-

ble within each element is prescribed in terms of its value at a number

of preassigned points in each element (i.e., nodes) and a set of known

interpolating functions. Once the values of the field variables at the

nodes are determined, the behavior of the field variables within each

(50)
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element and hence in the overall continuum is known. Thus, the problem

of determining the field variables at an infinite number of points is

reduced to one of finding their values at a finite number of nodes.

To obtain the needed solutions, Eqs. (6) and (7) which describe

the wave propagation in the inlet have been transformed into integral

equations utilizing the Galerkin Method. The resulting integral

equations were then solved using the FEM. The solution involves the

following six operations:

3.2.1 Subdivision of the solution domain: In the finite element method

the commonly employed element shapes for discretizing the domain of

interest are triangles, rectangles or isoparametric triangles (i.e.,

triangles with curved edges) for two dimensional or axisymmetric problems

and tetrahedrons, cuboids or isoparametric tetrahedrons for three dimen-

sional problems. The choice of the element shapes in solving a particu-

lar problem is determined by the geometry of the domain of interest and

the level of complexity that can be employed. For two dimensional prob-

lems, straight edged triangular elements are by far the most commonly

used elements because of the relative ease in closely approximating com-

plex shaped domains as compared to rectangular elements and the lower

level of complexity in the finite element methodology as compared to the

isoparametric triangles. Hence, straight edged triangular elements

with three or six nodes have been chosen in•the present study for sub-

dividing the inlet duct. A computer code has been developed which sub-

divides a duct into triangles with three nodes and catalogues the

geometric nodal locations, nodal numbers and element numbers. The assembly
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of nodes and triangles is such that each element number corresponds to

three nodal numbers and each nodal number is associated with a fixed

number of elements whose number may vary between two and six depending

upon the node location (see Figure 3). For the six node elements, the

vertices and the midside points of the triangle are normally chosen as

the nodes. In such a case, the node and element numbers are catalogued

so that each element number corresponds to six nodal numbers and each

nodal number is associated wi- , h a fixed number of elements varying

between one and six (see Fi-gure 4).

3.2.2 Selection of Interpo VItion Functions: Polynomials are the popu-

lar interpolating functions because of their desirable mathematical

properties of completeness and ease in mathematical manipulation. The

variation of the field variable (acoustic potential in this case)

within a three node triangle can be expressed in terms of a linear

Lagrangian polynomial in two dimensions. Hence, three node triangles

are also known as linear triangles. A quadratic representation of the

acoustic potential ¢ can be obtained using six node triangles since a

quadratic Lagrangian polynomial in two dimensions has six coefficients.

A linear transformation from the global Cartesian system to a

local "area coordinate system" for each element has been found to simplify

the mathematical operations involving triangular elements considerably.

In this transformation, a triad set of coordinates for each element,

(L^e) , Lie) , L
(
k
e) ) out of which only two are linearly independent

replaces the diad set of coordinates, (r,z) through the following rela-

tionships:
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LeZ	 i
+ LJ

Z^ +
Lk Zk = Z

LT r i + L
i 

. rj + Le rk = r

L!+L^ +Lk- 1

Solving Eqs.	 (51)	 for Li , L^ and Lk,

Le = (a i + b i z + cir)/2A

L^ _ (a
i

+ bj z + cj r) /20

Lk = (ak + b kz + ckr) /2A

whe re

(51)

(52)

1 z  r 
A = 2 det	 1	 Z. r.	 Area of e th triangle

1 
z  r 

and

a i = z J.rk - z  
J

r,	
.1

; a = zk r i -
 z i 

r k ; a  = zir J. - z J.ri

b i = r  - r k ;	 b^	 r  - r i ;	 b  - r  - r^

c i = Z
k 

-
 

Z
i

;	 c^=Zi-Zk,	 ck=Zj	 Zi

For a triangle with three nodes at the vertices, the interpolating

functions are simply the area coordinates. Thus the acoustic potential

over the eth element varies linearly and is given by
	 I
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4( r ,z) - LO ( r , z ) j i + Lj(r,z)jj + Lk(r.z)j k 	 (53)

	(r, z) - Li(r,z) j l + Lj( r .z) 3 + Lk(r,z)m k 	(54)

A quadratic variation for the acoustic potential over the element is

achieved by choosing triangles with six nodes, three being corner nodes

and the remaining three being mid-side nodes (see Figure 5) and is

described by the following relationships:

j( r ' z )	N i (r ' z) ^i + Nj (r ' z) ^j + Nk (r ' z)ik + NeR{r'z)^R

+ Nm(r,z)jm + Nn( r,z)jn 	(55)

;(r,z)	 N i (r,z)fi + N.!(r,z);J + N k ( r ,z); k
 + NR(r'z);R

+ Nm (r,z) ;m + Nk( r,z) t̂	 (56)

where the quadratic interpolating functions are related to the area coor-

dinates Le, Lj, and L  by the following:
For Corner nodes,

Ni = 2(L e)2 - Le

Ne
i
 = 2(Lj) 2 - Lj	 (57)

Nk = 2 (Lk) 2 - Lk

For mid-side nodes

NR - 401.j

Nm = 4L jLk
	

(58)

Ne = 4LkLe
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Figure 5• Linear and Quadratic Triangles.
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3.2.3 Establishing Elemental Relations: The Galerkin method is

applied to the governing differential equations and boundary condi-

tions to develop the matrix equations that express the properties of

individual elements in terms of the unknown nodal values. Denoting

either of the partial differential equations, 6 and 7, by the operator

LW),  application of the Galerkin and FEM methods 
11 

yields the fol-

lowing relationships:

E

I III	 Nm L(^ )dv (e) : 0 m=1,2,...,N	 (59)

e-1 6 (e)

where the integration is performed over each element. In Eq. (59) N

is the total number of nodes in the problem under consideration and E

is the number of elements. it should be noted that N  is zero for all

elements not having the nodal point, m, as a vertex. Equation (59) pro-

vides 2N equations for the 2N unknown nodal values.

In evaluating Eq. (59) over each element the following integral

involving the area coordinates and arbitrary exponents a,b, and c is

needed:

if (Le) a (Le) b (Le ) c drdz -	
a1b1c1	

x 20
(e)	

(60)
k	 a+b+c+2 1

A(e)

(see Appendix A for the proof of Eq. (60)).

There exists 
11 

a mathematical restriction in the choice of

interpolating functions stating that the values of 0' and its partial

derivatives up to the highest order appearing in Eq. (59) must have

r
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representation as the element size shrinks to zero. if linear inter-

=	 polating functions are chosen, the second order partial derivatives of

f' will be identically zero. To avoid this, all terms in Eq. (59) con-

taining second order partial derivatives of 0' can be reduced to terms

containing first order derivatives of m' using Green's theorem for a

plane geometry 
24 

(also known as integration by parts). The boundary

conditions, given in the previous chapter, are introduced into the

boundary integrals that are obtained as a result of the above-mentioned

integration by parts. However, for an inlet lined with point-reacting

liners carrying a steady mean flow the boundary conditions at the

lined wall, as given by Eqs. (29) and (30), involve second derivatives

of 0'. Hence, linear interpolating functions cannot be used since the

terms containing second derivatives of 0 will be identically equal to

zero. in such a case, one has to choose quadratic or higher order rep-

resentation of 0' over each triangle. in the present study, quadra,

interpolating functions have been used to handle the lined wall boundary

conditions. A point to note is that if there is no mean flow in the

duct, the lined wall boundary conditions do not contain any second order

derivatives of m' and again one does not need a quadratic representation

for 0 to treat the no mean flow case. After the choice of interpolating

functions is made, five different elemental relations are developed

depending upon the location of the triangles under consideration; that

is:	 (1) triangles interior to the flow region; (2) triangles adjacent

to a hard wall; (3) triangles adjacent to a lined wall; (4) triangles

adjacent to the fan plane; and (5) triangles adjacent to the entrance
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plane (see Appendix B for the mathematical development).

3.2.4 Assembly of Element Equations to Obtain a System of Algebraic

Equations: Based on the ordering system defined in the first step,

the individual element equations are combined into a matrix equation

describing the properties of the potential ^' in the domain under

study. Since each node is only affected by adjacent elements, the

resulting matrix is banded.

3.2.5 Solution of the System of Equations: Considerable amount of

information is currently available about the solution of large,

banded matrices. In the present study, CDC subroutine BLSWNP is used

for calculations. 
25 The BLSWNP subroutine has been developed to solve

efficiently a system of linear algebraic equations with a banded coeffi-

cient matrix. Let kl and k2 be the bandwidth of the lower and upper

triangles of the NxN banded matrix, excluding the main diagonal. All

the elements outside this bandwidth are equal to zero. In the BLSWNP

Subroutine only the nonzero elements (i.e. at most N x (Kl+k2+1)) are

stored such that the columns of the condensed matrix are the diagonals

of the banded matrix and rows are stored as rows of the banded matrix

(see Figure 6). Such a condensed storage scheme reduces the computer

memory requirements. Further, the solution of the system of equations

is obtained in two sequential steps as described below.

To solve the banded system of equations,

(k] (x) - (b)
	

(61)

decompose the problem into
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K +K 
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Figure 6. Condensed Storage Scheme Used in
CDC Subroutine BLSWNP.
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[L] {y} _ {b}
	

(62)

and

	

[U] {x} - {y}	 (63)

where [L] and [U] are lower and upper triangular matrices derived

from [K] and {y} is an intermediate solution vector. Since solution

of triangular matrices can be obtained without pivoting, the above

scheme is computationally quite efficient.

3.2.6 Additional Calculations: Once the velocity potential is obtained

at the nodes, additional variables such as the axial and radial

velocities and acoustic pressures can be calculated at any point in

the domain, by utilizing the computed solutions of 0' together with

Eqs. (53) and (54) for a three node element case or with Eqs. (55)

and (56) for a six node element as the case may be.

The results obtained can be checked for the recovery of the

boundary conditions and conservation of acoustic energy. The time

averaged acoustic intensity in the a th direction for an irrotational,

uniform-entropy flow to second order in acoustic quantities is given

by the following expression 26 (also see Appendix C for the derivation)

V0 ' a	 2	 NO • a )vm

	

<1'> . a = <p'v^'> ' a + - -2 <p^ 	> +	 -2	 '<p'0^'>
P c	 c

where 1 is the acoustic intensity vector, a is unit vector in the

direction along which acoustic intensity is needed, and < > describes 4
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time average over a long period of time. The time average energy flow

across a surface S is then

<E>	 f< P> n d S	 (65)
S

where n is the unit outward normal to surface S.

In the present study, the time average acoustic energy flows at

the entrance to the duct, at the exit plane of the duct and at the duct

walls have been computed using Eqs. (64) and (65) (see Appendix C for

a detailed finite element evaluation procedure). The effectiveness of

a liner in absorbing the sound is expressed by the decibel reduction

defined by

< E> ,
_	 input

dB	 10
10 

log
	 <E>	

(66)

output

As a check on the acr o!racy of the developed solution, the difference

between the energy flaw into the duct and out of the duct should equal

the energy absorbed by the lined walls; i.e., acoustic energy should be

conserved.
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CHAPTER IV

RESULTS AND DISCUSSION OF RESULTS

4.1 Acoustic Calculations Using 3-Node Triangular Elements

To check the accuracy of the developed FEM computer program,

solutions for the problems of plane and spinning wave propagation

through a hard walled annular duct with constant mean flow have been

obtained for comparison with available analytical solutions. For this

case, Eqs. (6) and (7) reduce to the following form:

2

err + ^r + (1-M2)ozz+ (m 2 - m2 	 214w^z = 0	 (67)
r

e rr + rr + (1-M2)$zz+ (m2 - M2 
A + 2M4 z = 0	 (68)

r

where w is the frequency (non-dimensionalized by the outer annulus

diameter and the sound speed), m is the spinning mode number and M is

the constant mean flow Mach number.

The hard wall boundary conditions are described by the following

expressions:

^r = 0
	 r = a (inner wall)

at

^r	
0	 r = 1 (outer wall) 	 (69)

and the sound source boundary condition at the exit plane (i.e., z= L)

is given by
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iz - -f(r) ; ®z - 0	 (70)

Assuming no reflection at the duct entrance plane, where z = 0, the

following boundary condition applies:

p - -4z ; p = -Z¢z 	 (71)

The needed expressions for the impedance Z and f(r) are given below.

The exact solution to this problem is given by

_ - f

	

k
(r) sin[k(z-L)l	 (72)

	_ - f(r) cos[k(z-L))	 (73)
k

For the plane wave case (i.e., m - 0), the various quantities in

Eqs. (70) through (73) take on the following form:

f(r) = 1 ; Z = 1 ; k = 1wM
	

(74)

The real and imaginary components of the velocity potential as calcu-

lated by the FEM for an annular cylinder with a = 0.5 and L = 1 are

compared with the exact values computed using Eqs. (72) and (73) in

Figure 7 for the case of M = 0.5 and w = 2.0. A good agreement between

the FEM and analytical solutions is shown; good agreement has also

been obtained when the predictions for the acoustic velocities and

pressures were compared.

The expressions describing the propagation of a spinning wave

with lobe number m and radial mode u are:

{
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O FEM	 Eq. (72)

4 FEM	 -- Eq. (73)
0.3

0.(

-0.3

Figure 7. Comparison of Acoustic Velocity Potential for Plane
Wave Propagation in an Annular Cylinder
(M = .5, w = 2.0)

4
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f(r)	 E(a)0r)
mij

Z - w +M 3w2 - 13 2 0 - M2)	
(75)

wM + 3 w2 - a 2 0 - M2 )

and

k =Mw+ 3w2-S20 -M2)

1 - M2

where E W and 13(-k (a) in Reference 13) are tabulated in Reference 13.
mu	 mu

Results -of FEM calculations for the velocity potential in the

previously described annular duct with m = 4, u = 0, w = 6 and M = .5

are presented in Figure 8. The analytical solutions, given by Eqs.

(72) and (73) are also shown in Figure 8 and good agreement between the

two solutions is noted. Similar comparisons for other acoustic varia-

bles such as acoustic velocity and pressure have also shown good agree-

ment.

For the FEM calculations shown above, the duct was subdivided

into 220 3-node triangles with 136 nodes. For a Mach number of 0.5

good agreement between FEM calculations and the exact solutions was

obtained for values of w up to 10. At this point, (w = 10, M = 0.5)

there are about 13 nodes per wave length parallel to the annular cylin-

der axis. Clearly, the accuracy lost at higher frequencies can be

recovered by a finer element subdivision or a more elaborate description

of the dependent variable ^ within each element (e.g., quadratic repre-

sentation of 0 in each triangle).

0
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+0.1

0

-0.1

Figure 8. Comparison of Acoustic Velocity Potential
for Spinning Wave Propagation in an
Annular Cylinder (M= .5, w = 6.0).
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4.2 Comparison of Acoustic Calculations by Using
Linear and Quadratic Triangular Elements

The problem of plane wave propagation in the annular cylinder

carrying a uniform steady flow considered above is chosen to c-mpare the

accuracy obtained by using linear and quadratic elements for various

frequencies. For the case of linear elements, the cylinder is divided

into 140 3-node triangles with the total number of nodes being 94

(see Figure 9) while for the case of quadratic elements, it is divided

into 140 6-node triangles with a total of 327 nodes (see Figure 10), 94

out of which are the corner nodes and the remaining 233 nodes are the

mid-side nodes.

FEM calculations have been performed for 5 angular frequencies

(viz., w = 1, 5, 10, 15, and 20) using linear and quadratic elements.

The amplitude and phase of the axial acoustic velocity obtained by FEM

programs are shown in Figures 11 through 20 along with the exact solu-

tions derived from Eqs. (72) and (73). For the case of w = 1 and w = 5,

the results obtained by both the FEM programs agree with the exact solu-

tion to within 1 to 2%. For the case of w = 10, quadratic elements give

results accurate to 4% while as linear elements give results accurate

up to 9%. The predictions by linear elements for w = 15 and 20 are

about 30% off the exact solution and they do not even show the proper

trend. However, quadratic elements yield results which are at worst 7%

off for w = 15 and 12% off the exact solutions for w = 20. Moreover,

even at w = 20 the results of quadratic elements indicate the proper

trend (e.g., the acoustic axial velocity amplitude remains reasonably

constant). These results unequivocally prove that quadratic representation



a.

PIK

o

1	 C1

O

O

cr%

LL.

LrN

6

4



ell

IL
A

1

o

I



0 0.5	 z	 1.0

1.0

10 Z

r
r

50

Exact Solution;	 O: Linear Elements; ® : Quadratic Elements

Figure 11. Comparison of Axial Acoustic Velocity Amplitude
for Plane Wave Propagation in an Annular Cylinder
as Predicted by Linear and Quadratic Elements
(w . 1.0, Mach - 0.5)
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Figure 12. Comparison of Acoustic Axial Velocity Phase for Plane

Wave Propagation in an Annular Cylinder as Predicted
by Linear and Quadratic Elements for w = 1.0;
Mach - 0.5 (Symbols defined in Figure 11).
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Figure 13. Comparison of Axial Acoustic Velocity Amplitude for Plane
Wave Propagation in an Annular Cylinder as Predicted by
Linear and Quadratic Elements for u, 	 5.0; Mach = 0.5
(Symbols defined in Figure 11).
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Figure 14. Com -jrison of Axial Acoustic Velocity Phase for Plane
Wave Propagation in an Annular Cylinder as Predicted

by Linear and Quadratic Elements for w = 5.0;
Mach - 0.5 (Symbols defined in Figure 11).
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0	 0.5	 z	 1.0

Figure 15. Comparison of Axial Acoustic Velocity Amplitude for Plane
Wave Propagation in an Annular Cylinder as Predicted by
Linear and Quadratic Elements forto = 10.0 and Mach = 0.5
(Symbols defined in Figure 11).



55

s

2

1

8

0

-7u

Figure 16. Comparison of Axial Acoustic Velocity Phase for Plane
Wave Propagation in an Annular Cylinder as Predicted by
Linear and Quadratic Elements for w = 10.0 and Mach= 0.5
(Symbols defined in Figure 11).
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Figure 17. Comparison of Axial Acoustic Velot-;`y Amplitude for Plane

Wave Propagation in an Annular Cylinder as Predicted by

Linear and Quadratic Elements for w = 15.0 and Mach= 0.5
(Symbols defined in Figure 11).
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Figure 18. Comparison of Axial Acoustic Velocity Phase for Plane
Wave Propagation in an Annular Cylinder as Predicted
by linear and Quadratic Elements for w = 15.0 and
Mach = 0.5 (Symbols defined in,Figure 11).
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Figure 19. Comparison of Axial Acoustic Velocity Amplitude for Plane
Wave Propagation in an Annular Cylinder as Predicted by
Linear and Quadratic Elements for w = 20.0 and Mach = 0.5
(Symbols defined in Figure 11).
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Figure 20. Comparison of Axial Acoustic Velocity Phase for Plane
Wave Propagation in an Annular Cylinder as Predicted
by Linear and Quadratic Elements for (a = 20.0 and

Mach = 0.5 (Symbols defined in Figure 11). 	 4
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of 0 over each element yields much better results compared to linear

representation for higher frequencies, for a fixed number of elements.

4.3 Comparison Studies for Lined Wall Annular Cylinders

In order to evaluate the accuracy of the finite element method

and to debug the computer codes, the case of sound propagation in an

annular cylinder with uniform steady flow and lined walls has been inves-

tigated.

Because a comprehensive set of results including radial and

axial profiles of acoustic variables along with the dB 
reductionfor 

the

case of a cylindrical duct is not available, comparison was made with

the results of Baumeister2 for the case of a rectangular duct carrying

a uniform steady flow. A rectangular duct is a good approximation to

the annular cylinder if the radius of curvature of the cylinder is large

and if the radius ratio is sufficiently close to 1. 
27 The investigated

problem is example #3 in Appendix F of Reference 2. The geometry and

associated parameters are shown in Figure 21. The radius of the annular

cylinder was increased from 100 to 1000 to check the convergence of the

dB 
redto 

a constant value. The 
dared 

obtained is 4.726 which is close

to the 5.6 value obtained by Baumeister. Baumeister has solved the

same problem by using the generalized wave envelope transformation. 28

A new variable, 0, defined as

V (r, z) = e Z 0' (r, z)
	

(76)

where d is a free constant, is substituted into Eqs. (67), (68), (70)

and (71) to obtain a new set of partial differential equations and
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Figure 21. Annular Cylinder Geometry Simulating Rectangular Duct.
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boundary conditions for the variable *. Having chosen b to be equal to

the appropriate wave number, Baumeister has obtained a d8 redof.4.072.

The dB 
red

obtained by the FEM program lies in between the two values

obtained in Reference 2. Fi g ures 22 through 25 indicate the variation

of acoustic pressure (i.e., magnitude and phase) as predicted by the

FEM program and Reference 2. Also plotted are the corresponding hard

wall duct solutions for the same flow conditions, for the purpose of

indicating the effect of the liner in reducing the pressure amplitude.

With the exception of the results in Figure 22,the agreement between

the two sets of computations is good. Since the liner is known to

attenuate the sound wave, one would expect a reduction in acoustic

pressure magnitude as one moves from the fan plane towards the entrance

plane of the duct. While the FEM results agree with this intuitive

argument, the results of Reference 2 indicate an opposite trend. A

possible explanation for this is as follows. The finite difference

grid used in Reference 2 employs 100 points to model the region of

interest while as the finite element model employed 327 points to model

the same region. Hence, one could anticipate a better agreement between

the two solution schemes if the finite difference grid is made finer.

Figure 26 shows the variation of acoustic power absorbed by the lined

upper wall. The total acoustic energy absorbed by the liner should

equal the difference between the acoustic energy at the entrance and

exit planes. This acoustic energy balance has been checked and acoustic

energy is conserved with an error of 8%. The prescribed radiation impe-

dance condition at the exit plane and the pressure boundary condition
4
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Figure 22. Comparison of Acoustic Pressure Magnitude Along
the Upper Wall of the Rectangular Duct as
Predicted by FEM Program and Reference 2.
Hard Wall Solutions Shown in Circles.
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Figure 23. Comparison of Acoustic Pressure Phase Along
the Upper Wall as Predicted by FEM Program
and Reference 2. Hard wall Solution shown

in Circles.	 (Symbols defined in Figure 22.)
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shown in circles.	 (Symbols defined in
Figure 22.)
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Figure 26. Acoustic Power Absorbed by Each Element

Located at the Lined-Upper Wall.
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i
at the entrance plane are recovered with a maximum error of 6%. Errors

1	 obtained in other computed soft wall cases are smaller than the above-

mentioned 6 Pnd 8 percent. Computations for hard walled annular ducts

produce acoustic energy conservation with an error of 10 -5% and the

radiation impedance condition and the pressure boundary condition are

recovered with 10-4 % error.

4.4 Comparison Studies wi. the Integral Technique
for the QCSEE Inlet

The problem of prescribing the correct radiation impedance con-

dition at the entrance plane of an inlet carrying a variable mean flow

has not yet been solved. However, for the case of no mean flow, Bell,

Meyer and Zind have solved the problem of wave propagation in an inlet

using the Green's function approach in the interior of the inlet and

also in the far field. With the knowledge of the solution in the inter-

ior and the exterior regions of the inlet a radially varying radiation

impedance Z  can be calculated at the entrance plane of the inset. The

calculated Ze was incorporated in the FEM program that was specialized

to handle the no mean flow case and the solutions obtained by the FEM

program and the integral approach for various frequencies and for both

hard and soft walled QCSEE inlet one compdred in this section.

For the case of no mean flow (i.e., ^ r = p Z - 0) Eq. (8) reduces

to

p' = iW

since, p = 1 as the density of air in the inlet equals the ambient air

density. Thus, the acoustic pressure is directly proportional to the
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acoustic velocity potential and comparisons have been made with the

acoustic potential rather than the acoustic pressure.

As described in Section 3.2.3, in the absence of mean flow one
1

does not need a quadratic representation for the acoustic potential

to handle the lined wall boundary condition. Hence, the comparison

studies described in this section have been performed using the 3-node

triangulization scheme of the QCSEE inlet (see Figure 3). In both the

FEM and integral approaches the sound excitation at the fan plane is

prescribed as a plane velocity wave of unit amplitude and a phase angle

of 180°. Table 1 shows the distribution of 2 at the nodes located at
e

the ent-rance plane of the hard walled QCSEE inlet as calculated by the

integral approach for the plane wave propagation of angular frequencies

w = 1,2,5 and 10. The above radiation impedances were incorporated in

the FEM program and the acoustic velocity potentials obtained by both

the FEM and the integral approach are plotted in Figures 27, 28, 29 and

30 for plane wave propagation of angular frequencies w = 1,2,5 and 10

respectively. One observes that the agreement between the two results

is excellent and particularly so at the low frequencies of w = 1 and 2.

Though the results obtained by both methods are slightly different for

w = 5 and 10, they indicate similar trends in their behavior. The inte-

gral approach used only 50 source points on the inlet surface whereas

the FEM used 212 nodal points to map the domain of interest. A better

agreement between the two methoas at higher frequencies can be obtained

if more source points are utilized in the integral approach to represent

the ;-let Surface.
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Comparison studies have also been conducted for the case of plane

wave propagation in the QCSEE inlet with lined walls. In the absence

of mean flow the condition of particle displacement continuity and that

of particle velocity continuity are identical. The specific acoustic

impedance of the inlet upper wall is chosen to be Z  = 0.16- 10.34, a

representative value chosen from Reference 2 for the case of plane wave

propagation in a lined rectangular duct carrying no mean flow. The

center body is still prescribed to be a hard wall. The sound excitation

at the fan plane is again prescribed as a plane velocity wave of unit

amplitude and a phase angle of 180°.

Table I shows the distribution of Z  at the nodes located at the

entrance plane of the soft walled QCSEE inlet as calculated by the

integral approach for the plane wave propagation of angular frequencies

w = 1 and 2. The acoustic velocity potential distribution along the

lined upper wall of the inlet obtained by the FEM and the integral approach

for angular frequencies w = 1 and 2 are shown in Figures 31 and 32,

respectively. One observes that the agreement between the two methods

for the lined wall case is also excellent. The dB reductionobtained for

both the frequencies by the two methods agree to four significant places

for w = I dB 
reduction 

equals 24.8794 and for w = 2 
dB reductionequals

13.3546). Figures 33 and 34 show the variation of the acoustic energy

absorbed by the lined wall for w = 1 and 2 respectively. With this

information the conservation of acoustic energy is checked by comparing

the inflow and outflow of acoustic energy in the domain of interest.

It has been found that the acoustic energy is conserved to within 39„

r
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Figure 33• Acoustic Energy Absorbed by the Lined inlet
Upper Wall (w = 1.0, No Flow, Plane Wave
Excitation).
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Figure 34. Acoustic Energy Absorbed by the Lined Inlet
Upper Wall (w - 2.0, No Flow, Plane Wave
Excitation).



79

4

Table 1. "Exact" Radiation Impedances from the Integral Technique

for the QCSEE Inlet With No Mean Flow

Z 
	 ^ e + iXe for the QCSEE Inlet

Hard Wall	 Soft Wall

w w
Node

Number 1.0 2.0 5.0 10.0 1.0 2.0

1 0.2629- 0.4415- 1.0942- 0.8815- 1.1780- 1.7210-
i 0. 5333 10.4676 10. 3231 i 0. 1020 i 1.7072 i 2.2895

2 0.2427- 0.7204- 1.1589- 0.9365- 0.7214- 1.5664+

i0-5084 10.5629 i o. 1141 i 0.0672 i 1.2168 i0-7554

3 0.2642- 0.9994- 1.2231+ 0.9914- 0.2648- 1.4119-
3 0.6385 i o. 6583 i 0.0949 i0-0323 i0-7265 i0-7788

4 0.3100- 1.2422- 1.1573+ 1.067:- 0.2161- 1.0600-

i 0.7535 i 0.6592 i0-0703 i o. 0600 i o. 6513 i o. 9674

5 0.3463- 1.4175- 1.1046- 1.0698- 3.1965- 0.9196-
i 0-8390 i o. 6405 i 0.0486 i0-0788 i U. o269 i 1.0234

6 0.3724- 1.5344- 1.0154- 1.0287+ 0.1869- 0.8535-
6 0.8993 i 0.6195 i o.1659 i 0.0386 i o.6173 i	 1.0511

7 0.3880- 1.6012- 1.0625- 1.1025+ 0,1822- 0.8222-
i 0.9348 i 0.6044 i 0.2440 i0-1934 i o. 6136 i 1.0655

8 0.3932- 1.6231- 1.0588- 1.1572+ 0.1808- 0.8131-
i 0.9466 i 0-5991 i 0.2708 i 0.2360 i 0.6126 i 1.0701



80

error for both the frequencies.

Since the prescription of the "exact" radiation impedance con-

dition at the entrance plane of an inlet carrying a variable mean flow

is not possible with the present day knowledge, the simple "no reflection"

radiation impedance condition, p c, was used in most of the investi-

gated cases. The p c condition yields no reflection of the incident

wave only if the propagation of plane waves is considered and if the

reflections from the inlet walls are not significant.

In the absence of mean flow, if the inlet could be app—ximated

as a tube of constant cross sectional area, the problem of plane wave

propagation within such an inlet of finite length and in the far field

can be solved by the classical Weiner Hopf integral technique 29 for

frequencies below the cut off frequency corresponding to the lowest

order spinning mode, namely the first radial mode. For the inlet

modelled as a circular pipe the cut off frequency for the lowest order

spinning mode is we - 3.832. 
29 

Hence, for frequencies greater than we

plane wave solutions by the Weiner Hopf technique do not exist. The

integral solution obtained by the Weiner Hopf technique yie'-as a con-

stant (in general complex) impedance condition at the entrance plane of

the inlet to be henceforth denoted as "Weiner Hopf radiation impedance

condition," whose value for w - 1.0 and 2.0 equals 0.2335 - iO.5555

and 0.8317 - iO.6528 respectively. One could prescribe this radiation

condition for the corresponding frequencies in place of p c condition

for the case of no mean flow.

Studies have been conducted to evaluate the influence of the

"exact" radiatior condition, p c "no reflection" radiation condition and
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the Weiner Hopf radiation impedance condition (where applicable) on

the wave structure within the QCSEE inlet for the case of plane wave

propagation of angular frequencies w - 1,2,5 and 10. Figures 35 and 36

show the influence of the above three radiation impedances on the

acoustic velocity potential distribution along the hard upper wall of

the inlet for w - 1 and 2 respectively. One observes in Figures 35

and 36 that the wave profile predicted by prescribing the Weiner Hopf

radiation condition matches quite well with the one predicted by pre-

scribing the "exact" radiation condition. Thus at low frequencies the

Weiner Hopf radiation condition can be viewed as an "average" constant

value of the exact radiation condition across the inlet entrance plane.

The wave structure obtained by imposing the "no reflection radia-

tion condition is markedly different from the one corresponding to the

"exact" radiation condition for w - 1.0 (see Figure 35)• However for

the case of w - 2.0. the profile corresponding to the "no reflection"

radiation condition tends to approach the wave profile corresponding

to the "exact" radiation condition (see Figure 36). Figure 37 shows

that the wave profiles obtained by prescribing the p c radiation condi-

tion ,sad the "exact" radiation condition for a plane wave propagation

of w - 5 maids quite well along the length of the inlet. An almost

exact match between the two profiles is observed for the case of w - 10

as shown in Figure 38. A physical explanation for this observation is

as follows. The propagation of high frequency plane waves in a duct

could be approximated a vhe wave propagation in a ray tube where the

reflected component is negligible, in which case, the "no reflection"
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radiation condition indeed approaches the "exact" radiation condition.

This fact is also evident from the values of the "exact" radiation impe-

dances given in Table 1 for m	 1,2,5 and 10. As w increases, one

observes from this table that the "exact" radiation condition approaches

the value of 1 + Oi, which is the "no reflection" p c radiation condi-
tion in terms of the nondimensional quantities.

4.5 "Compressible" Mean Flow Calculations for the

QCSEE and Bellmouth Turbofan Inlets

To predict the acoustic properties of practical inlet configura-

tions, the QCSEE (Quiet, Clean, Short-haul Experimental Engine) inlet 

and the Bellmouth inlet 
10 

have been chosen for the present study (see

Figures la and lb).

Before proceeding with the inlet acoustic analysis the b,.havior

of the inlet mean flow must be determined. As explained earlier, the

steady flow in the inlets is approximated using a solution for an incom-

pressible steady flow with a compressibility correction.

The incompressible solution was obtained by solving an integral

formulation of Laplace's equation with the inlet boundary divided into

a number of straight line segments. For the QCSEE inlet, the number of

straight line segments equals 140 and it equals 90 only for the Bellmouth

inlet, because of the sinpler geometry of the Bellmouth inlet compared

to the QCSEE inlet. The chosen free stream and fan plane velocities

correspond to a free: stream Mach number of 0.12 and an average exit

Mach number of 0.52 for the QCSEE inlet
!) 	correspond to a free stream

Mach number of 0.0 and an average exit Mach number of 0.52 for the
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Bellmouth inlet. The resulting solutions of the Laplace's equation are

superposed as described in Section 3.1.2 to yield the incompressible

mean flow descriptions for both the inlets. Application of the com-

pressibility correction to the incompressible mean flow velocities as

described in Section 3.1.3 yields the "compressible" velocity descrip-

tion of the mean flow in the interior of the inlets.

The mean flow velocity computations needed for the acoustic equa-

tions have been performed at the nodal locations of the quadratic fin-

ite element triangulization schemes of the QCSEE and the Bellmouth

inlets (see Figures 4a and 4b), Tables D.1 and D.2 in Appendix D con-

tain the mean flow data at the corner nodal points along with the

coordinates of the corner nodes. For the purpose of illustration,

the compressible velocity profiles at the inlet entrance plane, the

throat and the fan plane are shown in Figures 39 and 40 for the QCSEE

and the Bellmouth inlets respectively. As one observes the radial pro-

files in Figures 39 and 40 the mean flow deviates far from the one

dimensional model at the entrance plane. The axial velocity component,

OZ becomes zero at the inlet wall as it is a stagnation point for the

axial component of the velocity. The radial velocity component, 
0r 

is

zero at the axis of the inlet because of the axisymmetry of the problem

and has a large negative value at the inlet wall, indicating the effect

of the entry lip shape in sucking the flow. At the throat and the fan

plane 
Or 

is within 5% of 
OZ 

for the QCSEE inlet and within 12% for the

Bellmouth inlet and ;Z is also reasonably uniform over the inlet cross

section indicating that the mean flow is almost one dimensional at the

4



throat and the fan planes. From Tables D.1 and D.2 one observes that

the duct cross sectional area is minimum at the throat plane for the

QCSEE inlet and at the fan plane for the Bellmouth inlet. Hence, on

the basis of one dimensional isentropic gas dynamic relations for sub-

sonic flows one would expect that the axial velocity is maximum at the

throat plane for the QCSEE inlet and at the fan plane for the Bellmouth

inlet. One indeed observes in Figures 39 and 40 and Tables D.1 and D.2

that ;Z is on the average largest at the throat plane for the QCSEE inlet

and at the fan plane for the Bellmouth inlet.

Though the mean velocity profiles at the throat and fan plane

seem to indicate the presence of almost one dimensional flow at these

two planes such is not the case at many other axial locations. As

Tables D.1 and D.2 indicate there are very strong radial gradients in

;Z and it in the vicinity of the inlet entrance plane and the nose of

the center body which can not be accounted for by the one dimensional

isentropic gas dynamic calculations.

4.6 Acous'ic Calculations for the Hard Walled QCSEE Inlet

With the knowledge of the "compressible" mean flow velocities in

the interior of the QCSEE inlet, one can perform the acoustic calcula-

tions for the QCSEE inlet configuration. 	 In this section the results

of the acoustic calculations for the QCSEE inlet shown in Figure la

with hard walls will be presented for two frequencies. In order to

investigate the effects of the two-dimensional nature of the mean flow

on the acoustic behavior in the inlet, the mean flow was also computed

using a one-dimensional, isentropic compressible flow model 23 to describe
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the inlet mean flow. As in the two dimensional flow computations, a

free stream Mach number of 0.12 and an exit Mach number of 0.52 have

also been used in the one-dimensional flow computations. The solution

domain, consisting of the inlet duct, has been subdivided into 360 3-node

triangles with 212 nodes (see Figure 3)• The real and imaginary parts

of the acoustic potential were calculated at the nodes, and the real

and imaginary parts of the acoustic axial and radial velocity components

and the acoustic pressure were calculated at the centroids of the tri-

angular elements using the linear interpolation functions for the

acoustic potential (i.e., see Eq. (52)).

Calculations for plane velocity wave excitation at the inlet

exit plane and the frequency w equal 1 and 2 have been performed using

the i-D and 2-D steady flow calculations. Figure 41 shows the variation

of the real and imaginary parts of the acoustic pressure along the upper

inlet wall, for a frequency of 1.0. The radial variation of the acous-

tic pressure at the inlet entrance plane, inlet throat and inlet exit

plane for w - 1.0 are shown in Figure 42, 4?, and 44 respectively. Simi-

lar plots for a plane velocity wave excitation with w - 2.0 are shown in

Figures 45, 46, 47, and 48.

To isolate the effect of cross sectional area variation alone on

the wave propagation in the inlet, inlet acoustic calculations for the

case of no mean flow have been performed for a plane velocity wave exci-

tation at the inlet exit plane for two frequencies, w - 1 and 2. Fig-

ures 49 and 50 show the variation of the real and imaginary parts of

acoustic pressure along the upper wall of the inlet for w - 1 and 2
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respectively. Radial variation of the acoustic pressure for the zero

mean flow case, at the inlet entrance, throat, and exit plane for w - 1

are shown in Figures 51, 52, and 53 respectively. Similar plots are

shown in Figures 54, 55 and 56 for w - 2.

In the problem under con-.0 deration, the propagation of sound

within the inlet will be affected by the following phenomena: (a) reflec-

tion from the inlet walls due to inlet cross sectional area variation;

(b) reflection at the inlet entrance and exit planes; (c) reflection due

to the presence of gradients in mean flow properties; (d) convection of

sound by the mean flow which affects the local effective wavelength;

and (e) refraction of sound due to the presence of transverse mean flow

gradients. The presence of some of these effects will be considered

below by analyzing the predicted inlet acoustic behavior.

When there is zero mean flow in the inlet, only reflection will

be important. Furthermore, in this case the inlet entrance impedance

Z  = 1 is a good approximation for the almost no reflection condition

at the entrance plane and thus only reflection from the walls should be

present. Figures 51-56 show very little distortion in the plane wave

shape, indicating that there is very little reflection from the inlet

walls.

When the mean flow is described by a one dimensional approxima-

tion, only reflection and convection will be important. Figures 42-44

and 46-48 show very little distortion in the plane wave shape (for 1-D

mean flow) except near the inlet entrance plane where there are steep

area and mean axial velocity gradients, reaffirming the conclusion, that

l
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ry little reflection from the inlet walls. Figures 41, 45,

how the convective effects of the flow as manifested by the

overall decrease in effective wavelength for the case with mean flow

0-D or 2-D) as compared to the case of no mean flow. Figures 41 and

45 indicate a minimum effective wavelength near the throat where the

highest mean flow Mach number exists.
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When the mean flow is described by a two dimensional approximation

all of the above mentioned effects are present. Furthermore, at the

inlet entrance plane radial mean flow velocities are quite large and

there are radial gradients in the axial component of the mean flow.

Under these conditions the assumed impedance of Z  = 1 will result in

wav,i reflection at the inlet entrance plane. For the two dimensional

mean flow description, Figures 42-44 and 46-48 show severe distortion

in the initially plane wave shape due to reflection, convection, and

refraction it is not possible to isolate the individual effects. 	 It is

known, 1+30 however, that refraction increases with an increase in fre-

quency. This effect is observed by comparing Figures 42-44 (for w = 1)

and 46-48 (for w = 2) where the distortion of the plane front increases

with an increase in frequency.

4.7 Sound Attenuation Studies for Zero Mean Flow Case
for the QCSEE, Bellmouth and Cylindrical Inlets

The objective of this section is to estimate the sensitivity of

duct attenuation to inlet curvature and centerbody for a practical tur-

bofan inlet. The influence of flow gradients on the duct attenuation

will be included in the next section which deals with the nonzero mean

r
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To accomplish this task, a number of acoustic calculations

valled QCSEC turbofan inlet, a bellmouth inlet and a straight

open cylinder of the same overall dimensions (i.e. length and fan diam-

eter, are performed. The specific acoustic liner impedance values

chosen are the same for each inlet at a particular frequency and they

correspond to the near optimum impedance values for a plane pressure

wave input into an infinitely long circular duct. Rice 
17 presents these

values for a wide range of frequencies and liner length to duct diam-

eter ratios. In the finite element calculations for the zero mean flow

case a constant acoustic axial velocity (0 z ) is used as the input condi-

tion and hence these impedances do not necessarily represent the optimum

values in the finite element calculations. The radiation impedance con-

dition is prescribed to be equal to p C.

Figure 57 shows the dependence of duct: attenuation, dB reduction

on the frequency of wave propagation, n(= - 2r ) for the QCSEE, Bellmouth

and cylindrical inlets for the case of the full length of the upper wall

of the inlets being lined. Also shown in the figure are the near optimum

specific acoustic liner impedances, Z  for the four frequencies listed.

One observes that dB reductionfalls rapidly as frequency increases for

all the three inlets which is due to focusing of the sound wave toward

the inlet axis at higher frequencies. The propagation of high frequency

plane waves in a duct could be approximated as the propagation in a ray

tube with its axis coinciding with the inlet axis. As the frequency

increases the sound power is concentrated near the duct axis and it

reduces at the wall where it must be absorbed and hence the rapid drop

in the duct attenuation. One also observes that there is a considerable
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n the duct attenuation for the three inlets which can be

to the differences in their geometries. At lower frequen-

1	 '

cies the attenuations differ much more compared to at high frequency and

fall within 0.5 dB for n - 2. In other words attenuation of low fre-

quency waves is more sensitive to inlet geometry than to high fre-

quency waves. As explained earlier the sound energy is beamed towards

the duct axis as frequency increases leaving little sound energy to be

absorbed at the walls. Hence the propagation of high frequency sound

waves is insensitive to the area variations of the duct resulting in

about the game attenuation for all the three inlets. The duct attenua-

tion for the Beilmouth inlet falls in between the duct attenuation for

the QCSEE and the cylindrical inlets since the Beilmouth inlet is geo-

metrically "median" between the QCSEE inlet and the cylinder.

4.8 Sound Attenuation Studies for Nonzero Mean Flow Case

or the QCSEE, Belimouth and Cylindrical Inlets

The influence of mean flow gradients on duct attenuation is stud-

led in this section using the "compressible" mean flow velocities computed

in Section 4.5 (also see Appendix D). The average fan plane Mach num-

ber for both the QCSEE and the Bellmouth inlets is 0.52.

As proposed by Rice, 31 the near optimum liner impedance values

for the cylinder containing a uniform steady flow are calculated by

dividing the zero mean flow near optimum values by 0 - M) 2 where M is
the Mach number of the uniform steady flow in the cylinder. For the pur-

pose of comparison of the acoustic performance of the inlets containing

a mean flow, representative Mach numbers have to be chosen for the
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cylinder to "represent" in some overall sense the two dimensional mean

flow in the QCSEE and Bellmouth inlets. For this purpose, one dimen-

sional isentropic gas dynamic calculations are performed for the QCSEE

and Bellmouth inlets and the axial station chosen to "represent" the

cylinder is at Z - 0.9 for both the QCSEE and Bellmouth inlets since

they "resemble" the cylindrical duct at and in the neighborhood of

this station. The one dimensional isentropic Mach number at Z - 0.9

for the QCSEE inlet equals 0.579 and for the Bellmouth inlet equals

0.362. The liner impedance values used in comparing the cylindrical

duct and the QCSEE inlet are obtained by dividing the impedance values

listed in Figure 57 by (1 - M) 2 where M equals 0.579. Similarly the

liner impedance values used in comparing the cylindrical duct and the

Bellmouth inlet are obtained by dividing the impedance values listed

in Figure 57 by (l - M) 2 where M equals 0.362.	 in the finite element

calculations a constant acoustic pressure (p) is used as the input con-

dition and the radiation condition is again prescribed to be equal to

p c for the nonzero mean flow case.

Figure 58 shows the acoustic performance of the QCSEE inlet and

the cylindrical duct containing mean flow. As in the no mean flow case

one again observes the rapid fall of attenuation as frequency increases.

And also the attenuations differ considerably for the two inlets at

lower frequencies but they lie within 1 dB for n - 2.0. The differences

in the duct attenuations are due to a combined effect of inlet curvature,

centerbody and mean flow properties. The duct attenuation for the zero

mean flow case is higher compared to the corresponding non zero mean flow
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case for n = 0.5 and 1.0 for both the QCSEE inlet and cylinder. For

n a 0.5 dB reductionfor the QCSEE inlet with mean flow is about 22 de

lower than that for the no mean flow case. Also, for n ! 0.5

dB 
reductionfor the cylinder with mean flow is about 10 dB lower than

that for the no mean flow case. However, dB 
reductionfor 

the nonzero

mean flow case for n - 2.0 falls within i dB of the zero mean flow case

for both the QCSEE inlet and cylinder. These observations indicate

that though the approximate method proposed by Rice to obtain the near

optimum impedance values for the flc,a case is quite reasonable for high

frequency waves, it leads to a rapid drift in the optimum values of the

impedances for low frequency waves resulting in a considerable reduc-

tion of duct attenuation. Similar observations are noted in Figure 59

which shows the acoustic performance of the Bellmouth inlet and the

cylinder containing mean flow. Since the QCSEE and Bellmouth inlets

are studied for different values of the liner impedance for the mean

flow case one can not compare their acoustic performance.

At the present time, the frequency range and transverse mode is

limited by the maximum number of elements which the computer can handle.

In the above cases, seven elements were used to resolve the transverse

modes and fourteen elements were used to resolve axial variations. For

a given finite element triangulization scheme, an estimate c' the accu-

racy of the numerical solution for various frequencies !nay be made by

comparing it with the known analytical solution for the case of a hard

walled annular cylinder carrying a uniform steady flow. Even though

there is no one to one correspondence between the accuracies of the

t

I
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i obtained for a variable area inlet and an annular cylinder the

:ntioned criterion, in the absense of anything better, is proba-

bly an acceptable criterion.

r	 -
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

An analytical technique utilizing the Finite Element Method

(FEM) in combination with the Method of Weighted Residuals has been

developed for predicting the acoustic performance of turbofan inlets

carrying a subsonic axisymmetric steady flow. An approximate solution

for the steady inviscid flow field is obtained using an integral method

for calculating the incompressible potential flow field in the inlet

with a correction to account for compressibility effects. Acoustic

properties of the QCSEE inlet, a Bellmouth inlet and a circular cylinder

for zero mean flow and non-zero mean flow situations have been deter-

mined for a limited range of frequencies (3.14 < w < 12.57) of plane

wave propagation. Summarizing the results of this investigation it can

be concluded that:

1. The finite element technique solutions are in excellent

agreement with available analytical solutions for the problems of plane

and spinning wave propagation through a hard walled annular cylinder

with a constant mean flow.

2. For an equal number of finite elements, quadrant representa-

tion of the finite elements is superior to linear representation in

handling high frequency (w 	 15) plane wave propagation.

1.
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3. The duct attenuation and the acoustic pressure distributions

obtained by the finite element scheme and the finite difference results

of Baumeister for the case of a lined rectangular duct carrying a

steady uniform flow are found to be generally in good agreement.

4. The results obtained by the finite element program using the

"exact" impedance at the open end of the duct provided by the integral

solution approach of Bell, Meyer and Zinn are found to be in excellent

agreement with the results of the integral solution approach for plane

wave propagation in hard and soft walled QCSEE inlet carrying no mean

flow for a range of frequencies. The simple "no reflection"impedance

condition at the open end of the inlet though inaccurate for low fre-

quencies (w < 2) of plane wave propagation, approaches the "exact" impe-

dance condition for high frequencies (w = 10).

5. Results for low frequency (w < 2) plane wave propagation

through the hard walled QCSEE inlet containing a mean flow show that

when one-dimensional steady flow is assumed to exist in the inlet, the

plane wave propagates with relatively little distortion. However, pro-

pagation of a plane wave through the fully two-dimensional flow field

in the inlet produces severe distortions due to the excitation of

higher order modes.

6. Plane wave calculations for soft walled QCSEE inlet, a cir-

cular cylinder and a Bellmouth inlet for the near optimum liner impe-

dance values of an infinitely long circular duct with no mean flow,

indicate that the duct attenuation falls rapidly with increase in

frequency for the cases of zero mean flow and fully two-dimensional

r
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axisymmetric man flow due to focusing of the sound wave toward the

duct axis for high frequencies. Attenuation of low frequency plane

waves is found to be more sensitive to inlet curvature, center body and

mean flow gradients as compared to that of high frequency plane waves.

The approximate method proposed by Rice to obtain the near optimum liner

impedance values for the flow case from the zero mean flow case is

found to be reasonable for high frequency plane waves but leads to a

rapid drift in the optimum values for the low frequency plane waves

resulting in a considerable reduction of duct attenuation.

5.2 Recommendations for Future Research

Several improvements over the developed theoretical analysis

which could be made to broaden its range of applicability are discussed

below.

I. Prediction of the Far Field Noise Levels

The present analysis predicts the ratio of the input acoustic

power at the fan plane to the output acoustic power at the inlet entrance

plane and thereby concludes about the effectiveness of the liner to

absorb sound. However, in practice, the effectiveness of the liner is

estimated by measuring the sound pressure levels in the far field.

The far field predictions could be made using the finite element

technique by extending the triangulization scheme from inside the inlet

to the "far field" through the inlet entrance plane. The elements

external to the inlet could be made larger as one moves away from the

`	 inlet since the variation of the acoustic variables in the open space

is not expected to be as large as it is inside the inlet.	 In this
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the radiation condition should be prescribed at the peripheral

s in the open space. The prescription of the simple P c radia-

r'

3

tion condition out in the "far field" is expected to be quite good

since any wave front approaches a plane wavefront locally as one moves

sufficiently far away from the source. The extent of the finite ele-

ment spread out in the open space to simulate the far field will be

governed by the computational capabilities and mass storage space of the

available computer system.

II. Effect of the Molecular Transport Properties on the Acoustic
Behavior of the Inlet

In the present theoretical model the effect of viscosity and ther-

mal conductivity of the fluid on both the mean flow field and the acous-

tic field have been neglected. These assumptions and the assumption of

irrotational flow simplified the boundary value problem to the solution

of a single complex partial differential equation with variable coeffi-

cients for the acoustic velocity potential subject to a set of complex

mixed type boundary conditions. When employing the finite element tech-

nique the use of the velocity potential offers many advantages over the

conventional linearized gas equations approach. 
32 For two dimensional

mean flows the velocity potential approach reduces the computer storage

and running times by an order of magnitude compared to the more general

linearized jas equations approach.

The acoustic equations for sheared viscous flows were developed

by Mungur et a1. 33 Since the gradients in the wave motion are "small"

the molecular transport of momentum and energy due to viscosity and

thermal conductivity of the fluid respectively are neglected by common

{



a-

114

ieriving the linearized acoustic equations, and the inviscid

itions are solved using the mean flow velocity field that

results from a consideration of viscosity in the mean flow field only.

Because of the significant computational advantage of the acoustic

potential formulation, one is strongly motivated to extend the acoustic

potential finite element program to include the case of sheared mean

flows. Goldstein and Rice 
34 

suggest a very practical procedure for cal-

culating the effect of the boundary layer in conjunction with the poten-

tial function analysis. Goldstein and Rice point out that in many cases

a linear shear layer can be used to accurately model a 117th power law

turbulent boundary layer. For the special case of a linear shear bound-

ary layer, they show that the following correction procedure can be

applied.

The specific acoustic liner impedance, Z  at the inlet wall is a

known parameter. For a given boundary layer thickness d and a mean flow

Mach number at the edge of the boundary layer, a specific acoustic impe-

dance at the edge of the boundary layer, (Zd effective can be calculated

which is independent of , the potential core flow. This effective impe-

dance could be used as the boundary condition for the potential flow

finite element calculations. The procedure is approximate because the

correction procedure 
34 assumes a uniform boundary layer in the absence

of mean flow variations. Nevertheless the procedure represents a simple

and effective way of accounting for shear with a potential approach for

the duct acoustics problem.
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1	 ill. Optimization Studies for the liner Designt

The present technique predicts the dBreduction for a lined duct

containing a two dimensional axisymmetric mean flow for a prescribed

configuration of the sound absorbing liner. The liner performance

which could be measured as the dB 
reductionper 

unit length of the liner

is a function of its specific acoustic impedance, frequency of wave

propagation, mean flow characteristics and the geometry of the duct.

The technology needed for a practical liner design has to predict the

optimum liner configuration for a desired dB reduction' 
Such a design

information could be prepared by conducting optimization studies for

liners over a realistic range of the independent variables. Such a

study will provide the needed technology data base for the liner

design.



l

EE 'v

c

__.._ Asa

A P P E N D I C E S

4



PROOF OF EQUATION (60)

To prove

1 - ff (Le)a(Le)b(Le)cdrdZ	
alblcl	

x 2A

{e)
i	 j	 k	 a+b+c+2 )1

a 

Consider the linear transformation

(r, z) ; (L!e).L^e))

The elemental area drdz is related to dL i dLj through

r	 z	 (e)	 (e)
drd = J	 (e) (e) dL l dLj

L 1 	Lj

r	 z

where the Jacobian J L (e) L(e)
i

a 	 a 

r z	
f a7e7 aL 7

J L(e) L(e) -	 (A-3)

J	 az	 a z

al.(e)	a.

Substituting Eqs. (51) in (A-3) one obtains

r	 z

J	 (e)	 (e) - (z i - z k) (r 	 r k ) - (r i - r k )(z -Z  k)
L i	 L j (A-4)

= 2x (Area of triangle ijk) - 2A

(60)

(A-1)

(A-2)

I
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Hence, Eq. (60) becomes

I	 1-L(e)
I	

(e)1	 (e) j
	 (Li)a(L3)b(1 - L (e) - Lje))c 2A  dL(e)dL3e)

L l =0 L
j
 =0

(A-5)
That is,

1	 i-Li(e)
I	 2A x	 J L (e)a dL(e)	 J	 (Le)b(1 - L ^e) - L!e))cdL(e)

L (e)=0 	 L
 (e)=0 )	 J

i
L. 

Using the definition of Beta function and Gamma function, the inner

integral is equal to35

(I - L (e) ) b+c+l x b!cl
i	 b+c+l 1

Hence,

l	 (e) a	 (e) b+c+l	 bicl	 (e)I = 2A x	 j ( L i	 ) x (l - Li	 )	 x b+c+l ! dLi
-	 L ^e)=0

Again using the same formula above,

I = 2 b x a! b! c!
a+b+c+2 !

(60)
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APPENDIX B

DEVELOPMENT OF ELEMENTAL RELATIONS

6.1 Application of Galerkin's Technique to a Finite Element

Equation (59) when applied to a single finite element yields

If! N W I.490 (e) = 0, u = 1,2,...,Q	 (B-1)

D (e)

where a is the total number of nodes in the element a (a is 3 for a

linear and 6 for a quadratic element). For illustration purposes the

Galerkin's technique is applied to Eq. (6) in this development. Exactly

same procedure applies to Eq. (7) also. Hereafter, the superscript e

is dropped since this derivation is for one element only.

The first three terms in Eq. (6) contain second order partial

derivatives of 0 which are reduced to first order by using Green's

theorem in a plane. Green's theorem in a plane region R bounded by a

curve C for two functions U(r,Z) and V(r,Z) is 24 (see Figure B.1 and note

t hat C is traversed in a direction that R lies to the left of C)

Rf ( ez	
ar) drdz - ^ Udz + ^ Vdr	 (B-2)

C	 C

Identifying

U a -N r2 (c2 - ^r )m ru

and
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r	 R
C

0	 z

Figure B-l. Green's Theorem in a Plane Region, R Bounded
by a Curve, C.

s
R

r	 a

C

n
0	 z

ds

dr

cx

^.	 d z

Figure B-2. Transformation of (r,z) Coordinate System to
the Natural Coordinate System.
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V - Nu r
2 [(C-2_  #;2)0Z - 20 rjz®r]

and applying Eq. (B-2) yields after some manipulations

R! 

r l2- ( NU r2 (c2 - ¢r)	 ^2NU r2 Ortiz}

-2	 -2

• { 
(Y+l )O rr; r + 20 rz 0z	 r + (Y-1 ) ^ + (Y -1)^ r ^pzZ IN r2)

• jZ I	 ( Nu r2 (c2 - 0Z }}

+ ( (Y+i) ^zz^z + 2-rz^r + (Y- i ) ^ rr0z - (Y-1)^Zr r }Nu r2)

2-2
- 1W  - m r2 IN U r2 0 + 2wo rN u r2 jr + 2w¢2N0r2 ^z

+ w(Y-1)(e rr + O
r
 +  zzINur2^1 drdz

- ^C Nu r2 I(c2 - 
i2) 0z - 20 0z0r)dr- ^ Nur2(c2 - 0 2 )0 dz,

u - 1 9 2 9 ... # a	 (8-3)

It is simpler to evaluate the boundary integrals in Eq. (B-3) in terms

of the natural coordinates (s, n) where s is the coordinate along the

curve C and n is the coordinate normal to C and pointing away from the

region R (see Figure 8-2). Differential lengths dr and dz along the

curve C are related to ds by

dr - ds sin a

( B-4)
dz - ds cos a
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and the velocity components are related by

c

^r	
^s sina - ^n cosa

(B-5)

^Z	^ssine + ^n sina

Substituting Eqs.	 (B-4) and	 (8-5)	 in the boundary integral of Sq.	 (8-3)

one obtains

Bu	 NU r2 ( ®s ((^r - ^Z)cosa sins - 2mr;2 sin 2a}
C

+	
n (c2 -
	 6z sina -	 r cosa) 2 }lds	 u = 1,2,...,a	 (0-6)

It	 is to be noted that the contributions to the boundary integral

in Eq.	 (8-6)	 come only from the	 elements located on the	 boundary

surfaces of the inlet as the individual element contributions located in

the Interior of the inlet are cancelled as the element boundaries are

traversed in exactly opposite directions for the two neighboring elements.

Hence,	 though the individual element boundary integrals will be nonzero,

when the elements are assembled into a global matrix form, the 	 internal

element contributiois to the boundary integrals vanish. 	 So Eq.	 (8-6)

is evaluated only for elements located along the boundary of the inlet.

B.2	 Element Relations for an	 Internal	 Element

For an	 internal element the right hand side of Eq. 	 (8-3)	 is not

evaluated as discussed above. 	 The left hand side of Eq. 	 (B-3)	 is eval-

uated by using linear interpolation functions for 3-node triangles and

quadratic	 interpolation functions for 6-node triangles	 (see Eqs.	 51-58).

t
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B.2.1 Evaluation for a 3-Node Triangle ( See Figure 5)
=	 i

For a 3-node triangle the variation of the acoustic potential

over the element is given by

¢(r,z) - L i (r,z)j i + L  (r,z)i
j
 + Lk (r,z)s k	 (53)

$(r,z) - L i ( r ,z); i + L  ( r , z )^i + Lk (r, z )^ k 	 (54)

For the sake of simplicity in evaluating terns in Eq. (8-3) the mean

'	
flow quantities c, $ r and 0z within each element are assumed to be

constant and equal to the arithmetic average of their respective values

at the nodes i, j and k. However, the derivatives of the mean flow

quantities like e rr' ^rz' Irzz' cr, %'zetc. are evaluated assuming that

the mean flow quantities are varying linearly over the element just like

the acoustic potential. Also the coordinate r is assumed to have a

constant value r equal to the r-coordinate of the centroid of the element

except where the derivatives with respect to r are to be evaluated.

The following polynomial integrations of the area coordinates need

to be performed:

a. f f L  drdz, u= i, j and k
A

and

b. f f L 
1

[L i 0 i + Ljoj + LkOk]drdz, u = i, j and k
6

Application of Eq. (60) to integrals a and b yields
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1f Ludrdz - 6
A	 u= i, j and k

and	
n = i, j and k	 (B-7)

ff Lu (L i ^ i + Lj ^j + LkO k ]drdz = 27 (^i+^j
+0k+dun0n)A

where bun is the Kroneker's delta having the property

1	 if u = n

	

a	 =	 (B-8)
un

0	 ifu^n

Substituting Eqs. (B-7) in Eq. (B-3) one obtains the desired element

relation for an internal element:

	

(c i f i +cj j + Yk ) x	 r ( _ - 2 ) 4^	 - 2r ( ^2	 )
2A
	 [cp2 -2

2'	 r + 6	 ^r
2

+ r2
(c c  - Yrr)} + {(Y+)) rr^r + 20 rz o z - c

r

-2	
-2	 b

+ (Y-1) r + (Y-1);r¢zZ}Q- 2r2{ 2 ^r^z
r	

_ -2
2p	 (b i ^ i + b. + bO k) r

+ (^rz^z + 0 r 0zz ) 6 }]+	 2p 
—r	

x

2u (c2 - ^Z) + T (c cz	 YzZ) + { (Y +1 )^zz z+2^rz r

+ (Y-Oo rr o z - (Y-1) ^?^ r } x 6
r

-2
( w2 - m2 f2 ) r2 x (^ i + ^ j + ^k + d un^n ) x Z

+ 2 - r2(ci i +c.rpj + c k ^k ) 
+ 2w_ r2 

( b i s i + b.^j + bk^k)
wOriz

+ w(Y -1) x (err + r̂+ ^zz)r2( i + j +; k +` Ij 9 YJ)x24=0'r
U = i, j and k	 n= i, j and k	 (B-9)
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B.2.2 Evaluation for a 6-Node Triangle (See Figure 5)

For a 6-node triangle the variation of acoustic potential over

the element is given by

O(r,z) = N I (r, z )^ i +N
i

(r,z)^i + N k (r,z)^ k + NQ(r.z)^,

+ Nm (r,z)$m + Nn (r,z)-On 	(55)

and

i(r,z)	 N i (r,z)$ i + N
i
 (r,z)$ i + Nk (r,z)^ k + NR(r,z)^Q

+ Nm (r,z)^m + Nn (r,z)^ n 	(56)

where for corner nodes

N. = 2L2 - L.

N.
i
 = 2L ^ - L^
	 (57)

Nk = 2L2 - Lk

and for mid-size nodes

Nk=4LiLj

N  = 4L
i

L k 	 (56)

Nn = 4LkLi

The same assumptions regarding the mean flow quantities and the

coordinate r made in Section B.2.1 are applied to the quadratic elements

also.

The following polynomial integrations of the area coordinates

need to be performed:
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l ap = ff Np cp r drdz
6

1 b = ff Np z drdz
6

aN

I cp	 f̂ ar ¢r drdz

;1 = i , j , k, R,m and n	 (8-10)
aN

Idp - ff 3z ¢ r drdz

aN

Iep = ff az ¢z drdz
6

I f p - ff Np ¢ drdz
6

The integrations will be performed for p = i and p = k. The integra-

tions for p = j and k and p = m and n can be obtained by a proper cyclic

rotation of indices i, j and k and k, m and n (see Eqs. (52))•

Case 1 p = i

Consider

I 
	 = ff N i O r drdz

	

i	 6

Substituting Eqs. (55/56), (57) and (58) into I a. yields

r	

i

I a i = f1 (2L2 - Li)	 X 26 x (4L i - 1 )c i ¢ i + (4L.-1 )c.¢. + (4L k-1 )ck¢k

• 4(c i Lj + cj L i )t z + 4(cjLk+ckLj)¢m

• 4(c k L i + ciLk)¢n drdz
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Simplifying and evaluating the integrals using Eq. (60) yields

l a,	 30 [2c 1
 0, - c^ Oj - ckOk + 0 (2c^ - c i )-	 Om (c^ + ck)

+ ^n (2c k - c i )]	 (B-I1)

Consider

I b i = ff N i ¢z drdz
A

Substituting Eqs. (55/56), (57) and (58) into I b yields

i

I b; = ff (2L2 - L i ) 2p x [4L i - 1 )b,^ i + (41— - 1 )b^^^

• (4L k-1)bkOk + 4(b i L
i
 + b

i
L i 4 z + 4(biLk+bkL^)OM

• 4(bkL i +b i Lk )o n I drdz

Simplifying and evaluating the integrals using Eq. (60) yields

_ 1

I bi	 30 [2bi$ i - b
i
0 - bk^ + (2b^ - b i ^ - (b) + bk4

+ (2b k-bi4n]	 (B-12)

Consider

8N.

IciAfDr' ^ r drdz

Substituting as above from Eqs. (55/56), (57) and (58) into I ci yields

r
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I c 1 - If	 1 2 (41. 1 - Oc i x [(4L i - 1)c i o i + (41-
j
 - l)ci^j

D (2A)

+ (41.k - 1)c kO k + 4(c i L
i
 +c

i
Ldo z + 4(ciLk+ckLi)Om

+ 4(ck L i + ciLk)0nI drdz

Simplifying and evaluating the integrals using Eq. (60) yields

I ci = Z x [c1^i (2) + c J ^j (- a) + c k^ k (- a) +cj R(3)

+ $m (0 ) + 
cO

n (3)l	 (B-13)

Consider 

aN'
8Ni

=
Idi m II az	 r drdzD

Substituting as above from Eqs.	 (55156), (57) and	 (58)	 into	 I di	 yields

I di	 = Il	 l	 2	 (4L i - I)b i	((4L i -
D	 (2D)

1)c i ^ i +	 (4L
i
 - 1)cjoj

+	 (41-k- 111ckOk + 4(c i L
i

+cJ Ldo z + 4(ciLk+ckLim

+ 4(c kL i + c i L k )o n I	 drdz

Simplifying and evaluating the	 integrals using Eq.	 (60)	 yields

I di	 = x [c	 + c	 +2D	 i^i{2)	 ^^^{	 ^) ck^k{- + ca)	 ^^Q	 {3)

+ ^rn(0) + c0 n	{3)] (B-14)
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sr

aN.

lei	
A 

az ^z drdz

uting Eqs. (55!56), (57) and (58) into l et yields

l ei = f f	 1 2 (4L ; - I )bi x [ (4L i - 1)b,^, + (41- j - 1)bj ^ j
A (2A)

• (4L k- 1)bkOk + 4(b i Lj +bj L i )0 z + 4(bjLk+bkLj)Om

• 4(b kL i + b i Lk )on I drdz

Simplifying and evaluating the integrals using Eq. (60) yields

bi
l ei	 2d x [b i 0 i (2 ) + b.o. (- 6 ) +bkO k ( 6)

+ b 	 + m (0) + bO n (3)]	 (B-15)

Consider

I,
i
 = jf N i ^ drdz

A

Substituting Eqs. (55/56), (57) and (58) into 
Ifi 

yields

I f; = II (2L2 -L ; ) x [(2L 2 - L i4 	 + (2L^ - L
i 
4 i

+ (2L2 - LCD) k + 4L, Lj ^^ + 4Lj Lk$m + 4L k L ; fi n ] drdz

Simplifying and evaluating the integrals using Eq. (60) yields

f i = 24 ;c [^ i (40 ) + ^ j ( 360 ) + ^k ( 360 ) +	 (0)

+ gy m ( 90 ) + ^ (0)]	 (B-16)
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Substituting Eqs. (8-11) - (B-16) into Eq. (8-3) yields the following

quadratic element equation for an internal element for the corner node i.

Iai x [2r (c2 - fir) + 2r2 (c c r	 ^ r ^ rr ) - 2r2cprz¢z - 2r2^r^zz

-2	
2

+1(y+14 rr 0' r + 20 rz oz - c + (Y-1) r +	 r0zz }r2]
r	 r

+I bi x [2r2(c i - ^zzZ) + {(Y+1);zz;z + 
20 rz- +r 

+ (Y- 140z - N- O Yr } r2]

+ 1ci [r2 (c2 - 0r)] - Idi [2 r2 ^roz]+I ei [r2 (c2 - 
QZ)]

-2

I fi r2 [w2 - m2 c2 ] + l ai tai r 2 ^r + I bi 2w r2 ^z
r

+ I fi w(Y-1)r2rr + -r + ^zz] = 0
	 (B-17)

where the superscripts - and - refer to the real and imaginary parts of

the complex integrals in Eqs. (B-11) - (B-16) respectively. Element

equations similar to Eq. (B-17) for nodes j and k may be obtained by the

cyclic rotation of indices i, j and k and 9, m and n in the Eqs. (B-11) -

(B-16).

Case 2 u = k

Following exactly the procedure indicated in Case 1 one obtains

the following expressions for the integrals in Eq. (B-10) for 11 = z:
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Iak !	
N 

1 
0 r drdz

n

= [cl$1 ( 10 ) + cj j ( 10 ) + ck¢ k (	30) + 75 	 + Yo,

+
15 

(cj + 2c k )om + 15 (c1 + 2ck)on]
(B-18)

1
bk = I! N k oz drdz

A

[b 1 ^ 1 (10) + bj ^j ( 10) + bk$k(' 3 0) + 15 (b1 + bj)^k

+ 15 (bj + 2bk )^	 + 15 (b 1 + 2bk)on ] (B-19)

1c,

8N

II 3NZ0r drdzDr
A

4	 c c,	 C.C.	 ^R	 2	 2

-) +	 j (—	 ) + 0 k (0) +	 3	 ( c
1	

+ c1cj+cj)

+ -	 (c i cj + 2c 1 c k + c2 + cj c k ) +	 (cick+c2

+ 2cj c k + cjcl)] (B-20)

1dk

8NR

ff	 drdz
az	 ^r

n

_
c b	 c.b.	 $

x1 (!	 ) + ^ j (_.!r__) + X00) + -^ (2b i c 1 + b i c j + bjcl

+ 2b.
J 
c.) +	 (blcj	 + 2b 1 c k + bj c j	 + bjck)
J

^n+	 (b
^	

j c k + b
1 
c 1 + 2bj c k + bj c l )] (B-21)
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l et =
aN

Gj azx fz drdz

bb	 bb
2C [0i (^) + ^j (—) + ^ k (p) + 3 (b2 + b i bj +bj)

+-m (bib. + 2b i bk + b 2 + b^b k)+^ (bible+b2

+ 2b
i

bk + b
i

b i )J (8-22)

1 ft f f N  ^ d rdz
A

a 2Q i (0) + ^  (0) + ^ k (-  90) + 4 x (5) + ^m(e5)

+4 n (^)l ( 8-23)

Substituting Eqs.	 (B-18)	 -	 (8-23)	 into Eq.	 (8-3)	 yields the following

quadratic element relation for an 	 internal	 element	 for the mid-side node

l ax x [2r(c2 - ^^) + 2r2 (c cr _ 4 r4 rr )	 - 2r2 4 rz 4z - 2r 	 4r4zz

-2	
-2

+ { (Y+1 )4 rr4 r + ^4rz4z	
c	

+	 (Y-1)	 _r +	 (Y-1)4r4zZ)r2J
r	 r

+1 bt x [2r2 (c c 	 4z4Z2) + { (Y+1 )4zz 4 z + ^4rz4r

+	 (Y-1 )4 rr4z -	 (Y-1) 4 4̂z ) r2J
r

+Icy,	 x [ r2 ( c2 - 4r)J	 -	 I dle	 [2r 2 4 r4 z ]	 +	 Iez	 [r 2	 (c 2	 - OZ)
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_2	
_,^

-Ifk r2 [w2 - m2 e2 ] + IaR2wra^r + ib^ 2wr 2 ^z
r

+ifit 
w(r-1)r2 

(err + ^ + ^ZZI
r

(B-24)

where the superscripts - and - refer to the real and imaginary parts

of the complex integrals in Eqs. (8-18) - (8-23) respectively. Element

relations similar to Eq. (B-24) for mid-side nodes m and n may be

obtained by the cyclic rotation of indices i, j and k and R, m and n

in the Eqs. (B-18) - (B-23).

8.3 Boundary Integral Evaluation for a Hard Wall

The boundary condition at a hard wall of the duct in terms of

real and imaginary parts is

On=0

and

	

	 (15)

^
a 0

'1

B.3.1 Evaluation of Hard Wall Boundary Condition for a 3-Node Triangle

See Figure B.3

Substituting Eq. (15) in the boundary integral expression given

by Eq. (8-6) one obtains

S u '	 Nr2[(^^ - -2 ) Cosa sina - 2m r^Z sin 2 alms ds	 (B-25)
C u

For the 3-node element configuration shown in Figure 8-3 the interpola-

tion functions along c reduce to

I
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Ni=1-F

L N. = C 0 <	 <	 1 (8-26)

Nk = 0

Hence the variation of ® along c becomes

_ 0 - oo- i + C^j (B-27)

Application of the chain rule for differentiation yields

^sds	
( j

0 1 ) d ^ (B-28)

Substituting	 Eq.	 (8-28)	 into Eq. (8-25) one obtains

i

= rB i	 2IG	 - 0 )cosa sins - 20r^z sin a] J 0 -0[$ - ^i]dF,
C°0 (F)j

That	 is

S u = r2 [(; 2 - ^2 )cosa sina - 2; 	 sin 2a]
r z 
	 ! 2

u = i and j	 (8-29)

Since ¢j and 
01 

are unknown as of now, S^ is transported to the left

hand side of Eqs. (B-3).

B.3.2 Evaluation of Hard Wall boundary Condition for a 6-Node Triangle

See Figure B-3

The boundary integral to be evaluated is given by Eq. (B-25).

For the 6-node element configuration shown in Figure B-3 the interpola-

tion functions along c reduce to

I
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iti=2&2-3f+1

N1 0 t <	 i (B-30)

NR 	4 Q • &2)

Nk = Nm • Nn = 0

Hence the variation of 	 along c becomes

j - (2€ 2 - U + 141 + (2& 2 - &4i + 4 (&	 2 )i t (0-31)

Application of the chain rule for differentiation yields

i s0 s -	 [OC - 3)i i +	 (4& -	 1)0-	 + 4(1 - 20; z Id& (B-32)

Substituting Eq.	 (B-32)	 into Eq.	 (8-25) and evaluating the polynomial

integrals	 leads to

a i	 - r 2	 [(fi r - ^2 ) cosa sina - 
20 r z

sin 2 a]	 x

2) +^ (- a) + ^^ (3)) (B-33)

a.
1

r 2	[(¢2 - ^Z)c osa sina - 2 or ;2
sin 2a]	 x

4) + ;j (2) + ^ t (- 3) ] (B-34)

and

a^	 r2 I(^pr - ^ 2 ) cosa sins - 
20 

0 sin 2a] x

Im i (- 3) + 
i
(3) +^(0))
	

(B-35)
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As f i t ^ and f^ are un . .nown, I3 i , B and d 
t 

are transported to the

left hand sides of the corresponding equations in (8-3) for nodes i, j

and t respectively.

6.4 Boundary int6 ral Evaluation for a Soft Wall
See Figure B-3

The boundary conditions at a soft wail using the concept of con-

tinuity of particle displacement are given by

P ^s
Bin - X^ = - p Cw$ + ^s ^s l + w	 C-wis 

+ ^ss^s + ^s^ssI

	+ ( 2 ) pac -s C- w^ +^1	 (29)

	

c ^s w	 s s

and

A ^

x	 + em ' - p C-w^ + ; ; l -	
s 

[w	 +	 +	 ln	 n	 s s	 w	 s	 ss s	 s ss

- ^r ? t )	^s w (w + ¢ s ^s l	 (30)
c

In the absence of mean flow the above equations reduce to

	

gi n - X¢	 -w	 (B-36)

X0  + O^ n = wm	 (B-37)

Since Eqs. (B-36) and (8-37) do not contein the second derivatives of

the acoustic potential, one could use 3-node triangles to evaluate the

soft woll boundary conditions.

r^
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B.4.1 Evaluation of Soft Wall Boundary Condition for a 3-Node Triangle

(No mean flow case only)

The boundary integral given by Eq. (8-6) reduce to the following

for the case of no mean flow:

B U - ¢ Nu r2 I nds	 (B-38)
C

The soft wall boundary condition for the case of no mean flow given by

Eqs. (B-36) and (B-37) are solved for on and ^n and on substitution into

Eq. (B-38) leads to

B _
	 N r2 (-WOE i WxO ]ds
	 {B-39)

u	 Cu	 C2+x2

Using the interpolation functions given by Eq. (8-26) for the element

configuration shown in Figure B-3 one may write

+E$j

and	 (B-40)

_ 0-00- i + 4

The differential length ds along C is given Ly

ds = HZ  - Z i ) 2 + (rj - r i ) 2 ] 1/2 dC = L i jdC	 (B-41)

Substituting Eqs. (B-40) and (B-41) into Eq. (B-39) yields

r 1 _ 2	 -m6{ (1-O ' + j } + wx{ 0-0) +

1=0 r NU	 ©2+x2	
LijdF

P = i and j
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I

Substituting for N , from Eq. (8-26) and evaluating the polynomial
F	 `

integrals yields

+	 +r2w Li,	 -8(^i
	 ^j	

BUn^n)

t a
u

x
6(82 + x2)

+x(;i + j + 6uJn)

P = i and j

(8-42)

n - i and j

Since the nodal values of the acoustic potentials are unknown, R u is

transported to the left hand side of Eq. (B-3).

B.4.2 Evaluation of Soft Wall Boundary Condition for a 6-Node Triangle

Since the soft wall boundary conditions given by Eqs. (29) and

(30) contain second derivatives of acoustic potential in the presence

of a slip flow at the liner, quadratic elements or higher order ele-

ments are to be employed to treat such boundary conditions, Eq. (29)

and (30) can be solved simultaneously for $n and n to yield

1	 -	 - -	 P ^s

n ^2 t 2	 Ys	 w	 s	 ss s s ss

c

P-
+ x X {- P( -W^  + 0	 ) -	 s 

	 +	 +	 )s s	 w	 s	 ss s	 s ss

w

c
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p ^s^n	 82 + x2 [ 8 x {- p (-w0 + ^s ;s) - 
w (w

as + 
ass 1	

0 Oss)

( Y2 t )	 a
s ws 

W + O s is ) }
C

-x x	 p ^s{-p(w^ + o s $ s) + w (_was + ^ss^s
+ ^S$ss)

+ ( Y2 1 ) 2 
as ws (-wc	

0 + O si s ) }]	 (B-44)

Substituting Eqs. (B- 32), (B-41) and (B-43) into the boundary inte-

gral in Eq. (B-6) and regrouping the terms one obtains

t	
1

B^ = r2 [( ¢ r - oZ)cosa sins - 2OrOZ sin 2 aj l 	 N	 dC
^=o u ^ 

^2+	 -2o22 [c - ( O Z sins - ^r cos,,) 2) L i j x+x 

1
f ^=O NU [ ^ss ( w x O s ) + ^ss(w o 0s)

{-2	 8_ p Yss x _ 2 Q a^ x -2
s	 s	 w	 (Y- t

) c 
as w ^s }

+ ^, {-2p	 x + p ^5^55 0 + ( 2 )	 jc D 2
s	 s	 w	 Y-1 c 3s w s}

+{- ( 2=t) P 5 u se + pwx}

c

2	 P ac
+ {- Y-1 
	 `^as sx - pwo }) dC ^ G, = 1, j and A.	 (B-45)
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The required polynomial integrals in Eq. (8-45) are evaluated below

by using Eqs. (B-30).

Sai =	 f . N i d& = f .	 (2 E2 -	 3i; + 1)dt = 6 (B-46)
=0 C=0

Sa j = f i N.dC =
1

f	 2t2 -E dl; =
6 (8-47)^=0 E=0

SaR
1

= f NRd& =
1

f	 4E(1-^)d&	 3 (B-48)
1;=0 E=0

Sbi
i

= f Ni^cdc
1

= f	
(2 

E2- 3C+ 1)[(4E- 34 i	+	 (4E- 1)oj
E--0 E=0

+ 40 - 2C)^RldE

+^ (- ^) + ^ R (3) (B-49)

Sb j
1

= f Nj 0 d E
1

= f	
(2C2 

	 (4E, - 34 i + (4C - 1)	 j
E= 0 ^=0

+ 40 - 2C)^RldC

(6) + ^j (2) + ^ R ( -  3) (B-50)

SbR =
1

f NRQ dE
1

= f	 4 (^ -	 2 ) [ W - 3 )^ i	 +	 (41; - 1)^j
^=0 ^=0

+ 4(1 - 2r,)^RldC

S	 =
ci

1
f N.^d^ =

1
f	 (2C2-

3E +1)[(2E2- 3E +14•+ (2& 2-^4
J^=0 ^=0

+ 4	 24 ld^

_ ® i ( 15) + ^ j (	30 ) + ^ R ( i5) (B-52)

e

a
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1	 1

Scj	 =o 
N J	

=x
Odt _ I	 (21; 2 - C) [ (2^ 2 - R + 1)^ 

i 
+ (2E 2 - 0)

+ 4Q - 2 ) O X Idt

_ O i (- 3^) + 0(15) + ^^( 15)	 (B-53)

1	 1
S	 if	 NjW - I	 4(E - E2 )[(2 E2 - 3^+1) O + (2F 2 - )^.
cR	 E=p	 ^=p	 J

+ 4 ( - E`)^RldC

	^ i ( 15) + 0( 15) + Y— )	 (B-54)

Also from Eq. (B-30) one may obtain

$ ss = 2	
i

i	

+ C - V t i	 (B-55)
L.

J

Substitution of Eqs. (B-46), (B-49) and (B-52) into Eq. (B-45), for

u = i yields the desired evaluated boundary integral

S i = r2 [(;^ - ¢Z)c osa sina - 2;r^Z sin2a]Sbi

r2

+	

L • •	 _,

 2 2 [c` - 
4z sina - ¢ r cosa) 2 ] x
8 

[ a ss ( w x 2̂s )Sai + ^ss(w 
6 

^s)Sai

P Yss _	 2 p ac x -2 Sbi
+{-2p a sp -	 w	 x	 (Y-1 ) c as w ^s } 

L..

- x + p 
^s^ss 6 + r 2 p ac 8 -2 } Sbi

+I -2p  
s	 w	 `Y -1 ) c as w ^s r7
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•
2	 - ac+ {

- tY- 1) P- as	
¢ s e + pwx} Sci

+ {-(Y 2 1 ) 
P- as 

; sx - pwe} Sci	 ]] ( B-56)

where the superscripts - and refer to the real and	 imaginary parts

of Eqs.	 (B-49) and	 (8-52)	 respectively.

Similarly,	 substitution of Eqs.	 (B-47)	 (B-50) and	 (B-53) into Eq.

(B-45) for	 p =j	 yields

B j = r2 IG 2 - -2 )Cosa sina - 
20 -
	 si n na]Sbj

r2L..
r2+ —ij 

2 
[c2 -	 (OZ sina

- Or Cosa) 
2 ]	 x

Ca ss 	 (	x ^ s )Saj + ^sstW
	 ^s)SajW

- - 6 _ p O s O ss
• { -

2 
p ^s

x _	 ( 2 ) g ac x
Y-1	 as w

- 2 } Jbl
^s	

L..
w

P Y ss• { - 2p 0
sx +

2	 p ac e6 +
	 (Y -1)

-2	 Sbj

^s } ^ijw c	 as w

+ { - (Y 2, )	 as	
¢ s 6 + pwx} SCj

C

2
as

- pme} j ] (	 57)
c

On	 similar	 lines,	 substitution of	 Eqs.	 (B-48),	 (B-51) and	 (B-54) into

Eq.	 (B-45)	 for	 p = R yields



E3^ n r2 [(;r - ^z)C osa sina - 2;r;2 sin 2a)Sbz

r2Lij 2	 -	 2
+ 

x
+ 8

2	 2 
[c - ( ^Z s i na - cp r Cosa) ) ,

[ass (	x ^ )S	 + 0(w0 
;
s )S

W	
s aQ	 ss at

P Yss	 2p 2c x -2 Sb.Z
• 1-2p ^ s 8 -	

w	
x - (Y_l) 

c 2s w ^
s } L,

j

• {-2p	 x + p ^s^ss 0 + ( 2 ) p ac 0 -2} 
Sbk

s	 w	 Y-1 
c 

as w s Lij

+ { - (Y? 1) P 7S O
S 
0  + pwx } Sck

C

+ {-(
2 'l 

p as
	

5x	
Pw0} SCJC )Y'
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(B-58)

As 
Oi, 

$j and $R are unknowns, O i , B j and 
0  

are transported to the

left hand sides of the ccrresponding equations in (B-3) for nodes i, j

and k respectively.

B.5 Boundary Integral Evaluation {••- Fan Plane Source Condition

The sound excitation condition at the inlet fan plane could be pre-

scribed as velocity source (Eqs. 10 and 11) or a pressure source (Eqs.

13 and 14). The boundary integral will be evaluated for both types of

source conditions.



B.5.1 Evaluation of a Velocity Source Fan Plane Condition for a 3-Node

Triangle See Figure B.

Along the curve C a is equal to 90° and assuming that the radial

component of the mean velocity is zero (which has been found to be

reasonable from the mean flow computations) the boundary integra in

Eq. (B-6) reduces to

f3 u =	 N^r2(c2 - ; 2 )$ n d s	 (B-59)
C

The boundary condition in terms of a radially varying velocity source

is

^n = f(r)	 (10)

and

^n = f (r)	 0 1)

since the direction of the outward normal is in the positive z direc-

tion. Using the interpolation functions given by Eq. (B-26) one may

write

^n = (1- )f i + f J

r = (1-Or i + CrJ	
0 < C < 1	 (B-60)

and

ds = (r - r
i 
)d

J 

Substituting Eqs. (8-60) into Eq. (B-59) one obtains
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l (1-&) [{(1-Or
i
 + 4rj } 2 (c2 -^zI	 ) x

t=0 ( )	 { (1_&) f i + tf j 
}1 

(r 	 r i )d&

Evaluation of the various polynomials in the above integrals yield

the following forcing boundary conditions for the linear element in

terms of a velocity source which form the right hand side of Eq. (0-3)

s 
i	 (rj-ri)(c2- ^z ) x ( i {r i ( 5 + rirj ( 10 )+ r^ (30)}

+j{r2(2Q) + r i rj (15 ) + r  (20)}1	 ( B-61)

and

s j = (rj - ri)(c2 - ^2) x(fi {ri(20)+rirj(15)+rj(20)}

+ fj {r?(3p)+r i r j ( 10) +r^(5) }1 	 (B-62)

B.5.2 Evaluation of a Velocity Source Fan Plane Condition for a

-Neale Triangle See Figure B-

The boundary integral to be evaluated is Eq. (B-59). Making use

of the interpolation functions for quadratic elements given by Eq.

(B-30) one may write

On = ( 2 C 2 - 3^ + 1)f
i
 + (2t 2 -o f

j + 4 (t- &2)f k

r= 0 -&)r i + Er j 	0< C < 1

ds = (rj - r i )dC	 (B-63)

Substituting Eqs. (B-63) into Eq. (B-59) one obtains

F
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1	 (2 4- 3&+ 1)	 2 -2	 2
(2 E2_ E)	

x ({(1-E)r i + E r } {c - Vi z ) x

	

^i	 1 

_ 2

	

R	
4(E E)
	

(2 E2- 
3E+1)f i + (2 E2 -E)fj +4(E- E2)f^}]

x (rj - ri)dE

Evaluation of the polynomials in the above integrals leads to the fol-

lowing forcing boundary conditions for the quadratic element in terms

of a velocity source which form the right hand side of Eq. (8-3)

Si = (r j - r i )(c2 - OZ ) x Ii i (ri ( 105 ) + r i r j ( 22 ) + r  (210)}

+ f j {r2 (- 
84 ) + r i r^ ( 105) + r2 (-) }

+ 4f, { ri ( 70 ) + r i r j (210) + r j (- p) }] (B-64)

	

^ j 	 (rj - ri)(c2 - ^z) x (f i {r? ( ^i ) + r i rj ( 105)+rj(	 )}

+ fj{r^(- 210 ) + r i rj (12 ) + rj(10;)}

+ 4f £ {r?(- W2 10-) + r i rj (^) + r^ (FO) }] (B-65)

and

B^ = 4(r j -r i )(c2 -^z ) x [fi. 
{r i 70 ) +r i r j (210 ) + rj ( 410)}

+ fj {r i (- 0) +r i r j ( 2110 ) + r^ (70) }

+ 4fk {r i (105) +r i r j (70) + r^ ( 105 ) }	 ( B -66)

B.5.3 Evaluation of a Pressure Source Fan Plane Condition for a 3-Node

Triangle See Figure B-

The boundary integral to be evaluated is given by Eq. (B-59). The
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boundary condition in terms of a radially varying pressure source is

p	 9 (r)	 (13)

and

	

p = g (r)
	

(14)

One could solve for in/;n(jz/;z in this case) in terms of p from

Eq. (8) only if 0z 0 0 to obtain

z	

;z

_ - Cwm +	 p151
	

(B-67)

and

^	
(wi - p6-1
z 

^z

Substituting Eqs. (13) and (8-67) into Eq. (B-59) one obtains,

S = _ J N r2 (C2 _ 2 ) [w;b + j(r) /P]  ds
u	 u	 z	 ^z

Following the procedure indicated in Section 8.5.1 and using the

interpolation functions given by Eq. (B-26) one may write

g = (1 "t) -9 + &-9

r = (l)ri + &rJ

(1	 + y^

and	 ds	 (r. - ri)dr,

(B-68)

(B-69)

(B-70)
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Substituting Eqs. (8- 70) into Eq. (B-69) yields

J 

E=0

l (1-E) x f {(1-E)r +Er.} 2 {G--_ Z	 x

	

i	
{s)	 1

	

j	 z

(W[(1-Oi l + Y

+ I [ (1 -E)9 i + & gj ) } ) (rj -ri )d&

P

Evaluating the various polynomials in the above integrals yield the

following forcing boundary conditions for the linear element in terms

of a pressure source which form the right hand side of Eq. (8-3) (note

that the terms involving ^i and j  are transported to the left hand
side of Eq. (B-3) as they are unknown yet)

(
c 	

z-2 _ ¢2)

	

Q	 -	 (r -r ) x
	i 	 Oz	 j	 i

Ct i + wf i ) { r 2 (5) + r i r j (jp ) + r  (3p)}
P

+ 4 + ^,^	 r,2 (-:j-&) + r i rj (15 ) + rj (20 )}]	 (B-71)
P

and

(e2 - z ) (rj -
 
r i ) x

z

[ (g' + w^ i ) { r i 20 ) + r
i rj ( 15 ) + r?̂(20)}

P 

+ (J- + W m j ){r?(30) + r i r j (710 ) + r2 (5)}^	 (3-72)
P
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6.5.4 Evaluation of a Pressure Source Fan Plane Condition for a
6-Node Triangle (See Figure B-y)

The boundary integral to be evaluated for the case of a pressure

source is given by Eq. (B-69). Incorporating the interpolation func-

tions for quadratic elements given by Eq. (8-30) one may write

g = (2 C2 - 3C + 0g i + (2C2. 09- ^+4(C-E2)9p

(2 C 2 - 3 E + 0 $ 1 
+ (2C 2 - 	 + 4(&-E 2

(B-73)

r = 0 - Or  + ErJ

ds = ( r
i 

- r  )dE

Substituting Eqs. (B-73) into Eq. (B-69) yields

2
z

B 1 = - J 1	 (2C 2- 3E+` ) x { (1-E) r i ^} CrJ }2 (_

^2 - 

^ 
)x

E=0 (2C C)	 ;Z

4(C-C2)
v,((2C2-3E +O) i +(2E 2 -C)m j +4 (C-E 2 ) ^l

+	 [ (
2C 2

-3E +09 i +(2E 2_0 +4(C-r2)g£)
p

x (r^ - ri)dE

Evaluating the various polynomials in the above integrals yield the

following forcing boundary conditions for the quadratic element in

terms of a pressure source which form the right hand side of Eq. (B-3)

(note that the terms involving p i , ^^ and ^n are transported to the

left hand side of Eq. (B-3) as they are unknown yet)
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(c - $2 ) (r. - r. )
_ -	 Z	 '	 X

	

2	 11(g^ + Wi i ){ r i ( i05 ) + r i r j (} + rj(210)}=	 p

g.

+(p + Woj) {ri'+) + rir j( 105) + rj( - )}

+4( 	 +.^,;^) {r^ {7̂) + r i rj (210) + rj (- ^)}	 (8- 74)
P

0 - ^Z j) (r - r.)
E	 _ -	 x

z

(9'^ + w^ i ){r?(- 	) +r i r
j
 (- -^) + r  (- U} }

P

[
+ 2+ W$	 r{210) + r l r j (T) + rj (105)

P

+ 4 (^, + W^^ r? (- ti20 ) + r i r j ( 210 ) + rj (70) }	 (9-75)
P

(c2 - ;2 ) (r - r )
^^ -4--	

2	 x

^z

(9^ + u)^M r?(j0)^. r i r j (210) + r2i-	 I
p

+ (^, + W^.){r2( 0) + rlrj (210) + r?(70)}
P

+4(" + W¢	
r1 

(
105 ) + r i r j ( 70 ) + rj ( 105 )}	 (9-76)

P
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B.6 Boundary Integral Evaluation for Inlet Entrance Plane

The boundary condition at Cie inlet entrance plane in terms of a

general radially varying radiation impedance is expressed in Eqs. (34)

and (35):

¢z(cee - ; z ) - c x  $z = W; + ^ r^ r	 (341

z c x  + 0z (c 0  - ;z ) = -Wi + ^ r^ r	 (35)

6.6.1 Evaluation of Entrance Plane Radiation Condition for a 3-Node

Triangle See Figure B-5

Noting that along the curve C a is equal to 270° the boundary

integral in Eq. (B-6) reduces to

B u =	 Nr2[^(-2 ^^) + ^ (c 2 - ^ 2 )ds	 (B-77)
C 

u	 s	 r z

Noting that for the configuration in Figure B-5 5 and n are in the

opposite directions to r and z respectively

B u =	 Nu r2 [-2; r $ z ^ r + (c2 - ; 2 )$ z ldr	 (B-78)

The boundary conditions given by Eqs. (34) and (35) can be solved for

^z 
and 

^z 
and on substitution into Eq. (B-78) yields

2	
(c2 - 

^z )R u = it Nv[-2^r^Z$r +	 Ae	 I(cee- ^ z )( W^ + ^-r$d

+ c xe (-W$ + ^r^dj]dr	 (B-79)

2	
2

where	 Ae = (c 0 e - ;z) + 
(c xe)
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Incorporating the interpolation functions given by Eq. (B-26) one may

write

^ _ 0 -E)^ i + &0 i 	(B-8o)

r = (1 - ^ )r i + Cri

Substituting Eqs. (B-80) into Eq. (B-79) one obtains

1

() x ((1 - dri + ErJ ,2 xC=o (-)

2YZi	 )/(ri - r^)

(c2 - ^2)
+	

z
Ae	 x (c 0 e - ^z (WI 0 -0 i + ^^^ }

^r
+ ri- rJ	 (^ i	 4^)}

+ (c x  (-w{ 0 - 0 i + 6 }

r
+ ^r r^ (¢ i - 4^^) )

x (r J - r i )d&	 (B-81 )

Evaluating the various polynomial integrals assuming that the mean flow

variables and the radiation impedance to be constant over the element

leads to

r



153

si	 2; r; Z (; i - ^j ) [ri ( 4) + r i r.( 6) + rj(12

(c2 - 
; Z ) -	 --	

ne	
x (ce e - ^ Z )w(ri	 i-r.)	 r2 (1) + r i .r( ^)+r?( ^)ji 5	 10	 i 30

+(coe- ;Z) or(^1- j) {r?(W) +rirj(6) +r^(12)}

-cxe w(r i - rj ) { i[r2(I)+rirj(^L)+r^(3I

j [r^ ( 20 )+ r irj(5 + rj (20)j}

+cxe ^ r (^ i - j ){r2 O + r i rj (6) + r^(2i)}	 (8-82)

and

20r0Z4i - ^j)[ri(12) + r i rj (6)+ 	 rj(6)^

-2	 2

- (coe^Z) x (cee- ^Z)w(ri-r.) {^i[r?(20) +rirj(15) +r^(20)jJ

+p
j
 [r i ( 30)+ r i r j ( 10) + r2 (5)j}

+(cE3e-^Z)^r(^i'^j){r^(^!)+rirj(6)+r^(6)?

-(c xew(r i - rj ) {^ i [ri(20)+r i rj ( 15) + r^(21)I

[ri (30)+ r i rj ( 10 )+ r2(5) j }

+c x	 (^.'^j) {r,(12)+rirj(^)+r^(4)](B-83)e r	 i

r
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Since the acoustic potentials are unknown yet, R i and a  are transported

to the left hand sides of the corresponding equations in (B-3) for nodes

i and J respectively.

B.6.2 Evaluation of Entrance Plane Radiation Condition for a 6-Node
Triangle See Figure B-5

The boundary integral to be evaluated is given by Eq. (8-79).

Incorporating the interpolation functions given by Eqs. (B-30) one may

write

^ = (21x 2 - 3^ + 1)0 i + (21;2 - ^)Oi + 4(& - C2)$.z

r= 0- 
O r i + Cry	 (B-84)

Substituting Eqs. (B-84) into Eq. (B-79) one obtains

1	 2	 c2 - ;Z)
S , = f	 (2i 2 3C

+ 
I ) x -( ^e
	 { (c 6e - ^ Z ) (W^ + ^r^r)

^	 ^=0 (2^ - C) x
R	 4(t- t2 )	 +c xe(-4+^r^r)}	 r2dr

-2^r-Z^r

Evaluating the various polynomials in the above integrals yields

2(ri -r^)(c2
r	

-^z x

De

(c@e - ^Z ){ w [^ i (15
)+ ^j ( 30 ) + ^Q(15)l

r ^ r r. [^ (- 2) + ^ (- 6) +^	 (2)l }

-c x 	 w [ m i (15 ) + 0i ( 30) + 9,(15))

+ (
r	 r ) 

[ ^ i (- 2) + ^^ (- 
6) 

+ ^(3)li	 .
J



-2r2 
; r^ [;2i (- 2) + ; j (- b) + ^ Q T	 (I

where r = ( r i + rj)/2

2 (r i - r.)( c2 - ^Zr	 )
a j	 Ile	 x

(c e e - Z ) lw[; i ( 30 ) + ^ j ( 15) + ^Q(15)]

i	 J	 J

J i 6	 J

-2r 2 ¢ Z [; i (6) + ^i (Z) + ^ Q (- 3)

2 (r. - r ) ( c 2 - ^Zr	
J	

)

^	 xS Q
	 Ae

(c	 4]

i	 J

-c xe lw[^i (15) + j {15) + $^{i5)]

+ (r. r r.	 i( 3) + v.(3) + t (0)]}
J	 J

-2r2 ^r^Z [ ^ i {- 3) + ^j (3) + ^ Z m ]

and

(B-86)

(B-87)
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Since the acoustic potentials are unknown yet, a i , B and s Q are trans-

ported to the left hand sides of the corresponding equations in (B-3)

for nodes i, j and k respectively.
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Figure B-5. Linear and Quadratic Elements on Inlet
Fntranre Plane.



APPENDIX C

ACOUSTIC INTENSITY AND POWER CALCULATIONS

C.1 Derivation of Equation (64) for Acoustic Intensity

Recall that the assumptions of the theoretical model are: fluid

is inviscid, non-heat conducting and satisfies the ideal gas law. The

fluid flow is isentropic. Hence the steady state stagnation enthalpy

is constant. The present objective is to evaluate an expression for

acoustic intensity for a wave propagating in a flow with gradients.

For any closed surface S fixed in flow the total outward energy

flow, E is

	

E = f N	 n ds	 (C-1)

S

where N is the energy flux vector

and	 n is the unit outward normal vector.

And

	

N = J m	 (C-2)

where J is the specific stagnation enthalpy

and	 m is the mass flux vector.

Substituting Eq. (C-2) into Eq. (C-1) and taking the time average of

the equation one obtains

158

<E>= < f J 1„ • n ds ,	 (C-3)
S
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T
where the operator <( )> - Lim 

l2T 
f	 ( )dt

T ► ^	 -T

Since S is fixed the time averaging operator and the integral operator

can be exchanged and noting that n is not a function of time Eq. (C-3)

reduces to

<E> = f <J m_ >	 n dS	 (C-4)

S

The energy flux vector, N, is a second order quantity in terms of

acoustic perturbations. Hence in the development of an expression for

N one needs to retain terms up to second order in J and m individually

rather than considering N as made up of product of only first order per-

turbations. This subtle point has been noted by Zinn 36 in the context

of evaluating acoustic losses in short rocket motor nozzles. By per-

forming time averaging operation on the continuity equation containing

terms up to second order perturbations and also assuming periodic first

order perturbations, Zinn has shown that the time averaged value of the

second order perturbation of m is a constant that can be chosen to be

equal to zero without any loss of generality. An identical operation

on Euler's equation for the case of compressible irrotational flows

shows that the time averaged value of the second order perturbation of

J is also zero. 36 Hence, the contribution of second order perturba-

tions of J and m towards the time averaged acoustic intensity is zero.

Subject to this qualification, one can express J and m as composed of

only a steady state component and a periodic acoustic component, i.e.,

F7-

4
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J (x, t) a J (x) + J' (x, t)

and	 (C-5)

m(x, t) - m(x) + m' (x, t)

Under the isentropic assumption made the steady state stagnation enthalpy

J is a constant acid not a function of the position vector, x. Substi-

tuting Eq. (C-5) into Eq. (C-4) and noting that J and m are independent

of time and that the time averaged values of the periodic acoustic

quantities are equal to zero, one obtains

<E> - J 1 m_ - n dS + 1 <J'm'> • n dS	 (C-6)
S	 S

The continuity equation corresponding to the steady state quantities

in the integral form reads

T	 n dS = 0	 (C-7)

S

Hence the first term in Eq. (C-6) contributes nothing towards the out-

ward energy flow, that is

<E> = f <J'm'>	 n dS	 (C-8)

S

Since J m corresponds to intensity in the absence of acoustic pertur-

bations one may define the time averaged acoustic intensity as the

difference in intensities <J m > and J m, that is

<1 acoustic >
 - <J m > - J m = <J'm'>	 (C-9)

r
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The specific stagnation enthalpy J is given by

J - h+Z (v ( 2 	(C-10)

where h is the specific enthalpy

and 
2 

(v( 2 is t!-., specific kinetic energy.

An acoustic perturbation of Eq. (C-10) yields

J' - h' + v - v'	 {C-il)

A similar acoustic perturbation of mass flux vector m yields

m' = p V' + p' v	 (C-12)

The classical Maxwell's relations 
37 

for the isentropic situation

yield

h' a ( 2 h ) P' - L
ap s	 -

P

and	 (C-13)

P. _ (al)) P,
BP s	 c2

where s is the specific entropy of the system.

Substituting Eqs. (C-11) - (C-13) into Eq. (C-9) yields the desired

expression for the time averaged acoustic intensity

2-

<1aGOUStic^ a 
<p'v' + - - 2 + p (V	 V')V' + (V	 V')^ V >	 (C-14)

-	
P 

C	 -	 -	 - e

For the case of an irrotational and uniform entropy flow, the mean and

acoustic velocities v and v' in Eq. (C-14) can be expressed as gradients
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of mean and acoustic potentials f and f' respectively. Hence the

acoustic intensity in the direction of a unit vector a is

v^ • a

<^acoustic> 
•e	

<popfr>	 a + - -2 <p12>
P c

(p; . a)

	

+P[p^	 <p^'p^'>] a +	 _2	 v^ • <p' p@'> (64)
c

which is the desired relationship.

The time averaged energy flow across a surface S is then

	

<E>	 I
S	

acoustic
<1	 >	 n dS	 (65)
- 

C.2 Evaluation of Acoustic Power at the Inlet Boundaries
and dB Calculations

Equation (65) has to be evaluated at the fan plane, inlet entrance

plane and the inlet walls to determine the acoustic power input into

the inlet, the acoustic power output of the inlet and the acoustic power

absorbed by the lined inlet walls respectively.

In this context, it can be shown easily that for two sinusoidal

functions given by

q - Re(Q a"iwt]

and

r - Re[R e- "Wt]

where Re[ ] = Real part of [ ],



T

Q s ^+ is	 andR - R+ I 
the time averaged value of qr is

	

<qr> m Y Re(Q 
*]	

(C-15)

where R* is the complex conjugate of R.

This result is used repeatedly in evaluating the various time averages

occurring in Eq. (64).

C.2.1 Acousti c Power input into the inlet at the Fan Plane

At the fan plane the unit outward normal points in the positive

Z-direction. Hence the acoustic power input is

`E' inputP	 Fan plane
=	

`iacoustic'2 dS
	 (C-16)

Since the integrand is independent of the azimuthal angle e, Eq. (C-16)

can be integrated with respect to 8 to yield

rof
<E> input = 2n 

f	 `iacoustic'2 r d 
	 (C-17)

if

where r if and rof are the inner and outer radii at the fan plane

respectively. Application of Eq. (C-15) and (64) along the positive

Z-direction yields

<lacoustic'2 2 {1 + cZ} (P ^z + P ^z) + -?2(P2+P2)+ 	 z(CZ+^Z)
Pc

+ P^ r (^ r ^ z+ r ^z ) + YZ 
(P r + P Ap r )	 (C-18)

c
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Equation (C-17) is evaluated for the finite elements located on the

fan plane by calculating the time averaged acoustic intensity in terms

of the element centroidal values of the acoustic variables for the sake

of simplicity. Hence the acoustic intensity as calculated by Eq.

(C-18) over each such element is constant and can be taken out of the

integral in Eq. (C-17). Hence the contribution of one element located

on the fan plane to Eq. (C-17) is (see Figure B-4)

r.
J

`Ee'input	
2n Cl

acoustic'z f	 rdr

s JT `l
acoustic'z (rj - ri}

Summation of Eq. (C-19) for all the dements located on the fan plane

yields the total time averaged acoustic power input, i.e.,

NF

	

<E> in ut . Z	 `Ee'in utp	 e=1	 p
(C-20)

where N F is the number of elements located on the fan plane.

C.2.2 Acoustic Power Output at the Inlet Entrance Plane

At the inlet entrar:e plane the unit outward normal points in

the negative Z-direction. Hence the acoustic power output is

<E> output =	 f Entrance plane <1acoustic'zdS

	
(C-21)

Again Eq. (C-21) can be integrated with respect to 0 to yield
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r
oe

f
<E> 

output	
-2n !
	 <lacoustic'z rdr
	 (C-22)

r.
^e

where r 1e and roe are the inner and outer radii at the inlet entrance

plane respectively.

Equation (C-22) is evaluated for the finite elements located on the

entrance plane by calculating the time averaged acoustic intensity as

in Section C.2.1. Hence the contributior of one element located on the

entrance plane to Eq. (C-22) is (see Figure B-5)

E	

r
e	 _ -2^r <I e 'output	 acoustic 	 j . rdr

r.

IT <Iacoustic'z (r2 - r^)
	 (C-23)

Summing of Eq. (C-23) for all elements located on the entrance plane

yields the total time averaged acoustic power output, i.e.,

N
e

e
<E> output	 Z <E 'output	

(C-24)
e l 

where N  is the number of elements located on the inlet entrance plane.

C.2.3 Acoustic Power Absorbed at the Inlet Walls

The acoustic power absorbed by the inlet walls is

<E>absorbed	 j Inlet wall <1acoustic`ndS	
(C-25)

S'-nce the integrand is independent of e, Eq. (C-25) can be integrated

with respect to 6 to yield (see Figure B-3)

r
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<E> absorbed = 271 f <Iacoustic>n rds	 (C-26)
S

where s Is the natural coordinate along the inlet wall. Substituting

Eq. (B-41) into Eq. (C-26) leads to the expression for <E> absorbed

for a single element located on the inlet wall

1

< E e >	 = 27T 	
< I e	 >	

i
((1-^)r+Cri]Liid^

absorbed	 C=p acoustic n 

(C-27)

Noting that at the inlet walls the normal component of the mean flow

velocity is zero, Eq. (64) reduces to the following expression for the

acoustic intensity normal to the inlet wall

<I acoustic > n 	<p' 
^ + P- ( V -̂ - V^I) W >	 (C-28)

Evaluating the vector dot product in terms of the natural coordinates

(s'n) and using Eq. (C-15), Eq. (C-28) reduces to

`I acoustic > n - L ( (p fi n + p fi n ) + ps(^s^n+sn)]	 (C-29)

Equation (C-27) is evaluated for the finite elements located on the

inlet wall by calculating the normal component of the time averaged

acoustic intensity in terms of the centroidal values of the acoustic

variables using Eq. (C-29). Hence the contribution of one element

located on the inlet wall to Eq. (C-27) is

e
>
	_	 e

I

`E absorbed	 2 '^ `l acoustic > n	 O(1-`=)ri+ri]Lijdf,

	

n < l e	 >	 l...	
i	

.(r + r )	 (C-30)
acoustic n ij 
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Summing of Eq. (C-30) for all elements located on the inlet wall yields

the total time averaged acoustic power absorbed by the inlet wall, i.e.,

t

N
W

e
<E>

absorbed s e
Z l < E 'absorbed (C-31)

where N	 is the number of elements located on the upper and lower walls

of the inlet. An obvious conclusion from Eq. (C-29) is, the normal

component of the acoustic intensity at a hard wall is zero since 0n

and n are prescribed to 'e zero there. Hence for a hard wall the

acoustic power absorbed is zero.

C.2.4 DB Calculations and the Principle of Conservation of Acoustic
Energy

Once the energy fluxes at the inlet boundaries are determined by

Eqs. (C-20), (C-24) and (C-31) the dB calculations are performed to

estimate the effectiveness of a liner. The dB 
reductionfor 

a liner is

defined by

<E>,

	

__	 input
dB	 1010 1og.i0 <E>	 (66)

output

The Principle of conservation of acoustic energy states that the

acoustic power input should equal the sum of acoustic power output and

the acoustic power absorbed, i.e.,

<E>,	 _ <E>	 + <E>	 (C-32)
input	 output	 absorbed

For a hard walled inlet Eq. (C-32) reduces to



<E>.
inputt	 ou iou t
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and hence

dB 
reduction

Hard walled - 0	
( C -33)

Inlet



APPENDIX D

GEOMETRICAL AND MEAN FLOW DATA FOR THE QCSEE AND
BELLMOUTH INLETS

The quadratic triangulization scheme is used for predicting the

attenuation of sound due to liners on the inlets' upper walls (see

Figures 4a and 4b). As one may observe the total number of nodes

equals 289 and the total number of elements equals 126 for both the

QCSEE and Bellmouth inlet triangulization schemes. The total number

of corner nodes equals 82 and the total number of mid-side nodes equals

207. The geometry of the inlets is specified in terms of the corner

node number, IL and its Z- and r- coordinates, Z(IL) and R(IL) respec-

tively. The "compressible" two dimensional axisymmetric mean flow at

the corner node number, IL in terms of the axial and radial velocity

components, Z (IL) and r (IL) correspond to an average exit Mach number

of 0.52. The free stream Mach number, M W equals 0.12 for the QCSEE

inlet and M is 0.0 for the Bellmouth inlet.
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Table D-1. Geometrical and Mean Flow Data for

the QCSEE Inlet

(M- - 0. 12, Me = 0.52; See Figure  4-a)

I L t(IL) R(IL) ^z(IL) Or (IL)

1 0.0 1.0500 0.0000 -0.5387

3 0.0 0.7875 0.4364 -0.2204

5 0.0 0.5250 o.44o1 -0.0958

7 0.0 0.2625 0.4330 -0.0276

9 0.0 0.0000 0.4315 0.0000

20 0.1 0.9182 0.6271 -0.3934

22 0.1 0.8034 0.5993 -0.3026

24 0.1 0.5739 0.5166 -0.1129

26 0.1 0.3443 0.4850 -0.0415

28 0.1 0.1148 0.4766 0.0057

30 0.1 0.0000 0.4752 0.0000

41 0.2 0.8768 0.7618 -0.2545

43 0.2 0.6576 0.6283 -0.1264

45 0.2 0.4384 0.5484 -0.0577

47 0.2 0.2192 0.5232 -0.0011

49 0.2 0.0000 0.5146 0.0000

60 0.3 0.8564 0.8215 -0.1358

62 0.3 0.7494 0.7196 -0.0868

64 0.3 0.5353 0.6047 -0.0502

66 0.3 0.3212 0.5646 -0.0101

68 0.3 0.1071 0.5600 0.0400

70 0.3 0.0000 0.5590 0.0000

81 0.4 0.8500 0.7894 -0.0205

83 0.4 0.6375 0.6930 - 0.0353

85 0.4 0.4250 0.6146 -0.0234

87 0.4 0.2125 o. 5845 0.0115

89 o.4 0.0000 0.5759 0.0000
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Table D-1.	 (Continued)

I L ZOO ROO ^z(IL) ^r(IL)

100 0.5 0.8516 0.7395 0.0188

102 0.5 0.7452 0.7059 0.0037

104 0.5 0.5323 0.6355 -0.0086

106 0.5 0.3194 0.6131 -0.0042

108 0.5 0.1065 0.5948 0.0505

110 0.5 0.0000 0.5942 0.0000

121 0.7 0.8638 0.6648 0.0550

123 0.7 0.6479 0.6340 0.0291

125 0.7 0.6319 0.6067 o. 0185

127 0.7 0.2160 0.5892 0.0196

129 0.7 0.0000 0.5865 0.0000

140 0.9 0.8847 0.5969 0.0710

142 0.9 0.7741 0.5970 0.0603

144 0.9 0.5529 0.5746 0.0408

146 0.9 0.3318 0.5621 0.0346

148 0.9 0.1106 0.5472 0.0625

150 0.9 0.0000 0.5449 0.0000

161 1.1 0.9109 0.5401 0.0751

163 1.1 0.6832 0.5425 0.0616

165 1.1 0.6555 0.5246 0.0559

167 1.1 0.2277 0.4953 0.0491

169 1.1 0.0000 0.4608 0.0000

180 1.3 0.9389 0.5023 0.0699

182 1.3 0.8215 0.5131 0.0680

184 1.3 0.5868 0.5005 0.0773

186 1.3 0.3521 0.4734 0.0900

188 1.3 0.1174 0.3461 0.1180

190 1.3 0.0000 0.2284 0.0000
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Table D-:l.	 (Continued)

I L	Z(IL)	 R(IL)	 z 00	 Or 00

201 1.4 0.9525 0.4876 0.0647
203 1.4 0.7144 0. 5042 0.0719

205 1.4 0.4763 0.4880 0.0988
207 1.4 0.2381 0.3829 0.1657
209 1.4 0.0000 0.0000 0.0000
220 1.5 0.9652 0.4817 0.0593
222 1.5 0.8722 0.4985 0.0595
224 1.5 0.6862 0.5067 0.0691
226 1.5 0.5002 0.5036 0.0981
228 1.5 0.3142 0.4433 0.2121

230 1.5 0.2212 0.3765 0.3361
241 1.6 0.9765 0.4748 0.0524
243 1.6 0.8069 0.4999 0.0540
245 1.6 0.6373 0.5142 0.0763
247 1.6 0.4676 0.5192 0.1474
249 1.6 0.2980 0.4970 0.2980
260 1.8 0.9935 0.4750 0.0316

262 1.8 0.9165 0.4853 0.0305

264 1.8 0.7624 0.5127 0.0391
266 1.8 0.6083 0.5408 0.0626

268 1.8 0.4542 0.5977 0.1282

270 1.8 0.3771 0.6177 0.1583

281 2.0 1.000 0.5053 0.0000

283 2.0 0.8500 0.5124 0.0108

285 2.0 0.7000 0.5316 0.0205

287 2.0 0.5500 0.5634 0.0251

289 2.0 0.4000 0.5887 0.0000

e
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Table D-2. Geometrical and Mean Flow Data for
the Bellmouth	 inlet

(M. = 0.0, Me 	 0.52;	 See Figure 4-b)

I L Z(IL) R(IL) ;z (11.) ;r (11.)

1 0.0000 1.0000 0.0000 -0.2020

3 0.0000 0.7500 0.2239 -0.1860

5 0.0000 0.5000 0.2460 -0.0885

7 0.0000 0.2500 0.2459 -0.0381

9 0.0000 0.0000 0.2457 0.0000

20 0.0690 0.8147 0.1770 -0.2932

22 0.0690 0.7129 0.2891 -0.1684

24 0.0690 0.5092 0.2764 -0.0898

26 0.0690 0.3055 0.2690 -0.0466

28 0.0690 0.1018 0.2655 -0.0146

30 0.0690 0.0000 0.2620 0.0000

41 0.1379 0.7716 0.3492 -0.1856

43 0.1379 0.5787 0.3144 -0.1033

45 0.1379 0.3858 0.2956 -0.0581

47 0.1379 0.1929 0.2868 -0.0265

49 0.1379 0.0000 0.2781 0.0000

60 0.2759 0.7198 0.3908 -0.0978

62 0.2759 0.6298 0.3820 -0.0856

64 0.2759 0.4499 0.3452 -0.0546

66 0.2759 0.2699 0.3267 -0.0306

68 0.2759 0.0900 0.3191 -0.0099

70 0.2759 0.0000 0.3115 0.0000

81 0.4138 0.6897 0.4306 -0.0537

83 0.4138 0.5173 0.3853 -0.0361

85 0.4138 0.3449 0.3597 -0.0261

87 0.4138 0.1724 0.3478 -0.0134

89 0.4138 0.0000 0.3358 0.0000
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Table D-2. (Continued)

I L Z(IL) R(IL) OZ (IL) ;r (IL)

100 0.5517 0.6897 0.3818 0.0000

102 0.5517 0.6035 0.3984 -0.0057

104 0.5517 0.4311 0.3808 -0.0150

106 0.5517 0.2586 0.3682 -0.0113

108 0.5517 0.0862 0.3621 -0.0040

110 0.5517 0.0000 0.3559 0.0000

121 0.8276 0.6897 0.3640 0.0000

123 0.8276 0.5173 0.3858 -0.0011

125 0.8276 0.3449 0.3811 -0.0011

127 0.8276 0.1724 0.3762 -0.0005

129 0.8276 0.0000 0.3714 0.0000

140 1.1034 0.6897 0.3661 0.0000

142 1.1034 0.6035 0.3903 0.0018

144 1.1034 0.4311 0.3852 0.0075

146 1.1034 0.2586 0.3743 0.0110

148 1.1034 0.0862 0.3618 0.0061

150 1.1034 0.0000 0.3492 0.0000

161 1.2414 0.6897 0.3810 0.0000

163 1.2414 0.5173 0.3942 0.0090

165 1.2414 0.3449 0.3803 0.0225

167 1.2414 0.1724 0.3465 0.0295

169 1.2414 0.0000 0.3167 0.0000

180 1.3793 0.6897 0.3986 0.0000

182 1.3793 0.6035 0.4089 0.0075

184 1.3793 0.4311 0.3976 0.0290

186 1.3793 0.2586 0.3633 0.0655

188 1.3793 o.o862 0.2123 0.1121

190 1.3793 0.0000 0.0100 0.0000
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Table D-2. (Continued)

I L	Z(10	 R(IL)	 ^z0L)	 Or0L)

201 1.4483 0.6897 0.4046 0.0000

203 1.4483 0.5485 0.4134 0.0168

205 1.4483 0.4074 0.4020 0.0413

207 1.4483 0.2662 0.3731 0.0867

209 1.4483 0.1250 0.1880 0.2350

220 1.5172 0.6897 0.4121 0.0000

222 1.5172 0.6250 0.4240 0.0084

224 1.5172 0.4957 0.4188 0.0294

226 1.5172 0.3664 0.4060 0.0616

228 1.5172 0.2371 0.3794 0.1282

230 1.5172 0.1724 0.3480 0.2067

241 1.6552 0.6897 0.4304 0.0000

243 1.6552 0.5755 0.4426 0.0194

245 1.6552 0.4613 0.4385 o.046o

247 1.6552 0.3470 0.4283 0.0871

249 1.6552 0.2328 0.4107 0.154o

260 1.7931 0.6897 0.4514 0.0000

262 1.7931 0.6897 0.4514 0.0000

264 1.7931 0.5378 0.4657 0.0269

266 1.7931 0.4365 0.4664 0.0589

268 1.7931 0.3352 0.4656 0.1068

270 1.7931 0.2845 0.4587 0.1434

281 2.0000 0.6897 0.4745 0.0000

283 2.0000 0.6013 0.4940 0.0110

285 2.0000 0.5130 0.5006 0.0213

287 2.0000 0.4246 0.5183 0.0352

289 2.0000 0.3362 0.55!3 0.0421
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