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SUMMARY

The thesis deals with the development of an analytical technique
for predicting the acoustic performance of turbofan inlets carrying a
subsonic axisymmetric steady flow. The Finite Element Method (FEM) in
combination with the Method of Weighted Residuals has been chosen as
the solution teckiiaue for predicting the acoustic properties of vari-
able area, annular ducts with or without acoustic treatments along
their walls.

An approximate solution for the steady inviscid flow field is
obtained using an integral method for calculating the incompressible
potential flow field in the inlet with a correction to account for com-
pressibility effects.

The accuracy of the finite element technique in predicting the
acoustic properties of annular ducts has been checked by comparison with
available analytical solutions for the problems of plane and spinning
wave propagation through a hard walled annular cylinder with a cont:iait
mean flow.

For a fixed number of triangular elements in the finite element
scheme, the number of nodes per wavelength decreases as the frequency
of oscillation increases, resul . ing in a loss in accuracy in the numeri-
cal results. Accuracy at higher frequency can be recovered by increas-
ing the number of nodes per wavelength, either by increasing the number
of linear elements (3-nodes per triangle) or by utilizing a more

elaborate description of the dependent variable over each element as is
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the case when quadratic elements (6-nodes per triangle) are used. It

Is clearly demonstrated for the case of plane wave propagation in a
hardwalled annular cylinder containing a uniform steady flow that for
an equal number of triangular elements, quadratic representation is
superior to linear representation in handling high frequency wave propa-
gation the reason being, the use of quadratic elements effectively
doubles the number of nodes per wavelength as compared to an equal num-
ber of linear elements.

The accuracy of the‘developed finite element solution is again
confirmed by comparing.its predictions with those obtained by a finite
difference solution approach. In this study, the results of the FEM
for the case of sound propagation in an acoustically lined annular
cylinder of a large radius of curvature and thin annular spacing carry-
ing a uniform steady flow are compared with the comprehensive results
of Baumeister for the equivalent case of a rectangular duct carrying
a uniform flow. The duct attenuation and the acoustic pressure dis-
tributions obtained by both the methods are found to be generally in
good agreement.

Since exact values of the impedance at the open end of a duct
are generally not known, simple impedance boundary conditions such as
"no reflection' impedance conditions are used to date in most cases.
However, in the absence of a steady flow an integral solution approach
developed by Bell, Meyer and Zinn provides the ''exact' impedance con-
dition at the open end of the duct. In order to compare the solution
technique for the study of non-uniform ducts without steady flows, the

finite element solutions were required to satisfy the impedance boundary
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conditions obtained using the above mentioned integral solution approach
and the resulting finite element solutions for the QCSEE (Quiet, Clear,
Short-haul, Experimental, Engine) inlet are compared with those obtained
for the same inlet,using the integral solution approach. The results
obtained by the finite element program using the "‘exact' impedance con-
dition are found to be in excellent agreem=nt with the results of the
integral solution approach for plane wave propagation in hard and soft
walled QCSEE inlet carrying no mean flow. The wave structure within

the inlet obtained by prescribing the simple '"no reflection'" impedance
boundary condition is quite different from the one obtained by prescrib-
irn the "exact' impedance boundary condition for low frequencies of wave
p.Jpagatfon. Howev;r, és.frequency increases the two impedance boundary
conditions approach one another and so do the corresponding wave struc-
tures. The pfopagation of high frequency plane waves in the inlet could
be approximated as the wave propagation in a ray tube where the reflected
component is negligible, in which case, the ''no reflection'' impedance
condition indeed approaches the ''exact'' impedance condition and so also
the corresponding wave structures.

Results are presented comparing low frequency plane wave propa-
gation through the hard walled QCSEE inlet containing a one-dimensional
steady flow with the same inlet containing a fully two-dimensiona’
axisymmetric steady flow. It is shown that when one-dimensional steady
flow is assumed to exist in the inlet, the plane wave propagates with
relatively little distortion. However, propagation of a plane wave
through the fully two-dimensional flow field in the inlet produces

severe distortions due to the excitation of higher order modes.



xvii

To estimate the sensitivity of inlet curvature, center body and
mean flow gradients on duct attenuation, acoustic calculations for soft
walled QCSEE inlet, a straight cylinder and a Bellmouth inlet of the
same overall dimensions are performed for various frequencies for the
cases of zero mean flow and fully two-dimensional axisymmetric mean flow.
The liner impedance values chosen are the same for each inlet at a
particular frequency and they correspond to the near opti-.um impedance
values for a plane pressure wave input into an infinitely long circular
duct with zero mean flow. At high frequencies focusing of the sound
wave toward the duct axis occurs for both zero mean flow and non-zero
mean flow cases and hence the duct attenuation falls rapidly with
increase in frequency for all the three inlets. Attenuation of low
frequency plane waves is found to be more sensitive to inlet curvature,
center body and mean flow gradients (for the non-zero mean flow case)
compared to that of high frequency plane waves. The approximate method
proposed by Rice to obtain the near optimum liner impedance values for
the flow case is found to be reasonable for high frequency plane waves
but leads to a rapid drift in the optimum values for the low frequency

plane waves resulting in a considerable reduction of duct attenuation.

i R



CHAPTER |

INTRODUCTION

1.1 General

As evidenced by the recent surge in commercial aviation mainly due
to Federal deregulation of price control on air travel by the US Civil
heronautics Board (C.A.B.), the aircraft industry has come up with a
new generation of aircrafts to meet the record high demands of domestic
and international air travel. The new series Boeing 767 and 757 air-
crafts, the inodified Lockheed L 1011 aircraft and the shorter version
of French Airbus A300B aircraft will be put into airline service in
early 1980s to satisfy the growing needs of air transportation. With
the increase in air traffic and consequent congestion in airport opera-
tions, it has become increasingly apparent to government, industry and
other research and development organizations that major efforts must be
undertaken to improve the general community environment affected by
the commercial and also military air transportation. The recent legis-
lation of the Federal Act FAR 36 (1978) calls for very stringent meas-
ures to be taken by aircraft industries to reduce the overall noise
levels of their aircraft. Since the aircraft engines are the major
contributors to the overall aircraft noise, one has to develop a capa-
bility to accurately predict the noise levels due to various components
of the aircraft engines, which in turn will enable the engine designer

to develop a viable design capable of meeting the new lower noise levels



without gdversely affeéting the performance of the power plant.
Aircra%t generated noise sources can be divided into two groups;
namely the externally generated noise produced by the jet exhaust, and
the internally generated noise that is primarily due to the rotating
turbomachine}y blades and the combustion process. The utilization of
energy efficient, high bypass ratio turbofan engines in the present
day civil and military aircraft reduce the jet velocity and hence jet
noise compared to earlier low bypass turbofan or turbojet engines.
The pure tone turbofan noise emitted by these engines now becomes the
major source of noise pollution. Sound absorbing liners have been
désigned and utilized in the engine inlets to reduce the emitted turbo-

fan noise mainly on the basis of costly trial and error development

programs. Hence, the need for an efficient analytical technique which

can predict the acoustic properties of complex shaped inlet ducts with
sound absorbing liners and carrying a multidimensional mean flow for a
variety of practﬁcal noise source inputs is more apparent now than ever
before. The ?evelopment of such an analytical technique utilizing the

Finite Element Method (to be denoted henceforth by FEM) is the object

of this work.

1.2 Literature Review

An extensive survey of the acoustics of aircraft inlets has been
presented by Nayfeh, Kaiser, and Telionis] including a comprehensive
bibliography. Of particular interest are the use of numerical methods

3

such as finite differences2 and integral techniques” in the study of

acoustic propagation in variable area hard walled ducts without mean




flow. Due to the additional complications created by the presence of
a steady flow, most studies of sound propagation in annular ducts with
varying cross sectional area containing a mean flow employ one or more
simplifying assumptions such as one-dimensional mean f!ow,k quasi-one

5 6

dimensional mean flow,” or slowly varying cross sectional area. In

many instances; however, practical considerations call for the use of
relatively short ducts having large transverse and streamwise velocity
gradients. Under such conditions, the predictions of existing theoreti-
cal approaches in which the mean flow is assumed to be one-dimensional
or nearly one?dimensional is open to question. Thus, there is a need
for an analytical method that can determine the acoustics of duct sys-
tems involving multidimensional flows.

The relative merits of the various numerical techniques are
evaluated in this section. The application of the method of finite
differences by Baumeister,2 to solve the wave propagation problem is
restricted to the simple geometry of a rectangular duct carrying a uni-
form steady flow. The finite difference method employs a uniform rec-
tangular grid structure which can not adequately represent complex duct
geometries encountered in aircraft inlet design. Bell, Meyer and Zinn3
have developed an integral approach using Green's functions to solve

the Helmholtz equation for an arbitrarily shaped body. In this method,

the dimensionality of the problem is reduced by one (e.g. a three dimen-
sional problem is reduced to a two dimensional surface integral equation,
an axi-symmetric problem is reduced to a line integral equation, etc.

The integral solution technique is, however, limited to dealing with
acoustic problems involving either no or constant mean flow. The Galerkin,

which is a special application of the method of weighted residuals, was




7

applied by Unruh and EéerSman to solve the wave equation in a duct.

In this method the solution is sought in terms of a complete set of
orthogonal basis functions which individually satisfy the natural bound-
ary conditions and collectively satisfy the forced boundary conditions
of the problem. The unknown coefficients of the basis functions are
solved for by requiring the resulting residues to be orthogonal to each
of the basis functions. This yields a system of linear algebraic equa-
tions for the coefficients which can be solved by standard matrix methods.
The disadvantage of the method is that a new set of Basis functions has
to be determined by solving the corresponding eigenvalue problem for
each frequency. For ducts with complex geometries and acoustic liner
configurations the evaluation of the basis functions is quite compli-
cated and time consuming. Hence, a parametric study of ducts for a
range of frequencies and liner configurations can not be efficiently
conducted by employing this method. The method of asymptotic expansions
has been used to study the problem of wave propagation in ducts which
slightly deviate from the simple geometry of a cylinder or a rectangle
and the resulting mean flow also slightly deviates from a one dimen-
sional flow. This method obviously can not be used if the duct has
large variations in shape resulting in a multi dimensional mean flow.
The finite element method (to be denoted by FEM) which has its
roots in the field of structural mechanics has been gaining popularity
in other fields of mechanics because of its ability to deal with complex
""'real life'' geometrical shapes and to handle mixed boundary conditions.
The application of the FEM to the solution of Helmholtz's equation8 in

a waveguide indicates the versatility of this method in treating various

two and three dimensional problems subject to mixed boundary conditions,

In the finite element method the region of interest is subdivided into



a number of elements of simple shapes (e.g. triangles for two dimen-
sional problems and tetrahedrons for three dimensional problems) of
variable sizes which can be arranged to represent complex shapes. This
flexibility to utilize a variable mesh distribution of the elements
for an efficient yet adequate representation of the geometry makes the
FEM a powerful numerical tool. The FEM is generally thought of in

‘connection with variational problems. However, since a variational

form of the problem of duct acoustics has not been established, the
governing differential equations are converted to integral equations by

the Galerkin process.

1.3 Objectives of Research

The research work described in this work was initiated for the
purpose of predicting the acoustic properties of practical turbofan
inlets carrying high subsonic Mach number mean flows. The inlet config-
urations chosen for study are the Quiet, Clean, Short-haul Experimental

J and the Bellmouth

Engine (to be henceforth denoted as QCSEE) inlet
inletlo (see Figures la and 1b). The QCSEE inlet was designed jointly
by General Electric Co., Douglas Alrcraft Company and NASA Lewis
Research Center for the purpose of developing the technology for a
turbofan engine intended for application to short take-off and landing
(STOL) aircraft. The Bellmouth inlet has been used extensively at
NASA Lewis Research Center as a standard reference base to compare
experimentally the acoustic performance of realistic aircraft inlets

because of its simple geometry. The Bellmouth inlet acoustic studies

are conducted for static cases, the mean flow being created by suction
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at the fan plane of the inlet (see Figure Ib).

To achieve the objectives of this research work, it is necessary
to develop solution techniques that are capable of predicting the acous-
tic properties of variable area, annular ducts with or without acoustic
treatments along their walls, subjected to a variety of practical sound
excitation conditions. Such a solution technique should be capable of
properly accounting for the reflection processes at the inlet entrance
plane, the space dependence of the noise source at the fan plane (see
Figure 1), the odd shape geometry of the ducts under consideration, the
multidimensionality of the steady flow and the mixed boundary conditions
(e.g., partial lining) at the duct walls. The above requirements
obviously preclude the development of an analytical solution for the
duct under consideration and one must resort to the development of an
efficient numerical solution approach. It will be shown in this work
that the application of the Finite Element Method (FEM) (see Reference
11 for a general discussion of this method), in conjunction with the

Method of Weighted Resliduals can indeed provide the needed solutions.



CHAPTER 11

FORMULATION OF THE PROBLEM

2.1 Differential Equations

To develop the needed solution technique, the problem of acous-
tic wave propagation through either one of the duct configurations shown
in Figure | will be considered. The duct carries a two dimensional,
axisymmetric mean flow which is assumed to be inviscid, non heat con-
ducting and irrotational. Body forces are neglected. To derive the
needed nondimensional conservation equations, velocities, lengths and
time are respectively normalized with respect to the amkient speed of
sound cg, a characteristic duct diameter d:. and di/cz. The density p
and pressure p are respectively normalized with the ambient density p;
and pg cz. The velocity potential ¢ is normalized with respect to cz di
and the frequency with respect to c:/dt. Under these conditions, it

12

can be shown that the behavior of the flow in the duct is described

by the following nonlinear partial differential equation for the flow

potential ¢:
ﬁ%-» g—t- (vo-ve) + -.l,— 96 9(79-70) = 202 (m
dt
where
== 1) B4 3 veeve)

and y is the ratio of specific heats. Rewriting Eq. (1) in a cylindrical
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coordinate system (i.e., r, 6, z) with the z-axis coinciding with the

turbofan Inlet axis ylelds:

2 (1]
¢ [°rr Tt 2 °zz] " bt
24 ¢ ’
- g'et 2
2 ¢r’rt + r +2 ¢z"zt + ¢r ¢rr

2
¢, ¢ 2 2¢ 9.6
! J?:ﬂ Yo 9t —L%!—Q * 20000,
‘ r

. 26 ,99% 20 - ¢ 992

(2)

r r

.

where the subscripts indicate partial differentiation with respect to
the subscripted variables,

To obtain the needed acoustic solutions, the flow potential is
rewritten as the sum of a steady-axi-symmetric mean flow potential ¢(r,2z)

and an acoustic potential ¢'(r,08,z,t); that is
o(r6,2,t) = ¢(r,2) + ¢'(r,8,2,t) (3)

Because of the rotational nature of the fan and (:canun'esser.l3
they tend to generate sound that is characterized by spinning acoustic
modes. In order to account for spinning modes, the acoustic potential
is assumed to have the following form

-‘ -
¢(r,8,z,t) = ¢(r,z)e (we-me ) (4)

where ¢(r,z) is a complex quantity; that is

e=¢+ i (5)




Substituting Eq. (3) into Eq. (2), neglecting the nonlinear products of
the acoustic quantities and separating the resulting equation into its
real and imaginary parts leads to the derivation of the following two
linear, coupled, partial differential equations for 5 and ¢:

=2 _ 32, =2 _321:  _ .2 3

[e ‘r]¢rr + le ‘z]¢zz 2¢r’z’rz

-2 .- -
# [-(re1)8, 8 = 28 0, + == (y=1)— - (v-1)6 ¢, 16

v [-(e1)e 0, - 20 0 - (v=1)o_ 0, - (v=1)=5— 1o,

-2
2 2cc < s o=
+ [u - m -—2-]¢ zw¢r¢r 2“"’:":

r
I .
-oly-)[e _+—4+0¢ lé=0 (6)
and
=2 _ =24 =2 _ 32y~ . = oa
( °r)¢rr + (e ¢z)"zz 20z * 02
. . - - EZ 612_ - . .
+ ['(Y+l)¢rr¢r - 2¢r2¢z - (y=1) i (Y-l)¢r¢zz]¢r
S . b
+ [-0vet)e 0 - 20,0 - (v-1)6 6, - (v=1) —=— 1o,
2 2. - -
+ [0 - m :2- ] + 2u¢r¢r + 2w¢z¢z
. b
rofy=1le +—+ ¢zz]¢ =0 (7)
where

=2 L 1) 52, 32
¢ = 5 (6 + 0]
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It should be pointed out that in the development of Eqs. (6) and (7)

the following expression for the sound velocity perturbation (cz)' has

been used:
)0 w o (y-1)[-Tup’ + 0" + o
(c%) (r-Dl-iwe' + ¢,0 + ¢,0.]

Since the steady flow is axisymmetric, the linearized 6-momentum equa-

tion can be integrated to give a relationship between the pressure and,

velocity potential:
p' = =5 (~iug’ + 3,00 +3 o)) (8)

2.2 Boundary Conditions

Before proceeding to obtain the needed solutions, the geometry
and boundary conditions for the problem under consideration must be
established. The geometry of typical turbofan inlets are shown in Fig-
ure | where due to the geometry of the inlets, only a single meridional
plane is shown. The boundary of the inlets may be divided into three
distinct sections, each described b, a diff.ient boundary condition. The
inlet exit plane represents the interface between the inlet and the
remainder of the engine; it is referred to as the inlet exit plane as it
is the location where the steady flow leaves the inlet. This plane also
represents the location at which the fan-compressor noise is introduced
into the inlet. In view of the earlier mentioned spinning nature of the
sound excitation at the inlet exit plane, the boundary condition describ-
ing the normal acoustic velocity, ¢;, at this plane can be ~.pressed in

the following form

= F(r)e  WEM) ey < F(r) + iF(r) ()

exit

¢

where the complex quantity f(r) describes the radial dependence of the
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source.- Using Eq. (5), Eq. (9) can be rewritten as follows

o, =1F(r) (10)
. exit .

¢, = f(r) (1)
exit

The sound excitation at the inlet exit plane could also be prescribed
in terms of a spinning pressure wave expressed as follows

]
exit

- (wt-mo),

p = g(r)e 3 g(r) = g(r) + ig(r) (12)

where g(r) represents the radial variation of the pressure source.
Suppressing the t and 0 dependence in Eq. (12) and separating into real

and imaginary parts ylelds

-~

P = g(r) (13)

exit

Pexiz = 9(r) (14)

For the study of plane velocity wave propagation (i.e., m=0) the
condition f(r) = a constant applies and similarly for a plane pressure
wave propagation the condition g(r) = a constant applies. For a more
general excitation, an appropriate combination of higher order spinning
modes, (i.e., Bessel functions'B) must be used to describe the sound
source.

At a hard wall of the duct boundary, the appropriate boundary

condition is
¢ =0 (15)

Equation (15) expresses the fact that fluid can not penetrate the wall.
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1

To absorb the emitted turbomachinery noise in the front and
aft ends of jet engines, various types of sound absorbing liners have
been developed by the aircraft industry. For example, point reacting
liners which are essentially a series of sharply tuned Helmholtz
resonators and bulk reacting liners which provide a broad band noise

reduction by virtue of their porous lining have been developed. Though

the point reacting liners are effective absorbers of sound over a
narrow range of frequencies, they are better suited to sustain the
operating conditions of a jet engine compared to the bulk reacting
liners. To estimate the liner performance, the appropriate boundary
conditions need to be applied at the interface of a point reacting
liner. A good deal of controversy exists in the literature about the
correct boundary condition to be applied across the liner in the pres-
ence of a grazing flow, as to whether particle displacement or particle
velocity normal to the liner is continuous. Matched asymptotic expan-

15

sion studies by Eversman and Beckemeyerh and Tester indicate that in
the limit of zero boundary layer thickness, the results using the shear
flow model approach the no shear model employing the condition of par-
ticle displacement continuity. Nayfeh et al.'6 confirmed the conclusions
of References 14 and 15 numerically.

A physically meaningful explanation of the continuity of particle
displacement is as follows. Consider an interface between two fluids
being in relative motion. When a sound wave is incident on this inter-

face from one of the mediums, it generates ripples on the interface and

also creates a reflected wave in the original medium and a transmitted

L rmmioies e i e g o3

o
o)
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wave in the other medium. The interface is a stream surface common to
the flows in the two media. The boundary conditions at the interface are:
(a) The pressure must be equal on both sides, and

(b) The stream surface slopes must be equal on both sides. If S(i,tj

is the equation of the interface which deforms with respect to time,

the statement corresponding to condition (b) is

DS
B?E 0 (16)

" where -%é—l is the substantial time derivative or time derivative fol-
lowing the fluid particle. Equation (16) states that the adjacent fluid
particles on either side move along the interface which indeed is the
statemént‘df particle displacement continuity. For the case of a rela-
tive motion across the interface, continuity of particle displacement
does not imply continuity of acoustic particle velocity, since acoustic
particle velocity is the time derivative of particle displacement fol-
lowing the fluid particle, it receives contributions from the convective
terms which are different on either side of the interface.

Hence the appropriate boundary conditions across the liner

interface are:
p' = p (17)
t= ! 18
£ & (18)

where £' is the acoustic particle displacement and subscript p refers

to the liner side. The equivalent condition to Eq. (18) in the continuun




s Eq. (16) which states that any particle on the interface S(r,t)

remains on it for all times, i.e.,

S
3—{+ (!V)S=0
and 4 at $=20
%-5-+ (v 7S =0
-jwt

For the special case S(r,t) = n - £(g)e

coordinate and s is the coordinate along the boundary of the wall,

(19) become
B +o)B+ G, o2 6 s =0
* D nlan * Mo T %750

oS - 3s ' =
e ¢;)p;5+ + ¢ )p an (¢>e+¢e)p35 0

Since the normal and azimuthal components of the mean flow are zero

(19)

where n is outward normal

Eqgs.

(20)

and the mean flow is assumed to be identically zero on the liner side,

the above equations yield

iu)&(s)e.imt

The specific acoustic impedance of the liner is defined by

o+ .
ey e

(21)

(22)
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where Bw and Em respectively describe the values of density and sound
speed at the wall, Substituting Eqs. (17), :(18), and (22) into Egs.

(21) yields

o
SN T (23)
pC2 w s Teg
ww L m w 2

n

It is assumed that Emémzz is a piecewise constant function of s. Hence
Eq. (23) becomes

5 ¢ '='+'—SEEL-

pw wzl ¢n P : w 9% (24)
As seen above, the condition of particle displacement continuity and
that of particle velocity continuity are identical if there is no rela-
tive motion between the two fluids on either side of the liner (i.e.,
35 £ 0).

For a general liner impedance chwzl =6, + ix,, Eq. (24) can be

rewritten by equating real and imaginary parts separately as

|
ho N
]
|
Iy

86, - xb (25)

(26)

fl
R k]
+
a|m
sl

x¢n + 6¢n

Decomposing velocities along and normal to the wall and noting that the
normal component of the mean flow velocity is zero at the wall, Eqg.

(8) after separating into real and imaginary parts becomes

= -olup + 4 o] (27)

h el

b= -il-ud + 3, 4] (28)
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Substituting Eqs. (27) and (28) into Eqs. (25) and (26) yields the
following desired lined wall boundary condition in terms of the

velocity potential and its derivatives only:

0, - xd, = -plub+ 38,1 *+ 5 == [-wp +

w s ’ss s*.¢s¢55]
2 ‘é C 'S (o x L = o4
+ (;:T'E * o [~wé + ¢s¢5] (29)
and
X5n*"9$n = '5[-w$'*553s] -0 :? [m$s + 555$s + 55555}
2y eaels o,
) =35 [wé + 0.0.] (30)

Due to the complex nature of the reflection process at the

inlet entrance plane, the precise form of the boundary condition at

17

this location is currently not known. Rice ' has argued that except

for modes near cut off frequencies the assumption of no reflection of

"internal" duct waves at the inlet entrance plane is a reasonable one.
As the primary objective of the present énalysis is the development of
the needed solution technique, the inlet entrance plane boundary condi-

tion in the present study is specified in the following form

SRR

(31)
where 5 and ¢ are the local steady flow density and sound speed at

the entrance plane and Ze is the local impedance. The analytical solu-
tion for the propagation of a single acoustic mode, with cut-off fre-

quency B, in a cylindrical or annular duct with constant mean flow Mach
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number M is known. This solution provides the following impedance

condition for transmission without reflection:

- 72 <2
+¢_vu -8 (1-9)
2 w2z 2 (32)
e . 2 2 =2
¢zw +/w - (1~ ¢z )

and values of B are available in Reference 13. For piane waves, the
cut-off frequency, 8, equals zero and Eq. (32) reduces to the more

familiar result

2 = |
e

Since in the inlet case the steady flow velocity is not uniform at the
inlet entrance plane, there will be a partial reflection of the principle
mode. Furthermore, any additional modes excited by duct cross sectional
area variations and steady flow velocity yradients will be also partially
reflected.

A general radially varying radiation impedance condition at the

inlet entrance plane can be described by
z(r) =9 (r) + ixg (r) (33)

Application of Eqs. (8) and (33) to Eq. (31) yields the following,

equivalent boundary conditions:
3, (0, = 5,) - € xp, = ub *agh, (34)

6,8 %, *8,(c 0, 6,) = -ub * 40 (35)
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CHAPTER 111

METHODS OF SOLUTION

3.1 The Inlet Steady Flow

3.1.1 Analysis of the Incompressible Potential Flow

Analytical solutions for the nonlinear equations describing
the steady compressible flow in axisymmetric, axially nonuniform
passages are not generally avallable and complex numerical solution
approaches must be employed to obtain the desired flow description.
Since the main objective of the current study is the description of
the acoustic flow field, for which the steady flow is needed as an
input, an apprcximate solution was used to obtain the needed steady
inlet flow description. The approximate steady flow computation con-
sists of a potential flow solution with a correction accounting for
compressibility effects. An integral solution technique was used to
compute the inlet potential flow utilizing a computer program developed

18 19

earlier at Georgia Tech, = and Lieblein's correction ” was utilized to
account for compressibility effects.

The incompressible potential flow is governed by Laplace's equa-
tion and is subject to boundary conditions specifying the magnitude of
the velocity normal to the inlet. The component of velocity normal to
the solid surfaces of the inlet must be zero. A finite velocity distri-

bution may be prescribed at the inlet fan plane as the forcing boundary

condition for this boundary value problem. The governing equations in
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& doubly connected region, R bounded by the inlet surface, B and a

spherical surface of infinite radius, B' are

Vée=0 in R (36)
Vernly = F -V Ay (37)

and
[volgr = 0 (38)

where ¢ is the velocity potential created because of the inlet, nis
unit normal vector pointing away from region R and F is the prescribed
velocity normal to the inlet surface B.

The method developed by Smith et al.zo to solve the linear
incompressible potential flow problem for bodies of arbitrary shape
consists of transforming the differential equation (36) subject to the
boundary conditions (37) and (38) into a linear surface integral equa-
tion. In this method, the flow field created due to the inlet is
thought of as due to a continuous distribution of sources and sinks on
the inlet surface. Hence, the potential at a point p due to the source

distribution on the inlet is

6(p) = /B ;%é?%%y d8 (39)

where o(p') is the unknown source strength distribution on the inlet
surface, B and r(p,p') is the distance between points p and p'. It
can be easily verified that the velocity potential given by Eq. (39)

satisfies Eqs. (36) and (38) for a finite value of o(p'). The source

o ak
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distribution o(p') is determined by requiring it to satisfy Eq. (37)
which leads to the formulation of the following surface integral equa-

18,21

tion for o

2na(p) - faa(p‘) VP;551374 *ndB=F(p)-V_- ﬁlp (40)

The first term in Eq. (40) is the velocity normal to the inlet induced
at p by the source at p'. The second term is the normal velocity compo-
nent at a point p dus to the source distribution over the remainder of
the inlet surface.

For flows past axisymmetric or two dimensional bodies Eq. (40)
reduces to a line integral equation in a single plane. Furthermore, a
numerical solution to the line integral equation is sought by assuming
that the inlet surface is made up of many small straight line segments
and that the source strength o is constant over each segment. The above
discretization procedure leads to a set of linear simultaneous algebraic
equations for source strengths over each segment which can be solved by
standard matrix routines. The velocities on and off the inlet surface
are calculated from the computed source distribution (see Reference 18
for a detailed mathematical development).

3.1.2 Superposition of Solutions

Since the Laplace equation (36) is linear, the principle of
superposition can be utilized to obtain solutions for various free stream
velocities and inlet flow rates from the following two basic solutions

(see Figure 2):

e s e VRO . SO SIS I
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Figure 2. Superposition of Incompressible Potential Flow
Solutions for a Free Stream Velocity and
Inlet Flow Rate.
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Let the computed velocities for Case | be denoted by (%L) and

= |

for Case 2 by st)z. since VF is the reference velocity for Case 2. The
F

principle of superposition for these two cases yields

v
v v Fy,V
v - A(v:)‘ + B(v;) (v;)z (41)

The constants A and B are obtained by using the boundary values of eL
L]

at I = ~=and Z = ZF'

That is,
v Ve
Lim — = 1=Ax 1| +B () x0=A (42)
v v
2->-¢ o -]
Since (eL) tends to zero as Z» -« as the velocity created at Z = -5
F

2
due to a suction at the fan is zero. And at ZF'

') v
v F F
v 1 x| + B(V—) x | 7
u:zF o0 @
or
’ )
B=} - = (43
Ve

)
Since from Case | (eL) at Zp is VE' Substituting Eqs. (42) and (43)

o | o

into Eq. (41) one obtains

v
S IR ) (uh)
o | o F 2
Ve
The ratio of the two reference velocities v is determined by the pre-

@

scribed free stream velocity and the mass flow rate through the fan.
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3.1.3 Compressibility Correction for Mean Flow

Next, since the inlet will be operating at high subsonic Mach
numbers during takeoff or landing configurations, the incompressible
solution obtained earli?r needs to be corrected to account for compres-
sibility effects using the semi-empirical equation proposed by Lieblin
and Stockman.‘? The justification for such an ad hoc approach to arrive
at a compressible mean flow description within the inlet is that obtain-
ing solutions to the exact nonlinear compressible potential flow equa-
tion in a complex duct shape is beyond the scope of the present study.

The empirical equation developed in Reference 19 to obtain ''com-

pressible' velocity, Vc from incompressible velocity, Vi at a point is

V.V,
- Di | ]
Vc“ Vi (—) (45)
OC

where Vi is the area weighted average incompressible velocity across the
duct at a given station, eF is the incompressible density which is also
equal to the stagnation density and Bcis the average compressible den-
sity across the flow passage. If the duct were a circular cylinder, the
exponent Vilvz equals unity and Eq. (45) is a statement of continuity.
However, because of area variations in an aircraft inlet Vi/\-li does not
equal unity and it expresses the influence of geometry on the ''compres-
sible'" velocity distribution.

The unknowns Vc and 5: in Eq. (45) are related through the isen-
tropic gas dynamic relations as follows. Principle of mass conserva-

tion at an axial station requires that

b
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oV = eV, (46)

Dividing Eq. (46) by the critical velocity V: and using the gas dynamic
(23)

relations one obtains

s + p_vy-1 1/2
=5 0- ) w7)
v P Pi
c
v,
The ratio —é can be related to the free stream Mach number by making
v

use of the ?sentropic gas dynamic relations again and one can show that

v, T/i = M

— = X/ x (48)

v’ o v-1 .2

c A S
vi gc
Denoting for simplicity — as a and - as g equation (47) reduces to
Ve i
c

the following nonlinear algebraic equation for 8:

a2 - ™ - Lhd’ = o (49)

Equation (49) is solved by the classical Newton-Ralphson scheme as
follows:

Setting

2 +1] -1y 2
F@) = 8 g - EFTM

one obtains

F! 28 - (y+1)

L
a.jQ
wimn
]

e
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The iteration scheme is

F@n)
Boyy =B, " e’ n=0,1,2,... (50)

n

A reasonable guess for the initial value, Bo Is 0.9 and the iteration
scheme converges very rapidly to a physically meaningful value. Know-

ing B the compressible velocity is calculated by using Eq. (45)

3.2 Finite Element Solution of the Acoustic Equations

Due to its apparent advantages, the application of the FEM in
the solution of a variety of engineering problems has been rapidly grow-
ing in recent years. A detailed discussion of the FEM can be found in
Reference 11. Due to its suitability for handling problems involving
complex geometries and mixed boundary conditions the FEM is used in the
present investigation in the solution of the inlet wave equatijons.

Any numerical procedure developed to solve a problem in the realm
of continuum mechanics essentially converts the problem with an infinite
number of degrees of freedom to one with a finite number of degrees of
freedom. The solutions so obtained are expected to approach the exact
solutions as the number of degrees of freedom is increased. In the
finite element method the continuum region under consideration is sub-
divided into a number of elements and the variation of the fiela varia-
ble within each element is prescribed in terms of its value at a number
of preassigned points in each element (i.e., nodes) and a set of known

interpolating functions. Once the values of the field variables at the

nodes are determined, the behavior of the field variables within each
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element and hence in the overall continuum is known., Thus, the problem
of determining the field variables at an infinite number of points is
reduced to one of finding their values at a finite number of nodes.

To obtain the needed solutions, Eqs. (6) and (7) which describe

the wave propagation in the inlet have been transformed into integral
equations utilizing the Galerkin Method. The resulting integral
equations were then solved using the FEM. The solution involves the
following six operations:

3.2.1 Subdivision of the solution domain: |In the finite element method
the commonly employed element shapes for discretizing the domain of
interest are triangles, rectangles or isoparametric triangles (i.e.,
triangles with curved edges) for two dimensional or axisymmetric problems
and tetrahedrons, cuboids or isoparametric tetrahedrons for three dimen-
sional problems. The choice of the element shapes in solving a particu-
lar problem is determined by the geometry of the domain of interest and
the level of complexity that can be employed. For two dimensional prob-
lems, straight edged triangular elements are by far the most commonly
used elements because of the relative ease in closely approximating com-
plex shaped domains as compared to rectangular elements and the lower
level of complexity in the finite element methodology as compared to the
isoparametric triangles. Hence, straight edged triangular elements

with three or six nodes have been chosen in the present study for sub-
dividing the inlet duct. A computer code has been developed which sub-
divides a duct into triangles with three nodes and catalogues the

geometric nodal locations, nodal numbers and element numbers. The assembly



29

of nodes and trianyles islsuch that each element number corresponds to
three nodal numbers and each nodai number is associated with a fixed
number of elements whose number may vary between two and six depending
upon the node location (see Figure 3). For the six node elements, the
vertices and the midside points of the triangle are normally chosen as
the nodes. In such a case, the ncde and element numbers are catalogued
so that each element number corresponds to six nodal numbers and each
nodal number is associated wi" a fixed number of elements varying
between one and six (see Figure 4).
3.2.2 Selection of Intergolstion Functions: Polynomials are the popu-
lar interpolating functions because of their desirable mathematical
properties of completeness and ease in mathematical manipulation. The
variation of the field variable (acoustic potential in this case)
within a three node triangle can be expressed in terms of a linear
Lagrangian polynomial in two dimensions. Hence, three node triangles
are also known as linear triangles. A quadratic representation of the
acoustic potential ¢ can be obtained using six node triangles since a
quadratic Lagrangian polynomial in two dimensions has six coefficients.
A linear transformation from the global Cartesian system to a
local "area coordinate system'' for each element has been found to simplify
the mathematical operations involving triangular elements considerably,
In this transformation, a triad set of coordinates for each element,

(L§e)’ L}e), L(e)) out of which only two are linearly independent

k

replaces the diad set of coordinates, (r,z) through the following rela-

tionships:
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e e e
Li Zi + Lj Zj + Lk Zk Z
e e e
L‘ ry+ Lj'rj + Lk = (51)
' LS+ 1%+ L8 =
i j k
Solving Egs. (51) for L?, L? and L%,
LY = (a, + b,z + c.r)/2a
i i i i
e .
L, = .+ b.z +cC, 2
i (aJ sz CJT)/ A (52)
%= (a, + bz + ¢, r)/28
k k k¥ Tk .
where
1 Zi ri
A= l-det 1 Z. r. | = Area of eth triangle
2 i,
1 Zk "
and
a; = erk ) zkrj; aJ - Zkrc ) zirk: 3 anj_ 2.
b, = FjT e bj =T b =1r; - i
<, = Zk - Zj; cJ = Zi - Zk’ = Zj - ZI

For a triangle with three nodes at the vertices, the interpolating
functions are simply the area coordinates. Thus the acoustic potential

over the eth element varies linearly and is given by '

e e mer b iao . o e MEmime g dosos
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b(r,z) = L5(r,2)8; + L}"(r,zﬁj +Lp(r,2)8, (53)

$(r,z) = L?(r,z)@I + L;(r,z)$j + L:(r,z)6k (54)

A quadratic variation for the acoustic potential over the element is
achieved by choosing triangles with six nodes, three being corner nodes
and the remaining three being mid-side nodes (see Figure 5) and is
described by the following relationships:

- e - e « e « e -
¢(r,z) = Ni(r,z)¢‘ + Nj(r,z)¢j + Nk(r,z)¢k + Nz(r,z)¢2

+ N (r,2)§ + No(r,2)§ (55)

¢(r,z) = N?(r,z);si + N;(r,z)Bj + Ni(r,z)&k + Nz(r,z)’{p’Z
+ NS(r,2)e + N-(r,2)3 (56)

where the quadratic interpolating functions are related to the area coor-

dinates L?. L;, and L: by the following:

For Corner nodes,

N = z(L?)2 - ¢

NG = z(LJ?)2 - L (57)
e _ e\2 _ e
N, = 2(Lk) L,
For mid-side nodes
NG = 4L 8L®
L ('
N;= hL}’Li . (58)

e ee
Nn liLkLi




Figure 5,

Linear and Quadratic Triangles.
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3.2.3 Establishing Elemental Relations: The Galerkin method is
applied to the governing differential equations and boundary condi-
tions to develop the matrix equations that express the properties of
individual elements in terms of the unknown nodal values. Denoting
either of the partial differential equations, 6 and 7, by the operator

1

L(¢'), application of the Galerkin and FEM methods = yields the fol-

lowing relationships:

E
I II W Leav(® =0 mer,2,.. N (59)
e=| A(e)

where the integration is performed over each element. In Eq. (59) N
is the total number of nodes in the problem under consideration and E
is the number of elements. It should be noted that N; is zero for all
elements not having the nodal point, m, as a vertex. Equation (59) pro-
vides 2N equations for the 2N unknown nodal values.

In evaluating Eq. (59) over each element the following integral
involving the area coordinates and arbitrary exponents a,b, and c is

needed:

e?, e b ec alb!c! (e)
;f (L‘) (Lj) (Lk) drdz = 1;:B:E:ETT x 2A (60)
A(e)
(see Appendix A for the proof of Eq. (60)).
There exlsts‘l a mathemat ical restriction in the choice of
interpolating functions stating that the values of ¢' and its partial

derivatives up to the highest order appearing in Eq. (59) must have

e
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representation as the element size shrinks to zero. If linear inter-
polating functions are chosen, the second order partial derivatives of
¢' will be identically zero. To avoid this, all terms in Eq. (59) con-
taining second order partial derivatives of ¢' can be reduced to terms
containing first order derivatives of ¢' using Green's theorem for a
plane geometryzu (also known as integration by parts). The boundary
conditions, given in the previous chapter, are introduced into the
boundary integrals that are obtained as a result of the above-mentioned
integration by parts. However, for an inlet lined with point-reacting
liners carrying a steady mean flow the boundary conditions at the

lined wall, as given by Eqs. (29) and (30), involve second derivatives
of ¢'. Hence, linear interpolating functions cannot be used since the
terms containing second derivatives of ¢ will be identically equal to
zero. In such a case, one has to choose quadratic or higher order rep-
resentation of ¢' over each triangle. In the present study, quadra. -
interpolating functions have been used to handle the lined wall boundary
conditions. A point to note is that if there is no mean flow in the
duct, the lined wall boundary conditions do not contain any second order
derivatives of ¢' and again one does not need a quadratic representation
for ¢ to treat the no mean flow case. After the choice of interpolating
functions is made, five different elemental relations are developed
depending upon the location of the triangles under consideration; that
is: (1) triangles interior to the flow region; (2) triangles adjacent
to a hard wall; (3) triangles adjacent to a lined wall; (4) triangles

adjacent to the fan plane; and (5) triangles adjacent to the entrance
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plane (see Appendix B for the mathematical development).

3.2.4 Assembly of Element Equations to Obtain a System of Algebraic
Equations: Based on the ordering system defined in the first step,
the individual element equations are combined into a matrix equation
describing the properties of the potential ¢' in the domain under
study. Since each node is only affected by adjacent elements, the
resulting matrix is banded.

3.2.5 Solution of the System of Equations: Considerable amount of
information Is currently available about the solution of large,

banded matrices. In the present study, CDC subroutine BLSWNP is used
for calculatlons.zs The BLSWNP subroutine has been developed to solve
efficiently a system of linear algebraic equations with a banded coeffi-
cient matrix. Let kl and k2 be the bandwidth of the lower and upper
triangles of the NxN banded matrix, excluding the main diagonal. All
the elements outside this bandwidth are equal to zero. In the BLSWNP
Subroutine only the nonzero elements (i.e. at most N x (KI+k2+1)) are
stored such that the columns of the condensed matrix are the diagonals
of the banded matrix and rows are stored as rows of the banded matrix
(see Figure 6). Such a condensed storage scheme reduces the computer
memory requirements. Further, the solution of the system of equations
is obtained in two sequential steps as described below.

To solve the banded system of equations,

(k] {x} = {b} (61)

decompose the problem into




NxN

Figure 6. Condensed Storage Scheme Used in
CDC Subroutine BLSWNP,
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L] {y} = {b} (62)
and

[U] {x} = {y} (63)

wherc [L] and [U] are lower and upper triangular matrices derived

from [K] and {y} is an intermediate solution vector. Since solution

of triangular matrices can be obtained without pivoting, the above
scheme is computationally quite efficient.

3.2.6 Additional Calculations: Once the velocity potential is obtained
at the nodes, additional variables such as the axial and radial
velocities and acoustic pressures can be calculated at any point in

the domain, by utilizing the computed solutions of ¢' together with

Eqs. (53) and (54) for a three node element case or with Eqs. (55)

and (56) for a six node element as the case may be.

The results obtained can be checked for the recovery of the
boundary conditions and conservation of acoustic energy. The time
averaged acoustic intensity in the ath direction for an irrotational,
uniform-entropy flow to second order in acoustic quantities is given
by the following expression26 (also see Appendix C for the derivation)

Ve a , (v -a)vg

| = 1 . ——
<d'>.a=<p'Vy's cat <!>+ — «<p've'>
P c C
+olvg "<vs've's)a (64)
where | is the acoustic intensity vector, a is unit vector in the

direction along which acoustic intensity is needed, and < > describes

-l B e Bt ate et S o
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time average over a long period of time. The time average energy flow

across a surface S is then

<> = [ <I'> - nd$ (65)
S

where n is the unit outward normal to surface S.

In the present study, the time average acoustic energy flows at
the entrance to the duct, at the exit plane of the duct and at the duct
walls have been computed using Eqs. (64) and (65) (see Appendix C for
a detailed finite element evaluation procedure). The effectiveness of
a liner in absorbing the souﬁd is expressed by the decibel reduction

defined by

<E>,
input
<E>
output

dB (66)

reduction =10 IogIO

As a check on the acenracy of the developed solution, the difference
between the energy flow into the duct and out of the duct should equal

the energy absorbed by the lined walls; i.e., acoustic energy should be

conserved.
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CHAPTER 1V
RESULTS AND DISCUSSION OF RESULTS

4.1 Acoustic Calculations Using 3-Node Triangular Elements

To check the accuracy of the developed FEM computer prugram,
solutions for the problems of plane and spinning wave propagation
through a hard walled annular duct with constant mean flow have been
obtained for comparison with available analytical solutions. For this

case, Eqs. (6) and (7) reduce to the following form:

~

+.¢_" + “_MZ)" + ( 2 _ ."’.2.);, - 2Mwp_ = 0 (67)
re . r bz " 0 2 2
b 2
n r 2.\~ 2 m ~ r O
b v+ (1-M)3+ (0 - T5)p + 2Mub = 0 (68)

r

where w is the frequency (non-dimensionalized by the outer annulus
diameter and the sound speed), m is the spinning mode number and M is
the constant mean flow Mach number.

The hard wall boundary conditions are described by the following

$r =0 r
at
@r =0 r

and the sound source boundary condition at the exit plane (i.e., z=1)

expressions:

o (inner wall)

1 (outer wall) (69)

is given by
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o, = -f(r) s 4, =0 (70)

Assuming no reflection at the duct entrance plane, where z = 0, the

following boundary condition applies:
p=-Z,;p= -2, (71)

The needed expressions for the impedance Z and f(r) are given below.

The exact solution to this problem is given by

5= - L sinfi(z-L)) (72)
$ = - fs‘r) cos[k(z-L)] (73)

For the plane wave case (i.e., m = 0), the various quantities in

Eqs. (70) through (73) take on the following form:

=1 :2=1: k==
f(l’) =] ] 4 | ’ k 1-M (7’")

The real and imaginary components of the velocity potential as calcu-
lated by the FEM for an annular cylinder with g = 0.5 and L = | are
compared with the exact values computed using Eqs. (72) and (73) in
Figure 7 for the case of M = 0.5 and w = 2.0. A good agreement between
the FEM and analytical solutions is shown; good agreement has also
been obtained when the predictions for the acoustic velocities and
pressures were compared.

The expressions describing the propagation of a spinning wave

with lobe number m ar.d radial mode u are:




O FEM -— Eq. (72)
O FEM ---- Eq. (73)

-0.3

Figure 7. Comparison of Acoustic Velocity Potential f&r Plane
Wave Propagation in an Annular Cylinder
(M =.5 w=2,0).
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Bt A, K

hs

f(r) = £ @r)

w +M/m2 - az(l - Mz)

z= - (75)
wM + /wz - Bz(l - MZ)
and
ksMw"'v/mz"Bz(l -MZ)
|l - Nz

where Eéz) and B(-kég) in Reference 13) are tabulated in Reference 13.

Results of FEM calculations for the velocity potential in the
previously described annular duct withm= 4, y=0, w=6 and M = .5
are presented in Figure 8. The analytical solutions, given by Egs.
(72) and (73) are also shown in Figure 8 and good agreement between the
two solutions is noted. Similar comparisons for other acoustic varia-
bles such as acoustic velocity and pressure have also shown good agree-
ment.

For the FEM calculations shown above, the duct was subdivided
into 220 3-node triangles with 136 nodes. For a Mach number of 0.5
good agreement between FEM calculations and the exact solutions was
obtained for values of w up to 10. At this point, (w =10, M = 0.5)
there are about 13 nodes per wave length parallel to the annular cylin-
der axis. Clearly, the accuracy lost at higher frequencies can be
recovered by a finer element subdivision or a more elaborate description
of the dependent variable ¢ within each element (e.g., quadratic repre-

sentation of ¢ in each triangle).




e ot

Figure 8. Comparison of Acoustic Velocity Potential
for Spinning Wave Propagation in an
Annular Cylinder (M=.5, w = 6.0).
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h.2 Comparison of Acoustic Calculations by Using
Linear and Quadratic Triangular Elements

The problem of plane wave propagation in the annular cylinder
carrying a uniform steady flow considered above is chosen tn cimpare the
accuracy obtained by using linear and quadratic elements for various
frequencies. For the case of linear elements, the cylinder is divided
into 140 3-node triangles with the total number of nodes being 94
(see Figure 9) while for the case of quadratic elements, it is divided
into 140 6-node triangles with a total of 327 nodes (see Figure 10), 94
out of which are the corner nodes and the remaining 233 nodes are the
mid-side nodes,

FEM calculations have been performed for 5 angular frequencies
(viz., w=1, 5, 10, 15, and 20) using linear and quadratic elements.
The amplitude and phase of the axial acoustic velocity obtained by FEM
programs are shown in Figures 11 through 20 along with the exact solu-
tions derived from Eqs. (72) and (73). For the case of w =1 and w = 5,
the results obtained by both the FEM programs agree with the exact solu-
tion to within 1 to 2%. For the case of w = 10, quadratic elements give
results accurate to 4% while as linear elements give results accurate
up to 9%. The predictions by linear elements for w = 15 and 20 are
about 30% off the exact solution and they do not even show the proper

trend. However, quadratic elements yleld results which are at worst 7%

off for w 15 and 12% off the exact solutions for w = 20. Moreover,
even a3t w = 20 the results of quadratic elements indicate the proper
trend (e.g., the acoustic axial velocity amplitude remains reasonably

constant). These results unequivocally prove that quadratic representation
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—: Exact Solution; ©: Linear Elements; ¢ : Quadratic Elements

lo_|

Figure 11,

0.5 z 1.0

Comparison of Axial Acoustic Velocity Amplitude
for Plane Wave Propagation in an Annular Cylinder
as Predicted by Linear and Quadratic Elements

(w = 1.0, Mach = 0.5)
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Figure 12. Comparison of Acoustic Axial Velocity Phase for Plane
Wave Propagation in an Annular Cylinder as Predicted
by Linear and Quadratic Elements for w = 1.0;
Mach = 0.5 (Symbols defined in Figure 11).



52

10 oo ¥ u— 9o Vo v C o Voo O
¢, ]
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Figure 13. Comparison of Axial Acoustic Velocity Amplitude for Plane
Wave Propagation in an Annular Cylinder as Predicted by
Linear and Quadratic Elements for w = 5.0; Mach = 0.5
(Symbols defined in Figure 11).
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Com .urison of Axial Acoustic Velocity Phase for Plane
Wave Propagation in an Annuiar (Cylinder as Predicted
by Linear and Quadratic Elements for w = 5.0;

Mach = 0.5 (Symbols defined in Figure 11).
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Figure 15.

Comparison of Axial Acoustic Velocity Amplitude for Plane
Wave Propagation in an Annular Cylinder as Predicted by
Linear and Quadratic Elements for w
(Symbols defined in Figure 11).

= 10.0 and Mach = 0.5
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Figure 16. Comparison of Axial Acoustic Velocity Phase for Plane
Wave Propagation in an Annular Cylinder as Predicted by
Linear and Quadratic Elements for w = 10.0 and Mach= 0.5
(Symbols defined in Figure 11).
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Figure 17. Comparison of Axial Acoustic Velocity Amplitude for Plane
Wave Propagation in an Annular Cylinder as Predicted by
Linear and Quadratic Elements for w = 15.0 and Mach=0.5
(Symbols defined in Figure 11).
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15.0 and

Mach = 0.5 (Symbols defined in Figure 11).
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Comparison of Axial Acoustic Velocity Phase for Plane
Wave Propagation in an Annular Cylinder as Predicted

by Linear and Quadratic Elements for w
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Figure 19. Comparison of Axial Acoustic Velocity Amplitude for Plane

Wave Propagation in an Annular Cylinder as Predicted by
Linear and Quadratic Elements for w = 20.0 and Mach = 0.5
(Symbols defined in Figure 11).
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270° ¢

Comparison of Axial Acoustic Velocity Phase for Plane

Figure 20.

Wave Propagation in an Annular Cylinder as Predicted
by Linear and Quadratic Elements for « = 20.0 and

Mach = 0.5 (Symbols defined in Figure 11).
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of ¢ over each element yields much better results compared to linear

representation for higher frequencies, for a fixed number of elements.

4.3 Comparison Studies for Lined Wall Annular Cylinders

in order to evaluate the accuracy of the finite element method
and to de-bug the computer codes, the case of sound propagation in an
annular cylinder with uniform steady flow and lined walls has been inves-
tigated.

Because a comprehensive set of results including radial and

axial profiles of acoustic variables along with the dB for the

reduction
case of a cylindrical duct is not available, comparison was made with
the results of Baumeister2 for the case of a rectangular duct carrying
a uniform steady flow. A rectangular duct is a good approximation to
the annular cylinder if the radius of curvature of the cylinder is large
and if the radius ratio is sufficiently close to 1.27 The investigated
problem is example #3 in Appendix F of Reference 2. The geometry and
associated parameters are shown in Figure 21. The radius of the annular
cylinder was increased from 100 to 1000 to check the convergence of the
dB to a constant value. The dB obtained is 4.726 which is close
red red
to the 5.6 value obtained by Baumeister. Baumeister has solved the

same problem by using the generalized wave envelope transformation.

A new variable, y, defined as
oir,z) = &2 o (r,2) (76)

where & is a free constant, is substituted into Eqs. (67), (68), (70)

and (71) to obtain a new set of partial differential equations and




- P . P
Sm /,— Plane Pressure, p
f 7
/s
r'd
’ M
0.5 L/ e ’
pie= 0.5 ==
Z, = 0.071-i0.151 (upper)
999. 54 M =-0.5
p' = 1.0
Z, =~ (lower)
] w = -3.7699111
m =0
0 z R

Figure 21. Annular Cylinder Geometry Simulating Rectangular Duct.
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boundary conditions for the variable y. Having chosen & to be equal to
the appropriate wave number, Baumeister has obtained a dBred of'h.o72.
The dBred obtained by the FEM program lies in between the two values
obtained in Reference 2. Figures 22 through 25 indicate the variation
of acoustic pressure (i.e., magnitude and phase) as predicted by the

FEM program and Reference 2. Also plotted are the corresponding hard
wall duct solutions for the same flow conditions, for the purpose of
indicating the effect of the liner in reducing the pressure amplitude.
With the exception of the results in Figure 22, the agreement between

the two sets of computations is good. Since the liner is known to
attenuate the sound wave, one would expect a reduction in acoustic
pressure magnitude as one moves from the fan plane towards the entrance
plane of the duct. While fhe FEM results agree with this intuitive
argument, the results of Reference 2 indicate an opposite trend. A
possible explanation for this is as follows. The finite difference

grid used in Reference 2 employs 100 points to model the region of
interest while as the finite element model employed 327 points to model
the same region. Hence, one could anticipate a better agreement between
the two solution schemes if the finite difference grid is made finer.
Figure 26 shows the variation of acoustic power absorbed by the lined
upper wall. The total acoustic energy absorbed by the liner should
equal the difference between the acoustic energy at the entrance and
exit planes. This acoustic energy balance has been checked and acoustic
energy is conserved with an error of 8%. The prescribed radiation impe-

dance condition at the exit plane and the pressure boundary condition
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lp' |
O : FEM Results

0.5} A : Reference 2
f i Hard Wall Results
% (FEM)
? ‘ ‘
0 0.25 z 0.5

Figure 22. Comparison of Acouctic Pressure Magnitude Along

the Upper Wall of the Rectangular Duct as
Predicted by FEM Program and Reference 2.
Hard Wall Solutions Shown in Circles.
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Figure 23.

Comparison of Acoustic Pressure Phase Along
the Upper Wall as Predicted by FEM Program
and Reference 2. Hard wall Solution shown
in Circles. (Symbols defined in Figure 22.)
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Figure 24.

0.25 z 0.5

Comparison of Acoustic Pressure Amplitude
Along the Lower Wall as Predicted by FEM
Program and Reference 2. Hard wall solution
shown in circles. (Symbols defined in
Figure 22.)
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Figure 25.

Comparison of Acoustic Pressure Phase Along
the Lower Wall as Predicted by FEM Program
and Reference 2. Hard wall Solutions

shown in circles. (Symbols defined in
Figure 22.)
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Figure 26. Acoustic Power Absorbed by Each Element

Located at the Lined Upper Wall.
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at the entrance plane are recovered with a maximum error of 6%, Errors
obhtained in other computed soft wall cases are smaller than the above-
mentioned 6 ond 8 percent. Computations for hard walled annular ducts
produce acoustic energy conservation with an error of 10_5% and the
radiation impedance condition and the pressure boundary condition are

recovered with IO-hZ error.

4.4 Comparison Studies wi. the Integral Technique
for the QCSEE Inlet

The problem of prescribing the correct radiation impedance con-
dition at the entrance plane of an inlet carrying a variable mean flouw
has not yet been solved. However, for the case of no mean flow, Bell,
Meyer and Zinn3 have solved the problem of wave propagation in an inlet
using the Green's function approach in the interior of the inlet and
also in the far field. With the knowledge of the solution in the inter-
ior and the exterior regions of the inlet a radially varying radiation
impedance Ze can be calculated at the entrance plane of the inlet. The
calculated Ze was incorporated in the FEM program that was specialized
to handle the no mean flow case and the solutions obtained by the FEM
program and the integral approach for various frequencies and for both
hard and soft walled QCSEE inlet one compared in this section.

For the case of no mean flow (i.e., 5r = éz = 0) Eq. (8) reduces

to
pt = iw¢l

since, 5 = | as the density of air in the inlet equals the ambient air

density. Thus, the acoustic pressure is directly proportional to the
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acoustic velocity potential and comparisons have been made with the
acoustic potential rather than the acoustic pressure.

As described in Section 3.2.3, in the absence of mean flow one
does not need a quadratic representation for the acoustic potential ¢
to handle the lined wall boundary condition. Hence, the comparison
studies described in this section have been performed using the 3-node
triangulization scheme of the QCSEE inlet (see Figure 3). In both the
FEM and integral approaches the sound excitation at the fan plane is
prescribed as a plane velocity wave of unit amplitude and a phase angle
of 180°. Table | shows the distribution of Ze at the nodes located at
the entrance plane of the hard walled QCSEE inlet as calculated by the
integral approach for the plane wave propagation of angular frequencies
w = 1,2,5 and 10. The above radiation impedances were incorporated in
the FEM program and the acoustic velocity potentials obtained by both
the FEM and the integral approach are plotted in Figures 27, 28, 29 and
30 for plane wave propagation of angular frequencies w = 1,2,5 and 10
respectively. One observes that the agreement beiween the two results
is excellent and part.cularly so at the low frequencies of w = 1 and 2.
Though the results obtained by both methods are slightly different for
w =5 and 10, they indicate similar trends in their behavior. The inte-
gral approach used only 50 source points on the inlet surface whereas
the FEM used 212 nodal points to map the domain of interest. A better
agi eement between the two methoas at higher frequencies can be obtained

if more source points are utilized in the integral approach to represent

the inlet surface.
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Comparison studies have also been conducted for the case of plane
wave propagation in the QCSEE inlet with lined walls, In the absence
of mean flow the condition of particle displacement continuity and that
of particle velocity continuity are identical. The specific acoustic
impedance of the inlet upper wall is chosen to be Ze = 0.16-710.34, a
representative value chosen from Reference 2 for the case of plane wave
propagation in a lined rectangular duct carrying no mean flow. The
center body is still prescribed to be a hard wall. The sound excitation
at the fan plane is again prescribed as a plane velocity wave of unit
amplitude and a phase angle of 180°.

Table | shows the distribution of Ze at the nodes located at the
entrance plane of the soft walled QCSEE inlet as calculated by the
integral approach for the plane wave propagation of angular frequencies
w =1 and 2. The acoustic velocity potential distribution along the
lined upper wall of the inlet obtained by the FEM and the integral approach
for angular frequencies w = 1 and 2 are shown in Figures 31 and 32,
respectively. One observes that the agreement between the two methods

for the lined wall case is also excellent. The dB obtained for

reduction

both the frequencies by the two methods agree to four significant places

{for w = 1 dB equals 24,8794 and for w = 2 dB equals

red: :tion reduction

13.354€6). Figures 33 and 34 show the variation of the acoustic energy
absorbed by the lined wall for w = |1 and 2 respectively. With this
information the conservation of acoustic energy is checked by comparing
the inflow and outflow of acoustic energy in the domain of interest.

It has been found that the acoustic energy is conserved to within 3%
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Table 1. '"Exact" Radiation Impedances from the Integral Technique

for the QCSEE Inlet With No Mean Flow

Ze = ee + 3xe for the QCSEE Inlet

Hard Wall Soft Wall
w W
Node
Number 1.0 2.0 5.0 10.0 1.0 2.0
1 0.2629- 0.4415- 1,0942- 0.8815- 1.1780- i.7210-
i0.5333 i0.4676 i0.3231 j0.1020 i1.7072 i2.2895
2 0.2427- 0.7204- 1.1589- 0.9365~ 0.7214- 1.5664+
i0.5084 10.5629 10.1141 i0.0672 11.2168 i0.7554
3 0.2642~ 0.9994- 1.2237+ 0.9914- 0.2648- 1.4119-
i0.6385 i0.6583 i0.0949 i0.0323 i0.7265 i0.7788
4 0.3100- 1.2422- 1.1573+ 1.067¢- 0.2161- 1.0600-
i0.7535 i0.6592 i0.0703 i 0.0600 i0.6513 10.9674
5 0. 3463- 1.4175- 1. 1046~ 1.0698-~ 2.1965- 0.9196-
i0.8390 i0.6405 i0.0486 i0.0788 i0.0269 i1.0234
6 0.3724- 1.5344- 1.0754- 1.0287+ 0.1869- 0.8535-
i0.8993 i0.6195 i0.1659 i0.0386 i0.6173 il1.0511
7 0. 3880- 1.6012~ 1.0625- 1.1025+ 0.1822- 0.8222-
i0.9348 i 0.6044 i0.2440 i0.1934 i0.6136 i 1.0655
8 0.3932- 1.6231- 1.0588~ 1.1572+ 0.1808- 0.8131-

i0.9466 10.5991 i0.2708 i0.2360 i0.6126 i1.0701
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error for both the frequencies.

Since the prescription of the ''exact'' radiation impedance con-
dition at the entrance plane of an inlet carrying a variable mean flow
is not possible with the present day knowledge, the simple ''no reflection'
radiation Impedance condition, 5 c, was used in most of the investi~-
gated cases. The 5 ¢ condition yields no reflection of the incident
wave only if the propagation of plane waves is considered and if the
reflections from the inlet walls are not significant.

In the absence of mean flow, if the inlet could be app'~ximated
as a tube of constant cross sectional area, the problem of plune wave
propagation within such an inlet of finite length and in the far field
can be solved by the classical Weiner Hopf integral technique29 for
frequencies below the cut off frequency corresponding to the lowest
order spinning mode, namely the first radial mode. For the inlet
modelled as a circular pipe the cut off frequency for the lowest order
spinning mode is w, = 3.832.29 Hence, for frequencies greater than We
plane wave solutions by the Weiner Hopf technique do not exist. The
integral solution obtained by the Weiner Hopf technique yie'ds a con-
stant (in general complex) impedance condition at the eatrance plane of
the inlet to be henceforth denoted as ''Weiner Hopf radiation impedance
condition,' whose value for w = 1.0 and 2.0 equals 0.2335 ~ i0.5555
and 0.8317 - j0.6528 respectively. One could prescribe this radiation
condition for the corresponding frequencies in place of 6 ¢ condition
for the case of no mean flow.

Studies have been conducted to evaluate the influence of the

"exact'' radiatior condition, p ¢ '"'no reflection' radiation condition and
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the Weiner Hopf radiation impedance condition (where applicable) on
the wave structure within the QCSEE inlet for the case of plane wave
propagation of angular freguencies w = 1,2,5 and 10. Figures 35 and 36
show the influence of the above three radiation impedances on the
acoustic velocity potential distribution along the hard upper wall of
the inlet for w = | and 2 respectively. One observes in Figures 35
and 36 that the wave profile predicted by prescribing the Weiner Hopf
radiation condition matches quite well with the one predicted by pre-
scribing the "exact' radiation conditicn. Thus at low frequencies the
Weiner Hopf radiation condition can be viewed as an ''average'' constant
value of the exact radiation condition across the inlet entrance plane.
The wave structure obtained by imposing the ''no reflection radia-
tion condition is markedly different from the one corresponding to the
"exact' radiation condition for w = 1.0 (see Figure 35). However for
the case of w = 2,0, the profile corresponding to the 'no reflection'
radiation condition tends to approach the wave profile corresponding
to the ''exact" radiation condition (see Figure 36). Figure 37 shows
that the wave profiles obtained by prescribing the 5 ¢ radiation condi-
tion .ad the "exact! radiation condition for a plane wave propagation
of w = 5 matel quite well along the length of the inlet. An almost
exact match between the two profiles is observed for the case of w = 10
as shown in Figure 38. A physical explanation for this observation is
as follows. The propagation of high frequency plane waves in a duct
could be approximated a~ rhe wave propagation in a ray tube where the

reflected component is neglicible, in which case, the ''no reflection"
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radiation condition indeed approaches the ''exact'' radiation condition.
This fact is also evident from the values of the ''exact'' radiation impe-
dances given in Table | for w = 1,2,5 and 10. As w increases, one
observes from this table that the '"exact' radiation condition approaches
the value of 1 + 0i, which is the '"no reflection" p ¢ radiation condi-
tion in terms of the nondimensional quantities.

k.5 'Compressible'" Mean Flow Calculations_for the
QCSEE and Bellmouth Turbofan Inlets

To predict the acoustic properties of practical inlet configura-
tions, the QCSEE (Quiet, Clean, Short-haul Experimental Engine) inlet9
and the Bellmouth inletlo have been chosen for the present study (see
Figures la and 1b).

Before proceeding with the inlet acoustic analysis the brhavior
of the inlet mean flow must be determined. As explained earlier, the
steady flow in the inlets is approximated using a solution for an incom-
pressible steady flow with a compressibility correction.

The incompressible solution was obtained by solving an integral
formulation of Laplace's equation with the inlet boundary divided into
a number of straight line segments. For the QCSEE inlet, the number of
straight line segments equals 140 and it equals 90 only for the Bellmouth
inlet, because of the simpler geometry of the Bellmouth inlet compared
to the QCSEE inlet. The chosen free stream and fan plane velocities
correspond to a free stream Mach number of 0.12 and an average exit

9

Mach number of 0.52 for the QCSEE inlet” and correspond to a free stream

Mach number of 0.0 and an average exit Mach number of 0.52 for the




Bellmouth inlet. The resulting solutions of the Laplace's equation are
superposed as described in Section 3.1.2 to yield the incompressible
mean flow descriptions for both the inlets. Application of the com-
pressibility correction to the incompressible mean flow velocities as
described in Section 3.1.3 yields the ''compressible' velocity descrip-
tion of the mean flow in the interior of the inlets.

The mean flow velocity computations needed for the acoustic equa-
tions have been performed at the nodal locations of the quadratic fin-
ite element triangulization schemes of the QCSEE and the Bellmouth
inlets (see Figures ba and 4b), Tables D.1 and D.2 in Appendix D con-
tain the mean flow data at the corner nodal points along with the
coordinates of the corner nodes. For the purpose of illustration,
the compressible velocity profiles at the inlet entrance plane, the
throat and the fan plane are shown in Figures 39 and 40 for the QCSEE
and the Bellmouth inlets respectively. As one observes the radial pro-
files in Figures 39 and 40 the mean flow deviates far from the one
dimensional mode! at the entrance plane. The axial velocity component,

¢ becomes zero at the inlet wall as it is a stagnation point for the
axial component of the velocity. The radial velocity component, ér is
zero at the axis of the inlet because of the axisymmetry of the problem
and has a large negative value at the inlet wall, indicating the effect
of the entry lip shape in sucking the flow. At the throat and the fan
plane &r is within 5% of ¢, for the QCSEE inlet and within 12% for the

BelIlmouth inlet and az is also reasonably uniform over the inlet cross

section indicating that the mean flow is almost one dimensional at the
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throat and the fan planes. From Tables D.1 and D.2 one observes that

the duct cross sectional area is minimum at the throat plane for the
QCSEE inlet and at the fan plane for the Bellmouth inlet. Hence, on

the basis of one dimensional isentropic gas dynamic relations for sub-
sonic flows one would expect that the axial velocity is maximum at the
throat plane for the QCSEE inlet and at the fan plane for the Bellmouth
inlet. One indeed observes in Figures 39 and 40 and Tables D.1 and D.2
that 32 is on the average largest at the throat plane for the QCSEE inlet
and at the fan plane for the Bellmouth inlet.

Though the mean velocity profiles at the throat and fan plane
seem to indicate the presence of almost one dimensional flow at these
two planes such is not the case at many other axial locations. As
Tables D.1 and D.2 indicate there are very strong radial gradients in
52 and ar in the vicinity of the inlet entrance plane and the nose of
the center body which can not be accounted for by the one dimensional

isentropic gas dynamic calculations.

4.6 Acous’ic Calculations for the Hard Walled QCSEE inlet

With the knowledge of the ''compressible' mean flow velocities in
the interior of the QCSEE inlet, one can perform the acoustic calcula-
tions for the QCSEE inlet configuration. In this section the results
of the acoustic calculations for the QCSEE inlet shown in Figure la
with hard walls will be presented for two frequencies. In order to
investigate the effects of the two-dimensional nature of the mean flow
on the acoustic behavior in the inlet, the mean flow was also computed

using a one-dimensional, isentropic compressible flow model23 to describe
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the inlet mean flow. As in the two dimensional flow computations, a

free stream Mach number of 0.12 and an exit Mach number of 0.52 have

also been used in the one-dimensional flow computations. The solution
domain, consisting of the Inlet duct, has been subdivided into 360 3-node
triangles with 212 nodes (see Figure 3). The real and imaginary parts

of the acoustic potential were calculated at the nodes, and the real

and imaginary parts of the acoustic axial and radial velocity components
and the acoustic pressure were calculated at the centroids of the tri-
angular elements using the linear interpolation functions for the
acoustic potential (i.e., see Eq. (52)).

Calculations for plane velocity wave excitation at the inlet
exit plane and the frequency w equal | and 2 have been performed using
the 1-D and 2-D steady flow calculations. Figure 4] shows the variation
of the real and imaginary parts of the acoustic pressure along the upper
inlet wall, for a frequency of 1.0, The radial variation of the acous-
tic pressure at the inlet entrance plane, inlet throat and inlet exit
plane for w = 1.0 are shown in Figure 42, 42, and 44 respectively. Simi-
lar plots for a plane velocity wave excitation with w = 2,0 are shown in
Figures 45, 46, 47, and 48.

To isolate the effect of cross sectional area variation alone on
the wave propagation in the inlet, inlet acoustic calculations for the
case of no mean flow have been performed for a plane velocity wave exci-
tation at the inlet exit plane for two frequencies, w =1 and 2. Fig-
ures 49 and 50 show the variation of the real and imaginary parts of

acoustlic pressure along the upper wall of the inlet for w = | and 2
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Figure 41. Acoustic Pressure Distribution Along the
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Figure 42. Radial Variation of Acoustic Pressure at the
Entrance Plane for w = 1.0 (Symbols defined
in Figur= 41).
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Figure 43. Radial Variation of Acoustic Pressure at
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Figure 44. Radial Variation of Acoustic Pressure at

the Inlet Exit Plane for w = 1.0 (Symbols
defined in Figure 41).
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Figure 45. Acoustic Pressure Distribution Along the Inlet
Upper Wall (w = 2.0, Plane Wave Excitation;
Symbols defined in Figure 41).
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Figure 46. Radial Variation of Acoustic Pressure at the
Entrance Plane for w = 2.0 (Symbols
defined in Figure 41).
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Figure 47. Radial Variation of Acoustic Pressure at
the Throat Plane for w = 2.0 (Symbols
defined in Figure 41).
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defined in Figure 41).
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Figure 49. Acoustic Pressure Distribution Along the Upper
Wall of the Inlet for the Zero Mean Flow Case
(w = 1.0; Plane Wave Excitation).

Figure 50. Acoustic Pressure Distribution Along the Upper
Wall of the Inlet for the Zero Mean Flow Case
(for w = 2.0; Plane Wave Excitation; Symbols
defined in Figure 49).
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respectively. Radlal variation of the acoustic pressure for the zero
mean flow case, at the inlet entrance, throat, and exit plane for w = |
are shown in Figures 51, 52, and 53 respectively. Similar plots are
sthn in Figures 54, 55 and 56 for w = 2.

In the problem under consideration, the propagation of sound
within the inlet will be affected by the following phenomena: (a) reflec-
tion from the inlet walls due to inlet cross sectional area variation;
(b) reflection at the inlet entrance and exit planes; (c) reflection due
to the presence of gradients in mean flow properties; (d) convection of
sound by the mean flow which affects the local effective wavelength;
and (e) refraction of sound due to the presence of transverse mean flow
gradients. The presence of some of these effects will be considered
below by analyzing the predicted inlet acoustic behavior.

When there is zero mean flow in the inlet, only reflection will
be important. Furthermore, in this case the inlet entrance impedance
Ze = | is a good approximation for the almost no reflection condition
at the entrance plane and thus only reflection from the walls should be
present. Figqures 51-56 show very little distortion in the plane wave
shape, indicating that there is very little reflection from the inlet
walls.

When the mean flow is described by a one dimensional approxima-
tion, only reflection and convection will be important. Figures L2-44
and 46-48 show very little distortion in the plane wave shape (for 1-D
mean flow) except near the inlet entrance plane where there are steep

.

area and mean axial velocity gradients, reaffirming the conclusion that

s
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Radial Variation of Acoustic Pressure at the Throat
Plane for the Zero Mean Flow Case for w = 1.0
(Symbols defined in Figure 49).
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Radial Variation of Acoustic Pressure at the
Throat Plane for the Zero Mean Flow Case for
w= 2.0 (Symbols defined in Figure 49).

~1.0

,‘-04

-1.0 -0.5 0 0.5
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for w = 2.0 (Symbols defined in Figure 49).




101

there is very little reflection from the inlet walls. Figures 41, 45,
49 and 50 show the convective effects of the flow as manifested by the
overall decrease in effective wavelength for the case with mean flow
(1-D or 2-D) as compared to the case of no mean flow. Figures 41 and
45 indicate a minimum effective wavelength near the throat where the
highest mean flow Mach number exists.

When the mean flow is described by a two dimensional approximation
all of the above mentioned effects are present. Furthermore, at the
inlet entrance plane radial mean flow velocities are quite large and
there are radial gradients in the axial component of the mean flow.
Under these conditions the assumed impedance of Ze =1 will result in
wave reflection at the inlet entrance plane. For the two dimensional
mean flow description, Figures 42-44 and 46-48 show severe distortion
in the initially plane wave shape due to reflection, convection, and
refraction it is not possible to isolate the individual effects. It is
known,"30 however, that refraction increases with an increase in fre-
quency. This effect is observed by comparing Figures 42-44 (for w = 1)
and 46-48 (for w = 2) where the distortion of the plane front increases
with an increase in frequency.

4,7 Sound Attenuation Studies for Zero Mean Flow Case
for the QCSEE, Bellmouth and Cylindrical Inlets

The objective of this section is to estimate the sensitivity of
duct attenuation to inlet curvature and centerbody for a practical tur-
bofan inlet. The influence of flow gradients on the duct attenuation

will be included in the next section which deals with the nonzero mean
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flow case. To accomplish this task, a number of acoustic calculations
on a soft walled QCSEC turbofan inlet, a bellmouth inlet and a straight
open cylinder of the same overall dimensions (i.e. length and fan diam-
eter, are performed. The specific acoustic liner impedance values
chosen are the same for each inlet at a particular frequency and they
correspond to the near optimum impedance values for a plane pressure

17

wave input into an infinitely long circular duct. Rice ° presents these
values for a wide range of frequencies and liner length to duct diam-
eter ratios. In the finite element calculations for the zero mean flow
case a constant acoustic axial velocity (¢z) is used as the input condi-
tion and hence these impedances do not necessarily represent the optimum
values in the finite element calculations. The radiation impedance con-
dition is prescribed to be equal to p c.

Figure 57 shows the dependence of duct: attenuation, dBreduction
on the frequency of wave propagation, n(= - %%) for the QCSEE, Bellmouth
and cylindrical inlets for the case of the full length of the upper wall
of the inlets being lined. Also shown in the figure are the near optimum
specific acoustic liner impedances, Ze for the four frequencies listed.

One observes that dB falls rapidly as frequency increases for

reduction
all the three inlets which is due to focusing of the sound wave toward
the inlet axis at higher frequencies. The propagation of high frequency
plane waves in a duct could be approximated as the propagation in a ray
tube with its axis coinciding with the inlet axis. As the frequency
increases the sound power is concentrated near the duct axis and it

reduces at the wall where it must be absorbed and hence the rapid drop

in the duct attenuation. One also observes that there is a considerable
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variation in the duct attenuation for the three inlets which can be
attributed to the differences in their geometries. At lower frequen-
cles the attenuations differ much more compared to at high frequency and
fall within 0.5 dB for n = 2, In other words attenuation of low fre-
quency waves is more sensitive to inlet geometry than to high fre-
quency waves. As explained earlier the sound energy is beamed towards
the duct axis as frequency increases leaving little sound energy to be
absorbed at the walls. Hence the propagation of high frequency sound
waves is insensitive to the area variations of the duct resulting in
about the same attenuation for all the three inlets. The duct attenua-
tion for the Bellmouth inlet falls in between the duct attenuation for
the QCSEE and the cylindrical inlets since the Bellmouth inlet is geo-
metrically '"median'' between the QCSEE inlet and the cylinder.

4.8 Sound Attenuation Studies for Nonzero Mean Flow Case
for the QCSEE, Bellmouth and Cylindrical Inlets

The influence of mean flow gradients on duct attenuation is stud-
ied in this section using the ''compressible' mean flow velocities computed
in Section 4.5 (also see Appendix D). The average fan plane Mach num-
ber for both the QCSEE and the Bellmouth inlets is 0.52.

As proposed by Rice.3‘ the near optimum liner impedance values
for the cylinder containing a uniform steady flow are calculated by
dividing the zero mean flow near optimum values by (1 - M)2 where M is
the Mach number of the uniform steady flow in the cylinder. For the pur-
pose of comparison of the acoustic performance of the inlets containing

a mean flow, representative Mach numbers have to be chosen for the
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cylinder to 'represent' in some overall sense the two dimensional mean
flow in the QCSEE and Bellmouth inlets. For this purpose, one dimen=-
sional isentropic gas dynamic calculations are performed for the QCSEE
and Bellmouth inlets and the axial station chosen to ''represent'' the
cylinder is at Z = 0.9 for both the QCSEE and Bellmouth inlets since
they '"'resemble' the cylindrical duct at and in the neighborhood of
this station. The one dimensional isentropic Mach number at Z = 0.9
for the QCSEE inlet equals 0.579 and for the Bellmouth inlet equals
0.362. The liner impedance values used in comparing the cylindrical
duct and the QCSEE inlet are obtained by dividing the impedance values
listed in Figure 57 by (1 - M)2 where M equals 0.579. Similarly the
liner impedance values used in comparing the cylindrical duct and the
Belimouth inlet are obtained by dividing the impedance values listed
in Figure 57 by (1 - M)z where M equals 0.362. In the finite element
calculations a constant acoustic pressure (p) is used as the input con-
dition and the radiation condition is again prescribed to be equal to
p ¢ for the nonzero mean flow case.

Figure 58 shows the acoustic performance of the QCSEE inlet and
the cylindrical duct containing mean flow. As in the no mean flow case
one again observes the rapid fall of attenuation as frequency increases.
And also the attenuations differ considerably for the two inlets at
lower frequencies but they lie within 1 dB for n = 2.0. The differences
in the duct attenuations are due to a combined effect of inlet curvature,
centerbody and mean flow properties. The duct attenuation for the zero

mean flow case is higher compared to the corresponding non zero mean flow
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case for n = 0.5 and 1.0 for both the QCSEE inlet and cylinder. For

n= 0.5 db for the QCSEE inlet with mean flow is about 22 dB

reduct fon
lower than that for the no mean flow case. Also, for n = 0.5

d8 for the cylinder with mean flow is about 10 dB lower than

reduction

that for the no mean flow case. However, dB for the nonzero

reduction
mean flow case for n = 2.0 falls within | dB of the zero mean flow case
for both the QCSEE inlet and cylinder. These observations indicate
that though the approximate method proposed by Rice io obtain the near
optimum impedance values for the flew case is quite reasonable for high
frequency waves, it leads to a rapid drift in the optimum values of the
impedances for low frequency waves resulting in a considerable reduc-
tion of duct attenuation. Similar observations are noted in Figure 59
which shows the acoustic performance of the Bellmouth inlet and the
cylinder containing mean flow. Since the QCSEE and Bellmouth inlets
are studied for different values of the liner impedance for the mean
flow case one can not compare their acoustic performance.

At the present time, the frequency range and transverse mode is
limited by the maximum number of elements which tne computer can handle.
In the above cases, seven elements were used to resolve the transverse
modes and fourteen elements were used to resolve axial variations. For
a given finite element triangulization scheme, an estimate ¢’ the accu-
racy of the numerical solution for various frequencies may be made by‘
comparing it with the known analytical solution for the case of a hard
walled annular cylinder carrying a uniform steady flow. Even though

there is no one to one correspondence between the accuracies of the
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solution obtained for a variable area inlet and an annular cylinder the
above mentioned criterion, in the absense of anything better, is proba-

bly an acceptable criterion.
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CHAPTER V

CONCLUSIONS AND RECOMMENDAT IONS

6.1 Conclusions

An analytical technique utilizing the Finite Element Method
(FEM) in combination with the Method of Weighted Residuals has been
developed for predicting the acoustic performance of turbofan inlets
carrying a subsonic axisymmetric steady flow. An approximate solution
for the steady inviscid flow field is obtained using an integral method
for calculating the incompressible potential flow field in the inlet
with a correction to account for compressibility effects. Acoustic
properties of the QCSEE inlet, a Bellmouth inlet and a circular cylinder
for zero mean flow and non-zero mean flow situations have been deter-
mined for a limited range of frequencies (3.14 < w < 12.57) of plane
wave propagation. Summarizing the results of this investigation it can
be concluded that:

). The finite element technique solutions are in excellent
agreement with available analytical solutions for the problems of plane
and spinning wave propagation through a hard walled annular cylinder
with a constant mean flow.

2. For an equal number of finite elements, quadrant representa-
tion of the finite elements is superior to linear representation in

handling high frequency (w = 15) plane wave propagation.



3. The duct attenuation and the acoustic pressure distributions
obtained by the finite element scheme and the finite difference results
of Baumeister for the case of a lined rectangular duct carrying a
steady uniform flow are found to be generally in good agreement.

4. The results obtained by the finite element program using the
Yexact'' impedance at the open end of the duct provided by the integral
solution approach of Bell, Meyer and Zinn are found to be in excellent
agreement with the results of the integral solution approach for plane
wave propagation in hard and soft walled QCSEE inlet carrying no mean
flow for a range of frequencies. The simple '"no reflection' impedance
condition at the open end of the inlet though inaccurate for low fre-
quencies (w < 2) of plane wave propagation, approaches the ''exact'' impe-
dance condition for high frequencies (w = 10).

5. Results for low frequency (w < 2) plane wave propagation
through the hard walled QCSEE inlet containing a mean flow show that
when one-dimensional steady flow is assumed to exist in the inlet, the
plane wave propagates with relatively little distortion. However, pro-
pagation of a plane wave through the fully two-dimensional flow field
in the inlet produces severe distortions due to the excitation of
higher order modes.

6. Plane wave calculations for soft walled QCSEE inlet, a cir-
cular cylinder and a Bellmouth inlet for the near optimum liner impe-
dance values of an infinitely long circular duct with no mean flow,
indicate that the duct attenuation falls rapidly with increase in

frequency for the cases of zero mean flow and fully two-dimensional
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axisymmetric mean flow due to focusing of the sound wave toward the

duct axis for high frequencies. Attenuation of low frequency plane
waves is found to be more sensitive to inlet curvature, center body and
mean flow gradients as compared to that of high frequency plane waves.
The approximate method proposed by Rice to obtain the near optimum liner

impedance values for the flow case from the zero mean flow case is

found to be reasonable for high frequency plane waves but leads to a
rapid drift in the optimum values for the low frequency plane waves

resulting in a considerable reduction of duct attenuation.

5.2 Recommendations for Future Research

Several improvements over the developed theoretical analysis
which could be made to broaden its range of applicability are discussed
below.

1. Prediction of the Far Field Noise Levels

The present analysis predicts the ratio of the input acoustic
power at the fan plane to the output acoustic power at the inlet entrance
plane and thereby concludes about the effectiveness of the liner to
absorb sound. However, in practice, the effectiveness of the liner is
estimated by measuring the sound pressure levels in the far field.

The far field predictions could be made using the finite element
technique by extending the triangulization scheme from inside the inlet
to the "far field' through the inlet entrance plane. The elements
external to the inlet could be made larger as one moves away from the
inlet since the variation of the acoustic variables in the open space

is not expected to be as large as it is inside the inlet. In this
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scheme the radiation condition should be prescribed at the peripheral
elements in the open space. The prescription of the simple p ¢ radia-
tion condition out in the ''far field" is expected to be quite good

since any wave front approaches a plane wavefront locally as one moves
sufficiently far away from the source. The extent of the finite ele-
ment spread out in the open space to simulate the far field will be
governed by the computational capabilities and mass storage space of the
available computer system.

11, Effect of the Molecular Transport Properties on the Acoustic
Behavior of the Inlet

in the present theoretical model the effect of viscosity and ther-
mal conductivity of the fluid on both the mean flow field and the acous-
tic field have been neglected. These assumptions and the assumption of
irrotational flaw simplified the boundary value problem to the solution
of a single complex partial differential equation with variable coeffi-
cients for the acoustic velocity potential subject to a set of complex
mixed type boundary conditions. When employing the finite element tech-
nique the use of the velocity potential offers many advantages over the
conventional linearized gas equations approach.32 For two dimensional
mean flows the velocity potential approach reduces the computer storage
and running times by an order of magnitude compared to the more general
linearized ;;as equations approach.

The acoustic equations for sheared viscous flows were developed

33

by Mungur et al. Since the gradients in the wave motion are ''small"

the molecular transport of momentum and energy due to viscosity and

thermal conductivity of the fluid respectively are neglected by common
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practice in deriving the linearized acoustic equations, and the inviscid
acoustic equations are solved using the mean flow velocity field that
results from a consideration of viscosity in the mean flow field only.
Because of the significant computational advantage of the acoustic
potential formulation, one is strongly motivated to extend the acoustic
potential finite element program to include the case of sheared mean

flows. Goldstein and Rice3“

suggest a very practical procedure for cal-
culating the effect of the boundary layer in conjunction with the poten-
tial function analysis. Goldstein and Rice point out that in many cases
a linear shear layer can be used to accurately model a 1/7th power law
turbulent boundary layer. For the special case of a linear shear bound-
ary layer, they show that the following correction procedure can be
applied.

The specific acoustic liner impedance, Z2 at the inlet wall is a
known parameter. For a given boundary layer thickness § and a mean flow
Mach number at the edge of the boundary layer, a specific acoustic impe-

dance at the edge of the boundary layer, (22) can be calculated

effective
which is independent of-fhe potential core flow. This effective impe-
dance could be used as the boundary condition for the potential flow
finite element calculations. The procedure is approximate because the
correction procedureBb assumes a uniform boundary layer in the absence
of mean flow variations. Nevertheless the procedure represents a simple

and effective way of accounting for shear with a potential approach for

the duct acoustics problem,

T T S B T T S S A 3



115

11l. Optimization Studies for the Liner Design

The present technique predicts the dB for a lined duct

reduct ion
containing a two dimensional axisymmetric mean flow for a prescribed
configuration of the sound absorbing liner. The liner performance

which could be measured as the dB per unit length of the liner

reduction
is a function of its specific acoustic impedance, frequency of wave
propagation, mean flow characteristics and the geometry of the duct.
The technology needed for a practical liner design has to predict the

optimum liner configuration for a desired dB Such a design

reduction’
information could be prepared by conducting optimization studies for
liners over a realistic range of the independent variables. Such a

study will provide the needed technology data base for the liner

design.
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PROOF OF EQUATION (60)

To prove

| = f(f) (Lf)a(L}’)b(LE)Cdrdz - -(;—Lgi—-j;)-r x 28
A e

Consider the linear transformation
+ ¢ (e)  (e)
(r,Z) (Li ’Lj )

The elemental area drdz is related to dLidLj through

r z (e) ,, (e)
i J
r z
where the Jacobian J
L&) (e)
i J
or or
{e) (e)
. s L
J L(e) | (e) =
i J 3z 3z
MOENS

Substituting Egs. (51) in (A-3) one obtains

r F4

e (o] = (7 m 2kl ) (rer ) Gz
L

k
J

= 2x (Area of triangle ijk) = 24
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(60)

(A-1)

(A-2)

(A-3)

-z k)

(A-4) '
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Hence, Eq. (60) becomes

! -1 {8)

| = [ / (L?)a(x_e)b(l -l Lledye 5y g fedg, (o)
(e)ug (&) ] b b
L1%'=0 L% =0
(A-5)
That is,
] a ‘-Lge)

l=2ax [ L‘(e) dt.‘(e) / (Lj)b(! - L§e) - LJ.(‘*))chj(“)

Li(e)-o Lj(E)-O

Using the definition of Beta function and Gamma function, the inner

integral is equal to35

(1- L(e))b+c+l blcl
i (b+c+1)1

Hence,

|
| = 2A x (e)f (Li(e))a x (1- Li(e))bﬂ:” X T%T'- dLi(e)
L. =0
]

Again using the same formula above,

alble!
|=2Ax-(;m (60)
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APPENDIX B

DEVELOPMENT OF ELEMENTAL RELATIONS

B.1 Application of Galerkin's Technique to a Finite Element

Equation (59) when applied to a single finite element yields

/1] Nje)t(¢')dV‘°) =0, u=1,2,...,0 (8-1)
(e)
A

where o is the total number of nodes in the element e (0 is 3 for a
linear and 6 for a quadratic element). For illustration purposes the
Galerkin's technique is applied to Eq. (6) in this development. Exactly
same procedure applies to Eq. (7) also. Hereafter, the superscript e

is dropped since this derivation is for one element only.

The first three terms in Eq. (6) contain second order partial
derivatives of ; which are reduced to first order by using Green's
theorem in a plane. Green's theorem in a plane region R bounded by a
curve C for two functions U(r,2) and V(r,2) isZQ(see Figure B.1 and note

that C is traversed in a direction that R lies to the left of C)
[[ (v _ au - -
R [az ar] drdz ﬁ Udz + ¢ Vdr (B-2)
c C
Identifying
2,2 =2~
U Nur (¢ ¢r)¢r

and
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i

Figure B-1. Green's Theorem in a Plane Region, R Bounded
by a Curve, C.

Figure B-2. Transformation of (r,z) Coordinate System to
the Natural Coordinate System.
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222 =2y: e s s
Ve N[t 6p)e, - 20656 ]

and applying Eq. (B-2) ylields after some manipulations

T I8 (N 2(22_%2y, .3 2 - -
£i {¢r[8r {Nur (e ¢r)} 35{2~ur ¢r¢2}

i R e e
U000, + 20,0, =+ (=) 4 (r=T)e 0, N 7]

~ 13 2,-2 _ =2
+ °z[az {Nur (c ¢, )

- - - - - ¢y ¢ 2
+ {(y+l)¢zz¢z + 2¢rz¢r + (y-l)¢rr¢z - (Y")'jrl )Nur ]
2-2
oz 2"' - 2" < 2'\
- (v - mrg ]Nur o+ 2w¢rNur 6, + 2w N r" o,

-1

+ w(Y-l)[E”, + —rr- + Bzz}Nurzc%} drdz

2022 _ 32y: L a3 3 : 2,22 _ =2y-
- fc N roL(e” - 8300, - 260,06 ldr ﬁcuur (c® - ¢.)0 dz,
u=1,2,...,0 (8-3)

It is simpler to evaluate the boundary integrals in Eq. (B-3) in terms
of the natural coordinates (s, n) where s is the coordinate along the
curve C and n is the coordinate normal to C and pointing away from the
region R (see Figure B~-2). Differential lengths dr and dz along the

curve C are related to ds by
dr = ds sin a

(B-4)

dz = ds cos a
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and the velocity components are related by

= 4 sina - cosa
¢r ¢s ¢n

(8-5)

b, = ¢sslnu + ¢n sina

2

Substituting Eqs. (B-4) and (B-5) in the boundary integral of £q. (B-3)

one obtains
iu - §cNur2[;s{(33 - az)cosu sina = 23r;z slnza}
- =2 = - 2
+ ¢, {c” = (¢,5ina - ¢_ cosa) Hds , u=1,2,...,0 (8=6)

It is to be noted that the contributions to the boundary integral
in Eq. (B-6) come only from the elements located on the boundary
surfaces of the inlet as the individual element contributions located in
the 'nterior of the inlet are cancelled as the element boundaries are
traversed in exactly opposite directions for the two neighboring elements.
Hence, though the individual element boundary integrals will be nonzero,
when the elements are assembled into a global matrix form, the internal
element contributions to the boundary integrals vanish. So Eq. (B-6)

is evaluated only for elements located along the boundary of the inlet.

B.2 Element Relations for an Internal Element

For an internal element the right hand side of Eq. (B-3) is not
evaluated as discussed above. The left hand side of Eq. (B-3) is eval-
uated by using linear interpolation functions for 3-node triangles and

quadratic interpolation functions for 6-node triangles (see Eqs. 51-58).
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B.2.1 Evaluation for a 3-Node Triangle (See Figure 5)

For a 3-node triangle the variation of the acoustic potential

over the element is given by

¢(r,z) = Li(r,Z)ii + Lj(r,Z)ij + Lk(r,2)5k (53)

and

$(r,z) = Li(r,z)¢>i + Lj(r,z)¢j + L (r2)9, (54)

For the sake of simplicity in evaluating terms in Eq. (B-3) the mean

flow quantities E, $_ and 52 within each element are assumed to be

r

constant and equal to the arithmetic average of their respective values

at the nodes i, j and k. However, the derivatives of the mean flow

22 S0 S etc. are evaluated assuming that

-1

quantities like arr’ $rz.
the mean flow quantities are varying linearly over the element just like
the acoustic potential. Also the coordinate r is assumed to have a
constant value r equal to the r-coordinate of the centroid of the element
except where the derivatives with respect to r are to be evaluated.

The following polynomial integrations of the area coordinates need

to be performed:
a. [fL drdz, yu=1i, j and k
u
A
and

b. {J Lu[Li¢i * Lo+ Lo ldrdz, w =i, j and k

Application of Eq. (60) to integrals a and b yields
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fderdz-z—eA-,
A M .
¥ =1, j and k

and n=1i,jandk (8-7)
[ (Lo, + Lo, + L ¢ ldrdz = 22 (6. +¢.+¢, +6 ¢ ]
AU %] k*k 2 T T T 0%

where Gun is the Kroneker's delta having the property

] ifu=n
= -8
o
0 ifu#n

Substituting Eqs. (B-7) in Eq. (B-3) one obtains the desired element

relation for an internal element:

(c.$. +c.b.+c, 0, ) c )
i i) Tkk y =2 =2 _ =2y hkpo- -2 -2
5% x[—z—-r (c ¢r)+-g'{f(c ¢r)
-y - - - - - - . =2
+rilce, - o0 )+ Lly+1)0 6+ 20 0, - =
-2
;ZxZA b

¢ o - - -
=)+ (=189, ) -Zrz{—ficbrsz

r

z
. 9,9
s (1%, 8, - (1) 25y x 26—“]

-2
2 2 ¢ -2 ~ - ~ - 2A
- (w-m ?)l‘ X (¢i+¢j+¢k+6un¢n) X-Z-E

o cibigcdtcd) . (b.d.+b.d. +b §)
+ 2, rr2 iYi45% k*k + 24 zr2 ivi 4 i k 'k

]F2($i+$j+;k+ Gu é )x2—-= 0,

+uly-1) x [}’rr+—-L+ }’zz
r

u=1i,j and k n=1i,j and k (8-9)
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B.2.2 Evaluation for a 6-Node Triangle (See Figure 5)

For a 6-node triangle the variation of acoustic potential over

the element is given by
¢(riz) = N (r,2)¢, + N, (r,2)0; + N (r,2), + N (r,2)0,

+ Nm(r,z)a)m + Nn(r,2)$n (55)
and

¢(riz) = Ni(r,2)e, + N (r,2)0; + N (r,2)8, + Ny(r,2)¢,
+ N (r,z)o + N (r,2)¢ (56)

where for corner nodes

N,o= 212 -
i i i
N, =202 - L, (57)
J J J
2
Nk = 2Lk Lk
and for mid-size nodes

Nl = l!LiLj
N = thLk (58)
Nn = ‘lLkLi

The same assumptions regarding the mean flow quantities and the
coordinate r made in Section B.2.1 are applied to the quadratic elements
also.

The following polynomial integrations of the area coordinates

need to be performed:
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au é! N¢, drdz

bu {{ Nu¢z drdz

oN
= K
lcu I/ =t ¢ drdz
u=i,j,k,2,m and n (8-10)
oN
= —K
Idu ff 52 ¢r drdz
A
BNu
leu = ff ? ¢Z droz
A
lep = I/ N, ¢ drdz
A
The integrations will be performed for u = i and u = 2. The integra-

tions for u = j and k and p = m and n can be obtained by a proper cyclic
rotation of indices i, j and k and &, m and n (see Eqs. (52)).

Case 1 u = |

Consider
lai = {{ Ni ¢, drdz

Substituting Eqs. (55/56), (57) and (58) into 'a yields
i

- 2 _ 1 - - -
:ai = I - 1) x5 x [(ALi Dego,+ (L -Neo.+ (L -Teys,

+ h(ciLJ. + Cj"i)d’z + lo(cJ.Lk+ ckLJ.)qam

+ h(ckLi + ciLk)¢ﬁ] drdz
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Simplifying and evaluating the integrals using Eq. (60) yields

- i i o
'ai = 70 [zcs"z €% T k% "'¢£(2cj c,) ¢m(cj+ck)

+ ¢n(2ck-ci)] (8-11)
Consider

b /f N, ¢, drdz
A
Substituting Eqs. (55/56), (57) and (58) into lb yields
i

- 2 _ A _ )
Ibi = {{(ZLi Li) T [llLi I)biqpi + (th I)bj¢j

+ (kLk- l)bk¢k + lo(biLj + bjLi)¢g + h(bij+ bij)¢m

+ h(bkLii-biLk)¢n] drdz

Simplifying and evaluating the integrals using Eq. (60) yields

‘ - - -
i = 35 (26,9, - bjé - byoy + (2b; = b0y = (b; +by)o,
+ (26, - b,)o ] (B-12)

Consider

aN

= [f—t
lci = {{Br ¢, drdz

Substituting as above from Eqs. (55/56), (57) and (58) into I, vields
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]
i ™ );[ (2A)2 (loL;- De, x [(ln.i- ”cid’i + (‘OLJ.’ I)chsj

+ (b, - e, ¢, + lo(ciLj-i-cJ.Li)‘;,g + h(chk+-cij)¢m

Kk
+ lo(ckLi + ciLk)¢n] drdz

Simplifying and evaluating the integrals using Eq. (60) yields
‘i 1 1 1 2
lei =7n % lego;ig) +ejo, (- g) + cp0, (- g +ej0,3)
2
+ ¢m(0) +C b, 05)] (8-13)
Consider

BN‘
ldi = {{ ES o drdz

Substituting as above from Egs. (55/56), (57) and (58) into l4; vields

= ] - - -
i = o B0 T Degey ¢ (b - ey,

- 1)
+ (th I,ck¢k + Q(ciLj-+chi)¢2 + “(chk+'cij)¢m

+ lo(ckLi + ciLk)¢n] drdz

Simplifying and evaluating the integrals using Eq. (60) yields

(2

Tai = 'lz)‘zis' X [‘:z"’i(%) *+cj0; (- 'é') * o (- ']6) *ep, )

)] (B-14)

+ ¢m(0) +c 3

k¢n

1
e
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Cons ider
f ¢ drdz

Substituting Eqs. (55/56), (57) and (58) into lg; Yields

1

V.= ff (4L, - 1)bix [ (4L, - 1)b,¢. + (4L, - 1)b.¢.

el A (2A)2 i i ivi J 37
+ (bL - V)b oy * k(biLj*‘bjLi)¢l + k(bij+ bij)¢m
+ A(bkl’i + biLk)cpn] drdz

Simplifying and evaluating the integrals using Eq. (60) yields

bi i 1 1

ei

bo, (3) + 0, (0) + b (] (8-15)

Consider

le.

&{ N ¢ drdz

Substituting Eqs. (55/56), (57) and (58) into lfi yields

ley =

2 2 2
{!(ZLi - L) x [ - e, + (2Lj - Lj)¢j

2
+ (2Lk Lk)(pk + hLiLJ¢E + thLk¢m + thLi¢n} dréz

Simplifying and evaluating the integrals using Eq. (60) vyields

]
bey = 2b x Loy ("Eb) ¢, 355 * 0, 360) +¢,(0)

* o g%) +¢,(0)] (B-16)
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Substituting Eqs. (B-11) - (B-16) into Eq. (B-3) yields the following

quadratic element equation for an internal element for the corner node i.

- Y N IR 2= = -2- -
la‘x [2r (c€ - ¢r) + 2rf(c c. - ¢r¢rr) - 2r 0pp0, = 2r%¢ ¢

r 2z
A TP TV -
H(YH)¢, 6+ 26 0, - = (Y-l)?; + (v=1)¢ 0, 1r"]

-~ -2 - - - - - - - -
+lbi x [2rf(c & - z¢zz) * {(Y+I)¢zz°z * 2¢rz¢r +
¢z¢r

.rv

} F2)

+ cv-l)irr$z - (y-1)

Y e222 =200 % o2 = = o = (=2 =2 -
+'ci[r2 c2 - ¢r)] - ldi[Zr ¢r¢z] + 'ei[r (c” - ¢§)]

-2
T =2.2_ 2¢ - -2 - - -2 -
Iﬂr w m ;—2] + Iai 2w r ¢r + Ibi 20 r ¢>Z
+ 0. w25 +—+s.1=0 (8-17)
fi rr r 2z

where the superscripts ~ and ~ refer to the real and imaginary parts of
the complex integrals in Eqs. (B-11) - (B-16) respectively. Element
equations similar to Eq. (B-17) for nodes j and k may be obtained by the
cyclic rotation of indices i, j and k and &2, m and n in the Eqs. (B-11) -
(B-16).

Case 2 u =2

Following exactly the procedure indicated in Case | one obtains

the following expressions for the integrals in Eq. (B-10) for u = ¢:
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Iy = jAj N,o, drdz

] | 1 4
= [c‘q)i(Ta) + ch)j ('Ta) + Ck¢k(' ‘3—0‘) + 'I-S" (Ci+Cj)¢2

2 2
* 5 (cj + 2ck)q>m * 75 (r.i + 2ck)¢n] (8-18)

by = f[ N2 ¢z drdz
A

|
= (oo, 70) + o () + by 50) + 73 (b + 5)e,
2 (b. +2b)é +~2 (b, +2b)¢] (8-19)
5 ) k'"'m 15 i k’"n
N,
tes = {g 3 ¢ drdz

by E0) 4y (L) 4 g (0) + 2k (2 2
7 [0 g + 05 (=) + 4, (0) + 57 (cf + cqep )

+ n ( + 2 v+t hrce)+ *n (c.c, + z
T CiG ik et T E kTS

+ 2cJ.ck + cjci)] (B-20)

BNQ
gy =] 57 0, aree

c.b, c.b, ¢
= % x [¢i(_'%_L) + o (—Jg—'—) + 0, (0) + —6& (2bc, + bic+ b,

¢
m
+ ijcj) t T (bicj + Zbick + bjcj + bjck)

¢

n -
(bick + bici + 2b.c, + bjci)] (B-21)

+ %k
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anl
e = [ w0 dree

b.b b,b ¢
P e R RORE RN

2

e b+ b+ B2 s bb )+ (bbb
T iYj itk V) TP T8 Ytk

+ 2b.b, + b.b, B-22
jbi + byb))] (8-22)

k
ley = {! N, ¢ drdz
=28 [5,(0) + ¢.(0) + o, (- =) + ¢, (z) +o_(z2)
i j k'~ 90 255 m 55
+ 4, (g5)] (8-23)

Substituting Eqs. (B~18) - (B-23) into Eq. (B~3) yields the following
quadratic element relation for an internal element for the mid-side node

. -=2 =2 2= = == =2= = =2 -
Iy x [2r(c® = ¢0) + 2r%(c e = o0, ) - 207 4,0, = 2r 6.9,

|

2

- - - - Ez r = - -2

* {(Y+])¢rr¢r * 20, - T (y-1) —+ (Y.‘)‘t’rq’zz}r ]
r r

+lb2 x [2r€(c c, - ézazz) + f(z+l)6zz$z + zérzér

- - 0.9, -
+ (r=1)8 8, = (=1)—%) )
r

. =22 =2y _ - -2 - - < =2 =2 =2
o x [r7(c® =0 )) =0y (27 00, 1 1 [r® (7 - 0,1
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-2
pos2p 2 2¢5 . o e -2 -
Tep Flw” = m 2 b+ 0 2ure + 1,0 20 o,
Moy ol G, +2L43 1=0 (8-24)
fr @ ¢rr . ¢zz

where the superscripts ~ and ~ refer to the real and imaginary parts
of the complex integrals in Eqs. (B~18) - (B-23) respectively. Element
relatlions similar to Eq. (B-24) for mid-side nodes m and n may be
obtained by the cyclic rotation of indices i, j and k and &, m and n

in the Egs. (B-18) - (B-23).

B.3 Boundary Integrai Evaluation for a Hard Wall

The boundary conditlion at a hard wall of the duct in terms of

real and imaginary parts is

and (15)

B.3.1 Evaluation of Hard Wall Boundary Condition for a 3-Node Triangle
(See Figure B.3)

Substituting Eq. (15) in the boundary integral expression given

by Eq. (B-6) one obtains
éu = fc NurZ[(ai - %3) cosa sina - 25r5253n2a];5ds (B-25)

For the 3-node element configuration shown in Figure B-3 the interpola-

tion functions along ¢ reduce to
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= £ 0<¢g<l (e-26)

Hence the variation of ; along ¢ becomes
o= (1= )4, + séj (8-27)
Application of the chain rule for differentiation yields
bgds = (4, = 0;)de (8-28)
Substituting Eq. (B-28) into Eq. (B-25) one obtains

s 2,72 _ =2 - - 2 ! M
By =t [ - cbz)cosa sina - 2¢ ¢, sin al f (l-g)[¢j-¢i]dg

j £=0 (£)
That is
5 = P22 - 30 o - 233, sinfa] <L %)
y r ¢r ¢z cosa sina ¢r¢z sin o > ,
p=1iand j (8-29)

Since $j and &i are unknown as of now, éu is transported to the left

hand side of Eqs. (B-3).

B.3.2 Evaluation of Hard Wall toundary Condition for a 6-Node Triangle
(See Figure B-3)

The boundary integral to be evaluated is given by Eq. (B-25).
For the 6~node element configuration shown in Figure B-3 the interpola-

tion functions along ¢ reduce to
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NI = 252 =3+ 1 7

N, = 262 - ¢

] L0 <£ <] (8-30)
N, =4 =€)

N =N =N =0 -

Hence the variation of ¢ along ¢ becomes
~ 2 2 2\~
¢ = (267 - 38 + 1)e;y + (267 - £)e; + he - €T, (8-31)

Application of the chain rule for differentiation yields

bos = [(4e - 306, + (he = Doy + 41 - 2¢)¢,]de (B-32)

Substituting Eq. (B=-32) into Eq. (B-25) and evaluating the polynomial

integrals leads to

éi - 72 [(c.plz_ - ;z) cOsq Sing - Zgraz stnza] X
[3,0- 3) + 5, (- %) + 5. 3)] (8-33)
AN LA A A S A

éj = 72 [(53 - $§)c05a sina - 25r Ez sinZa] x
(6. (1) + 5. @) + 5 (- 2) (8-34)
bilgl T otz T ety

and
él = 72 [(5i - 55) cosa sina - 2$r$z sinza] x

5,  +35,3 +3,(0] (8-35)
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As 6', 3} and ;z are un-.nown, 8 ., éj and él are transported to the
left hand sides of the corresponding equations in (B-3) for nodes i, j
and L respectively.

B.4 Boundary Inteyral Evaluation for a Soft Wall
(See Figure B-3)

The boundary conditions at a soft wall using the concept of con-

tinuity of particle displacement are given by

i I T
06, = X4, = Plup + 0.6 1 +—=[-wo_+0o_ o +o0
- -4
2 )0 3€ S (b 45 o
* (FT) E S W [w¢» * <:gﬁ'o@S.j (29)
and
. ) - - p b, L
x¢, +0b = -pl-wd + 001 - lwé, +d 0 + 00 ]
2., p 3¢ by .-
S G B g e v egd) (30)
[

In the absence of mean flow the above equations reduce to

0%, - xb, = wb (8-36)

- ~

x&n + 04 = wh (8-37)

n

Since Eqs. (B-36) and (B-37) do not contain the second derivatives of

the acoustic potential, one could use 3-node triangles to evaluate the

soft wall boundary conditions.
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B.4.1 Evaluation of Soft Wall Boundary Condition for a 3-Node Triangle
(Nc mean flow case only)

The boundary integral given by Eq. (B-6) reduce to the following

for the case of no mean flow:

-~ 2‘-

B =¢ Nr°¢ds (8-38)
The soft wall boundary condition for the case of no mean flow given by

Eqs. (B-36) and (B-37) are solved for $n and &n and on substitution into

Eq. (B-38) leads to

~ Y p
§o= g N (IR (8-39)
H cH g7 + x

Using the interpolation functions given by Eq. (B-26) for the element

configuration shown in Figure B-3 one may write

©
]

and (B-40)
(1-¢)¢, + 86 ;

-
]

The differential length ds along C is given by

_ 52 _o\241/2, )
ds = {(zj zi) + (rj ri) ] de Lijdg (B=41)

Substituting Eqs. (B-40) and (B-41) into Eq. (B-39) yields

1 w0 { (1-£) 4, + 241+ wx{ (1-€)¢, +£¢.)
d L. .dg

H f,=0 u 92+X2 i)

=1 and j
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Substituting for N from Eq. (B-26) and evaluating the polynomial

integrals yields

2, Ly -6(e, + 65 + sun¢n)

B o eametd (B-42)

H 2 2
6(6 +x ) -~ ~ -~
+x(¢i + ¢j + 6un¢n)

u=iadj n=iand]j
Since the nodal values of the acoustic potentials are unknown, éu is

transported to the left hand side of Eq. (B-3).

B.4.2 Evaluation of Soft Wall Boundary Condition for a 6-Node Triangle

Since the soft wall boundary conditions given by Eqs. (29) and
(30) contain second derivatives of acoustic potential in the presence
of a slip flow at the liner, quadratic elements or higher order ele-
ments are to be employed to treat suchk boundary conditions, Eq. (29)

and (30) can be solved simul taneously for $n and $n to yield

O 1, I IR S PO o s s s
oy = 2, . x 1= plwp + ¢s¢s) * (rwog + LPVLI L
2ypels -
+ C5) - (-wp + 0.6 )3
- o & - L
+ xx {- p(~wdp + ¢ ¢ ) - = (wp +o ¢ +¢ ¢ )
S S w S SS S S SS
- ) %f—:—j— (wh + b3 )1] (B-43)

and

T T R
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P ¢

s ~ - -~ - -~
T e (“¢s+ bssts ¥ ¢505s)

} -~ - .
[ 7,2 (o x (-0 (-wp + ¢3) -

2 x- ¢S ~ bl
- &) fg = (wp * ¢.8,) )

+ =2 -‘_’—-g———f (-wp + osb I ] (B-4b4)
[

Substituting Eqs. (B-32), (B-41) and (B-43) into the boundary inte-

gral in Eq. (B-6) and regrouping the terms one obtains

o i o ]
B o= rz[(¢i - ¢§)C05a sina - 2¢ ¢, sinzalé; N ¢ de

H =0 e
-2 _ - _
+ 92:_ 3 c2 - (¢z sing -~ . cosu)zlt.ij x
R © o 32)
fg=0 ptss !ty X 9 955’y O 9
~ - - p ;sass 2\ poac x =2
- - - p o+ 2
(20 9.8 " x (y-])aas cbs}
n - - 2\, 3¢ g =2
- —5_55 £ ) p 99
to {72 o x + - 8 + =) = b ¢ 3
+ {-(_Z_) 5.3; N + x
175 z 35 $8 * pux}
. 2, o 3C - - )
* (- G=) %s—s 0% " pwe}] dg , y = 1,j and 2 (B-45)
c
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The required polynomial integrals in Eq. (B-45) are evaluated below

by using Eqs. (B-30).

] 1
Sai = f NidE = f (2€2 - 3t + 1)dg =% (B-46)
&=0 £=0

1 ]

= = 2 - =l -
Saj f=0 N;dE fg=o 26° ~g dg = ¢ (B-47)
1 1 2
S,q = ja=o N dE = I€=o be(1-g)dg = 3 (B-48)
1 1 2
Spi = f€=0 Nidgdg = ] @€ - 36+ L= 309, + (e Do,
+ 4(1-28)¢ 1dg
1 1 2
= ¢i(‘ 5) + ¢J- (- g) + %(3‘) (B-49)
| 1 2 \
Spj f€=0 N;¢,dE = fg=o (26° - ©)[(4e-3)¢, + (45 - 1o,
+ 41 - 26),1de
IR NCE (8-50)
. / ' k(- ek 3)s, + (g 1)
s = N,¢ dE = b(g-€°)[(bg-3)¢, + (bE-1)¢,
L Tpa PR £=0 ' j
+ 401 -26)e 1de
- -2 2 -
] ] 2 2 2
Sei =/ Nede = (T -3ee )30+ e+ (267 - 6D
£=0 £=0
+ b -0, e
=0 (2 44 (- =5) + 6 () (B-52)
i ‘15 i 30 215



H
14] g
! ! 2 2 2
Sy = Njede = [ (267 - ©)[{2eT- 34 1)e, + (267 - £)oy
£=0 J £=0 j
+4(e - £)e e
=4, (- 52) + ¢, D) + ¢, () (B-53)
;" 30 * 453 2\T5
! ! 200002 2
m [ NgedE = [ u(E - ED)[(26%- 364 1)¢ + (262-E)0,
ce E..—.O €=O | J
+ h(E-E4)0,0dE
=0 D)+ b (D) + 0, (D) (8-54)
AU AR AT
Also from Eq. (B-30) one may obtain
6 =2 6.+ 4. - 20,] (8-55)
ss 2 i '
ij

Substitution of Eqs. (B-46), (B-49) and (B-52) into Eq. (B-45), for

W= i yields the desired evaluated boundary integral

s =222 =2 . e =2 4%
Bi =r [(¢r ¢Z)c05a sina 2¢r¢2 sin a]Sbi

-2
r.,,. - _ _
. N [c2 - (¢_sina = ¢ cosa)zl x
2 2 z r
8" + x
T 5, o2
[¢ss( w X ¢s) ai ¢ss(w b ¢s)san
XX =2 S
_ _ S'SS _ 2 \p 3 x 2 bi
=20 60 o G Tae D e
c ij
p oo - .- g
Lo T S'SS 2 \p 3c B 2, "bi
+{-2 dsz + w 6 + 1)6 S W ¢S }t?;
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2y BB sy
+ { (Y‘l - v $.0 + pwx } Sci
+ {-(i) .é ia_a X - -we} § ]] (3'56)
Y=-1" - 3 s P ci

where the superscripts ~ and ~ refer to the real and imaginary parts
of Eqs. (B-49) and (B-52) respectively.

Similarly, substitution of Eqs. (B-47) (B-50) and (B-53) into Eq.
(B-45) for u=j yields

v =20.=2 _ =2 . == 2 g
Bj =r [(¢r - ¢z)cosa sing - 2¢r¢z sin a]Sbj

;zLi' -2 - . - 2
+—--’—62+x2 [c” - (¢, sina = ¢_ cosa)”] x

W Y- E 3s ¥
T R
+ { (Y-l)zas 050 + pwx} S
2y BB, . Toag ]
+{ ]) - 5 ¢ X pme}scj] (B-57)

On similar lines, substitution of Eqs. (B-48), (B-51) and (B-54) into

Eq. (B-45) for u = % yields
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4
iy UG - 3D comn st - gy sl
F -2 - - 2
..._2_‘..1_2. [c - (¢ sina - ¢r cosa) 1,
8% + x z
~ _ é. -2 - é -2
[¢ss ( w X ¢s)sa£ * ¢ss(m9 ¢5)Sal
v (2530 - : 6s‘iss - (2 _a_éﬁ_:_.’_‘.'z} §_‘2&
P o8- — X Y17 = s w b L“.
+{-20 ¢.x + 5 55-55 8+ 2 ) é'éé 9'-2} EE&
p ¢S W v-1 (-: s W cbS LU
S2) R3C 5 oy fux) §
+{ (Y‘] =% ¢ 9 + puxl ScL
2R g Sue) d -
PURE S Bk - o) 8, ] (8-58)

As ¢i, ¢j and ¢Q are unknowns, Bi’ Bj and éz are transported to the
left hand sides of the ccrresponding equations in (B-3) for nodes i, j

and ¢ respectively,

B.5 Boundary Integral Evaluatior f-.- Fan Plane Source Condition

The sound excitation condition at the inlet fan plane could be pre-
scribed as velocity source (Eqs. 10 and 11) or a pressure source (Egs.
13 and 14). The boundary integral will be evaluated for both types of

source conditions.
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B.5.1 Evaluation of a Velocity Source Fan Plane Condition for a 3-Node
Triangle (See Figure B.4)

Along the curve C a is equal to 90° and assuming that the radial
component of the mean velocity is zero (which has been found to be
reasonable from the mean flow computations) the boundary integra: in

Eq. (B-6) reduces to
_ 2,2 _ =2,. _
8, = 9Sc N o - 8,05 ds (B-59)

The boundary condition in terms of a radially varying velocity source

is

(10)

ot
]
-y
—
-
A

and
5= f(r) (1)

since the direction of the outward normal is in the positive z direc-
tion. Using the interpolation functions given by Eq. (B-26) one may

write

-1
[}

(l-g)fi + gfj

-
[l

(I-E)ri + grj 0<¢g < (8-60)

and
ds = (rj - ri)dg

Substituting Eqs. (B-60) into Eq. (B-59) one obtains
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3o 00 -0y s erp? @3

P a0 B ((-p) fl+g?j}](rj-ri)dg

| —

Evaluation of the various polynomials in the above integrals yield
the following forcing boundary conditions for the linear element in

terms of a velocity source which form the right hand side of Eq. (B-3)

. (rj_ri)(az_ ai) " [fi{r?(% o (I—(‘T)"' r?(-j%)}

# F 020G + e ) + g (B61)

and
By = ()R- 8% ” () * vy )+ ) )
{,. (30) (%)«» r?(‘;-)}] (B-62)

B.5.2 Evaluation of a Velocity Source Fan Plane Condition for a
6-Node Triangle (See Figure B-4)

The boundary integral to be evaluated is Eq. (B-59). Making use
of the interpolation functions for quadratic elements given by Eq.

(B-30) one may write

3= (262 - 36+ DF, + (22 -£)F. + b(c- gD)F
n i } L
r= (1 -8)r, +&r; 0<e<
ds = (rj - ri)dg (8-63)

Substituting Eqs. (B-63) into Eq. (B-59) one obtains
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2
. 1 (2g -3¢+ 1) 2,-2 =2
- IE'O (262~ ¢) x LO=g)r +er 1™ - 07) x
] b(E- &) 2 - 2 2 2,z
2 (267- 36+ 1)F; + 287 €)F, + (2 - £7)F ]

x (r, = r;)dE

J

Evaluvation of the polynomials in the above integrals leads to the fol-
lowing forcing boundary conditions for the quadratic element in terms

of a velocity source which form the right hand side of Eq. (B-3)

= (rmr )@= 3D x (Rt qgh) + ryr ) + 1 )
+ 302 g o) e o)

+ W ) + e )+ - )Y (B8

B = (e )@ 3D X (R - gg) + rpr g+ e )

+ ?.{r?(-

j zzo) N (T) * rz(lé;)}

J
+ 4f {rz(‘ ‘) +r.r.( l) + fz(‘lo}] (8-65)
TV 170 ij'210 j'70

and

3 =2 =2 : 2, 2 ]
B, = h(rj-ri)(c -¢,) x [f, {ri(-7-6) FLr (2,0) J.(- 179 )

= 2 1 ] 2,1
+ fj{ri(- 5 * S1g (m) +r (-7-5)}

2 ) (B-66)

~ 2 ]
+ hfl{rierag) +r, ) +r (‘05)

B.5.3 Evaluation of a Pressure Source Fan Plane Condition ior a 3-Node

Triangle (See Figure B-4%)

The boundary integral to be evaluated is given by Eq. (B-59). The
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boundary condition in terms of a radially varying pressure source is

p=glr) (13)

and

p=g(r) (14)

One could solve for &nlan(52/$z in this case) in terms of p from

Eq. (8) only if ¢, # 0 to obtain

o, = - jﬂ&Ei;jéﬁil (8-67)
2
and
6. = lﬂi_:_éiél (8-68)
z b
z

Substituting Eqs. (13) and (B-67) into Eq. (B-59) one obtains,

_— 2,2 =2, [wb + g(r)/p]) .
8, = -ﬁNur(c -¢z) we 22 ds (8-69)
r4

Following the procedure indicated in Section B.5.1 and using the

interpolation functions given by Eq. (B-26) one may write

9= (1t)g; +¢g;

ﬂ
i

(1 -ﬁ)ri + er; (B-70)

and ds = (r, - ri)dg
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Substituting Eqs. (B-70) into Eq. (B-69) yields

- ! (&*- 32
o= 8 - ey +er, 2 -—-——c X

gmo (&) ',

+1 [(14)g, + eg;l} ] (rj-r;)ee
P

Evaluating the various polynomials in the above integrals yield the
following forcing boundary conditions for the linear element in terms
of a pressure source which form the right hand side of Eq. (B-3) (note
that the terms involving Qi and $j are transported to the left hand
side of Eq. (B-3) as they are unknown yet)

(c2- 33

Bn =o- __—_"—_ (rj‘!'i) X

4’2

3
[+ @) + vy ) + ol g
P

9. . |
= wb N (rH ) + rir ) + 1) ()] (8-71)

and

i - 2,1 ] 2,1
[(5—-4- wh;) (rilg) + i (g + s (30}

-~

g. .
(L e wb et gg) v )+ @] (3-72)
o J
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B.5.4 Evaluation of a Pressure Source Fan Plane Condition for a
6-Node Triangle (See Figure B-h)

The boundary integral to be evaluated for the case of a pressure

source is given by Eq. (B-69). Incorporating the interpolation func-

tions for quadratic elements given by Eq. (B-30) one may write

(26% - 3¢+ 13, + (262 )3, + 4",

[T X
[ ]

-
[ ]

(267 - 3¢ + Né; + (262 - £)$j+-h(£-52)&g
(8-73)
r= (1= g, +ery

ds = (rj - ri)dg

Substituting Eqs. (B-73) into Eq. (B-69) yields

-2 -2
N 1 2_..., (c® - 93)
B, = - (252 3e+1) (Q-g)r, + Er.}2 —_— Z x
; £=0 (26°-¢) ! o,
L b(e-¢?)

{w[(2c2-35+1)$i+(252—c)$j+h(z-az)$il

+ L [(252-3s+:)§i+(252-e)§.+n<a-a2>§£1}
5 i

x (rj - ri)dg

Evaluating the various polynomials in the above integrals yield the
following forcing boundary conditions for the quadratic element in
terms of a pressure source which form the right hand side of Eq. (B-3)
(note that the terms involving @i, $3 and 65 are transported to the

left hand side of Eq. (B-3) as they are unknown yet)
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-2 =2
- (c -¢,z)(rj-r;)

i -
$

X

-~

9,
i ~ 2,11 ] 2 H
(g- + wtﬁi){fi(‘rﬁs‘) + l"l'j (ﬁ) + l‘j (m)}

9 - 2, ] 1 2 1
+(E-L + mct)j){ri!.’ EE) + rirj (' ‘—og) + rj (- B-E)}

9
L, a2 ] o, 2, ] _
"'“(g" *'m%){rj ('7-6) + "ifj (m) + rj (- 1;2—0)} (8-74)

«2 =2
- (c - ¢)(r.'r.)
g, = - — z 4 L ox
J ¢2

g.
[(EL + w%)(r?(- '8'}0') + rirj(- T%) + r;‘.’ (- 37"')}

|- ¢

8 .
PUEE e )0 ) ¢ ) ¢ ) (8-75)

~ 2 ] 1 2, 11,
+ m@J.)(ri(—z—"'a) + rirj('h'z-) + I"J(‘—O-S')

heo1) L«a:
t -

. (c -¢)(r -r.)
Esl=-‘-0—c~— _2 Lx

¢

Z

9, .
e b0 rr ) )

5 70 210 "0
+ (;l«» B gg) v ) ¢ o )
W s ) () +ror () - (7o b)) (B-76)
M AN 5 i"i'70 105

™
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B.6 Boundary Integral Evaluation for Inlet Entrance Plane

The boundary condition at the inlet entrance plane in terms of a
general radially varying radiation impedance is expressed in Eqs. (34)

and (35):

$. (66 - 9.)-cx b, =wh+d (34)
(c® -9.)=-wd+dd (35)

B.6.1 Evaluation of Entrance Plane Radiation Condition for a 3-Node

Triangle (See Figure B-5)

Noting that along the curve C a is equal to 270° the boundary

integral in Eq. (B-6) reduces to
s _ 205 (ot y L (22 _ 72 )
B, = ic Nrle (-2 8.3,) + 6 (- 3;)ds (8-77)

Noting that for the configuration in Figure B-5 S and n are in the
opposite directions to r and z respectively
;o 20 = = -2 =2, )
Bo=$ N rol-26 8,6+ (c° - 8)8,]dr (8-78)

The boundary conditions given by Eqs. (34) and (35) can be solved for

$_ and %Z and on substitution into Eq. (B-78) yields

z
-2 =2
8= $r°N [-25 5.5 + o) {co_-3,)(wb + ¢ 6 )
u u r2'r Ae e z rr
+cox (-wb + ¢ ¢ )}]dr (B-79)
where pe = [c Ge - 52)2 + (c xe)2



152

Incorporating the interpolation functions given by Eq. (B-26) one may

write
o= (1-8)e; + to, (8-80)
r= (1 -F,)ri + grj

Substituting Eqs. (B-80) into Eq. (B-79) one obtains

1
g, = [ (Pg)x HI-S)”‘+EH]2x

i Ty (8)
2$r$l($i - ¢ )/(ri -r.)
(c” - 95) i i o
i x ¢(c 6 - ¢z)(w{(l—g)¢i+g¢j}
: o
+ rr-r (¢i— ¢J))
i

+(e x (ol (1-£)9, +ed))
o, o
+ YF?:fET (¢; - ¢j))
X (rj - ri)dg (B-81)

Evaluating the various polynomial integrals assuming that the mean flow

variables and the radiation impedance to be constant over the element

leads to
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By = 28,0, 81 + ryr () + (]

('2 '2
< - ¢,) ! 2]
e x (ce -cb )w(r o ) {e, [r (—) + r|rJ(|o) (30)]

[l (gg)+ ryry (3) + 1o () D
+(20,- 8,08, (5, -8 )i+ rir @)+ 2y
“exgulry =) Gt @ e () + od i)

+8,[r ) + v () + 1 () D)

exg 3.0, ¢ @) ¢ ) fe-82)

and

B, = 288,00, 9)[rf () + riri (@) + vl (G

x [@o -8 utr - r) GIrlGH + vy (0) + 1 (5]
+ . [3 g) e () + s @)

10

+(€0,- 3,08, (0, =) r G+ rie () 4l Q)

“(@ xolr; = r) (G +ryr (D) + 1 ()]
#,163 (gg) + e ) + @)

SRR RIS (Bl e
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Since the acoustic potentials are unknown yet, éi and éj are transported
to the left hand sides of the corresponding equations in (B-3) for nodes
i and j respectively.

B.6.2 Evaluation of Entrance Plane Radiation Condition for a 6-Node
Triangle (See Figure B-5)

The boundary integral to be evaluated is given by Eq. (B-79).
Incorporating the interpolation functions given by Eqs. (B-30) one may

write

-
L}

(267 - 36+ D)o, + (262 - D)o, + u(e - £D)gy

-
]

(- &r, + Erj (B-84)

Substituting Eqs. (B-84) into Eq. (B-79) one obtains

-2 =2
. 1,2 (c™-9¢) A
5. = f (2¢ ; 3E+1) __7§;_j£_ (e 6 -8,)(wh+3 )
. £=0 (28"-¢) x
2 4(t- 52) +c xe(-w$4-$r$r)} r2dr
-2¢r¢z¢>r

Evaluating the various polynomials in the above integrals yields

. (r, - r)E2-3)

i Ae

X

G e e @
TT oy i g v el
S xg {uld, (GF) + 8 (- 5g) + 4,
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202 38,08, ) + 3, @ + 5,3 (8-

where r = (ri + rj)/2

-2 -2 -2
— r (ri-rj)(c - ¢,) )

J Ae
- - ~ ‘ ~ 2 N ]
(c ee- ¢z) {w[*t»i(‘ %) + ¢j (Tg) + 4)2(—1-5-)]

Gy ey e - 31
() o;lg T o Y e ln 3

-2r2 50,06, + 8,3 + 5, 3) (8-86)

w

and

=2 -2 -2
r (r;-rj)(c - ¢,)
L lde

X

- - - 1 ~ | A 8
{c ee - ¢Z) {w[(bi(—"g) + ¢J- (‘—g) + ¢£(T'5')]

¢r ~ 2 ~ 2 ~
- T [¢i(- '3') * o (-3') + ¢>£(0)”
~ ~ , 8
-c x {w[cb' (T-S') + d)J. (]—5) + ¢ (ﬁ)]

.2 . 2
+ F—'—F? (6,3 + 4,5 + 3, (0)1}

- 272 ?brTb [3)5(- Z) . ¢J. (%) + %Q(o)] (B-87)
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Since the acoustic potentials are unknown yet, éi' éj and 52 are trans-
ported to the left hand sides of the corresponding equations in (B-3)

for nodes i, | and 2 respectively.
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Figure B-3. Linear and Quadratic Elements on Inlet Wall.
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Figure B-5. Linear and Quadratic Elements on Inlet
Entrance Plane.
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APPENDIX C

ACOUSTIC INTENSITY AND POWER CALCULATIONS

C.1 Derivation of Equation (64) for Acoustic Intensity

Recall that the assumptions of the theoretical model are: fluid
is inviscid, non-heat conducting and satisfies the ideal gas law. The
fluid flow is isentropic. Hence the steady state stagnation enthalpy
is constant. The present objective is to evaluate an expression for
acoustic intensity for a wave propagating in a flow with gradients.

For any closed surface S fixed in flow the total outward energy

flow, E is

E= [ N-nds (c-1)

where N is the energy flux vector

>

and n is the unit outward normal vector.

And
N=1Jm (c-2)

where J is the specific stagnation enthalpy
and m is the mass flux vector.
Substituting Eq. (C-2) into Eq. (C-1) and taking the time average of

the equation one obtains

<E> = </ Jm - n ds - (C-3)
5
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T
where the operator <( )> = Lim -%T [ ()dt
-7

T+=

Since S is fixed the time averaging operator and the integral operator
can be exchanged and noting that n is not a function of time Eq. (C-3)

reduces to

<€>= [ <Jm> -ndS (C-4)

The energy flux vector, N, is a second order quantity in terms of
acoustic perturbations. Hence in the development of an expression for
N one needs to retain terms up to second order in J and m individually
rather than considering N as made up of product of only first order per-
turbations. This subtle point has been noted by Zinn36 in the context
of evaluating acoustic losses in short rocket motor nozzles. By per-
forming time averaging operation on the continuity equation containing
terms up to second order perturbations and also assuming periodic first
order perturbations, Zinn has shown that the time averaged value of the
second order perturbation of m is a constant that can be chosen to be
equal to zero without any loss of generality. An identical operation
on Euler's equation for the case of compressible irrotational flows
shows that the time averaged value of the second order perturbation of

36

J is also zero. Hence, the contribution of second order perturba-
tions of J and m towards the time averaged acoustic intensity is zero.
Subject to this qualification, one can express J and m as composed of

only a steady state component and a periodic acoustic component, i.e.,
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J(x, t) =3 (x) + J'(x,t)
and (c-5)

m(x, t) =m(x) + m'(x, t)

Under the isentropic assumption made the steady state stagnation enthalpy
J is a constant and not a function of the position vector, x. Substi-
tuting Eq. (C-5) into Eq. (C-4) and noting that J and @ are independent

of time and that the time averaged values of the periodic acoustic

quantities are equal to zero, one obtains
<E> = J f @- n ds + f <3‘m'>- n ds (c-6)
S S

The continuity equation corresponding to the steady state quantities

in the integral form reads

[ m-hds=0 (c-7)

Hence the first term in Eq. (C~6) contributes nothing towards the out-

ward energy flow, that is

<E> = [ <J'm'> * ndS (c-8)
)

Since J @ corresponds to intensity in the absence of acoustic pertur-
bations one may define the time averaged acoustic intensity as the

difference in intensities <Jm> and J m, that is

= - 1m o= (] -
<V icoustic> = IM> - Jm=<dim'> (c-9)
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The specific stagnation enthalpy J is given by

J=h +'% [v|? (C-10)

where h is the specific enthalpy

and %-lylz is ti:: specific kinetic energy.

An acoustic perturbation of Eq. (C-10) yields

J' = h' 4y -y (c-11)
A similar acoustic perturbation of mass flux vector m yields
m =p v' +p'y (c-12)

The classical Maxwell's relations37 for the isentropic situation

yield
h‘ = c&h )p‘ = RL
3P s 5
and (c-13)

where s is the specific entropy of the system.
Substituting Egqs. (C-11) - (C-13) into Eq. (C-9) yields the desired

expression for the time averaged acoustic intensity

N

<

p

+ AR IARE - (§ . v')Eﬁ-g > (c-14)

v Y

(

<t

> = <pl!| +

N
L |

<l s
=acoustic

[q WL}

P
For the case of an irrotational and uniform entropy flow, the mean and

acoustic velocities v and v' in Eq. (C-14) can be expressed as gradients
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of mean and acoustic potentials a and ¢' respectively. Hence the
acoustic intensity in the direction of a unit vector a is

VE' a 2
. L] i . [ ]
<1acoustic> 2= <piVer> 2tz -2 P ?
pC
. (vo-a) _
+olve + <vg'Ve'>] " 3 + 5 Vo <p'Ve'> (64)
c
which is the desired relationship.
The time averaged energy flow across a surface S is then
Jacoustic> ©nds (65)

<E> = f <
S

C.2 Evaluation of Acoustic Power at the Inlet Boundaries
and dB Calculations

Equation (65) has to be evaluated at the fan plane, Inlet entrance
plane and the inlet walls to determine the acoustic power input into
the inlet, the acoustic power output of the inlet and the acoustic power
absurbed by the lined inlet walls respectively.

In this context, it can be shown easily that for two sinusoidal

functions given by

q = Re[Q e '“f]
and

r = Re[R e ']

where Re[ ] = Real part of [ 1,
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- Q and R are complex quantities given by
Q=Q3+iQ andR=R+ IR
the time averaged value of qr is
<gr> -%Re(Q 1 (c-15)

where R* is the complex conjugate of R.
This result is used repeatedly in evaluating the various time averages
occurring in Eq. (64).

C.2.1 Acoustic Power Input into the Inlet at the Fan Plane

At the fan plane the unit outward normal points in the positive

2Z-direction. Hence the acoustic power input is

ds (c-16)

<E>

input / Vacoustic™2

Fan plane

Since the integrand is independent of the azimuthal angle @, Eq. (C-16)

can be integrated with respect to o to yield

rof

<E =2'nf

Tif

rdr (c-17)

>, | :
input “Yacoustic’2

where rof and rof 2re the inner and outer radii at the fan plane
respectively. Application of Eq. (C-15) and (64) along the positive

Z-direction yields

| ¢, T L. b, 2 .2 - 2 .2

acoustic®2 ™ -2-[(1 + -,C—z—) (po, +p ‘1’;) + 5—52(;: +p°)+ o ¢Z(¢z+¢z)
e . 6 ¢

Yo 6,.(00,%00) ¢ rzz (Pé,*p ¢r)] (c-18)
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Equation (C-17) is evaluated for the finite elements located on the

fan plane by calculating the time averaged acoustic intensity in terms
of the element centroidal values of the acoustic variables for the sake
of simplicity. Hence the acoustic intensity as calculated by Eg.

(C-18) over each such element is constant and can be taken out of the
integral in Eq. (C-17). Hence the contribution of one element located

on the fan plane to Eq. (C~17) is (see Figure B-4)

r.

J
e e
<t >input = 2n ('ac0ustic>z &wr rdr
i (c-19)
e 2 2
<‘:-Jccu«:.tic)z (rj ri)

Summation of Eq. (C-19) for all the z2lements located on the fan plane
yields the total time averaged acoustic power input, i.e.,
<E> = §  <«% (c-20)
input ot input
where NF Is the number of elements located on the fan plane.

€.2.2 Acoustic Power Qutput at the Inlet Entrance Plane

At the inlet entran-e plane the unit outward normai points in

the negative Z-direction. Hence the acoustic power output is

<E>output = <lacoustic>zds (c-21)

Entrance plane

Again Eq. (C-21) can be integrated with respect to 6 to yield
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<lacoustic>z rdr (C-22)
where r and oe 27€ the inner and outer radii at the inlet entrance
plane respectively.

Equation (C-22) is evaluated for the finite elements located on the
entrance plane by calculating the time averaged acoustic intensity as
in Section C.2.1. Hence the contributior of one element located on the

entrance plane to Eq. (C-22) is (see Figure B-5)

r.
1

_c€ - . e
€ >output 2m <lac0ustic>z fr rdr
J
_ e 2 _ 2 _
- “acoustic’z (ri rj) (c-23)

Summing of Eq. (C-23) for all elements located on the entrance plane

yields the total time averaged acoustic power output, i.e.,

= € -
<E>output egl < >output (c-24)

where Ne is the number of elements located on the inlet entrance plane.

C.2.3 Acoustic Power Absorbed at the Inlet Walls

The acoustic power absorbed by the inlet walls is

- [ <1 = ds (C‘25)

<ED> >
E absorbea acoustic n
Inlet wall

Since the integrand is independent of €, Eg. (C-25) can be irtegrated

with respect to 6 to yield (see Figure B-3)
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<E = 27 f <] ds (c-26)

> . > r
absorbed acoustic n

where s Is the natural coordinate along the inlet wall. Substituting

Eq. (B-41) into Eq. (C-26) leads to the expression for <E>absorbed

for a single element located on the inlet wall

]
e e

>absorbed = 2m j€=0 <|acoustic>n

<E [(]-g)ri+£rj}l'ijd€

(c-27)
Noting that at the inlet walls the normal component of the mean flow
velocity is zero, Eq. (64) reduces to the following expression for the
acoustic intensity normal to the inlet wall
= v 89 L Con . 0y ' -
<'acoustic>n <P on *o(ve-ve') an (C-28)
Evaluating the vector dot product in terms of the natural coordinates
(s*n) and using Eq. (C-15), Eq. (C-28) reduces to

=L (G +pd)+s s
=z o, tpo)*o o,

<|acoustic>n ot b0 )] (c-29)

Equation (C-27) is evaluated for the finite elements located on the

inlet wall by calculating the normal component of the time averaged

acoustic intensity in terms of the centroidal values of the acoustic
variables using Eq. (C-29). Hernce the contribution of one element

located on the inlet wall to Eq. (C-27) is

]

<Ee>
absorbed

(l-i)ri+ng]Ling

e
2n<| . o> [
acoustic n g=0

= <« € > -
- “Tacoustic n Lij(ri+ bj) (¢-30)
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Summing of Eq. (C-30) for all elements located on the inlet wall yields

the total time averaged acoustic power absorbed by the inlet wall, i.e.,

<Ee

Nw
<E>absorbed = e£! >absorbed (c-31)

where Nw is the number of elements located on the upper and lower walls
of the inlet. An obvious conclusion from Eq. (C-29) is, the normal
component of the acoustic intensity at a hard wall is zero since én
and &n are prescribed to 'e zero there. Hence for a hard wall the

acoustic power absorbed is zero.

C.2.4 DB Calculations and the Principle of Conservation of Acoustic
Energy

Once the energy fluxes at the inlet boundaries are determined by
Eqs. (C-20), (C-24) and (C-31) the dB calculations are performed to

estimate the effectiveness of a liner. The dB for a liner is

reduction

defined by

<E>,
input

<E>
output

dB =10 ]og,io (66)

reduction

The orinciple of conservation of acoustic energy states that the
acoustic power input should equal the sum of acoustic power output and

the acoustic power absorbed, i.e.,

(C-32)

+
E>input <E>output <E>absorbed

For a hard walled inlet £q. (C-32) reduces to
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<t = <E

>, = <E>
input outnut

and hence

dB . =0 (c-33)
reduction| . 4 walled
Inlet
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APPENDIX D

GEOMETRICAL AND MEAN FLOW DATA FOR THE QCSEE AND
BELLMOUTH INLETS

The quadratic triangulization scheme is used for predicting the
attenuation of sound due to liners on the inlets' upper walls (see
Figures ba and 4b). As one may observe the total number of nodes
equals 289 and the total number of elements equals 126 for both the .
QCSEE and Bellmouth inlet triangulization schemes. The total number
of corner nodes equals 82 and the total number of mid-side nodes equals
207. The geometry of the inlets is specified in terms of the corner
node number, IL and its Z- and r- coordinates, Z(IL) and R(IL) respec-
tively. The '""compressible' two dimensional axisymmetric mean flow at
the corner node number, IL in terms of the axial and radial velocity
components, QZ(IL) and &r(IL) correspona to an average exit Mach number
of 0.52. The free stream Mach number, M_ equals 0.12 for the QCSEE

inlet and M is 0.0 for the Bellmouth inlet.




Table D-1.

Geometrical and Mean Flow Data for

the QCSEE Inlet
(Mw = 0.12, Me = 0.52; See Figure L-a)
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z(iL) R(IL) ¢, (1L) ¢, (1L)

! 0.0 1.0500 0.0000 -0.5387

3 0.0 0.7875 0.4364 -0.2204

5 0.0 0. 5250 0. 4401 -0.0958

7 0.0 0.2625 0.4330 -0.0276

9 0.0 0.0000 0.4315 0.0000

20 0.1 0.9182 0.6271 -0.3934
22 0.1 0.8034 0.5993 -0.3026
24 0.1 0.5739 0.5166 -0.1129
26 0.1 0.3443 0.4850 -0.0415
28 0.1 0.1148 0.4766 0.0057
30 0.1 0. 0000 0. 4752 0.0000
41 0.2 0.8768 0.7618 -0.2545
43 0.2 0.6576 0.6283 -0.1264
bg 0.2 0. 438k 0.5484 -0.0577
47 0.2 0.2192 0.5232 -0.0011
4y 0.2 0.0000 0.5146 0.0000
60 0.3 0.8564 0.8215 -0.1358
62 0.3 0.749k4 0.7196 -0.0868
6l 0.3 0.5353 0.6047 -0.0502
66 0.3 0.3212 0.5646 -0.0101
68 0.3 0.1071 0. 5600 0.0400
70 0.3 0.0000 0.5590 0.0000
81 0.4 0.8500 0.7894 -0.0205
83 0.4 0.6375 0.6930 ~0.0353
85 0.b 0.4250 0.6146 -0.0234
87 0.4 0.2125 0.5845 0.0115
89 0.4 0. 0000 0.5759 0.0000
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Table D-1. (Continued)

" Z(IL) R(IL) ¢Z(IL) ¢r(lL)
100 0.5 0.8516 0.7395 0.0188
102 0.5 0.7452 0.7059 0.0037
104 0.5 0.5323 0.6355 -0.0086
106 0.5 0.3194 0.6131 -0.0042
108 0.5 0.1065 0.5948 0.0505
1o 0.5 0. 0000 0.5942 0.0000
121 0.7 0.8638 0.6648 0.0550
123 0.7 0.6479 0.6340 0.0291
125 0.7 0.6319 0.6067 0.0185
127 0.7 0.2160 0.5892 0.0196
129 0.7 0.0000 0.5865 0.0000
140 0.9 0.8847 0.5969 0.0710
142 0.9 0.7741 0.5970 0.0603
144 0.9 0.5529 0.5746 0.0408
146 0.9 0.3318 0.5621 0.0346
148 0.9 0.1106 0.5472 0.0625
150 0.9 0.0000 0.5449 0.0000
161 1.1 0.9109 0.5401 0.0751
163 1.1 0.6832 0.5425 0.0616
165 1.1 0.6555 0.5246 0.0559
167 1.1 0.2277 0.4953 0.0491
169 1.1 0.0000 0.4608 0.0000
180 1.3 0.9389 0.5023 0.0699
182 1.3 0.8215 0.5131 0.0680
184 1.3 0.5868 0.5005 0.0773
186 1.3 0.3521 0.4734 0.0900
188 1.3 0.117h 0.3461 0.1180
190 1.3 0.0000 0.2284 0.0000
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Table D-1. (Continued)
N z(IL) R(IL) s, (1L) ¢, (1L)
201 1.4 0.9525 0.4876 0.0647
203 1.4 0.714k 0.5042 0.0719
205 1.4 0.4763 0.4880 0.0988
207 1.4 0.2381 0.3829 0.1657
209 1.4 0. 0000 0.0000 0.0000
220 1.5 0.9652 0.4817 0.0593
222 1.5 0.8722 0.4985 0.0595
224 1.5 0.6862 0.5067 0.0691
226 1.5 0.5002 0.5036 0.0981
228 1.5 0.3142 0.4433 0.2121
230 1.5 0.2212 0.3765 0.3361
2l 1.6 0.9765 0.4748 0.0524
243 1.6 0.80639 0.4999 0.0540
245 1.6 0.6373 0.5142 0.0763
247 1.6 0.4676 0.5192 0.1474
249 1.6 0.2980 0.4970 0.2980
260 1.8 0.9935 0.4750 0.0316
262 1.8 0.9165 0.4853 0.0305
264 1.8 0.7624 0.5127 0.039!
266 1.8 0.6083 0.5408 0.0626
268 1.8 0.4542 0.5977 0.1282
270 1.8 0.3771 0.6177 0.1583
281 2.0 1.000 0.5053 0.0000
283 2.0 0.8500 0.5124 0.0108
285 2.0 0.7000 0.5316 0.0205
287 2.0 0.5500 0.5634 0.0251
289 2.0 0.4000 0.5887 0.0000




173

Table D-2. Geometrical and Mean Flow Data for
the Bellmouth Inlet
(M_ = 0.0, Mo = 0.52; See Figure L-b)

I 2(iL) R(IL) s, (1L) ¢ _(IL)
1 0. 0000 1.0000 0.0000 -0,2020
3 0.0000 0.7500 0.,2239 -0.1860
5 0. 0000 0.5000 0.2460 -0.0885
7 0.0000 0. 2500 0.2459 -0.0381
9 0.0000 0.0000 0.2457 0.0000
20 0.0690 0.8147 0.1770 -0.2932
22 0.0690 0.7129 0.2891 -0.1684
24 0.0690 0.5092 0.2764 -0.0898
26 0.0690 0.3055 0.2690 -0.0466
28 0.0690 0.1018 0.2655 -0.0146
30 0.0690 0.0000 0.2620 0.0000
b 0.1379 0.7716 0.3492 -0.1856
43 0.1379 0.5787 0.3144 -0.1033
L5 0.1379 0.3858 0.2956 -0.0581
L7 0.1379 0.1929 0.2868 -0.0265
L9 0.1379 0.0000 0.2781 0.0000
60 0.2759 0.7198 0.3908 -0.0978
62 0.2759 0.6298 0.3820 -0.0856
64 0.2759 0. 4499 0.3452 -0.0546
66 0.2759 0.2699 0.3267 -0.0306
68 0.2759 0.0900 0.3191 -0.0099
70 0.2759 0.0000 0.3115 0.0000
81 0.4138 0.6897 0.4306 -0.0537
83 0.4138 0.5173 0.3853 -0.0361
85 0.4138 0.3449 0.3597 -0.0261
87 0.4138 0.1724 0.3478 -0.0134
89 0.4138 0.0000 0.3358 0.0000
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Table D-2. (Continued)
I 2(1L) R(IL) s, (1L) 6 (IL)
100 0.5517 0.6897 0.3818 0.0000
102 0.5517 0.6035 0.3984 -0.0057
104 0.5517 0.4311 0.3808 -0.0150
106 0.5517 0.2586 0.3682 -0.0113
108 0.5517 0.0862 0.3621 -0.0040
110 0.5517 0. 0000 0.3559 0.0000
121 0.8276 0.6897 0.3640 0.0000
123 0.8276 0.5173 0.3858 -0.0011
125 0.8276 0. 3449 0.3811 -0.0011
127 0.8276 0.1724 0.3762 -0.0005
129 0.8276 0. 0000 0.3714 0.0000
140 1.1034 0.6897 0.3661 0.0000
142 1.1034 0.6035 0.3903 0.0018
144 1.1034 0.4311 0.3852 0.0075
146 1.1034 0.2586 0.3743 0.0110
148 1.1034 0.0862 0.3618 0.0061
150 1.1034 0.0000 0.3492 0.0000
161 1.2414 0.6897 0.3810 0.0000
163 1.2414 0.5173 0.3942 0.0090
165 1.2414 0.3449 0.3803 0.0225
167 1.2414 0.1724 0.3485 0.0295
169 1.2414 0. 0000 0.3167 0.0000
180 1.3793 0.6897 0.3986 0.0000
182 1.3793 0.6035 0.4089 0.0075
184 1.3793 0.4311 0.3976 0.0290
186 1.3793 0.2586 0.3633 0.0655
188 1.3793 0.0862 0.2123 0.1121
190 1.3793 0. 0000 0.00)00 0.0000
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Table D-2. (Continued)

N z(1L) R(IL) 4, (1L) ¢, (1L)
201 1. 4483 0.6897 0.4046 0.0000
203 1.4483 0.5485 0.4134 0.0168
205 1.4483 0.4074 0.4020 0.0413
207 1. 4483 0.2662 0.3731 0.0867
209 1.4483 0.1250 0.1880 0.2350
220 1.5172 0.6897 0.4121 0.0000
222 1.5172 0.6250 0. 4240 0.0084
224 1.5172 0.4957 0.4188 0.0294
226 1.5172 0.3664 0.4060 0.0616
228 1.5172 0.2371 0.3794 0.1282
230 1.5172 0.1724 0.3480 0.2067
24 1.6552 0.6897 0.4304 0.0000
243 1.6552 0.5755 0.L4426 0.0194
245 1.6552 0.4613 0.4385 0.0460
247 1.6552 0.3470 0.4283 0.0871
249 1.6552 0.2328 0.4107 0.1540
260 1.7931 0.6897 0.4514 0.0000
262 1.7931 0.6897 0.4514 0.0000
264 1.7931 0.5378 0. 4657 0.0269
266 1.7931 0.4365 0. 4664 0.0589
268 1.7931 0.3352 0. L4656 0.1068
270 1.7931 0.2845 0. 4587 0. 1434
281 2.0000 0.6897 0.4745 0.0000
283 2.0000 0.6013 0. 4940 0.0110
285 2.0000 0.5130 0.5006 0.0213
287 2.0000 0. 4246 0.5183 0.0352
289 2.0000 0.3362 0.55'3% 0.0421

o
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