Flight Planning to Avoid High Ozone

Arthur D. Belmont Control Data Corporation

1.0 THE PROBLEM

How to most cost-effectively prevent cabin ozone from exceeding a given standard, for more than a permitted duration or frequency.

Some combination of hardware and flight planning seems a reasonable approach to avoid overdesign.

2.0 QUICK REVIEW OF CABIN OZONE CLIMATOLOGY (See Figures 1-7, Table 1)

- 2.1 Statistical summaries of the vertical distribution of ozone are available in:
 - Ref 1: Ozonesonde Data for North America, 1962-1975, at standard atmosphere altitudes, Aug 1977.
 - Ref 2: FAA Guidelines for Flight Planning, Jan 1978. As an improvement over climatological average ozone, guidelines are presented for estimating ozone in terms of forecast temperature, for each flight level, in the stratosphere, by season and latitude. This was prepared in two months as a stop-gap measure. Careful study is still needed. Only 22 months of GASP data were available (Mar 1975 - Dec 1976).
 - Ref 3: Contract report to NASA-Lewis on GASP data near the tropopause, Apr 1978. This summarizes GASP data from 11 to 12 km true altitudes.

31

3.0 CONSIDERATIONS

3.1 <u>Many Factors</u>: Cost, logistics, simplicity, maintenance, ability to forecast high ozone quantitatively and to determine its location, ease and cost of avoiding high ozone if ozone forecasts to be observed, frequency of excess ozone.

4.0 POSSIBLE APPROACHES

- 4.1 <u>Super Filter</u>: Used on <u>all</u> aircraft to remove <u>all</u> ozone <u>always</u>, will be needlessly expensive if there are many routes, times, and altitudes when ozone is below limits.
- 4.2 <u>Medium Filter</u>: Removes ozone up to some percentage of ambient, so that cabin concentration will usually be below established limit. Use flight planning to avoid higher concentrations.
- 4.3 <u>Flexible Filter</u>: Use only as strong a filter as required by climatology for each particular route, season, and altitude, but use no filter in low latitudes, altitudes, or seasons where climatology shows seldom needed. Use flight planning to avoid occasional regions of forecast high concentrations. Filter must be easily installed or turned on.
- 4.4 <u>No Filter</u>: Circulate air in cabin less often when high outside ozone is present. Add odorless, harmless oxidants to decompose ozone. Avoid regions of maximum ozone by flight planning.

5.0 REQUIREMENTS

To help make pr c decision, the following information is needed:

- 5.1 How well can ozone be forecast operationally by either Flight Planners or NMC? Development of a good forecast system would require a one year study.
- 5.2 Frequency distribution of GASP ozone data is needed by latitude belt, season, flight level. Update each year as more GASP data become available.

- 5.3 Consider trade-offs between hardware and operational forecast avoidance of highest ozone.
- 5.4 From 5.2, determine maximum ozone concentration for which filters should be designed as in Figure 8, for example. For a reliable frequency distribution, where should the limit for filters be set? Is it necessary to have filters to take care of the 3% (or 20%) occurrence of extreme ozone?

REFERENCES

- Wilcox, R. W. and A. D. Belmont, 1977: Ozone concentration by latitude, altitude, and month, near 80^oW. Contract DOT-FA77WA-3999 for Federal Aviation Administration; Report No. FAA-AEQ-77-13, by Research Division, Control Data Corporation, Minneapolis, 41pp.
- Belmont, A. D., R. W. Wilcox, G. D. Nastrom, D. N. Hovland, and D. G. Dartt, 1978: Guidelines for flight planning during periods of high ozone occurrence. Contract DOT-FA77WA-4074 for Federal Aviation Administration; Report No. FAA-EQ-78-03, by Research Division, Control Data Corporation, Minneapolis, 156pp.
- Nastrom, G. D., 1978: Variability of ozone near the tropopause from GASP data. Contract NAS3-20618 for NASA-Lewis Research Center; Research Report No. 1, by Research Division, Control Data Corporation, Minneapolis, 45pp; CR-135405, April 1978.

TABLE I. - GASP OZONE DATA (PPBV) FROM 11 TO 12 KM TRUE ALTITUDE AS A FUNCTION OF LATITUTDE AND LONGITUDE

[The plotting code is in the upper left box. The right hand column is the zonal mean, and the max is the largest value at that latitude. The standard deviation (σ) is not given for fewer than ten observations.]

	120E	1	70E	1	40W	90	W	40	W	10)E 60)E	120E		М
LAT	Mean Max	. Ν σ	315 656	13 124	299 541	11 144								307 565	24 133
N 66			345 561	22 155	161 296	14 89			60 121	4				252 561	40 166
60 54							96 497	37 139	195 429	24 152				135 497	61 152
)4 (0					216 1028	90 195	266 1074	54 266	261 497	23 142				238 1074	167 216
40	190 282	9			145 604	445 111	182 690	51 133						149 690	505 113
42			41 209	30 37	88 519	394 76								85 519	424 75
30			55 373	282 41	81 235	87 46								61 373	369 44
24			48 129	132 29	52 108	26 24						93 264	4	50 264	162 33
18	3 26	40 5	31 84	57 18	32 35	3						21 24	3	20 84	103 19
12			31 54	31 11										31 54	31 11
6			27 45	48 8										27 45	48 8
0			31 57	62 10										31 57	62 10
5.6			29 54	59 11										29 54	59 11
12			38 99	65 21										38 99	65 21
18			55 145	30 31			ļ 							55 145	30 31
24	109 116	3	100 175	25 48				<u> </u>						101 175	28 46
30	211 345	27 93	148 283	17 61										187 345	44 88
36	213 279	6	174 318	13 70		<u></u>								186 318	19 68
42															

December, January, February

34

	120E 170E		14	140w 90		<u>0W 40W</u>		10E			60E 120E		M			
LAT	Mear Max	ιN σ	484 584	9	483 937	30 154			540 598	9					493 937 1	48 27
60			475 491	2	417 886	23 203	625 803	15 151	341 700	83 168					392 1 886 1	L23 L95
54	733 1169	7	472 1159	22 237	376 697	16 233	425 983	93 199	292 640	148 173	374 428	2			364 2 1169 2	288 213
48	288 777	16 209	293 669	60 180	420 994	199 233	347 808	157 192	- 140 517	26 138	411 801	31 172			361 4 994 2	489 218
40	184 596	41 153	332 635	32 184	290 964	641 221	222 825	36 217			294 464	4			283 964	754 218
36	131 324	33 74	109 265	76 45	127 582	421 100	126 580	21 140			229 538	29 165			130 5 582	580 102
30	84 142	40 26	92 378	372 41	89 143	84 33	61 96	13 19			130 130	1	81 159	66 29	89 378	576 38
20	52 96	48 20	77 293	265 46	39 255	43 45	51 60	7					52 112	66 29	66 4 293	429 43
24	40 104	143 18	92 138	30 23	45 108	40 29	36 93	81 22					21 59	41 16	42 3 138	335 27
18							31 89	103 19					38 45	15 5	32 89	118 18
12							19 46	50 12							19 46	50 12
0							13 45	30 15							13 45	30 15
с. С.							24 45	19 14							24 45	19 14
10							19 38	13 9							19 38	13 9
12							6 6	1		<u></u>					6 6	1
10																
24											1					
50			1													
36							<u> </u>									
42	L								.		L		4		1	

March, April, May

	120E	1	70E	14	40W	90	DW	4	WO	1	0E	60	E	120E	•	M
LAT	Mean Max	N ປ	314 374	13 37	313 359	17 28									314 374	30 33
N 66			280 499	69 104	356 405	9	231 343	13 97	291 397	63 83					285 499	153 95
60	341 344	2	219 479	31 133	288 463	22 132	152 437	60 117	179 360	95 106	127 179	7			188 479	217 122
54			302 393	19 89	125 409	65 106	99 344	106 67	175 195	7	171 3 36	22 64			134 409	219 99
48	34 48	7			115 549	239 97	86 221	8			80 194	45 38			107 549	299 90
42	32 59	9	79 189	24 41	71 393	281 67					53 125	121 17			66 393	435 57
36	51 83	3	55 174	223 28	73 514	99 103					40 69	29 8	39 98	50 16	56 514	404 56
30			52 191	136 29							41 41	1	33 65	36 9	48 191	17 3 27
24	18 24	2	20 36	29 6			30 39	3					27 53	56 10	25 53	90 9
18	16 19	6	18 29	55 5			31 44	7					25 65	53 13	22 65	121 10
12	15 18	5	17 27	52 6			23 24	4					24 46	24 10	19 46	85 8
6																
0			20 22	5											20 22	5
S 6			19 19	1				·····							19 19	1
12																
18		<u></u>				<u></u>			<u> </u>							
24	124 178	20 38					 						76 123	5	115 178	25 41
30																
36										<u> </u>						·
42	L		I				 		L		l			(<u> </u>	·····

r

_

.

June, July, August

	120E	1	70E	1	40W	9(W	4	QW	10)E	60	E	120E		м
LAT	Me a Max	n N o	340 653	170 106	255 542	116 127									305 653	286 122
N 00			324 661	285 107	248 537	136 116	262 540	25 145	188 439	135 111					272 661	581 125
54	283 562	38 171	273 573	138 118	143 337	46 74	91 389	176 80	126 475	195 96					161 573	593 127
J4 (0	91 338	93 72	176 401	88 101	129 509	85 126	92 376	282 72	60 106	19 20					109 509	567 92
48	74 324	152 49	147 217	2	80 441	305 73	99 321	48 65			53 65	17 7			80 441	524 65
42	45 71	3	41 74	27 23	_55 284	366 31	36 45	19 5			43 50	7			53 284	422 30
36			43 137	249 24	46 116	53 27	32 47	19 6		- <u> </u>			42 56	17 7	43 137	338 23
30			38 102	92 22	59 72	9	31 47	15 7					44 83	10 14	39 102	126 20
24			34 51	3	52 58	4	46 93	25 19					9 9	1	45 93	33 19
18			41 48	6			53 74	26 9							51 74	32 10
12			35 47	4			65 108	25 23							61 108	29 24
6							68 109	49 21							68 109	49 21
0							60 83	44 15							60 83	44 15
56			50 104	10 28			55 85	49 13							54 104	59 16
12			86 86	1			60 100	21 18							61 100	22 18
18																
24	130 174	5										- <u>-</u>			130 174	5
30	196 235	6								- <u> </u>					196 235	6
36			231 255	2				<u> </u>							231 255	2
42	·		- i				4		L		J		.	l	L	

September, October, November

Figure 1. - Vertical distribution of ozone concentration for January over North America. Units are 10¹¹ molecules cm⁻³. Ozonesonde stations used are indicated at top of figure; see Table 2 for periods of record at each. (From J. of Appl. Meteor., vol. 16, p. 293.)

Figure 2. - Vertical distribution of ozone over North America by month. Units are 10^{11} molecules cm⁻³. Ozonesonde stations are indicated at the top of the figure. (From J. of Appl. Meteor., vol. 16, p. 293.)

PPMV

MEAN

STANDARD DEVIATION

KM	80N	70	60	50	40	30	20	10
32.5	6.3	6.5	6.3	5.8	6.2	7.3	8.0	8.3
30.0	6.0	6.3	6.2	5.7	6.2	7.0	8.0	8.3
27.5	5.7	6.2	6.1	5.7	6.2	6.7	7.0	7.6
25.0	5.5	6.0	5.9	5.5	5.8	5.8	5.7	5.7
22.5	5.0	5.2	5.2	5.0	4.9	4.3	3.5	3.1
20.0	4.3	4.1	3.8	3.5	3.0	2.1	1.3	.9
17.5	3.4	3.1	2.4	1.8	1.3	• 6	• 3	•2
15.0	2.4	1.9	1.4	1.0	.5	•2	.08	.06
12.5	1.2	.9	.6	• 4	• 3	• 1	.04	.03
10.0	.5	.4	•2	•2	•1	.06	.03	.03
7.5	.1	•1	.08	.07	•06	.04	.03	•03
5.0	.04	.04	.04	•03	+04	.03	.03	•02
2.5	.04	•04	.03	.03	• 04	.03	.03	•02

ĸМ	80N	70	60	50	40	30	20	10
2.5	2.3	2.0	1.4	1.1	1.2	1.0	1.2	1.0
0.0	2.2	1.8	1.3	1.1	1.0	.9	.9	• 9
27.5	1.9	1.5	1+2	.9	• 8	.8	.7	•7
25.0	1.4	1.2	1.1	.8	.7	.6	• 6	.6
2.5	1.1	1.0	• 9	.7	.7	•5	•5	• 5
20.0	• 8	• 4	• 7	.7	.6	•5	. 4	• 3
7.5	•7	• 6	•6	• 6	•5	• 3	•15	.08
5.0	•6	• 5	•5	. 4	• 4	.10	•03	.02
2.5	.4	. 4	• 3	• 3	• 2	•07	• 0 2	.01
0.0	.15	.15	.15	.10	.09	•03	.01	.01
7.5	.05	.05	.05	•04	•03	.02	•01	•01
5.0	.01	.01	.02	.01	• 0 Z	•01	•01	•01
2.5	.01	.01	.02	• 0 1	.01	.01	.01	.01

Figure 3. - Seasonal height-latitude cross-sections of ozone means and standard deviations near 80°W in units parts per million by volume. Shaded areas have no data. The pressure scale is approximate, based on the annual mid-latitude average (Ref. 1).

Figure 4. - Schematic picture showing the phase relations between pressureheight, geostrophic meridional wind, and ozone and temperature. At a given pressure near the tropopause, largest ozone is found with lowest height (Ref. 3).

Figure 5. - Zonal-monthly mean ozone amount (ppbv) for data taken at 217 hPa (37000 ± 1000 feet in the standard atmosphere, or about 11.3 km). Those grid points with data are depicted by small crosses (Ref. 3).

Figure 7. - 300-mb height contours on May 1, 1970. Note that areas of lowest height correspond very closely to areas of maximum ozone in Figure 6. Areas of maximum ozone are hatched.

Figure 8. - Hypothetical cumulative frequency distribution of ambient ozone greater than shown in left column. Two possible levels of ozone concentration above which flight planning is advisable are shown as examples. Cabin ozone is assumed to be 50% of ambient. Such distributions will vary greatly depending on altitude, season, latitude.