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Abstract. The conventional procedures to de-
termine deflections of the vertical in mountain-
ous terrain require time-consuming astronomical
or gravimetric methods and their application is
therefore restricted to a small number of sta-
tions. The interpolation of vertical deflec-
tions between such stations can be performed by
the Inertial Surveying System currently used for
position determination. The principle of such a
procedure is outlined and the existing imple-
mentations are discussed.

An analysis of results obtained in the Cana-
dian Rocky Mountains indicates that the obser-
vation of deflection differences along the same
line can be repeated with a precision of about
OV5 but that there are systematic discrepancies
between the forward and the backward running of
the same line. A comparison with the available
astronomically determined deflections also shows
systematic differences Of 2" to 3". These errors
are most likely due to the 'overshooting1 of the
Kalman procedure at gradient changes. It appears
that the software can be altered in such a way
that deflection differences between stations,
not more than half an hour of travel time apart,
can be determined by the inertial system with an
accuracy of better than +_ I".

1. Introduction

Two methods have conventionally been used to
determine the deflections of the vertical £ and n
which define the difference in direction between
the ellipsoidal normal and the actual gravity
vector. The first approach uses integral formur
las to determine the deflection components from
gravity anomalies Ag. In Vening-Meinesz1 inte-r
gral

- n } do (1.1)

5 and n are in principal computed at the surface
of the geoid. Here G denotes a mean value of
gravity for the whole earth, S(iji) is Stokes1 func-
tion, <!< is the spherical distance, a is the azi-
muth,and a indicates integration over the earth.
In Molodenski's approach £ and n are determined
at the earth's surface. The second method uses
astronomically determined latitude and.longitude
($, A) and geodetic latitude and longitude (<ji,X)
to obtain deflection components at the observation
point by the simple relations

n = (A - A)
(1.2)

Usually, the deflection coverage of larger
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areas is rather sparse because of the time-con-
suming data acquisition procedures. This is
especially true for mountainous terrain where a
dense coverage would be required to adequately
represent the slope changes of the equipotential
surfaces. The amount of work required for this
is prohibitive in most cases. Methods to inter-
polate deflections between stations where the
gravity vectors are known are therefore of great
interest. Two ways to approach this problem have
evolved in recent years. They could be called
computational and observational interpolation.
In the first approach all information about the
anomalous gravity field in a certain area is com-
bined to predict deflection values at the speci-
fic point. Methods differ as to the way in which
the different data groups are combined and repre-
sented. But all have in common that they employ
heterogeneous data and thus avoid the limitations
which are often encountered when using one type
of observations only. The actual resolution of
these methods depends to a large extent upon the
amount, the accuracy, and the distribution of the
data. With a scarce coverage as for instance in
mountainous areas it is impossible to recover
any details. While this approach is character-
ized by the optimal use of the available informa-
tion, the second approach relies on an instrument
which is capable of measuring changes of the
direction of the gravity vector with reference to
an initial point. In this case a detailed map?
ping of the deflection changes along the path of
the instrument is possible. Thus, a relative
geoid can be computed which is then oriented by
the absolute deflection values obtained by other
means. Inertial systemsare capable of performing
such an observational interpolation and from
their error characteristics an application in
mountainous terrain seems to be especially pro-*

raising.
The discussion will concentrate on deflection

interpolation with such instruments. This
limited application should not obstruct the view
for one of the main advantages of these systems:
the capability to obtain position and gravity
field information at the same time. It seems
that because of historic subdivisions in geodesy
the full potential of inertial systems is not yet
utilized.

The following sections will be somewhat biased
towards the Litton 'Inertial Surveying System1.
This does not indicate a preference but has been
dictated by the fact that the only data available
to the author had been taken with this system.

2. Movement of an Inertial System in a Local
Gravitational Field

An inertial measuring unit consists basically
of three mutually orthogonal accelerometers and
of an assembly of gyroscopes establishing a ref-
erence frame with known orientation to the accel-
erometer triad. Usually, the accelerometers will
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be aligned along the output axes of the gyros.
The output of the accelerometer triad are three
components of specific force

f. = r.i i g.a (2.1)

where r. are the inertially referenced accelera-
tions expressed as the second derivatives of a
radius vector with respect to time and g. are the
components of the gravitational acceleration at
the system location due to all bodies in the uni-
verse. For surveys on the surface of the earth
the origin of the inertial system is usually trans-
lated to the mass center of the earth thereby
making the variations of the gravitational effect
of all extra-terrestrial bodies smaller than
2.10~'. Thus, for relative accuracies of about
2.10~7 only the effect of the earth's gravita^
tional field has to be considered. Since the mea-
suring accuracy of available inertial systems is
of the order of 10~5 an earth centered origin
will be assumed hereafter.

The accelerometer triad can be related to the
inertial triad by connecting the two radius vec-
tors by a rotation matrix C

Cr (2.2)

where the superscripts I and A refer to the
inertial and to the accelerometer frame respec-
tively. Differentiating twice with respect to
time we obtain

"I "A ' *A "A
Cr + 2Cr + Cr (2.3)

We now can distinguish three special cases. If C
is independent of time,only the first term on the
right-hand side remains and equation (2.3) ex-
presses the rotation between two inertial frames.'
Such a system can be instrumented by mounting the
accelerometers on a gimballed platform and keep-
ing its orientation fixed in inertial space.
These systems are called space stabilized. Honey-*
well's Geo-spin is a system developed along these
lines for geodetic purposes. In the second case
the only time dependency allowed in C will be
the rotation of the earth. Such a system will
again make use of a gimballed platform which now
will be constantly torqued in such a way that it
stays orthogonal to a reference ellipsoid. These,
systems are called local-level and can directly
be related to the geodetic (ij>, X, h) - coordi-
nates; Litton' s 'Inertial Surveying System' and
Ferranti's system work with this concept. If
finally an arbitrary time dependency is allowed
in C, equation (2.3) represents a strapdown
system. In this case the inertial instruments
are mounted along axes attached to the vehicle
and the orientation changes arbitrarily with
respect to inertial space. So far, systems of
this kind have not been developed for geodetic
applications. .

The principle of inertial geodesy can best be
seen from equation (2.1). If the gravity vector
g. is known we can obtain position by integrating
twice

r.
i fi -'

(2.la)

Usually, only an approximation to gi is available,
either in form of the normal gravity vector Yj. or

in form of a higher order approximation from one
of the satellite solutions. In that case the
differences between the reference field and the
actual field can be determined by measurement
using the normal case as a first approximation.
Thus," position and gravity field determination
become intertwined in an iterative procedure.
This concept will be used in the sequel for a
local-level system. .

Another approach which shows clearly the inter-*
dependence of geometry and physics starts from
the holonomity problem. The transformation of
locally ioperfect differentials into locally
perfect differentials for frames used in geodesy
has been discussed in detail by Grafarend (1975).

The specific force equation for a local-level
system is obtained from equation (2.1) and (2.3)

' " A ' " A
Cr. + 2Cr.i 1

" A
Cr. +1 (2.4)

The first three members on the right-hand side
are usually expressed in terms of vehicle velo-
city, earth rotation rate, and ellipsoidal radii
(see e.g. Britting, 1971). The important point
is that an ellipsoidal surface is used for all
computations and that small correction terms are
applied to account for the deviations between
model and reality. This is done by splitting the
gravity vector g into a normal and an anomalous
part

Yi +

grad W = grad U + grad T

(2.5)

(2.6)

where W is the gravity potential, U is the normal
ellipsoidal gravity potential, and T is the ano-
malous gravitational potential. Similarly, g.
is the gravity vector, y> tne normal gravity
vector, and Sg. the gravity disturbance vector.
The vectors are now expressed in spherical coor-
dinates with geocentric latitude $, longitude X,
and radius vector r. Using the usual series .ex-
pansion of the normal potential U (see- e.g. Heis-
kanen and Moritz (1967); p. 230), we obtain

U = '{1 -
I J2n

(F)2n?2n(sin
n=l

where

~2n (-1)
n+1 3e2n

(2n + 1) (2n + 3)

kM is the gravitational constant times the mass :
of the earth, J. are the even harmonic coeffi-
cients of the expansion, a is the semi-major axis
of the ellipsoid, P (sin $) are Legendre poly-
nomials, E is the linear eccentricityo o i /o
E = (a* - b̂ )-1-' , e is the first eccentricity
e=E/a, C and A are the earth's moments of inertia
around its axis of rotation and around an axis in
the equatorial plane respectively, and ifi(r, <j>) is
.the centrifugal potential. We then have
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Y = grad „ =
r 3

where

i + i (2.8)

= 0
3X °

because of rotational symmetry. The other two
partial derivatives are

I M = *M £ a (a,
r 3? $ r2 n=1 2n r

where
n

,P' (sin cj>) = -cos $ I (4n - 4k + 3)
2n k=l

' P

and

3U
=Y

3r Tr

2n-2k+l

U - Z (1+ 2n)
r n=l

. P2n(sin $) (2.10)

Since the series (2.9) and (2.10) converge very
fast approximations of the form

YJ = Ye (a. + a2 sin $) sin $ cos f (2.11)

and

Yr = Ye (1 + bi sin
2$ + b2 sin

4 $) (2.12)

can be used where Y refers to normal gravity at
the equator. The coefficients a , a , b.. , b_
depend on the reference system chosen. The
relative accuracy of these formulas is about 10
With the same accuracy normal gravity along the
ellipsoidal normal y can be obtained by using

= Y,- sin £- cos e
(2.13)

where e = 0.50 e sin 2<j>.
The absence of odd.degree terms in formula (2.7)
is necessary in order to maintain the same ellip-
soidal reference surface for all computations.
An inclusion of the J - term as for instance in
(Britting, 1971) is inconsistent with the use
of the ellipsoid as a computational surface. If
higher order approximations are used for the
gravity field, formulas for the appropriate
surfaces must be developed.

Conceptually, the anomalous part of the .grav-
ity field can be treated in exactly the same way
as the normal part. Using the expansion of the
anomalous potential T into spherical harmonics

{1 - Z (-) J' P (sin *) (2.14)
n=2 r n n

£
n=2 m=l

£ (— ) (j cos mX+ K sin mX)

where J1 are the zonal coefficients minus the
normal part and J , K are the tesseral harmon-
ic coefficients, we can again differentiate with
respect to $, X, and r. There are, however, two
difficulties with this approach. First, only
truncated series (2.14) are available from sat-
ellite observations which will not give the
required local details. Second, the evaluation
of such series will be too laborious for real
time computations. For the following discussion
we will therefore assume that only the normal
part of the gravity field as represented by
equations (2.7) to (2.13) is known.

Equation (2.5) shows that the deviations from
the normal model are given by the gravity distur-
bance vector 6g. which has the components

6 9..

3T3<t>
r cos $

II
3r

(2.15)

Using spherical approximations the right-hand
side can be expressed in terms of £, n, and Ag

-YO n

Ag + — N
R

(2.16)

where Y denotes normal gravity at the ellipsoid,
G and R are mean values of gravity and earth
radius respectively, and N is the geoidal undu-
lation at the point.

Changes of these quantities from one station
to the next can be determined by using two pro-
perties of an inertial system: the capability to
align to the local vertical and the faculty to
keep an orientation fixed in space. The first
property allows determination of the direction of
the local gravity vector each time the system
stops. The second property makes it possible to
transport an orthogonal frame established at an
initial point to other points on the earth's sur-
face and to use it as a reference. Thus, the
actual changes of the gravity vector can be com-
pared to the changes of the normal gravity vector
i.e. changes of the gravity disturbance vector
(2.16) can be determined. If the gravity vector
is known at the initial point it can be deter-
mined in all subsequent points. Strictly speak-
ing, an iterative process would be required,
expressing the fact that position and gravity

- field determination cannot be separated. In
practice, the iterative corrections will often be
negligible because of the small distances be-
tween stations.
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It should be well understood that the changes
of the gravity disturbance vector are not contin-
uously recorded but can only be determined at
discrete points where the vehicle stops. For
continuous recording gradiometers must be added
to the inertial system. However, it is of inter-
est for the following discussion to relate the
gravity disturbance vector to changes in the
gravity field and in vehicle motion. A deriva-
tion of the relevant formulas is given in (Moritz
1975). Using the notations

T.
3T

we can write

T.(t) = T.° .(s) {

(2.17)

ds

(2.19)

n = n0 + cos

t
/ (T, + TxxV ds •

This formula shows that changes in £ and n are
dependent on the ratio v.i/v,,, i.e. on the instru-
ment heading. , This is especially apparent for an
L-shaped traverse which first runs east - west
and then south - north. We obtain

t
AC.E-W

*S-N v r
0 t,

ds

ijxfi <|>
o

_

f (r) dr + / T. (r) dr} ds

where

and

AVw = y r cos » tf TXXVX ds
'o Y o

cos

u denotes the velocity, and the superscript zero
indicates an initial value. The last term'on the
right of formula (2.17) describes the interaction
between gravitation and inertia. Since its ef-
fect will be very small in the applications con-
sidered here, it will be neglected hereafter.
This approximation does not affect the following
argument. Using the relations (2.14) and (2.15)
results in

n = n0 +

A A rAg = Ag - /

o

where

ds

TXrVds

(2.18)
T ,v, + T v ) ds +
rX X rr r

fi ds

because of u. =0. For local applications the
term with (N - N ) can be neglected. Except for
small corrections the v. represent the velocity
components and with

Vr <<:. <V V

in many cases the deflections of the vertical can
be expressed by the approximation

3. Implementation of the Measuring
Principle in the Inertial Surveying System

Fig. 3.1 ilustrates the principle of determi-
ning changes in the gravity disturbance vector by
an inertial measuring unit. At an initial point
P the system is aligned to the local gravity
vector g by a levelling procedure which drives
the two horizontal ' velocity outputs to zero and
by establishing astronomical north via gryocom-
passing. Basically, a local astronomical ($, A) -
system is established. The small angle 6. be-
tween g. and y. is called the total deflection of
the vertical. The initial frame is transported •
to P making corrections for the rotation rate of
the earth by continuously torquing the platform.
Similarly, compensation of changes of the normal
gravity vector are included in the specific
force equation. At P_ the changes of the gravity
disturbance vector will cause a small misalign-
ment of the platform with respect to the local
vertical and the resulting velocity readings in
the 'horizontal' accelerometers can be resolved
into the components Ag and An.

At this point two different procedures are
possible. The first one is used in the 'Rapid
Geodetic Survey System' (RGSS) and is illustrated
in fig. 3.2. In this case the velocity readings
are recorded but the initial frame is left un-
changed, i.e. only the above mentioned torques
and normal gravity corrections are applied. The
reference surface for the computations is then
an ellipsoid which is slightly tilted against the
global reference ellipsoid because the alignment
has been made with respect to the local vertical.
If <j>, X, h, C, and n are known in the initial
point this tilt can theoretically be removed.
Since this system measures differences in ellip-
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Pj-frame
transported
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reference ellipsoid

/ i i • - level surface
'« ./ » g, transported

Fig. 3.1 Principle of measuring deflection changes

earth's
surface

geoid

computation
ellipsoid

reference
ellipsoid

Fig. 3.2 Principle of 'Rapid Geodetic Survey System1

local vertical

-. earth's
surface

\
geoid

surface of
ellipsoidal sections

. reference
ellipsoid

Fig. 3.3 Principle of 'Inertial Positioning System*

soidal height h it is also possible to use the
deviation between measured and known height dif-
ference Ah.. . to retilt the ellipsoid. By using
the deflection information provided at the zero
updates the changes of the geoidal undulation
between P. and P can be computed.

The second procedure is used in the 'Inertial
Positioning System' (IPS) and is illustrated in
fig. 3.3. In this case the frame is realigned to
the local vertical at each zero update. This
means that the geoid is approximated by a sequence
of ellipsoidal sections. The height differences
determined from this surface will approximate
levelled height differences. The interpretation
of the computed latitude and longitude differences
is somewhat problematic.

Theoretically, the anholonomity problem creeps in
at this point. Practically, a piecewise mapping
onto the ellipsoid will give results which are
acceptable within the limits of present measuring
accuracy. With improved systems this procedure
should, however, be avoided.

So far, measuring errors have not been consid-
ered. They will disturb the simple relations
discussed above. Certain error sources produce
accelerations which are very similar to those
generated by changes in the gravity field. A
separation can be achieved by an adequate measur-
ing process. Changes in the gravity field are
position dependent, at least at the level of
accuracy considered here, while most instrumental
errors are time dependent. A well designed survey
can help to separate the two disturbances. Reoccu-
pation of stations after certain time intervals
and checks at stations with a known gravity dis-
turbance vector will provide a control of the
instrumental errors.

The present 'Inertial Surveying System' controls
the different error sources by a hierarchy of
biases. They are either added to the specific
force equations or used to modify the torquing
commands. In this concept the gravity disturbances
are considered as one of several sources of noise.
Optimal filtering techniques are used to eliminate
this noise. Thus, deflection changes are absorbed
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into bias changes. The separation from instru-
mental errors, especially gyro drift, is done
under the assumption that the correlation functions
are known. Two sets of biases are important for
deflection determination: the alignment biases
and the Kalroan biases.

The first group, consisting of three gyro biases
and one accelerometer bias, is determined during
the levelling and gyrocompassing procedure at
the initial point and remains constant for one
mission. It fixes the tilt of the computation
surface against the global reference ellipsoid
and also introduces a scale factor in the'height
computation. Since a number of different effects
are lumped into the gyro biases the resulting
tilt cannot be considered as representing the
gravity disturbances at the initial point. This
will have a second-order effect on the computation
of deflection differences but will in general be
negligible for local applications.

The second group of biases, the Kalman biases,
are determined at each zero update. In this case,
the value of each bias b. is recomputed using the
new data x (velocities) according to a priori
knowledge contained in the gain matrix K. The
formula

Kobau

b. +K. (X - (3.1)

expresses this relation. The matrix B gives a
functional relationship between x and b. Two sets
of Kalman biases are important for the determina-
tion °f deflection changes. The sum of tilt
corrections for each axis and the accelerometer
biases. The procedure illustrated by fig. 3.3
combines tilt correction and accelerometer bias
to obtain deflection components. No tilt correc-
tions are made in the procedure described by fig.
3.2 and the deflections can be derived from the
accelerometer biases only.

It will be shown in the next section that the
use of Kalman estimation, well suited for error
control, does not always give reliable results
for the determination of deflection components.

4. Analysis of Results

The data used in this analysis have been pro-
vided by the Geodetic Survey of Canada. They were
taken during a campaign in the Okanagan Valley
of the Canadian Rocky Mountains in 1975. Fig.
4.1 shows the survey line which is a paved road
between Curve and Bottom and unpaved between
Bottom and Kobau. All stations marked by a
triangle have astronomically determined deflec-
tions of the vertical. The height profile is
shown in fig. 4.2. It should be noted that a
rather extreme terrain has been selected with a
number of sharp curves in the second part of
the line and a height difference of about 1600 m.

The surveys were made by car during a period of
about three weeks in May and June and .usually a
forward and a backward running were made with one
alignment. The method used is that described by
Pig..3.3. Not all legs of the traverse were ob-
served with the same frequency; the minimum num-
ber of double runs was 5 the maximum number 10,
with an average of about 8 runs.

Power

Curve

Fig. 4.1 Map of the survey route

2000 -

. 1500

1000 -

500 -

10 20 30 40 km

Fig. 4.2 Topographic profile of the survey route

o

©

astro
inertia)

Fig. 4.3 Accuracy of system derived A? - values
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Fig. 4.4 Accuracy of system derived An - values

Since only the differences AC and An between
stations can be determined, the most obvious
approach is to compute these differences and to
estimate standard deviations for each difference.
Since sample sizes were rather small in some cas-
es, the hypothesis was tested if all variances
could be considered as representing the same
population. The standard deviations of AC and An
were almost identical with 0 = +_ 0"54 and
0. = +_ 0'.'56, so that the standard^ error for a
deBlection difference could be estimated from a
sample size of about 100. The result was

a = +_ OV55

for the mean of a forward and a backward running.
The standard deviations of the individual differ-
ences were compared to 0 and all except one
passed the F-test on a 5? - level. The one
rejected standard error was too small. These
results show that deflection differences can be
determined with a high precision. This means
that the repeatability of the results is very
good.

As to the accuracy fig. 4.3 and 4.4 should be
consulted. They show the deflection differences
as functions of the travel time At between j
stations. Mean values of the system determined
differences are marked by a dot, while the dif-
ferences of the astronomical deflections are
represented by a triangle. The individual stan-
dard errors (10) are indicated by a circle. No
standard deviations were available for the astro-
nomically determined differences but judging from
the observation method they should in general be
below O'.'S. We will therefore use

0'.'5

as standard deviation of the astronomically deter-
mined differences.

The figures show very clearly that the devia-
tions between astronomically determined and

system derived differences is much larger than
could be expected from the standard deviations.
The standard error
is

o (astronomical - inertial)

"A-I = i r-'73 '
Considering the size of the deflection differences
it can be concluded that the inertial system re-
covers deflection changes with a good accuracy.
Considering the size of o and o it must be con-
cluded that there are systematic differences bet-
ween the two data groups. Although a and a are
almost equal there is some reason to Believe that
the differences derived from the inertial system
are systematically wrong. One indication is
given by the large differences between forward
and backward runnings.

If we compute the mean of the differences be-
tween stations using only forward runs in one case
and only backward runs in the other we obtain the
results summarized in table 4.1.

The standard deviations a and a belong to
the means of the forward and the backward runs
respectively. The standard deviations o
characterize the deviations between the individ-
ual forward and backward runs. The sample size
is about 50 in each case. Using an F-test at a
5% - level it must be concluded that there are
systematic deviations between the forward and
backward runnings.

Part of these differences can be explained by
the 'slowness' of the Kalman estimation to adapt
to a new situatipn. If we look at formula (3.1)

= b. + K.
i 1

(x - (3.1)

the new estimate b. is composed of the old
estimate b. and a portion representing the influ-
ence of the new data. This influence is weighted
by the gain matrix K which is dependent on the a
priori correlation function and previous estimates.
Thus, the old estimate b. may to a large extent
determine the value of b. . , i.e. the estimation
is somewhat slow to follow changes in the value of
b. The situation is illustrated in fig. 4.5 The
full line represents a deflection profile, the
dashed line its estimation by the Kalman procedure
when coming from the left side. There is a kind
of 'overshooting1 due to the influence of the old
estimate which makes the difference P_P, too small.
When coining from the right side P.,P, will be
determined correctly but in this case P,?, will
be wrong. This explains the differences Between
forward and backward runnings. The following
example will demonstrate that this effect is

Deflection
Component

A£

An

°F-B

+_ 1.43

+ 3.86

°F

+_ 0.64

+_ 1.12

°B

+ 0.96

+_ 1.03

Table 4.1 Comparison of standard deviations
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overshoot

Fig. 4.5 'Overshooting' of Kalman filter

present in the data and leads to observable sys-
tematical errors.

Fig. 4.6 shows the C-profile between the
stations Barry and Carol and outlines the Kalman
estimation of the difference Bing-Bottom. Coming
from Barry 'overshooting1 at Bing will produce
a difference which is too small. Coming from
Carol 'undershooting' will also give too small a
difference. The actual values determined as .means
of 10 measurements are

A£^, • = -4V08 + OV07 . •

The 'correct1 difference from astronomical obser-
vations is A£ = -6V53. It should be noted that
the line between Bing and Bottom is rather straight
and has .a length of only 6.6 km. Thus, there is
no other obvious explanation for errors of this
size.

The interpretation of the results from the
curved part of the line is more difficult. As has
been shown in section 2 changes in the gradient of
£ and r| are likely to occur with each change in
platform heading. Thus, for lines having several
sharp curves between stations the unwanted effects
of the Kalman procedure may either accumulate or
cancel. This is exactly the pattern which evolves
for the winding part of the line. Some system
derived deflection differences agree very well
with those obtained from astronomical observations,
others deviate by 2" to 3". It appears that
these deviations are of a size which can be expect-
ed from the slow adaption of the Kalman procedure.
It is difficult to say, however, if this is the
main effect or if changes in thermal and magnetic
gradients as functions of platform heading also
play a major role in changing the drift rates and
by this the deflection estimates. There is one ,

Bing

Kalman
estimate

Barry Carol

^-profile

Bottom

Fig. 4.6 Explanation of systematic A£ - discrepancy
between Bing - Bottom .

observation which would indirectly confirm a
highly nonlinear drift for the data analysed here.
The value of a = +_ OV55 has been computed by
making the usual linear drift removal between
Curve and Kobau. When not removing any drift from
the data the corresponding value drops to 0 ' =0'.'50.
This shows that the assumption of linear drift is
a wrong model on a line like this because it does
not improve results. Since drift is definitely
present it must be suspected that it is highly
nonlinear. This nonlinearity can probably be
correlated to changes in platform heading.

In order to control these different effects it
will be necessary to refine the mathematical model
and to change the software accordingly. The
gravity disturbance vector should be modelled as
a position dependent quantity rather than a time
dependent bias term of stochastic nature. An
adequate model of the changes in gyro drift due
to platform heading can probably be obtained by
stationary experiments. Otherwise, a change of
the measuring procedure would be necessary in
order to determine drift changes during field
operations.

The accuracy of deflection determination with
present- day inertial instrumentation can be
summarized in two numbers. Using the system as
it is systematic differences of 2" to 3" must be
expected even over relatively short distances.
With changes in the software a standard error of
+1" or better can be expected between stations
not more than half an hour of travel time apart.
It should be noted that these results have been
obtained in mountainous. terrain and that no
restrictions with respect to the course of the
survey have been imposed. Results obtained by
Fishel and Roof (1977) seem to confirm the above
findings.
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