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A. Application of Statistical Pattern Recognition
 

to Image Interpretation*
 

1. INTRODUCTION
 

1.1 Background
 

Analysis of remotely sensed agricultural crop survey data by
 

pattern recognition algorithms requires the availability of training
 

samples (data of known classification). In large-scale Landsat crop
 

surveys, training samples cannot be acquired solely by ground observa­

tions, due either to cost considerations or to inaccessibility of the
 

survey site. For both of these reasons, the labeling of training samples
 

based on interpretation of the Landsat data and associated ancillary
 

data has been utilized in LACIE, in which the manual image interpretation
 

process has been supported by meteorological data and historical agronomic
 

data. Although the performance of the analyst-interpreters (Als) in
 

LACIE has apparently been adequate to support the project goals, it is
 

widely recognized that the labeling process, implemented in this manner;
 

involves a great deal of subjective judgement, and hence the accuracy
 

and precision of the results can vary greatly from one Al to the next.
 

The overall objective of this task has been to investigate ways to
 

upgrade the objectivity and reliability of the image labeling process.
 

The basic approach proposed involved introduction of quantitative methods,
 

often related to pattern recognition, in place of subjective judgement
 

wherever possible. At the outset, it was hoped that it might be possible
 

to develop a completely machine-implemented labeling method.
 

* 	 This report covers work under Task 2.2a Application of Statistical 
Pattern Recognition to Image Interpretation. The report was compiled 
by Philip H. Swain. 
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1.2 Overview of Previous Work
 

Training sample labeling by manual interpretation of the Landsat
 

imagery was a fundamental assumption of the LACIE approach. Initially
 

individuals were required to select fields for classifier training by
 

visually locating and outlining agricultural fields which appeared to
 

be representative of all spectrally distinguishable ground covers. The
 

selection process included identifying the ground cover as wheat or
 

non-wheat. As loosely defined as this, the process was not effective,
 

because the interpreter could not discern all significant variations in
 

the image products provided and, furthermore, tended to be biased
 

toward the selection of homogeneous and clearly delineated fields. As
 

a result, significant spectral categories often were overlooked and
 

classifier performance suffered accordingly.
 

The appropriate goal in classifier training is to sample the
 

measurement space (spectral or spectro-temporal space) adequately to
 

obtain a representative sample of the data to be classified. In order
 

to be representative, the sample must include, at minimum, observations
 

from every class of interest and every class which might be confused
 

with a class of interest. Given no information about the distribution
 

of data in the measurement space, the optimal strategy for obtaining
 

representative training data would be to select a random sample. After
 

selection, of course, there remains the task of labeling the selected
 

observations to identify their ground cover classes.
 

To reduce interpreter bias and improve the probability of getting
 

a representative sample for classifier training, the AIs were later
 

required to label pixels which had been randomly selected from the
 

segment. An assumption implicit in this approach is that a selection
 

based on random location in the image will induce a random selection
 

from the measurement space, an assumption that appears to be sound.
 

Since the sample size was quite small (less than 100 pixels per segment
 

out of more than 20,000 to be classified), the probability of missing
 

spectral classes was still significant. Nonetheless, this sample
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selection method, incorporated into a generally more robust analysis
 

procedure, resulted In improved classiFication results in later phases
 

oI LACIE.
 

With the analyst-subjective factor removed from sample selection,
 

there remained considerable subjectivity in the labeling (ground cover
 

identification) process, the problem specifically addressed by this
 

investigation. To proceduralize the labeling process, a questionnaire
 

containing segment-related and pixel-related questions was formulated
 

at JSC to lead the AT systematically through the available image data
 

and supporting data [1]. To the extent possible, based on exploratory
 

work to date, the supporting data included quantitative aids, including
 

spectrally "normalized" imagery [2] and temporal greenness/brightness
 

trajectories for each pixel to be labeled [3]. This labeling method was
 

called Label Identification from Statistical Tabulations (LIST).
 

Despite the availability of spectral aids, however, it remained for
 

the At to make a subjective integration of the evidence to produce the
 

necessary set of cover type labels. This process remained tedious
 

and subject to a great deal of analyst-to-analyst variability. An
 

effort to improve this situation was mounted, in which some of the key
 

questions were made more quantitative and an attemptwas made to automate
 

them [4]. The results were promising, although the reported experiments
 

were carried out over too limited an area (two LACIE segments in North
 

Dakota) to permit general conclusions. Nonetheless, this represented
 

another positive step in the direction of making the derivation-of training
 

data more objective.
 

1.3 Objectives and General Approach
 

As noted previously, the overall objective of this investigation has
 

been to improve the objectivity and reliability of the image labeling
 

process in order to provide classifier training samples in the absence
 

of ground truth. Our approach may be described in terms of three subob­

jectives, outlined below.
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Analysis of the Current LIST Process. This required selection and
 

acquisition of appropriate data, implementation of the process, and
 

assessment of the labeling'results produced by applying the process to
 

the data.
 

Investigation of Possible Methods for Machine Implementation of
 

the Labeling Process. The starting point was preliminary work reported
 

in [4], to be implemented and applied to in-house data for comparison
 

with results achieved by AIs.
 

Extension to more General Applications. It was originally planned
 

to develop and test an extension of the LIST process to crop inventory
 

involving corn, soybeans and other major crops. It was subsequently
 

decided by LARS and JSC to concentrate all resources on the wheat
 

inventory applications. A few comments on multicrop extensions, based
 

on our experience with wheat, will be included near the conclusion of
 

this report.
 

1.4 Overview of Accomplishments
 

The LIST process was implemented and applied to a total of 13
 

LACIE segments in Kansas, North Dakota and South Dakota. This permitted
 

LARS personnel to gain insightful familiarity with the process and
 

provided a data base for accomplishing the project objectives.
 

A number of weaknesses in the current LIST process were pinpointed.
 

The length and tedium of the process adversely affect the attainable
 

results. The ahalysts were able to suggest specific ways to make the
 

use of LIST more efficient and even formulated an alternative question­

naire as a step in this direction. But they also recommended that
 

analysts should have knowledge of and exposure to the wheat growing
 

process if they are to be able to perform the AI role in an optimal
 

fashion.
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That role is still a very subjective one, however, the AI being
 

expected to integrate diverse forms of information into the labeling
 

process in ways that are not very quantitative. There are real possibi­

lities for improvement, because we have shown that the process depends
 

most critically on a few key features in the data which apparently-can
 

be quantified. Experimental results involving data from seven Kansas
 

segments showed that a simple'but completely computerized labeling
 

method based on these features could perform at least as well as the
 

AIs using the full LIST process.
 

These results may be used to advantage either by (1) replacing the
 

Al and LIST by a faster and possibly less expensive machine-implemented
 

labeling process of equal capability, or (2) providing the AI with the
 

quantitative results to be used as an aid in obtaining still better
 

results through integration of other forms of information.
 

Further research is required to establish the viability of the
 

latter strategy. However, it seems clear that in the near term, in which
 

multicrop extensions of the present technology are sought, the increased
 

difficulty of the labeling task will require continued use of the AI as
 

an active agent to bring together diverse sources of information which
 

can contribute to accurate labeling.
 

Finally, it is important to recognize a fundamental limitation of
 

the investigation reported here. The LIST process calls for data from
 

four strategically timed acquisitions of the primary multispectral data,
 

and the data base used in this study was selected to meet this requirement.
 

Although the impact of poorly timed or missing acquisitions was not
 

specifically considered, that impact clearly can be substantial. Further
 

research will be required to minimize the sensitivity of the LIST process
 

to less-than-ideal data acquisition.
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2. 	DESCRIPTION OF THE RESEARCH
 

This investigation consisted of two distinct, though related,
 

components. The first component, analysis of the LIST process, required
 
implementation and use of the labeling process in order to gain insightful
 

familiarity with it and to accumulate data with respect to both the results
 

it could produce and how it produced them. We intended to assess both the
 

strengths and weaknesses of the implemented LIST method, and determine,
 

if possible, how improvements in the objectivity and reliability of the
 

labeling process might be achieved.
 

2.1 Analysis of the LIST Process
 

Data Set Assembly.
 

In support of this task, a comprehensive data set was assembled based
 

on multitemporal Landsat data for 13 LACIE segments (Table A-1). This
 

data base consisted of a wide variety of types of information that were
 

necessary for the AI to use in answering the LIST questions and ultimately
 

labeling training samples. The primary data were in the form of five­

inch positive transparencies of the Landsat data for each of four or more
 

acquisition dates in each of the 13 segments. These transparencies were
 

Production Film Convertor (PFC) products supplied by JSC in roll form.
 

The available segments were visually screened by an AI and the segments
 

and acquisition dates were selected based on the following criteria:
 

1. 	1976 segments should be from the prime wheat producing states,
 

Kansas and North Dakota;
 

2. 	1977 segments should be from Central Plains states where winter/
 

spring wheat is a major crop;
 

3. 	Landsat data must be available for four acquisitions, each
 

during a time period corresponding to a significant biostage
 

or growth development stage of the wheat crop;
 

4. 	The data must be largely free of clouds and haze.
 

The locations of the 13 LACIE segments selected based on these
 

criteria are shown in Figure A-1.
 



Figure A-i. Location of the LACIE Segments Analyzed.
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Table A-I. LACIE Segments Analyzed at LARS by the LIST Method
 

State LACIE Segment Number County Growing Year
 

Kansas 1163 
1165 
1852 
1855 
1857 
1860 
1865 

Coffey 
Linn 
Lane 
Trego 
Grant 
Hodgeman 
Stevens 

1976 

N. Dakota 1633 
1637 
1661 
1652 
1897 

Foster 
Stutsman 
McIntosh 
Stark 
Mcenry 

1976 

1977 

S. Dakota 1681 Roberts 1977 

Once the film products for the 13 segments were assembled, they were
 

photographically enlarged at LARS to an 8" x 10" paper print. The
 

enlargements made it much easier for the analyst to locate and evaluate
 

the individual pixels of interest.
 

An additional film product, supplied by JSC as part of the supporting
 

data, was a supplemental color product (Kraus product) [2]. This photo­

graphic product, also enlarged and printed at LARS, was similar to the
 

false color product discussed above, but its colors were "normalized" to
 

produce an image in which a similar hue of redness was expected to always
 

indicate a similar amount of green biomass and possible degree of crop
 

development.
 

A second type of data assembled in support of this'task included tables
 

and summaries regarding weather and crop conditions and historical wheat
 

yield and development patterns. Specific items in this category were:
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- U.S. and Canada Meteorological Summaries of precipitation, freeze 
dates, crop development, and disease and insect infestation; 

- Universal Strata Descriptors of climate, soil conditions, agricul­
tural practices, and other crop-related variables; 

- LACIE County-Level Historical Agricultural Statistics listing per­
cent of agricultural lands within-counties having LACIE segments
 
and estimates of each crop-type harvested in that county over the
 
past two years;
 

- Wheat Yield Information for each county in each of the wheat 
growing states of the U.S.; 

- Crop Calendar for each crop reporting district (CRD) in the wheat­
producing states showing the onset and completion of each biostage 
for each of the crops grown within that district. 

All of these data items were thought to be of assistance in enabling
 

the AIs to label the segment training samples using the LIST procedure.
 

It should be noted, however, that these materials came from diverse­

sources and were therefore not compiled or designed to be the most
 

accessible or convenient in format for use by the AIs. Valuable data had
 

to be separated from extraneous sections of other information within
 

each set of data. This was not only time-consuming but. also a non-produc­

tive activity for the AIs.
 

In addition to the photographic materials, tables and summaries,
 

there were generated at LARS some quantitative analysis aids to support
 

the LIST analysis. These included trajectory plots of greenness values
 

'versus acquisition date for each pixel to be labeled, and generalized
 

"typical" trajectory plots for wheat in Kansas and North Dakota. Examples
 

of these plots are given in Figure A-2. The typical plots were utilized
 

by the AIs in forming a mental trajectory image to compare against when
 

encountering the plot of each training sample to be labeled. It was
 

found that variations in acquisition dates and agricultural conditions
 

from segment to segment made straight correlations between the "typical"
 

and sample plots to be unrealistic.
 

Another quantitative aid examined for implementation for this task
 

was an automatic screening of the segment Landsat data in order to locate
 

features in the data of a distinctly non-agricultural nature. This
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Figure A-2. 	a) Trajectory Plot for a Wheat Sample in Kansas, b) Trajec­
tory Plot for a Non-wheat Sample (Corn) in Kansas, c)"Typical"
 
Trajectory Plot for Wheat in Kansas, d) "Typical" Trajectory 
Plot for Wheat in North Dakota.
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technique, developed'at ERIM, involved delineating the "designated
 

other" (DO) areas (water, woods, urban areas) and "designated unidenti­

fiable" (DU) (clouds, cloud shadows, haze, snow, flooded areas) by
 

applying thresholds to the data and printing the resultant maps [5].
 

The results were judged by the analysts to be-unsatisfactory due to
 
'
 the appearance of small scattered areas of "bad data" ortshadowt which
 

did not agree with visual examination of the film products. The ERIM
 

documentation included a warning that the algorithm is very sensitive
 

to the threshold settings, so the areas where errors occurred were
 

examined and the thresholds adjusted to eliminate these errors. With
 

the new thresholds a different problem occurred; areas of actual shadow
 

or water were not completely delineated. Examination of the data values
 

in problem areas to determine optimal thresholds revealed that the
 

thresholds which minimized the error on segment 1633 would not minimize
 

the error on segment 1637 and that the overall error occurrence for
 

segment 1637 could never be as low as on segment 1633. It was judged
 

that the automatic screening procedures would not produce a gain in
 

accuracy or saving of analyst time in delineating the DO and DU areas.
 

As a result the AIs screened the false color images visually to locate
 

the readily recognizable DO and DU areas.
 

The final type of data to be included in the data base was a
 

complete set of ground truth information for the 13 segments to be
 

labeled. The ground truth was initially available as photo-interpreted
 

blue print copies of high-altitude aerial photography. However, this
 

data was later replaced by Universal format data tapes in which every
 

Landsat pixel had been labeled as one of 101 possible crop types or
 

conditions. By accessing these tapes using the EOD-LARSYS $HIST and
 

$GRAYMAP processors, detailed maps were generated which could be used
 

to evaluate analyst labeling performance. The data base was subsequently
 

augmented to include files containing both the ground truth and the
 

analyst labels for the specific pixels labeled by the Als. These files
 

were utilized to evaluate the LIST method of labeling. This portion
 

of the task will be discussed in greater detail in a later section of
 

this report.
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In summary, a valuable data base was assembled for 13 LACIE segments
 

in support of evaluating the LIST procedure. Compilation of the data
 

base involved acquiring, handling, storing, and accessing a great variety
 

of data types. It is felt that this data base is sufficiently extensive
 

and well-documented to be incorporated in further studies requiring a
 

data base of this type. Application will be made to have the data
 

placed in the public domain.
 

Implementation of the LIST Process.
 

Three analysts were assigned the task of applying the LIST process
 

to the thirteen LACIE segments described above. Two objectives were
 

involved: to make the analysts as familiar as possible with the process
 

in order to provide a means of evaluating the process subjectively; and
 

to develop a data base to be used for evaluating the process objectively.
 

Two of the analysts were graduate students in electrical engineering
 

having some experience in digital analysis of multispectral imagery.
 

The third analyst was a geologist with extensive remote sensing experience.
 

Each analyzed the data as independently as possible given their day-to­

day proximity in the LARS environment. All three completed labeling of
 

the seven Kansas segments; two completed thirteen segments.
 

Effective implementation of the LIST process at LARS required
 

familiarity with the Universal Format for data tapes and conversion to
 

LARSYS format (the conversion facilitated computation of statistics
 

using existing software). Computer programs were also developed for
 

generation of greenness trajectory plots for the pixels to be labeled.
 

In general, these pixels were the seventy random "dots" specified by the
 

LACIE Phase III type 1 and type 2 overlays [6].
 

Having labeled the seven Kansas segments, the analysts felt
 

sufficiently experienced to evaluate the LIST questionnaire. Some
 

questions were found too general to be of real value. Other questions
 

were ambiguous and could not be interpreted. Some were judged not help­

ful to the decision process. In some instances, it was felt that the
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addition of one or two questions would contribute to a better jtdgement.
 

Thus, a revised LIST questionnaire was formulated by the analysts. Both
 

the original and revised questionnaires appear in the Appendices. The
 

revised questionnaire was used for processing the segments not located in
 

Kansas.
 

The following changes were recommended:
 

1. Questions 19-23 and Question 25 were thought to be too general
 

to apply to specific pixels and were not considered helpful. They were
 

merged, therefore, into Question 19 in the new list, in which the analyst
 

is asked to give an overall evaluation of the crop condition based on the
 

meteorological data available.
 

2. Question 32 was modified, becoming Question 27 in the new list.
 

It was the analysts' experience that a pixel might still be fallow even
 

though there were some indications of vegetation in it. Hence, the new
 

question asks the analyst to decide on the pixel based on an overall
 

judgement rather than on the vegetation indication alone.
 

3. A new question was inserted between Questions 33 and 34 in the
 

old questionnaire (29 in the new list). It requires the analyst to
 

determine whether fallowing is practiced in the segment. This helps the
 

analyst decide whether the pixel is a fallow or a non-agricultural pixel.
 

4. Question 39 in the old questionnaire was reworded to Question 34
 

in the new list. The phrase "all available data" should be emphasized
 

as the analyst might otherwise base judgement on only the false color
 

imagery.
 

5. Two questions were inserted between Questions 39 and 40 in the
 

old questionnaire (new Questions 35 and 36). These require the analyst
 

to consider whether the pixel is representative of the field it is in.
 

If it is not, the next question checks to see if the field containing
 

that pixel follows a small grain development pattern. The idea is to
 

label the pixel according to its field in case it is not representative
 

of the field.
 

6. Questions 40 and 41 in the old questionnaire were merged into
 

Question 37 in the new. The two old questions basically have the same
 

meaning and a single question instead was felt to be adequate.
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7. Question 43 in the old questionnaire was deleted. It does
 

not contribute to the decision and serves only to add confusion, as no
 

guidance is given as to how closely or in what manner the percentages
 

must match to motivate a particular choice of answer.
 

8. It was felt that Questions 45-51 in the old questionnaire must
 

be altered in some way to be of any value to the analyst in distinguishing
 

wheat from other small grains. However, the analysts did not feel
 

sufficiently knowledgeable of the wheat-growing process to suggest an
 

appropriate alteration.
 

A number of additional points related to the LIST processing and
 

the analysts' experience with it are pertinent to the evaluation. These
 

are summarized as follows:
 

1. The "Kraus Product" PFC imagery is intended to provide "norma­

lized" color as a basis for acquisition-to-acquisition comparisons of
 

imagery. However, in many cases, the analysts did not feel confident
 

that the "redness" of a field in the Kraus product could be taken as a
 

reliable quantitative indication of the vegetative state or quality of
 

the field.- This was particularly true in the 1976 data; the Kraus
 

products were thought to be more reliable in the 1977 data. The analysts
 

felt that the "Product 1" imagery was still the most interpretable and
 

information-bearing.
 

2. Interpretation keys were not made available by JSC. Consequently,
 

the answers to Question 34 were necessarily very subjective, and, though
 

this did not create a serious problem, the need for the keys was definitely
 

felt in some cases.
 

3. The available meterological data was found to be incomplete and,
 

in many instances, not helpful. The data on 3-days-prior precipitation
 

(Question 18) was not provided for 1976, although it was provided for
 

1977. In any case, the information on prior precipitation was found too
 

general to be of significant value. The data was based'on the city
 

nearest to the county containing the segment being labeled. The nearest
 

city almost always proved to be too distant to provide reliable informa­

tion about the segment itself.
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4. The analysts felt that accurate crop calendar information was
 

absolutely essential in assessing the wheat growing stage.
 

5. The "typical" trajectory plots were found inadequate for precise
 

numerical comparison with trajectory plots of pixels to be.labeled.
 

The shape of the plots, however, was clearly helpful, but the Judgement
 

of the analysts as.to whether a pixel followed a small grains trajectory
 

plot was very subjective. In many instances, the analysts were confronted
 

with pixel trajectory plots that were ambiguous and could be interpreted
 

different ways.
 

6. In the original LIST questionnaire, the analysts were directed
 

to omit answering a number of questions when a pixel was temporally
 

misregistered. However, a labeling decision was still sought. The
 

analysts felt strongly that these pixels should be deleted from consider­

ation altogether due to the unavailability of the important trajectory
 

plot information. Certainly, the reliability and utility of data under
 

such circumstances is doubtful.
 

7. Data could not be automatically screened for DO and DU prior to
 

analysis because the available screening process was found to be ineffec­

tive. Thus, the analystshad all to agree jointly on DO and DU areas in
 

a given segment.
 

8. A very serious problem encountered by the analysts was the
 
"unanswerability" of Questions 45-51. 
The analysts felt strongly that,
 

with the given information, they could not discriminate between wheat
 

and other small grains. Furthermore, some of these questions (46, 47)
 

are unclear. For all cases in which there were small grains other than
 

wheat in the segment, the analysts were unable to discriminate the wheat.
 

9. In some cases the acquisition dates provided were not "typical"
 

in the sense that they did not adequately cover the different stages of
 

wheat growth. The analyst had to settle sometimes for whatever dates
 

were available, some of which may have been little information-bearing.
 

Further, because of these temporal shifts, the pixel trajectory plot shapes
 

were altered, and the analyst had to interpolate mentally to decide
 

whether a pixel trajectory plot was similar to that of small grains.
 

The analysts felt that a significant handicap was their inexperience
 

with the wheat growing process and that such a background would definitely
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contribute to better understanding of the LIST process and the rationale
 

behind the questions. This could lead to better labeling accuracies.
 

Another factor mentioned was the length and tediousness of the process.
 

The analysts felt that an effort should be directed at automating at
 

least a part of the process, although they also observed that the analyst's
 

role is of such importance that they doubt whether the process can be
 

completely automated.
 

Labeling Performance. JSC-supplied ground truth tapes were used to
 

evaluate the labeling results. Using these ground truth tapes and the
 

EOD-LARSYS program $GRAYMAP, a map of each segment was generated. These
 

maps identified the fields in the segment down to the subpixel level,
 

each pixel divided into six subpixels. The ground cover classes were
 

grouped into the following categories: wheat, small grains, non-small
 

grains, fallow, and non-ag. The pixels were then assigned a ground truth
 

label as follows: if all subpixels were of one class (e.g., wheat,
 

fallow, etc.), the ground truth label was that class; if the pixel was
 

partially wheat or small grains and partially one of the non-small
 

grain types, the pixel was labeled edge point.
 

The analyst-labeled pixels were then compared to the corresponding,
 

pixels on the ground truth map. The LIST questionnaire limited analyst
 

labels to the following categories: wheat, small grains,, non-small
 

grains, fallow, non-ag and edge. Each pixel label was called correct
 

or not according to the following rules:
 

1. If the analyst answered wheat or small grains and the ground
 

truth label also was wheat or small grains, the answer was considered
 

correct.
 

2. If the analyst's answer was any non-small grains category and
 

the ground truth label was also, the answer was considered correct.
 

3. If the ground truth label for the pixel was edge, the pixel
 

was disregarded,, since it was partially small grains and partially
 

non-small grains.
 

4. Anything else was considered an error.
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The accuracy of each analyst was then found by dividing the number
 

of correctly labeled pixels by the total number of pixels labeled
 

(disregarding edge pixels).
 

The labeling results for seven Kansas, one South Dakota, and five
 

North Dakota segments are plotted in Figures A-3 to A-5. The accuracy
 

figures for each analyst and each segment are shown in Table A-2. The
 

general trend of these results suggests that which segment is being
 

analyzed has more influence on the results than which analyst is
 

producing the results. There is further evidence to support this
 

conclusion. Table A-3 characterizes the major sources of error for
 

the segments processed by the analysts. For the most part, although
 

the types of errors vary from segment to segment, all analysts tended
 

to make the same type of error on a given segment.
 

A more complete study of the analyst and segment effect was provided
 

by an analysis of variance of the results. To test the significance of
 

the effects of the analyst, the segment, and the analyst x segment
 

interaction, an analysis-of-variance of the results was done using the
 

SPSS ANOVA procedure. The ANOVA results produced are shown in Table A-4.
 

A qualitative look at the results shows that analyst effects and analyst
 

x segment interaction effects are not significant; however, segment
 

effects are significant.
 

The major points to note are:
 

1. The area being analyzed has an effect on the labeling accuracy
 

of the analyst. Note the much lower accuracy for the Dakota states as
 

compared to Kansas. Also note the segment-to-segment variation in
 

accuracy. This effect may be due to:
 

- Cropping practices that vary from area to area (e.g., strip
 

cropping, contour farming, irrigation).
 

- Confusion crops grown in a particular area (e.g., hay and
 

pastureland are sometimes difficult to differentiate from wheat).
 

- Unusual growth patterns for a given area (e.g., late planting,
 
effects of drought or disease, early harvest).
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Figure A-3, 	Wheat/Non-Wheat Accuracy vs. Segment: Kansas,1976.
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Figure A-4. 	 Small Grains/Non-Small Grains Accuracy vs. Segment: North
 
Dakota, 1976.
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Table A-2. Labeling Accuracy 

Kansas (1976 data) 

By Analyst 
Analyst Accuracy 

By Segment 
Segment Accuracy 

1 

2 

3 

Overall 

80.7 % 

84.2 % 

77.5 % 

80.8 % 

1857 

1860 

1865 

1163 

1165 

1852 

1855 

Overall 

80.8 % 

64.6 % 

79.0 % 

83.1 % 

92.7 % 

90.5 % 

75.0 % 

80.8 % 

North Dakota (1976 data) 

By Analyst 
Analyst accuracy 

By Segment 
Segment Accuracy 

1 

2 

Overall 

72.0 % 

69.1 % 

70.5 % 

1633 

1637 

1661 

Overall 

66.2 % 

86.0 % 

59.5 % 

70.5 % 

North and South Dakota (1977 data) 

By Analyst 
Analyst Accuracy 

By Segment 
Segment Accuracy 

1 

2 

Overall 

67.9 % 

72.0 % 

70.0 % 

1652 

1681 

1897 

Overall 

67.1 % 

68.1 % 

74.8 % 

70.0 % 

Summary: Analyst I average = 75.7 % 

Analyst 2 average = 77.8 % 

Analyst 3 average = 77.5 % 

Overall average = 77.0 % 
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Table A-3. Major Contributions to Labeling Error
 

Analyst/ 
Segment- 1 

1857 -Wheat low 
Fallow high 

1860 Wheat high 
Fallow low 

1865 Small grains high 
Fallow low 

1163 Wheat/Non-small 
grains confusion 
Fallow high 

1165 Fallow high 

1852 Wheat high 
Fallow high 

1855 Wheat high 

1633 Small grains high 

1637 Small grains high 

1661 Small grains/Non-
small grains 
confusion 

1652 Small grains/Non-
small grains 
confusion 

2 


Wheat low 

Fallow high 


Wheat/Non-small 

grains confusion 


Small grains high 

Fallow low 


Wheat low 

Fallow high 


Fallow high 


Fallow high 


Wheat/Non-small 

grains confusion, 

Fallow high
 

Small grains high
 

Small grains high
 

Small grains/Non­
small grains
 
confusion
 

Small grains/Non­
small grains
 
confusion
 

3
 

Wheat low
 
Fallow high
 

Wheat high
 
Fallow low
 

Small grains high
 
Fallow low
 

Wheat high, Edge
 
high, Fallow low
 

Small grains high,
 
Fallow high,
 
Edge high
 

Wheat high
 
Fallow high
 

Wheat high
 
Fallow high
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Table A-3 (con't.) 

Analyst/ 
Segment 12 3 

1681 Small grains low Small grains low 

1897 Small grains/Non- Small grains/Non­
small grains small grains 
confusion, Fallow confusion, Fallow 
low low 
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Table A-4. Anova Tables for Kansas'and Dakotas 

Kansas (1976 Data) 

Source 

Analyst 

Segment 

Anal x Seg 

Error 

df 

2 

6 

1 

11 

SS ' 

153.859 

1623.805 

98.632 

618.014 

MS 

76.930 

270.634 

98.632 

56.183 

F 

1.369 

4.817* 

1.756 

North Dakota (1976 Data) 

Source df 

Analyst 1 

Segment 2 

Anal x Seg 1 

Error 1 

SS 

12.615 

756.372 

2.45 

1.578 

MS 

12.615 

378.186 

2.45 

1.578 

F 

7.994 

239.662* 

1.553 

---

Dakotas (1977 Data) 

Source df 

Analyst 1 

Segment 2 

Anal x Seg 1 

Error 1 

SS 

25.216 

70.505 

.04 

50.029 

MS 

25.216 

35.253 

.04 

50.029 

F 

.504 

.705 

.001 

* significant at the a = .05 level 
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2. Analyst effects in this study were not significant. However,
 

we cannot conclude that this would be true in general, since all three
 

analysts had similar amounts of related experience and knowledge of
 

wheat growth.
 

3. The revised LIST questionnaire was used by the analysts to
 

label the 1977 blind sites in North and South Dakota. Note that there
 

is no significant change in accuracy compared to the analysis of
 

1976 sites in North Dakota using the original LIST.
 

Assessment of the LIST Characteristics.
 

We examined the pattern of analyst responses to the pixel-specific
 

questions of LIST in order to determine which questions have important
 

discriminatory power and how accurately these questions were answered.
 

Our objectives were to understand the actual workings of the current
 

process, hoping thereby to be able to modify it to become more
 

quantitative and possibly have more (or all) of the work done by a
 

computer.
 

The evaluation was based on 1976 Landsat and ancillary data from
 

seven blind-site segments in Kansas. Three analyst-interpreters (Als)
 

at LARS filled out the LIST questionnaires. Their answers to all the
 

questions were then keypunched to create a computer-readable data set,
 

which contained the responses of
 

- 3 Als for segments 1163, 1855, 1857, 1860, 1865
 

- 2 AIs for segments 1165, 1852.
 

Ground truth for each labeled pixel was added to the file of AI data
 

to form the basic data set, which contained information on 1359 pixels.
 

Of these, 146 had ground-truth (GT) codes for "edge between wheat or
 

small grains and something else." Another 11 pixels were "designated
 

unidentifiable" (DU) by the analyst, probably due to haze or clouds.
 

The analysts labeled an additional 15 pixels "edge;" it is not
 

determinable from available ground truth whether these are in fact
 

field edges or errors. This left 1187 pixels with unequivocal AI and
 

CT codes: Non-agricultural; Fallow; Non-small grains; Wheat; Small
 

grains.
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There is however, variability in the-meaning of the label "small
 

grains." For the ground truth label, "small grains" means "small grains
 

other than wheat;" for the Al label, "small grains" means "small grains
 

which may be wheat but could also be oats, barley, or rye."
 

Figure A-6 shows the flow of all the pixels through the LIST
 

questionnaire, and Fig. A-7, A-8, and A-9 show the paths taken by pixeL
 

with GT labels of "wheat/small grains," "non-small grains," and "non-ag/
 

fallow,",respectively.
 

Questions 31 and 32 form the basis of the first major branching
 

point.- They ask the analyst to judge the presence and development
 

stage of vegetative canopy based on the color of the pixel on each of
 

two production film converter (PFC) images -- Product 1 and Product 3
 

(or Kraus product). For all 4 acquisitions the pattern of responses
 

to Questions 31 and 32 were similar. Thus, either the two images gave
 

almost the same information, or the AI combined his impressions from
 

both images before -answering either question. For the earliest acquisi­

tion (which ranges from March 10 to April 18, depending on segment)
 

the answers to these questions, grouped by ground truth category, are
 

shown in Table A-5. For the third acquisition the responses to Question
 

31 are shown in Table A-6.
 

Table A-5. 	Analyst Responses to LIST Questions 31 and 32, First
 
Acquisition.
 

Question 31 	 'Question 32
 

Non- Non-Sm Wheat or Non- Non-Sm Wheat or
 
AI Response Ag Fallow Grain Sm Grain Ag Fallow Grain Sm Grain
 

No Vegetation -1 3 208 602 92 3 197 567 90 

Indeterminate 0 0 2 54 20 0 9 70 23 

Green 
Vegetation 1,2,3 2 9 85 110 2 13 104 109 
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Figure A-7. Flow of Wheat/Small Grains Pixels through LIST.
 



A-28S
 

757 adht,(I 

Non-sm - .tndc~~eosNO4 e5 "Ro 5'% 


S34-3'b~kow 
G 

X39It 0A 

Figre -8.FloofNonSmal GainPixls hrogh IST
 



A-2 9
 

'Jt~ c~soy'j~JQ Ye1

'ts-0~'
 

'k'A sq 

Figure Flo of No-AgFlo3ies9hog IT
-9. 




50 

A-30 

Table A-6. Analyst Responses to LIST Question 31, Third Acquisition.
 

Non-Sm Wheat or
 
AI Response Non-Ag Fallow Grain Sm Grain
 

No vegetation -1 4 185 364 
 47
 

Indeterminate 0 0 3 41 10
 

Green vegetation 1,2,3 1 27 251 82
 

Senescing/Harvested 4,5 0 4 55 83
 

Even as late as the fourth and final acquisition there were 269 "non­

small grain" and 56 "wheat/small grain" pixels for which Question 31 was
 

answered "no vegetation." Many of these pixels were misclassified as
 

"fallow." When the AI answered both Questions 31 and 32 by -1 for all
 

four acquisitions, he is instructed to take a path (Question 33) which
 

leads to a non-crop (non-ag or fallow) label. Otherwise he follows a
 

path (Question 34) which leads to a crop label (wheat, small grain,
 

non-small grain). The correct path was followed for 910 of the 1187
 

pixels, as shown by the accompanying matrix.
 

Ground Truth
 

non­
crop crop
 

crop 770 84 854
 
AI
 
Decision
 

non- 193 140 333
 
crop
 

963 224
 

Thus we have:
 

P(decide "crop"J"crop") = .800 

P(decide "crop"j"non-crop") = .375 

P(decide "non-crop"J"non-crop") = .625 

P(decide "non-crop""crop") = .200. 
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The largest percentage error comes from calling a pixel "crop" when in
 

fact it is non-ag or fallow. The largest absolute error (193 pixels)
 

comes from calling a pixel "non-ag" or "fallow" when in fact it is a
 
"crop." Question 33 was answered for 333 pixels -- all those that got
 

straight -l's on Questions 31 and 32. Of these, only 140 deserved
 

straight -l's, so the answer to Question 33 was bound to be "wrong" for
 

the other 193. For the 140 on which the analyst had a chance to be
 

right, he was correct for all of them.
 

The next question that leads to a parting of ways is 39:
 

Does pixel follow a small grains spectral development pattern?
 

If answered "yes" this leads to "wheat" or "small grain" choices. If
 

answered "no" it leads to "non-small grain." (There is a possible loop
 

back to re-evaluate, but the loop was never taken.) This question was
 

answered for 854 pixels, 770 of which really were "crop" and 84 were
 
"non-crop." 
 If we look at all responses from the standpoint of interest 

only 4n "small grain" versus "everything-else" we have: 

Ground Truth
 

every­
small thing
 
grain else
 

small
grain 
 147 
 140
grain 287
 
AI
 

Decision
 
other 51 516 567
 
crops
 

198 656
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Remember that the "everything else" category includes 84 pixels that are
 

not any kind of crop; therefore, all of these must be misclassified at
 

this stage, as either "smiall grain" or "other crops." A more detailed
 

breakdown is shown in Table A-7.
 

Table A-7. Results of Analyst Response to Question 39.
 

Ground Truth
 

Small Other Non-

Grain Crops Crop
 

Small 147 127 i3 287
 
Grain
 

AI
 
Decision
 

Other 51 445 71 567
 
Crops
 

Pixels for which ques- 24 169 140 333
 

tion was not answered
 

222 741 224 1187
 

Which table is more useful depends on what it is important to identify
 

correctly -- if a pixel is not wheat, we may or may not care what it
 

really is. We have:
 

I 

P(deciding "small grain"iit really is small grain and Q39 was reached)
 

147
 
198
 

P(deciding "small grain"Jit really is small grain)
 

147
 
222
 

The second probability is lower because of the 24 small grain pixels that
 

were earlier classified as "non-crop."
 

If Question 39 was answered "no," the AI proceeds to Questions 42,
 

43, and 44. If Question 44 is reached and answered "yes," the AI is
 

directed to "go to Question 39 and re-evaluate." This path was never
 

followed -- question 44 was reached for 59 pixels, but was answered "no"
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for all of them. All other paths in this section lead to a "non-small 

grains" label (which means "crop other than small grain"). Thus, 

P(deciding "non-small grain"Jit really is "non-small grain"
 

and Q39 was reached)
 

445
 
78
572 

P(deciding "non-small grains"lit really is "non-small grains") 

=-445 = .60 
741 

If question 39 was answered "yes," the AI goes to a series of questions
 

designed to decide whether the pixel can be determined to be specifically
 

"wheat" or must be left with the more general "small grains" label. The
 

key question here is 41:
 

Does all available data indicate wheat is the only small
 

grain in this area?
 

Of 287 times this question was reached, it was answered "yes" 244 times
 

and those pixels were subsequently labeled "wheat." The remaining 43
 

pixels led on to Questions 45 and 46 and were then labeled "small grains."
 

Questions 47 to 51 were never reached.
 

Table A-8. Results of Analyst Response to Question 41.
 

Ground Truth
 

small
 
wheat grain other
 

wheat 128 3 113 244
 
AI
 
Decision
 

small
 16 0 27 43
 
grain
 

Pixels for which ques 72 3 825 900 
tion was not answeredI 

216 6 965
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Looking at the overall labeling results, the AI and ground truth
 

never agreed on a "small grains" pixel but since there were only 6 real
 

"small grains" other than "wheat" pixels, this is not surprising. (Note
 

that the AI category "small grains" includes those pixels that may be
 

wheat but which are in areas where wheat can't be distinguished from
 

other small grains. The GT category "small grains" contains only "non­

wheat small grains.")
 

If we redefine "small grains" to include wheat for both AI and
 

ground truth we have the results shown in Table A-9.
 

Table A-9. 	Two-Way Comparison of Analyst
 
Labels and Ground Truth.
 

Ground Truth
 

every­
small thing
 
grain else
 

small147 140
 
grain


AI
 

Decision
 
every­
thing 75 825
 
else
 

This gives:
 

= 1187 82P(correct decision 147 + 825 82
 

P(decide "small grain"lit really is "small-grain")
 

147 6
 
222
 

P(decide "small grain"lit really is something else)
 

140
 
=--= .15965
 

P(decide "something-else"lit really is "small grain")
 

75 
= .34 

-222 
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P(decide "something-else"lit really is "something-else")
 

825 .85=--= 

965
 

The actual percentage of labeled pixels that are "small grain" is
 

100(222/1187) = 18.7%. However, the AI decided "small grain" for
 

100(287/1187) = 24.2% of the pixels, thus overestimating the proportion
 

of "small grains" by a factor of
 

24.2/18.7 = 1.3
 

Note that the proportion of correct decisions depends on the definition
 

of "correct." Above we used a two-way criterion: small grains vs.
 

everything else. A three-way criterion -- small grains vs. non-small
 

grain crops vs. non-crops -- gives a lower proportion of correctness,"
 

as shown in Table A-10.
 

Table A-10. Three-Way Discrimination
 

Ground Truth
 

small non-sm non­
grain grain crop
 

small147 127 13.
 
grain
 

AI non-sm 51 445 71
 
Decision grain
 

non- 24 169 140
 
crop
 

147 + 445 + 140 
P(correct decision) = 1187 1 -62 

Recall that a key point in the decision making process comes at
 

Question 39, where "small grains" and "non-small grains" paths divide.
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The answer given to this question depends heavily on the answers that
 

were given to Questions 34, 35, 37, and 38. Questions 34 and 35 are
 

parallel questions that ask:
 

Is the vegetation indication of the pixel on PFC Product-1
 

(Product 3) valid for the Robertson biostage of wheat for
 

the acquisition?
 

The pattern of response to each question is similar, so we will look
 

only at Question 34. This question is answered separately for each
 

acquisition, either "yes," "no," or "indeterminate." Let us for each
 

pixel count the number of times the question was answered "yes." This
 

can range from 4 .(since there are 4 acquisitions) down to 0 (answered
 

"no" or "indeterminate" for each date). Note that 1 ,could represent
 

response patterns YNNN, NYNI, INYI, etc., but in each case the question
 

is answered "yes" for exactly one of the four dates. Similarly, categories
 

2 and 3 contain many possible patterns of response.
 

Table A-ll. Pattern of Responses to Question 34
 

Ground Truth Al Label
 

,No. of "yes" Sm Non-sm Non- Sm Nonsm Non­
answers Grain Grain Crop Grain Grain Crop
 

0 3 49 19 8 63 0
 

1 21 198 32 15 236 0
 

2 39 154 19 41 171 0
 

3 47 103 10 77 83 0
 

4 88 68 4 146 14 
 0
 

There were 160 pixels for which Question 34 was answered YYYYi 88 of
 

these were really small grain, 68 non-small grain, and 4 were non-crop.
 

However, the AI labeled 146 of them small grain, and 14 non-small grain.
 

(He could not label any of them non-crop since that path had branched off
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earlier.) Thus the AI decision is highly correlated with the answer to
 

this question. The likelihood that a pixel is really small grain shows
 

moderate correlation to the answer, but there are 21 small grain pixels
 

that received only one "yes." Also, 72 non-small grain or non-crop
 

pixels received four "yes" responses and 113 received three "yes"
 

responses; many of these were later misclassified as "small grains."
 

Question 37 asks:
 

Is the green number of pixel within the range for small grains?
 

It too is answered once for each acquisition, and we use the same
 

technique as above to display the results in Table A-12.
 

Table A-12. Pattern of Responses to Question 37
 

Ground Truth AI Label
 

No. of "yes" Sm Non-sm Non- Sm Non-sm Non­
answers Grain Grain Crop Grain Grain Crop
 

0 4 60 14 1 17 0 

1 11 102 29 16 126 0 

2 44 142 24 53 157 0 

3 •56 234 14 106 198 0 

4 83 34 3 il 9 0 

Question 37 was answered YYYY for 120 pixels, 83 of which were really
 

"small grains." So the "typical small grain green number pattern" is
 

followed by some non-small grain pixels and is not followed by some
 

small grain pixels. There were 59 small grain pixels that had 0, 1, or
 

2 "yes" answers, and 285 "everything else" pixels with 3 or 4 "yes"
 

answers. Once again, the AI labels are correlated highly with the answer
 

to the question.
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Question 38 asks:
 

Does the trajectory plot of this pixel match a small grains
 

trajectory plot?
 

Since the plot incorporated information from all four acquisitions, the
 

question is answered only once for each pixel. The results are summarized
 

in Table A-13.
 

Table A-13. Results of Analyst Response to Question 38
 

Ground Truth AI Label
 

Sm Non-sm Non- Sm Non-sm Non-

Grain Grain Crop Grain Grain Crop
 

No 70 460 67 61 536 0
 

Ind. 18 53 6 55 22 0
 

Yes 110 59 11 171 9 0
 

Again, the AI label agrees closely with the answer to the question. The
 

actual situation is less neatly defined. There were 180 "yes" answers,
 

171 of which were labeled "small grains," but only 110 of which were
 

really "small grains."
 

Conclusions. In the LIST questionnaire, the decision between "crop"
 

and "non-crop" comes early, and is based primarily on the appearance
 

(color) of the pixel on the PFCs. Out of a total of 1187 pixels analyzed,
 

the AIs followed the path leading to "non-crop" labels 333 times, but
 

only 140 of these pixels actually were "fallow" or Inon-agricultural."
 

(However, the 1976 drought in Kansas may have made some planted fields
 

appear fallow. Some fields may have been plowed under after being
 

planted. We do not know how the "ground truth" labeled such fields.)
 

If the "ground truth" reflects the actual condition of the fields during
 

the growing season, then the low accuracy of the "crop" vs. "non-crop"
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decision suggests that more than just the available information used by
 

the LIST is required to make this discrimination accurately. The present
 

decision criterion (spectral image interpretation) requires human capabil­

ities and is not directly amenable to machine implementation. Since the
 

color images were created from digitized data, it would be desirable to
 

find an alternative method of structuring and categorizing the data in
 

a multitemporal, computer-oriented form.
 

After careful study of the LIST process, it is not surprising that
 

the analyst decision (Question 39) between "small grains/wheat" and
 

"other crops" is highly influenced by and correlated with the answers to
 

Questions 34, 35, 37, and 38. Any improvement in methods (e.g., quanti­

tative aids) for judging green numbers or assessing trajectory plots
 

should lead to more accurate decisions. Questions beyond 39 had little
 

pixel-dependent discriminatory power for the data set used in this analysis.
 

(There was segment-dependent discrimination between "wheat" and "small
 

grains" in Questions 40 and 41.) The next section of the report will
 

discuss machine-implemented methods of dealing with Questions 34-38.
 

Surmmary.
 

We draw together here the key observations concerning our analysis
 

of the LIST process.
 

The training sample labeling process systematized in the LIST method
 

is still very subjective. It is not surprising, then, that prior
 

knowledge of the wheat-growing process is felt to be a considerable asset
 

to the analyst, permitting him/her a more insightful understanding of
 

the questions and a better ability to recognize abnormal situations in
 

the data. Such analysts would also be more likely to provide effective
 

guidance with respect to further improvement of the LIST process.
 

The length and tedium of the process are clearly problematical. The
 

analysts felt that certain portions of the process could be automated to
 

alleviate this situation, although they added that the level of subjec­
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tivity dictates against total automation. We shall show later, however,
 

that accuracies at least comparable to those of the participating analysts
 

may be obtainable by appropriate quantification of key features used in
 

the LIST process.
 

It was interesting to discover that the major differences in LIST
 

labeling results were attributable to segment variability. Analyst and
 

segment/analyst interaction effects were statistically insignificant.
 

Also, no significant performance difference was observed when the question­

naire was revised based on analyst recommendations. The full implications
 

of these observations should be further explored. However, one conclusion
 

which may be inferred is that the quality of the classification results,
 

known to be sensitive to the quality of the training sample labeling,
 

depends more on segment-to-segment variations of the data than on the
 

analyst selected to perform the labeling. Efforts to stratify the data
 

may still pay dividends, therefore, especially when one attempts to
 

automate the labeling process using methods based on parameterization of
 

data characteristics.
 

As i# now stands, the LIST process depends heavily on the abilitV
 

of the AI to quantify the spectral response of the pixels to be labeled
 

and effectively compare the spectral response to some rather loosely
 

defined standards for discriminating wheat from nonwheat. Basically,
 

he/she is expected to do a very quantitative job using tools which at
 

best are only quasi-quantitative. The impact of this situation is
 

reflected in the.level of analyst-dependent variability in the results
 

for any given segment (not withstanding that we have already shown that
 

this variability is relatively insignificant as compared to the variability
 

resulting from segment-to-segment variation in the data). There is
 

clearly room for improvement in the process through development of more
 

quantitative tools.
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2.2 	 Toward Computer Implementation of a LIST-like Labeling Process
 

A recent technical report by Abotteen and Pore [4] discussed a
 

method to automate a portion of the LIST questionnaire. In that report
 

a revised LIST questionnaire incorporating the automation was presente(
 

and evaluated over two LACIE spring wheat segments in North Dakota.
 

The high classification accuracies reported by Abotteen and Pore for
 

these two segments encouraged further investigation into their method
 

and evaluation of it over additional LACIE segments. We anticipated
 

that such an investigation would point to a still more quantitative and
 

"automatic" implementation of a LIST-like labeling process.
 

Approach
 

Questions 34 and 35 from the LIST questionnaireask:
 

34. 	 Is the vegetation indication of the pixel on PFC Product 1
 
valid for the Robertson biostage of wheat for the
 
acquisition?
 

35. 	 Is the vegetation indication of the pixel on PFC Kraus
 
product valid for the Robertson biostage of wheat for
 
the acquisition?
 

The vegetation indication mentioned in Questions 34 and 35 is the
 

response to the LIST Questions 31 and 32, respectively (see Appendix A-i).
 

These responses are coded evaluations of the nature of vegetation canopy
 

indicated to the analyst by the Product 1 image (Question 31) and the
 

Kraus product image (Question 32).
 

Abotteen and Pore describe a rule for answering Questions 34 and 35
 

based on the analyst response to Questions 31 and 32. They combined
 

Question 31 with 32 and Question 34 with 35, but their report is not
 

clear as to how this combination was done. Because of this ambiguity,
 

the implementation described here answers Questions 34 and 35 separately.
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The vegetation canopy indication code used by Abotteen and Pore in
 

Questions 31 and 32 is slightly different from the code used by the
 

analysts in this study. Abotteen and Pore use code 0 to indicate "no
 

vegetation canopy," whereas this study used code 0 to indicate
 

"indeterminate," and code -1 to indicate "no vegetation canopy." This
 

is accounted for here by assuming analyst responses -1 and 0 to both be
 

equivalent to code 0 of Abotteen and Pore.
 

Except for minor modifications mentioned, our computer implementa­

tion 	of Questions 34 and 35 followed Abotteen and Pore exactly*:
 

...Figure A-10 describes the automation technique. It is
 

a chart of the Robertson biostage on the horizontal axis
 

versus the vegetation canopy -(Question 31/32) on the vertical
 

axis. ...For each acquisition, a point is located in Figure
 

A-10 with the horizontal axis coordinate corresponding to
 

the Robertson biostage for wheat for the acquisition and
 

the vertical axis coordinate corresponding to the answer (for
 

a given pixel) to Question 31/32. If the point is in the
 

blank or the dotted area, Question 34/35 is automatically
 
If the point is in the shaded (barred)
answered with a yes. 


area, the answer is no (for that pixel and acquisition).
 

Vertical borders belong to the class on the left. [4]
 

Question 39 from the LIST questionnaire asks:
 

39. 	 Does pixel follow a small grains spectral development
 
pattern?
 

Again referring to Figure A-10, Abotteen and Pore suggest the
 

following rule for answering the question:
 

Question 39 is answered with a yes if the points corre­

sponding to the four acquisitions are all in the blank or
 

dotted regions [with] at least two in the blank region.
 

Hence, the dotted region in Figure A-10... is used as a
 ...

different designation from the blank region...for answering
 

Question 39 only. [4]
 

* 	 The inset material is taken directly from [4] except that figures
 

numbers are adapted to this report.
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An alternative rule for answering Question 39 is discussed later.
 

The computed results corresponding to Questions 34, 35, and 39
 

depend directly on the analyst responses to Questions 31 and 32 (i.e.,
 

on the perceived vegetation canopy indication). This dependence poses
 

problems when further automation of the process is considered. Also,
 

since the answers to Questions 31 and 32 depend on the analyst's subjec­

tive interpretation of the imagery, they are not necessarily consistent
 

from 	analyst to analyst.
 

LIST 	Question 37 asks:
 

37. 	 Is the green number of the pixel within the range for
 
small grains?
 

Abotteen and Pore suggest that a green number grand mean and standard
 

deviation for small grains be used at each Robertson biostage to
 

determine a standard range for small grains. Our implementation of this
 

idea answers Question 37 "yes" if the green number lies within one
 

grand standard deviation of the mean; the response is "indeterminate"
 

if the green number lies between one and two grand deviations from
 

the mean and "no" if two standard deviations or beyond. But if an
 

overall green number mean and standard deviation must be calculated,
 

what samples should be used for the calculation? Abotteen and Pore
 

used 34 unspecified LACIE segments to calculate a green number mean and
 

standard deviation for all winter small grains and spring small grains.
 

However, one might expect that more accuracy would be obtained if
 

separate green number means and standard deviations were used for spring
 

and/or winter small grains in certain geographical areas (such as
 

universal strata).
 

Abotteen and Pore introduce what they term the PCG (Principal
 

Component Greenness) statistic as another feature for separating small
 

grains from non-small grains. It is calculated by taking the inner
 

product of the first greenness [himge eigenvector (see Abotteen [7]) 

with the green number vector for the pixel under consideration. (The 
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green number vector for a pixel is defined by =G [g9 g2, g3, g4JT
 

where g is the green number for the pixel at the ith acquisition.)
 

The first greenness image eigenvector plotted versus Robertson
 

biostage has a shape similar to an "ideal" small grains temporal trajec­

tory. The PCG statistic is therefore an appropriate feature to use in
 

answering LIST Question 38:
 

38. 	 Does the trajectory plot of this pixel match a small
 
grains trajectory plot?
 

This PCG statistic is, however, Influenced by the size of the
 

elements of the green number vector. For example, given G = [24, 45,
 

10, 43 ]T and the first greenness image eigenvector = [.59, .69, .53,
 

-.25] T , the PCG statistic is 39.8, a rather large value; however, the
 

green numbers definitely do not follow a typical small grains temporal
 

trajectory, and the ground truth label for this pixel is "non-small
 

- grains." Because of this problem it was decided to normalize the PCG 

statistic by dividing by the 2-norm of the green number vector and­

multiplying by 40 (to maintain a convenient magnitude). See Table A-14 

for further examples. This normalization does not always reduce the 

PCG statistic for nqn-small grain pixels (and vice versa), but it does 

guarantee that the PCG statistic is uninfluenced by green number size 

and is thus a measure of trend only. The implementation described 

herein uses the normalized PCG statistic. 

Table A-14. Comparison of Unnormalized and Normalized PCG Statistic.
 

Unnormalized Normalized Ground

PCG Statistic PCG Statistic Truth
 

[24, 45, 10, 	43 ]T 39.8 23.6 Non-Small Grains
 
T
[2, 11, 6, i] 11.7 36.8 Winter Wheat
 

[4, 6, 6, 4]T 8.7 34.0 Winter Wheat
 

[4, 18, 24, 13] T 32.6 39.2 Winter Wheat
 

[3, 17, 18, 12] T 20.0 29.0 Non-Small Grains
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Abotteen and Pore used four acquisitions each of seven unspecified
 

winter small grains LACIE segments acquired in the 1976 crop year to
 

calculate the components of the first greenness image eigenvector for
 

various Robertson biostages. Six unspecified LACIE segments were used
 

in the calculation for spring small grains. As with the calculation of
 

green number mean and standard deviation, we speculate, based on analyst
 

experience,, that more accuracy might be obtained if separate calculations
 

were performed for differing geographical areas.
 

Another problem with the implementation of Question 38 is related
 

to how large the normalized PCG statistic should be before the answer
 

is given as "yes." As discussed in the next section, a threshold value
 

near 25 seems to be appropriate for the LACIE segments considered; but
 

it is not known whether this value would be universally applicable.
 

Discussed earlier was the Abotteen and Pore rule for answering
 

LIST Question 39:
 

39. 	 Does pixel follow a small grains spectral development
 
pattern?
 

An alternative rule can easily be devised based on the computed response
 

to Questions 37 and 38: Answer Question 39 "yes" if the answer to
 

Question 38 is "yes" and Question 37 is answered "yes" or "indeterminate"
 

for all acquisitions, or Question 37 is "no" for only one acquisition
 

and "yes" for the three remaining acquisitions. Both rules were implemented.
 

Experimental Results.
 

LIST Questions 34, 35, 37, 38 and 39 were implemented using a
 

simple FORTRAN program. The program was run on the seven 1976 LACIE
 

segments in Kansas which had been labeled earlier by three analysts.
 

The rule for answering Question 39 based on Questions 37 and 38 was
 

used for the evaluation discussed here. The other rule (based on 34
 

and 35) would really only evaluate the analyst responses to Questions
 

31 and 32.
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The Abotteen and Pore values for the first greenness image eigenvector
 

and for green number mean and standard deviation were used. Green
 

number means and standard deviations were also calculated based on the
 

seven LACIE segments considered, but use of those means and standard
 

deviations did not significantly affect the labeling results. Of course,
 

when the green number means and standard deviations are calculated from
 

only the segment being labeled, the accuracy is increased (e.g., segment
 

1960 accuracy was increased from 87.9% to 94.8%); but that's cheating,
 

since this would be testing accuracy on the training segment.
 

A convenient method by which to evaluate the effectiveness of the
 

implementation is to interpret a positive response to Question 39 as
 

labeling the pixel "wheat" (or "small grains") and a negative response
 

as labeling the pixel "nonwheat" (or "non-small grains"), and to compute
 

the resulting accuracy based on ground truth. Table A-15 lists the
 

labeling accuracies obtained using the computed answers to LIST Question
 

39 and compares this to the accuracies obtained by the three analysts.
 

The mean-accuracy for the computer labeling was higher than that for.
 

any one analyst. Also, the standard deviation of the computer labeling
 

accuracy was somewhat lower than every analyst standard deviation.
 

Further, looking at each individual segment accuracy, the computer "won"
 

eleven times while the analysts "won" ten times. Thus the computer
 

labeling, based solely on green numbers, was consistently at least as
 

accurate as labeling by analysts who had access to much more information
 

than just green numbers.
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Table A-15. Comparison of Analyst and Computer Labeling Accuracies. 

Labeling Accuracies (%) 

Analyst 

Computer 

Segment Al A2 A3 Threshold = 25 

1163 84.5 -87.9 76.9 91.2
 

1165 98.4 79.7
100 95.3
 

1852. 89.7 92.4 89.4 84.8
 

82.8 78.1
1855 59.4 82.8 


1857 85.2 78.7 78.5 
 77.0
 

62.1 87.9
1860 65.5 66.1 


1865 82.4 85.3 
 69.4 89.0
 

mean 80.7 84.2 77.5 86.2
 

std. dev. 13.6 11.9 7.9 6.7
 

The results in Table A-15 were obtained using a threshold of 25 in
 

answering Question 38 (and thus Question 39). Thresholds of 20 and 30
 

were also tried. The threshold of 25 was chosen, not because it gave a
 

significantly more accurate labeling in the sense of correctly labeled
 

pixels versus the total number of pixels (which it didn't), but because
 

it tended to give a more accurate estimate of the total number of small
 

grain pixels in the segment.
 

Discussion and Conclusions.
 

In Section 2.1, we demonstrated the impact of Questions 31, 32 and
 

34 through 38 on the results of the LIST process. These questions
 

direct the Al to a close scrutiny of the spectral response of pixels
 

already determined to be vegetation. They attempt to provide the AI
 

with objective evidence on which to base the crucial decision at
 

Question 39 which, for all practical purposes, implements the discrimin­

ation between small grains and non-small grains. Available experimental
 

results suggest the following conclusions:
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1. Given the vegetation canopy indication (AI response to Questions
 

31 and 32) and the Robertson biostage (Question 16) it is possible to
 

"compute" (essentially by table look-up) the response to Questions 34 and
 

35 (valid vegetation canopy indication). Furthermore, the response to
 

Question 39 can be computed based on the outcome of Questions31, 32, 34
 

and 35.
 

2. The decisions called for in Questions 37 (green number for
 

small grains) and 38 (small grains trajectory plot) are quantifiable
 

provided that the necessary statistics are available and invariant over
 

time and location. The response to Question 39 can then be computed
 

based on Questions 37 and 38. Our-experimental results support the
 

possibility of obtaining the necessary statistics. Labeling results
 

based on only the normalized inner product of the green number (temporal)
 

vector and the first greenness image eigenvector rivaled those obtained
 

by AIs using the complete LIST process.
 

The latter concldsion is particularly important because it suggests
 

that the small grains/non-small grains determination can be made by
 

machine computation just as accurately and much more efficiently than by
 

the Al using the LIST questionnaire. This could be used to advantage to
 

greatly reduce the tedium of the AIs task, although the AI may still be
 

employed to monitor the results for anomalous cases and, as necessary,
 

to discriminate wheat from other small grains.
 

Since the computations involved in this automated decision process
 

are very simple, one could easily conceive of applying them to the entire
 

segment. A map of the results (e.g., a PFC image), possibly a color­

coded rendering of the normalized inner product of green number vector
 

and greenness image eigenvector, would likely be of great assistance to
 

the AI in the labeling process.
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3. SUMMARY AND RECOMMENDATIONS
 

The LIST method for labeling training data (in lieu of ground observa­

tions) represents a workable approach, though it is generally recognized
 

that substantial improvements are needed and possible. In particular,
 

more effective use can be made of the analyst-interpreter by making the
 

questionnaire shorter and less tedious to apply. Some of the questions
 

need to be made more objective and additional quantitative aids should be
 

provided to the Al. A temporal greenness trajectory function has been
 

proposed and, in this study, shown to provide a means of objectively
 

discriminating between the categories "small grains" and "non-small
 

grains." Experimental results obtained by Lockheed Electronics Corp.
 

and LARS suggest that it may be feasible to automate this discrimination.
 

It should be pointed out, however, that the LIST process calls for
 

data from strategically timed acquisitions of the multispectral data, and
 

the data base used in this study was selected to meet this requirement.
 

The impact of poorly timed or missing acquisitions has not been assessed,
 

but it is likely to be significant. Further research is required to find
 

ways of minimizing this impact.
 

Finally, we note that the LIST process is, after all, a method for
 

unsupervised classification--classification of the primary remote sensing
 

data without benefit of "ground truth" for definition of training samples.
 

As such it cannot be as powerful for achieving accurate discrimination as
 

a supervised method would be (the latter makes more definitive associations
 

between information classes'and corresponding regions of the measurement
 

space). This must be kept in mind as efforts are made to extend the
 

approach in the direction of increasingly difficult discriminations. It
 

may eventually become necessary to consider alternative strategies
 

employing more direct information about the ground scene (such as aerial
 

photography), thereby reintroducing a greater degree of supervision in the
 

classlfer training process. The iternative Is to continue the search 

for highly characteristic and invarlant spectral/spatlal/temporal. features 

or "signatures." The inherent variability ("noisiness") of the natural 

scene makes progress in this direction increasingly difficult.
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Appendix A-i
 

List Experiment Questions [4]
 

1. 	Segment #
 

2. 	Partition #
 

3. 	Segment Type
 
(winter wheat, spring wheat, mixed wheat)
 

4. 	Country
 

5. 	State
 

6. 	County
 

Segment Questions from Imagery
 

7. 	Is there any agricultural land present in this segment?
 
(Check full frame, multitemporal imagery, maps and previous year's
 
imagery).
 
Yes: Go to 8
 
No: Stop
 

8. 	List the interpretable acquisition dates in the space provided (YDDD).
 

9. 	Acquisition date chosen by analyst as registration date is
 
Indicate (a) YDDD and (b) biowindow. (This is not necessarily the
 
Goddard reference segment.)
 

10. 	 Is the segment representative of the general area? (Check full
 
frame and ancillary data)
 
Yes
 
Indeterminate
 
No
 

11. 	 Are there strip fields in the cultivated area?
 
Yes
 
No
 

Cropping Practices
 

12. 	 Are wheat and/or other small grains continuously cropped in this area?
 
Yes
 
Indeterminate
 
No
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13. 	 Is fallowing practiced in this area?
 
Yes
 
Indeterminate
 
No
 

14. 	 Are the small grains irrigated in this area?
 
Yes
 
Indeterminate
 
No
 

15. 	 Determination of potential confusion:
 

a. 	List the most recent percent of county area occupied by each of
 
the applicable major crops.
 

b. 	Using the nominal crop calendar, determine the possibility of
 
confusion between wheat (winter and/or spring) and the other
 
major crops for each acquisition.
 

+1 = No confusion
 
0 =,Indeterminate
 
-1 ='Confusion
 

Met 	Data
 

16. 	 Robertson biostage for the segment for each acquisition is
 

17. 	 Total precipitation (in inches) for the week prior to each acquisition
 
as provided in the weekly meteorological summary is
 

18. 	 Total precipitation (in inches) for the 3 days prior to each
 
acquisition is
 

19. 	 Is there evidence of drought conditions (from met summary)?
 

20. 	 Is there evidence of winter kill (from met summary)?
 
Yes
 
Indeterminate
 
No 

21.-	 Is there evidence of a late freeze (from met summary)?
 
Yes
 
Indeterminate
 
No
 

22. 	 Is there evidence of hail damage (from met summary)?
 
Yes
 
Indeterminate
 
No 
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23. 	 Is there evidence of insects or disease (from met summary)?
 
Yes
 
Indeterminate
 
No
 

24. 	 Expected normal yield for this segment is
 

25. 	 Evaluation of crop condition for each acquisition is ."
 

2 = Significantly above normal
 
1 = Above normal
 
0 = Near normal
 
-1 = 	Below normal 
-2 = 	Significantly below normal
 

Delineate "DO" areas. (Area must apply to all acquisitions.)
 
Delineate "DU" areas where applicable.
 

Pixel Specific Questions
 

26. 	 Is pixel a DO'd pixel?
 
Yes: Non-ag STOP
 
No: Go to 27
 

27. 	 Is pixel a DU'd pixel?
 
Yes: STOP
 
No: Go to 28
 

28. 	 Is pixel registered with regard to analyst-chosen registration date?
 
Yes
 
Indeterminate: Do not answer questions 36, 37, 38 for this acquisition.
 
No: Do not answer questions 36, 37, 38 for this acquisition
 
Go to 29
 

29. 	 Is pixel a mixed pixel (part of more than one field or boundary)?
 
Yes
 
Indeterminate
 

No 
Go to 30
 

30. 	 Is this an anomalous pixel (not representative of most of the other
 
pixels within the field)?
 
Yes
 
No 
Go to 31
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31. 	 PFC vegetation canopy indication is .. . (Product 1)
 

-1 = 	No vegetation canopy
 
0 = Indeterminate
 
1 = Low density green vegetation canopy
 
2 = Medium-density green vegetation canopy
 
3 = High density vegetation canopy
 
4 = Senescing (turning) vegetation canopy
 
5 = Harvested canopy (stubble)
 

32. 	 PFC vegetation indication is - (Kraus product) 

Same code as # 31. If -l on 31 and 32 then go to 33. Otherwise go 
to 34. 

33. 	 Is pixel a non-ag pixel? (Check all available data.)
 
Yes: Non-ag STOP
 
No: Fallow STOP
 

34. 	 Is the vegetation indication of the pixel on PFC Product 1 valid for
 
the Robertson biostage of wheat for the acquisition? (Check keys for
 
partition.)
 
Yes
 
Indeterminable
 
No
 

35. 	 Is the vegetation indication of the pixel 6n PFC Kraus product valid
 
for the Robertson biostage of wheat for the acquisition?
 
Yes
 
Indeterminable
 
No 

36. 	 Green number of pixel is . (Refer to question 28. 
Correct the number to 600 latitude if appropriate.) 

37. 	 Is the green number of the pixel within the range for small grains?
 
(Check green number/biostage chart.)
 
Yes
 
Indeterminable
 
No
 

38. 	Does the trajectory plot of this pixel match-a small grains trajectory
 
plot? (Answer for fourth acquisition only.)
 
Yes
 
Indeterminable
 
No
 

39. 	Does pixel follow a small grains spectral development pattern?
 
Yes: Go to 40
 
No: Go to 42
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40. 	 Does crop statistical data indicate wheat is the only small grain
 
in this area?
 
Yes: Go to 41
 
No: Go to 45
 

41. 	Does all available data indicate wheat is the only small grain in this
 
area?
 
Yes: Wheat Go to 52
 
No: Go to 45
 

42. 	 Does crop statistical data indicate significant occurrence of other
 
crop types?
 
Yes: Go to 43
 
No: Go to 44
 

43. 	 If more than one non-small grain spectral signature is observed, do
 
the proportions of the signatures correspond to the historical
 
non-small grain percentages?
 
Yes: Non-small grains STOP
 
Indeterminate
 

No: Go to 44
 

44. 	 Do ancillary and met data indicate that the departure of the observed
 
spectral signature from"an expected normal small grains spectral
 
signature could be due to an abnormal small grains signature development?
 
Yes: Go to 39 and re-evaluate
 
No: Non-wheat STOP
 

45. 	 Does the nominal crop calendar indicate an out-of-phase relationship
 
between wheat and other confusion small grains?
 
Yes: Go to 46
 
No: Small grains STOP
 

46. 	'Can subclasses of small grains be identified on PFC products or
 
spectral plots as early, medium, or late developing?
 
Yes: Go to 47
 
No: Small grains STOP
 

47. 	 Does the stage of development of any of these subclasses correspond
 
to the.indicated stage of development for the out-of-phase confusion
 
small grain/s?
 
Yes: Go to 48
 
No: Small grains STOP
 

48. 	 Do the proportional distributions of the small grain subclasses
 
correspond to the historical percentage of confusion small grains?
 
Yes: Wheat Go to 52
 
No: Go to 49
 

49. 	 Is the proportional distribution of the small grains subclass
 
consistent with the historical percentage of wheat?
 
Yes: Go to 50
 
No: Small grains STOP
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50. 	 Is the small grains subclass a relatively pure wheat class?
 
Yes: Go to 51
 
No: Small grains STOP
 

51. 	 Does the pixel belong to the above mentioned subclass?
 
Yes: Wheat Go to 52
 
No: Small grains STOP
 

52. 	 Analyst estimate of pixel's growth stage is
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Appendix A-2
 

Revised List Experiment Questions
 

1. 	Segment #
 

2. 	Partition #
 

3. 	Segment Type
 
(winter wheat, spring wheat, mixed wheat)
 

4. 	Country
 

5. 	State
 

6;-	 County
 

Segment Questions from Imagery
 

7. 	Is there any agricultural land present in this segment?
 
(Check full frame, multitemporal imagery, maps and previous year's
 
imagery.)
 
Yes: Go to 8
 
No: Stop
 

8. 	List the interpretable acquisition dates in the space provided (YDDD).
 

9. 	Acquisition date chosen by analyst as registration date is
 
Indicate (a) YDDD and (b) biowindow. (This is not necessarily the
 
Goddard reference segment),
 

10. 	 Is the segment representative of the general area? (Check full frame
 
and ancillary data).
 
Yes
 
Indeterminate
 
No
 

11. 	 Are there strip fields in the cultivated area?
 
Yes
 
No
 

Cropping Practices
 

12. 	 Are wheat and/or other small grains continuously cropped in this area?
 
Yes
 
Indeterminate
 
No
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13. 	 Is fallowing practiced in tbiq area?-

Yes
 
Indeterminate
 
No
 

14. 	 Are the small grains irrigated in this area?
 
Yes
 
Indeterminate
 
No
 

15. 	 Determination of potential confusion:
 

a. 	List the most recent percent of county area occupied by each of
 
the applicable major crops.
 

b. 	Using the nominal crop calendar, determine the possibility of
 
confusion between wheat (winter and/or spring) and the other
 
major crops for each acquisition.
 

+1 = No confusion
 
0 = Indeterminate
 
-1= Confusion
 

Met 	Data
 

16. 	 Robertson biostage for the segment for each acquisition is
 

17. 	 Total precipitation (in inches) for the week prior to each acquisi­

tion as provided in the weekly meteorological summary is
 

18. 	Expected normal yield for this segment is
 

19. 	 Evaluation of crop condition for each acquisition is (check met
 
summary)
 

2 = Significantly above normal
 
1 = Above normal
 
0 = Near Normal
 
-1 = Below normal
 
-2 = Significantly below normal
 

Pixel Specific Questions
 

20. 	 Is pixel a DO'd pixel?
 
Yes: DO STOP
 
No: Go to 21
 

21. 	 Is pixel a DU'd pixel?
 
Yes: DU STOP
 
No: Go to 22
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22. 	 Is pixel registered with regard to analyst chosen registration date?
 
Yes: Go to 23
 
Indeterminate: STOP
 
No: STOP
 

23. 	 Is pixel a mixed pixel (part of more than one field or boundary)?
 
Yes (on all 4): Edge STOP
 
Indeterminate: Go to 24
 
No: Go to 24
 

24. 	 Green number of pixel is
 

25. 	 Is this an anomalous pixel (not representative of most of the other
 
pixels within the field)?
 
Yes
 
No
 
Go to 26
 

26. 	 PFC vegetation canopy indication is (Product 1)
 

-1 = 	No vegetation canopy
 
0 = Indeterminate
 
1 = Low density green vegetation canopy
 
2 = Medium density green vegetation canopy
 
3 = High density vegetation canopy
 
4 = Senescing (turning) vegetation canopy
 
5 = Harvested canopy (stubble)
 

27. 	 PFC vegetation indication is- (Kraus Product)
 
Same code as 26. If all available data indicates no vegetation,
 
go to 28. Otherwise, go to 30.
 

28. 	 Is pixel a non-ag pixel? (Check all available data.)
 
Yes: Non-Ag STOP
 
No: Go to 29
 

29. 	 Is Question 13 affirmative?
 
Yes: Fallow STOP
 
No: Non-small grain STOP
 

30. 	 Is the vegetation indication of the pixel on PFC product 1 valid for
 
the Robertson biostage of wheat for the acquisition? (Check keys
 
for partition.)
 
Yes
 
Indeterminate
 
No
 

31. 	 Is the vegetation indication of the pixel on PFC Kraus product valid
 
for the Robertson biostage of wheat for the acquisition?
 
Yes
 
Indeterminate
 
No
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32. 


33. 


34. 


35. 


36. 


37. 


38. 


39. 


40. 


41. 


Is the green number of the pixel within the range for small grains?
 

(Check green number/biostage chart.)
 
Yes
 
Indeterminate
 
No
 

Does the trajectory plot of this pixel match a small grains trajec­

tory plot? (Answer for fourth acquisition only.)
 

Yes
 
Indeterminate
 
No
 

Does all available data indicate pixel follows a small grains
 

development pattern?
 
Yes: Go to 37
 
No: Go to 35
 

Is Question 25 affirmative?
 
Yes: Go to 36
 
No: Go to 38
 

Does field around pixel follow a small grain development pattern?
 

(Check available data.)
 
Yes: Go to 37
 
No: Go to 38
 

Does all available data indicate wheat is the only small train in
 

this area?
 

Yes: Wheat Go to 47
 
No: Go to 40
 

Does crop statistical data indicate significant occurrence of
 

other crop types?
 
Yes: Non-small grain STOP
 
No: Go to 39
 

Do ancillary and met data indicate that the departure of the observed
 

spectral signature from an expected normal small grains spectral
 

signature could be due to an abnormal small grains signature
 

development?
 
Yes: Go to 34 and re-evaluate
 
No: Non-wheat STOP
 

Does the nominal crop calendar indicate an out-of-phase relationship
 

between wheat and other confusion small grains?
 
Yes: Go to 41
 
Indeterminate: Small grains STOP
 

Can subclasses of small grains be identified on PVC products or
 

spectral plots as early, medium, or late developing?
 

Yes: Go to 42
 
No: Small grains STOP
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42. 	 Does the stage of development of any of these subclasses correspond
 
to the indicated stage of development for the out-of-phase confusion
 
small grains?
 
Yes: Go to 43
 
No: Small grains STOP
 

43. 	 Do the proportional distributions of the small grain subclasses
 
correspond to the historical percentage of confusion small grains?
 
Yes: Wheat Go to 47
 
No: Go to 44
 

44. 	 Is the proportional distribution of the small grains subclass con­
sistent with the historical percentage of wheat?
 
Yes: Go to 45
 
No: Small grains STOP
 

45. 	 Is the small grains subclass a relatively pure wheat class?
 
Yes: Go to 46
 
No: Small grains STOP
 

46. 	 Does the pixel belong to the above mentioned subclass?
 
Yes: Wheat Go to 47
 
No: Small grains STOP
 

47. 	 Analyst estimate of pixel growth stage is
 



0
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B. 	Application and Evaluation of Landsat Training, Classification,
 
and Area Estimation Procedures for Crop Inventory*
 

The need for accurate and timely crop production information on a
 

global basis is increasing each year as the world's growing population
 

increases the demand for food. In mid-1972, the world food situation
 

changed as production declined for the first time in many years at a
 

time of rapidly increasing demand. The importance of crop production
 

information has been recently highlighted by severe drought in the
 

Soviet Union causing large purchases of wheat and increased grain
 

exports by the U.S. to all parts of the world.
 

Considerable evidence has developed that multispectral remote
 

sensing from satellites combined with computer-aided data analysis
 

can 	provide the data necessary for upgrading our capability to monitor
 

and 	inventory the world's croplands. The first milestone in the
 

development of the technology was collection in 1964 of multispectral
 

photography for the first time over agricultural fields and recognition
 

of the potential of the multispectral approach for crop identification [4]'.
 

In 1967 a crop classification was-made of multispectral scanner data using
 

pattern recognition methods implemented on a digital computer [5]. The
 

Corn Blight Watch Experiment, conducted in 1971 over seven Corn Belt
 

States, provided a prototype remote sensing system which successfully
 

integrated techniques of sampling, data acquisition, processing, analysis,
 

and information dissemination in a quasi-operational system environment [i0].
 

Multivariate pattern recognition methods implemented on a digital computer
 

were used to'classify Landsat-l data acquired over a three-county area in
 

northern Illinois and the area estimates obtained for corn and soybeans
 

were within 1.5 and 1.1 percent, respectively, of those made by the
 

U.S. Department of Agriculture [2].
 

This report, describing-the work of Task 2B, Application and Evaluation
 
of Landsat Training, Classification, and Area Estimation Procedures
 
for Crop Inventory, was written by Marilyn Hixson.
 

pAGE_. S INTENTIONILYLAU­
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Based on these and other results, the Large Area Crop Inventory
 

Experiment (LACIE) was initiated in 1974, using the remote sensing
 

technology available at that time, to estimate wheat production at the
 

country level [9]. In LACIE, training and classification were typically
 

performed on each 5 x 6 nm segment of Landsat MSS data. Large area
 

estimates for wheat were made by aggregating the proportion of wheat
 

in the individual segments, which together represented about two
 

percent of the total land area. Since the estimates were based on a
 

relatively small number of segments, the sampling errors associated with
 

estimates were quite large (more than 4% at the country level).
 

Since the LACIE system was designed, new information has been
 

acquired on scene stratification, training sample selection, classifi­

cation algorithms, and area efstimation methods. This research task
 

will build upon these recent developments to improve future crop inventory
 

systems.
 

In particular, three classification algorithms developed at LARS,
 

ECHO (Extraction and Classification of Homogeneous Objects), cascade
 

classifier, and layered classifier, will be tested [6,8]. The layered
 

and cascade classifiers are both multistage classifiers which eliminate
 

many of the difficulties encountered with the "stacked vector" or
 

"concatenation" approach to multitemporal analysis. ECHO can also be
 

used in an unsupervised mode as a training aid. Past studies have
 

investigated different sampling schemes for training and different area
 

estimation procedures [1,7J.
 

This investigation is divided into two phases: a preliminary
 

study and a major study. The objectives of the major study include
 

investigations of training area selection and training, classification,
 

and area estimation procedures. Specific objectives are:
 

1. Training
 

To evaluate and extend procedures for the training area selection
 

including factors such as size, number, and geographic
 

location of the training areas.
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To refine procedures for obtaining class statistics from
 

multiple training areas. Training methods include ISOCLS,
 

multi-block clustering, and ECHO.
 

2. Classification
 

To assess the accuracy of the area estimates of corn and
 

soybeans obtained by different classification algorithms:,
 

per point maximum likelihood, ECHO, and sum of densities.
 

To assess the accuracy of multitemporal classification
 

(including LACIE Procedure 1) as compared to the unitemporal
 

classifications.
 

3. Area Estimation
 

To compare the accuracy and precision of area estimates for
 

corn and soybeans obtained by different estimation methods;
 

specifically, to compare estimates obtained by classification
 

and aggregation of a.systematic.sample of pixels with estimates
 

made from a sample segment approach.
 

To compare methods of obtaining unbiased estimates such as
 

stratified area estimates and the regression approach.
 

At the request of NASA/JSC, the implementation plan for this task
 

was revised in mid May. This revision was to reflect the increased
 

emphasis on Multicrop and permit the establishment of a supporting
 

field research task. That effort; which was conducted as part of this
 

task, is described in Volume I, Section C, of this report.
 

At the time this investigation was begun, data appropriate for
 

addressing the original objectives was not available. Therefore, during
 

the period of data acquisition, a preliminary study was conducted using
 

currently available data. The activites'of this task during the past
 

contract year have been in three areas:
 



B-4 

(1) Development of the experiment design and definition of
 

data requirements for the major study. As an extension of this
 

objective, a stratification and sampling plan for the
 

NASA/JSC 1978 corn/soybeans data acquisition program was defined
 

and carried out by LARS.
 

(2) Recommendations for reference data acquisition. Data to be
 

acquired as inventory and periodic observations were recommended.
 

Flightlines and dates for aerial photography acquisition were
 

recommended.
 

(3) Evaluation of the training-classification procedures used in
 

LACIE (Procedure 1) for a corn/soybeans/"other" crop
 

identification problem and investigation of changes to improve
 

the performance of Piocedure 1 on corn and soybeans. This
 

study has been conducted using currently available data;
 

results will need to be confirmed when additional sample segments
 

become available.
 

These three general areas of effort are addressed in this report.
 

Section 1 describes the stratification and sample selection work conducted
 

for the transition year experiments. The data acquisition is discussed
 

in Section 2 and Section 3 describes the preliminary study.
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1. STRATIFICATION AND SAMPLE SELECTION FOR MULTICROP EXPERIMENTS 

1.1. Introduction
 

in February 1978, LARS was asked to participate in the stratifi­

cation and sampling tasks for the transition year experiments. The
 

project was supported by personnel and funds from two tasks of
 

NASA Contract NAS9-15466: "Application of Statistical Pattern Recog­

nition to Image Interpretation" and "Application and Evaluation of
 

Landsat Training, Classification, and Area Estimation Procedures for
 

Crop Inventory."
 

The purpose of this effort was to identify the locations of the
 

sample segments for the 1978-79 Multicrop experiments to support:
 

- Development and evaluation of procedures for using LACIE and
 
other technologies for the classification of corn and soybeans.
 

- Identification of factors likely to affect classification
 
performance.
 

- Evaluation of problems encountered and techniques which are
 
applicable to the crop estimation problem in foreign countries
 
as well.
 

In order to meet these requirements, two types of samples were
 

selected. Low density segments were distributed throughout corn and
 

soybean producing areas to sample all variations of conditions which
 

could affect classification accuracy and to more completely represent
 

conditions which might be found in other countries. High density
 

segments were selected in smaller areas to support the investigation
 

of training, classification, and area estimation procedures on a
 

smaller scale for possible use in future Multicrop experiments.
 

In this report, the data set and methods employed in the stratifi­

cation are discussed. Rationale, methods, and results for both the low
 

and high density segments are discussed.
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1.2 Objectives
 

In order to support the corn and soybean experiments, two types
 

of segments were selected: low density segments and high density seg­

ments. Different issues can be addressed using each type of segment.
 

The low density segments were selected to cover a wide range of
 

conditions under which areas will have to be classified in larger
 

Multicrop efforts to allow possible problems to be examined (e.g.,
 

in algorithms, systems, data acquisition). The low density samples
 

were located in 14 states in the U.S. corn and soybean producing areas.
 

This region was divided into eight strata according to the level of
 

county production of corn and soybeans and average farm size. Twenty
 

segments per stratum were selected. The distribution of these seg­

ments permits the calculation of variability within a stratum to pre­

dict the variability of aggregated estimates of corn and soybeans in
 

the U.S. and to determine the optimum allocation of samples for mak­

ing such estimates. The allocation of these samples was not designed
 

for, and thus does not support, making aggregated estimates.
 

The high density samples are located in four test sites in high
 

production areas of the U.S. Corn Belt. Twenty segments were selected
 

from each test site which is approximately ten counties in size. The
 

increased density of samples permits estimation of the local variabil­

ity in high,production areas. These samples support the investigation
 

of training, classification, and area estimation procedures on a
 

smaller scale for possible use in future Multicrop experiments. Other
 

area estimation procedures such as regression estimation can be evaluated
 

and county level estimates cat be assessed.
 

1.3 Data Set Description
 

The data-used in this study were acquired by the Statistical
 

Reporting Service of the U.S. Department of Agriculture (USDA/SRS).
 

Two types of data were available: the USDA/SRS county estimates for
 

1972-76 and the 1974 agriculture census data. The data were supplied
 

by NASA/Johnson Spate Center (NASA/JSC).
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The SRS dual county estimates program data for 1972-76 were avail­

able. Under the Federal program, county estimates are prepared for
 

specified crops, states, and counties. These estimates include the
 

major crops produced.in most states. Some of the state statistical
 

offices prepare county estimates for a few crops not required under
 

the Federal program in cooperation with their respective state govern­

ments, but these estimates were not available on tape.
 

Variables which were included in the county estimate's data set
 

were: state, crop reporting district, county, year data was punched,
 

crop year, commodity code, acres planted, acres harvested, yield per
 

harvested acre, and production (Figure B-i). Counties from the entire
 

United States were represented. The commodities for which information
 

was available are listed in Table B-I.
 

The 1974 agriculture census data were supplied for 14 states in
 

.the U.S. corn and soybean producing regions. These data included:
 

number of acres in each county, average farm size by county, and
 

the land in farms for each county.
 

1.4 Stratification
 

The first step in selection of sample segments was the stratifi­

cation of the area to be studied. The variables used in the strati­

fication, the rationale and methods employed, and the results of the
 

stratification will be discussed in this section.
 

Variables Used in Stratification.
 

The variables available were those contained in the USDA/SRS
 

county estimates program (Figure B-1) and the selected variables from
 

the 1974 agriculture census which were supplied by NASA/JSC. The
 

variables which were considered for use were: acres planted, acres
 

harvested, yield, and production for the crops listed in Table B-1;
 

acres in a county; percent agricultural area (land in farms) in a
 

county; and average farm size by county. From these variables, the
 

http:produced.in


ID DATA 

t e n(1) (2) (3) (4) (5) (6) (7) 
0 COMMODITY ACRES ACRES ACRES 

o CODE PLANTED 
ALL 

PLANTED 
FOR RARV. 

HARVESTED PRODUCTION PRODUCTION 
(COTTON LBS 

0 0- PURPOSES OR NET OF LINT) 
ACRES 

SECOED OR 
ACRES 

ABANDONED 
1 

2 56 7 8 9 10 1131J I i 1 1 A127 34 35 42 43 50 1 505 58 99 68 69 78 

Figure B-I. Record layout of county estimates data. 
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Table B-I. Crops included in the USDA/SRS county estimates program.
 

Winter Wheat
 

Durum Wheat 

Other Spring Wheat
 

Wheat, All
 

Rye, All 

Rice, All 

Corn for Grain
 

Corn For Silage
 

Oats, All
 

Barley, All
 

Sorghum, All 

Cotton, All
 

Cotton, Upland
 

Cotton, American Pima
 

Tobacco
 

Flaxseed
 

Peanuts
 

Soybeans
 

Dry Edible Beans - Pea (Navy) 
- Great Northern 

- Flat Small White 

- Pinto 

- Red Kidney 

- Pink 

- Small Red 

Dry Beans (All Mich.)
 

Dry Peas - Smooth Green Kinds, All
 

- Yellow and White Kinds, All
 

Wrinkled Peas for Seed
 

Lentils, All
 

Austrian Winter Peas
 

Green Peas for Processing, All
 

Tomatoes for Processing, All
 

Bush Garden Seed Beans (Idaho)
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number of agricultural acres in a county was computed by multiplying
 

the percent agricultural area by the county acreage. Normalized pro­

duction of a crop for a county was computed by dividing the five­

year average production of that crop by the agricultural acres in
 

the county.
 

In order to fulfill the objectives, the stratification was per­

formed using three variables: normalizedproductionof corn, normal­

ized production of soybeans, and average farm size. The first two
 

variables were selected to make strata which are homogeneous with
 

respect to the relative importance of corn and soybeans-in the agri­

cultural scene. The average farm size was selected to represent
 

problems which might be encountered in Landsat data classifications
 

with different field sizes.
 

Methods of Stratification.
 

The rationale for the stratification method was based upon the
 

objective of creating eight strata in the United States corn and
 

soybean producing regions which were relatively homogeneous with
 

respect to the relative importance of corn and soybeans in the agri­

cultural scene and the average farm (or field) size. These strata,
 

then, represent several conditions under which Landsat data will have
 

to be classified in Multicrop studies. Samples selected from these strata
 

will be representative of conditions found throughout the corn and
 

soybean producing regions.
 

The first step in the stratification was a reduction of the data
 

set size. Only the 14 states for which the agriculture census data
 

were supplied were considered. Counties with neither corn nor soybeans
 

were omitted.
 

The joint distributions of normalized corn and soybean productions
 

and average farm size were examined. The average farm size was
 

represented in two groups: small farms (average size less than or
 

equal to 190 acres) and large farms (size greater than 190 acres).
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About one-third of the counties were in the small farms category
 

and about two-thirds were in the large farms category. The division
 

into these two groups was somewhat arbitrary although there was a
 

break in the continuum of data at about 190 acres.
 

For each farm size, the normalized corn and soybean productions
 

were displayed in deciles to look for broad clusters of data. 
The
 

strata were determined by examining tables of the distributions of
 

these variables. Three strata of small farm counties and five strata
 

of large farm counties were selected to represent the two farm sizes
 

approximately proportionally to the number of counties in them.
 

Counties which fell in the lower 10% of all'counties in both
 

corn and soybean production were omitted from consideration.
 

Counties which fell outside the broad clusters of data were not included
 

in any stratum. Thirteen counties satisfying all other selection
 

criteria were outliers from the clusters and were not included. A
 

schematic diagram (Figure B-2) shows the methodology employed in the
 

stratification . Table B-2 gives the definitions of stratum boundaries.
 

Results of Stratification.
 

Eight strata covering 14 states in the U.S. corn and soybean
 

producing region were determined. The counties in each of these
 

strata are shown in Figures 3 to 10. Lists of the counties can be
 

obtained in a complete report of this work f3].
 

The large farm, highest production stratum (stratum 8) is geo­

graphically located at the center of the Corn Belt. Strata 7, 6, and
 

4 are located around its perimeter outward according to decreased
 

production. In these strata of large farms, corn and soybeans are of
 

approximately equal importance.
 

Stratum 5 is located geographically apart from the other strata
 

with large farms. This stratum, in which soybeans have a greater
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3 

NORMALIZED 2
 

CORN 
 (
PRODUCTION
 

AVERAGE FARM SIZE
 
1 	 < 190 ACRES 

INCREASING DENSITY
 

NORMALIZED SOYBEAN
 

PRODUCTION
 

NORMALIZED w 
a 6
CORN 

PRODUCTION ­

< AVERAGE FARM SIZE w 4	 190 ACRESU> 

INCREASING DENSITY
 

NORMALIZED SOYBEAN
 

PRODUCTION
 

Figure B-2. 	Schematic diagram illustrating the determination of
 
strata for Multicrqp experiments based on normalized
 
production of corn and soybeans and average farm size.
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Table B-2. Determination of strata according to the normalized production
 
of corn and soybeans and average farm size. 

Stratum Average Normalized Production No. of 

Number Size Corn Soybeans Counties 

(acres) (deciles) (deciles) 

1 <190 0-40 0-40 149 

2 <190 40-60 30-70 109 

3 <190 60-100 50-100 126 

4 >190 0-40 0-30 192 

5 >190 0-40 30-70 102 

6 >190 40-60 30-70 126 

7 >190 60-80 50-90 147 

8 >190 80-100 70-100 213 
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Locations of counties 
assigned to Stratum 1, 
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Figure B-3. corn and soybeans.
 
farms, low production 

of 
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Figure B-4. Locations of counties assigned to 'Stratum2, small
 

farms, medium production of corn and soybeans.
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Figure B-5. Locations of counties assi.gned to Stratum 3, small
 
fanms, high produqtion of corn and soybeans.
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Figure B-6. Locations of counties assigned to Stratum 4, large
 
farms, low production of corn and soybeans.
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Figure B-7. 	Locations of counties assigned to Stratum 5, large
 
farms, low production of corn, medium production of
 
soybeans.
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ORIGINAL PAGE IS 
OF POOR QUALITY i-

Figure B-8. Locations of counties assigned to Stratum 6, large
 
farms, medium production of corn and soybeans.
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Figure B-9. Locations of counties assigned to Stratum 7, large
 

farms, high production of corn and soybeans.
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Figure B-l0. Locations of counties assigned to Stratum 
8, large
 

farms, highest production of corn and 
soybeans.
 



importance than corn, is located in the Mississippi River Valley
 

where the climate and soils are more suited to soybeans'than to corn.
 

Stratum 3, the small farm stratum with the greatest production
 

of corn and soybeans, is located primarily in eastern Indiana and
 

western Ohio where the cropland is productive, but the terrain is
 

rolling. The lesser production small farm strata (strata 1 and 2)
 

are centered about this area on the outskirts of stratum 3.
 

In summary, looking at the geographic location of the strata,
 

the system appears to be logical and the various strata seem to
 

represent different conditions. This result is supportive not only
 

of the variables and the methodology employed in the stratification,
 

but also of the validity of the data sets employed.
 

1.5 Low Density Segments
 

Sample Allocation.
 

The low density segments were selected to sample the variability
 

present in corn and soybean producing regions of the United States.
 

The sample was designed to represent differences in climate, topography,
 

field size, variety, and management practices. In order to achieve as
 

diverse a representation as possible, an equal number of segments were
 

allocated to each of the strata. This allocation scheme emphasizes
 

representation of variability rather than sampling in a manner suitable
 

for aggregation purposes.
 

Twenty 5 x 6 nautical mile segments were allocated to each stratum.
 

The counties to receive sample segments were determined using a random
 

selection procedure without replacement. Thus, all counties in a
 

stratum had an equal probability of receiving a sample and no county
 

could contain more than one segment. Locations of counties receiving
 

sample segments are illustrated in Figure B-11. Latitude and longitude
 

coordinates of the sample segments can be found in the LARS technical
 

report on this work [3].
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Figure B-1l. Locations of counties in all eight strata receiving low
 
density sample segments.
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Segment Location.
 

Segment locations were selected using a modification of a computer
 

program written for "Crop Inventory Using Full-Frame Classification",
 

described in the final report of Contract NAS9-14970 (June, 1977).
 

The design of the location procedure was based upon that used in LACIE.
 

A grid was laid over each county with grid intersections five by six
 

nautical miles apart. A random selection procedure was then used to
 

select a grid intersection which determined the latitude and longitude
 

coordinates of the center point of each segment.
 

Although only one segment was allocated to each county, several
 

segments were selected to attain a high probability that at least one
 

of them would be located in an agricultural area and would be accepted
 

as a site. The number of sites to be located in each county was
 

determined by the percent agricultural land in the county. The segment
 

centers were randomly selected without replacement and the first segment
 

located outside a nonagricultural area was to be used.
 

The ag/nonag delineation was conducted by NASA/JSC. Full-frame
 

color composite Landsat imagery was used to delineate areas which
 

were not agricultural. This was done on the basis of whether or not
 

field patterns were apparent. Rangeland, forest, and urban areas
 

were among the types of land uses which were delineated as nonag.
 

Segment locations were compared with these boundaries and the segment
 

was rejected if less than 5% of the segment fell into an agricultural
 

area.
 

1.6 High Density Segments
 

Test Site Selection.
 

The high density segments were designed for intensive study of the
 

remote sensing technology required for corn and soybean inventories. In
 

order to sample more corn and soybeans, test sites were located in the
 

Corn Belt where production of both crops is high. Test sites were
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placed across the Corn Belt to sample the varied climatic conditions,
 

soil types, crop distributions,'and field sizes which are present
 

(Figure B-12). Each test site was selected to be relatively homogeneous
 

within (same stratum, similar soil types and farming practices) to
 

support classification studies, particularly of multisegment training.
 

Each of the sites contained about ten counties and was approximately
 

the size of a crop reporting district.
 

Test Site 1 is located in eastern Indiana which is an area of
 

small farms. The other three test sites are located in large farm
 

areas. Test Site 2 is comprised of counties in west central Indiana
 

and east central Illinois. Test Site 3 is in north central Iowa and
 

Test Site 4 is in west central Iowa.
 

Description of Test Sites 1 and 2. The climate across central
 

Indiana and east central Illinois is continental with warm summers and
 

cold winters. Normal mean temperature is-l.20 C in January and 31.10C
 

in July. In this semihumid region of the U.S., the average annual
 

precipitation is 950 to 1000 mm which does not limit crop production.
 

Rainfall is greatest during the spring and early summer months with
 

June typically receiving 107 to 118 mm of rain. Average precipitation
 

in June is slightly excessive, adequate in July, and often inadequate
 

in August for corn. The crops survive because of some moisture stored
 

in the soil profile.
 

Test Site 1 is composed of two major soil associations. Soils
 

of the northern two-thirds of this district (Allen, Wells, Adams,
 

Blackford, Jay,and parts of Madison, Delaware,and Randolph counties)
 

belong to the Blont-Pewano-Mortley soil association. These soils were
 

formed on clayey glacial till and are nearly level and poorly to
 

very poorly drained. The Brookston-Crosby-Miami-Parr assocation which
 

predominates in the remainder of Test Site 1 was formed in thin loess
 

(wind-blown materials) over loamy glacial till and is also poorly drained.
 

These two soil associations are suited to intensive cropping but are
 

subject to problems associated with wet soils unless adequate artifical
 

drainage is provided. Typically, approximately 287,700 hectares of
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Figure B-12. Locations of high density test sites.
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corn for grain; 245,300 hectares of soybeans; and 87,300 hectares
 

of winter wheat are planted.
 

Test Site 2 includes dark-colored prairie soils and light­

colored forest soils both of which were formed in loess-covered
 

glacial till. Topography is generally gently rolling with short
 

slopes and nearly level areas interrupted by depressions or potholes.
 

The northern one-third of this district (Newton, Jasper, Kankakee, and
 

northern Ford and Iroquois counties) has soils which are sandy and
 

variable in subsoil development. These soils tend to be droughty,
 

low in fertility, and require a high level of management for moderate
 

yields. In Tippecanoe, Benton, Warren, southern Ford and Iroquois,
 

and northern Vermilion and Champaign counties in the central portion
 

of the district, the soils developed under prairie or mixed prairie
 

and forest vegetation, are dark to moderately dark colored, and are
 

generally imperfectly drained. Crop yields are moderately high to high
 

with a high level of management. Dark-colored soils on nearly level to
 

moderately sloping upland areas are typical in southern Vermilion
 

and Champaign counties. These soils have high available moisture
 

storage capacities and are very highly productive under a high level of
 

management. Farmers in Test Site 2 typicallyplant 667,700 hectares of
 

corn; 557,200 hectares of soybeans; and 39,200 hectares of winter wheat.
 

Description of Test Sites 3 and 4. The climate in western Iowa
 

is continental, characterized by marked seasonal changes. Temperature
 

fluctuations are extreme with winters being cold and summers warm.
 
0
 

Thirty-year normal temperatures are-8.4 C in January, the coldest month,
 

and 23.60 in July, the warmest month. Annual precipitation is 762 mm
 

with most of it occurring in the spring and early summer. Summer
 

precipitation is variable from year to year with the largest amount (132 mm)
 

generally falling in June.
 

The Clarion-Nicollet-Webster soil association, which is the only
 

major soil group in Test Site 3, was derived from glacial till. About
 

75 percent of the area has level to gently sloping topography and is
 

well suited to intensive production of corn, soybeans, and alfalfa.
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This test site has about 1,499,600 hectares of farm land and typically
 

grows 607,300 hectares of corn (approximately 96% for grain); 477,100
 

hectares of soybeans; and 54,500 hectares of alfalfa and hay.
 

Three major kinds of parent materials (loess, glacial till, and
 

alluvium) are found in Test Site 4. Loess (wind-blown material) from
 

the Missouri flood plains is thickest near the Missouri River and
 

thins and increases in clay content in a southeasterly direction. Marshall
 

and Monona-Ida-Hamburg soil associations which occupy the central three­

fourths of this district were formed from deep loess under grass vegeta­

tion. These soils are generally well-drained and have high proportions
 

of their area used for cultivated crops. The Clarion-Nicollet-Webster
 

soil association, which is a continuation of the predominant soil of the
 

third test site, is the major soil in Sac County. These soils are
 

well suited to intensive production of corn, soybeans, and alfalfa. A
 

third major group of soils which developed primarily from alluvial
 

materials on the nearly level flood plains of the Missouri River are
 

the Luton-Onawa-Salix association. These soils are found primarily
 

along the Missouri River in Woodbury, Monona, and Harrison counties and
 

are farmed for corn, soybeans, and wheat.
 

High proportions of Test Site 4 are used for cultivated crops,
 

particularly corn and soybeans. Of the 1,385,100 hectares of farm land
 

in this district, 634,100 hectares of corn are planted annually and
 

approximately 90 percent of this corn is harvested for grain. An
 

additional 233,700 hectares of soybeans are typically planted. The
 

proportions of corn and soybeans vary from year to year depending on
 

market conditions and prices.
 

Sample Allocation.
 

In general, two segments per county were allocated. In the case of
 

unusually large or small counties, three segments or one segment might
 

be allocated. All counties indicated in Figure B-12 received segments.
 

Table B-3 lists the number of segments allocated to each county.
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Table B-3. Allocation of sample segments to counties in each of the
 
four high density test sites.
 

No. of
 
Test Sites State County Segments
 

Indiana Adams 2
 
Allen 2
 
Blackford 2
 
Delaware 2
 
Henry 2
 
Jay 2
 
Madison 2
 
Randolph 2
 
Wayne 2
 
Wells 2
 

2 Indiana Benton 2
 
Jasper 2
 
Newton 2
 
Tippecanoe 2
 
Warren 2
 

Illinois Champaign 3
 
Ford 1
 
Iroquois 3
 
Kankakee 2
 
Vermilion 3
 

3 Iowa Calhoun 2
 
Emmet 2
 
Hamilton 2
 
Hancock 2
 
Humboldt 2
 
Kossuth 2
 
Palo Alto 2
 
Pocahontas 2
 
Webster 2
 
Wright 2
 

4 Iowa Crawford 2
 
Harrison 2
 
Ida 2
 
Monona 2
 
Pottawatomie 3
 
Sac 2
 
Shelby 2
 
Woodbury 3
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Sample Location.
 

The method used for sample selection was the same as described
 

for the low density samples. More segments were located than were
 

allocated to permit for loss of some segments in nonagricultural areas.
 

Locations of the sample segments by latitude and longitude coordinates
 

can be found in the LARS technical report on this work [3].
 

iL7 Summary and Conclusions
 

A stratification was performed and sample segments were selected
 

for an initial investigation of Multicrop problems. The effort was to
 

support:
 

- Development and evaluation of procedures for using LACTE and
 
other technologies for the classification of corn and soybeans.
 

- Identification of factors likely to affect classification performance.
 

- Evaluation of problems encountered and techniques which are
 
applicable to the crop estimation problem in foreign countries
 
as well.
 

The two types of samples, low density and high density, supporting
 

these requirements were selected as a research data set for an initial
 

evaluation of technical issues and should not be used in an aggregation
 

scheme. In summary, looking at the geographic location of the strata,
 

the system appears to be logical and the various strata seem to represent
 

different conditions. This result is supportive not only of the variables
 

and the methodology employed in the stratification, but also of the
 

validity of the data sets employed.
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2. RECOMMENDATIONS FOR DATA ACQUISITION
 

The new data set required to support the objectives of the major
 

study was to be acquired by NASA/JSC. In order to insure that this
 

data set would meet our research objectives, recommendations were
 

made by LARS to NASA/JSC in the areas of crop inventory, periodic
 

observations, and acquisition of aerial photogranhy.,
 

2.1 Recommendations for the Collection of Crop Information
 

The material included in the following pages was seAt to
 

NASA/JSC in early April, 1978. Recommendations are made for the
 

sampling schemes to be followed and the information to be acquired for
 

crop inventory and periodic observations. In addition to the materials
 

reproduced here, three appendices were included which displayed sample
 

data recording forms; discussed in detail how to identify the growth
 

stages of corn, soybeans, and wheat; and gave guidelines for crop
 

condition assessment.
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COLLECTION OF CROP INFORMATION FOR MULTICROP EXPERIMENTS
 

Introduction
 

USDA and NASA are conducting experiments to evaluate new methods
 

of estimating crop production using Landsat (satellite) data. An
 

essential component of these experiments will he the collection of
 

reliable "ground truth" or ground observations of crops in selected
 

areas of the U.S. with which to develop procedures and evaluate results.
 

Some 160 test sites throughout the major corn and soybean
 

production regions of the U.S. have been selected for study. Two
 

kinds of ground truth data will be acquired for each segment: (1)
 

"wall-to-wall" inventory of the crop identification of all fields in
 

the 5 x 6 mile segment, and (2) periodic observations of the development
 

and condition of a selected subset of fields. Specific instructions
 

for each type of ground truth are given in the followingparagraphs.
 

Ground Truth Sampling Methods
 

A. Crop Inventory
 

NASA will provide you with a recent aerial photograph of each
 

5 x 6-mile test site in your area. You should visit each field in the
 

test site which is larger than approximately 5 acres and identify
 

the crop or the current land use. Forms will be provided for recording
 

this information (Form 1). Field numbers and boundaries should be
 

marked on the aerial photo.
 

B. Periodic Observations of Crop Growth and Condition
 

Within each test site designated for periodic observations, you
 

should choose a subset of fields, larger than 20 acres in size, for
 

evaluation of crop growth and condition. Ten fields of corn, 10 of
 

soybeans, and 10 of wheat, other small grains, and pasture or hay
 

crops should be selected.
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If there are less than 10 fields of a particular crop within the test 
site, use all fields of that crop which are available. These fields 
should be sampled at 18 day intervals coincident with Landsat passes 
from May I to October 30 and information recorded on the forms provided 

(Form 2). 

1. Sampling Within A Field.
 
Field sampling need not be highly complicated, but to be sure
 

your sampling is reasonably accurate and unbiased, please observe the
 
following guidelines:
 

- Do not sample field borders, fencerows, ditchbanks or other 
similar field areas. Sampling these areas may provide
 
misleading information concerning the field as a whole.
 
Therefore, go into the field at least 75 feet or 30 rows before
 

beginning any type of sampling procedure.
 

- When sampling, try to make sure the sample represents the
 
entire field. Field conditions may not be uniform, therefore,
 
sampling from only a small area of the field may lead to erroneous
 
conclusions concerning the whole field. 
Look at the following
 
illustrations to see how to spread the sampling over the-entire
 
field. Each "i' indicates where a sample should be taken 
for
 
different field shapes. 
Use your own imagination for field
 

shapes not shown.
 

*A
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- Take the samples randomly. When you get ready to start 

sampling, do not look at a plant and say to yourself, "Hey, 

this looks like a good plant to start with]" Instead, when 

you get into the general area of the field where you need to
 

take a sample, look up at the sky or nearby tree, etc; look
 

at anything but the crop. Walk forward five paces and start
 

the sampling procedure with the plant nearest the toe of
 

your right foot. Repeat this in each area of the field to
 

be sampled.
 

2. Evaluating Crop Growth and Condition.
 

The folZowing are instructions for completing Form 2 and evaluating
 

crop growth and conditions.
 

1) County and State - name of county and state of the test site.
 

2) Segment Number - the number of the test site.
 

3) Date r date of this observation.
 

4) 'Crop ID - name of crop or cover type.
 

5) Field No.- number assigned to the field.
 

6) Plant Height - measure 5 representative plants in each of 5 locations
 

in the field and record the average plant height for each location.
 

Measure without extending or pulling leaves up.
 

7) Percent Ground Cover - estimate, to the nearest 10%, the
 

percent of ground covered by the crop canopy.
 

8) Growth Stage - use the growth stage indices for corn, soybeans
 

and wheat and evaluate the field as a whole.
 

9) Green Leaves - estimate, to the nearest 10%, the percentage of the
 

leaves on the plants which are green.
 

10) 	Crop Condition - Evaluate the quality of the crop in each field in
 

terms of each of these factors which may reduce crop yields.
 

A rating of "0" indicates no effect of a particular factor and
 

is Lhe most desirable condition while a rating of "4" indicates
 

that severe crop losses are expected. Because these ratings
 

are somewhat subjective, the guidelines in Appendix 2 are
 

recommended for this study. Additional comments about crop
 

condition should be recorded in the "comments" section.
 



5W
 

B-35
 

11) 	Comments - Describe other factors which will affect the production
 

of each field (e.g., flooded areas, herbicide damage).
 

Describe and give approximate dates of any major field operations
 

(e.g., planting, culivation, harvesting) which have occurred
 

since your last visit to each field.
 

The 	following data should only be obtained once for only the corn,
 

soybean, and wheat fields being observed periodically. These data should
 

be 	recorded on Form 3.
 

1) Hybrid or Variety - For grain crops record the variety planted
 

of corn (e.g., DeKalb XL 45), soybeans (Amsoy 71) or wheat
 

(Arthur). For pastures and forages, record the species
 

(e.g., biomegrass, alfalfa, or orchardgrass-alfalfa mixture).
 

2) Date Planted - applies to annual crops only.
 

3) 	N Applied - record the pounds per acre of actual nitrogen
 

applied to this field. Two hundred pounds of 33-0-0 fertilizer
 

equals 66 pounds of actual nitrogen.
 

4) 	Row Width - the distance of the center of plants in adjacent
 

rows- Ignore for broadcast crops and forages.
 

5) 	Plant Population - applied to corn and soybeans only. Count the
 

number of corn stalks in 50 feet of row or the number of soybean
 

stems in 5 feet of row in 5 different areas of each field. These
 

counts may be made anytime after all plants have emerged.­

6) 	Comments - Additional descriptive information describing the
 

field.
 

Note: 	We would also like to obtain an estimate of the grain yield of
 

these fields. Separate instructions and forms for yield will
 

be provided later.
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2.2 Recommendations for the Collection of Aerial Photography
 

The acquisition of aerial photography for the Multicrop high
 

density segments is an important aspect of the Multicrop program.
 

The aerial photography will permit objectives to be addressed concerning
 

the location, number, and size of areas for training. These are
 

questions which need to be answered for the optimal design of a crop
 

inventory system.
 

The areas which are covered by aerial photography will be
 

photointerpreted and the accuracy of the photointerpretation process
 

will be checked with the wall-to-wall ground truth on those high density
 

segments which are also covered by the flightlines. If aerial photography
 

flightlines, ground truth over high density segments, and multitemporally
 

registered Landsat full frames are available, a study of training
 

procedures can draw upon these photointerpreted areas to look at dispersion
 

of training areas throughout the area to be classified, the optimal
 

total amount of training, and how this amount should be divided into
 

size and number of segments.
 

To achieve these objectives, the aerial photography acquisition
 

should follow these specifications:
 

Location. Four high density test areas have been located in
 

eastern Indiana, west central Indiana/east central Illinois, north central
 

Iowa, and west central Iowa. Three or four flightlines should be
 

flown for each of the test sites totaling an average of about 400
 

miles per test area. The flightlines should be located such that the
 

aircraft will cover exactly the same area each time.
 

Type of photography. Nine-inch color infrared photography with
 

a 20 percent forward overlap should be acquired. It should be flown
 

at an altitude and scale such that a strip of land four to five miles
 

wide is covered.
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Times of acquisition. The photography should optimally be acquired
 

at three times during the growth season: May-June, July, and August.
 

The early mission will provide coverage when corn and soybeans have a low
 

percent soil cover to separate them from other cover types. The
 

crops will also be sampled twice during their growth to permit separation
 

of corn from soybeans. If only two missions can be acquired, these
 

should be in the August and June-July time frame. If only a single mission
 

can be flown, it should be in August.
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3. EVALUATION OF PROCEDURE 1 FOR CORN AND SOYBEANS
 

3.1 Introduction
 

An analysis procedure known as Procedure 1 (P-I) was developed 

for use during the Large Area Crop Inventory Experiment (LACIE). 

The procedure encompasses the areas of training, classification, and 

area estimation and emphasizes the use of multitemporal information. 

In order to allow for extension of the LACIE procedures into foreign 

countries, ground reference data were not used for training, but 

analysts labeled training data by image interpretation. Procedure 1
 
utilizes a random grid selection technique to locate pixels (dots)
 

on segment imagery. Analysts label dots which fall on grid intersections.
 

These dots are of two types: Type 1 dots which are used for starting
 

the clustering algorithm and labeling clusters and Type 2 dots which
 

are used as bias correction dots. This approach reduced analyst time
 

significantly, allowing the analyst to concentrate on just the labeling
 

operation. In addition, this method of selecting training areas should
 

be unbiased which is an advantage over analyst-selected training data.
 

Another aspect of Procedure 1 which is designed to reduce bias
 

is in the use of designated other (DO) and designated unidentifiable
 

(DU) areas. If an area is clearly not of interest (e.g., woods for
 

a wheat inventory), that area is labeled DO to prohibit any of that
 

area from being classified as the crop of interest. If an area is
 

covered by clouds, it is labeled DU and proportion estimates,made do
 

not include this area.
 

A clustering algorithm is used to statistically define the training
 

classes. Type 1 dots are used as starting vectors for the clustering
 

algorithm and are also used to label the resulting clusters. The
 

clustering algorithm which is used is the Iterative Self-Organizing
 

Clustering System Processor (ISOCLS). Then a sum of densities classifier
 

is used. The classification results are considered as a stratifica­

tion of the segment into the various classes of interest. The stratified
 

area estimate is then computed using the Type 2 dots to make proportion
 

estimates in an unbiased way.
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The objective of LACIE was to estimate wheat production in important
 

wheat growing regions of the world. Recently, there has been increasing
 

emphasis on making production estimates for crops other than wheat; in
 

particular, corn and soybeans are the two crops of immediate interest.
 

This preliminary study has been using currently available data to
 

evaluate the LACIE procedures when applied to corn and soybeans and to
 

recommend changes in the procedures for the new classification
 

problem. In addressing these issues, this task supports the classifi­

cation component of the corn and soybeans research effort.
 

3.2 Objectives
 

The overall objective of this investigation is to advance the
 

development of large area crop inventory systems for multicrop regions
 

by applying and evaluating recently developed techniques. This preliminary
 

study addresses parts of this objective with currently available
 

data. The specific objectives of the preliminary study are:
 

- Evaluate the LACIE Procedure 1 (P-l) for a corn, soybeans, 
and "other" crop identification problem. 

- Investigate parameter changes which may improve the
 
performance of P-i on corn and soybeans.
 

3.3 Approach
 

The preliminary study used data on corn and soybeans which was
 

acquired during the CITARS project. Assessment of the accuracy and
 

variability of P-1 estimates was done with minimal changes to the
 

procedure to work the three class problem. Each CITARS segment was
 

divided into four 5 x 5 mile blocks for analysis because this is as
 

close to the LACIE segment size as possible using only the segment data.
 

The ratio of dots to total area to be classified was about the same
 

as in LACIE. A key aspect of the approach was that ground truth
 

or photointerpreted areas were used rather than analyst-labeled dots.
 

This permitted evaluation of the analysis procedure itself rather than
 

the image interpretation accuracy. Dot grids falling in areas with
 

reference data (ground truth or photointerpreted crop types) were
 

digitized and the pixels were associated with ground truth labels.
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Both classification and area estimation accuracy were assessed and the
 

variability resulting from different choices of Type 1 and Type 2 dots
 

was estimated.
 

In an initial assessment of Procedure 1, analyses were conducted
 

using parameters which had been used in LACIE. It was believed that
 

these settings would not be optimal for the corn, soybeans, and "other"
 

crop identification problem due to differences in the spectral distribution
 

of the crops of interest from that of wheat, more confusion crops,
 

differences in crop calendar, and other factors. Therefore, a parameter
 

study was initiated to begin investigation of some of these issues.
 

3.4 Results of Initial Evaluation
 

A major accomplishment of this task is that personnel from LARS
 

have become familiar with the philosophy and methodology of Procedure
 

1 and the P-1 software implemented on the Purdue/LARS IBM 370/148
 

computer system. Personnel from NASA/JSC, Lockheed, and LARS have
 

worked cooperatively to standardize and improve the P-1 software.
 

In support of this task, personnel attended the LACIE Symposium,
 

held October 23-26, 1978, at the Johnson Space Center, to further
 

their knowledge and understanding of the state of the art. A represen­

tative from this task attended the Advanced Seminar in Multicrop
 

Labelling frdm Landsat Multitemporal Data, held November 1-8, 1978,
 

at the University of California, Berkeley. Analysts have been partici­

pating in a series of workshops to learn how to apply all the clustering
 

and classification routines which are implemented on the LARS computer.
 

These experiences, coupled with data analysis utilizing the Procedure 1
 

software, have provided a well-rounded background in crop inventory
 

procedures for the participants.
 

Identification of General Crop Inventory Issues
 

Early in the investigation, several general issues in crop inventory
 

were identified. The general methodology for inventory of corn and
 

soybeans needs to be of somewhat different design than for wheat. For
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example, in corn and soybean production areas, the practice of double
 

cropping, particularly soybeans following winter wheat, is becoming
 

increasingly important. A methodology for identification and
 

classification of double cropped areas needs to be developed.
 

Cloud cover is a greater problem in the Corn Belt than in the
 

U.S. Great Plains; this tas potential impact on the handling of
 

designated unidentifiable (DU) areas. If only the area which is
 

cloud-free on all four acquisitions is used for area estimation,
 

insufficient pixels may be available to give accurate and precise
 

estimates for the segment proportions. If DU areas exceed a certain
 

percentage of land area in a segment, perhaps three cloud-free
 

acquisitions could be used to classify some additional areas to
 

provide a broader base for area estimation.
 

Variability of Procedure 1 Estimates 

An analysis was run to look at the variability of the stratified
 

area estimates due to the location of the dot grids. In Procedure 1, 

two types of dots are selected. Type 1 dots are used to start the clusters 

and label them and Type 2 dots are used for bias correction. Both 

types are located on a systematic sample grid. Five grids were defined, 

two Type 1 grids and three Type 2 grids, giving a total of six grid 

combinations for analysis. Using these grid combinations, six analyses were 

run keeping all other parameters and procedures constant. 

For an individual section, there was a significant amount of
 

variability amoung the six estimates. Table B-4 gives an example of the 

variability encountered for one section. There appears to be more 

variability between grids of Type 1 dots than between grids of Type 2 

dots. The interaction between grid types is also significant. This is
 

best illustrated by the soybean estimates where there is a greater effect
 

of Type 2 dot selection for the first selection of Type 1 dots than there
 

is for the second selection.
 

The results in Table B-5 are more indicative of the amount of
 

variability which might be noticed in practice since, in general, the
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Table B-4. Proportion estimates of corn and soybeans for section 61
 
in Livingston county.
 

Type 2 Grid 

Corn 

First Set Second Set 
of Type 1 of Type 1 

Soybeans 

First Set Second Set 
of Type 1 of Type 1 

A 

B 

33.5 

30.4 

38.9 

40.0 

60.0 

61.6 

56.7 

54.6 

C 27.0 42.4 71.4 52.4 

Table B-5. Averages of proportion estimates of corn and soybeans for,
 
eight sections in Livingston county.
 

Corn Soybeans 

First Set Second Set First Set Second Set 
Type 2 Grid of Type 1 of Type 1 of Type 1 of Type 1 

A 32.7 36.3 59.8 56.9
 

B 31.7 40.9 61.1 54.9
 

C 30.1 46.1 67.7 48.4
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interest in estimation is for larger areas. In this case as well, the
 

choice of dot grids does significantly affect the final stratified area
 

estimates.
 

This study was conducted using 30 and 40 dots for Type 1 and
 

Type 2, respectively. It is possible that using-more dots could somewhat
 

alleviate this problem, but insufficient ground truth was available for
 

pursuit of this idea. -This study does indicate, however, that final
 

estimates can be significantly affected by selection of dots. It is
 

necessary, therefore, to insure that: (1) the Type 1 dots represent
 

the spectral subclasses present in the scene and (2) the proportions
 

of Type 2 dots in each category are similar to the distribution of cover
 

types in the area to be classified. Further study into these effects
 

needs to be conducted to determine a methodology to remove this
 

variability.
 

Effect of Distributions of Dots on Area Estimates
 

The LACIE procedure samples a random set of dots falling on a
 

systematic grid over the segment. Type 1 and Type 2 dots are selected
 

on different grids of the same type. The rationale of this sampling
 

scheme is that the true distribution of crops present will be sampled
 

in their respective proportions. When using the CITARS data, however,
 

dots were sampled only from areas with reference data. The dots were
 

not distributed throughout the segment, but a higher density of dots
 

was sampled in a smaller portion of the segment which had available
 

ground truth information. Since the areas sampled were either sections
 

or quarter sections, the distribution of cover types present would
 

probably not be as diverse as if the same number of dots were spread out
 

over a larger geographic area. Table B-6 illustrates this problem.
 

By selecting this type of sample, it frequently occurred that one
 

of the categories had very few pixels for starting clusters (maybe
 

only three or four). These were insufficient to completely represent all
 

the spectral subclasses which might be in a category. Theory indicates
 

that the final estimates can be highly dependent upon the distribution of
 



B-44
 

Table B-6. Comparisons of proportions of pixels with ground truth
 

avhilable to county crop proportions. 

Proportion 

County Block Corn Soybeans Other 

Fayette 1 7.8 49.7 42.4 

2 25.2 44.9 29.9 

3 24.5 68.3 7.2 

County* 14.2 23.8 62.0 

Livingston 1 29.5 67.3 3.2 

2 41.3 54.1 4.6 

3 9.4 12.2 78.4 

County* 38.6 37.7 23.7 

*USDA/SRS County Acreage Estimates for 1972 



the Type 2 or bias correction dots. For these two reasons, a test was
 

done to determine to what extent the dot distribution affects the
 

final stratified area estimates.
 

Using the same set of parameters.for clustering and classification,
 

the first block of Livingston county was classified twice using-two
 

different distributions of dots. The first distribution, which will
 

be referred to as the random distribution, was obtained ,by selecting
 

dots as they fell on the grid. The second distribution, which will
 

be referred to as the proportional distribution, was obtained by
 

selecting dots from the grid with about the same proportion for
 

each category as historical crop proportions for the county indicated.
 

This approach counters the difficulties of having enough dots to
 

represent the numerous spectral subclasses in each category and the
 

bias which could be induced in the stratified area estimate.
 

Corn and soybean estimates made by each method were compared on
 

several test areas for which true proportions were known using a
 

paired t-test. The results of this comparison are presented in Table
 

B-7. For both corn and soybeans, the proportion estimates derived
 

by the two methods differed significantly at the one percent level.
 

The estimates generated using proportional dot distributions did not
 

differ significantly from the ground truth proportions. The random
 

distribution estimates, however, differed significantly from the
 

ground truth for soybeans (at the one percent level) and for corn
 

(at the 15 percent level).
 

Based upon theory and these empirical results, it seems that a
 

methodology should be developed to insure dot distributions which
 

are representative of the distributions of cover types in the area
 

to be classified. One possible solution to this problem is to
 

sample from the spectral space rather than from the physical space.
 

Effect of Number of Dots on Area Estimates
 

Although this particular aspect of the procedure has not been
 

JOS" 
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Table B-7. Effect of distributions of Type i and Type 2 dots on
 
proportion estimates for Livingston county.
 

Proportion 
Random Proportional Ground 

Crop Distribution Distribution Truth. 

Corn 26.2 34.7 30.4
 

Soybeans 71.2 38.0 39.5
 



B-47 

)/U 

extensively investigated in this task, it is believed that more dots
 

should be used than were used in LACIE Phase III. The scene in the
 

Corn Belt may be more complex than scenes of primarily wheat,
 

indicating that with a one pass cluster routine more starting dots are
 

needed to create a sufficient number of clusters to represent the
 

scene. An increased number of Type 2 (bias correction) dots would
 

result in a further variance reduction of the area estimates. The
 

transition year (TY) analysis procedures at JSC call for a minimum of
 
40 Type 1 and 60 Type 2 dots rather than the 30 and 40 required in
 

Phase III.
 

It is possible that even more dots might result in significantly
 
more accurate and precise area estimates. It appears, however,
 

that a judicious choice of dots and a good selection of clustering
 

and classification parameters will provide a greater improvement in
 

results than merely selecting more dots.
 

3.5 Summary and Future Plans
 

Progress has been made in identifying areas of difficulty in the
 

classification of corn and soybeans. Dot distribution, number of dots,
 

and parameters used in clustering and classification of the data seem to
 

be significant factors. These analyses have been based on a small
 

data set; analysis of additional data may confirm or contradict results
 

obtained to date, possibly altering conclusions which may be drawn from
 

the analyses. In many ways, this section should be viewed as a status
 
or preliminary report of our results rather than a final report.
 

Continuation and completion of the analyses described here, as well as
 

additional analyses, are planned in the new SR&T contract to LARS.
 

This task is continuing into a second year which will address the
 

objectives given in the introduction to this report, although the 1978
 

crop year data will not be available at the beginning of the contract.
 

The work to be accomplished during the period before these data become
 

available includes planning specific analyses to be conducted with the
 

new data and a continuation of the P-1 study using CITARS data for a
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parameter investigation. Multitemporally registered Landsat data and
 

digital ground truth tapes for 5 x 6 nm sample segments will be
 

available for some high density segments in Indiana, Illinois, and
 

It is these data on which analyses will be conducted to investi-
Iowa. 


gate training, classification, and area estimation procedures.
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C2. Multisensor Multidate Spatial Feature
 

Matching, Correlation, Registering,
 

Resampling and Information Extraction*
 

1. INTRODUCTION
 

This subtask was formulated to seek answers to the problems of data
 

merging and information extraction using multiple remote sensing and
 

ancillary data types and to develop techniques for merging and analysis
 

of certain data types using the results of this research. The specific
 

remote sensing data types considered in this contract year are synthetic
 

aperture radar (SAR) and Landsat data. Methods of merging map data and
 

remote sensing data: are also considered. Interest is growing in the
 

remote sensing community in the utility of radar imagery as an addition
 

to Landsat data. The tasks are oriented toward determining the spatial
 

and spectral characteristics of SAR data and definition of merging
 

system parameters.
 

2. DATA SET SURVEY AND ACQUISITION
 

The study was formulated on the assumption that three aircraft SAR
 

data sets would be obtainable by at least the end of the second quarter.
 

These were to be flights over the Salisbury, Maryland area, Gulf Coastal
 

Zone area, and over the Phoenix, Arizona area. A Salisbury SAR flight
 

is in house; however, it is of poor quality and a reprocessed data set is
 

being prepared but has not yet been received as of November 15, 1978.
 

Landsat data for Salisbury is on hand. The Gulf coast flight has not
 

been flown due to SAR equipment problems on the NASA aircraft and may
 

be flown and made available in the late fall of 1978 or spring of 1979.
 

The radar data for the Phoenix site is on hand; however, the time
 

* 	 This report is on the work under Task 2.2C Multisensor Radiometric 
Correction Correlation and Applications Analysis. 
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coincident Landsat data which was ordered in March 1978 has not been
 

received as of November 15, 1978. Thus,none of the expected data sets
 

is complete as planned.
 

In order to permit spatial distortion investigations to proceed the
 

high noise level SAR from Salisbury, MD was used, and a second eastern
 

Maryland shore SAR flight data set near Cambridge, Maryland was also
 

used. These data sets were generated as part of NASA Contract NAS6-2816
 

from the Wallops Flight Center and are being used in this study to
 

enable extension of the work on geometric characteristics of SAR/Landsat
 

imagery. The characteristics of the registered data sets resulting
 

from this previous study are listed in Table C-1.
 

The Phoenix, Arizona 'dataset which was to be the primary one for
 

the first year of the study could not be completed due to Landsat CCT
 

data availability problems. Landsat scene #5 792-16152, June 19, 1977,
 

was ordered in March 1978. On September 1, 1978 LARS was informed
 

by EDC that the frame was "unavailable" even though LARS had on hand
 

high quality imagery for the frame. The meaning of "unavailable" was
 

explored and it was determined that ancillary data record problems
 

existed but the imagery was readable. A request for the imagery only
 

portion of the tape was made by late October 1978 and LARS is awaiting
 

delivery of this data. Extensive ground truth was gathered in the
 

Phoenix area in March 1978 and thus, it is of great interest to complete
 

the data set so that analysis can be conducted.
 

In order to proceed with registration studies a fall 1972 Landsat
 

frame was used to register with the SAR data. The analysis reported
 

here was based on these time separated data sets.
 

3. AIRCRAFT/SAR SPATIAL/SPECTRAL MODELING
 

The spatial distortion characteristics of the three SAR data sets
 

were investigated with respect to Landsat as a reference. Three distor­

tion model sources were utilized. One consists of a systematic error­



Table C-i. Merged SAR/Landsat Data Set Description. 

Data Set 
No. 

Site 
Identifier 

Date of 
SAR FLIGHT 

Landsat 
Frame/Date 

LARS Data 
Set No. 

Number of 
Lines 

No. of 
Samples/Line 

Pixel 
Size 

No. of 
Channels 

Tape File 
No. No. 

1 Salisbury, 
Maryland 

August 22, 
1976 

2579-14535 
August 23, 

1976 

76016404 2700 1906 25.4 
x 25.4 

M 

5 3620 1 

2 Cambridge, 
Maryland 

August 22, 
1976 

2579-14535 
August 23, 

1976 

76016413 681 598 25.4 
x 25.4 

M 

7 3692 1 

3 Phoenix, 

Arizona 
June 17, 

1977 
1085-17330* 

October 16, 
1972 

72069110* 512 512 25x25M 7 160A 1* 

* will change when 1977 Landsat data is received. 

0 
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analysis program developed by Goodyear Aerospace for NASA. The second
 

consists of affine and biquadratic models generated by LARS as part of
 

the image registration system. The third source is the SPSS statistical
 

analysis package included in the LARS system programs which utilizes first
 

through fifth degree polynomial representation of distortion. The
 

systematic model was shown to be equivalent to the affine model (see
 

Appendix I) and is thus, not exercised in the cases discussed.
 

The geometric distortion of the SAR imagery relative to Landsat was
 

analysed by visually selecting control points from imagery of both data
 

types and processing the points with the various distortion analysis
 

programs. The results of these analyses are described by site.
 

3.1 Salisbury Data
 

The results of the distortion model analysis for the Salisbury,
 

Maryland, data set are shown in Table C-2. Since the SAR image is
 

very noisy the residuals for the model are large. The errors are
 

approximately the same in both reference frames because there is only a
 

slight scale difference between the original images. The regression
 

modeling improves with increasing degree in general. There are some
 

anomalies in this trend shown between the biquartic and biquintic
 

models. This effect is probably due to the addition of non-signifi­

cant terms to the regression while decreasing the degrees of freedom
 

in the data. Using the affine models, a parametric description of the
 

SAR imagery relative to the Landsat image are obtained. They are as
 

shown in Table C-3.
 

Table C-3. Parameters for Salisbury SAR-Landsat Distortion Model
 

Line Translation 4.13 

Column Translation = -1031.51 

Line Scale Factor 1.01 

Column Scale Factor - 3.05 

Angle of Rotation - -16.16 Degrees 

Shear -0.04 

or Shear Angle -2.04 Degrees 
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Table C-2. Evaluation of Salisbury Overlay Models 

Residuals in Reference Frame 

SAR Landsat-

Distortion # of # of Line Column Line Column 
Model Terms Points R.M.S. R.M.S. R.M.S. R.M.S. 

Affine 3 34 11.15 3.54 10.87 3.74 

Biquadratic 6 34 11.41 3.52 11.18 3.58 

Bicubic 10 34 6.40 3.40 6.52 2.87 

Biquartic 15 34 5.65 1.75 5.54 2.15 

Biquintic 21 34 4.73 1.93 4.41 2.22 

Landsat Grid Size - 25M. x 25M. 

SAR Grid Size - 25M. x 25M. 

Registered Grid Size - 25M. x 25M. 



3.2 Cambridge Data Set
 

Using the Affine model, parameters for the distortion of the SAR
 

image relative to the Landsat image were computed and are as shown in
 

Table C-4.
 

Table C-4. Parameters for Cambridge SAR-Landsat Distortion Model
 

Line Translation - 379.97 

Column Translation - 209.88 

Line Scale Factor 0.35 

Column Scale Factor = 0.40 

Angle of Rotation 12.91 Degrees 

Shear = -0.01 

or Shear Angle - -0.73 Degrees 

The results for the regression modeling of the Cambridge distortion
 

are given in Table C-5. Because of the large scale difference between
 

reference frames, the residual errors differ greatly between reference
 

frames. These differences can be accounted for by scaling the residuals.
 

The circular error in the Landsat reference is approximately equal to
 

the scaled circular error in SAR reference, i.e.,
 

2
A=CSR LLANDSAT CLANDSAT
(SLLSAR)2 + (SC CSA R )2 • + 2 

where L and C refer to line and column respectively.
 

Again the higher degree polynomial regressions model the misregistra­

tion more closely. To obtain the 47 point data set used, the points of
 

the 51 point data set whose residuals were greater than twice the standard
 

deviation of the residuals were regarded as bad data points and deleted.
 

The residuals subsequently obtained are reduced'significantly.
 

3.3 Phoenix Data Set
 

The data set of primary interest in the study is Phoenix since data
 

quality is high and extensive ground truth is available. Figure C-1
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Table C-5. Evaluation of Cambridge Overlay Models 

Residuals in Reference Frame 

SAR Landsat -

Distortion # of # of Line Column Line Column 
Model Terms Points R.M.S. R.M.S. R.M.S. R.M.S. 

Affine 3 51 11.34 5.77 3.85 2.39 

3 47 7.04 4.36 2.41 1.81 

Biquadratic 6 51 10.95 5.47 3.73 2.32 

6 47 6.51 4.04 2.24 1.67 

Bicubic 10 51 11.13 5f.23 3.78 2.24 

10 47 6.16 3.79 2.09 1.63 

Biquartic 15 51 11.51 5.41 3.89 2.32 

15 47 6.16 3.79 2.09 1.63 

Biquintic 21 51 11.62 5.45 3.88 2.45 

21 47 6.37 3.74 2.17 1.62 

LANDSAT Grid Size - 25M. x 25M. 

SAR Grid Size - 8.74. x 10.OM. 

Registered Grid Size - 25M. x 25M. 
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Figure C-i. Goodyear SAR Data Set over Phoenix, Arizona used in the
 

Flown on June 17, 1977 using an AN/APD-10 X band
study. 

radar in an Air Force RF-4 aircraft. Area covered in
 

approximately 12 by 38 miles at a resolution of approxi­

mately 10 feet.
 

ORIGINAL PAGE IS 
OF POOR QUALITY 
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shows the entire SAR data for the Phoenix area. Two agricultural areas
 

exist at each end of the flight. The scene was scanned and digitized on
 

an Optronics microdensitometer by NASA Wallops and reformatted at LARS
 

into a LARSYS data set. Only an annotated film product was available at
 

the time of processin thus the annotations appear in the data set. This
 

should not cause degradation of data quality in areas not by the annota­

tion. Figure C-2 contains Landsat frame 1085-17330 which was used as a
 

reference in this study.
 

Checkpoints were manually determined in both data sets. The Pearson's
 

product-moment correlation was used to obtain a measure of the dispersion
 

of the checkpoints over the scene. If the correlation is small, then
 

the dispersion is good. The Pearson's product moment for the chosen data
 

points was -0.0957. The results of the regression distortion analysis
 

is shown in Table C-6. The scale difference between the original Landsat
 

and SAR imagery is much greater in the Phoenix data set than in the two
 

previous. Using the affine distortion model, Table C-7 was constructed
 

which specifies the distortion in the SAR imagery relative to the Landsat
 

image.
 

Table C-7. Parameters for Phoenix SAR-Landsat Distortion Model
 

Line Translation -5219.94 

Column Translation 2658.08 

Line Scale Factor 5.16 

Column Scale Factor 4.28 

Angle of Rotation 61.47 Degrees 

Shear 0.03 

or Shear Angle 2.01 Degrees 

The circular error in the SAR reference frame is again related to the
 

circular in the Landsat reference by the relation,
 

2 2 2(So SA) +(SccsA) =a +2
L LSAR C CSAR LLANDSAT + CLANDSAT
 

Also in Table C-6 the difference in results obtained using different
 

algorithms and computers to implement the regression are illustrated.
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Landsat frame 1085-17330 used as 
reference in the study.
 

Figure C-2. 

Imaged on October 16, 

1972.
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Table C-6. Evaluation of Phoenix Overlay Models 

Residuals in Reference Frame 

SAR Landsat -

Distortion # of # of Line Column Line Column 
Model Terms Points R.M.S. R.M.S. R.M.S. R.M.S. 

Affine 
SPSS/CDC 3 17 3.89 3.91 0.91 0.66 
SPSS/IBM 3 17 3.89 3.91 0.91 0.66 
LARS/IBM 3 17 3.53 3.58 0.90 0.81 

Biquadratic 
SPSS/CDC 6 17 3.02 3.37 0.67 0.67 
SPSS/IBM 6 17 3.02 3.37 0.67 0.67 
LARS/IBM 6 17 2.72 2.92 0.54 0.66 

Bicubic 
SPSS/CDC 10 17 2.53 1.54 0.21 0.65 
SPSS/IBM 10 17 2.53 1.54 0.21 0.65 

Biquintic 
SPSS/CDC 10 17 --- --- 0.28 0.62 
SPSS/IBM 10 17 3.15 0.07 0.28 0.62 

LANDSAT Grid Size - 76.2M. x 61.10M. 

SAR Grid Size - 14.8M. x 14.2M. 

Registered Grid Size - 25M. x 25M. 
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The residuals shown for the SPSS packages (Statistics Package for the
 

Social Sciences) are larger than those for the LARS Affine and Biquadratic
 

programs. This is probably due to the loss of precision in computing the
 

inverse matrix in the LARS program. The differences in the residual
 

calculated between the SPSS program implementations are due to the
 

precision of the machine used. The IBM/370 version uses a 32 bit word
 

and the CDC 6500 a 60 bit word. These differences become evident first
 

in the higher degree regressions.
 

The results indicate that for the small areas considered that the
 

as higher degree models for representing
linear models do as well 


set was observed to
distortion in the SAR imagery. The Salisbury data 


have oscillatory scale errors and is probably not representative of
 

typical flight data. The R.M.S. errors for the other two sites did
 

not significantly decrease for the higher order cases.
 

The biquadratic error results are in the half reference pixel range,
 

thus, the current LARS registration system can implement the SAR distortion
 

Thus, the SAR and Landsat data were registered using
representation. 


A block of data covering the agricultural area
the biquadratic results. 


between Sun City and Phoenix was registered producing a 512 x 512 block
 

of data. The Landsat data was interpolated using cubic convolution to
 

The results are shown in Figures C-3 and C-4. Figure
25 meter pixels. 


C-3 is the interpolated Landsat data for band 5 and Figure C-4 is the
 

SAR for the same area.
 

4. SATELLITE SAR SPATIAL/SPECTRAL MODELING
 

cases resulted in the
Data availability problems with aircraft 


decision to include the satellite SAR case in future studies. Resources
 

were placed on the aircraft SAR problem and other system aspects.
 

Information on SEASAT SAR and other satellite SAR sensors was acquired
 

and reviewed during the year, but no satellite data obtained. It is
 

highly likely that the technology developed for the aircraft SAR cases
 

will be useful in dealing with satellite SAR data, thus, the essence of
 

this task is considered to be fulfilled by other results reported here.
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Figure C-3. 	Landsat Image, Channel 2 (0.6-0.7 um), Cubic Resampling to
 
a 25 x 25 Meter Resolution (Phoenix, AZ).
 



C-14
 

0 0 ± ± 2 2 2 3 3 4 H H 
H 8 2 6 0 4 8 2 6 0 H 8
 
0 0 0 0 0 0 0 0 0 0 0 0
 

4, 4 	 4 1' 4S4 .I .I 4. 4 . 444 


0804
 
04 

f ;4 
200+
 

240+~ 	 4 
28 0 ,., 

320*,
 

360
 

400+ 	 .. 

'440
 

480 

o 0 	 ± ± 2 2 2 8 4 '4 '4 
'4 a 	 2 6 0 4. a .2 6 0 '4 6 
o 0 	 0 0 0 0 0 0 0 O 0 0 

Figure 	C-4. Aircraft SAR (3 cm), Cubic Resampled and Registered to 25 x 25 
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Resources which would have been expended on the satellite SAR case
 

were directed toward further studies of the aircraft data. Control
 

point location is a difficult task and visual methods are time consuming
 

and inaccurate. A correlation study was conducted to see if numerical
 

control point finding methods would work on SAR/Landsat image pairs.
 

Figure C-5 contains correlation matrices for seven 101 by 101
 

pixel blocks from the registered Phoenix data set. The correlation of
 

each of the four Landsat bands with the SAR is given in the fifth row
 

of the matrix (the one labeled spectral band 3.0-3.0, refers to the
 

nominal 3 cm wavelength of the SAR) the highest correlation in any of
 

the blocks is--.43 for SAR versus band 5 (.6-.7 pm) in block four.
 

There is a five year time difference in the Landsat and SAR; however,
 

field structures are still very much the same and this correlation figure
 

is typical of what has been observed for other sites with time coincident
 

data. The purpose of this test was to see if gradient enhancement would
 

increase the correlation.
 

Magnitude of gradient image transformation was made on band 6 of
 

the Landsat and the SAR and added as channels 6 and 7 respectively as
 

the registered data set. Block correlations were performed on the two
 

gradient channels and the results presented in Figure C-6. In these
 

tests the maximum correlation observed was .15. Correlations of either
 

gradient with any of the unprocessed channels was not significantly
 

higher. A gray scale image of the gradients for each data type are
 

shown in Figures C-7 and C-8. These results are very unfavorable and
 

indicate that numerical control point finding may not be possible.
 

Observation of the gradient images indicates considerable agreement
 

between roads and field edges and suggests some scheme may work for
 

SAR correlation. Similar analysis was carried out for the Maryland
 

data sets with equallypoor results. The experiments will be repeated
 

when time coincident'data is obtained for Phoenix.
 

The primary intended purpose of the SAR registration is to enhance
 

crop classification performance over that obtained with Landsat above,
 

without time coincident Landsat data this could not be tested. However,
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FIELD 1 	 TYPE
 
NO. OF SAMPLES 10201
RUN NO. 72069109 


OTHER INFORMATION
 

CORRELATION MATRIX
 

SPECTRAL 0050 - 0.60 - 0.70 - 0.80 - 3.00 -

BAND 0.60 0.70 0.80 1.10 3.00
 

0.50­
0.60 1.00
 

0.60­
0.70 0.95 1.00
 

08190 	 0.68 0.64 1.00
 

0.80­
1010 0.29 0.24 0.86 1.00
 

31!0­
3.00 -0.20 -0.22 -0.07 0.03 1.00
 

LINES 20- 120 (BY 1)

COLUMNS 	 1- 101 (BY 1)
 

FIELD 2 T
 

RUN NO. 72069109 NO.OF SAMPLES 10201
 
OTHER INFORMATION
 

CORRELATION MATRIX
 

SPECTRAL 0.50 - 0.60 - 0.70 - 0.80 - 3.00 -

BAND 0.60 0.70 0.80 1.10 3.00
 

0.50­
0.60 1.00
 

0.60­
0.70 0.95 1.00
 

0.70­
0.80 0.81 0.86 1.00
 

0.80­
1.10 0.50 0.54 0.86 1.00
 

3.00­
3.00 -0.08 0.00 -0.05 -0.10 1.00
 

LINES 	 1- 101 (BY
 
COLUMNS 220- 320 (BY
 

(Phoenix,
Figure C-5a. 	 Correlation Matrices for Sample Fields 1 and 2. 


AZ; Channels 1-4, Landsat; Channel 5, Aircraft 
SAI).
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FIELD 3 
RUN NOt 72069109 

TP'C- OF SAMPLES 10201 
OTHER iNFORMATION 

CORRELATION *TRIX 

SPECTRAL 0.50 - 0.60 - 0.70 - 0.80 - 3.00 -
BAND 0060 0.70 0.80 1.10 3.00 

0.50­
0.60 1.00 

0.60­
0.70 0.98 1.00 

087g0 0.59 0.52 1.00 

0080­
1.10 0.04 -0.06 0.79 1.00 

3900­
3.00 -0.09 -0.09 0.07 0.15 1.00 

LgNES
COLUMNS 

70-
340-

170 
440 

(BY
(BY 

1)
1) 

FIIELD 4 TYPE 
RUNEOT ER 10R72069109INFORMATION NO. OF SAMPLES 10201 

CORRELATION MATRIX 

SPECTRAL 
BAND 

0.50 -
0.60 

0.60 -
0.70 

0,70 -
0,80 

0.80 -
1.10 

3.00 
3.00 

0050­
0.60 1.00 

0.60­
0.70 0.86 1.00 

0.9; 0.78 0.81 1.00 

0.80­
1.10 -0.20 0.12 0.27 1.00 

3.00­
300 -0.37 -0.43 -0.29 0.03 1.00 

INES 180- 280 (BY 1) 
OLUMNS 1S- 115 (BY 1) 

Figure C-5b. Correlation Matrices for Sample Fields 3 and 4 (Phoenix, AZ).
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FIELD 5 
RUN NO 72069109 
OTHER INFORMATION 

TYPE 
NO. OF SAMPLES 10201 

CORRELATION MATRIX 

SPECTRAL 0.50 -
BAND 0.60 

0.60 -
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

0.50­
0.60 

0.60­
0.70 

1.00 

0.96 1.00 

0o7g; 0.84 0.85 1.00 

0.80­
1.10 

3.00­
3.00 

0&61 

-0.16 

0.60 

-Oo21 

0.91 

-0.24 

1.00 

-0.24 1.00 

'INESCOLUMNS 145:180- 245280 (BY(BY 1)1) 

FIELD. 6 
RUN NO* 72069109 
OTHER INFORMATION 

TYPE 
NO, OF SAMPLES 10201 

CORRELATION MATRIX 

SPECTRAL 0.50 -
BAND 0.60 

0.60 
-070 

- 0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

0050­
0.60 

0769 

1.00 

0.97 1.00 

(oSR 0 0.36 0.26 1.00 

0080­
1.10 

3 00­
5.00 

-0.25 

-0.23 

-0.35 

-0.24 

0,78 

-0.06 

1.00 

0.08 1.00 

LINES 
COLUMNS 

160-
400-

260 
500 

(BY
(BY 1) 

Figure C-5c. Correlation Matrices for Sample Fields 5 and 6 (Phoenix, AZ).
 



FIELD 7 
RUN NOQ 72069109 

OTHER INFORMATION
 

tORRELATION MATRIX
 

SPECTRAL 0,50 -

BAND 0.60 


0.50­
0.60 1.00
 

0o60­
0.70 0.96 


0.70­
0.80 0.76 


0080­
1.10 0.03 


3.00­
3.00 -0.23 


LINES 345-

COLUMNS 80-


FIELD 8 

RUN NO 72069109 

OTHER INFORMA TION
 

CORRELATION MATRIX
 

SPECTRAL 0.50 -

BAND 0.60 


0.50­
0.60 1.00
 

0.69 0.92 


070­
0.80 0.28 


0080­
1.10 -0.11 


3900­
3.00 -0.07 


8INES - 365-

OLUMNS 245-


TYPE 

NO. OF SAMPLES 10201 

0960 -
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

1.00 

0.76 

-0.00 

-0,24 

1.00 

0.34 

-0.09 

1.00 

-0.03 1.00 

445 
180 

(BY
(BY 

1)
1) 

TYPE 
NO. OF SAMPLES 10201 

0.60 -
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

1.00 

0.15 

-0.26 

-0.09 

1.00 

0.63 

0.00 

1.00 

0.03 1.00 

465 
345 

(BY
(BY 

1)
1) 

Figure C-5d. Correlation Matrices for Sample Fields 7 and 8 (Phoenix, AZ).
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FIELD 9 
RUN NO. 72069109 
OTHER INFORMATION 

TYPE 
NO. OF SAMPLES 9999 

CORRELATION MATRIX 

SPECTRAL 0.50 -
BAND 0960 

0.60 -
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

0.50­
0.60 

0.60­
0.70 

0.70­
0.80 

0.80­
1.10 

3 00­
3.00 

1.00 

0.91 

0.14 

-0.32 

0.11 

1.00 

0.12 

-0.38 

0.06 

1.00 

0.51 

-0.10 

1.00 

-0.13 1.00 

SINES 
OLUMNS 

340-
412-

440' 
510 

(BY
(BY 

1)
1) 

Figure C-Se. Correlation Matrix for Sample Field 9 (Phoenix, AZ). 
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FIELD r 
RUN NO. 72069110 
OTHER INFORMATION 

TYPE 
NO, OF SAMPLES 10201 

CORRELATION MATRIX 
SPECTRAL 
BAND 

0.50 -
0.60 

0.60 -
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

0.0 -
0.0 

0.0 -
0.0 

0.50­
0.60 1.00 

0.60­
0.70 0.95 1.00 

0.70­
0.80 0.68 0.64 1.00 

0480­
1.10 0.29 0.24 0.86 1.00 

3.00­
3.00 -0.20 -0.22 -0.07 0.03 1.00 

0.0 -
0.0 0.06 0.07 0.09 0.05 -0.07 1.00 

0.0 -
0.0 -0.01 -0.02 -0.10 -0.le 0.21 0.06 1.00 

FIELD 2 
RUN NO, 72069110 
OTHER INFORMATION 

TYPE 
NO. OF SAMPLES 10201 

CORRELATION MATRIX 

SPECTRAL 
BAND 

0.50 -
0.60 

0.60 -
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

0.0 -
0.0 

0.0 -
0.0 

0.50­
0.60 1.00 

0.60­
0.70 0.95 1.00 

0.70­
0.80 

0.80­
1.10 

0.81 

0.50 

0.86 

0.54 

1.00 

0.86 1.00 

3.00­
3.00 -0.08 0.00 -0.05 -0.10 1.00 

0.0 -
0.0 -0.15 -0.13 -0.16 -0.17 0.00 1.00 

0.0 -
0.0 0.03 0.00 0.01 -0.02 -0.01 -0.02 1*00 

Figure C-6a. Correlation Matrices for Gradient of Fields 1 and 2.
 

(Phoenix, AZ; Channel 1-4, LANDSAT; Channel 5, SAR; Channel 6,
 

LANDSAT Channel 3, Gradient; Channel 7, SAR Gradient).
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FIELD 3 
RUN NO. 72069110 
OTHER INFORMATION 

TYPE 
NO. OF SAMPLES 10201 

CORRELATION MATRIX 

SPECTRAL 0.50 -
BAND 0.60 

0.60 -
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

0.0 
0.0 

0.0 -
0.0 

0.50­
0.60 1.00 

0.60-
0.70 

0 * 7.0­
0.80 

-

0.98 

0.59 

1.00 

0.52 1.00 

0.80­
1.10' 0.04 -0.0 0.79 1.00 

3.00­
3.00 -0.09 -0.Q9 0.07 Q15 1.00 

0.0 -
0.0 0.14 0.16 -0.02 r0.12 -0.01 1.00 

0.000 0.18 0.18 0.05 -0 0,8 0.02, 0.02 1.00 

FIELD 4 
RUN NO. 72069110 
OTHER INFORMATION 

TYPE 
NO, OF SAMPLES 10201 

CORRELATION MATRIX 

SPECTRAL 
BAND 

0.50 -
0.60 

0.60 -
0.70 

0470 -
0.8 

0.80-
1.10 

3.00 -
3.00 

0.0 -
0.0 

0.0 
0.0 

0.50­
0.60 1.00 

0,60­
0.70 0.86 1.00 

0.70­
0.80 0.78 0.81 1.00 

0.80­
1.10 -0.20 0.12 0.27 1.00 

3.00­
3.00 

0.0 -
0.0 

0.0 -
0.0 

-0.37 

-0.03 

0.00 

-0.43 

0.0'2 

-0.03 

-0.29 

0.09 

-0.00 

0.03 

0.23 

0.00 

1.00 

0.1-6 

0.14 

1.00 

0.14 1.0( 

Figure C-6b. Crrelation Matrices for Gradient -of Fields 3 and 4.
 

(Phoenix, AZ).
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FIELD 5 
RUN NO. 72069110 
OTHER INFORMATION 

TYPE 
NO. OF SAMPLES 10201 

CORRELATION MATRIX 

SPECTRAL 
BAND 

0.50 -
0.60 

0.60 -
0.70 

0.70--
0.80 

0.80.-
1.10 

3.00 -
3.00 

0.0 -
0.0 

0.0 -
0.0 

0.50­
0.60 1.00 

0.60­
0,70 0.96 1,00 

0.70­
0.80 0.84 0.85 1.00 

0080­
1.10 0.61 0.60 0.91 1.00 

3a00­
3600 -0.16 -0.21 -0.24 -0.24 1.00 

0.0 -
0.0 0.12 0.13 0.07 0.00 -0.04 1.00 

0.0 -
0.0 0.03 -0.01 -0.07 -0.10 0.35 0.10 1.00 

FIELD 6 
RUN NO. 72069110 
OTHER INFORMATION 

TYPE 
NO. OF SAMPLES 10201 

CORRELATION MATRIX 

SPECTRAL 
BAND 

0.50 -
0.60 

0.60 -
0.70 

.0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

0.0 -
0.0 

0.0 -
0.0 

0.50­
0.60 1.00 

0.60­
0.70 0.97 1.00 

0.70­
0.80 0.36 0.26 1.00 

0.80­
1.10 

3.00­
3.00 

-0.25 

-0.23 

-0.35 

-0.24 

0,78 

-0.06 

1.00 

0.08 1.00 

0.0 -
0.0 0.09 0.06 0.09 0.04 -0.04 1.00 

0.0 -
0.0 0.18 0.15 0.01 -0.09 -0.01 0.15 1.00 

Figure C-6c. Correlation Matrices for Gradient of Fields 5 and 6 (Phoenix,
 

AZ).
 



FIELD 7
RUN NO. 72069110 
OTHER INFORMATION 

TYPE 
NO. OF SAMPLES 

C-24 

10201 

:ORRELATION MATRIX 

;PECTRAL 0.50 -
3AND 0.60 

0.60 -
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

0.0 -
0.0 

0.0 -
0.0 

0.50­
0.60 1.00 

0.60­
0.70 0.96 1.00 

0.70­
0.80 0.76 0,76 1.00 

0.0- 0.03 -0.00 0.34 1.00 

3.00­
3.00 -0923 -0.24 -0.09 -0.03 1.00 

0.0 -
0.00 -0.05 -0.05 0.01 0.20 -0.05 1.00 

0.0- 0e17 0.15 0.10 -0.03 .0.06 0.02 1.00 

FIELD 8 
RUN NO. 72069110 
OTHER INFORMATION 

TYPE 
NO. OF SAMPLES 10201 

CORRELATION MATRIX 

SPECTRAL 0.50 -
BAND 0.60 

0.60 
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

0.0 -
0.0 

0.0 
0.0 

0.50­
0,60 1.00 

0.60­
0.70 0.92 1.00 

0.70­
0.80 0.28 0.15 1600 

0.80­
1.10 -0.11 -0.26 0.63 1.00 

3.00­
3.00 -0.07 -0.09 0.00 0.03 1.00 

0.0 -
0.0 

0.0 -
0.0 

0.13 

0.18 

0.11 

0.17 

-0.09 

0.02 

0.10 

-0.03 

-0.03 

0.16 

1.00 

0.08 1.00 

Figure C-6d. Correlation Matrices for Gradient of Fields 7 and 8 (Phoenix,
 

AZ).
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FIELD 9 
RUN NO. 72069110 
OTHER INFORMATION 

TYPE 
NO. OF SAMPLES 9595 

CORRELATION MATRIX 

SPECTRAL 0.50 -
BAND 0.60 

0.60 -
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 -
3,00 

0.0 -
0.0 

0.0 
00 

-

0.50­
0.60 1.00 

069- 0.91 1.00 

0.70­
0.80 0.12 0.10 1.00 

0.80­
1.10 -0.33 -0.39 0.52 1.00 

3.00­
3.00 

0.0 -

0.0 

0.11 

0.04 

0.06 

0.02 

-0.10 

-0.07 

-0.13 

0.09 

1.00 

-0.03 1.00 

0.0 -
0.0 0.15 0.10 -0.12 -0.14 0.33 0,02 1.00 

Figure C-6e. Correlation Matrix for Gradient of Field 9 (Phoenix, AZ).
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Figure C-8. Magnitude of the Gradient for Aircraft SAR (Phoenix, AZ). 



since ground truth was available for Phoenix,
data statistical analysis
 

was 	performed to examine the separability of crops in the SAR channel
 

(ch 	5). Figure C-9 contains correlation matrices for the classes:
 

alfalfa, barley, cotton, onions, sugar beets, urban and wheat. Figure
 

C-10 contains histograms for these classes and C-li contains their
 

spectral plots. Only the last row (spectral band 3.0-3.0) is significant
 

to the ground truth. The four Landsat bands are included to provide a
 

typical crop vegetation comparison but the contents of the fields on
 

October 16, 1972 are unknown. The SAR data shows some discrimination for
 

cotton, barley and urban with alfalfa, wheat, sugar beets and onions
 

having similar means and variances. These judgements are based only on
 

histogram inspection and detailed analysis can only be done after the
 

time coincident Landsat data is available.
 

5. 	GENERAL MULTIDATA MERGING SYSTEM STUDY AND MULTIDATA MERGING SOFTWARE
 

AND DATA SET GENERATION
 

These two tasks were fulfilled within the scope of the aircraft SAR
 

analysis performed and were not followed as separate task timelines
 

except for the case of ancillary data. The project included consideration
 

of ancillary data merging problems and this was not studied until the
 

fourth quarter.
 

The process of manually digitizing a complex polygon map is slow,
 

error prone and requires costly and often unreliable gridding of digitized
 

arcs. An alternate method of map digitizing was described in the June
 

1976 LARS SR&T Final Report which was color scanning and digitizing of
 

colored polygons on maps with computer classification to extract the
 

polygons. This method showed promise and it was decided to test the
 

method under controlled color conditions. In the previous test a pastel
 

colored printed map was used which had color dot printing patterns rather
 

than solid colors resulting in noise color signals.
 

The experiment carried out in the fourth quarter took as an example
 

a complex forest operating area map which can not be successfully digi­

tized by the manual method due to the complex shapes and small size of
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CLASS STATISTICS FOR GROUND TRUTH
 

LASS.... ALFALA TOTAL NUMBER OF SAMPLES.o 465 

CORRELATION MATRIX 

SPECTRAL 0,50 -
BAND 0.60 

0.60 -
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 r 
3.00 

0.50­
0.60 

0.60­
0.70 

1(00 

0.70 1.00 

0.70­
0.80 -0.18 -0.73 1.00 

0o80­
1.i0 

3.00­
3.00 

-0.29 

-0.23 

-0,81 

-0.32 

0.98 

0.29 

1.00 

0.33 1.00 

CLASS.,.BARLEY 
TOTAL NUMBER OF SAMPLES... 372 

CORRELATION MATRIX 

SPECTRAL 0.50 -
BAND 0.60 

0.60 -
0.70 

0.70 -
0.80 

0.80 -
1.10 

3.00 -
3.00 

0.50­
0.60 1.00 

069; 090 1.00 

0.70­
0.80i 0.68 0.59 1.00 

0.80­
1.10 

3.00­

3.00 

0.58 

0.26 

0.46 

0.38 

0.94 

0.19 

1.00 

0.1'5 1.00 

Figure C-9a. Correlation Matrices for Ground Truth Classes-Alfalfa and
 
Barley (Phoenix, AZ).
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cLtss... COTTON 
TOTAL NUMBER OF SAMPLES... 240
 

CORRELATION MATRIX
 

SPECTRAL 0.50 - 0.60 - 0.70 - 0.80 - 3.00 -
BAND 0.60 0.70 0.80 1.10 3.00 

0.50 
0.60 1.00 

0.60­
0.70 0.95 1.00 

0.70­
0.80 0.94 0.87 1.00 

0.80­
1.10 0.89 079 0.44 1.00 

3.00­
3.00 -0.10 -0.06 -0.13 0o.i2 1.00 

CLASS..o*ONIONS
 
TOTAL NUMBMR OF SAMPLES... 396
 

CORRELATION MATRIX
 
SPECTRAL 0.50 - 0.60 - 0.70 - 0.80- 3.00 -
BAND 0.60 070 0.80 1.10 3.00 

0.50­
0.60 1.00
 

0.60­
0.70 0.69 1.00
 

0.70­
0.80 0.20 -0.i0 i.0
 

0.80­
1.10 0603 -6o26 0,84 i.00
 

3.00­
3.00 -0.32 "o441 -i12 -0.09 i.00
 

Figure C-9b. Correlation Matrices for Ground Truth Classes-Cotton and
 
Onions (Phoenix, AZ).
 



CLASS....SUGAR BE
 TOTAL NUMBER OF SAMPLES... 420
 

CORRELATION MATRIX
 

SPECTRAL 0.50 - 0.60 - 0.70 - 0.80 - 3.00 -
BAND 0.60 0.70 0.80 1.10 3.00 

0.50­
0.60 1.00 

0.60­
0.70 0.96 1.00 

0.70­
0.80 0.16 0.06 1.00 

0.80­
1.10 -0.59 -0.68 0.60 1.00 

3.00­
3.00 -0.00 -0.03 -0,06 -0.02 1.00 

CLASS.. *.URBAN
 TOTAL NUMBER OF SAMPLES... 1066
 

CORRELAT'ON MATRIX 

SPECTRAL 0.,0 - 0.60 - 0.io - 0.80 - 3.00 -
BAND 00S0 0.70 0.80 1.10 3.00
 

0.50­
0.60 1.00
 

0.60­
0.70 0.96 1.00
 

0*70­
0.80 0.83 0.83 1.00
 

0 !0 0.69 0.68 0.94 1.00
 

3.00­
3.00 0.21 0.18 0.18 0.17 1.00
 

Figure C-9c. Correlation Matrices for Ground Truth Classes-Sugar Beets
 
and Urban (Phoenix, AZ).
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CLASS.. * WHEAT 
TOTAL NUMBER OF SAMPLES*. 238
 

CORRELATION MATRIX 

SPECTRAL 
BAND 

0,50 -
0.60 

0.60 -
0.70 

0.70 -
0.80 

0.80-" 
1.10 

3.00 -
3.00 

0.50­
0.60 1.00 

0.60­
0.70 0.97 .1.00 

0680 0.73 0.71 1.00 

0.80­1.10 0.16 0.12 0.58 1.00 

3.00­
3.00 0.02 -0.04 -0.16 -0.05 1.00 

Figure*C-9d. Correlation Matrices for Ground Truth Class-Wheat
 

(Phoenix, AZ).
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Figure C-lOa. Histograms for Class-Alfalfa (Phoenix, AZ; Channels 1-4,
 
Landsat; Channel 5, Aircraft SAR).
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Figure C-l0b. Histograms for Class-Barley (Phoenix, AZ). 
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Figure C-lOc. Histograms for Class-Cotton (Phoenix, AZ).
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areas relative to the grid size. One map segment was hand colored using
 

acrylic polymer emulsion artists' paints which give bright solid colors.
 

In the map segment chosen there were nineteen different areas requiring
 

that many separable colors. Figure C-12 contains a black and white
 

reproduction of the colored map. Separability of the darker colors is
 

expected to be difficult. Three other sites are being colored and a
 

brighter water based paint is being tested.
 

The colored maps will be digitized on a microdensitometer and three
 

band (blue, green and red separations) LARS MIST tape will be generated.
 

LARSYS classification analysis will then be performed to attempt to
 

extract the 19 polygon types from the data. If the classification is
 

highly accurate then a promising alternative is available for digitizing
 

complex maps. In this case it may be the only way the map can be digi­

tized and gridded.
 

6. SUIMARY AND CONCLUSIONS
 

Analysis of the geometric characteristics of the aircraft SAR
 

relative to Landsat indicated that relatively low order polynomials
 

would model the distortions to sub-pixel accuracy to bring SAR into
 

registration for good quality imagery, e.g., Phoenix Goodyear data.
 

Also, the area analysed was small, about 10 miles square, so this is an
 

additional constraint. For the Air Force/ERIM data from Maryland none
 

of the tested methods could achieve sub-pixel accuracy. The reasons for
 

this is unknown; however, the noisy (high scintillation) nature of
 

the data and attendent unrecognizability of featu;es contribute to this
 

error. Thus, the conclusion is that the quadratic model would adequately
 

provide distortion modeling for small areas, i.e., 10 to 20 miles square.
 

Note that in the Cambridge case going from quadratic to 5th order
 

lowered the 47 point line error from 2.24 to only 2.17 pixels. Require­

ments for larger areas, e.g., SEASAT frame, were not determined.
 

The spectral nature of the SAR was investigated with respect to
 

crop fields in the Phoenix area and some separability was noted in
 

histograms. Further analysis must await receipt of time coincident
 

Landsat data.
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ORIGINAL PAGE IS
 
OF POOR QUALITY
 

Figure C-12. Forest operating area map segment hand colored for scanning
 
and digitizing. There are 19 different areas color coded
 
with acrylic polymer paint.
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A color map digitizing and classification scheme was studied for
 

converting ancillary map data to gridded digital form. Map coloring
 

and digitizing was completed by November 30, 1978 and analysis will be
 

carried out in the first quarter of the follow-on year.
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Appendix C-1
 

Comparison of LARS Affine and Wallops Systematic Error Model
 

The systematic error model and LARS Affine programs model geometric
 

distortion in an image with respect to a reference image. The programs
 

model rotation angle, range scale, track scale, and shear angle distortions.
 

An outline of the systematic error model program operation is described
 

in the NASA/WALLOPS SYNTHETIC APERTURE RADAR IMAGE PROCESSING, SYSTEM
 

PLAN. So it will not be repeated here. A flowchart of the program
 

operation and of the program mathematics are provided in Figure C-13 and
 

C-14, respectively.
 

The systematic error model program can be shown to be essentially
 

the same six parameter affine model used in the LARS AFFINE program.
 

The following shows that the systematic error program is a six parameter
 

affine model.
 

Let. P = map track control point coordinates 
A
 

Q = map range control point coorindates
 
X distorted track control point coordinates
 
Y = distorted range control point coordinates
 

P' rotated track control point coordinates
 

QY = rotated range control point coordinates
 

The mathematical description of the program provides the model:
 

N 
S A6(Xi + K(O.00005)Y.) + ( I + rX))IN

A5X. + 1'U 6 j=l 
(B6 

Q t 
N 

=A 3 Yi + (. (B3 + r3 ))/N
 
j=l
 

N N
 
)2where I (r 6 is a minimum and where KsI such that = Ir6I is a 

j=l N 1=1 

minimum; also [ (rY)2 is a minimum.
 
i=l
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Figure C-13. Flowchart for NASA/Wallops Systematic Error Program
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Figure C-14. Mathematical Model for Systematic Error Program.
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N
 

This is a least-square approximation. First,.:in;east-squares r. = 0.
 

calculatio'dfinxthe 
in theSo, the calculation of A-) = B The AalculatiY 

program is redundent in those cases where the scale and not the average 

scale is used in modeling.' With thie simplification and allowing 

AL = K(0.00005), the model becomes 

Pir A6 (Xi + AL Yi) + B6
 

Qi A3 Yi + 
B3
 

where the approximation is in the least squares sense. Introducing now
 

the model of the rotation
 

pi = P *cos(ARAD) - Qi*sin(ARAD) = A6*(Xi + AL*Yi) + B6 

Qi'= P.*sin(ARAD) + Qi*cos(ARAD) = A3*Yi + B3 

where ARAD = angle of rotation A6 = track scale factor
 

AL = shear A3 = range scale factor
 

B6 = translation in track B3 = translation in range
 

Since ARAD is obtained by a least-squares approximation, the coordinates
 

rotated and least-squares again applied, the model is overall a least­

squares approximation.
 

Solving the above equations for Pi and QV
 

Pi = A6*cos(ARAD)*Xi + (A3 *sin(ARAD) + A6*AL*cos(
A R AD )*Yi 

+ B6*cos(ARAD) + B3*sin(ARAD)
 

Q = (-A6*sin(ARAD))*Xi + (-A6*AL*sin(ARAD) +A3*cos(ARAD))*Yi 

-B6*sin(ARAD) + B3*cos(ARAD)
 

or more simply
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Pi = AF*Xi + BF*Yi + CF
 

= 
Qi DF*Xi + EF*Yi + FF
 

which is a six parameter affine transformation.
 

The LARS AFFINE program performs a six parameter least-squares
 

fit for the delta functions
 

iA +
B a2*YiA
Ax (oyA) = X1 -

AyXAyA) = y BYA+ b*xiA + b2*YiA 

where superscripts A and B denote RUNA image and RUNB image, respectively.
 

When the transformation is implemented, for each point in the area in the
 

RUNA image to be registered the delta functions are computed. This
 

transforms the RUNA image coordinate (LANDSAT) to the RUNB to the RUNB
 

image coordinates (SAR). This determines the pixel (or interpolated
 

pixel set) in the RUNB image to overlay at the corresponding RUNA coordi­

nate position. This is the inverse operation of the systematic error
 

model, if the P, Q (map coordinates) are regarded as the LANDSAT and the
 

distorted image (S, Y coordinates), the SAR. Therefore, when residual
 

errors were quoted in the Affine program, the errors are with respect to
 

the RUNB or SAR image. When residual errors were quoted in the systematic
 

error model program the errors are with respect to the X, Y or LANDSAT
 

image. The resolution in the SAR image is usually much finer than that
 

of the LANDSAT. So an error of 1 pixel in the LANDSAT image and quoted
 

by the systematic error model program might map into an error of 3
 

pixels in the SAR image and so stated by the Affine program. This is 

due to the scaling differences between the images. The circular error 

in each reference frame are related by (SxaxA)
2 + (SyayA)2 = 2B + ). 

The following shows that if the checkpoint pairs are reversed in the
 

systematic error model program, then the LARS Affine and the systematic
 

error model program are identical.
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The systematic program model has been shown to be
 

P. = AF*X + BF*Y. + CF 

Qi = EF*X: + CF*Yi + FF 

If the P, Q coordinate pair is allowed to represent the RUNB 

coordinates and X, Y coordinates the RUNA coordinates, then 

X = F*t + BF*YA + CF 

YB =DF*A+ EF*YA + FF. 

The model used for the LARS Affine program is 

XA a0 a1*XA+a 2*YAAx (Xl,yA) = 

Ay (AyA) = yB _ yA = b0 + b*X + b2*YA. 

a + (a1+l)*XA + a2*YA
So, XB = 


Y =b + b1*t + (b2+I)*YA . 
YB bo ( 2 l
 

Therefore, the models are equivalent where
 

= CF aI = AF-l a2 = BF
a° 


b = FF = DF = EF-1.
bI b2 


The program for the systematic error model was edited so that the
 

reversal was obtained. A subroutine, AFFPAR, was amended to the
 

systematic program to calculate the affine and LARS "delta" Affine
 

parameters. Another subroutine, RESID, was also added to the systematic
 

program to calculate residual errors between the initial map coordinates
 

and rotated coordinates using the model.
 

An example showing the equivalence of the two programs and an
 

example showing corresponding changes in the r.m.s. error when the
 

mapping is reversed are shown in Figure C-15 and Figure C-16. Here it
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OLNT NO3 -0.17354697
 

774.90795898
CLM OF1EENO.1
COLUMN COEFFICIENT NO.2= 0.20413297
COLUMN COEFFICIENT NO.3. -0.08862997 

LINE TRANSLATION . 913.390869
 
COLUMN TRANSLATION 774.907959
 
LINE SCALE FACTOR . 0.221754
COLUHN SCALE FACTOR * 0.203264ANGLE OF ROTATION . -67.004776 DEGREESSHEAR = 0.170025 OR SHEAR ANGLE . 9.6940 DEGREES 

Figure C-16. LARS AFFINE Model Program Example Results with Checkpoint
 
Pairs Reversed.
 

http:77,.90.u9
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should be noted that the "Variance" shown in the WALLOPS program descrip­

tion outline and in the labeling of the printed results is actually the
 

standard deviation not the variance.
 

By comparing the results of the two programs, they are essentially
 

the same model (allowing for small computational errors). The differences
 

noticed between the r.m.s. errors calculated by the systematic program
 

and by RESID are due to the fact that errors computed in the program
 

are with P&Q rotated with respect to X&Y. In RESID errors are computed
 

with X, Y rotated with respect to P&Q. Therefore, a small error is
 

interchanged between the line and column errors between the two
 

calculations.
 

The LARS Affine program obtains the model in total with only one
 

least-squares fit, while the systematic program requires at least six to
 

obtain the same result. The additional insight the systematic error
 

program provides in printing rotation angle, scaling, and shear angle
 

can be obtained in the LARS program with the addition of a simple
 

subroutine calculation. The following is a derivation of the necessary
 

subroutine calculations.
 

XB 
 F+cos 

+sino 


[ 
 LS 
 0] 
[:] 
+ [a]
 

B] L-i coso 
 Scale yossie o
Rotation asShear XA Translation
=y -


YB -S xsine (-aSysin®) + Sycoso] bJ 
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The AFFINE delta function
 

[:j [] [a2]L:]K]+L::] 
or
 

xB a l a22 
: +
F::]= F::' F't F:] 

[bL~ bi+l [b0o
 

Solving these for % S, Sx-, and as 

E= arctan a ) a1+1s 
l x cosE) 

(b2+l) cosO + a sine [a2cosO] - [(Ub 2+l)sinO] 

cosbe 2 d ____ 
y
 

In implementing these relations the single least-sqtares fit operation
 

of the LARS Affine program Will A1so provide a parametric description of
 

the distortion. Table C-8 provides comparisoh of the systematic error
 

model and the LARS affine model, The direction of the staling and the
 

angular rotations apparently diffetz They are ddtdlly the same. The
 

LARS affine calculation of the parameter chooses the rotation and scale
 

directions such that the line scale factor is always positive. The small
 

errors between the LARS affine and systematit calculated residuals are a
 

result of the systematic etf't model which rotates the reference and then
 

scales and screws, where the LARS model rotates the distorted image.
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Table C-8. 	 Comparison of WALLOPS Systematic Error Model and LARS Affine
 
Model.
 

FORWARD 	 REVERSED
 

LARS WALLOPS LARS WALLOPS
 
AFFINE SYSTEMATIC AFFINE SYSTEMATIC
 

LINE R.M.S.
 
ERROR 3.82530 4.1923 0.80489 0.8930
 

(3.829)* (0.842)*
 

COLUMN
 
R.M.S. 	ERROR 3.63939 3.1940 0.77234 0.7615
 

(3.622)* (0.818)*
 

LINE
 
TRANSLATION -5238.323913 -5242.444701 913.391072 912.289716
 

COLUMN
 
TRANSLATION 2646.570270 2653.129237 774.8094 774.309689
 

TRACK SCALE 5.157719 	 -5.1582 0.221754 -0.2219
 

RANGE SCALE 4.299145 	 -4.2992 0.203264 -0.2032
 

ROTATION
 
ANGLE 61.3877110 -118.61800 -67.0047760 113.26490
 

SHEAR
 
ANGLE 2.07880 -1.8220 9.69400 -9.0840
 

* LARS calculation of residual in 	systematic error program
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