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ABSTRACT
 

Three-output power coupling methods which can eliminate the high
 

temperature insulator from the NEP power system are described and
 

estimates of their effects-on the NEP system masses-and cooling require­

ments are presented. Nominal 400 kWe power systems using push-pull
 

and flux reset inductive output,coupling are shown to have specific
 

masses of 22.2 kg/kWe and 18.8 kg/kWe, respectively. Series connected
 

heat pipe systems, which use the heat pipe-to-heat pipe resistance
 

to isolate converters on adjacent heat pipes, are shown to have specific
 

masses 0.5 to 1.4 kg/kWe lower than the NEP baseline system. Increasing
 

the number and temperature of the heat pipes in the system without
 

changing the electric output reduces the calculated system specific
 

mass only slightly, whereas increasing the output power significantly
 

reduces the specific-mass.. Estimates of cooling requirements indi­

cate that 11-45 m2 of power conditioning radiator are needed. A pos­

sible location for the power conditioning radiator may-be in the present
 

location of the kapton sputter shield.
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1.0 INTRODUCTION
 

The current design for a nuclear electric propulsion (NEP) spacecraft
 
relies on-a matrix array of individual thermionic converter's to act as the
 

power-conversion.system. Since the thermionic-.converters have series­

parallel electrical connections--in the -matrix approach, high temperature
 

electrical insulators (Sialon) are required to isolate adjacent converters
 

on the same molybdenum heat pipe.. These insulators,-in addition to possess­

ing the necessary thermal conductivity required to couple the thermionic
 

emitters to the reactor, must match the thermal expansion of the molybdenum
 

heat pipes, resist solid state electrolysis and arcing, and be stable in
 

vacuum. These extreme requirements make it attractive to investigate
 

alternate types of power conditioning which could completely eliminate
 

this insulator from the power conversion system design.
 

The purpose of this study was to evaluate inductive and other output
 

power coupling methods in light'of the desire to eliminate the high
 
temperature insulators from the power module design. Three power condi­

tioning alternatives.were considered in this report: push-pull, flux
 

reset, and series connected heat pipes. Push-pull and flux reset are
 

characteristic converter operating modes associated-with inductive out­

put power coupling. The series connected heat pipe concept utilizes the
 

heat pipe-to-heat pipe resistance to electrically isolate the converters
 

on one heat pipe from the converters on other heat pipes.-


Incorporation of these power conditioning alternatives into the NEP
 

spacecraft design may allow the elimination of the.Sialon insulator-with
 

some alterations in the present system design. Performance and weight
 

penalties must be considered in theutilization of inductive output
 

coupling. Electrical connections.and cooling-requirements are different
 

from the baseline design for both-inductive output-coupling andseries
 

connected heat pipes. These.deviations from the baseline design were
 

investigated in this study. The estimates of the mass, volume,-and
 

cooling requirements for each of the proposed power conversion schemes
 

were generated from anticipated performance characteristics by perturb­

ing the baseline figures.
 



2.0 POWER CONVERSION SYSTEM DESCRIPTION
 

2.1 90 Heat Pipe Baseline System
 

A cutaway view of the proposed NEP spacecraft and power conver­

sion system--des-igned' by the Jet Propulsion Laboratory1 2'? is shown in
 

Fig. 1. Ninety:molybdenum heat-pipes are used to transfer heat from a
 

-compact cyl-indrical- reactor to -an-array 'ofthermionic converters. The
 

540 converters produce 6 watts/cm2 at an-emitter temperature of 1650'K
 
and a collector temperature of 9250K. A detailed listing of the system
 

characteristics can be found in Table 1. This represents the baseline
 

system and it is the basis for all calculations involving inductive outpui
 

coupling. Some calculations are also performed for the series connected
 

heat pipe case using baseline converter performance.
 

2.2 162 Heat Pipe Configuration
 

The 90 heat pipe baseline design exhibits thermal problems in
 

the event of.an isolated heat pipe failure.3 This is especially true
 

at the periphery of the core. An acceptable solution to this problem
 

involves the use of a larger number of heat pipes whose diameter is
 

smaller than the diameter of the baseline heat pipes. The current pro­

posed configuration specifies a core containing 162 heat pipes 2.0 cm
 
4
in diameter.3' These heat pipes interface with the 90 converter sup­

porting heat pipes through a heat exhanger located near the LiH shield.
 

This presents no particular problem.to the inductive output coupling
 

concepts, since the converter emitters are at a common potential. However
 

the length of the heat pipes from the converters to the heat exchanger is
 

shorter than from the converters to the reactor. This reduces the stand­

off resistance between heat pipes and is undesirable for the series con­
nected heat-pipe power coupling alternative. -Consequently, it was
 

decided to eliminate the heat exchanger for this alternative and consider
 

162 heat pipes which were continuous from the reactor to the converter
 

array.
 

The effects of a 162 heat pipe-configuration bn the seriesconnec­

ted heat-spipe-output-coupl ngschemewere investigated for emitter/heat pipe 

temperatures of 1650'K and 1800'K. This required knowledge of converter 

operating parameters. These parameters, however, have not been specifically 
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Fig. 1 Cutaway of All-Heat-Pipe System
 



- Table 1
 

CONVERTER OPERATING PARAMETERS
 

Modified Baseline Systems
 

162 

Baseline. Heat Pipe 


Heat Pipes 


Converters/Heat Pipe 


Efficiency n(%) 


Lead Power (W/cm2) 

(BOL)
 

Emitter Temperature 

TE(°K)
 

Collector Temperature 

Tc( K)
 

Converter Volts @ 

10 A/cm2 (V)(BOL)
 

Emitter Area/Converter

(cm2)
 

Converter Length (dm) 


Emitter Diameter (mm) 


Gross Output (BOL) 

(amps)
 

Gross Output (BOL) 

(volts)
 

Gross Output (BOL) 

(kWe)
 

Nominal Operating 

Power (kWe)
 

Nominal Operating 

Current (amps)
 

System 


90 


6 


15 


6 


1650 


925 


0.6 


163.7 


15.1 


34.5 


9815 


54 


530 


443-


8205 


1650 0K 


162 


6 


15.6 


6.3 


1650 


925 


0.63 


87.2 


10.8 


25.5 


5232* 


102* 


534* 


446 


4370 


162 

Heat Pipe 

1650 0K 


162 


5 


15.3 


6.2 


1650 


925 


0.62 


105.5 


13.3 


25.5 


5274* 


100* 


530* 


443 


4408 


162, 162
 
Heat Pipe Heat Pipe
 
1800 0K 18000K
 

162 162
 

5 4
 

17.3 16.8
 

8.4 8.2
 

1800 1800
 

925 925
 

0.84 0.82
 

77.9 99.4
 

9.7 12.4
 

25.5 25.5
 

3897* 3975*
 

136* 1-33*
 

530* 528*
 

443 441
 

3257 3320
 

*Tabulated Gross-Output (amps, volts).are values which would be achieved
 
with serie -parallel -converterel-ectri cal connections reported for base­
line system.
 



defined for the 162 heat pipe reactor. A number of design alternatives
 
are possible (i.e. vary the number and/or the size of the converters to
 

-compensate 	-fora-1-arger- number- of--heat pipes); -but determination of the 
optimum system is beyond the intended source of this study.
 

Two converter-design-alternatives-with 162 heat pipes were con­
sidered for each of Xhe-proposed emitter/heat pipe temperatures. The
 

four cases are:
 

1. TE = 1650K, 6 converters/heat pipe, Pout = Pbaseline 

2. TE = 1650K, 5 converters/heat pipe, Pout = Pbaseline 

3. TE = 18000K, 5 converters/heat pipe, Pout = Pbaseline 
4. TE = 1800'K, 4 converters/heat pipe, Pout Pbaseline 

where: Pout = output power from thermionics for proposed system
 

Pbaseline = 	output power from thermionics for baseline system
 
443 kWe (EOL)
 

The details 	of these design alternatives are listed in Table 1.
 



3.0 INDUCTIVE OUTPUT COUPLING
 

3.1 Concept Description
 

--Inductive output coupling refers to the connection of the
 

_thermionic~converters to their-load through the--windings of a trans­

former. Two modes of inductive- output coupling, push-pull and flux
 

reset, were investigated in this study. Both of these methods couple
 

the converters to their load inductively by switching the converters
 

between two characteristic.,operating states (high current, low impedanc
 

ignited mode and low current, high impedance unignited mode).
 

The emitters of converters operating in an inductive output
 

coupling system are usually at the same electrical potential. This
 

eliminates the requirement that individual converters- be isolated from
 

each other and thus allows the high temperature Sialon insulator to be
 

removed from the:NEP system.
 

The connection of the converters in series-parallel is not
 

required when using inductive-output coupling, because voltage trans­

formation is attained by adjusting the transformer turns ratio. Howeve
 

both push-pull and flux reset systems operate at less than 100% duty
 

cycle and less than baseline efficiency:
 

3.2 Push-Pull-Inductive-Output Power Coupling-


The simplest inductive output coupling method is push-pull,
 

where two converters are connected to the center-tapped-primary wind­

ing of a transformer as shown in Fig. 2. The characteristic operatin
 

points for the converters are also shown in Fig. 2. While one conver
 

ter is producing power, the other converter is operating in its high
 

impedance-state. To-rreverse the flux in the transformer core, :the
 

converters are -switched simultaneously between nperating states by
 

means-of-a pulse-generator,connected-to the transformer secondary-.
 

.The-output using this-coupling method is square wave ac, with the
 

voltage determined by the transformer-turns ratio.­
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Fig. 	2 Push-Pull Operating Characteristics
 



The duty cycle of each converter in a push-pull power condition­
ing system is 50%. Thus, twice as many converters as the baseline design
 

-are required to-produce the-same-output power. It is not-necessary,
 
however to double the reactor power to compensate for the loss in output
 
-power (i.e. the system efficiency does not drop by a factor of two with
 
a 50% duty cycle).
 

Input power required at the emitter is determined by radiative
 
heat transfer, cesium thermal conduction, conduction losses through the
 
leads, and electron cooling of the emitter. Electron cooling and radiative
 
heat transfer dominate over the other modes of heat transfer..-A good fit
 

5to most converters isprovided by the equation5
 

Pin = 1.8 x 10-3 TE + 1.2 x 10-12 (TE4 - TC4) () 

where Pin = input power density (W/cm2)

J = converter current density (A/cm
 

TE = emitter temperature (0K)
 

TC = collector temperature (K).
 

The first term in Eq. (1)represents-the electron cooling and the second
 
term -isthe radiative heat transfer between the emitter and collector.
 

Thus, the input power equation may be written
 

Pin = Qec + Qrad (2)
 

where Qec = electron cooling (W/cm2)
 

Qrad = radiation heat transfer (W/cm2).
 

For the baseline case, the efficiency of the converter is
 

just
 

Pout 
 (3)
 

- Qec + Qrad
= 

where Pout = converter output power density. With push-pull, the
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output power is decreased by 50%. The electron cooling term also decreases
 
by a factor of two since only half of the converters are conducting current
 

-ata given time. The-radiation-term does not-change, however, since all
 
the converters-lose power by radiation, even when they are notconducting.
 
Thus, the effic-i'ency-of the push-pull system, Tj', isdescribed by
 

(Pout/2)(4)
 
=
Qec/2)+ Qrad"
 

Eqs. '(3) and (4)combine to yield
 

Qec + rad 


n Qed 2 Qrad
 

Qec and Qrad are calculated from Eq. (1)using the appropriate values
 
for J, TE' and Tc. The NEP system, for example, specifies that
 

J = 10 A/cm
2
 

TE = 16500K 

and TC = 9250K.
 

Thus,
 
= 
Qec = 1.8 x 10-3 J TE 29 .7W/cm-.
 

4
Similarly, Qrad = 1.2 x 10-12(Tc -Tc4) 8 W/cm2 and
 

= .83 
TI 

Push-pull operation, then, is capable of achieving a maximum
 

efficiency about 83% that of baseline efficiency.. To obtain the same
 
output,power-as the baseline-system, .the reactor power-must.be increased ­

by l-(G'/n). Thiscimplies that -the-reactor power must be increased by. 

20% with push-pull-operation. 

Operational restrictions on. the utilization of push-pull in­
ductive output couplinq are dictated by operating characteristics.of
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--

the thrmionic converters. In particular, the magnitude of the diode
 

ignition voltage should be no'less than the desired output voltage.
 

- The-ignition-voltage of-a cesium-diode converter is a-function of 

-cesium pressure,--emitter -temperature, and-interelectrode gap. Fig. 3 

shows the behavior of-the--ignition-voltage as a function of emitter 
6
 

temperature andccesium pressure for.constant interelectrode gap.


As shown in the figure, the ignition voltage decreases within­

creasing emitter temperature. Thd emitter temperature at which the
 

ignition voltage moves into the power quadrant represents an upper
 

limit for operation of a system with inductive output coupling. For
 
the converter characterized in Fig. 3, the ignition voltage moves into
 

the power quadrant for TE 1675°K. However, cylindrical devices have
 

been operated above this temperature with ignition voltages>0.6 volts
 

out of~the power quadrant. Also, the temperature limitation may be
 
removed by addition of small amounts of inert gas to the converter
 

plasma, since this increases the ignition voltage.. However, experiment!
 

with converters used as switches have shown that at least 10 to 20 Torr
 
of argon must be added to the plasma to affect the ignition voltage.7
 

This amount of gas in the interelectrode space would cause significant
 

thermal conduction between the emitter and collector, and thus would
 

reduce the converter efficiency.
 

Further constraints are imposed on the system by the converter
 

turn-off time. Turn-off time places an upper limit on the switching
 

frequency and thus impacts the size of the transformer used in the
 

power conditioning schemes. Transformer weight decreases within
 

creasing frequency. High frequency operation may be possible-if
 
-
large amount of.power-is used to turn off-the converters.at-a faster
 

rate.-< Thisrequires a-arge-magnitude -auxiliary-pulse to-field-drift
 

the-ions-out of-the-interelectrode space Vapidly-xAn optimumtmay be
 

"found by trading-off the -increase-inauxiliary power for.the -decrease
 

in transformer weight-with higher frequency operation.
 

+Rasor Associates, Inc. mini system converter, 1975
 

-10­



V,volt 

7 

I. Pcs = 58.5 Pa (0;44 Torr) 

8 2. P = 142 Pa (1.07 Torr) 

3 Pcs 266 Pa (2.0 Tort) 

I 1, 

osIoP 1W I1 . . 8 -, 

Fig. 3 Dependence of Ignition Voltage Vig 
on Emitter Temperature, TE. 
GAP = 0.5 mm (Ref. 6) 
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If the auxiliary turn-off power is low, typical turn-off times for
 

operating converters are about.l msec, and output waveforms should thus have
 
a half period around 10 msec. The cycle frequency, then, should be near
 
50 Hz. The specific mass of 60 Hz transformers proposed for terrestrial
 

"-applications of flux reset systems has-been estimated .to be aboUt 6.1. 
-

-kg/kWe.- With some design optimization it is believed-that the transformer
 

specific mass for a space power system operating at a similar frequency
 

could be reduced to less than half this value.
 

Advanced mode converters with controllable auxiliary ion sources
 

could also be used in the NEP system. The turn-off time for an auxiliary
 
ion source converter is governed by ion decay times (100-600 psec).8
 

This ca'n potentially increase the switching frequency to a value above
 
100 Hz with concurrent reductions in transformer mass.
 

There are a number of ways in which push-pull may be incorpor­
ated into the NEP system design. Figs. 4, 5, and 6 show three of the
 

possible ways to connect converters to the transformers. In all cases,
 
the transformers must be located near the converter array to minimize
 

bus bar losses.
 

Fig: 4 shows a configuration in which many small transformers
 
are interspersed with the converter array. It offers the desired system
 

redundancy. However, a single converter failure (both open and short
 

circuit) disables two converters electrically, and can adversely affect
 
the heat pipe thermal power dissipation. An open circuit failure of
 

one converter in a pair does not affect the thermal power dissipation
 

capability if the remaining converter in the pair can be ignited to
 
permit electron cooling. Failure to ignite the remaining converter,
 

however, will result in a 19% loss in thermal power dissipation. Con­
versely, if a short circuited converter conducts a large amount of heat
 
to its collector and if the good converter is ignited;, then the heat
 
pipe could dissipate more power than if the failure had not occurred.
 

Similar observations-can be-made for Figs. 5 and 6. These
 
figures show alternatepush-pull configurations and-list the appropriate
 

features of each.
 

-12­



-- -.LSE * MANY SMALL TRANSFORMERS INTERSPERSED 

WITH THE CONVERTER ARRAY 

'1 .TP'UT 0 A FAILURE ELECTRICALLY DISABLES -2-CONVERTERS 

a SINGLE OPEN CIRCUIT FAILURE DOES NOT CHANGE 
TOTAL HEAT PIPE THERMAL'POWER DISSIPATION 
IF SECOND CONVERTER IGNITES 

*LSESINGLE.OPEN CIRCUIT FAILURE REDUCES HEAT PIPE 
THERMAL POWER DISSIPATION BY 19% IF SECOND 

-TPUT 
CONVERTER DOES NOT IGNITE 

I SINGLE SHORT CIRCUIT FAILURE INCREASES THERMAL 
POWER DISSIPATION IF CONDUCTION LOSSES ARE 
HIGH AND SECOND CONVERTER IS IGNITED 

PIPE 

uTPUT
 

Fig. 4 Push-Pull System with 3 Converter Pairs on One Heat Pipe
 



0 	FEWER TRANSFORMERS REQUIRED (LARGER CURRENT
 
CAPACITY)
 

* 	SHORT CIRCUITED CONVERTER FAILURE DISABLES
 
ENTIRE HEAT PIPE ELECTRICAL OUTPUT
 

* OPEN CIRCUIT CONVERTER FAILURE ALLOWS
 
PULSE CONTINUED OPERATION WITH IRREGULAR WAVEFORM
 

0 	A SINGLE OPEN CIRCUIT FAILURE REDUCES' THE
 
HEAT PIPE THERMAL POWER.DISSIPATION BY 9%
 

, I 	 UPUT 

-
 S SINGLE SHORT CIRCUIT FAILURE CAN INCREASE
 
HEAT--___P 7 THERMAL POWER DISSIPATION IF CONDUCTION
 

BECOMES LARGE
PIPE 


Fig. 5 Push-Pull System with One Transformer per Heat Pipe
 



- SIMPLIFIED CONSTRUCTION WITH FEWER BUSBAR 
INTERCONNECTIONS 

* POTENTIAL TO ELIMINATE EMITTER-COLLECTOR 
CERAMIC SEAL WITH THIN METAL CLOSURE 

I ONE CESIUM RESERVOIR FOR ENTIRE HEAT PIPE 
SPULSE 

8 FAILURE DISABLES ENTIRE HEAT PIPE ELECTRIC 
OUTPUT 

UT 0 HALF-CELL FAILURE DOES NOT CHANGE TOTAL 
THERMAL POWER DISSIPATION IF OTHER HALF-CELL 
CAN STAY IGNITED 

O HALF-CELL FAILURE REDUCES TOTAL THERMAL 
POWER DISSIPATION BY 57% IF SECOND HALF-

PIPE/ CELL DOES NOT IGNITE 

HEAT PIPE 

Fig. 6 Push-Pull System with One Converter Cell per Heat Pipe 



3.3 Flux Reset Inductive Output Power Coupling
 

9
In the flux reset method, a single converter drives the pri­

mary of a transformer as shown in Fig. 7. The converter is alternately
 

- switched between its.low-impedancepower-producing state and its high­

impedance state. A-small amount-of energy, supplied by a pulse generator
 

in the secondary circuit, is used to reverse the flux in the transformer
 

core while the converter is in its high impedance mode and while the
 

load is switched out of the circuit.
 

Fig. 7 shows the input and output waveforms and the converter
 

operating points for flux reset output coupling. At point 1, power is'
 

delivered to the load until the transformer core begins to saturate.
 

A pulse at point 2 de-ignites the converter and disconnects the load
 

from the circuit. The converter is driven out of the-power quadrant at
 

point 3 to reset the flux in the transformer. Finally, a pulse at point 4
 

re-ignites the converter and reconnects the load. The output from the
 

transformer secondary is interrupted dc with a high duty cycle (80-90%).
 

The output voltage is determined by the turns ratio used in the
 

transformer.
 

Although the duty cycle is high, there are losses in efficiency
 

associated with the amount of time the converter is not producing power.
 

Eq. (3). was used to compare the efficiency of the flux reset power condi­

tioning to the baseline efficiency. Again, the baseline efficiency is
 

just
 
Pout 
 (6)
 

-ec + Qrad
 

If an 85% duty cycle is assumed, the efficiency of the flux reset system,
 
T1, is 

.85 Pout (7)
 

.85 Qec + Qrad
 

where .85 Pout = output power-from flux reset system 

.85 Qec = electron cooling term 
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Fig. 7 Flux Reset Operating Characteristics
 



The ratio of the flux reset efficiency to the baseline efficiency is,
 

.85(Qec + Qrad ) (8) 

+
.85Qec rad
 

-This-figure is high-because-some of the-power must be used to generate the
 

turn-off, reset, and ignition pulses. Since the pulse power is about 6%
 

of the total output power,9 the efficiency ratio n'/n becomes about .90.
 

The reactor power, then, must increase by l/(n'/n) or 1.11 to compensate
 

for the loss of system efficiency.
 

The operational limitations of flux reset are similar to those
 

described for push-pull. Proper utilization of flux reset requires that
 

the reset and ignition voltages extend out of the power quadrant by an
 
amount many times the operating voltage. As the reset and ignition
 

voltages approach a value equal to the output voltage, the duty cycle
 
decreases to 50%, and the efficiency decreases to the value reported
 

for push-pull. These calculations are shown in detail in Appendix A.
 

As shown inAppendix A,an 85% duty cycle can be obtained with
 
the NEP system if the converter ignition voltage is above 3.4 volts.
 

However, Fig. 3 indicates that this condition may be difficult to obtain
 

with a conventional cesium diode. As with push-pull, additions of small
 

amounts of-inert gas could be used to increase the ignition voltages
 

with a concurrent decrease'Lin converter efficiency. This is significant
 

-in 
 that the restrictions on -ignition voltage place an upper limit on the
 

emitter temperature.
 

There -isno lower limit -tJ-thetrequency aT wnicn a converer
 

may be switched on and off. As the frequency decreases, the transformer
 

becomes larger and hence physical size and weight introduce a practical
 

lower limit. The upper frequency limit is controlled by the ignition
 

and turn-off times. The turn-off.time (1msec) is much longer than the
 

ignition-time- (<10 psec) and-this-controls the upper frequency limit.
 

Ingeneral, increasing the switching frequency decreases -the duty cycle
 

and, hence, the system efficiency.
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There are a number of ways in which flux reset may be incor­
porated into the NEP system design. Figs. 8, 9, and 10 shows three of
 

- the possible alternatives. In Fig. 8,many small transformers are
 
interspersed with the converter array. These transformers must be lo­
cated near the converter array to minimize power losses in the leads.
 

A single converter failure inthis case reduces the heat pipe electrical
 
output power by 16% but does not affect the output from the other con­
verters. An open circuit failure reduces the heat pipe thermal power
 
dissipation by 13%, but a short circuit failure may slightly increase
 

the thermal power dissipation. A de-ignition failure mode is also
 
important. If this :occurs, the transformer core saturates and the
 
output power drops to zero. However, the heat pipe thermal power
 
dissipation may increase slightly since the ignited converter continu&i
 
to be electron and radiatively cooled with a 100% duty cycle.
 

Similar observations were made for Figs. 9 and 10 and listed
 
on the figures. Of particular interest isthe case inwhich several
 
converters are connected inparallel across the same transformer (Fig. 9).
 
A flux reset system will operate properly in this case only if all the
 
converters de-ignite during each cycle. This requires that the turn-off
 

pulse be large enough to de-ignite the converter with the highest
 
de-ignition voltage.
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PULSE 

I MANY SMALL TRANSFORMERS 

THE CONVERTER ARRAY 

INTERSPERSED WITH 

I FAILURE OF ONE CONVERTER DOES NOT AFFECT 
OUTPUT FROM-THE OTHERS 

* OPEN CIRCUIT FAILURE REDUCES HEAT PIPE 
THERMAL POWER DISSIPATION BY 13% 

* SHORT CIRCUIT FAILURE CAN INCREASE THERMAL 
POWER DISSIPATION IF CONDUCTION HEAT TRANSFER 
IS LARGE 

C 

I DE-IGNITION FAILURE INCREASES THERMAL POWER 
DISSIPATION BY 2% 

=OUTPUT
 

HEAT'---

PIPE
 

LUTU 

OUTUT
 

Fig. 8 Flux Reset with One Tran'sformer per Converter
 



* FEWER TRANSFORMERS REQUIRED (LARGE 
CURRENT CAPACITY) 

0 SIMULTANEOUS DE-IGNITION OF ALL CONVERTERS 
REQUIRED 

0 FAILURE OF A CONVERTER BY SHORT CIRCUIT 
DISABLES ENTIRE ELECTRICAL OUTPUT FROM 
HEAT PIPE 

6 OPEN CIRCUIT FAILURE OF A CONVERTER 
ALLOWS CONTINUED OPERATION WITH REDUCED 
OUTPUT 

I OPEN CIRCUIT FAILURE REDUCES HEAT PIPE 
-J THERMAL POWER DISSIPATION BY 13% 

6 DE-IGNITION OR SHORT CIRCUIT FAILURE 
INCREASES THERMAL POWER DISSIPATION BY 
13% IF ALL CONVERTERS REMAIN IGNITED 

* SINGLE DE-IGNITION OR SHORT CIRCUIT FAILURE 
DECREASES THERMAL POWER DISSIPATION BY 61% 
IF REMAINING CONVERTERS STAY UNIGINITED 

Fig. 9 Flux-Reset with One Transformer per Heat Pipe
 



* SIMPLIFIED CONSTRUCTION WITH FEWER BUSBAR
 
INTERCONNECTIONS
 

* 	POTENTIAL TO ELIMINATE EMITTER-COLLECTOR
 
CERAMIC SEAL WITH THIN METAL CLOSURE
 

* 	ONE CESIUM RESERVOIR FOR ENTIRE HEAT PIPE
 

S 	FAILURE ELECTRICALLY DISABLES ENTIRE HEAT
 
PIPE
 

0 	OPEN CIRCUIT FAILURE REDUCES HEAT PIFE
 
THERMAL POWER DISSIPATION BY 76%
 

* 	LOCALIZED SHORT CIRCUIT FAILURE MAY NOT
 
AFFECT THERMAL POWER DISSIPATION
 

uPUset
 

Fig. 10 Flux Reset with Single Converter Cell per Heat Pipe
 



4..0 SERIES CONNECTED HEAT PIPE OUTPUT COUPLING
 

4.1 Concept Description
 

-Another output coupling-alternative-which-was investigated is the
 
-series .connected heatpipe method. In thisrmethod, the Sialon insulators
 

are removed-and-the heat-pipe-to-heat pipe-resistance is,utilized to isolate
 
--converters on-successive heat pipes-. If this resistance is-large enough,
 

the output from the converters can be connected in series-parallel without
 

appreciable power losses;
 

4.2 Calculation of Heat Pipe Resistance
 

The heat pipe resistance was estimated by considering the resistances
 

of a grooved molybdenum heat-pipe, liquid lithium filled grooves, and molybde-.
 
num inner mesh in parallel. A cross sectional view of the heat pipe model is
 

shown in Fig. 11. The heat pipes were assumed to be electrically isolated
 

from each other between the reactor and the converter array and short cir­

cuited at the reactor.
 

The resistance of the heat pipe, R is described by
 

1 I + I + -_1_ (9) 
R RMo RLi Rmesh
 

where RMo = resistance of molybdenum heat pipe 

RLi.= resistance of liquid lithium
 

Rmesh = resistance of inner molybdenum mesh' 

All resistances can be calculated if the .resistivity,-length, and cross -­

sectional area of each component is known. The resistance of the molybde­

num heatpipe is
 

o 4[Coc0

R Mo . L {[j-do2 - d,.)] - Nwg92} -1 MY0) 

wherewher 0P~oMo = resistivity-of.molybdenum at.the heat pipe temperature
(Q-cm)
 

L = heat pipe length from reactor to first converter (cm)
 

do.= outside diameter of heat pipe (cm)
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Fig. 11 Heat Pipe Cross Section 
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d.= inside diameter of heat pipe (cm) 

N = number of square grooves in heat pipe
 

Wg =width and depth of grooves (cm).
 

Since square grooves were assumed, the resistance-of the liquid lithium
 

in-the grooves is
 

RRLi PLi L
N w 2 •(I
 

g
 

where PLi = lithium resistivity at the heat pipe temperature. The
 
resistance of the mesh was estimated by calculating the resistance of
 

an equivalent foil and dividing by the solid fraction, S, of the mesh.
 

The mesh resistance is described by,
 

Pfoil L 

(12)
mesh -rdi t S
 

where Pfoil = resistivity of molybdenum foil at the-heat pipe temperature 

t = thickness of the foil. 

For a square mesh with nominal wire diameter, dw, and nominal sieve open­
ings, a, the solid fraction is 

d (Ea + dw)
S w 2 w (13)
 

(a+ dW)2
 

A triple layer of 160 mesh was..assumed for further calculations. For 160­

mesh,
 

a .009398 cm
 

dw .0068 cm, 

and thus, S m-.56.
 

Eqs. (9-12-) -combine to give-an estimate of the heat 'pipe resistance. ­

The-resistance of the-heat pipes was calcul-ated for-the baseline
 

system-and.-for two proposed systems using 162 heat pipes; one operating
 

withTE = 1650'K and the other.with TE = 1800'K. Table 2-lists-the
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Table 2
 

PARAMETERS FOR RESISTANCE CALCULATIONS
 

Baseline 162 Heat Pipes 162 Heat Pipes 

System 16500K 18000K 

L 215 cm 215 cm 215 cm 

d 2.5 cm 2.0 cm 2.0 cm 

d. 2.2 cm 1.6 cm 1.6 cm
*1 

W 0.08 cm 0.1 cm 0.1 cm 

N 40 25 25 

PMo 36S - cm 361? - cm 49pQ - cm 

PLi 59p - cm 59p - cm 66wQ - cm
 

Pfoil 36pQ - cm 36j - cm 36p2 - cm
 

t 0.02 cm 0.02 cm 0.02 cm
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appropriate parameter values used in these calculations. For the baseline
 

system itwas assumed that the heat pipe diameter was increased in the
 

"converter--region-to--compensate:for the removal- of the Sialon insulator.
 

The heat pipe wall thickness and the emitter thickness-were kept equal
 

'to-the- origina1-baseline design.-.This requires at"flared"-transition section 

in the heat- pipe at-the--point where the converters begin. The results are 

as follows:
 

Baseline system: R = 0.0073a
 

162 heat pipe, 1650'K: R = 0.00760
 

162 heat pipe, 1800'K: R = 0.0098Q.
 

4.3 	Calculation of Output Power from Series Connected Heat Pipes
 

Inthe series connected heat pipe output coupling method, conver­

ters are connected inparallel on each heat pipe and inseries across heat
 
pipes as shown inFig. 12. The available power, Po, from such an array of
 

N+l series-parallel connected converter heat pipes in the absence of leak­

age currents isjust
 

P0 = 	(N+l) V I (14)
 

where Vo = nominal converter output voltage
 

I° = 	nominal output current from all the converters on a heat
 

pipe.
 

Leakage currents affect the useful output power by reducing the output
 

current and by affecting the converter operating points.
 

JThe-eiectrical model -used to analyze the series connected heat
 

pipe coupling,method is shown in Fig. 12. Leakage currents are represented
 

by Ill I, ...I The total leakage currenttis just the-sum of all the
 

IN- The-'output voltage from N+l heat pipes isthe sum of the individual
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Heat Heat Heat Heat
 
Pipe Pipe Pipe Pipe net 

V V2 3 V3 N+l V 

R 11 R flR f-2R I 

*REACTOR CORE 

Fig. 12 Series Heat Pipe Model 



heat pipe output voltage minus the voltage loss in the transistors switches,
 

Vs. This can be written as
 

N+i
 
Vk Vs  .V X - (15) 

where Vk = output voltage from converters on kth heat pipe
 

Vs = voltage drop intransistor switch-.
 

In geneyal, Vk is not equal to the nominal converter output voltage, Vo,
 

as specified in Table 1; because of the leakage currents, the converters
 

on adjacent heat pipes operate at different points on their I-V curves.
 

The current-voltage characteristics of a typical thermionic
 

device is shown in Fig. 13a. For the purposes of this analysis, a linear
 

approximation was used for the I-V characteristic of.each heat pipe-as
 

shown in Fig. 13b. The approximate I-V characteristic is described by
 

Vo
 
Vk = (2 1 - Tk) V- 16)
 

0
 

where Ik = average current flow through kth heat pipe.
 

By calculating the loop currents shown in Fig. 12, it'can be shown that
 

k-I
 
Tk = 10- Ij
 

j=l
 

V k-I
 

and thus Vk I k -i (17)
 
0 j=O
 

The net-output current, Inet' is the difference between the 

-- nominal-output current.and the total l-eakage current: For N+l s'eries 

heat pipes, 

N 
Inet = 1 0 -I=1 0 - -IM (18) 

m=l
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X
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Fig. 13 Output Characteristics of-Thermionic Power Sources
 
(a) Typica1 I-V Curve of Cylindrical ffhermionic Con­
verter (b) Linear Approximation Representing the 
Output of-a Thermionic Heat Pipe 
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By again using loop currents, it can be shown that the individual leak­

age currents are described by­

1 m - IR]. (19) 

An expression for the output power from N+l series connected heat
 

pipes is derived by combining Eqs. 12-15. The result is
 

p N+ I N V m k-I
 

0(20 
k=l ~ m1 j=0 

The percentage of power output can be optimized with.respect to the number
 

of heat pipes connected in series, because the ratio P/P0 goes through a
 

maximum as N islvaried.
 

The solution of Eq. (20) for known V0 , Io, N, Vs , and R required
 

an iterative calculation which sums the I. and compares them to an assumed
J
 
total leakage current. The computer program listed in Appendix B was used
 
to solve Eq. (20) and to plot P/P versus the number of heat pipes connected
 

in series. An example calculation the results for 5 series connected heat
 

pipes is shown in detail in Appendix C. The results for the five proposed
 

systems in Table 1 are shown in Figs. 14-17.
 

In Fig. 14, P/P0 is plotted versus the number of series connected
 

heat pipes for the 90 heat pipe baseline configuration with the heat pipe
 

resistance as a parameter. The inverter transistor voltage drop, Vs, is
 

held constant (0.5 V). The optimum number of heat pipes in series for
 

the baseline case is 8. At the optimum, the output voltage is 4.7 volts
 

and the net output power is 84.8% of the output power which would be
 

tavailable-with the-high;;emperature.insulators. As the- heat.pipe resistance
 

increases-,theleakage currents.decrease,-the net output .power increases,
 

*and the-optimum-humber of heat pipes in series increases:- For a system of
 

'-heat pipes'with--twice the -resistance.of the.baseline heat pipes, the optimum
 

occurs with 10 heat pipes in series.- The-net output power is 87.7% of the
 

available output power, and the output voltage is 5;9-volts.
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Fig. 15 shows the effects on the baseline configuration of vary­

ing the voltage drop, Vs, of the inverter transistor switches. Curves are 

-shownfor'VsIvalues-of' 025,- 0.55-and-O-volt: The-heat-'piperesistance 

'for all these cases is"assumed- to: -be 0.0073P. By decreasing the switch 

--ovol-tage-froml1.0, to. 0:25 volt- the-;net outputtpower at; optimum N is in 

creased significantly from-about 75%'of the, available--power-to.about 90%.
 

Also, the. optimum N decreases from 11 to 6 heat pipes connected in series.
 

Transistors with voltage drops of 0.5 volts at 75A are commercially avail­

able and thus this value was assumed in subsequent calculations.
 

Plots of P/P versus N for the baseline configuration and for the
 

two 162 heat pipe configurations with TE = 1650'K are shown in Fig. 16. There
 

is not much variation in the results between the 6 converters/l heat pipe
 

case and the 5 converters/heat pipe case due to the similar output voltages
 

and currents. The main difference in the results between the 90 heat pipe
 

baseline configuration and the.162 heat pipe designs is that the net out­

put power at optimum N for the 162 heat pipe design is lower. This is
 

due to the lower nominal output current of the converters on the 162 heat
 

pipes. Under these conditions, leakage currents are a greater fraction
 

of the nominal output current. The maximum output power for the 162 heat
 

pipe configuration is 82% of the available output power with 7 heat pipes
 

in series. The output voltage'is 4.3 volts under these conditions.
 

Fig. 17 shows the plots of P/P versus N for two 162 heat pipe
 

configurations with TE = 1800°K-and for the baseline case. The net out­

put power at optimum N from the 18000K heat pipes is higher than that for
 

the 1650'K heat pipes despite the lower nominal output current of the
 

18000K heat pipes. The optimum output power from the 1800'K heat pipes-­

is 83.5% of the available output power, and the output voltage is 4.2
 

volts. This is due to the higher output voltage/converter (.84'volts
 

yersus .63.'vol:ts) and.higher -heat-pipe resi-stance (0:0098a-versus 0.00762)
 

of.the 1800K-heat pipes. The optimum,-howeveri occurs -at lower N, 5,
 

thanthe 16500 K heat pipes.
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5.0 	MASS AND COOLING IMPLICATIONS OF INDUCTIVE OUTPUT COUPLING AND
 

SERIES CONNECTED HEAT PIPES
 

t-Estmates af-th-effects oftthe-above- powerrcoupl-ing--atlternatives 

on the NEP system mass and cooling-requirements-were made by perturbing
 

.the:-fi gures-.reported -for:-the- baseli ne -system..-.The;power .bal ances.,shown
 

,-in-Figs;-18-22-were-used-in-the perturbation analyses. All of the
 

systems are called 400 kWe systems since they were designed to provide
 

the 	same amount of electric power to the thrusters and the instrumentation
 

as the nominal 400 kWe baseline system. The delivered power is 362 'kWe,
 

consisting of 352 kWe to the thrusters and 10 kWe to the instrumentation.
 

Fig. 	18 shows the power balance for a push-pull system. The 50% duty
 

cycle yields a duty cycle efficiency of .83 as calculated earlier in this
 

report. A power conditioning efficiency of 0.96 was assumed to reflect
 

transformer losses and auxiliary pulse power requirements. The power
 

balance for a flux reset system.is shown in Fig. 19. It has a duty cycle
 

efficiency of .96 and a power conditioning efficiency of .86 (r = .98 for
 

transformers, rj= .88 for auxiliary pulse power).
 

The 	power balances for the series connected heat pipe output coupling
 

method are shown in Figs. 20-22. Fig. 20 shows the 90 heat pipe design
 

with 	TE = 16500K, Fig. 21 shows the 162 heat pipe design-with-TE= 1650-K,
 

and 	Fig. 22 shows the 162 heat pipe design with TE = 18000K.
 

5.1 	 Estimates of System Mass
 

The results of the perturbation analyses are summarized in-


Tables 3 and 4. The reactor mass was scaled in accordance with JPL
 
3
 

estimates of the behavior of the reactor mass-with output power. 

The mass of the LiH shield was held fixed. Heat pipe and converter 

masses were scaled directly with converter length and wall cross- ­

sectional area to yield the proper heat pipe length and the correct number 

of-converters as dictated -by- the powerbalances -and duty..cycles. The _
 
bus-bar:interconnects_were;;assumed-.to .bea:simi-lar to-thetbaseline system.
 
-This-assumption is-justi.fiedby the-.requirementthat the-power condi- ­

<tioning. transformers for -a1-theoutputcoupling,a1ternati-ves be near 
the 	converter array. Primary radiator weights were-.scaled directly
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Table 3
 

NEPSYSTEM MASS ESTIMATE (kg)
 

Reactor'Core 

Reactor Reflectors'and Control 


LiH Shield 


Heat Pipes 


Thermionic Converters 


Molybdenum Busbars 


Copper Busbars 


Coolant Plumbing 


Coolant 


Primary Radiator 


Support Structure (5%) 


Sputter Barrier (I cm Kapton) 


Sputter Barrier Support (0.1 cm Ti) 


Subsystem Mass (ku) 


a kg/kWe (400 kWe System) 


Transistor Mass (1890 ea 75 

A/transistor)
 

Auxiliary Radiator 


Transformer (Series 20 kHz Ferrite) 


Transformer (Flux Reset and Push-

Pull)
 

Total Mass 


a* Total (400 kWeSystem)-


+90 Heat Pipe System
 

,-Baseline 


372
 
518 


1189 


735 


805 


200 


400 


116 


147 


2045 


380 


464 


147 


7518 


18.8 


NA 


NA 


NA 


NA 


Push-Pull 


970 


1189 


977 


1610 


400 


Flux-Reset Series+
 

890 947
 

l189 1189
 

1015 764
 

947 805
 

200 200
 

.........
 

232 


294 


2168 


422 


464 


147 


8873 


22.2 


60 


1200 


10133 


25;3 


116 116
 

147 147
 

2045 2122
 

358 345
 

464 464
 

147 147
 

7518 7246
 

18.8 18.1
 

--- 662
 

234 234
 

48
 

1200
 

8952 8198
 

22.4 20.
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Table 4
 

Comparison of Series Heat Pipe Mass Estimates
 

90 HP 162 HP 162 HP 162 HP*
 
TE=l6500K TE=l650°K TE=l 8000K TE518000K
 

Reactor Core 


Reactor Reflectors and Control
 

LiH Shield 


Heat Pipes 


Thermionic Converters 


Molybdenum Busbars 


Copper Busbars 


Coolant Plumbing 


Coolant 


Primary Radiator 


Support Structure (5%) 


Sputter Barrier (1 cm Kapton) 


Sputter Barrier Support (0.1 cm Ti) 


Subsystem Mass (kg) 


a kg/kWe (400 kWe System) 


Transistors 


Transformer (Series 20 kHz 

Ferrite)
 

Auxiliary Radiator 


Total Mass 

-a*Total (400 kWe System) 


*500 kWe System
 

947 


1189 


764 


805 


200 


947 


1189 


970 


750 


360 


............
 

116 


147 


2122 


345 


464 


147 


7246 


18.1 


662 


48 


222 


8178 

20.4 


209 


265 


2120 


371 


464 


147 


7792 


19.5 


693 


48 


230 


8763 

21.9 


906 1200
 

1189 1189
 

950 1030
 

673 902
 

360 306
 

209 209
 

265 265
 

1824 2500
 

349 413
 

464 464
 

147 147
 

7336 8680
 

18.3 17.4
 

775 968
 

48 60
 

242 302
 

8401 10010
 
21.0 20.0
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with the power dissipation requirements. Transistor, transformer, and
 

auxiliary radiator masses were.estimated from empirically derived
 
10
 

relations.
 

-.Push-pull -is:the -heaviest-output-coupling- a] ternative. Due 

.to. the-50%-duty cycle, -twice as.-many converters as-the baseline system 

are-required,to -produce the--same output-power. The heat pipe must be
 

lengthened to accommodate the increased number of thermionic converters.
 
The heat pipes were also assumed to be larger in diameter in the region
 

of the thermionic converters to compensate for the removal of the Sialon
 

insulator. Mass increases in the coolant plumbing and coolant also
 

reflect the larger number of converters. Copper bus bar masses were
 
eliminated since the transformers must be located immediately adjacent
 

to the converter array. The system mass excluding the transformers and
 
auxiliary radiator is 8873 kg which yields a value of 22.2 kg/kWe for
 

the specific mass of a 400 kWe push-pull system. If transformer and
 

auxiliary radiator masses are included, the total mass is 10,133 kg
 

and the total specific massbecomes 25.3 kg/kWe. A comparable estimate
 
for the baseline system is not available since the mass of the power
 

conditioning system has not been stated.
 

The specific mass'of the flux reset output coupling alter­
native falls near the NEP baseline design value. The system mass with­

out transformer and auxiliary--radiator.masses is 7518 kg (18.8 kg/kWe),
 

and-with these masses is 8952 kg (22.4 kg/kWe).
 

The series connected heat pipe output power coupling system
 
is the simplest and least massive output coupling alternative. The.
 

specific mass-is lower than the baseline design despite increases in
 
the reactor, heat pipe, and-primary radiator masses. .For a 90 heat
 

pipe system with TE = 1650'K, thespecific mass without.-the transistors,
 

transformers,- and auxi-liary-radiator is 18.1 kg/kWe.- If these masses
 
.are,Jncluded,.-the-system-,specificmass ..
becomes 20.4 kg/kWe.
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The baseline system mass does not include power conditioning
 

consequently, the specific mass of the series connected alternative
 

without transistors,-transformers, auxiliary.radiator is the value
 

-which.,should~xproperly.be.-compared-with-the-baseline specific mass
 

i.a. 18.8 kg/kWe (baseline)-vs'-18-.l-kg/kWe(series connected). Thi
 

-alternative is quite.attractivebecause of'its simplicity and the
 
elimination of the Sialon insulators with no increase in mass.-


Table 4 compares the results of four series connected heat
 

pipe alternatives: 90 heat pipes, TE = 1650'K; 162 heat'pipes,
 

TE = 1650'K; 162 heat pipes, TE = 1800'K, 400 kWe; 162 heat pipes,
 

TE = 1800'K, 500 kWe. The specific mass of the 162 heat pipe, 1650°K
 

system is slightly larger than the 90 heat pipe system because of the
 

larger heat pipe mass and the larger molybdenum busbar mass. Coolant
 

plumbing and coolant masses are also higher due to the larger number
 

of heat pipes.
 

The results for the 1800'K, 162 heat pipe alternatives are
 

of particular interest. The net output power from a 162 heat pipe
 

system with TE = 1800'K was made equal to the net output power from
 

the baseline system (by using fewer and shorter converters per heat
 

pipe). Under these conditions, the system specific mass is only
 

slightly less than the 162 heat pipe 1650'K system. Although the
 

higher efficiency of 1800'K converters results in lower masses for
 

the reactor, converter array, and primary radiator, these differences
 

are not large compared to the masses of components which are insensiti
 

to converter performance. Thus the §pecific mass is only slightly
 

improved, since the electric output is unchanged.
 

However, it would be possible to generate considerably more
 

electric power with 1800'K converters than with the baseline system.
 

Significant-reductions in specific mass -resul.t when the 1800'K, 162
 

-heatv.-pipe..system is,.sized,-toproduce 500-kWe of 'output-power instead
 

-of-400 kWe-as in the basel-ine-system. -Under-these- conditions, the 
testimates shown in Table 4 indicate--that the-total spedific mass
 

should be near 20 kg/kWe and the total mass should be about 10,000 kg.
 

However, the specific mass of a 500 kWe system not including transformers,
 

Ar
 



transistors, and auxiliary radiator is only 17'.4 kg/kWe; which should
 

be compared with 18.8 kg/kWe for the baseline system.
 

5.2 Cooling and LocationRequirements
 

"The-power-dissipatibn requi.rements for,both -systems,using in­

-ducti.ve -output coupli ng--and- for- the- system: using series connected heat 

pipes-are indicated on Figs. 18-22. These'requirements- were-used to 

specify the area of the primary and power conditioning radiators for each 

of the systems. The area of the primary radiator for each system was 

estimated by scaling the area reported for the baseline system in pro­

portion to the power dissipation requirements. The results are shown 

in table 5.
 

Also shown in Table 5 are the area estimates for the power con­

ditioning radiator for each system. These were calculated by assuming
 

that tHe radiators were radiating to a 0°K heat sink so that
 

A - R (21)
 
4e TR

where A Radiator area (m
2)
 

P= Radiator power dissipation (W'
 

= K4
 o 5.669 x 10-8 W/m
2 


e = Radiator emissivity = .9 

TR = Radiator temperature (0 K).
 

The temperature of the power conditioning radiator was assumed to be
 

408'K. This reflects a 4230 K transistor case temperature and-a 15'K
 

temperature drop from the transistors to the radiator.
 

Theinductiveoutput coupling--transformerscores must be -maintained
 

at.:500'K.for.-suitable operation. The copper bus rings which surroundtthese 

-transformers-are at--a-temperature of -925°.K. -It is possible to insert 

multif6i-I nsulation:between the-core regions of-the transformers and-the 

bus .rings to reduce the-thermal conductivity-in this area to -5 x-10 6 W/cm-° 

Under these conditions it is estimated that -2 'kW of additional waste heat at 
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Baseline 


Push-Pull 


Flux'Reset 


90 HP, 16500K 


162 HP, 1650°K 


162 HP, 1800°K 


Table 5 

.NEP-SYSTEM COOLING- REQUIREMENTS-


Primary Radiator 


Area (m2) 


73 


77.4 


73.1 


75.7 


75.7 


65.1 


Power Conditioning
 

Radiator Area (M2)
 

100
 

10.6
 

41.7
 

39.6
 

41.0
 

43.1
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500'K would have to be dissipated. The additional radiator area required for
 
this purpose is small compared to either the primary or auxiliary radiator
 
areas.-.ApproximatelylO0 kg-of'additional-weight-wouldbe required for cool­

ing the transformer .cores.,--This weight has not been included inmass estimates
 
-for the-inductive-coupling systems.
 

.....The,-location-of..th.-power- conditioning--components in relation- to 
the converter array and the radiators is especially important. In all of
 

the systems itis.necessary to locate the transformers close to the con­

verter array to minimize lead losses. Consequently, the power conditioning
 

radiator must also be located near the converter array.
 

Under these conditions, a power conditioning radiator which is
 
deployed from the .primary radiator (as in the current NEP system design)
 

would probably be unsuitable. A potential solution would be to locate
 

the power conditioning radiator in place of the kapton sputter barrier.
 
With a cone angle of 30', the radiating area available in this location
 

2
isabout 75 m . This is an adequate amount of radiating area for all 
the power coupling systems discussed in this study.
 

Location requirements for the power conditioningcomponents
 

are slightly less critical for series connected heat pipe coupling
 
systems since the output voltage is higher than that for push-pull and
 

flux reset systems. For the series connected systems, transformers,
 

transistor switches, and thus, the power conditioning radiator must
 

also be located near the converter array. Again, a radiator in place
 
of the kapton sputter shieldwould be suitable. Ifthe radiator is
 

placed in this location, special precautions would have to be taken to
 

prevent radiative heat transfer between itand the heat pipe converter
 

array.
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6.0 SUMMARY AND CONCLUSIONS
 

It has been shown .that the elimination of the high temperature
 

Sialon insulator 'from'the NEP 'system design is-possible by using push­
- pul-1- or -flux,reset inductive-output coupling. Thehigh-temperature
 

--insulators could -also-be eliminated by-using a system of series con­

-nected--heat pipes in which the- resistance -of-heat-pipes--provides -the
 

necessary electrical isolation between converters.
 

.The specific mass of a 400 kWe system using push-pull output
 

coupling was estimated to be 22.2 kg/kWe. This is comparable to the
 
baseline system specific mass of 18.8 kg/kWe. A push-pull system
 

would be the heaviest output coupling alternative due to its low
 

duty cycle and consequent high converter and heat pipe masses.
 

A 400 kWe flux reset system was shown to have a specific mass of
 

18.8 kg/kWe, a value equal to that of the baseline system. This is
 
the more attractive of the inductive output coupling methods, since
 

the insulators could be eliminated with no increase in system mass.
 

The most attractive coupling scheme, both in-simplicity and specific
 

mass, is the series connected heat pipe method. The specific mass of a
 

400 kWe series heat pipe system using baseline converter parameters and
 

90 heat pipes connected directly to the reactor was estimated to be
 

18.1 kg/kWe. This is lower than the specific mass of the proposed
 

baseline system. Mass estimates were also obtained for several other
 

series connected systems with 162 heat pipes directly connected to the
 

reactor. The specific mass of a 1800'K system with 162 heat pipes and
 
the same net output power as the baseline system was estimated to be ­

18.3 kg/kWe. A similar system with 500 kWe of output power was estimated
 

to have a specific mass of about 17.4 kg/kWe.
 

The series connected heat pipe-output-coupling method appears to
 

.be most attractive for the.NEP spacecraft in.terms of mass, performance,
 

and-reliability.- Ifthe.need for the high temperature insulators is
 

removed through the.use of this output .coupling method, then converter
 

operation with higher emitter temperatures is possible. At TE > 18000K, 
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the thermionic performance requirements can nearly be achieved with exist­

ing devices. The series connected 162 heat pipe design can simultaneously
 

avoid two difficult technical problem areas: the Sialon insulators and
 

-the heat pipe-to-heat pipe heat-exchanger. It is recommended, therefore
 

,thatadditional 'systems studies be -undertaken to more completely define
 

the potential utility of this coupling method in the NEP spacecraft power
 

system.
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APPENDIX A
 

CALCULATION OF FLUX RESET DUTY CYCLE
 



The waveforms shown below is typical of flux reset inductive output
 

coupling. Power delivery to a load occurs at points 1 and 2, and trans­

former core flux resetting occurs at points 3 and 4. Let
 

t 

tl, t2, t3, t4 be the amount of time required for power delivery, turn­

off, reset, and ignition respectively. The duty cycle is defined to be
 

the ratio of the time power is delivered tp, to the total cycle time, T.
 

From the waveform it can be seen that
 

t = t + t 

p 1 2 

and T = tI + t2 + t3 + t4
 

So, the duty cycle is t p/T or
 

=
Duty Cycle + 2 (22) 

In most operating systems, t2 <<t, and t4 <<t 3.
 

By using these relations, the duty cycle may be rewritten:
 

tl
 
Duty Cycle t + t(23)
 

This ratio-can be expressed as a function of the reset and operating
 

voltages-if it-isnoted-that the volt-seconds during the power delivery
 

and turn-off-portions of the cycle must equal the volt-seconds-during
 

reset, or,
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Vt 1 + V2t2 = V3t3 + V4t4 (24) 

where V1 

V2 

Y3 

V4 

= operating voltage 

= turn-off voltage 

= reset voltage 

= ignition voltage 

Typiqally, 

V2t2 << V1t1 

and V4t4 << V3t 3 

hence Eq. (24) becomes 

VltI = V3t3. 

or,V3t3 

,I VI 

(25) 

(26) 

Substitution of tI in Eq. (23) with Eq. (26) yields 

V3/V 1 

Duty Cycle = (V3/V1+ (27) 

Eq. (27) shows that ifV3>>V 1 the duty cylce approaches 100%. 

Also, as V3 z VI, the duty cycle becomes 50%. To obtain an 85% duty 

cycle with the NEP baseline system (V1 = operating voltage = .6V), 

the reset voltage, V3 ' must be 3.4 V out of the power quadrant. The 

ignition voltage must be slightly larger than this. 
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APPENDIX B
 

COMPUTER PROGRAM FOR SERIES
 

HEAT PIPE CALCULATIONS
 

HP9825A DESK TOP COMPUTER
 

WITH HP9872A PLOTTER
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APPENDIX C
 

RESULTS OF SERIES HEAT PIPE CALCULATIONS
 

FOR 5 HEAT PIPES IN SERIES
 

G,
 
OF
 



Equation (20) was solved for an example case of 5 heat pipes in series.
 

The baseline values of V0, 10; and R were used:
 

V = 0.6 V
0
 

I = 8205 A
 
0 

R = 0.0073Q.
 

Also, the inverter transistor voltage drop was assumed to be Vs = 0.5 V. 

The results generated by the computer program listed in Appendix B are 

shown in Fig. 23. 

The output voltage, V, from 5 series heat pipes is
 

5
 
V = Vk = 2.99 V.
 

k=l
 

The individual Vk are shown in Fig. 23: V1 = 0.6 V, V2 = 0.59 V, V3 = 0.59 V, 

V4 = 0.6 V, V5 = 0.61 V. Some of these differ from V because the leakage 

currents cause the converters on adjacent heat pipes to operate at different 
points on their I-V curves. The net output voltage, Vnet' is V-Vs
 

The output current from 5 heat pipes in series is Inet' which is the
 

difference between I and the sum of the leakage currents I. So,
o 

4
 
Inet = 1o - II = 8205 - 163.6 = 8041.4,A.
 

j=l
 

1 is assumed to be flowing in tne first heat pipe. The net output power,
 

P, is calculated from the net output current and the net output voltage
 

P = Vnet Inet = (2.49 V)(8041.4 A) = 20.02 kW. 
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1 

Heat Heat Heat Heat Heat
 
Pipe Pipe Pipe Pipe Pipe


4V=.6V 2 V.59V 3V.59V V.=.6v V5=.61V 

REACTOR 

Fig. 23 Example of Series Heat Pipe Calculation Results f6 5 H& t Pipes in-Series
Baseline System. 



The available output power, P0, from 5 heat pipes with no leakage paths
 

(i.e. perfectly isolated from each other) is
 

Po 
 Vout 
 o'
 

where Vout = 5 Vo =3.0 V, 

10 = 8205 A. 

Thus; Po0 = (3.0 V)(8205 V) = 24.62 NW 

The percentage of available output power is P/Po" For 5 series connected
 

heat pipes this is
 

P 24.04
-

P 24:62 x 100 = 81.3%
 
0
 

This point can be found in Figs. 14 and 15 as a part of the results for the
 

baseline configuration.
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