@ https://ntrs.nasa.gov/search.jsp?R=19790013868 2020-03-22T00:10:58+00:00Z

N79-22039

ROTARY-WING AERODYNAMICS - VOLUME I
BASIC THEORIES OF ROTOR AERODYNAMICS
(WITH APPLICATION TO HELICOPTERS)

Boeing Vertol Company
Philadelphia, PA

Jan 79






NASA Contractor Report 3082

Rotary-Wing Aerodynamics

Volume I - Basic Theories of
Rotor Aerodynamics (With
Application to Helicopters)

W. Z. Stepniewski
Boeing Vertol Company
Pbiladelpbia, Pennsylvania

Prepared for
Ames Research Center
under Contract NAS2-7007

NASN

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1979

N79-22039






T g v

- o

B3 LR
1

1'(

gy e

-ar

1. Report No.
NASA CR-3082

2. Government Accassion No.

3. Aecipient’s Cswlog No.

N729- 2RO 39

4. Titie and Subtitie

Rotary-Wing Aerodynamics
Volume I - Basic Theories of Rotor Aerodynamcs (with “=wplication
to Helicopters)

$. Repont Date
January 1979

6. Performing Organization Code

1. Author(s)
W. Z. Stepniewski

8. Performing Orgenization Repgrt No.

8. Performving Organization Name snd Address
Boeing Vertol Company
Philadelphia, Pa.

10. Work Unit No.

11. Contract or Graat No.
NAS2-7007

12. Sponsoring Agency Name and Address

- National Aeronautics and Space Administration
Washington, D. C. 20546

13. Type of Report and Period Covered
Contractor Report

14. Sponsoring Agency Code

15, Suppiementary Notes

16. Abstract
Chapter 1,

rotor Jynamics, rotor control, and a review of rotary-

velocity distribution along the disc in inplane transl:“~ion.
in Chapter II. In Chapter IV, various aspects of vort:
inplane translation.
aerodynamic problems--analogous to those considered ir “hapter IV.
about non-rotating bodies is briefly outlined.

in hover and horizontal flight.

e~

ORMATION SERV!CE

QEMHII G

: 3 - acmm
i NA IONAL JECHNICAL |

Introduction, includes a definition of rotav--wing aircraft and their comparison to
other transport vehicles regarding energy consumption, ~lementary consideration of blade and
wing configurations. Chapter Il is devoted
to the momentum theory, with application to such probl: s as prediction of thrust and ideal

power of single and tandem rotor configurations in var cus regimes of flight, and induced
Chapter III deals primarily with
appl ication of the combined momentum-blade-element the- *1es to problems previously considered

z theory are discussed with application

to the determination of induced velocities around the <.15c--both under static conditions and

The so-called local momentum the:vy is presented as an appendix. Chapter V
explains the velocity and acceleration potential theori>s and their application to rotor

In addition, flow determination

Fundaricatal theories of both thin and thick
airfoil sections are presented in Chapter VI, followed by discussion of unsteady aerodynamics
and contributions of airfoil characteristics to aerodynamic efficiency of rotors and helicopters

18. Security Classif. (of this report)
Unclassified

20. MM {of this pag>' . .

Unclassifiec { .

17. Key Words (Suggested by Author(s}) 18. Disv-ibution Statement
Rotary-ting Aerodynamics, Momentum Theory, b -Unclassified
Combined Blade-element and Momentum Theory, ) .

Vortex Theory, Potential Theory, and Airfoil .
Theory
Star Cltagory - 02

“*For sale by the National Technical information Service, Springfield, Virginia 22161

WASA-Langley, 1979

LT T







FOREWORD

In recent years, there has been an increasing volume of reports, articles, papers, and
lectures dealing with various aspects of rotary-wing aircraft aerodynamics. To those who
enter this domain, either as graduate students with some background in general aero-
dynamics, or those transferring from other fields of aeronautical or nonaeronautical engi-
neering activities, this vast amount of literature becomes a proverbial haystack of infor-
_mation; often with the result of looking for a needle that isn't there. But even those who
are professionally engaged in some aspects of rotary-wing technology may experience a
need for a reference text on basic rotor aerodynamics.

Through my experience both as an educator and practicing engineer directly in-
volved in various aspects of industrial aeronautics, it became double apparent that there
was a need for a textbook that would fulfill, if not all, at least some of the above require-
ments.

With this goal in mind, the text entitled Rotary-Wing Aerodynamics was written
under contract from USAAMRDL/NASA Ames. On one hand, the objective is to provide
an understanding of the aerodynamic phenomena of the rotor and on the other, to
fumish tools for a quantitative evaluation of both rotor performance and the helicopter
as a whole.

Although the material deals primarily with the conventional helicopter and its
typical regimes of flight, it should also provide a comprehensive insight into other fields
of rotary-wing aircraft analysis as well.

In order to achieve this dual aim of understanding and quantitative evaluation,
various conceptual models will be developed. The models will reflect physical aspects of
the considered phenomena and, at the same time, permit establishment of mathematical
treatment. To more strongly emphasize this duality of purpose, the adjective physico-
mathematical will often be used in referring to these models.

It should be realized at this point that similar to other fields of engineering analysis,
conceptual models—no matter how complicated in detail—still represent a simplified pic-
ture of physical reality. It is obvious, hence, that the degree of sophistication of the
physicomathematical models should be geared to the purpose for which they are intended.
When faced with the task of developing such a model, one may be advised to first ask
the following two questions: (1) whether the introduction of new complexities truly
contributes to a better understanding of the physics of the considered phenomena and
their qualitative and quantitative evaluation, and (2) whether the possible accuracy of the
data inputs is sufficiently high to justify these additional complexities.

In this respect, one should determine whether a more complex mode! would truly
lead to a more accurate analysis of the investigated phenomena or just, perhaps, that the
procedure only looks more impressive while mathematical manipulation would consume
more time and money. Furthermore, it should be realized that often in the more complex
approach, neither intermediate steps nor final results ca'n be easily scrutinized.
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With respect to rotary-wing aerodynamics in general, and performance predictions
in particular, one should realize that aerodynamic phenomena associated with the various
regimes of flight of an even idealized, completely rigid rotor are very complicated. Fur-
thermore, the level of complexity increases due to the fact that in reality, every rotor is
non-rigid because of the elasticity of its components and/or built-in articulations. As a
result, a continuous interaction exists between aerodynamics and dynamics, thus intro-
ducing new potential complexities to the task of predicting aerodynamic characteristics
of the rotor. Fortunately, even conceptually simple models often enable one to get either
accurate trends or acceptable approximate answers to many rotary-wing performance
problems.

By following the development of basic rotor theories—from the simple momentum
apbroach through the combined momentum and blade-element theory,'vortex theory,
and finally, potential theory—the reader will be able to observe the evolution of the
physicomathematical model of the rotor from its simplest form to more complex ones.
It will also be shown that an understanding or explanantion of the newly encountered
phenomena may require modifications and additions and sometimes, a completely new
approach to the representation of the actual rotor by its conceptual model. By the same
token, a better feel is developed with respect to the circumstances under which a simple
approach may still suffice. Finally, these simpler and more easily scrutinized methods
may serve as a means of checking the validity of the results obtained by potentially
accurate, but also more complicated ways which may be prone to computational errors.

Presentation of the above-outlined theories, plus considerations of airfoils suitable
for rotary-wing aircraft constitutes the contents of Vol |, “Reduction to practice” of the
material presented in Vol | is demonstrated in Vol I, where complete performance pre-
dictions are carried out for classical, winged, and tandem configurations including such
aspects as performance guarantees and aircraft growth.

The existing need for a text conforming to the above outlined philosophy was
recognized by representatives of USAAMRDL and in particular, by Mr. Paul Yaggy,
then Director of USAAMRDL, and Dr. I. Statler, Director of Ames Directorate whose
support made possible the contract for the preparation of the first two volumes.

To perform this task, a team was formed at Boeing Vertol consisting of the under-
signed as Editor-in-Chief and author of Vol I; Mr. C.N. Keys as the principal author of
Vol Il; and Mrs. W. L. Metz as Associate Editor. The course of the work was monitored
by Mr. A. Morse and Dr. F.H. Schmitz of Ames Directorate; while Mr. Tex Jones from
USAAMRDL-Langley Directorate provided his technical assistance and expertise by re-
viewing the material contained in both volumes. Thanks are extended to the above-
mentioned as well as the other representatives of USAAMRDL. Finally, my associates and
| wish to thank the management of Boeing Vertol; especially, Messrs. K. Grina, |. Mallen,
W. Walls, and E. Ratz for their support, understanding and patience.

There are, of course many more people from this country and abroad who signifi-
cantly contributed to the technical contents. Their individual contributions are more
specifically acknowiedged in the prefaces of the individual volumes.

W. Z. Stepniewski
‘e Ridley Park, Pa.
]/ March 31, 1878



PREFACE

Volume | of the text entitled Rotary-Wing Aerodynamics is devoted in principle
to Basic Theories of Rotor Aerodynamics. However, the exposition of the material is
preceded by an introductory chapter wherein the concept of rotary-wing aircraft in
general is defined. This is followed by comparisons of the energy effectiveness of heli-
copters with that of other static-thrust generators in hover; as well as with various air and
ground vehicles in forward translation. While the most important aspects of rotor-blade
dynamics and rotor control are only briefly reviewed, they should still provide a suffi-
cient understanding and appreciation of the rotor dynamic phenomena related to aero-
dynamic considerations.

The reader is introduced to the subject of rotary-wing aerodynamics in Ch Il by
first examining the very simple physicomathematical model of the rotor offered by the
momentum theory. Here, it is shown that even this simple conceptual model may prove
quite useful in charting basic approaches to helicopter performance predictions; thus pro-
viding some guidance to the designer. However, the limitations of the momentum theory;
i.e., its inability to account for such phenomena as profile drag and lift characteristics of
blade profiles and geometry, necessitated the development of a more sophisticated con-
ceptual rotor model.

The combined blade-element and momentum theory presented in Ch 1] represents
a new approach which demonstrates that indeed, greater accuracy in performance pre-
dictions is achieved, and this would also become a source of more-detailed guidelines for
helicopter design. Even with this improvement, many questions regarding flow fields
(both instantaneous and time averaged) around the rotor still remain unanswered.

in the vortex theory discussed in Ch IV, a rotor blade is modeled by means of a
vortex filament(s) or vorticity surface; thus opening almost unlimited possibilities for
studying the time-average and instantaneous flow fields generated by the rotor. Unfor-
tunately, the price of this increased freedom was computational complexity usually
requiring the use of high-capacity computers.

It appears that some of the rotor aerodynamic problems amenable to the treat-
ment of the vortex theory may be attacked with a somewhat reduced computational
effort by using the approaches offered by the velocity and acceleration potential theory.
This subject is presented in Ch V which also contains a brief outline of the application
of potential methods to the determination of flow fields around three-dimensional, non-
rotating bodies.

Considerations of airfoll sections suitable for rotors, as presented in Ch VI, com-
pletes the sequence on fundamentals of rotary-wing aerodynamics. This material provides
a basis for development of the methods for helicopter performance predictions used in
Vol Il.



In order to create a compiete series on Rotary-Wing Aerodynamics the author
anticipates a third volume devoted to the application of the basic theories established in
Vol . This volume would include (1) selected problems of helicopter flight mechanics
(e.g., ground effect, flight maneuvers, performance limitations, and autorotation); (2)
establishment of a link between aerodynamics and design optimization; and (3) develop-
ment of techniques leading to performance maximization of existing helicopters. In
faimess to the aeronautical engineers and designers who have been anxiously awaiting
for the publication of this series, the first two volumes are being released prior to the
writing of the proposed third volume,

Returning to the present volume, the reader's attention is called to the fact that
both S| metric and English unit systems are used in parallel; thus expediting an acquain-
tance with the metric approach for those who are not yet completely familiar with this
subject.

In conclusion, | wish to express my indebtedness to the following persons who
generously contributed to this volume: Professor A. Azuma of the University of Tokyo,
Japan for his review of the appendix to Ch IV; and to Drs. R, Dat and ).). Costes of
ONERA, France for their valuable inputs and review of Ch V.

W. Z. Stepniewski



NOTES ON METRIC SYSTEM

In order to assist the reader in making the transition from English units to equivalent
S| metric units of measure, some important aspects of the S| system encountered in applied
subsonic aerodynamics and rotary-wing mechanics of flight are listed below and briefly
reviewed.

BASIC METRIC SYSTEM (SI) UNITS

QUANTITY UNIT SYMBOL ENGLISH EQUIVALENT
mass kilogram kg 0.0685 slug

length meter m 3.281 ft

time second s 1.0

temperature Kelvin K 1.8° Rankine

DERIVED UNITS

QUANTITY DERIVATION UNIT SYMBOL ENG. EQ.
force kg m/s newton N 0.2248 1b
force 9.807H kilogram force kG 2.2046 ib
pressure N/m? newton/m? N/m*  |0.0209 psf
pressure kG/m? kilogram force/m? | £G/m® | 4.8825 psf
density kg/m?® kilogram/meter’ kg/m®> | 0.00194 siug/ft®
velocity m/s meter/second m/s 3.281 fps
acceleration | m/s? meter/second® m/s? 3.282 fps?
acceleration of

gravity 9.807 m/s? g g 32.2 ft/s?
work;energy | Nm joule Nm 0.7376 ftb
work; energy | kGm kilogram meter kGm 7.233 ftdb
power Nm/s watt w 0.7376 ft-b/s
power kG m/s kilogram meter/s kGmjs | 7.233 ftb/s
power 75kGm/s metric horsepower hp 0.9863 hp*
viscosity kg/ms u (coefficient) kg/ms | 0.0288 slug/ft-s
kinematic

viscosity ulp v (stoke) m?/s 10.764 ftl/s

*English horsepower = 550 ft-1b/s.




The reader’s attention is called to the fact that as long as metric units are input
into relationships designated as SI, and no specia! conversion factors are incorporated into
the formulae, the obtained forces will be in newtons, pressures in newtons per meter
squared, work or energy in newton meters, and power in newton meters per second. It
should be noted however, that in many countries, the kilogram of force (symbolized in
this text as £G) is widely used for the determination of weight {including that of air-
craft), while such quantities as disc and/or wing loadings are measured in XG/m.

The popularity of the kilogram as a unit of force stems from the fact that prior to
the establishment of the newton as a unit of force, the kilogram was generally accepted in
engineering practice as well as in everday life. It was defined as a force resulting from the
acceleration of earth’s gravity acting on one kilogram of mass. However, the earth's ¢
value varies with altitude over sea level and geographic latitude. Consequently, the defini-
tion of the kilogram of force as the weight of a kilogram of mass on the earth surface
required additonal specifications of earth coordinates as to where the weight is measured.
The newton (kg m/s*) as a unit of force is more universal in the context of its not being
directly related to the gravity conditions encountered on this particular planet.

It should also be mentioned that in addition to the direct use of the kilogram of
force in engineering practice, its indirect influence can be consistently found when deal-
ing with the metric horsepower defined as Ap = 75 kG m/s. It should also be noted that
the so-defined metric horsepower amounts to 0.9863 of its English counterpart defined as
hp = 550 ft-1b/s.

One final note — The most important characteristics of air according to the Inter-
national Standard Atmosphere are given in the following table.

vi
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CHAPTER 1

INTRODUCTION

This chapter introduces the reader to the concept of rotary-wing aircraft in general,
The energy consumption of helicopters and tilt-rotors is compared with that of other
aircraft and automobiles. A brief discussion of dynamic problems of rotors indicates the
necessity for freedom of the flapping and lagging motion of rotor blades through discrete
hinges or blade flexibility, or for some alternate means of aerodynamic control of blade
lift around the azimuth. Then, stability of the flapping motion is examined—leading to an
explanation of the harmonic presentation of blade motion and rotor control through the
first harmonic inputs. Finally, the most common representatives of practical rotary-wing
configurations are briefly described.

Principal notation for Chapter |

A
A
An

an

by
CF

"TNYTXI®IZFrTTS~C QDO

tsfc

fn=0,1,2,..)

{n=0,1,2,..)
n=1,2,.)
n=1,2..)

area m? or ft?
amplitude m or ft
coefficient in Fourier expansion of feathering rad or deg
acceleration m/s?, fps®, org's
coefficient in Fourier expansion of flapping rad or deg
coefficient in Fourier expansion of feathering rad or deg
coefficient in Fourier expansion of flapping rad or deg
centrifugal force Norlb
blade chord m or ft
specific distance km or n.mi
diameter m, or ft
acceleration of gravity 9.80m/s? or 32.2fps?
moment of inertia kg-m? or slug-ft?
specific impulse s
angle of incidence, or imaginary unit: V=T rad or deg
spring constant N m/rad or |b-ft/rad
lift N orlb
moment N m or ft-lb
mass kg or slugs
rotor radius m or ft
specific range km/G or n.mi/lb
radial distance m or ft
thrust Norlb
time sorhr
thrust specific fuel consumtion (kG/s)/kG or (Ibfs)/Ib
velocity of flow approaching the blade m/s or fps
velocity of flow in general m/s or fps
downwash velocity m/s or fps
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Superscript

weight or gross weight

N, kG, orlb
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rotor disc angle-of-attack

blade flapping angle
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blade pitch angle
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root of a characteristic equation
rotor advance ratio
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air density

period of oscillations

blade azimuth angle
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critical
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damping
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lift

representative, or initial
phase

reverse
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per second, specific, or shaft
thrust

tip

weight

azimuth

parallel
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rad or deg
rad or deg
rad or deg

rad or deg
N m/s or Ib-ft/s

hertz, Hz

kg/m® or slugs/ft®
s

rad or deg

rad/s
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Introduction
1. DEFINITION OF ROTARY-WING AIRCRAFT
1.1  General

From a strictly aerodynamic point-of-view, rotary-wing aircraft may be defined
as configurations which, at least during takeoff and landing maneuvers, derive their lifting
force directly from an open airscrew, or airscrews. These maneuvers may be performed
either vertically or with ground run.

The lifting airscrew of vertical takeoff and landing (VTOL) aircraft must be directly
powered. Some rotary-wing aircraft taking off and landing with a ground run—such as
helicopters and tilt-rotors operating at gross weights in excess of their hovering ability —
may also belong to the directly-powered group. However, there are other rotary-wing
configurations; for example, the autogiro where energy to the lifting airscrew is derived
indirectly through the motion of the vehicle as a whole with respect to the air mass.

In principle, all VTOL configurations, ranging from helicopters to rockets, possess
the ability to hover, but until now, VTOL aircraft extensively using hovering capabilities
in actual operations have been almost exclusively represented by helicopters because
of their (1) iow energy consumption per unit of generated static thrust, and (2) relatively
low downwash in the fully developed stipstream in hover.

The first of these characteristics enables the aircraft to operate for extended periods
of time in hovering and near-hovering conditions. The second contributes to the reduc-
tion of ground erosion, and also permits activities of ground personnel within the down-
wash covered areas.

The low energy consumption and relatively low downwash associated with static
thrust result from a low loading of the lift generators (thrust-per-unit-area of the lift gen-
erating surface). It is interesting to note that there has always been a strong intuitive asso-
ciation of rotary-wing aircratt with low disc loading which is reflected in the commonly
accepted name of rotor given to their lifting airscrews. In contrast, the word propeller
is considered more applicable for the higher loaded lifting and propelling airscrews used
in tilt-wing configurations.

One might argue that the airscrews of the tilt-rotor should also be called propellers
since, in a completely converted forward flight, they truly propel the aircraft, while the
lift is provided solely by the fixed wing. Nevertheless, the tilt-rotor airscrews are still
classified as rotors. It appears hence that low disc loading remains the main characteristic
separating the so-called rotary-wing aircraft from other possible configurations depending
on open airscrews for vertical lift generation during takeoffs and landings.

1.2 Disc Loading

In order to provide a more quantitative definition of rotary-wing rotor loading
limits, past and current trends on the level of disc loading are examined. A strict defini-
tion of this parameter would be w = T/A, where T is the thrust-per-rotor and A is the
rotor disc area. However, in the so-called helicopter type steady-flight condition, al! lift is
provided by the rotor(s). Thus the thrust is usually approximately equal to the gross
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weight of the aircraft: 7 = W and, unless stated otherwise, the disc loading is defined
as w = W/A where A is now the total disc area of all lifting rotors of the aircraft.

Although historically there is a continuous trend to increase the disc loading of
helicopters it can be seen from Fig 1.1 that its current value appears to level off at

= 50 kG/m* (w = 10 psf) for medium and heavy gross-weight machines, while the
value of the lighter aircraft appears to be much lower.

There are only a few inputs from tilt-rotor aircraft actually flown or being de-
veloped, but they seem to indicate w = 70 kG/m* (w = 14 psf) as the upper limit of the
disc loading. However, this trend reflects only relatively small aircraft, while for larger
machines, as in the case of helicopters, w may increase with gross weight. In view of this
and from additional design studies of large aircraft, it appears that w = 700 kGIm?
(w &= 20 psf) can be assumed as the upper limit for the tilt-rotor concept.
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Figure 1.1 Trends in disc loading of rotary-wing aircraft
2. ENERGY CONSUMPTION OF ROTARY-WING AIRCRAFT

2.1 Hover

Of all static-thrust generators, whether air dependent or air independent,such as
rockets, the rotors of rotary-wing aircraft during hover operate at the lowest loading of
the thrust-generating area. Consequently, of the whole family of actual and potential
VTOL aircraft, rotary wings represent the lowest level of energy consumption required
for static thrust.

Specific impulse {/;) is used to provide a comprehensive comparative scale for this
energy consumption:

I, = T/We (1.1)

4
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where T is the thrust in kilograms (Ib), and W; is the rate of fuel consumption (kG/s, or

Ib/s). Specific impulse hence can be interpreted as the hypothetical time in seconds

that a given thrust generator could operate by consuming the amount of fuel having a

weight equal to the generated thrust. For VTOL configurations, this thrust can be as-

sumed as equal to the gross weight for which W; is determined. Denoting the thrust spe-

cific fuel consumption per unit of force in one second as (tsfc);, the expression for
specific impulse can be rewritten as follows:

Iy = 1/(tsfc);. . (1.1a)

In Fig 1.2, specific impuise for air-dependent generators is shown for the static
condition while the /; of rockets, of course, is independent of the state of motion of the
vehicle. The various concepts extend along the abcissa axis in the order of their increasing
thrust-generating area loading. It should be noted that this ranking is synonymous with
the increasing fully-developed downwash velocity (v“).
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Figure 1.2 Specific impulse of various thrust generators

This figure also shows that rotary-wing aircraft with a static specific impulse of over
70 000 seconds vs a few hundred seconds for chemical rockets represent the concepts
most suitable for operations where long times in hover and near-hovering conditions
are required. The additional operational advantage of a low fully-developed downwash
velocity v_ is also quite apparent; e.g., v, < 30 m/s (< 100 fps) for helicopters, versus
v, > 2400 mfs (> 8000 fps) for chemical rockets.

5
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2.2 Cruise

In order to provide a yardstick for a quantitative comparison of various modes
of transportation regarding energy consumption in horizontal translation, a concept
similar to that of the specific impulse is proposed. It will be called the specific distance
(D;) representing a hypothetical distance in km (n.mi) that a vehicle could travel if the
weight of fuel consumed were equal to the gross weight (W). When the so-called specific
range (R, = distance traveled using one unit of the fuel weight; say, km/kG) is known,
D; can be expressed as follows:

D, = R,W. (1.2)

It is obvious that the specific range and hence, the specific distance, depends on
the speed of motion. For bouyant water vessels, as well as airships and wheel-supported
ground vehicles, the R; and D; increase as motion speed decreases; while for aircraft
(both rotary and fixed-wing), there are combinations of flight speed and altitude which
maximize R; and D;.

Specific distances for helicopters, tilt-rotors in the airplane mode of flight, auto-
mobiles, and dirigibles are shown in Fig 1.3 as a function of speed while for other fixed-
wing aircraft, D; values are indicated at their optimum cruise speed and flight-altitude
combinations,
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Figure 1.3 Specific distance of various vehicles

From Fig 1.3 and other studies', it can be seen that in contrast to hovering, the
helicopter in cruise shows much higher energy consumption levels per unit of gross weight
and unit of distance traveled than other means of air and ground transportation, However,
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this does not preclude the possibility that under actual operating conditions (due to less
wasted time in terminal operations or more direct routes), even the helicopters now in
operation (1960 technology) may become competititive with other vehicles as far as
energy per passenger kilometer is concerned®. Furthermore, large strides toward improve-
ment in helicopter energy consumption in cruise appear possible2-3,

Another representative of rotary-wing aircraft; namely, the tilt-rotor, is in a much
better position as far as cruise energy is concerned.

3. FUNDAMENTAL DYNAMIC PROBLEMS OF THE ROTOR
3.1  Asymmetry of Flow

Most of the dynamic and many of the aerodynamic problems of rotary-wing
aircraft stem from the fact that an inplane velocity component (VIl) appears in all non-
axial translatory motions of a rotor. Let us assume that the velocity vector (Fig 1.4)
representing the distant incoming flow (—V = velocity of flight with an opposite sign)
forms an angle -ay with the rotor plane (positive when the incoming flow has a com-
ponent in the thrust direction). Then the component—either inplane or paraliel to the
disc—can be expressed as

VI = Vcos ag. (1.3)
AIRCRAPT
PITCHING
AXIS
1
THRUST < OR {“
~ ”~ <
\\ 7/ o ” ADVANCING
~v SPEED OF \\\ / AT b
[ -
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\ 4 / 81DE
(s) SIDE VIEW \ ~o 7
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Figure 1.4 Inplane velocities of a rotor in nonaxial translation

In hovering and axial translation, every blade element experiences the velocity
of the incoming flow which is solely a function of the radial location given by radius
of that element. However, the presence of the inplane component V|| destroys the axial
symmetry and now the air velocity encountered by the blade element is not only a
function of r, but also of the blade azimuth position () measured in the direction of
rotor rotation from the downwind blade position (Fig 1.4b).

In order to have a quantitative measure of the amount of asymmetry caused by the
inplane component, the concept of advance ratio (u) was introduced and defined as
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u = VI/RQ (1.4)

where RSY = V, is the tip speed of the rotor.

3.2 Asymmetry of Blade Loads

Relying on an analogy with the fixed wings, one may anticipate that from the
point-of-view of lift generation by a blade element located at station 7 = r/R, the most
important air velocity component of the inplane velocity VIi would be that which is
perpendicular to the blade axis (U17):

UL, = Viisiny + V7
or (1.5)
Ul = Velusiny + F).

it is clear from Eq (1.5) that every element of the blade experiences a sinusoidal
perturbation of its air velocity component perpendicular to the axis. As a result of this,
the Ul 7 values on the advancing side will be higher than on the retreating side. Further-
more, the level of these differences would depend on the magnitude of the advance ratio
u. It should also be noted that on the retreating side there is a circle of diameter d, = uR
where the blade encounters air flow from the trailing edge. This region is called the
reversed velocity area.

The above somewhat cursory analysis should indicate that with u > 0, the advancing
side of the rotor may produce a higher lift than the retreating one. For a blade rigidly
attached to the hub, this would produce a rolling moment which, in principle, can be
neutralized for the aircraft as a whole by pairing equally sized rotors rotating in opposite
directions. Such pairing can be visualized through coaxial, side-by<ide, tandems, or some

- other configuration.

However, as long as an unbalanced rolling moment exists within the rotor itself,
a corresponding bending moment (usually very high) at the blade root and rotor shaft
would also be present.

Proper aerodynamic countermeasures should be applied in order to diminish or
completely eliminate the moment unbalance resulting from the presence of the rotor
inplane component of the distant flow. In this respect, two solutions come to mind:
(1) variation of the blade angle-of-attack in such a manner that the influence of the u
sin ¥ term in Eq (1.5) is nullified; and (2) application of other aerodynamic means of
lift management such as circulation control through blowing and/or suction, flaps, and
spoilers. All of these potential means of lift control should be activated in such a way
that the effect sought in (1) is achieved.

The u sin Y term is of the first-harmonic type with respect to the rotor rotation
about its axis; hence, the countermeasures aimed at the elimination {or decrease) of
the influence of this term should also be of the first-harmonic character.

3.3 Flapping Hinge

A practical solution to problems stemming from the asymmetry of flow was achieved
by de la Cierva through the introduction of the flapping hinge in his autogiro in 1923,

8
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This was done after an accident resulting from an uncontrolled roll in an earlier model
having ‘'rigid" blades.

Incorporation of the flapping hinge eliminated any possibility of transferring
the blade bending moment to the hub. At the same time, it gave the blade the freedom
to flap about the hinge. It will be shown later that this flapping motion has an aero-
dynamic effect equivalent to a reduction of the blade angle-of-attack on the advancing
side, and an increase on the retreating one. It is understandable that the additional degree
of freedom given to the blade led to a strong interaction between dynamic and aero-
dynamic effects.

More recently, schemes of controlling the rolling moment through circulation
control have been proposed by Yuan*, Cheesemen®, Dorand®, and Williams’. However,
our attention will be focused on the de la Cierva blade articulation approach, as it repre-
sents the most widely used scheme of dealing with the azimuthal blade lift perturbations
resulting from the inplane velocity. It should be emphasized that the introduction of
blade articulation was probably the most important contribution to the development of
practical rotary-wing aircraft.

For the sake of simplicity, it is assumed that the flapping hinge is located on the
rotor axis, and that it is perpendicular to that axis (Fig 1.5).

Neglecting the possible effects of rotor generated vortices in the proximity of the
blades, it may be stated that in hovering or axial translation, velocities experienced by
a rotor blade and hence, the aerodynamic loadings, remain constant with the azimuth
angle. In addition to the aerodynamic lift per blade (L,) which is approximately equal
to thrust per blade (7,), there are two other forces acting in the plane passing through
the rotor and blade axis: the centrifugal force, CF; and the weight of the blade, Wp.
Because of the freedom of motion around the flapping hinge, the blade may deflect from
the rotor plane (plane perpendicular to the shaft and passing through the hub center)
and start to move along a conical surface. The angle that the generatrice—in this case,
the blade axis—forms with the rotor plane is called the coning angle (8,; up positive),
and its value can be determined from the moment equilibrium conditions around the
flapping hinge (Fig 1.5):

Lpry — CFsinBoroe — WyrycosfBo = 0 (1.6)
or, under the small-angle assumption,
LbrL - CFﬁofCF - waw = 0. (].63)

Once the lift and mass distribution along the blade and the rotor tip speed (V)
are known, it becomes easy to find the corresponding coning angle. The following simpli-
fying assumptions are made to illustrate this process: (a) the mass per unit of blade span
() is constant; ie, M,(r) = const and hence, ro g = (2/3)R; (b) the weight of the blade
is small in comparison with the aerodynamic lift (thrust) per blade, W, € L,; and (c) the
lift distribution along the blade is parabolic, r; = (3/4)R. Under these assumptions, Eq
(16a) would yield the following solution:

Bo = (9/8)(Ly/CF) = (9/4)(RLyIm, V,?) (1.7)
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Lp =Ty
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Figure 1.5 Articulated blade with flapping hinge only

where mp, = R is the blade mass.

The physical and design significance of the above equations is quite obvious:
even if the L,/m, ratio and tip speed remain the same for both large and small radii
blades, the coning angle value would be higher for the blade of a larger radius. Large
coning angles (8, > 9°) are not desirable because of aerodynamic interference in for-
ward flight. They may also introduce control errors. For this reason, relative shifting of
the blade mass center toward the tip is required for large diameter rotors to remedy the
tendency of B, to grow with radius (R).

4, BLADE FLAPPING MOTION

Introduction of the freedom-to-flap leads to an important question—Will the
motion of the biade about the flapping hinge be stable? Both static and dynamic stability
should be considered in answering this question.

4.1 Static Stability

in order to examine the static stability of the blade, we will assume that the biade
is displaced up from its position of equilibrium at an angle B, through an angle dB (Fig
1.6). This displacement will affect only the magnitude of the component of centrifugal
force perpendicular to the blade. Under the small-angle assumption, a new value of the
moment about the flapping hinge, due to the CF component perpendicular to the blade
(CF 1) will generally be

Mcg) + dMop) = —(CFree(Bs + dB) (1.8)
10
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but
—(CFlrceBo = Mcry

and consequently,

dMCFl = —(CF)fCFdﬁ
“or (1.9)
dMepi/dB = —(CF)reg. '

Figure 1.6 Displacement of a blade from its position of equilibrium

From Eq (1.9) it can be seen that the blade is statically stable since dMpz)/d B
is negative. This means that when the blade is displaced from its position of equilibrium,
a restoring moment is generated—tending to return the blade to its original location.

4.2 Dynamic Stability

Knowing that the blade possesses static stability, the remaining question is whether
the blade flapping motion is dynamically stable; i.e., whether the displaced blade will con-
verge in time to its original position of equilibrium.

Prior to answering this question, some new geometric and aerodynamic aspects
must be considered. The geometry of a blade element can usually be described by the
following three characteristics: (1) relative blade station, 7 = r/R, giving the position of
the considered element along the blade span, (2) shape of the airfoil and position of the
zero-ift chordline, and (3) orientation of the airfoil with respect to the rotor plane as
determined by the local pitch angle 6 which represents the angle between the zero-lift
blade chord and the rotor plane {Fig 1.7b).

Depending on the distribution of 6 along the radius, the biade may be either
flat, 65(F) = const; or it may be twisted, 6+(F) # const.

It should be noted that the pitch angles of all stations can be varied simultaneously
by rotating the blade as a whole about the socalled pitch axis through an increment A6 .

11



Figure 1.7 Notations

This action is called feathering.

For the sake of simplicity, we are considering hovering conditions; therefore, the
only “distant’’ flow experienced by the blade element is that due to the rotor angular
velocity (§2) about its axis. The velocity vector of this flow is either in, or parallel to,
the rotor plane and for an element located at 7, would amount to Ur = —r§2 = —7V,.
Under steady-state conditions, the angle of incidence (i;') that a blade element makes
with U5 is equal to its geometric pitch angle /=67

Returning to the subject of dynamic stability, we will assume—as in the case of
static—that the blade has been displaced up from its position of equilibrium at the coning
angle B, to a new position at an angle g (Fig 1.7a).

When released from its forced position at f, the statically stable blade will begin to
move down (toward f,) at an angular velocity ; —(df/dt) = - B. .

It should also be noted (Fig 1.7b) that with the appearance of — f3, the angles of
incidence at all blade stations will increase. At any relative station 7 = r/R, the increment
Aj7, under small-angle assumptions, will be:

Ri{dB/dt dp/dt 3
Ak = _—%,EFLJ = — .%_ = —f/S. (1.10)

Since A/ is independent of 7in Eq (1.10), all blade stations will experience the same
change in their angle-of-incidence as they would by feathering through an angle A6.
In other words, from an aerodynamic point-of-view, it has been shown that flapping is
equivalent to feathering. (A 6, due to blade rotation about the pitching axis = Al due to
flapping.) This means that A/ as given by Eq (1.10) would cause exactly the same change
in aerodynamic forces and moments acting on the blade as blade pitching (feathering)
through an angle Af,.

As to dynamic stability, it is important to recognize that down-flapping increases
the blade incidence, since A/ will be positive just as df/dt is negative. Consequently, as
long as the blade is operating below its stall limits, down-flapping would result in an
increase in the lift (thrust) per blade. Furthermore, these forces and the flapping velocity
are of opposite signs; hence, the resulting additional aerodynamic moment about the
flapping hinges will oppose the blade flapping motion; i.e., damping will be provided.

Knowing the slope 37,/36,l4,,. {in N per radian) in the vicinity of the considered
pitch ange (6%), assuming that ar,,/ae°|9°‘ = const, and taking advantage of Eq (1.10),
the aerodynamic damping moment encountered by a flapping blade can be expressed as
follows:

12
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Maamp = rr@T6/300)lg, I (1.11)

or calling rp (975/36,)lg, (7/€2) =« the damping coefficient, Eq (1.11) becomes
<

Mdamp = —«kf.

Similar to the case of static stability (Eq {1.8)), the restoring moment (tending
to bring the blade to its original position) can be expressed as follows:

Mres = —(CF)roef (1.12)
or recognizing that (CF)rop = k represents the “spring” constant, Eq (1.12) becomes
Mpes = —kB. (1.12a)

Now, the equation of motion of the flapping blade can be written as
I+ kB +k=0 (1.13)

where /4 is the blade moment of inertia about the flapping hinge.
Eq (1.13) has the same form as the well-known equation of linear motion of a
mass point with elastic restraint and damping. Its general solution (p. 130 of Ref 8) is:

B = AeMt 4 gelat (1.14)
where Ay and A, are the roots of the characteristic equation
IR 4+ kA + k=0 (1.15)
These roots are:
~{k/21s) + (k/2h)? — (k]1;)
and (1.16)
Ny = —w/2t5) = /21 — (kily).

The sign of the under-the-root expression govern the character of motion which, in
turn, depends on the sign of the following quantity:

A

k® — 4kl,
or, rewriting the above in explicit form, it becomes
rr1(37p/885)lg_(1/2))* — 4(CF)rcely . (1.17)

In practical designs, the first term in this expression is usually much smalier than
the second one: «? =~ 0.032(4kl,).

This means that in general, both square roots in Eq (1.16) are imaginary and thus,
blade oscillations about the flapping hinge will be periodic. The solution of Eq (1.13)
containing real quantities only is written in order to find the period of oscillations (7
in seconds):

13
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B = CEM2I8T cos [\k]1g) — (K2 [414)t] + DE 210 i (\Sk]I) — (k2] 417 )t]
(1.18)

where C and D are two constants to be determined from the boundary conditions.
The period, in seconds, of the damped oscillations expressed by Eq (1.18) will be:

1
=2 Ty = (i)

and the frequency (in hertz) is v=1/1,
it can be seen from Eq (1.19) that when the damping factor becomes x = W,
T+ eo; in other words, the motion becomes non-oscillatory, of the pure subsidence type.
The above k value is called critical damping (k). Forx <k, the general char-
acter of an oscillatory motion will be of the type shown in Fig 1.8,

(1.19)

'Yy
-
~
\\
T—
A1 \\\
—
—~ -
“‘
l A _ t
[ ) .
_——’.-—_
o— —
———
”
—
/”
//
-
-
g | 4 L

Figure 1.8 Character of the periodic damped motion

The rapidity of convergence can be measured by the ratio of two consecutive
amplitudes (say, Ap/A,):

Aglh, = a2+ 1)fg(Ki21)t o g(ki2igT (1.20)

In order to get some idea regarding the period and decay of the amplitude of an
oscillating biade, the ratios appearing under the square root in Eq {1.19) will be examined.

k/l, = [(112MRQA)2/3)RIN1/3MR? = Q2. (1.21)

It can be seen from Egs (1.19) and (1.21) that when there is no damping (x = 0),
the period of oscillation is exactly equal to the time of one revolution (1, = 27/ ; or
7582 = 27). This means that the frequency of oscillations is equal to one per revolution.

The ratio of the period of oscillation with damping to that without damping
{r/r,} can be obtained from Eq (1.19):

14



Introduction

/1o = 1N 1 — (K*/4k1S). (1.22)

But the x’/4kl, has already been examined and assuming typical values, was found
to be k2 /4kl, = 0.032. It appears, hence, that for practical design rotors, it is permissible
to neglect the influence of damping and to assume that

TR 7, =21/Q.

Some insight regarding consecutive amplitude ratios can be obtained by examining
the expression k/2/, appearing in the exponent of €in Eq {1.20). Noting that T, = w,Rc
where w, is the blade loading, the derivative expressing blade-thrust versus collective-
pitch variations can be expressed as

3T,/200lg, = @wp/30,lg, )Re.

Assuming that the blade mass is uniformly distributed along its axis, the blade moment of
inertia about the flapping hinge becomes (7/3}(Wb/g)R’, and the expression for k/2/,
can be written as follows:

k/21y = RrrRe(dwy/380)lg,, (1/9)1(213)(Wola)R?. (1.23)

in order to make the present investigation of dynamic stability more. universal,
the blade loading is nondimensionalized by dividing w,, by pV,2: W, = w,/oV,*. The
dwp/00, derivative can now be written as dw,/30, = (3W,/36,)pV,%. Remembering
that Wy = wpRe; where w;p is the blade structural weight-per-unit area, and QR = V,;
and further, assuming that 7y = 2/3, Eq (1.23) can now be expressed as

Kf2l; = [a(wb/pvtz)/aﬁolg%]gp Ve Iwgp. (1.24)

The character of the W, /06, = f(6,) variation is shown in Fig 1.9. It can be seen
that when 0,~ 0; 3W, /36, 0, also. This obviously means that for either completely or
amost completely unloaded rotors (8, = 0), the damping coefficient may become very
small or may even drop to zero. However, for typical operations, 8, 2 10°; and it may be
assumed that 0w, /00, = 0.65/rad. This quantity, when combined with typical values
encountered in practice: namely, V, = 200 m/s (= 650 fps), w,p = 30 kG/m?* (= 6 psf},
andp=p = 123 kg/m?® (0.002378 slugs/cu.ft); would result in k/2/s = 5.3/s, and an
amplitude ratio of

AQ/A1 & 9—1‘13 = 0323

This means that each amplitude following another would only amount to approxi-
mately one-third that of the preceding one. Consequently, a blade having a flapping
hinge perpendicular to the rotor axis would rapidly converge to its original position after
having been displaced from its angle of equilibrium. In other words, it may be stated that
under normal operating conditions, the flapping motion of a rotor blade would exhibit
not only static, but also dynamic stability. This characteristic is one of the most im-
portant factors in making rotary-wing aircraft feasible.
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Figure 1.9 Character of the dwy/d 6, variation
4.3  Effect of Flapping Hinge Offset

All of the preceding considerations were performed under the assumption that the
flapping hinge passes through, and is perpendicular to, the rotor axis. For simpler design
solutions, as well as improved controllability due to the presence of the hub moment,
the flapping hinges of practical rotary-wing aircraft are often located with some offset
(usually a few percent) of the rotor radius 7 = ry/R, where ry is the radius determining
the location of the flapping hinge (Fig 1.9). As before, it will be assumed that (1) the
flapping hinge is perpendicular to a radial plane passing through the rotor axis, (2} the
blade mass (m}) is uniformly distributed along the blade so thatmy = RWy/g where W,
is the blade weight per unit span, and g is the acceleration of gravity, and (3) the blade
is completely rigid.

d(CF)

Figure 1.10 Offset flapping hinge
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The question is, What effect would the hinge offset have on the flapping frequency
of the blade which, for an undamped blade with the flapping hinge at the rotor axis,
amounts to one-per-revolution?

To investigate this problem alone, the damping term can be neglected, and the
equation of the blade motion around its flapping hinge can be written as follows:

I8 + Mg = 0 (1.25)

where Mo, is the restoring moment about the flapping hinge. Keeping Eq (1.2a) in
mind, Eq {1.25) can be rewritten as

I8 + kB =0. (1.25a)

In Egs (1.25) and (1.25a), /; is the blade moment of inertia about the flapping
hinge which can now be expressed as

1
ty = [ (olg)Rark? (1= = (113)(Wala)R(1 . (1.26)
n
The restoring moment M 4, appearing in Eq {1.25) can be written as follows:
1
M res =/(Wb/9)R’Q’f(f—n)RBdf = (1/6)Wp/g)R*Q*(1 —n)* (m+2)8.  (1.27)
n

Comparing Eqs (1.25) and (1.25a) with Eq (1.27), one would find that the spring
constant & can be expressed as

k = (1/6)(Wp/g)R*Q*(1 —n)* (n+ 2). (1.28)

For the type of equation represented by Eq (1.25a), the natural frequency of
harmonic motion® can be expressed as

w? = (2m)? = AT, (1.29)

Substituting the # value from Eq (1.28) and the /; value from Eq (1.26) into Eq
(1.29), the blade natural frequency referred to one revolution becomes

(i) = (/) = VeI = i+ 2720 —n). (1.30)
In view of the fact that usually, n < 7, Eq (1.30) can be simplified:
vin =11+ 2)1 7 +n+0>+.) =V1+2/2n = 1+(3/4)n. (1.31)

Values of the first natural flapping frequency for blades with an offset flapping
hinge as given by the exact (Eq (1.30}), and an approximate (Eq (1.31}) formulae are
shown in Fig 1.11.

Two things can be noted from the equations and figures: (1) flapping frequency
increases with the flapping hinge offset, and (2) Eq (1.31) provides an acceptable approxi-
mation for the offset values of n < 0.08 usually encountered in practice for articu-
lated rotors.
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Figure 1.11 Effect of flapping hinge on blade flapping frequency

The so-called hingeless rotors exhibit various degrees of rigidity as far as blade
flapping deformation is concerned. This, combined with the action of the centrifugal
acceleration on the blade mass particles leads to flapping frequencies higher than one
per rev, (v/n > 1.0). For most hingeless rotors, this ratio would probably not exceed the
v/n = 1.1 value. However, in truly “rigid" blades such as the counter-rotating rotors of
the ABC type, values as high as ¥/n = 1.4 may be encountered (see p. 39).

Since the value of the flapping frequency ratio of a hinged blade depends on the
magnitude of hinge offset, one often encounters the flapping rigidity of hingeless blades
expressed in terms of the equivalent or virtual flapping hinge offset. For example, it may
be stated that a hingeless blade having a first natural frequency of v/n = 1.08 represents
an equivalent flapping hinge offset of 10 percent, since an articulated blade with the
actual flapping hinge located at 10 percent of radius would have the same ¥/n value (Fig
1.11). This approach is convenient for such estimates as an immediate assessment of the
control power through the hub moments which are proportional to the flapping hinge
offset.

Aithough the role of flapping hinge offsets, both actual and equivalent, may be
neglected in most performance tasks, it has been considered in some detail because prob-
lems related to the hinge offset are constantly encountered in such fields as control and
trim analysis. For a more detailed discussion on this subject, the reader is referred to
Chs 2 and 3 of Vol Il.

5.  ROTOR CONTROL
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5.1 Rotor Thrust Inclination through Cyclic Control in Hover

In Sect 4.2 it was shown that the blade motion about the flapping hinge of a
rotating rotor can be interpreted as a free oscillatory motion with damping. If, however,
an extemal periodically varying moment is applied, the motion would then become
forced oscillation. In the case of a rotor, it is evident that such an extemal moment
can be generated through a forced variation of the blade thrust. It was also mentioned
that this could be done by such means as flap deflection and circulation control through
blowing or suction. At present, however, the most common way of varying the blade
thrust around the azimuth is through feathering—a periodic change of the blade pitch
angle 8, as a whole. This variation of 8, with azimuth must be periodic and conse-
quently, can be expanded into a Fourier series containing any number of harmonics
(n = 1). However, in practice, control inputs in all regimes of flight and especially in
hover are usually of first harmonic character:

ao\p =6, — 0,cos (W - vy) (1.32)

where 84 is the maximum deviation of the blade collective pitch angle from its nominal
(average) value (6,), and Y; represents the azimuth angle at which this maximum devia-
tion occurs (Fig 1.12a)

In practice, the blade collective pitch variation given by Eq (1.32) is accomplished
through a relatively simple mechanical device called the swashplate, which was probably
first proposed by Yur'iev in 1911, This device consists of a circular track which, through
pilot-control inputs, can be arbitrarily inclined with respect to the plane perpendicular
to the rotor axis (Fig 1.12b).

AZIMUTH ANGLE
/-‘,-\\ < FOR MAXIMUM 8

(b)

Figure 1.12 Scheme of cyclic control
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The inner race of the swashplate is attached to the rotor shaft by means of a gimbal
joint. This is done in such a way that it remains stationary as far as rotation about the
rotor axis is concerned. in contrast, the outer race is driven at the rotational speed of the
rotor. Pitch links, connecting the outer race to the blade pitch arms, transmit the inclina-
tion of the swashplate into the variation of the blade pitch angle according to Eq (1.32).

Without going into the refinements of aerodynamic theories, it may be anticipated
that the first harmonic cyclic variation of the blade collective pitch would produce
corresponding cyclic changes in the thrust per blade which, of course, would mean that
the moment experienced by the blade about the flapping hinge would also vary cy-
clically. This would generate a forcing moment (M;) which would become a function
OfAeow = gow - 00; Mf=f(A80¢/)'

Simply to illustrate the problem, it will be assumed that Aeow reaches its maxi-
mum positive value at Y = 90°; hence, Mfw = Mpax SIn ¥ =M, sin S0t Under
this assumption, an analogy to the case of forced oscillation of a mass point with damping
can be noticed as the equation of motion of the blade becomes

I8 + kB + kB = My sin Q. (1.33)
The complete solution of Eq (1.33) is composed of the following terms:

(k — 1/23%)sin Qt — kQ cos Qt
(& —49%) + K302

B = AT + Belal 4+ m, (1.34)

The first two terms represent previously discussed free, dynamically stable oscilla-
tions that quickly decrease with time (transient motion). The third term describes a
simple harmonic motion with constant amplitude. It is clear, hence, that after a few
revolutions, the blade will be moving according to the third term of Eq (1 .34). The e
terms in this equation, can therefore be neglected and the equation can be rewritten
as follows:

M mex
e= Vik - I,.:Iz)2 Toa @ — ¥p) (1.35)

where the value of the phase lag angle ¥, is determined by the following relationship:

tan Y, = kQk — 1;,Q?). (1.36)

It can be seen from Eq (1.36) that when & =/,Q?, ¥, =90°.
For a blade with its non-offset flapping hinge located perpendicular to the rotor
axis and having a constant axial mass distribution, m(r) = const,

k = (CF)RFop = (1/2JMRSI*(2/3)R = 1,02,

Consequently, the phase lag angle for this blade will be 90°. This means that
when the first-harmonic pitch control is applied in such a way that its maximum value
occurs at ¥ = 90° (6,,,. 2t ¥ = 90°) and hence M ax S0 OCCUrs at ¥ = 90°%; B, .
will take place at ¥ = 780°-

As to the magnitude of f,,,, (Ref 8, p. 139), it can be shown that
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Brax = Msp, 40 /KS2 (1.37)
but
Mtnax = arb/aeolg%(AeomerT).

Substituting the k value appearing in Eq (1.11}into Eq (1.37), this equation is now
reduced to

Brex = Abop,,,- (1.37a)

Egs (1.35) and (1.37a) indicate that by applying a first-harmonic variation of the
cyclic pitch to a hovering rotor with flapping hinges (zero offset hinges perpendicular to
the rotor axis) a steady inclination of the tip-path plane can be obtained as long as the
control input remains the same. Furthermore, the maximum value of that angle-of-
inclination is equal to the maximum pitch control input (4 65, )- In this way, an
equivalence of blade feathering and flapping has once more been demonstrated.

It was also shown that for the zero-offset flapping hinges, the phase lag angle—
which is independent of damping—amounts to 90°. This means that the maximum
flapping angle of the blade occurs 90° later than the maximum blade pitch angle.

In order to get some idea regarding the influence of the blade natural frequency
and damping on the phase lag angle, Eq (1.36) is written as follows:

Kk
tan wp = [

—_— (1.38)
(kl1g) — Q]1¢

where k//; is the square of the frequency of the flapping blade with zero damping (see
Eq (1.19)) times 2m: \/k/I; = 27v. Substituting this value into Eq (1.38) and considering
that v = (v/n)n, Eq (1.38) becomes:

(11

tan = . 1.38a
Vo [(y/n)?(27n)* — Q%}4, ( )
Since 2nn = §2, Eq (1.38a) can now be rewritten as
K
tony, = ———— (1.38b)

P () - 119,

Eq (1.38b) clearly indicates that as the natural frequency »f the blade about its
flapping hinge becomes greater than one-per-revolution, as in the case of articulated
blades with flapping hinge offsets and hingeless rotors, the phase lag angle becomes less
than 90°. -

In order to more clearly indicate the influence of damping, a relative damping ratio
(k/Kgrie) can be introduced. This_is done by dividing both the numerator and denomi-
nator in Eq (1.38b) by ., 52\/7;1;=2I,Q. Now Eq {1.38b} becomes

2(k/Ke rie)

P — 71" (1.38¢)

tan wp =
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This relationship, illustrated in Fig 1.13, is reproduced from Gessow and Myers’.
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Figure 1.13 Effect of flapping frequency and damping on phase angle

5.2 Blade Flapping in Forward Flight

For simplicity, helicopter translations with an inplane velocity (Vil) will be called
forward flight. In Sect 3.1, Eq (1.5), it was shown that the velocity component perpen-
dicular to the blade (U/L) varies with the azimuth as as/n ¥ function. It was also pointed
out that because of blade thrust, the aerodynamic moment about the flapping hinge
(M;) may also vary with the azimuth in the same manner as the UL component. This, in
turn, would lead to a variation of the aerodynamic moment with ¥: M, =M (). Under
steady-state conditions, M, would change periodically in exactly the same way through
each revolution. Similar to the previously considered case, of cyclic control in hover, M,
may be regarded as a moment forcing the blade to oscillate about its flapping hinge. The
following equation describes this kind of motion:

I8 + kB + KB = Ml(¥). (1.39)

It may be expected that the steady-state solution of this equation is a harmonic
function of Y which can be expressed in terms of a Fourier series representing a sum of
simple harmonic motions. Stopping at the second harmonic, the solution would be

B =a, — a, cosy — b,siny — a,cos (2y) — b, sin(2y) (1.40)

where the following interpretation can be given to the coefficients g,, 94, 0,, b,, and b,:
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a, — represents the part of flapping independent of Y. This is the same as the coning
angle in hover (B,) when all cyclic inputs are zero: B, = d,,.

a, — the coefficient representing the amplitude of a pure, first-harmonic, cosine motion
and, according to the previously adopted sign convention, it describes the fore and aft
inclination of the rotor disc (tip-path plane) having a maximum elevation at y = 180° and
minimum elevation at ¥ = 0 (Fig 1.14).

-V
—

INCOMING
FLOW

Figure 1.14 Pure cosine motion — tip-path plane seen from the left

b, — coefficient representing the amplitude of a pure, first-harmonic, sine motion reach-
ing By at ¥ = 90°, and B, at ¥ = 270° (Fig 1.15).

Figure 1.15 Pure sine motion — tip-path plane seen from the rear

a, by, etc. — coefficients representing amplitudes of the higher harmonics. For instance,
when plotting the § =-a, cos (2y) motion vs ¥ (Fig 1.16), it can be seen that two max-
ima appear; one at ¥ = 90° and another at { = 270°. By the same token, two minima are
alsoopresent (¢ = 0° and Y = 180°), while zeroes are reached at ¥ =45°,135°,225°, and
315",

It is obvious that as additional harmonic terms are introduced into Eq (1.40),
the determination of the path of the blade tips becomes more accurate. However, for
purely performance considerations, the zero (a,) plus the two first-harmonic terms are
usually sufficient.
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Figure 1.16 Tip-path of a blade executing second harmonic cosine motion

Some insight into the order of magnitude of the flapping harmonic coefficients
encountered in practice can be obtained from the following flight measurements®:

6, =87;a, =6.1% b, = 39° a, = 0.5° and by = —0.1°,

Retaining only first-harmonic terms and making substitutions' ® — a, =B,,0, =B,
cos Y4, and b, =8, sin y, — Eq (1.40) may be rewritten as follows:

B =80~ By cos(y — ¥,). (1.41)

Eq (1.41) is identical to Eq (1.32) and clearly indicates that the tip-path plane is
inclined from the plane perpendicular to the shaft through an angle B,. It should also be
noted that the tip-path plane is perpendicular to an axis called the virtual axis of rotation.
This axis extends through the hub and lies in a plane which passes through the rotor axis
and makes an angle Y, with the ¥ =0 plane.

In general, Y, # O; therefore, the lowest point in flapping is not necessarily at the
down-wind, and the highest at the up-wind, position. Should M/(V/) be of the character
Me= Mg ox $in ¥ however, then the equation of motion (1.39) would be identical to
Eq (1.33) and thus, for the case of (¥/n) = 7, a 90° phase lag shift may be expected. In
the expression for § as given by Eq (1.41), this would mean that Y, = 0 and the blade
would experience maximum flapping angle at ¥ = 780° and minimum at v=0°.

Determination of the flapping coefficient requires an extensive knowledge of rotary-
wing aerodynamics. Consequently, only the details necessary for a better understanding
of the physical aspects is provided in the following discussion.

Assuming, for simplicity, that the resultant force representing blade thrust (Tp)
in both hover and forward flight remains at the same relative blade station 7, the thrust
moment about a non-offset flapping hinge would be

My = T,RFy. (1.42)
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If the blades are completely rigid, it may be anticipated that as a first approxi-
mation, 7p, as any other lift force, would vary proportionally to the square of the Ul
component experienced by the blade at station 5. This means that the thrust per blade
in hover (7p,,) would be proportional to Ul? :

Top, ~UL? = (V7 r)? (1.43)
while in forward flight,
Togg~ Uleg® = VEFr + wsiny)2. (1.44)

Combining Eqs (1.42), (1.43), and (1.44), imagining that the flapping hinges
are locked perpendicularly through the rotor axis, and assuming that the blades are rigid,
the ratio of blade thrust moment about the flapping hinge in forward flight (Meq) to
that in hovering (th) would exhibit the following proportionality: '

MipMr) ~ (1 + 2usin 9l7y) + (W sin® ¥)/r:?]. (1.45)

Omitting the last term in Eq (1.45) as being small (at least for u < 0.3) in compari-
son with the two preceding ones, Eq (1.45) can be rewritten as

MygiMp,)) ~ (1 + 2(usin Y/7 )], (1.45a)

From this equation and Fig 1.17, it may be assumed as a first approximation
that in translatory flight with an inplane velocity component (u > 0), an aerodynamic
forcing moment proportional to sin ¥ will be present. Furthermore, it can be seen from
Eq (1.45a) that its magnitude will also be proportional to u. Proportionality of the
forcing moment to sin ¥ makes the presently considered case analogous to that of the
thrust vector tilt in hover as discussed in Sect 5.1. Consequently, many of the conclusions

N

/
A S / /
(1} ) ~ —~—— ,/
0.3 N 7

Figure 1.17 Character of the aerodynamic forcing moment due to
the inplane velocity component
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reached at that time can readily be applied here. For instance, it becomes evident that
for flapping blades with zero offset [(¥/n) = 1.0], the phase angle in forward flight will
aso be Yp = 90°. In other words, maximum flapping will occur 90° after My, assumes
its maximum value. In the considered case, it will obviously mean that maximum eleva-
tion will take place at ¥ = 780° and its minimum (the largest negative), at ¥ =0. As to
the magnitude of the flapping motion determined by the value of the g, coefficient in
Eq (1.40), it may be anticipated that this quantity will be strongly influenced by the u
level (see Eq (1.45)).

The sideward tilt of the tip-path plane as reflected by the b, values in Eq (1.40)
may be explained as a consequence of coning: by = f(a,). Using an approach suggested
by Gessow and Myers®, the above dependence can be explained as follows: Without
coning, the influence of forward velocity on the flapping blade at v = 7180° will be the
same as at ¢ = 0° asshownin Fig 1.18a).

However, for the coned rotor, a difference in the angle-of-attack of the blade with-
in the leading (90° < ¥ < 270°) and the trailing (270° < ¥ < 450°) sectors may occur.

Figure 1.18 Velocity component due to coning

If we imagine that the blades are somehow restricted against flapping but retain
their coning angle a, = B,, additional forward velocity components at ¥ = 0° (-AV) and
v = 180° (AV) would be as shown in the upper part of Fig 1.18b.

A general expression for AV at all azimuth angles will be as follows:

AV =—VBycos ¥. (1.46)

It is clear from this equation that the influence of the angle-of-attack variation due
to coning will be first harmonic in character. This, in turn, would generate variation of
the aerodynamic moment of the same character. It may be expected hence, that a new
periodic motion of the blade will result. For the frequency ratio v/n = 1.0, it may be
expected that the phase lag angle will be about 90° or, in other words, the by sin ¥
should approximately describe the character of the flapping angle variation due to coning
angle effects.
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It should be noted, however, that in addition to coning which is usually the stron-
gest factor, there may be other causes for the cos ¥ variation of the blade aerodynamic
moment leading to lateral flapping.

There are many causes for the blade tip motions described by the higher flapping
harmonics represented in Eq (1.40) by the terms containing coefficients aq ba, .
For instance, existence of the reversed flow region and the presence of the sin® ¥ and
cos® ¥ terms may be one cause of the second harmonic excitations.

5.3 Control of the Thrust Vector Inclination

Control of the thrust vector inclination, both in hovering and forward flight, can be
accomplished through the following means:

1. Inclination of the rotor shaft whose axis in this case is identical to that of the
control axis (Fig 1.19a).
2. Inclination of the hub only, which would be equivalent to the displacement of the

control axis (Fig 1.19b).

3. Inclination of the swashplate which, again, is equivalent to the displacement of the
control axis (Fig 1.19¢).

Although only the tilt of the thrust vector through cyclic control inputs was dis-
cussed in Sect 5.1, it can be shown that in the absence of the inplane translatory velocity
component (i.e., when u = 0 as in hovering), any of the means of thrust tilt shown in Fig
1.19 would, after a brief transient period, lead to an alignment of the thrust vector with
the control axis. This means that the tip-path plane would then assume a position perpen-
dicular to the control axis.

|
.

V=0: SOUID LINES
V> 0: DASH LINES

SHAFT l AXIS

AXIS SHAFT

AXIS SHAFT  CONTROL
AXIS AXIS

(8) SHAFT INCLINATION (b) HUB INCLINATION () SWASHPLATE INCLINATION
Figure 1.19 Various means of tliting the thrust vector

However, when an inplane component of the distant flow appears (u > 0), flapping
would develop and the thrust vector will tilt (from its original position of alignment with
the control axis) in the direction of the inplane velocity component (dash lines in Fig
1.19). This means that the tip-path plane will no longer be perpendicular to the control
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axis. This phenomenon of deviation of the thrust vector from the control axis is impor-
tant when making a trim analysis of the whole aircraft.

Feathering which is presently achieved through mechanical inputs from a swash-
plate—either directly to the blade pitch arm or through a special flap, twisting the blade—
represents practically the only method used for controlling the rotor thrust tilt. It is
obvious that this type of control would permit one to tilt the rotor thrust vector to any
position in the ground frame of reference as needed for a desired flight condition.

In order to gain more insight and understanding of the physical relationship be-
tween feathering and flapping, the following elementary example is considered:

A simple flapping rotor with infinitely heavy blades (g, = 0) is operating in
forward flight. The control axis is vertical and the rotor disc is tilted upward
by g, as depicted in Fig 1.20a. As interpreted by Gessow and Myers® —* An
observer riding on the control axis and rotating with the blades observes
that the blades flap up and down with each revolution, but they are fixed
in pitch. At the same time, an observer who sits in the plane of the tips—
rotating with the blades—observes that the blades do not flap at all, but do
change their pitch—high, then low—once each revolution. The pitch is low
on the advancing side of the rotor and high on the retreating side. Exam-
ining Fig 1.20b, it is seen that the amount of blade feathering with respect
to the plane of the tips is equal in degrees to the amount of blade flapping
with respect to the control axis. Fore and aft {a4) flapping with respect to
the control axis is therefore equal to lateral (8,) feathering with respect
to the axis perpendicular to the plane of the ups. The control axis is the
axis of no feathering; the axis perpendicular to the plane of the tips is the
plane of no flapping (except for higher harmonics).”

v = 90°
/ ;
Y. L al®
P — e —— - -
‘ u {C
> >
TIPPATH PLANE
0
AXSSOF NO CONTAOL AXIS
ELAPPING (AXIS OF NO v =270°
FEATHERING)
(b)
/ WITH AESPECT TO WITH RESPECT TO
/ CONTROL AXIS TIPPATH PLANE
(a) A = FLAPPING FULLDOWN FEATHERING ZERO
8 - FLAPPING ZERO FEATHERING MAX. DOWN
C = ELAPPING FULL UP FEATHERING ZERO
D = FLAPPING ZERO FEATHERING MAX, UP

Figure 1.20 Flapping and feathering

From a practical point of view, one usually tries to use some clearly identifiable
line as a reference because of its physical or design significance. In helicopters, this line
is represented by the rotorshaft axis. For this reason, it is important to know how to
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calculate the position of the tip-path plane (to which thrust is assumed to be perpendicular)
with respect to the rotor-shaft axis.

Before establishing the necessary relationships, it should be recalled that there is
no feathering with respect to the control axis; i.e., the axis perpendicular to the swash-
plate plane. This becomes obvious when one realizes that the attachment points of the
pitch links and the blade pitch axis move in a plane parallel to the swashplate (Fig 1.20c).

As previously discussed, however, flapping may exist with respect to the control
axis, and its value was given by Eq (1.40) which, when limited to the first-harmonic
flapping terms, becomes :

B =a, — aycos Y — bysiny. (1.47)

Feathering motion with respect to the tip-path plane (also up to the first harmonics
only) is given by

6 = A, — Aycosy — Bysin . (1.48)

Denoting flapping and feathering motions with respect to the shaft by the sub-
script 5, the following relationships as shown in Fig (1.21)° are obtained:

Figure 1.21 Flapping and feathering with respect to the shaft axis

a=a — By, (1.49)
Ao = Ao, (1.50)
Go = G4 (1.51)

a, =ay + By, (1.52)

by = by, + Ay (1.53)
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where a represents the angle-of-attack (with respect to the distant flow V) of the plane
perpendicular to the control axis.

6. BLADE LAGGING MOTION

When looking at rotor configurations incorporating flapping hinges, one would
usually notice additional discrete hinges located approximately perpendicular to the
rotor plane. These hinges are called lag or drag hinges, and they permit the blade to
execute some motion in the rotor plane (Fig 1.22).

LAG

K FEATHERING
~ HINGE

FLAPPING
MINGE

Figure 1.22 Hub with flapping and lag hinges

In hingeless rotors, one can imagine that, similar to the flapping case, the inplane
flexibility would provide a virtual hinge for this type of motion. The need for a lag hinge,
or provision of inplane blade flexibility can be better appreciated in light of the following
consideration:

It can be shown (for instance on p.85, Ref 10) that the Coriolis (inplane) accelera-
tion (g;) experienced by a mass element located at a distance 7 from the shaft axis of a
blade rotating about the rotor axis with an angular velocity £, and having a flapping
angular velocity § when the blade is at an angle 8, will be

a = 2rQpp. (1.54)
Assuming a simple harmonic flapping motion, f may be expressed as
B =B — By cos (¥ — ¥,) (1.55)

where B, is the coning angle. In the present consideration, it is assumed that 8, = 0;
By is the maximum (absolute) value of the flapping angle; and ¥/, is the azimuth angle
corresponding to the maximum (down) value of 8. Expressing ¥ in terms of rotor rota-
tional velocity and time (¢ = ¢t), Eq (1.55) can be written as

B = B, — Bycos (2t — Yy). (1.55a)
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Consequently,
B = B, Qsin (Qr — ,); (1.55b)
and Eq (1.54) becomes
ae = —2r¥*B,? sin (St — Yq)cos (2t — Yy). (1.56)
However,
sin (S0t — Yq)cos (Qt — Yy) = %sin (22 — 2y,),
and

g = —rS¥B,? sin 2(Qt — Y,). (1.57)

It is clear from Eq (1.57) that g, varies as the second harmonic and thus reaches
its highest positive as well as its maximum negative value twice per each revolution. It is
obvious that without a lag hinge, the blade root could be subjected to a fatigue bending
moment—changing from + to — twice per revolution.

For a typical mediumsize helicopter (such as the hypothetical aircraft considered
in Vol 11} with R = 7.6m; = 30 rad/s; and 8, = 0.1 rad, the inplane Coriolis accelera-
tion experienced by the blade mass elements at r = 0.8R would amount to gz, ,. =
5.5g, where g is the acceleration of gravity.

Similar to the previous investigation of blade flapping stability, it can be shown
that a blade having the freedom to move around an offset lag hinge would exhibit static
stability. However, as far as dynamic stability is concerned, hinges perpendicular or
almost perpendicular to the plane of rotation would encounter much lower aerodynamic
damping. This is because the blade resistance to lagging would now be provided by drag
forces which, in general, arc much smaller than those associated with lift. Consequently,
special hydraulic or friction campers or other means of damping are usually installed (Fig
1.22).

Although the lag hinge and the associated inplane blade motion has a considerable
effect on the dynamic problems of rotary-wing aircraft (for example, ground and air
resonance), its importance from a purely performance point of view is very minor and
except for hub drag effects, its presence may be ignored.

7. CONFIGURATIONS

With general background information regarding rotary-wing aircraft as a group as
well as some exposure to dynamic problems particular to the rotor, the reader should be
in a position to recognize the significance of various approaches to design concepts of
rotors, types of control, and rotorcraft configurations.

7.1  Rotor Types

Main and tail rotors usually belong to one of the following types:

1. Fully-articulated—incorporating both flapping and iagging hinges (Figs 1.22
and 1.23a).

31



Theory

LaG XINGI
FLAP NIRCL

FLAPPING

{a) FULLY ARTICULATED (b) TEETERING

\ o

\ ALL THREE MINGES
AT ONE POINT

ROTOR
SHAFY

{c) HINGELESS (d) ELasTOMERIC

Figure 1.23 Principal types of rotor hubs'!

2. Teetering (Fig 1.23b)

3. Hingeless (Fig 1.23c).

A fourth type of blade suspension, represented by the elastomeric hub, is now
being developed (Fig 1.23d). In this scheme, freedom of flap, lag, and feathering motions
are concentrated into a single joint, thus assuring a limited spherical freedom of blade
movement. Of course, many other systems of blade attachments have either been, or are
being developed (for instance, bearingless and flex types).

From the point-ofview of flying qualities, aeroelastic, and vibration aspects, all
of the aforementioned hub configurations may exhibit different characteristics. Neverthe-
less, except for the parasite drag level, the aerodynamic treatment of their performance
problems may be identical for practical engineering purposes.

7.2 Types of Helicopter Control
Similar to fixed-wing aircraft, longitudinal, lateral, and directional controls are
also required in helicopters. However, because of the VTOL-type operations of helicopters,

a means of vertical control directly governing the height of rotary-wing aircraft within the
ground reference frame is also needed. Furthermore, the large reaction torques generated
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by the mechanically-driven lifting rotors must be counterbalanced in order to prevent an
undesirable rotation of the airframe. In multi-rotor configurations (e.g., coaxial, tandem,
and side-by=ide), this task is accomplished by pairing lifting rotors of equal size, but having
opposite directions of rotation. With few exceptions, the tail rotor—whether open or
enclosed—currently serves as a main-rotor torque-compensating device for pure helicopter
single-rotor designs. The control forces and moments in pure helicopters are usually gener-
ated entirely by the lifting and tail rotors, while the nonrotating empennage surfaces serve
principally as a means of trim,

Vertical control of helicopter configurations is almost always obtained through
a direct variation of thrust of the lifting rotor or rotors. The most common means of
accomplishing this goal is through a geometric simultaneous increase or decrease of the
pitch angle of all the blades in one rotor. This is called collective or zero-harmonic pitch
control. Other means of rotor thrust variation include circulation, or boundary-layer con-
trol of the flow around the blade airfoils. Variation of rotor rotational speed may, in prin-
ciple, also be used as a means of direct thrust control, but the slow response resulting
from the high rotational inertia of lifting rotors renders this approach impractical.

Longitudinal and lateral control of single-rotor and coaxial helicopters is usually
accomplished by tilting the thrust vector through a cyclic application of the first-harmonic
blade feathering from the swashplate. The resulting inclination of the thrust vector pro-
vides a horizontal component which pulls the rotorcraft in the desired direction while
the thrust moment about the aircraft c.g. rotates the helicopter in a pitching, rolling,
or coupled motion,

At this point, it should be noted that application of cyclic contro/ to rotors having
offset flapping hinges—either discrete or virtual—generates a hub moment in addition to
that resulting from thrust-vector tilt.

In the scheme shown in Fig 1.24, it is assumed that the flapping hinge is located at
a distance r¢, = R and the blades execute a flapping motion as given in Eq (1.41).

(cFeosBy,,)sinBy +n '

{cFcasBy,)sinBy,

Figure 1.24 Scheme of hub-moment generation

The centrifugal force component (CF cos B) acting along the blade can, in tum,
be resolved into two forces at the flapping hinge; one, perpendicular (CFL = CF cos f sin 8)
and the other parallel (CFIl = CF cos® 8), to the hub plane. The CFL component will
reach its maximum value when the blade attains ¢ = Jy; + 7, and its lowest level when
the blade is at = Y.

33



Theory

Taking Eq (1.41) into consideration, and accepting small angle assumptions, the
moment generated at azimuth angle ¥ by the CF L of a single blade having an offset
{n) flapping hinge will be

M'W/ = NR(CF)[Bo cos (¥ — Y1) — By cos* (Y — y,)]. (1.58)
Eq (1.58) can be averaged over one revolution as follows
W'¢1=217
My =WRCE)2n) [ [Bocos (¥ —v,) =B, cos® (v = v,)]av
W—Wﬁo
which becomes
an = Y% BnR(CF) (1.59)
and for all & blades
My = % bB,R(CF). (1.60)

With respect to the CF || components, it can be seen that under the small angle
assumption (cos § = 1), their contributions will mutually cancel out within one revolu-
tion. It may be stated hence that on the strength of Eq (1.60), the hub moment generated
by offset flapping hinges is equal to a product of the half amplitude of the flapping
angle, offset of the flapping hinge, number of blades, and magnitude of the blade cen-
trifugal force.

Longitudingl control of the side-by-side configuration would be obtained in the
same way as for the single-rotor helicopter.

Longitudina control of tandems can be best acheived through a differential varia-
tion of the magnitude of the rotor thrust. This may be accompanied by some tilt of the
thrust vectors with respect to the rotor shaft. The first of these objectives is reached
through the application of the differential collective pitch control while for the second,
cyclic control inputs are used as in the single-rotor case.

Lateral control of the side-by-side configuration is usually obtained in exactly the
same way as longitudinal control of the tandem; i.e., through differential collective pitch
which again, may. be combined with cyclic control inputs.

Lateral control of tandems is usually accomplished in the same way as for the
single-rotor types; i.e., through cyclic control.

Directional control of the single-rotor helicopter is most often obtained from the
tail-rotor thrust variation resulting from collective pitch inputs to the tail-rotor blades.

Directional control of coaxial types is commonly based on changing the torque
distribution between the rotors. This is usually done through differential variation of the
collective pitch of the upper and tower rotors. Other means of disturbing the torque equi-
librium between the rotors can also be used; for instance, by actuating the spoilers which
would cause an increase in the blade drag while the lift remains constant.

Directional control of the side-by-side configurations and tanderns is usually achieved
through differential inclination of the lifting-rotor thrust vectors. This is accomplished
by proper cyclic control inputs.
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It should be realized that—similar to the case of the previously discussed vertical
control—inclination of the rotor thrust can be achieved by means other than directly
governing the periodic variation of the blade pitch angle through swashplate inputs.
First-harmonic airfoil circulation control through blowing or boundary layer control
through blowing or suction can lead to the same results. There are other examples of cyclic
variation of the blage tnrust. Use of a servo-flap, located some distance peninu tne vidue

trailing edge, and twisting the torsionally soft blade is one of them (Kaman).
’ The most common types of helicopter controls are summarized in Table I-1.

Higher harmonics and other controls. In addition to the zero and first-harmonic
blade-lift variation generally used for control of the helicopter as a whole, the blade lift
may be varied according to higher harmonics. Such controls are primarily intended for
such special purposes as vibration suppression, alleviation of structural loads, and im-
provements in rotor aerodynamic characteristics' 2.

An extreme in rotor control freedom is represented by active feedback control.
Here, as indicated by Kretz' 2, an uncoupled bladedift variation replaces the mutually
dependent monocyclic control generated by the swashplate. Both theoretical and experi-
mental studies indicate that this concept, called the feedback rotor, should contribute
to the extension of the rotor flight envelope to high advance ratios (u = 1.0) by elimi-
nating instabilities occurring in the high u regime of flight. To accomplish this goal,
information about the blade-flapping angle and blade stall conditions is fed into a closed-
loop system (incorporating on-board computers) which commands the blade pitch angle
through fast-response, hydroelectric actuators.

At this point it should be noted that because of the elevated frequencies of blade
feathering oscillations associated with higher harmonics, as well as the short response
time required in feedback rotors, a high angular acceleration about the pitch axis may be
encountered. This in turn would necessitate fast-reacting actuators capable of developing
high forces. To avoid the weight and power penalties which would result, designers must
look for other means of varying blade lift (e.g., circulation control and flaps) which
would not require high angular acceleration of components (blades) having large polar
moments of inertia.

7.3 Conventional Helicopter

Basic rotor theories and their application to performance are limited in this volume
to conventional helicopters. They may be defined as rotorcraft having a main rotor disc
loading of w & 50 kG/m?*, while propulsion, as well as most of the lift in all regimes of
flight is provided by a subsonic rotor, or rotors. Configurations incorporating auxiliary
forms of propulsive thrust are not considered here. However, rotor thrust augmentation
through auxiliary wings is discussed in Vol I1.

The most commonly known configurations conforming to the above definition of
conventional helicopters are described below.

The mechanically-driven, single-rotor helicopter, at present, represents the most
widely used configuration and thus, may be considered as the classical representative of
conventional helicopters. This type covers a considerable range of gross weights—from
small single-seaters of less than 450 kG (=1000 Ib) gross weight (Fig 1.25), to the crane
type having a gross weight approaching 45 000 kG (=100 000 1b) (Fig 1.26).
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Figure 1.25 Small mechanically-driven, single-rotor helicopter
in ground trainer configuration
(Del-Mar Engineering DH-2A — W = 295 kG)

Figure 1.26 Large mechanically-driven, single-rotor helicopter
(MIL MI-10 — W== 47 000 kG)

All of these configurations incorporate tail rotors with special aerodynamic prob-
lems of their own.

Main rotors usually consist of one of the following types: fully-articulated, incor-
porating both flapping and lagging hinges (Fig 1.23a); teetering (Fig 1.23b); hingeless
(Fig 1.23c), or elastomeric (Fig 1.23d).

Tandem. The tandem is the second most widely used configuration of the con-
ventional helicopters. At present, it appears that this application is more and more
directed toward helicopters of higher gross weights ranging from W = 8600 kG (19 000
1b) for the light transports (Fig 1.27) to W = 60 000 kG (130 000 Ib) as represented by
the new class of projected heavy-lift helicopters (Fig 1.28).
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Figure 1.27 Light transport helicopter
(Boeing Vertol 107-11 — W = 8600 kG)

Figure 1.28 Artist’s concept of XCH-62 heavy-lift tandem helicopter
(W = 60 000 kG)

As indicated in Table |-1, mutual cancellation of the rotor torques eliminates the
need for a tail rotor, and yaw control is usually obtained by differential lateral inclina-
tion of the fore and aft rotor thrust vectors through the application of proper cyclic
control. Although the horizontal thrust components required for forward translation of
the helicopter are chiefly obtained by rotating the aircraft about its c.g. through differ-
ential thrust of the front and rear rotors, an additional horizontal component is generated
in the same way as for single-rotor configurations; i.e., through cyclic control using swash-
plate inputs.
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This need for thrust-vector inclinations; especially, in the differential direction (yaw
control), favors the application of articulated rotor hubs with both flapping and lagging
hinges, or with elastomeric suspension of the blades.

As far as rotor arrangements are concerned, there appears to be a tendency toward
the overlapping type. This leads to aerodynamic interferences occurring in both vertical
translation and hover. in an oblique translation with a velocity component in the aircraft
plane of symmetry, an aerodynamic interference between the rotors appears whether
they are of the overlapping or non-overlapping types.

Coaxial. The coaxial configuration, although practically nonexistent in the U.S,,
represents a rather considerable class numerically, chiefly due to its popularity in the
USSR (Fig 1.29).

Figure 1.29 Coaxial configuration
(Kamov — W = 7300 kG)

The coaxial helicopter may be considered as an extreme of the tandem with both
rotors completely overlapping. Consequently, aerodynamic problems of this configura-
tion may be treated as an extension of those of the tandem. Because of the mutual
torque compensation by the main rotors, no antitorque rotor is required for this concept.
In order to avoid structural complexity by the provision of a special tail rotor purely for
yaw control, the latter is usually achieved by various means of alternating torque distribu-
tion between the two main rotors.

A new concept in coaxial configurations is represented by the ABC (advanced blade
concept) flight research helicopter (Fig 1.30).

Because of truly rigid blades (¥/n = 1.4) and a design in which large root and shaft
bending moments can be tolerated, higher lift can be developed on the advancing and
then, on the retreating side of each rotor. Therefore, some stall problems resulting from
the necessity of operating the blades at high lift coefficients on the retreating side can be
eliminated. The unbalanced rolling moments within each inaividual rotor will cancel
each other for the aircraft as a whole.
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Figure 1.30 Sikorsky 869 (XH-59A) prototype for evaluation of the ABC rotor system

Side-by-side. As far as pure helicopters are concerned, it appears that the side-by-
side configurations (similar to the tandem) are most widely applied in the heavier
gross-weight classes up to W = 705 000 kG (232 000 Ib). One such helicopter is depicted
in Fig 1.31.

Figure 1.31 Heavyift type helicopter of the side-by-side configuration
(MIL Mi-12 — W = 105 000 kG)

Similar to the tandem, yaw moments are usually obtained through differential
inclination (this time, in the fore and aft direction} of the rotor thrust vectors. This
requirement in tum leads to the preference for either completely articulated rotors, or
rotors equipped with relatively soft blades in the flapping plane.

From an aerodynamic point of view, the side-by-side configuration can usually
be treated in the first approximation as being composed of two independent rotors.
However, aerodynamic interaction encountered between the rotor and the supporting
structure, or the wing, should normally be considered. These interferences can easily
be understood on the basis of consideration of the vertical drag of the classical and
winged single-rotor helicopters in hover and axial translation. A detailed discussion on
this subject can be found in Chs Il and |V of Vol II.
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Helicopters with Reaction-Driven Rotors. Helicopters equipped with reaction-
driven rotors usually belong to the single-rotor category. There are several possible ways
of obtaining reaction drive; however, it appears that prevailing concepts incorporate
rotors with driving devices located in the tip region of the blades. Blade driving force is
obtained by discharging either air or a mixture of air and combustion products. Depending
on the temperature of the exhaust gases, these systems can be categorized as representing
(a) cold, (b) warm, or (c) hot cycles. In the fifties, small cold-cycle helicopters such as
the Djinn achieved operational applications. However, it is now believed that helicopters
with reaction-driven rotors might be potentially competitive with the mechanically-
driven concepts within the class of heavy, 50 000-kG (110 000-Ib), and very heavy-
flift, 100 000-kG (220 0CO-Ib) and higher, helicopters (Fig 1.32}.

Figure 1.32 Artist's concept of g heavyift helicopter with a warm-cycle, jet-driven rotor

For this heavy-lift category, it appears that the warm-cycle would probably be the
most suitable, although the hotcycle, or even concepts based on special turbofans or
turbojet engines mounted at the blade tips, cannot be completely excluded.

In principle, the reaction drive of the rotor eliminates the need for torque com-
pensation. Nevertheless, small tail rotors are sometimes envisioned in order to provide
yaw control in hover and low forward speeds and take care of the friction moments trans-
mitted through the hub.

Thermodynamics of the cycle and its overall efficiency represent special problems
of these configurations. However, basic aerodynamics of the classic single rotor should
also be applicabie to the reaction types.

In addition to the above discussed configurations, therc may be many others.
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However, as long as they can be classified in an aerodynamic sense as belonging to the
family of conventional helicopters defined at the beginning of this section, the reader
should have no difficulty in dealing with either pcrformance predictions or other aero-
dynamic problems.

7.4 Tilt Rotor

Aerodynamic problems and performance predictions of tilt-rotors (Fig 1.33) in
the helicopter regime of flight can be treated exactly as those of the side-by-side type.
Special problems associated with the role of the wing, especially under forward-flight
conditions, are somewhat similar to those of the winged helicopter discussed in Ch |V of
Vol Il.

Figure 1.33 Bell XV-15 tiit-rotor in the helicopter regime of flight
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CHAPTER I1

MOMENTUM THEORY

Basic momentum relationships are used in the development of physicomathematical
madels of lifting airscrews. The actuator disc concept is presented as a2 model of the ideal
rotor, and performance predictions of helicopters incorporating such rotors are outlined.
Induced power penalties associated with nonuniform downwash distributions and tip
losses are considered. Momentum theory is applied to estimates of induced power losses
of a tandem in forward flight. Finally, limitations of the simple momentum theory in

modeling actual rotors is discussed.

Principal notation for Chapter ||

area
drag

energy

total head

horsepower

altitude or height

ratio of actual power to ideal power
download factor

mass

distance

power

pressure

rotor or slipstream radius

radial distance

thrust

velocity

weight, or gross weight

area, disc loading

angle of thrust inclination

bxp-zn{§~<~|\>o'°'t‘\3,”’°‘='%3:"lbl‘-

angle
increment
ratio of ideal power available to P/,
air density
Subscripts

o available

ax axial

c climb

d descent

ds downstream

m?, or ft?

N,orlb

Nm, or ft-lb

N/m?, orIb/ ft?

735 Nm/s, or 550 ft-lb/s
m, or ft

kg, or slugs
m, or ft
Nm/s, or ft-Ibfs
N/m?, or psf
m, or ft

m, or ft
N,orlb

m/s, or fps
N,orlb
N/m?, or psf
rad, or deg
rad, or deg

kg/m?, or slugs/ft®
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e effective, or economic
eq equivalent
f forward
o flight path
fr front
free free
fs freestream
h hover
ho horizontal
id ideal
ind induced
mix mixed
o initial
opt corresponding to maximum range
re rear
s slipstream
u ultimate
up upstream
v vertical
w wind
Superscripts
- vector
-_ dimensioniess relative value
: differential with respect to time

resultant flow

1. INTRODUCTION

The idea of using an airscrew as a direct lift-producing device is not new. Sketches
and models made by Leonardo da Vinci indicate that he worked along these lines at the
end of the 15th century. Nevertheless, with the emergence of fixed-wing aircraft and
dirigibles, the airscrew found its principal application as a device producing the thrust
required to overcome the drag in forward flight. Therefore, the airscrew theory was
originally developed chiefly for its application as a propeller. Later, when the helicopter
concept began to receive more attention and practical thought, the already developed
propeller theories served as a guide for analysis of the helicopter rotor.

Obviously, propeller theories were primarily concerned with the movement of the
airscrew along its axis and generation of static thrust. But the most attractive feature
of helicopters and VTOL aircraft is their ability to climb vertically and to hover without
any motion of the aircraft as a whole. Consequently, for both of these regimes of flight,
the study of propellers provided theories which could be applied directly to the heli-
copter and rotor/propeller VTOL's.
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Through the 19th century, theories were developed in conjunction with the steadily
growing application of propellers in naval systems and thus, became another source of
information and inspiration in rotor analysis. The works of Rankine (1865) and Froude
(1878-1889) which served as a foundation for the theory of ship propellers, also served as
a basis for the momentum theory considered in this chapter. As their approach repre-
sents one of the simplest explanations of the problem of thrust generation by a propeller
or helicopter rotor, it is also extremely suitable for the physical interpretation of numer-
ous flight phenomena. It seems advisable, therefore, to begin the study of rotary-wing
aerodynamics by becomihg acquainted with the principles of the simple momentum
theory.

2. SIMPLEST MODEL OF THRUST GENERATION

The basic relationships of Newtonian mechanics can lead to the development of
a simple, but at the same time quite universal, physicomathematical model of a thrust
generator. Without going into any details regarding either geometric characteristics or
the modus operandi of the thrust-generator itself, it is simply assumed that under static
conditions as well as in translation at velocity V with respect to the ideal (frictionless
and incompressible) fluid of density o and pressure p,, the as-yet-undefined device is
somehow capable of imparting linear momentum to the medium.

For the sake of convenience, it is usually postulated that the thrust generator
rerr_gins stationary while a very large mass of fluid moves past it at a uniform velocity
(—V), (Fig 2.1). It will also be assumed that the thrust coincides with the positive axis
of a coordinate system having its origin at the “‘center” of the thrust generator.

BOUNDARY OF THE
AFFECTED SLIPSTREAM

Figure 2.1 Simplest physicomathematical model of a thrust generator

46



Momentum Theory

The thrust generator interacts with the fluid by imparting uniformly distributed
linear momentum to a distinct streamtube bound by a surface through which the mass
cannot be exchanged. This means that by the law of continuity, the mass flow within
the tube is the same at every section, while both velocity and pressure of the fluid alter,
However, at some point far downstream, the pressure returns to po, and the incremental
velocity variation reaches its ultimate value of—-v,, uniformly distributed over the final
tube cross-section area, Ay

Knowledge of ¥, and Ay in addition to the already known V and p represents all
the necessary information for determining the thrust 7 generated by ‘this very simple
physicomathematical model, as well as for computing the power required in that process.
. According to the laws of classical mechanics, the direction of the generated thrust
(T) will be opposite to that of ¥, while its magnitude will be equal to the rate of momen-
tum change wnthm the streamtube between its final and initial values. Denoting the rate
of mass flow by m, force T becomes

-f= —ﬂ.l(l./’u - V) (2.1)

where the resultant velocity of flow far downstream (17‘,) is Vu =V+ 17,,. Consequently,
Eq (2.1) becomes

- o
T = —mi,. (2.1a)
Furthermore, since m= V, AP, the above equation can be rewritten as
- -
T ==V + VAV, (2.16)

where | | denotes the absolute (scalar) value of the resultant vector, ‘I'/:; while v, from now
on will be known as the fully-developed induced velocity .*

inspection of Egs (2.1a) and (2.1b) can teach us that in dynamic generation of a
given thrust (7), a tradeoff can be made between the magnitude of a fully-developed
induced velocity (i), and the mass flow which, in turm, depends on (a) cross-section
of the streamtube far downstream, A ; (b) absolute value of the resultant velocity of flow
within the tube itself far downstream, V,,; and (c) density of fluid, p. This of course
would permit further tradeoffs between the above parameters within a constant m.

The above general conclusions already contribute to some understanding of dy-
namic thrust generation, but in order to get a still deeper insight into this matter, it is
also necessary to consider the power (P) required in the process. This can be done by
examining the difference in the rate of flow of kinetic energy through a cross-section of
the streamtube far downstream in the ultimate wake (£,) and far upstream (Eup)

*|t should be noted that when SI units (kg/s for mass flow and m/s for velocity) are
used in the above equations, thrust 7 is obtained in newtons which can be converted to
kilogram force by muitiplying the answer by 7/9.807 = 0.102. In English units; i.e.,
when mass flow is computed in slugs/s and velocity in fps, T is given in pounds.
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P = é'u - éup = %n"l(l-/'uz - ;2) (2.2)

Remembering that V,, =V+ vy, and performing subtraction as indicated in Eg
(2.2}, one obtains

= Bmv,(2V + v,), (2.2a)
but/'n;,, = —f; hence, Eq (2.2a) can be rewritten as follows:
= —(TV + %577, . (2.2b)

The above equation shows that power required by our simple model of a thrust
generator is equal to minus the sum of a dot (scalar) product of the velocity of the in-
coming flow and the developed thrust, and one-half of another dot product of thrust and
fully-developed mduced velocity.

Since T and Vv, are in opposite directions (forming a 180° angle), their dot product
(T- Vi) is negative, Hence, the second term in the brackets in Eq {2.2) is always negative
and in view of the minus sign in front of the bracket, contribution of that product to the
power required is always positive. In other words, a power input is always required to
cover energy losses associated with the induced velocity needed in the process of dynamic
thrust generation.

As to the first term (T V) in the brackets of Eq (2.2b), it should be noted that Ve
angles between thrust (7) and the distant flow (- V) may vary from 0° to 180°. Conse-
quently for 0 < 74, < 90°, the sign of the T V product will be positive and the total
amount of power required to be inputted into the thrust generator may be decreased,
reduced to zero, or even become negative (windmill).

For the case of actual flight, Eq (2.2b) can be rewritten in nonvectorial notations:

= TVcos vy, + % Ty, (2.2¢)

It should be noted at this point that in developing our simplest mathematical
model, an ideal fluid was assumed, with no dissipation of energy through friction or
energy transfer to the fluid under the form of turbulent wakes. Furthermore, a uniform
distribution of the fully-developed induced velocity has been assumed.

It will be shown in Sect 5 that uniformity of the fully-developed downwash
velocity is synonymous with minimization of the power required to generate a given
thrust under assumed conditions of flight velocity, air density, and the crosssection area
of the fully-developed slipstream. Thus, the power expressed by Eqs (2.2b) or (2.2c)
may be called the /dea/ power (P;z) required, while its part related to the thrust-generating
process and represented by the second term in Eqs (2.2b) or (2.2¢) is called /dedf induced
power (Pid,-,,d). It should also be noted that the assumption of a steady-state motion
signifies wna. the thrust 7 is in balance with all of the other forces (aerodynamic, gravita-
tional, etc.) acting on the thrust generator.

It may be of interest to find out that even this simplest physicomathematical model
of a thrust generator may prove helpful in understanding some important trends in the
VTOL field. For instance, (Eq (2.2¢) indicates that for the case of static thrust genera-
tion which, for VTOL, is synonymous with hovering out-of-ground effect, the ideal
power required would be:
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Pidh = %TVU (2-3)

where, in Sl units, the answer will be in Nm/s and in English units in ft-Ib/s. Thrust in
kilograms of force (kG = 9.807N) per horsepower will be

T/Pig, = 150fv,  kGfhp

or in pounds, (2.3a)
T/Pig, = 1100/v, Ib/hp.

The above expression clearly shows that in order to obtain the highest possible
power economy (maximum thrust per horsepower) in the generation of static thrust,
one should strive for the lowest possible induced velocity in the fully-developed slip-
stream. The relationship given in Eq (2.3a) is plotted in Fig 2.2 (reproduced from Ref 1)
and it remarkably well indicates the actual trend in static power loading from helicopters
to rockets,
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Figure 2.2 Trend in static thrust to Ideal power ratios for various VTOL concepts

In the previously considered model of the thrust generator, no attempt was made to
describe its geometry nor to explain the actual process of imparting linear momentum
to the fluid. For this reason, our simplest model, although helpful in predicting some
general trends, would be of little help in dealing with practical problems of design and
performance predictions of rotary-wing aircraft. Thus, another model reflecting at least
some geometric characteristics of open airscrews (rotors and propellers) is required.

3.  ACTUATOR DISC

The actuator disc, while still representing a very simple physicomathematical
model, is better suited for the simulation of an open airscrew than the model described
above. In this case, a disc—perpendicular to the generated thrust and capable of
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imparting axial momentum to the fluid as well as sustaining pressure differential between
its upper and lower surface—is substituted for an actual rotor-propeller. This concept
may be considered as a sublimation of the idea of an airscrew having a large number of
blades.

As in the previous section, it is assumed that the disc remains stationary whiLe
a large mass of fluid of density p and pressure p, flows around it at a velocity —V.
Under these conditions, the mechanism of thrust generation is explained as follows:
Fluid passing either through the disc or in its vicinity acquires induced velocity v which
is uniform over the entire disc and is directed opposite to the thrust. It is again assumed
that the fluid is ideal. Consequently, rotation of the disc does not encounter any friction
or form drag as it imparts purely linear momentum (in the —T direction) to the passing
fluid. This of course means that there is no rotation of the slipstream.

3.1 Induced Velocity and Thrust in Axial Translation

Axial translation in climb can obviously be either in the thrust direction as in
vertical climb of a rotorcraft, or in the opposite direction as in vertical descent. In the
first case let us consider a rotor or propeller moving in the thrust direction (climbing)
at a constant velocity V., while developing thrust 7. Here, an equivalent motion is sub-
stituted when the thrust generator remains stationary while the air flows past it in the
axial direction (far from the rotor) at a speed of —V, (Fig 2.3).

T

_VG

NNV

-VG Po -VC Po

Figure 2.3 Scheme of tiow corresponding to vertical climb

Similar to the simple model, a single axis coordinate system is selected with its
positive direction coinciding with that of the thrust 7. Air particles approaching the
actuator disc acquire some additional velocity that reaches a-v, value at the disc itself.
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After passing through the disc, the speed of flow increases still further until, far
downstream, the induced velocity reaches its ultimate value of —v,, while the resultant
velocity of flow becomes V, = =V, — v,, and pressure returns to that of the sur-
rounding air; i.e., it becomes p,. Remembering that the mass flow within the streamtube
is constant, its shape will probably resemble that shown in Fig 2.3.

In order to physically explain the thrust-generating mechanism of the actuator
disc, it may be assumed that pressure above the disc is lower than that below it. Because
of this discontinuity in pressure, Bernoulli's equation can only be applied separately to
the upstream and downstream parts of the flow tube. For the upstream part of the tube,
the total head (H,) should be the same.

Ho = po + %BpVe? =p + %p(Ve + v)? (2.4)

where v, is the induced velocity at the disc and p is the pressure just above the disc
surface.
The same is true for the total head (H4) of the downstream part:

Hye = po + %0(V, + v, ) =p + bp+ %p(V, + ve)? (2.5)

where p + Ap represents the pressure just below the disc, with Ap being the pressure
differential at the disc.
Subtracting H,, from H ,, one obtains:

Ap = oV, + Bv,)v,. (2:6)

Consequently, thrust developed by a disc of radius R can be expressed as 7 = TR? Ap or,
in terms of Eq (2.6):

T = aR*o(V, + %v,)v,. (2.7)

On the other hand, according to Eq (2.1a), the total thrust 7 can be expressed in this
case as

T = aRp(V, + v . )v,. (2.8)
Equating the right-hand sides of Egs (2.7) and (2.8), one finds that
v, = }fyu (29)
or
Vy = 2v. (2.9a)

Substitution of this new value of v, into Eq (2.8) results in
T = 2uR%p(V, + v Jv¢ (2.10)

or denoting the total thrust generating area of any actuator disc-like device as A, Eq
(2.10) may be rewritten more generally as

= 2Ap(V, + v )v,. {2.10a)
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Eq (2.10a) can be solved for v, thus obtaining an expression for induced velocity
at the disc

ve = ~ BV + V4V + (T/24p)". (2.11)

Remembering that 7/A = w is the disc loading or, in more general terms, the
thrust area foading, it can be rewritten as follows:

ve = =BV, +JEV,2 + (w2p) . (2.11a)

In hover or under any static conditions at a speed V, = 0;
T = 24pv°, (2.12)

while the induced velocity (v,,) becomes

Ve = NW20 . (2.13)

As to the direction of the induced velocity vector (V. ), it was assumed at the be-
ginning of the development of relationships given by Eqs (2.11) to (2.13) that V. is
opposite to the thrust ?, and in the same direction as the relative flow of air (—Vc)re-
sulting from climb. Under these assumptions, positive values of v, simply indicate that
the initial assumption of the v, direction is correct.

It can be seen that the last term under the square root sign in Eq (2.11a) is the
square of induced velocity in hovering. Eq (2.11a) can then be rewritten as follows:

Ve = —%Ve + VAV + v,? . (2.14)

The above expression can be nondimensionalized by dividing both sides by v, and
defining two nondimensional velocities: (1) the nondimensional induced velocity,
Ve = v/, and (2) the nondimensional rate of climb, V, = V,/vj or, more generally,
the nondimensional rate of axial translation in the direction of thrust, Vax = Vax/vy.
For the case of climb, Eq (2.14) can now be rewritten as

Ve =BV, +JEV+ 1. (2.14a)

This equation shows how the nondimensional induced velocity varies (decreases)
from its maximum hover value of 1.0 as the rotor starts to. axially translate in the direc-
tion of thrust at a rate of V, or V,,. The relationship expressed by Eq (2.14a) is shown
graphically in the right side of Fig 2.4,

Descent in General. Egs (2.11) to (2.14a) which establish relationships between
thrust and induced velocity in vertical climb can be modified for vertical descent. This
can be simply done by changing the sign of V, and _17,_. in the first term on the right side
of Egs (2.11) to (2.14a) from *‘—" to “+". However, in order to clearly indicate that the
considered case now refers to vertical descent, the symbol V4 = —V, is used for dimen-
sional, and Vd = —Vc is used for nondimensional rates of descent, while the correspond-
ing induced velocities will be symbolized as v; and 7d, respectively. Thus,

vg = BVy + VUV + (T/240) (2.15)
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Figure 2.4 Nondimensionadl induced velocity vs nondimensional
rate of climb or descent

Vg = BVy + VUVE + (w/2p) , (2.15a)
or
vy = BVy + VEVE * v, (2.15b)

In nondimensional form where Vg = vg/vy, and Vg = Vyfvy,
Vy =BV + UV + 1. (2.15¢)

A plot representing Eq (2.15c) was added to Fig 2.4 as an extension of the v, =
f(V,) curve to the descent region.

It can be seen from Eq (2.15a) that in vertical descent, Vy increases with the in-
creasing Vg and when Vg » 1.0, vy — V4.

It should be realized at this point that the above-presented results arc based on the
conceptual model, assuming that regardiess of the high level of the rate of vertical descent,
downwash velocity through the rotor is still so high that the resultant flow through the
rotor is always in a direction opposite to the thrust (i.e., downward). This obviously
forces an increase of Vy with that of Vy until at high levels of Vg, the V4 values start
to approach those of V. Consequently, the rate of flow through the disc approaches
zero [7R? pfvy — Vg)— 0] and the whole concept of the actuator disc acting on the
air passing through it becomes meaningless. |t can be seen hence that the validity of the
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physicomathematical model based on the general type of flow shown in Fig 2.3, although
apparently satisfactory for the case of vertical climb, hovering, and moderate rates of
vertical descent, should be reexamined for fast vertical descent.

Fast Descent. Fast vertical descents can be defined as those cases where the rate of
descent is sufficiently high to sustain an unbroken flow in the thrust direction (i.e., up)
within the whole streamtube. The necessary condition would obviously be [Vg/vgl >
2.0. When this condition is fulfilled, one can imagine a special shape of a streamtube
effected by a stationary rotor submerged in a large air mass flowing in the positive direc-
tion at speed Vg {Fig 2.5).

!
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Figure 2.5 Flow patterns in vertical descent

Far below the rotor, the airstream velocity is Vg = —(-V¢). However, as the flow
approaches the disc, the rate of flow is reduced under the influence of the rotor down-
wash and the airstream widens.

If the downwash at the rotor itself is —vg, then the rate of flow through the rotor
disc will obviously be V'= Vg4 — vg. It can be shown, as for the rate of climb, that the
downwash far downstream from the rotor (in this case, above the rotor) will reach a
maximum value equal to twice the induced velocity at the disc: v, = vg.

Under the assumption of [Vg/vgl > 2.0 (Fig 2.5), the relationship for thrust can be
written as follows:

T = 2rR*p(Vy — vala.
Substituting vy? for 7/2nR?p and solving the above equation for vy, one obtains:

vg = ¥Vg — Vivg — Vhi . (2.16)

or, in nondimensional form,
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= %Vd - V%de - 1. (2.]53)

A plot representing Eq (2.16a) is also added to Fig 2.4 (solid-line portion of left-hand
side curve).

It should be noted that the selection of the *—' sign before the square root in Eqs
{2.16) and (2.16a) assures that |Vg/vyl 2 2.0. This means that the condition of a con-
tinuous unidirectional (up) fiow within the streamtube is fulfilled. By contrast if the
sign before the square root is '+, then in general, [Vg/vgyl < 2.0. At high rates of vertical
descent where Vd » 1.0, the ratio [Vg/vg! would approach 7.0 (broken line portion of
the left-hand side curve in Fig 2.4).

As in the case of the previously considered model (Fig 2.3) in the above limiting
case, no flow would go through the disc. However, even for the intermediate values of
1.0 < Vglvgt < 2.0, a situation would exist in which the concept of a continuous
streamtube is incompatible with the unidirectional flow. It can be seen that for |Vg/vyl
within the above limits, the flow in the streamtube above the disc would come to a stop
and then reverse its direction. It may be expected hence that in reality, a new different
flow pattern would establish itself before the postulated complete reversal of the direc-
tion of flow occurs.

For the limiting case of | Vg/vgl = 2.0 which corresponds to Vgl = 2.0, the air
far above the disc will come to rest.

3.2 Contraction and Expansion of the Slipstream

Knowledge of the fully-developed induced velocity (v, = 2v; or v, = 2vg4) would
permit determination of the slipstream contraction or expansion (ratio of the radius of
the fully-developed slipstream, R, to that of the actuator disc, R). For the case of climb
or more generally, axial translation in the thrust direction,

Ru/R = V{1 + (Velve)I N2 + (Velve)] . (217)
Dividing V. and v, by v, Eq (2.17) becomes:
RuIR = T + (Ve Jelll[2 + (Vo)) - (2.17a)

Substituting the ¥V, values from Eq (2.14a) into the above equation, the following
relationship expressing R, /R in terms of V, is obtained:

R,/R =,/(;Vc + V4V + l’)/J\FAVc’ + 7 (2.17b)

It can be seen from Eq (2.17b) that for V, = 0 (i.e., in hover), R,, /R = 0.707.
As V. increases, so does the R, / R ratio; and for ¥, » 1.0, contraction of the slipstream
tends to disappear (Fig 2.6).

When vertical climb is replaced by vertical descent, V. becomes negative, V. <0;
and the far-away flow is now directed upward. However, if it is postulated that the re-
sulting flow in the streamtube remains continuously directed in the negative direction
(opposite to the thrust vector) as in the case of climb (Fig 2.3), then the R,/R ratio
would tend to decrease as the absolute value of —V, becomes higher. Finally, for [

— —oo, R,/R+0.
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Figure 2.6 Ratio of fully-developed wake radius to that of the actuator disc vs V,

It is obvious that maintaining the above postulated flow pattern would require that
lvgl/\Vgl > 2.0. This requirement, in practice, can probably be fulfilled in partial-power
descent at low descent speeds, but outside of this regime of flight, the very high induced
velocities needed in this flow scheme would not qualify it as a model properly reflecting
physical reality.

For the flow schemes in vertical descent corresponding to the socalled fast descent
depicted in Fig 2.5, the R, /R ratio is as follows:

(Ru/R)g = VI(ValVg) — 111[(Valva) — 2] . (2.18)

Substiutting the V4 values given in Eq (2.16a) into the above equation, the follow-
ing is obtained:

(RulR)y =/ (V4 + VAV — 1) 2NaVE = 1. (2.18a)

The above equation is also plotted in Fig 2.6, From this figure as well as an inspec-
tion of Eq (2.18a), it can be seen that for Vg » 1.0, (R,/R) 4~1.0. However, as |V | —
2.0; Ry/R = oo, while Vg — 2vy —+ 0. This would mean that the air flow in the stream-
tube (Fig 2.5) would come to rest with respect to the rotor disc, while the whole mass of
air outside of the tube would still flow upward at a speed equal to V4. Of course, this
situation is not acceptable from a physical point of view, and it is more reasonable to
assume that before this ultimate state of air coming to rest is reached, a new flow pattern
would be created.
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3.3 ldeal Powerin Climb and Hovering

As in the case of the simplest thrust generator model, power required by the
actuator disc either for climb or hover may again be called the ideal power. This is justi-
fied by the previously made assumptions that (a) there are no friction or form drag losses,
(b) the whole disc up to the limit of its geometric dimensions is participating in thrust
generation, and (c) the downwash velocity is uniform at any slipstream cross-section.

Expressions for the ideal power in vertical climb (Pig.) can readily be obtained
from the relationship previously established in Sect 2. When a proper value of the fully-
developed downwash velocity (v, = 2v.) and cos fp = 1.0 are introduced into Eq (2-2¢),
then HP;4,, becomes

(St) HPig, = T(Ve + ve)I735.
(2.19)
(ENG) HPig, = T(Ve + vc)I550.

Eq (2.19) shows that for an idealized rotor as modeled by the actuator disc de-
veloping thrust T, the power required in steady climb at a rate V, is equal to the product
of the thrust and the sum of the rate of climb plus the induced velocity at the disc (v ).

Thus, in the case of a steady vertical ascent with no download when 7 = W (W being
the weight of the aircraft in newtons or pounds), the total ideal power needed to climb is
equal to the power required to overcome gravity (WV,) plus the ideal induced power
(Wre).

By substituting the expression for v, from Eq (2.11a) into Eq (2.19), the following
explicit relationship between HP required and rate of climb V. (for T = W) is obtained:

(1) HPig, = W%V, + ViV + (W2ApY]1735.
(2.20)
(ENG) HPig, = W[5V, + V4V* + (W/2Ap)}/550.

Eq (2.20) is also valid for an axial motion in the direction of thrust when Vg is
substituted for V,, and 7T for W.

Remembering that W/2pA = w/2p=vp?, Eq (2.20) can be rewritten in either Nm/s
or ft-Ib/s as follows:

Pigg = W(#Ve + V4V +v?), (2.20a)

or in terms of nondimensional rate of climb V = V,/v,,, it becomes
Pig, = Wip( %V, + VAV +1). (2.20b)
Pig. can be expressed as the ideal power required in hover Py, times a factor k:

Pide = kPigy, where, in turn, Pig, = Wvj. Substituting the above expressions into Eq
(2.20b), one obtains

k=47, +JAVE + 1. (2.20¢)
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In the case of hovering or under static thrust conditions in general, V, = 0, and
Eq (2.19) would reduce to the following expression for HP required:

Tv 1735,

(st) Pidh

(ENG) Pig, = Tv.550.

(2.21)

The above result could have been obtained directly from Eq (2.3), remembering
that v, = 2v, for the actuator disc.

Substituting the value for v, from Eq (2.13) and rewriting Eq (2.21) in terms of
the reciprocal of horsepower loading; i.e., (P/7), and disc loading w, one obtains

(SI) (HPIT), = /w[2p/735
(2.21a)
(ENG) (HPIT), = /w/2p/550

where, for the case of hovering with no dowrload, 7 = W and thus, w = T/4 = W/A.

Eq (2.21) indicates that if a physicomathematical model based on the actuator
disc concept could truly represent actual rotor/propellers, there would be no lower
limit for the nower reauired to produce a given static thrust. It would only be necessary
to make the disc loading (w) as low as possible. It should be noted that in spite of the fact
that the profile drag is neglected in the actuator disc concept, the disc loading is still the
most important parameter as far as achieving a set goal of minimizing the HP/T ratio of
actal rotary-wing aircraft is concerned. However, high structural weight and operational
difficulties encountered by aircraft having low disc-loading rotors force the designers to
optimize their designs around higher w values as indicated in Fig 1.1,

3.4 Vertical Climb Rates

Nondimensional rates in vertical climb can be simply obtained by solving Eq (2.20c)
for V:

Vo =x— (1/k). (2.22)

Remembering that the x factor represents a ratio of the ideal power available
to the ideal power required in hovering (x = Pidgy/Pidp )s Eq (2.22) can be plotted as
shown in Fig 2.7.

Problems of predicting the rate of vertical ascent as well as absolute and/or opera-
tional ceiling (corresponding to a prescribed rate-of-climb value) of actual rotary-wing
aircraft can be reduced to the case of the ideal actuator disc considerations; hence, a
way of determining the dimensional rate of climb vs altitude becomes of interest.

Dimensional rates of climb for 7 = W can easily be obtained from Eq (2.22) by
multiplying both sides of this equation by v,y = /W/21R?p and expressing the k ratio
in terms of ideal available power (P;4,,) and ideal hovering power, Piay = W/ W/2nRp.
After performing these operations and expressing powers in units of HP, the following is
obtained.
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Figure 2.7 Nondimensionadl rate of c/imb and descent vs power setting

(sh) Ve

(735HP;g, /W) — (W*[1470 7R pHP;q, ).
(2.23)

(ENG) Ve = (550HP;q, /W) — (W?[11007R? pHP,q,,)

As the variation of HP;q,, vs altitude should be known, then HP;q4, /W can easily
be computed for any altitude /. The same applies to W? /nR?p HP;g,,, and the vertical
rate of climb at any altitude can readily be obtained from Eq (2.23).

If the relationship between the power available from the rotor (M";d,v) and air
density, p, can be expressed as a simple algebraic function, then by setting V. = 0, Eq
{2.23) can be solved for py; i.e., the density corresponding to the absolute ceiling. From
this value of p,, the absolute ceiling can readily be found from tables of standard atmos-
phere.

When there is a defined requirement for rate of vertical climb at the so-called
operational hovering altitude (say, V. = 180 m/min = 3.0 m/s) the hovering ceiling can
be found by substituting the desired value of V, into Eq (2.23) and solving for p. How-
ever, the relationship between engine power and density cannot usually be expressed
simply, and a graphical method such as that shown in Fig 2.8 can be used,or a suitable
computer program for solving this equation through an iteration process must be estab-
lished.

3.5 Vertical Descent Rates

Rates in partial-power descent will be considered first for the |Vgfvgl < 1.0 case.
Under these conditions, the general flow is still down and, according to the previously
developed rules, the ideal power (in HP) required for this process—according to Eq (2.2b)
wit;h-f-Vd being negative—will be as follows:

Pidd = T(Vd - Vd) (224)
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Figure 2.8 Absolute and serwvice ceiling in vertical climb

or, assuming 7= W,
Pigg = Wy — V). (2.24a)

Substituting the vy value from Eq (2.15a) into Eq (2.24a), relationships similar
to those given by Eq {2.20) can be obtained:

Pigg = W[-%Vy4 + VAV + (W2Ap)] ' (2.25)
or

Pidd = W —%Vd + VihVy + th) (2.25a)

In substituting Vd = | Vg/vpl and defmng, as in the case of climb, Pigy = K gPigy
where 0 < k4 < 7.0, one obtains:

Kg = —HBVyg+ VEVE + 1. (2.25b)
The solution of Eq (2.25b) for Vd in terms of K 4 gives
Vy= %y + (1/xy). (2.26)

A plot of the above relationship is added to Fig 2.7. It can be seen from this figure
that as the actuator disc begins to descend at some nondimensional rate V; or, in other
words, when Vc changes its sign from the positive to the negative, power required to
produce a given amount of thrust becomes lower than that required in hovering (k <
1.0). Conversely, when power supplied to the rotor is reduced below the hovering level,
it starts to descend in the so-called partial-power descent. It should be noted, however,
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that both Fig 2.7 and Eq (2.25b), indicating no_power required (x = 0), can only be
approached at very high V4 values (k-=0 when Vg3 1.0). It may be recalled at this
point that the relationships given in Eqs (2.25) through (2.26) were based on a physical
concept; assuming that the resultant flow everywhere within the slipstream tube is in
the direction of the downwash at the disc (down) as dictated by the condition |2v4| >
{Vg4l, while the flow outside the tube moves in the direction of thrust (up).

Let us now look at the other concept of flow; namely, when [Vl & |2vg4l, the
flow within the streamtube is always in the direction of thrust (up), just the same as
the whole mass of air. In this case, since [Vg4l > 12vgl, Pjg, as given by Egs (2.24) and
(2.24a) will be negative.

Pidd = -—T(Vd - Vd) (227)

or
Pigy = —W(Vg — vy} . (2.27a)

Egs (2.27) and (2.27a) indicate that power is delivered by the actuator disc and
thus, this particular descent or more generally, exposure to the airflow with velocity
Vgl & 12v4| in the thrust direction, is called the windmill state. Substituting the induced
velocity value (v4) as given by Eq (2.16) into Eq (2.27a), and making the same rearrange-
ments as in the previous case, one obtains

Piag = —W(H5Vy — VAV — v,?). (2.28)

Rates in partial-power descent in nondimensional form can be obtained from Eq

(2.28):
Ky = Vg +\ViaVg: — 1 (2.28a)
and finally,
Vy=—[x + (1x)]. (2.29)

It can be seen from Eq (2.28a) that for Vd > 2, the k 4 is negative; i.e., power is
delivered by the rotor. When Vy; < 2, there is no real solution to Eq (2.28a}, which
means that the assumed physical concept of the model pictured in Fig 2.5 is no longer
applicable. For the limiting case of V4 = 2, the power ratio reaches its lowest value for
the windmill state; namely, x = —7.0, and the corresponding rate of descent also attains
its lowest value, Vg = 2. In order to maintain a steady-state operation, energy delivered
by the rotor should be consumed or dissipated at the rate of its generation. Actual rotors
dissipate energy because of the existance of profile power. However, the rotor profile
power of such rotary-wing aircraft as helicopters and tilt-rotors does not usually exceed
30 percent of the ideal hovering power. This obviously means that even for the limiting
case of the lowest power delivered in the windmill stage (x = —7), all of that power can-
not be dissipated as profile power losses. [t may be expected hence, that the correspond-
ing rate of descent of Vg = 2.0 or, in other words, Vg = 24/w/2p would be too conserva-
tive. Indeed, the above velocity is higher than those usually observed in actual flight
tests, Furthermore, it is again emphasized that the requirement of air coming to rest
in the slipstream above the rotor while the remaining mass moves at steady velocity Vg
is physically doubtful.
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It appears that the actuator disc concept, when applied to cases of vertical ascent
and hovering, does not encounter any logical difficulties. By contrast, in vertical descent,
inadequacies of the assumed model become quite obvious. It may be expected, hence,
that the actuator disc approach may provide reasonably good guidance for both under-
standing and even approximate performance predictions in vertical climb and in hover
and, perhaps, at partial power descents with power levels only slightly lower than that
required in hover. However, even in the latter case, wind-tunnel tests performed by
Yaggy? with a tilt-wing propeller, and discussed by this author®, leave some doubts
regarding the validity of Eq (2.29). As to the whole spectrum of vertical descent; i.e.,
from partial power to pure autorotation (k = 0), the search for a completely satisfactory
physicomathematical model still continues. in the meantime, analytical gaps are being
plugged through experimental results.

3.6 Induced Velocity and Thrust in Nonaxial Translation

Through application of the actuator disc concept to the case of axial translation,
a basic relationship for thrust in this type of motion was established which may be
expressed as follows:

The thrust developed by a rotor moving along its axis at a speed V,,
is equal to the rate of mass flow through the disc times the doubled
induced velocity at the disc. In this case, the rate of mass flow is
clearly defined as the product of the disc area (A = 7R?) times the
air density p, times the resultant flow through the disc: V' = \7,,, +v
which, in axial translation, is identical to an algebraic sum.

The accuracy of the above relationship has been proven within the limits of validity
of the simple _momentum theory. Unfortunately, as far as exposure of an actuator disc
to velocity —V (opposite to the flight speed) with an inplane component is concerned
(Fig 2.9), no rigorous development of the formula for thrust based on the simple momen-
tum approach can be offered. Consequently, the relationship proposed by Glauert4-8,
although unproven for the time being, will be accepted. This relationship, when expressed
in words, sounds exactly the same as those given for axial translation. However, in non-
axial translation, the resultant speed of flow through the disc should always be inter-
preted as the vectorial sum of the distant flow velocity (—VS and induced velocity in for-
ward flight (V¢). Later in Chs IV and V it will be shown that Glauert's basic formula can
be rigorously proven with the help of vortex and potential theories. In the meantime, the
vectorial definition of this relationship can be translated into analytical expressions as
follows.

Denoting the scalar value of the resultant speed of flow at the disc by V', Eq (2.10),
giving thrust in axial tgnslation, can now be generalized into the following expression
by substituting V' for |V, + V| :

T = 2aR*p V vs. (2.30)

Analogous with Eq (2.10), it is postulated that far downstream, the induced veloc-
ity v, is doubled; i.e., v, = 2vs. In making this assumption, TR?pV 'becomes the mass
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Figure 2.9 Actuator disc in an oblique flow -

flow through the streamtube (affected by action of the rotor), whose cross-section is nR?.
An indirect support for the validity of Eq (2.30) can be found by comparing it with
a formula giving lift developed by a wing having 2R span and downwash v distributed uni-
formly along the span. In this case, the lift developed in horizontal flight is expressed by
exactly the same formula as Eq (2.30)°.
Accepting the validity of Eq (2.30), the induced velocity in forward flight can
readily be expressed as

vy = T/2nR*pV". (2.31)

It shouid be noted, however, that the above expression in its present form doeinot
permit determination of the v¢ value since V' is also dependent on ve (V' = V + Ve).
In order to solve Eq (2.30) for v¢,, V' must be first expressed in terms of V and vy .

With the same notations as those in Fig 2.9, V' becomes:

V= vy — Vsina)* + (Vcosa)*-

Substituting the above value into Eq (2.30) and performing the necessary manipula-
tion—remembering that 7/nR?* = w is the disc loading—the following fourth-degree equa-
tion for vy is obtained:

vi* — 2V ved sina + By — (w/2p)* = 0. (2.32)

However, (w/2p)? = v,,‘ where v, is the induced velocity in hovering or under static
thrust conditions in general), and Eq (2.32) can be presented in nondimensional form:
V-2V il sina+ VIV —1=0 (2.32a)
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where V = V/u, and by = ve/ vp. Egs (2.32) and (2.32a) can be solved by Newton's
method and its more modem derivatives adapted to computer techniques. Also graph-
ical solutions may be quite usefu! in that respect.

It should be noted that for the axial translation in the direction of thrust; i.e.,
when a = —90°, and V = V,, or V = V,, Eq (2.32a) can be reduced to a quadratic form
and the solutlon is identical to that of Eq (2.14a). Also of interest may be another limit-
ing condition; namely, when a = 0. In the latter case, Eq (2.32a) is reduced to a biquad-
ratic form and the solution for V¢ can also be easily obtained:

(Vf )gup = 1/—'/:-t7’ +VE + 1. (2.33)

Relationships of ¥ = { V) for a=—90°" and a = 0° are plotted in Fig 2.10. Thus, these two
curves represent limiting cases of nondimensional induced velocity ¥ vs nondimensional
speed of flow V (speed of flight with the opposite sign). All other cases corresponding to
intermediate angle-of-attack {a) values will be included within these two curves. Of course,
for horizontal flight when absolute values of a are small, the trend indicated by thea=0
curve should be quite representative. By examining Fig 2.10, it should also be noted that
for V2> 3. 0, v values tend to converge to a common limit regardless of the magnitude of a.

0 v v v " =
0 1.0 20 3.0 4.0 5.0 v

Figure 2.10 Nondimensional induced velocity vs nondimensional speed of flow

Furthermore, starting from ¥ 3> 3.0, the nondimensional induced velocity can be approxi-
mated by the simple relationship of

v, =1/V. (2.34)

Eq (2.34) could have been directly derived from Eq (2.30) by assuming that V'= V.
Eq (2.30} would then become

= 2R pVvy (2.35)

and consequently,
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v, = T/2aR*pV (2.36)
f

which can be easily transformed into the form of Eq (2.34).

3.7 Power Required in Nonaxial Translation

. Using the notations in Fig 2.11, and substituting the proper quantities for 7V and
% T-v, into Eq (2.2b), ideal power required (P;q, in N m/s or ftIb/s) in nonaxial transla-
tion (forward flight) can be obtained:

Pig, = =T(Vysina — v) (2.37)
where the expression in the parentheses represents the axial component {V '") of flow at

the disc: V 5x = V,sin a — v, It can be seen that when a <0, Eq(2.37) is positive; i.e.,
in this type of flow, power must be delivered to the rotor modeled by the actuator disc.

Figure 2.11 Rotary-wing aircraft (modeled by the actuator disc) in forward flight

—
For a helicopter moving in the gravitational coordinate system at velocity of flight V,
Pig, can be obtained by rewriting Eq (2.37):

Pigy = —T{ Vscos Yoo — Vel . (2.37a)
However, 7., = 90° — (v + a,), and Eq (2.37a) can be presented in the following form:

Pig; = (Vg siny)(Tcosa,) + (Vy cos 1) (Tsina,) + Tv,. (2.38)
It should be realized that

65



Theory

Vesiny = Ve, rate of climb in forward flight
Vho horizontal component of the speed of flight

Vecos y
and in a steady-state flight:

Tcosa, = ky W vertical thrust component, balancing aircraft gross weight
times the k,, coefficient, accounting for the vertical drag
in forward flight

Tsina, = Dy, horizontal thrust component required to overcome the hori-
zontal component of the total drag.

Taking the above relationships into consideration, the ideal power required in for-
ward flight can be expressed as follows:

Pidy = VhoDho + Veske W + Tig (2.39)

where 7= /&y, W) + Dno’, or T= Wk, ? + (Dyo/W)?, and D, o/W is the hori-
zontal drag-to-weight ratio of the aircraft as a whole at the considered speed. For those
cases when &k, .= 1.0 and D, , /W are considered small, it may be assumed that 7 = W, and
Eq (2.39) may be written as follows:

Pig; = W((Dyo/W)Vho + Ver +Vnd]. (2.39a)

Thus, ideal power required by a helicopter modeled by the actuator disc mounted
on a realistic body; i.e., generating drag forces when moving through the air, would con-
sist of a sum of three distinct terms: (a) power required to overcome the horizontal
component of the total drag, (b) power required to overcome gravity in climb, and (c) the
induced power associated with the process of thrust generation.

Horizontal flight represents a particular case when the ideal power required is com-
posed of drag and induced terms only. Induced power reaches its maximum in hovering
and then decreases with increasing speed of flight. In contrast, starting with zero in hover,
the drag power increase is roughly proportional to the cube of forward speed, and the
resulting total ideal power-required curve should exhibit the character shown in Fig 2.12,

T ya
- .
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£ Sl POWER (P y)
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POWER (Pog) _ .
.m0 008, >

SPEED OF FLIGHT

Figure 2.12 Parasite and induced power vs speed of flight
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3.8 Thrust Tiltin Forward Flight

In the pure helicopter, the rotor performs a dual function of lifting and propelling
in all regimes of powered flight. Using the notations in Fig 2.11, the horizontal force
equilibrium condition can be expressed as

T wn-a, = D,,
or
-a, = tan' (D o/T) . (2.40)

In many practical considerations, the small angle assumption as well as the W= T
condition can be justified. Thus, Eq (2.40) can be simplified to the following form:

~aq, = (D,,/W). (2.40a)

3.9 Induced Power in Horizontal Flight

In principle, Eqgs (2.32) and (2.32a) allow one to calculate induced velocity at any
speed in horizonta flight (V) once the tilt of the thrust vector (a,) and hence, the a
angle (a = a,) corresponding to that speed, is computed from either Eq (2.40) or (2.40a).
However, the iteration method required to solve Egs (2.32) and (2.32a) may be tedious
unless a suitable computer program is available. For this reason, simpler approaches may
be of some value.

At low flying speeds, the assumption that Vo, = V' is no longer acceptable and
thus, Egs (2.34) and (2.36) cannot be used. However, the rotor tilt, @, = a, required in
steady flight at low velocities will be so small that a, = 0. This implies that the induced
velocity vy is perpendicular to the flying speed V), ,(Fig 2.13).

==Vho=p v
“¥ho
- \\ [}
ho -~ N
t.-----QV'

VERTICAL I
]

Figure 2.13 Velocity at the disc at a low horizontal speed
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Under the foregoing assumptions, Eq (2.33) can be used. Also, approximate values
of V4, can be obtained from the nondimensional graph of Fig 2.10. However, for those
cases when the a, = 0 assumption is not acceptable, the following graphical method,
which permits consideration of the existence of the thrust tilt angle a, # 0, can be
used.

A curve giving v = f(V) is drawn from Eq (2.30) using the same scale for both
ordinate and abscissa axes. This will obviously be a hyperbola whose point v = V' will
correspond to the hover condition.

The value ot tne induced velocity must satisfy Eq (2.30) as given by the graph in
Fig 2.14, as well as the other relationship of

Vi= Vo + Vo

\ vel (V)
—_—

INDUCED VELOCITY v

\ HOVERING v = V'

‘)
e
Vg RELATIVE VELOCITY AT DISC V*
: v .l

Figure 2.14 Induced velocity vs relative velocity at the disc

By referring to Figs 2,13 and 2.14, one can see that a simple graphical method
can be employed in finding the downwash velocity in horizontal flight.

The value of V5, and the direction of v, (tilt of the rotor a,) are known. Assum-
ing a value of V', the corresponding value of v, is found from Fig 2.14. These values
of V and v, must also satisfy the vectorial relationship shown in Fig 2.15. This means
that the head of the vector V 'must lie on line a-b parallel to the rotor axis, while the
length of g-b must be equal to the value of v, 4 corresponding to the assumed V. If the
V "and vp o chosen the first time do not fulfill these conditions, a new value of V “should
be assumed and the whole procedure repeated. By cutting and trying, the correct pair of
values of V "and v, satisfying both Eq (2.30) and the vectorial sum condition can easily
be found.
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VERTICAL

Figure 2.15 Velocities at the disc in horizontal flight at high-thrust inclination
3.10 Rate of Climb in Forward Flight

When the total power available at the actuator disc modeling a rotor (P,-d") is
known, the rate of climb can be found in the following manner.

It is assumed that the rotor thrust inclination-a, remains the same in ascending
flight as it would be in horizontal flight at a speed Vj, equal to the horizontal compo-
nent of the actual flying speed V. Hence, if the drag as a function of forward speed of
the helicopter is known, then the rotor thrust tilt-a, can readily be computed. Also,
since the ideal power available at the rotor Pig,, (Nm/s or ft-Ib/s) is known, the total
rate of axial flow through the disc U (m/s or fps) can be found from Eq (2.37), where U
is substituted for the axial component V ,,,:

U= P, lhyW. {(2.41)
On the other hand, for small a,'s, the rate of climb can be expressed (Fig 2.16) as:
Ve = U — (Vray + vy). (2.42)
and, substituting Eq (2.41) for U,
Ve = (Pia,, /W) — (Viay + vf). (2.43)

The value of v, in Eq (2.43) is yet unknown, but it may readily be found with the
help of a simple graph such as that shown in Fig 2.16. From the head of vector V,,, a
line is drawn parallel to the disc axis. Again, from the head of vector U, a line normal
to the disc axis and intersecting the first line, is drawn. By approximation, point A may
be considered as the head of a vector representing the relative velocity of the slipstream V ',
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Figure 2.16 Velocity scheme in forward flight climb

0-A indicates the magnitude of V, and the corresponding v¢ can be found easily from the
graph in Fig 2.14, vs = f(V). When the v, value is introduced into Eq (2.43), the rate of
climb will be obtained.

In finding the induced velocity v, at any altitude, it must be remembered that Ve
is inversely proportional to the air density (Eq 2.30). A graph of v; = f (altitude) with
the scale of V ' remaining constant could be helpful for altitude calculations. However,
a procedure based on the principle of excess power is usually accurate enough for all
practical purposes in determining the rate of climb. It can be seen from Eq (2.39) that

Ve, = [Pid,v = (VhoDno + TV,)]/k"W.

In the above equation, the expression in the parentheses represents the power
required in horizontal flight Pidhoreq 3t 2 speed Vp, while Py, should be interpreted
as the ideal power available at the actuator disc (rotor). V., can now be expressed in
m/s or fpom , while both powers are in horsepower, and weight in N or [b:

(s1) Ve, = 735 (HPiq,, — Iﬁ%nq)/k,,w.
(2.44)
(ENG) Ve, = 550(HPq,, ~ HP;q, oreq) R¥iW -

in many cases, it may be assumed that the vertical load factor ky,=1.0.

Service and absolute ceilings in forward flight can be obtained from Eq (2.44)
by finding the maximum rate of climb { V‘-‘f)mu at several altitudes and plotting (Ve ), 4 x
values versus altitude. It is obvious that the altitude at which (V¢ ¢),,,x reaches some pre-
scribed value; say, ( Ver)pq, = 70 m/min, will represent the service ceiling (Fig 2.17).

The method of finding the rate of climb from the excess power can be accepted for
higher flying speeds ( V¢ and higher) when climbing would not appreciably change the
rate of flow through the disc. For low forward speeds, the graphical method previously
outlined is more suitable.
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Figure 2.17 Maximum forward climb diagram and determination of
absolute and service ceilings

3.11 Partial and zero-power descent in forward flight

In forward flight with a horizontal velocity component V;,, it can be seen from
Eq (2.44) that V, becomes negative as the ideal rotor power available becomes lower
than that required in horizontal flight. In other words, the aircraft begins to descend at
a rate Vg =~V In a particular case where AP;y, = 0, this rate of descent becomes

(Sl) Vd, = 735midh0req/kvfw'
(2.45)
(ENG) Vay = 550HP,-dhomq/kv, .

In this equation, V, is in m/s or fps, and Win N or Ib.

If power is taken from the rotor (say, to drive some accessories), then the first
term in Eq (2.44) also becomes negative and obviously, the absolute value of —V, (i.e.,
at a rate of descent V) would become higher than that given by Eq {2.45).

At this point it should be noted that the validity of Eqgs (2.44) and (2.45) is based
on the assumption that contrary to the case of axial and near-axial translation, neither
climb nor descent would noticeably alter the value of induced velocity corresponding to
Vho. Consequently, in climb and descent, the induced power would remain the same as
for the case of horizontal flight. It can be seen from Fig 2,10 that for speeds of forward
translation in excess of ¥; = 2, the variation in the inflow angles that may be encountered
in either climb or descent of practical rotary-wing aircraft would not noticeably alter the
induced velocity values. Furthermore, for a rate of climb (or descent) on the order of
it V./ V1< 1/3 (not likely to be exceeded in practice) the difference between the total
rate of flow (V') through the slipstream at the disc and that corresponding to the hori-
zontal component may be ignored. Consequently, it may be assumed that for l7,> 2, the
induced velocity and hence, the induced power in forward flight (or descent) with a
horizontal component V},, would be the same as in a purely horizontal flight at the same
speed. As a result, the method of predicting * V, on the basis of either an excess or
shortage of power available with respect to power required in horizontal flight is justified.
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For some exceptional cases of extremely high rates of climb or descent at l7,> 2,
the associated variations of induced velocities and powers from those corresponding to
horizontal flight should be considered.

4. FLIGHT ENVELOPE OF AN IDEAL HELICOPTER

Much may be learned and many performance problems more simply solved by sub-
stituting the flight envelope of an idealized helicopter for that of actual rotary-wing air-
craft.

A complete flight envelope for a constant flight altitude would be contained with-
in the limits of the maximum rate of climb at the highest possible H#P;g4,,, and a rate of
descent corresponding to AP;4,, = 0. These rates of climb and descent can be shown as a
function of the horizontal component of the speed of flight given in either an absolute
dimensional [+ Vs = fl Vp,)] or nondimensional [ Ve, = £(V},)] form. In both cases,
the general character of the graph wili obviously remain the same as shown in Fig 2.18.

Ve

Ve = {Vho!
/ Hig,, =max

*
' \ Vho
Veoq
Va=f(Vnol
po————— V Hidy, =0

Figure 2.18 Flight envelope of the idedl helicopter

in establishing the flight envelope in vertical ascent and descent at low forward
speeds ( Vp, < 2.0), the Ve, and Vi, values should be calculated by the procedures
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outlined in Sects 3.2.2 and 3.2.3. However, for higher forward speeds (Vj, = 2) where
the principle of excess ideal power available can be directly used, a new interpretation
for the relationships between Pjg,,, Vg = f{ Vho), and Ves = f(Vy, ) is possible. This
approach, outlined below, may be of interest in dealing with some of the problems of
performance optimization.

Equivalent rate-of<limb. Assuming that kv, = 1.0, the second term in the paren-
theses of Eq (2.44) becomes the rate of descent at P;q,, = 0 as given by Eq (2.45), while
the first term may be called the equivaient rate of climb in m/s or fps: (SI) Vc,q =
735 HPig,, | W; or (ENG) Veeg =550 HPigy, / W .

Using the above interpretation of Eq (2.44), the rate of climb at any value of
the horizontal component ( V5, )} of flight velocity ( V¢) can be expressed as the differ-
ence between Vceq and rate of descent at that particular speed, when HP;q, = 0:

Vc’ = Vc.q - Vd'-. (2.46)

The above equation can also be presented in nondimensional form by dividing both
sides by the induced velocity in hovering:

Ver = Vegq — Var - (2.46a)

Consequently, once Vg, = f(V,,,) or Va, = l—/;,o) relationships are established
for Pigg, = 0, then it becomes easy to obtain rates of climb in forward flight (V,,o =2)
for all values of P;g,,. This is done by calculating the equivalent rates of climb (Vc,q or
Vc,q ) corresponding to Pjq,, and performing the subtraction indicated by Egs (2.46)
and (2.46a), either arithmetically or graphically (see Fig 2.18).

Examination of the Vg, = f(Vjo) for HP = 0 will help one to single out several,
operationally important, speeds of flight, V,. Note that it may usually be assumed that
Vf = Vho)

Economic speed, Vpo, or simply, V,, corresponds to the lowest rate of descent
for unpowered flight (Fig 2.18). In powered horizontal flight, it corresponds to the low-
est value of power required. In flight with excess power, it assures the highest rate of
climb (Vc/m").

Optimuii speed Vh"opt or simply, Vope, assures the best gliding ratio in unpowered
flight. In the presence of a tailwind { V) or headwind (—V,,), this gliding ratio showing
the ratio of distance traveled (£) to altitude lost (#) will be

(2/r) = (Vho = VWllVa.

For a zero-wind condition, this ratio becomes maximum at Vo = V,, representing
the abscissa of the point of tangency of a straight line drawn from the origin of coordi-
nates to the Vg = f(Vj,) curve. In the presence of a headwind —V,, or tailwind V,,,
the tangents will be drawn from the Vo, = V, point in the first case, and Vj, = —V,,
in the second (Fig 2.18).

In horizontal powered flight, the thus-determined speeds of flight would assure
maximum range under zero wind and t V,, conditions, as this would minimize the ideal
amount of energy (£;4) required per unit of distance traveled (£ = 7.0) and unit of gross

weight (W):
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Eia/ Wigay = Pidygq/(Vy £ VW)W

where Pjg,,, is in Nm/s or ft-Ibfs, and Win N or Ib.
However, P,-d,,q/ W= Vidd, and consequently, the condition of minimizing the
above expression becomes the same as for the optimum glide angle in unpowered flight.
Maximum speed of horizontal flight Vpoax Of sSimply Ve, is reached when
Veeq = Var or, in other words, ideal power available becomes equal to the ideal power
required.

5. EFFECTS OF DOWNWASH CHARACTERISTICS ON INDUCED POWER
5.1 Uniform Downwash — No Tip Losses

In the physicomathematical models based on the actuator disc concept, it was
assumed that the induced velocity in axial flow is uniform both at the disc and in the
fully-developed wake. For oblique flows, especially those characterized by high speeds
(V¢ > V4), no explicit scheme was postulated regarding induced velocity distribution
over the disc itself; the only assumption being that the downwash is uniform in any
cross-section of the fully-developed slipstream and is equal to twice the average induced
velocity at the disc. Furthermore, it was also stated that in either case, the disc is equally
effective in thrust generation up to the limit of its geometric dimension; i.e., up to its
radius R. The induced velocity associated with this type of given thrust generation is
called the ideal induced velocity and the corresponding induced power, the ideal power.

It can be proven that the above flow conditions are synonymous with the minimi-
zation of induced power required for generation of a given thrust; i.e., for making the
Ping/ T ratio a minimum. For the sake of simplicity, the problem of the P4/ T optimiza-
tion will be considered for cases of hovering and high-speed horizontal translation only
(Vho® Vo).

Hovering. In steady-state hovering—no controls application—it may be assumed
that because of the axial symmetry of flow, the variation of downwash velocity at the
disc (v' is a function only of the radial position at the considered point on the disc. This
means that for any annulus of radius 7 = Rr, and width dr = Rd7 (where 7= r/R), the in-
duced velocity v7= const (Fig 2.19).

Figure 2.19 Elementary annulus of the actuator disc
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With respect to the variation of v from one station 7 to another, this relationship
can be expressed as a product of the ideal induced velocity v;g corresponding to a
given thrust T and some function of 7:
Vi = v;gf(7) (2.48)

r

where 7(7) is assumed to be a continuous, differentiable function of r, at least within the
O0<7< ].0interval.

Elementary thrust produced by an annulus Rd7 wide and having radius R7 can be
expressed as follows:

dT: = 4R pv,FaF, (2.49)
while the total thrust will be
1.0
T = 47R?p / v Fdr. {2.50)
0
The corresponding elementary and total induced power will be
dPing = 4nR? pv;? FdF, (2.51)
and
1.0
Ping = 41R%» f v Fdf. (2.52)

Expressing vz in Egs (2.50) and (2.52) according to Eq (2.48), the Ping! T ratio
can be written as follows:

-

.0

1.0
Ping/ T = Vig / [f(?)]’fd?/ / [(7))27aF. (2.53)
0 0

It can be seen from Eq (2.53) that for a given v;q, the Pj, 4/ T ratio is a function of
7 only. Consequently, conditions for an extremum for the Ping/ T value can be sought
by differentiating Eq (2.53) with respect to 7 and equating the numerator of the so-
obtained fraction to zero. This would result in the following equation:

1.0 1.0
[ vrenrar [ {ro + stren® rarlar
0 0

1.0

1.0
- / [f(F)]’FdF/ {[f(?)]’ + 2[f(;)1f'(7);}dr =0, (2.54)
[4} 0
where f{7) is the first derivative of £(F).
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An inspection of Eq (2.54) indicates that when f(7) = const within the < 7< 1.0
interval and hence, 7{7) = 0, the left side of the equation reduces to zero. Physical
considerations indicate that the above condition of f(7) = const would make the P;, ;/T
ratio a minimum.

To enable one to visualize the character of the disc area loading associated with
various downwash distributions, d T7 as given by Eq (2.49) is divided by the elementary
annulus area (2nR*7d7) over which d7;is generated. This leads to the following relation-
ship: ‘

ApF=dTz/2nR*rar = 2pv;* . (2.55)

This expression can be nondimensionalized by first substituting Eq (2.48) for v,
and then dividing both sides of Eq (2.55) by the dynamic pressure corresponding to the
ideal induced velocity required to generate a given thrust or, more generally, produce a
desired disc loading (w). When so-modified, Eq (2.55) becomes

Ap; = 4[f(7)]? (2.55a)

where AP = Ap:/Ypv;4’ .

it can be seen from Eq (2.55a) that for the particular case of f(r) = const = 1.0,
the pressure differential over the disc becomes constant, as was assumed in Sect 3.1, and
is equal to 4 times the dynamic pressure of induced velocity.

Horizontal Flight. To gain an insight into induced power aspects and spanwise load
distribution of rotors in horizontal flight, a technique was developed which would (1)
relate the shape of the downwash distribution in the fully developed wake to the induced
power required to produce a given thrust, and (2) determine the type of the correspond-
ing span loading of the disc modeling an actual rotor.

According to the momentum theory, the thrust d T developed by the strip of the
disc Rdx wide located at x = RX can be expressed as the rate of tlow of the vertical
momentum through a corresponding strip of the slipstream cross-section located far
downstream where the induced velocity reaches its ultimate value (Fig 2.20).

A

RR
Figure 2.20 Scheme of horizontal flight
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Assuming that |V, ,| ® v, and hence, V' = V,, ,, this elementary thrust becomes
dTx = 4R*pV,, vzydx, (2.56)

while the corresponding elementary induced power will be
Pingz = 4R pVjyovz 'y X (2.57)

where vz, the average induced velocity at the disc at station X, is assumed to double its
value in the fully-developed slipstream.
In both equations, /1 — X* can be substituted for ¥ with the following results:

dT5z = 4R* oV, vi1 — % ax (2.56a)
and

dPinggy = 4R pVovz® V1 — %% dX . (2.57a)

As in the case of hovering, v; can be expressed in terms of the ideal induced veloc-
ity in horizontal flight as given by Eq (2.36) times some known or assumed function f(x):

Ve = Vidpof(X) (2.58)

where function f(x) should be continuous and hence, differentiable within the —1.0 <
X < 1.0 limits.

Once f(x) is known, the total thrust and the corresponding induced power can be
obtained by substituting the right side of Eq (2.58) for v, and then integrating Egs
(2.56a) and (2.57a) within thex =-1.0 to X = 1.0 limits. If a symmetry exists with respect
to the vertical plane perpendicular to the x axis, and passing through the y axis, these
integrals become

1.0
T=2 f dTz : (2.59)
[/]
and
1.0
Ping = 2 f Pinaz- (2.60)
0

The character of the spanwise load distribution along the disc span (lateral diam-
eter) associated with various f(x) functions can best be presented in nondimensional
form. This can be done by keeping in mind Eq (2.58) and remembering that the thrust
corresponding to uniform downwash distribution is T = 27 R? p V, Vidp, Dividing
both sides of Eq (2.56a) by the so-defined 7,

dTz/dx = (2/mf(xNT-3%. (2.61)
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Decades ago, in a situation analogous to the momentum interpretation of the
thrust generated by an actuator disc in forward flight (Figure 2.20), it was proven by
the fixed-wing theory that the P;,,/ T ratio is minimized when the downwash velocity
in a fully-developed wake is uniform. While no further proof of this statement is neces-
sary at this point, it should be noted that when f(X) = 1.0 and hence vz = Vigy,,, the
integration indicated by Eq (2.59) will lead to the basic Glauert relationship given by Eq
(2.35), and the accompanying span-loading as given by Eq (2.61) is elliptical. Although
this latter result couid also be accepted solely on the basis of the proof offered by fixed-
wing aerodynamics, the above analysis was developed as a tool for future investigations
of the various effects of nonuniform downwash distributions in forward flight.

5.2 Nonuniform Downwash and Tip Losses — The 4, ; Factor

Definition of the k,,, Factor. In the preceding chapter, it was shown that nonuni-
form downwash distribution (both in axial and in forward flight) causes the induced
power to rise above its optimum level. It may also be expected that various aerodynamic
phenomena occurring at the outer rim of the disc may reduce its thrust-generating effec-
tiveness in that region; therefore, the effective disc radius (R,) becomes smaller than R;
i.e., Re/R =7, < 1.0. This would also contribute to an increase in the P, associated
with generation of a given thrust.

The deviations of the actual induced power from its ideal level resulting from the
above-discussed, and other phenomena such as mutual rotor interference can be con-
veniently gauged through the k,, ; factor,

Ring = PinglPig - (2.62)

In hovering, the induced power of a disc with nonuniform distribution of the
downwash velocity, and the effective relative radius 7, < 7.0, can be obtained from Eq
(2.52) by substituting v;4 f(7) for v, and changing the limits of integration from 0 to 1.0,
to 0 1o 7y:

Te
Ping = 418 ovg,> [ 1F7)) 707 (2.63)
0

Introducing the P, 4 value as given by Eq (2.63) into Eq (2.62), and then dividing
the result by the expression P,y = 21R? pv;qy,>, the following expression for the k;,4
factor in hovering is obtained:

kingp = 2 / [F7)3FaF. (2.64)
0

The procedure used to determine the k,,, factor in horizontal flight is similar to
that outlined above. In Eq (2.57a), Vg, f(X) is substituted for vy and the 7 under the
square root is replaced by X, where X, = 7, is one-half of the relative effective disc
span. The integration indicated by Eq (2.60) is now performed within the 0 to X, limits
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instead of the 0 to 1.0 limits, and the obtained expression is divided by the ideal induced
power in horizontal flight (27R? p V), ,Via), 2 ):

70
Kindpo = (4/m) [ [F(7))? VEZ — % dx. (2.65)
[/

It should be emphasized at this point that in horizontal flight as the downwash
velocity in the slipstream becomes nonuniform, the streamtube would no fonger retain its
circular cross-section as shown in Fig 2.20. Nevertheless, it is assumed that in spite of the
cross-section deformation, the area dA, of a section element associated with a location x
will remain the same as in uniform downwash considerations; i.e., dA5z = 2R/ X, — %* dx.
This would obviously mean that the corresponding elementary thrust and induced powei
can still be expressed by Egs (2.56a) and (2.57a) respectively, and Eq (2.65) remains
valid.

5.3 Examples of kjpg Values and Types of Loading in Hover (Figure 2.21)

Uniform Downwash with Tip Losses. To produce the same thrust as for the ideal
case (a), the induced velocity (b) should be v;, 4 = v; /7 and consequently,

f(F) = 1/7, (2.66)
which, substituted into Eq (2.64), yields
Ringp, = 1/7e . (2.67)

The nondimensional disc area loading remains uniform (b) as in the case of no tip
losses {a), but its value as given by Eq (2.55a) will now be

8P = 4/t . (2.68)

Triangular Downwash Distribution with v==0 at r = 0. This type of downwash dis-
tribution can be described by the following expression for the f(7) function:

f(7) = vF (269

where the coefficient v should be determined on the condition that the total thrust
corresponding to the nonuniform downwash distribution and tip losses must be equal to
the ideal conditions (T;g = 21R? pv;q* ). Substituting w,4 for vz in Eq (2.50), inte-
grating within the limits of 0 to 7,, and equating the so-modified expression to the ideal
thrust; one would find that v = 1.414/7,* which, substituted into Eq (2.64) gives kjng, =
1.13/7 (c).

Substituting 7.4147/7, for f(T) in Eq (2.55a), one finds that

AP = (8/7,)7 . (2.70)

This means that in order to produce a triangular downwash distribution, the local
disc area loading should vary as asquare of 7 c).
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DOWNWASH DISTRIBUTION: ¥;=£(F)
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Figure 2.21 Hover king p, values and Apy variations for the following induced
velocity distributions:

{a) uniform with no tip losses

(b) uniform with tip losses

(c) triangular with or without tip losses

(d) proportional to\/7 with or without tip losses
(e) reversed triangular with no tip losses

(f) proportional to (1 — 7*) with no tip losses
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Other Patterns of Downwash Distribution. Rnqy values and AP variations corre-
sponding to the patterns of induced velocity distribution gven by f(F) =vNT, f(F) =
v(1 =), and f(F) = v(1 —F?) are also shown in (d), (e), and (r).

It can be seen that the nonuniformity of the downwash distribution and excessive
tip losses may push the induced power required to generate a given thrust in hover way
over its ideal value. However, some nonuniform downwash patterns are more detrimental

_than others. For instance, f(7) = v/ (d) results in kjng, = 1.05/T only, while those
with maximum downwash at the disc center and zero at the disc edge appear especially
unfavorable, showing the k;pg, factor to be as high as 1.47 and 1.29 in schemes {e) and
(f). \n those cases where some induced velocities are directed opposite to the general
direction of flow in the slipstream, the ;o values may te ever: higher.

It should also be noted that the 7 in (¢) and (f) does does not anpcar in either of
the expressions for f(7) or kjngy. This omission is U1e result of the low induced velocities
at the outer disc rim; therefore, the variation of 7, values within practical limits (0.9 < 7,
< 1.0) has very little influence on the level of the v coefficient and R;n gy, -

With respect to the AP distribution, it can be easily seen that in addition to the
previously discussed cases of uniform and triangular downwash distribution, the parabolic
distribution of (@) would require a triangular variation of AB,; for the reversed triangular
distribution of (e), the AP, variation should be proportional to (1 —7)?; and for the
f(F) = v(1 —F*) distribution of (f), AB, would be proportional to (1-7)%

5.4  kipg Values and Types of Span-Loading in Horizonta Fiight (Figure 2.22)

An analogy to the hovering case can be drawn here — once the type of downwash
distribution f,(%) is known (e.g., uniform, parabolic, or triangular), then f(X) = vf(%).
The value of ¥ can now be determined from the condition that thrust produced by the
f1(%)-type downwash distribution should be equal to that corresponding to the ideal
case. This approach will be applied to a few selected examples.

Uniform Downwash Without and With Tip Losses. It can be seen from Eq (2.65)
that for the ideal case when f,(X) = 1.0 and X, = 1.0, v= 1.0 and as expected, Rindp o =
1.0 also (a). If there are tip losses (Xg < 1.0) while the downwash still remains uniform,
then, contrary to hover, the thrust equality condition would lead to v = 1/X,? and vz =
Vidy, /Xe*. The corresponding induced power factor would be Kingy, = /%" as shown
in (b), and the span load distribution will retain its elliptical shape.

Triangular Downwash — f(X) = vX. The condition of equality of thrust expressed
in terms of ideal induced velocity and that given by Eq {2.59) with the integration limits
0 — X,, and X, substituted for 7 in Eq (2.562) leads to:

X,
v = 4/n [ 752 — X% d% (2.71)
0

which, integrated within the indicated limits, gives v = n/(4/3)%s® = 2.356/%,°. Substi-
tuting f(x) = vx into Eq (2.65) and integrating from X =0 t0 X =X, gives

Rindpo = 1.338/x4> . (2.72)
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¢ DOWNWASH DISTRIBUTION: ¥z =f(X)

f—-—— ——-—’ ;,= 1.0 ,

(0) \m V_X-=’.0_'o (C) | ;,< 1.0
lL lJ kindp o = 1- '~ 1 Vi =(2.386 /%, )%
!

l k]ndha = ’-338/;’2
— Ye < 1.0

OIHAT i @[T 22,

k”'dh o= 1.21

SPAN LOADING: oTz/d% = f(%)

S “ ] |
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Figure 2,22 Examples of Kindy, o Values and d T3/ dX variation in horizontal
flight for the following induced velocity distributions: (a) uniform with no
tip losses; (b) uniform with tip losses; (c) triangular with tip losses; and (d)
reversed triongular with no tip losses
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while the corresponding relative span loading (c), as obtained from Eq (2.61), will be

dT/dx = (1.5/x*)xV/1 — x*. (2.73)

Reversed Triangular Distribution — f(x) = v(1 —x). An example of the type of
downwash distribution where induced velocities decrease to zero at the tip is given in
(d). Similar to the previously considered case of hovering, the influence of span losses
can be ignored here, and it may be assumed that X, = 1.0. Under this assumption, the
condition of thrust equality leads to ¥ = 1.737, while the induced power factor becomes
kfﬂdha = 1.217. The associated relative span loading will be

dTx/dx = 1.106(1 — x)/1 — X%, (2.74)

As indicated in Fig 2.22, horizontal or more generally, forward flight, deviations
in the average downwash from its optimum uniform value may also lead to consider-
able losses in induced power. It should also be noted that some types of downwash
distribution, such as that exemplified by the triangular type, are especially damaging.

Although tip losses are always detrimental, their significance, like that of the hover-
ing case, is related to the basic shape of downwash distribution. They appear least detri-
mental in downwash types where induced velocity approaches zero toward the tips of
the disc.

Similar to the case of hover, the presence of an upwash within the generally down-
ward directed induced velocity field would contribute to a considerable increase of the
ki"dho values,

As to span loading associated with various types of downwash distribution, the
reader is referred to the lower part of Fig 2.22.

6. TANDEM ROTOR INTERFERENCE IN HORIZONTAL FLIGHT

6.1 The Model

An investigation of the induced power of non-overlapping or slightly overlapping
tandems in forward flight may serve as an additional example of the application of the
momentum theory to the basic problems of mutual rotor interference in forward flight.
To achieve the double goal of a better understanding as well as quantitative evaluation
of these problems, the tandem is modeled by two actuator discs, of the same radius R,
representing the rotors (Fig 2.23). Itis againissumed that the aircraft is statignary, while
a large mass of air moves past it at velocity —V (inverse of the speed of flight V).

Since the actuator disc does not affect the approaching fluid, it may be postulated
that—in analogy to the tandem biplane—the influence of the rear rotor on the front rotor
may be neglected. By contrast, the effects of the flow tube extending downstream from
the front rotor and entering the “sphere of influence” of the rear rotor represent the
physical concept of mutual rotor interference. It may be anticipated that the geometric
position of the rear rotor with respect to the streamtube affected by the front rotor, as
determined by 4, , would represent one of the most important parameters in the deter-
mination of induced power.
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W g “)

Figure 2.23 Representation of (a) slightly overlapping, and (b) nonoveriapping

tandems in horizontal flight

To facilitate the task, it will be assumed that the forward speed is high enough
to justify the small-angle assumption in determining deflection of the flow due to the
induced velocity; therefore, the rate of flow thorugh the rotor becomes almost equal to
the speed of flight (V ‘= V),

6.2 Axial Flow Velocities and induced Power

The average induced velocity of the front rotor (v#r), developing thrust (77,), can
be expressed in the same way as for the isolated rotor:

Vir = Ty /20R?p V. (2.75)

In the following section, it will be shown that the downwash velocity at the
trailing edge of the rotor attains its full far~downstream value equal to twice the average
induced velocity. Hence, it is logical to assume that the ajr approaching the rear rotor
already has a downward component equal to vy, i

The induced velocity associated with thrust Tre of the rear rotor will be

Vie = Tro/21R pV . (2.76)

Should the rear rotor be completely submerged in the slipstream of the front rotor,
the total axial component (V,) of the rate of flow through the disc associated only with
lift generation by both rotors will be

V.". = 2Vfr + Vr. . (2.77)

Consequently, the induced power (in Nm /s or ft-Ib/s) of the rear rotor will be

Pind,y = Tra(2ver + vyg), (2.78)
and the total induced power of both rotors becomes

Ping = [Ter ver + Tre(2ve + Vrel] . (2.79)
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For a particular case when the front and rear rotors are producing the same thrust,
and the latter is fully submerged in the slipstream of the front one, the induced power of
the tandem would be equal to twice that of the two isolated rotors producing the same
thrust.

However, in numerous practical cases, the rear rotor is not fully submerged in the
streamtube affected by the front rotor. This may be due to the geometry of the aircraft,
its trim position in flight, and finally, the downward deflection of its front rotor slip-
stream. In order to deal with all of these cases, a simplified picture of the interaction
between the slipstream of the front and rear rotors is conceived, imagining that the air-
streams penetrate each other in the manner shown in Fig 2.24.

SECTION
a—-a

Figure 2.24 Streamtube mix of two rotors

it may be anticipated that within those regions where the streamtube affected by
the front rotor does not penetrate into that influenced by the rear rotor, the downwash
in the unmixed part of the rear rotor streamtube will remain as given by Eq (2.76). In
those regions where the airstream influenced by the front rotor penetrates that influ-
enced by the rear one, Eq (2.77) is assumed to be valid.

Consequently, the induced power of the whole helicopter can be broken down
into three components and computed separately. The first one will be of the front rotor,
and will remain the same as for the previously discussed case.

Pindf, = Vf,Tf, . (2.80)

As far as the rear rotor is concerned, the part of its induced power that may be
“credited” to the nonmixed part of the rear-rotor airstream can be expressed as

Pind,,f,” = TraVra(Arq,"/"R2) . (2.81)

For that part where the two streams mix together, the induced power can be de-
termined as

Pindmm'.x = Trol2v¢, + Vra)(Aramix/"R” » (2.82)

85



Theory

where A,, . represents the mixed area, and Areree r€PTEsENtS the freestream (Fig 2.24).
The total induced power of the helicopter will be the sum of all three components:

Ping = Tyvg + (T,,/ﬂRz)[V,,A,,"“ + (v, + Vrc)Arem,-,] . (2.83)

For the particular case of rotors producing the same thrust equal to 7/2, the expres-
sion for induced power is reduced to the following:

Ping = (T*[aR*pV) [ + (1/41R* )(Are,,,, + 3Ar,.. )] . (2,84)

In order to convert Eqs (2.83) and (2.84) to horsepower, the results of the calcula-
tions conducted in S units should be divided by 735; or in English, by 550.

It should be realized that the above-considered induced power of the tandem con-
figuration is still for an idealized case, as it assumes uniform downwash distribution and
no tip losses. However, P;, ., as given by Eq (2.84) will be higher than the truly ideal one
corresponding to two isolated rotors, each developing a thrust of one-half 7.

6.3 The &;,, Factor

Similar to the &;n4, factor discussed previously in Sect 5.2, the Rindy, , factor can
be defined as a ratio of the induced power as given by Eq (2.84) to that of the ideal in-

duced power of two isolated rotors of the same radius, each developing a thrust equal to
one-half T:

Rindpo = Pingl2Pigl

5T
Performing the necessary substitution, one obtains:
Rind o = 2[4 + (I/41rR’)(A,,"" + 34, )] - (2.85)

It can be seen that for rotors located so that the centerline of the front rotor air-
stream passes through the hub of the rear rotor (4,, = 0), the kindy, , Would be equal to
2.0. However, when corrections resulting from tip losses are introduced, the ki"dho
factor for the case of 4,, =0 becomes higher than 2.

The graph plotted in Fig 2,25 shows the variation in the Rinay, , factor (including
tip losses) vs elevation of the hub of the rear rotor over the centerline of the front rotor
airstream tube as predicted by this momentum approach”.

For comparison, the ki"dno values are shown as computed for a non-overiapped
tandem on the basis of the Mangler-Squire theory®.

In addition, results representing an average of over 60 points obtained by Boeing-
Vertol in wind-tunnel tests of a universal tandem helicopter mode! are also shown in this
figure. The lower of the two Boeing curves represents direct total power measurements
(including blade profile drag contribution). The upper curve gives the induced power
ratios (true kingy, , factor values) which were computed by assuming that profile power
amounts to 25-percent of the total power. It can be seen that the kiﬂdho values predicted
by the simple momentum approach agree quite well with those obtained from the wind-
tunnel tests.
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SIMPLIFIED MOMENTUM CONCEPT

BOEING VERTOL
MODEL TESTS
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Figure 2.25 The kjnq4 factor for a tandem in horizontal flight vs rear-rotor elevation

7.  INDUCED VELOCITY DISTRIBUTION ALONG DISC CHORDS

Momentum theory can also provide some insight into such problems as induced
velocity distribution along the fore-and-aft rotor disc chords in horizontal flight.

To demonstrate the basic methodology of attacking this task, only a simple case
of an actuator disc having a uniform surface loading (Ap = w = const) over its entire
area is considered here, However, once understood, this approach can easily be extended
to include other cases where Ap varies over the disc area.

The general flow pattem is assumed to be similar to that shown in Fig 2.20, in-
cluding the assumption that Vj, ® v, . However, to facilitate the present study, spe-
cial coordinate systems and notations were introduced as shown in Fig 2.26.

sl

ACTUATOR DISC

Figure 2.26 Notations and coordinate systems for determination of the chordwise
Induced velocity distribution
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From this figure it should be noted that in addition to the X, ¥ coordinates, an
auxiliary scale § is introduced in such a way that its origin coincides with the leading
edge of a chordwise disc element dx wide and locatec at a distance x,.

In order to accomplish the task of determining induced velocity distribution along
an arbitrary chord located at a distance x,, from the fore-and-aft disc diameter, attention
is first concentrated on an infinitesimal element ot long, dx wide, and located at a dis-
tance §,, along the examined chord. The total length of that chord will obviously be
L, = 2\; RT —x,7. _

Thrust d T ;,,, developed by the dt dx element will be dT ' mn = wdb dx, where
w is the disc loading. According to the momentum theory interpretation developed in
the subsection of Sect 5.1 on horizontal flight, d 7'y, can be expressed as follows:

wdtdx = /R =y, Tdxp Vho20¥hop (2.86)

where 24/ R? —¥n® is the chord of the slipstream cross-section associated with the disc

strip located at x,,, and d"hOnm is the induced velocity at the element d¢dx.
Remembering that the radius of the slipstream cross-section for Vho ® Vpo is the

same as that of the disc; i.e., vV R? — y,> = /R® — x,7, Eq (2.86) can be rewritten

as
Whopm = (WI40Vyo/RE — x,7)d¢. (2.87)

Since the point at {,, was arbitrarily selected, then it may be stated that at any point of
the disc chord located at x,,, Eq (2.87) is valid, and consequently,

(Vho!dS), = w/dpV, VR — x,2. (2.88)

It may be imagined that on the scale of infinitesimal dimensions, the ‘‘far-down-
stream’ distance from a point nm where dvpo Occurs can be expressed as a (not too
large) number / of elementary lengths d$. This means that the value of dvpo would be
doubled at a distance jd{ downstream from the point where it was first generated.

Now, looking upstream from a point located on a strip n at a distance {,,, one
would find that all the elements of that strip from the leading edge to a point located
at §,, — jdt developed induced velocities which are already twice as high as those given
by Eq (2.87). In other words, the slope of the induced speed growth would be twice
as high as that given by Eq (2.88).

It may be stated hence, that the total induced velocity occurring at point nm will
be

Yhopm = z(dvha/d“)n (§m — Jd8) + (tho/d”,,}'df- (2.89)
Neglecting the infinesimals vs the finite quantities, Eq (2.89) becomes
Yhorm = 2(tho/d§)n§m . (2.90)

However, {, can be expressed as the half<hord length v/R? — x,? times ?’m, where
g‘m = ;m/ R2 - Xllz'
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Expressing the induced velocity derivative in Eq (2.90) according to Eq (2.88) and
substituting {m\/R2 — Xxp? for $m, the following is obtained:

Vhoy = (WI20Vho)im - (2.91)

It can be seen from this equation that the influence of the spanwise location of the
chord (x,) has disappeared, which means that the expressed relationship is valid for any
disc chord. At the leading edge of the disc, the induced velocity is zero and then grows
linearly until it reaches a value equal to the average induced velocity of horizontal flight
(Eq (2.36)) along the whole lateral diameter of the disc, where {,, = 1.0. Along the
trailing edge, the induced velocity becomes twice its average value (§,, = 2.0) as shown in
Fig 2.26.

8. CONCLUDING REMARKS RE SIMPLE MOMENTUM THEORY

The application of physicomathematical models based on the simple momentum
approach to thrust generation in both axial and oblique translation has provided some
understanding of the basic relationships between such important design parameters as
disc loading and power required per unit of thrust. A satisfactory interpretation of power
required in climb, in both vertical ascent and forward translation, and some understand-
ing of the partial-power and no-power vertical descent phenomena have been achieved;
although in the latter case, it became clear that the physical assumptions required in the
structure of the model based on the simple momentum approach were not completely
convincing. The influence of nonuniform downwash distribution and tip losses on in-
duced power was shown. Qualitatively valid methods for estimating induced power losses
of tandem rotors in forward flight were developed. Finally, some insight was gained re-
garding chordwise induced velocity distribution at the disc in horizontal flight.

It may be stated hence, that the simple momentum theory contributes to a better
understanding of many basic aspects of performance of rotary-wing aircraft. Further-
more, many performance predictions (e.g., vertical flight, forward flight, and average
downwash velocity at various tilt angles of the rotor) can be performed by substituting
proper conceptual models based on the momentum theory for actual helicopters. In
addition to obtaining quantitative results which are often sufficiently accurate, the
momentum approach may provide a clarity of the overall picture that could be lacking
when more complicated theories are applied.

However, the presently discussed theory encounters serious limitations in providing
guidance for rotor design, as it singles out disc loading as the only important parameter.
Consequenly, it does not provide any insight into such rotor characteristics as ratio of
the blade area to the disc area (solidity ratio, o), blade airfoil characteristics, tip speed
values with all the associated phenomena of compressibility, etc. Even when discussing
the influence of nonuniformity of induced velocity and tip losses on the &;,¢4 factor in
hover and forward flight, the simple momentum approach did not provide a physical
concept that could explain the nonuniformities of downwash velocities or the presence
of tip losses.
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In order to be able to investigate the influence of such rotor design parameters as

blade geometry (planform, airfoils, and twist), airfoil characteristics, solidity ratio, and
tip speed on helicopter performance, a new physicomathematical model reflecting all of
these quantities must be conceived. The combined biade element and momentum theory
considered in the next chapter provides a more refined model.
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CHAPTER 111

BLADE ELEMENT THEORY

The concept of modeling rotor blades through an assembly of aerodynamically
independent airfoil elements is developed, and then combined with the momentum
theory in order to determine flow conditions at each element. This approach is first
applied to axial translation (with hover as a limiting case) of single and overlapping
tandem rotors, and then is extended to include forward regimes of flight. In this way,
a more refined tool for complete performance predictions of a helicopter, and a better
design guide than that offercd by the momentum theory alone is provided.

Principal notation for Chapter 111

Fooo0

> x> >
3
Q

<

dPO0vTveX~

area
aspect ratio

section lift-curve slope

number of blades

wing or body drag coefficient

wing or body lift coefficient

rotor power coefficient: Cp = P/nR?p V>
rotor torque coefficient: Cq = Q/nRp V,?
rotor thrust coefficient: Cy = T/nR?pV,?
chord

section drag coefficient

section lift coefficient

section moment coefficient

blade area power coefficient

blade area torque coefficient

blade area thrust coefficient

drag

diameter

equivalent flat plate area

horsepower

height

ratio of actual to induced power

vertical download coefficient: &, = T/W
lift

Mach number

overlap

power

torque

rotor radius

Reynolds number

9

m?, or 12

rad?, or deg™’

m, or ft

N, orlb

m, or ft

m?, or ft?

75kGm/s, or 550 ft-lb/s
m, or ft

N, orlb

Nm/s, or ft-Ib/s
Nm, or ft-lb
m, or ft
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~

EHDEBADE >IN ADL®RIEITICICI N

Subscripts

a
ax

eq
fo

ho

ind
inp

oy
par

radial distance

speed of sound

thrust

blade taper ratio: tr = ¢;/c;
velocity of flow approaching the blade
velocity in general

downwash velocity

weight

disc loading

equivalent flat-plate area loading
angle-of-attack

flapping angle

increment

small, but finite, increment of distance
airfoil sweep angle

ordinate

efficiency

blade section pitch angle

inflow ratio

advance ratio: u= V/V,

air density

rotor solidity ratio: o = b¢ R/nR?
inflow angle

azimuth angle

rotor rotational speed

angular velocity

aerodynamics
axial

blade

climb
effective
equivalent
forward
hover
horizontal
inboard, or initial
ideal

induced
inplane

lift

zero station
overiap
parasite
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m, or ft
m/s, or fps
N, orib

m/s, or fps

m/s, or fps

m/s, or fps

N, orlb

N/m?2, or lb/ft?
N/m?, or Ib/ft?
rad, or deg

rad, or deg

m, or ft
rad, or deg

rad, or deg

kg/m?, or slug/ft®

rad, or deg
rad, or deg
rad/s
rad/fs

station
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pr profile

R rotor

r station r

res resultant

rot rotational

rr rear rotor

t tip

th thermal

tot total

tr transmission

v ultimate

1 perpendicular

] parallel
Superscripts

- nondimensional
~ average

1.  INTRODUCTION

The purpose of this chapter is to construct a physicomathematical model of the
rotor in order to eliminate or, at least,to alleviate the previously-discussed limitations
of the momentum theory.

The blade element, or strip theory, provides a model which will permit one to
determine, as precisely as possible, aerodynamic forces and moments acting on various
segments of the blade. This is done by imagining that the blade is composed of aerody-
namically independent, chordwise-oriented, narrow strips or elements.

From purely geometric considerations, it is relatively easy to determine the total
velocity of air flow approaching any blade element for any given flight condition, as well
as the component of that flow perpendicular to the blade axis. If information regarding
values of the lift, drag, and moment coefficients existing at each blade tip could somehow
be obtained, then knowing the chord lengths of the strips and the magnitude of the flow
velocity component perpendicular to the blade axis, the lift,drag, and pitching moment
per unit length of the blade span can be computed. Integrating (either graphicaly or
numerically) those unit loads over the entire blade span, the total lift, drag or, more
important, torque about the rotor axis of rotation, and pitching moment experienced
by the blade as a whole can be obtained.

Hence, it is clear that a precise determination of aerodynamic coefficients at
various blade stations becomes the key to the successful application of the blade element
concept.

Attempts to obtain this information were first made in the so-called primitive
blade element theory, developed almost entirely by S. Drzewiwcki between 1892 and
1920 (Ref 1, p. 211),

93



Theory

At that time, it was commonly accepted that the angle-of-attack of a blade section
was the angle between the zero-lift chord of a particular section and the normal (perpen-
dicular to the blade axis) component of flow resulting from the translation of the rotor
as a whole and rotation of the blade about the rotor axis. The role of local induced
velocity was completely ignored in this approach.

Knowing the so-defined section angle-of-attack, it was further assumed that lift and
drag coefficients experienced by the blade section would be the same as those of a fixed
wing of “proper aspect ratio’' at the same angle-of-attack. However, an uncertainty still
existed as to what should be regarded as the proper aspect ratio. In this respect, various
authors suggested aspect ratios ranging from AR = 6 to AR = 12, while others considered
the actual blade ratio as being most representative. The uncertainty as to the true angle-
of-attack at every element of the blade constituted a serious logical drawback of the rotor
model based on the primitive blade element theory. Along with a better understanding of
the two-dimensiona (sectional} airfoil characteristic, it became clear that if the complete
pattern of air flow (including induced velocities) in the immediate vicinity of the blade
element were known, then the forces and moments acting on that element could be
accurately predicted using sectional coefficients ¢y, ¢4, and ¢, obtained after due con-
sideration of the existing Reynolds and Mach numbers and steadiness of the flow.
Indeed, the entire current philosophy of predicting rotor performance and airicads can
be characterized as an effort to depict, as accurately as possible and at every instant of
time, the flow fields in the immediate vicinity of the blade elements.

Combining the blade element and momentum theories discussed in this chapter
probably represents one of the simplest ways of finding time-average induced velocities
at various points of the rotor disc. Although this represents a definite step in the right
direction, it should be realized that the proposed approach can not account for instan-
taneous flow changes. Consequently, its usefulness is greatly limited when dealing with
the aeroelastic and some airload problems where knowledge of the variation of forces
and moments with time is essential. By contrast, the combined blade element—momentum
theory may offer simple, but sufficiently accurate, computational methods for many
practical tasks of performance prediction. This is especially true during the concept-
formulation phase of preliminary design of rotary-wing aircraft, Here, the main value of
this theory clearly lies in its ability to indicate the influence, on helicopter performance,
of such important design parameters as tip speed, rotor solidity, blade planform, twist,
and airfoil characteristics in addition to disc loading whose significance was stressed by
the momentum approach. All of these relationships, should provide a valuable guide in
the process of aircraft optimization for any set of mission requirements.

2. AXIAL TRANSLATION AND HOVERING

2.1 Basic Considerations of Thrust and Torque Predictions

By analogy with the momentum theory, basic concepts of the blade element theory
will be initially examined using the case of a rotor in axial translation in the direction of
thrust (climb).

Consider that the blade of a rotor of radius R is composed of narrow elements
dr = RdT wide, having achordc, an incidence (pitch) angle with respect to the rotor
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plane 8, and a defined airfoil section. In general, these three quantities may vary along
the blade span or, in other words, may depend on the radial position of the blade element
as defined by r = R7 (Fig3.1).

PARALLEL TO ROTOR DISC 4 e

NOTE: THE BLADE ELEMENT IS SHOWN STATIONARY WHILE THE AIR FLOWS PAST IT

Figure 3.1 Blade element concept

The rotor is composed of b blades, and is assumed to be turning at a rotational
velocity = V,/R (where V, is the tip speed) while moving along its axis in the direc-
tion of thrust, at a speed V.

If the pitch angle; i.e., the angle between the zero liftline of the element and the
rotor disc, of an element located at radius r is 6,, its angle-of attack a,, as shown in Fig
3.1 (with r subscripts omitted ), will be:

a =6, — (¢1, + ¢2,)
where ¢ is the angle due to the rate of climb ¢;,_ = tan™ (V. /24 and ¢, is the induced
angle: ¢z, = tan” (v, [SUr).
The angle-of-attack of the element at station r can now be expressed as
a, = 6, — tan” [(Ve + v,)/S¥] (3.1)
or in those cases where v, and v, are small in comparison with 27,

a, =6, — (Vo + v,)/Qr (3.1a)

where, of course, all angles are expressed in radians.
If the induced velocity at some radius r were known, it would be possible to esti-
mate accurately the lift and drag of the blade element using section coefficients. The
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section lift coefficient ¢y, = g, a,, where a, is the slope of the lift curve for the airfoil
of the considered blade element. The g, value, of course should correspond to the opera-
tional conditions of that particular blade element; i.e., its Mach and Reynolds numbers
as well as the influence of unsteady aerodynamics should be considered.

The above-mentioned aspects, as well as other phenomena affecting airfoil char-
acteristics in the particular environment of rotary-wing operation, will be discussed in
Ch VL.

The magnitude of the lift (d L, 1 U,) experienced by the blade element of width
dr and chord ¢, will be:

dL, = ¥pa,a.Ulc,dr. (3.2)

When V. and v, are small in compariscn with Qr, which is often true for the
working part of the blade, U, = Qr. Therefore, substituting Eq (3.1a) for a, in Eq (3.2),
it becomes

Ve

L, = dapfo - Lot ¥ 2
r arp v, P c (S dr. (3.3)

The elementary profile drag (de,,IlU,)experienced by the blade element at radius
r will be
dDy,, = %pcg,Ulc,dr (3.4)
or, assuming that r = U,:
dDp,, = Ycg,6(82r)c dr. (3.5)
Consequently, the elementary thrust (d7,) will be
dT, = dL,cos ¢, — dDp,, sin ¢, © (3.6)

and the corresponding elementary torque is

dQ, = (dL,sin¢, + dDp, cos ¢,)r (3.7)
where ¢, is given by the rel—a'tionship
tan ¢, = (Vo + v,)/2r.

When ¢, is small,

tan ¢, = sin ¢, = ¢,,

and
dT, = dL, — dD,[(V. + v,)8r]. (3.8)

For the working part of the blade, usually, D, {{ Vo +v,)/S2r] <€ dL,, and Eq
(3.8) becomes

a7, = di,. (3.8a)
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Similarly, the simplest formula for the elementary torque wil! be:
dQ, = {dL, (Vo + v,)[Qr + dDp, |1 (3.9)
or, in light of Eq (3.8a):
dQ, = [dT (V. + v,)|Qr + dDg,,]r. (3.9a)

Remembering that elementary power (dP, in Nm/s, or ft-Ib/s) required by the con-
sidered blade element is

dP, = dQ, 8
and substituting Eq (3.9a) into the above relationship, dP, can be expressed as follows:
dP, = dT, (Ve + v,) + dDp, rS. (3.10)

It can be noticed from Eq (3.10) that the power required by a blade element in
axial translation in the direction of thrust (climb) contains two terms previously identi-
fied in the momentum theory; namely, (1) d T,V ; i.e., power associated with an axial
translation at a speed Vg, and (2) d7,v,; i.e., power associated with induced velocity
{induced power). However, a third term that was not present in the momentum consider-
ations appears in Eq (3.10). This is dD,,,rrSl which, of course, represents the profile
power required by the blade element moving through the air at a speed r{2.

2.2 Combined Blade-Element and Momentum Theory

Induced velocity (v, ) for various values of 7 can be determined by combining
blade element and momentum theories as probably originally proposed by Klemin?.
This would provide the missing link for a more accurate estimation of d7,, dQ,, and
hence, dP, values.

Using the notations of Fig 3.2, the thrust (d7,) produced by an elementary annulus
of width o r and radius 7 can be expressed—in analogy to Eq (2.49)—according to the
momentum theory as

PLAN VIEW SIDE.VEW

Figure 3.2 Elemertary annulus of the rotor disc
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dT, = 4np(Ve + v, )v,radr (3.11)

where v, is the induced velocity at the rotor disc.

On the other hand, according to the blade element theory and under the assump-
tions discussed in the preceding paragraphs, the elementary thrust experienced by &
number of blades can be expressed as

dT, = %q,(Qr)?poc,dr. (3.12)

Using the nondimensional notation (7) for radial location as expressed in Ch |I, the
following nondimensional quantities are obtained:

r = RF
dr = Rdr (3.13)
rQ = V7

where V, = R is the tip speed.
Equating the right sides of Eqgs (3.11) and (3.12), introducing the notations as
given in Eq (3.13), and remembering that if the pitch angle at station 7is 87, then

c1; = af(6F — (Ve + vi) V7],
and the following basic equation is obtained:

8TRV; + (V,arber + 8nRV Wi+ Vi Vearber— V2 azbesf0y = 0. (3.14)

The above equation can be solved for the induced velocity at station 7:

i e z - —
ve = V‘ _(a,bCr + ZE) +1/(arbcr + i) + a7 bepFl; _ azber Ve . (315)
16aR 2Vi 16nR 2V, 8nR &nRV,

In hovering, when V. = 0, Eq (3.15) is simplified to the following:

2 L]
azber arbe; azbez7or
v- =V —_ <+ + . (3.16)
¢ 167R 167R 87R

If, in addition, the blade is of rectangular shape (chord ¢ is constant), then the
rotor solidity @ can be expressed as follows:

0 = bcR/nR? = bc/aR;
hence,
bc = onR.

Further assuming that the lift slope @ may be considered the same for the whole
blade span, Eq (3.16) becomes:
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2 - 1
NV 2+/<£> +aor0,— .
r f 16 16 8 3.17)

Knowing the variation of the blade twist angle with its span, 6;(7), the blade pitch
angle at any station 7 can be expressed analytically. For example, in the case of linear
twist:

0;‘ = ao - etot?

where 8, is the pitch angle at zero station, while 8,5, expresses the total angle of the
washout. Introducing the above expression into Eq (3.17), the formula for downwash
distribution of a linearly twisted rectangular blade is obtained:

- ag ao\2 aoF _
v; V,[— P +,/<-’—6) + ?<eo - emr):l (3.17a)

Egs (3.15) to (3.17a) permit one to compute downwash velocity (v7) in vertical
ascent, or in hovering for a rotor with any number of blades (b) of any planform and any
pitch distribution. Knowing the true downwash value at any blade station 7, it is possible
to find (with the help of two-dimensional airfoil characterisitics) the true values of thrust
and torque experienced by every blade element (see Eqs (3.3), (3.4), (3.8), and (3.9)).
Furthermore, one may acquire some feeling regarding performance advantages (magni-
tude of the k;,4 factor) either in hovering or in climb resulting from particular combina-
tions of the chord (planform) and twist distribution. It would aiso be nossible to learn
about the section lift coefficient variation along the blade span [(c; = £ (7)].

Section lift distribution along the blade is illustrated by the following example for
the hover case of a rotor with rectangular, untwisted blades. For 6, = 0, Eq (3.17a)
can be presented in a nondimensional form as (vs/V,) = f(F).

vy aa+1/(7102+aue_'
- = - — - — 68,7 .
Ve i6 16) 8 ° (3.18)

Assuming that a = 5.73/rad, several values of 8,: 6, = 4° = 0,07 rad, 8° =~ 0.14
rad, and 12° = 0.21 rad; and two solidity ratios of o = 0.05 and 0.70; v,/V, is computed
from Eq (3.18) and shown in the lower part of Fig 3.3.

Knowing that v;/V, = f(7), the angle-of-attack at a station 7 can be obtained from
Eq(3.1),

ay = 00 - fﬂﬂ.’[(V;/Vt )/F]
and consequently,

Cg; = ga; = 0{00 - tan"[(v;/V,)/f]}. (3.19)
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C" -— 0 =0,10
1.0+ - eman 0.05
Cl"(ﬂ
- -— a— = [+]

0.08
0.101 (Ve = ()
vV t)'

Figure 3.3 Examples of sectional lift coefficient and relative induced
velocity distribution along the flat blade

The above-determined section lift coefficients are shown in the upper part of Fig 3.3.

Evaluation of the Conceptual Model. The physicomathematical model of the rotor
based on the combined momentum and blade element theory provided the means of
determining radial distribution of time-average induced velocities of a rotor with blades
of aetined geometry and known airfoil-section characteristics. This, in turn, would permit
one to calculate the thrust developed by the rotor, both in hovering and climb, as well as
the corresponding power required in those regimes of flight. Also, knowledge of the sec-
tion lift distribution along the blade span at various 6, values should give some idea re-
garding the appearance of stall at high collective pitch angles.

However, the above-discussed model has not given any indication regarding the
existence of tip losses. Also, the inflow and wake structures still remain undetermined,
except for the information obtained from the momentum theory that downstream,
the slipstream should contract because of the increase of the induced velocity to twice
that of its at-the-disc value.

Nevertheless, in spite of all the above shortcomings, the combined momentum and
blade-element theory provides enough insight into the operation of realdife rotors to
warrant its application to performance predictions of rotors in axial translation, and
especially, in hovering. Presenting some performance aspects in nondimensional form is
often more convenient than dealing with dimensional qualities; therefore, the most
important dimensionless coefficients used in rotary-wing aerodynamics are discussed
below.

2.3 Nondimensional Coefficients
Similar to fixed-wing practice, nondimensional thrust and torque, or power coeffi-
cients of a rotor can be defined on the basis of: (1) either disc or total blade areas,

(2) air density, (3) the square of characteristic velocity (tip speed V¢ ), and (4) in the
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case of torque, rotor radius (R). Nondimensional coefficients based on the disc area
(mR?) are defined as follows:

thrust coefficient Cy = T/nR?p Vel
torque coefficient Cqg = Q/nR?pV?
power coefficient Cp = P/nR*pV,?

and those referred to the total blade area (A ,):

m

thrust coefficient ¢, = T/ALpV, = Cy/0
e = Q/ALRpV} = Colo

= PlApV = Cplo

torque coefficient ¢

power coefficient c

The dimensional quantities in the above expressions are either in Si or English
units, as indicated in the Principal Notations at the beginning of this chapter.

In addition to the above a priori-defined coefficients, expressions for the average
lift coefficient, CTg,; the average profile drag coefficient, T,; and the average total drag
coefficient th for hover can easily be developed.*

Average Lift Coefficient. Within the validity of small angle assumptions (d7 = dL),
the thrust of a biade element cRd7 located at r = R7 can be expressed as

dT = %pbcRe V2 7 dF.

Assuming that ¢y along the whole radius is constant and equal to Cg;,, and remem-
bering that bc R = anR?, the above expression can be integrated from 7 = Oto7r=1.0;
leading to

s, = 6T/onR?pV,? = 6Cylo = 6C,. (3.20)

However, if a cutout exists at the blade root so that the inboard station 7; # 0, and
tip losses reduce the effective relative rotor radius to 7y, then integration of dT would be
performed from 7j to 7, resulting in the following:

G, = 6T/onRpV2 (7> — 7). (3.20a)

It can be seen from Eq (3.20c) that a customary cutout (usually 7; < 0.2) would
have little effect on the T, , level. By contrast, tip losses may noticeably influence the
average lift coefficient. For instance, 7, = 0.95 would increase €z, by about 13 percent.

Assuming uniform distribution of downwash velocity over the entire disc, still
another useful expression for €4, can be developed by substituting 2 relationship based
on ideal induced velocity (v,,) for T in Eq (3.20); i.e., T = 27R? pVig .

€y, = 120jg/V) o, (3.21)

*L ower-case letters are used for g, and 'Ed in order to emphasize their relationship to
section coefficients, while fgh is obviously based on the total drag of the blade, including
the induced drag.
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Conversely, for a given value of the average lift coefficient, the corresponding
(vig/ V) ratio would be:

vig/V,) = 0.289\/?:'gh 0. (3.21a)

Average Profile and Total Drag Cog_fﬁcienls. Similar to the average lift coefficient,
the average profile (Cy) and total drag (Cp) coefficients can be obtained. The contribu-
tion of b blade elements located at 7R to the rotor profile power (in Nm/s or ft-lb/s)
will be

dP,, = %pbCR cyV 3P dF. (3.22)

Again assuming that ¢ is constant along the blade and is equal to ¢, the above
equation is integrated within 7 = 0 to 7 = 7.0 limits in order to obtain profile power
in hovering (Pp,, ):

Pory = (1/8)onR? pV3E, (3.22a)
and consequently,
Cqg = 8Pp,, lonR?p Vg2, (3.23)
The total average drag coefficient (Eph) by analogy with Eq (3.23) will be
Cp, = 8Pg plonRpv 2 (3.24)
where P, represents the total rotor power in hovering (in Nm/s or ft-lb/s).

2.4 Rotor Profile Power in Axial Translation

Determination of E'd". When integrating Eq (3.22a) it was assumed that the pro-
file drag coefficient and blade chord were constant along the blade span. Actually, one
may expect that the blade chord ¢ and usually, the profile drag coefficient Ca, vary along
the blade span. This latter variation is caused by the fact that at any particular station T,
Cog3 = f(R,;, Mz, ca, etc). Here, the etc could mean airfoil section geometry, surface
roughness, special boundary layer conditions as influenced by the centrifugal accelera-
tion field of rotating blades and, in some special cases. the application of BLC. All of
these parameters may be dependent on 7, thus making Co; =F (7). Consequently when
integrating Eq (3.22), ¢y and ¢; should be retained under the sign of the integral:

1.0
Por, = BBRo V,? f C7Cq: T2 dF. (3.25)
°

Equating the right sides of Eqs (3.22a) and (3.25), the following expression for the
equivalent Z4 in hovering or any axial translation is obtained:

1.0

2:-dh = (4b/01TR)j C;Cd;?3 dar. (326)
0
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When ¢z = ¢ = const, Eq (3.26) becomes

g, =4 f Co=F oF. (3.262)
]

The integration indicated in Eqs (3.26) and (3.26a) is usually either numerically
or graphically performed because of the complicated nature of the cg; = f(r) relation-
ship.

tt should be mentioned at this point that since blade surface roughness is one of the
most important parameters influencing ¢y values, some allowance should be made for
the increase in profile drag by multiplying the ¢y, . values from airfoil wind-tunnel data
by a roughness coefficient. Depending on the blade construction and state of the blade
surface, the magnitude of the roughness coefficient may vary within rather wide limits—
from 1.15 for smooth blades to 1.5 or even more for sand and/or rain-eroded ones (see
Ch U, Vol Il). For laminar airfoil sections which are very sensitive to surface roughness,
roughness correction factors may exceed 1.5 whenever the blades are in less than perfect
condition. Details for accounting for the influence of such other parameters as Ry and M
on ¢y, can also be found in Ch II of Vol Il.

Approximate Determination of Ty, . Because of the complexity of finding Cdpx
from Eqs (3.26) and (3.26a), the following approximate method can often be used.

1. For given conditions of pitch angle, tip speed, and air density, the section lift
coefficientcy , ¢ is determined at7=0.75.

2. Assuming that the lift coefficient obtained in 1 also exists at 7= 0.8, the corre-
sponding ¢4 value is computed, taking into account the Reynolds and Mach numbers
existingat 7= 0.8 and g ..

3. The cg determined in 2 is corrected for blade surface roughness, multiplying
the cg,,;, component of the total profile drag coefficient by a suitable correction factor.
Assuming that this cy value exists along the whole blade, the profile power is computed
from Eq {3.22a),

{t should be emphasized, however, that since the profile power increases due to
compressibility may be quite considerable (see Ch Vlof this volume, and Ch II, Vol 11),
the shortcut method may miss the blade area (mostly outboard) where rapid profile
drag occurs, The problem of compressible drag should be thoroughly investigated if there
is any possibility that an unfavorable combination of lift coefficient and Mach number
may exist. This should be done throughout the whole operational range of the rotor, and
especially when high thrust and elevated tip speed is combined with low air density and
temperature,

While lowering the tip speed (reduction of M) may appear as the simplest way of
alleviating the compressible-drag problem, in some cases this approach may prove dis-
advantageous as the higher blade-element lift coefficients ¢g; resulting from a reduced V,
—even in combination with the lower Mach number—might still produce higher drag
coefficients than those associated with the original ¢p- and M combination.
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2.5 Tip Losses

While a clearer insight into the physical and computational aspects of tip losses
will be gained through the vortex theory discussed in the next chapter, the existence of
this phenomenon should be acknowledged even when the rotor thrust is calculated by
the combined momentum blade-element theory. This is usually done by assuming that
the predicted aerodynamic lift extends up to some blade station; i.e., to the so-called
effective blade radius (7 , = R7,) and ends abruptly at that station.

There are numerous theoretical or empirical formulae for predicting tip losses.
For instance, Prandt! gives a simple, but only approximate formula for propellers which
is based on the vortex theory {Ref 1, p. 265):

ro=1- (1386007 + 2) (3.27)

where b is the number of blades, A is the inflow ratio of the propeller, and A = V,, /V,i
Vax being the axial velocity at the disc.
Some authors simply recommend expressing the effective radius as:

re = R — 0.5¢

where T is the average blade chord.
Dividing the above equation by R, the following is obtained:

fe = 1 — 0.5(no/b). (3.28)
Sissingh® proposes the following expression:
Te = 1 — ¢l + 0.7tr)}/1.5R

where ¢, is the chord length at the root end and (7 is the blade taper ratio.
By analogy with the preceding case, the above expression for rectangular blades can
be presented as follows:

fa =1 — 3.560/b. (3.29)

Wald* recommends another expression which, for a rotor with rectangular blades,
can be written as follows:

fe =1 — 1.98VCqlb. (3.30)

For comparison, tip losses as given by Egs (3.27) through (3.30) were computed
for a hovering rotor at SL, STD; out-of-ground effect where w = 40 kG/m* = 392 N/m?;
Ve=200m/fs; b=4; and 0 =0.70. The results are shown in Table i11-1.

It can be seen from this table that 7, values calculated by different formulae are
somewhat different. However, their average amounts to 7, = 0.952 and this, or an even
slightly higher value of 7, = 0.96, appears as a reasonable number for the approximate
tip-loss factor in hovering.

2.6 Rotor Thrust and Power in Climb and Hovering

Knowledge of induced velocity distribution along the blades and hence, of sectional
lift coefficients permits calculation of the thrust of the rotor using the blade element
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EQUATION re
{3.27) 0.978
(3.28) 0.961
(3.29) 0.912
(3.30) 0.956

TABLE 111-1

approach, However, once v = f(F) has been established, it may often be more convenient
to use the momentum theory in estimating the total thrust 7.
After substituting R7 for r, and Rd7 for dr, Eq {3.17) becomes

dT = 4aR?p(V, + vvidr

and consequently,

e

T, = 41Rp [(vc + V) vFdF. (3.31)
7
while, in hovering,
Te
7, = 4,,R2pf 27 dF. (3.32)
7

When induced velocity vs blade span is given in nondimensional form, v/V,, Eq
(3.32) becomes:
Te
Ty = 4RV [ (v ar. (3.32a)
7;

In all of the above three equations, 7; is the inboard station where the actual blade
begins. Since the analytical relations between v and 7 are rather complicated, a computer-
ized numerical or graphical integration is more suitable for practical purposes.

A scheme of graphical integration of Eq (3.32a) is shown in Fig 3.4. In this case,
since the induced velocity is expressed in a nondimensional form, the area A can be
used in both the S| and English measuring systems, while R? p V2 is expressed in the
proper units.

In the case of a rotor having rectangular untwisted blades the (v/V,) = f(r) is ex-
pressed by the relatively simple relationship of Eq (3.18). In addition, if the influence of
M and R, on the variation of the lift slope along the blade radius can be neglected (i.e.,
it may be assumed that the section lift slope @ = const for ali stations); then Eq (3.18)
is introduced into Eq (3.32a) and, for simplicity, the integration is performed within the
0 to 7y limits with the following results:
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Figure 3.4 Graphical integration of thrust

4A(2A* — 3B7,(AT + 3;,)3']
158%
or (3.33)

4A(24% — 38F, )W]

158°

T =4nRpV? [A’F,,2 + (1/3)87,° +

Cr= 4[A’F,’ + (1/3)BF +

where A = 0a/16, and B = 0ab,/8.

It should be noted that the terms containing A% were omitted in the above two
equations. This is permissible as long as 8 is not approaching zero, which obviously means
that the blade pitch angle is 8, » 0.

For a rotor having linearly twisted blades, expressions for 7 and Cy can be ob-
tained in a way similar to the preceding case.

Maximum Thrust in Hovering. In some practical problems, it may be important
to know the maximum thrust that can be obtained from a given rotor, assuming that
the power available is sufficient to retain a given tip speed. To solve this problem, it
would be necesssry to figure out which sections of the blade would stall first and at what
pitch angle. The blade pitch angle corresponding to the beginning of stall can easily be
found by the following procedure.

The maximum attainable section lift coefficient (cg,,,,) at various stations 7 should
be estimated by first taking into consideration the blade airfoil sections, the effect of
Reynolds and Mach numbers and finally, all other secondary effects such as unsteady
aerodynamic phenomena (should this be justified by the rate of the pitch change) and
boundary-layer interaction.

It should be noted that for the rectangular or moderately tapered blade, R, in-
creases toward the tip, while M becomes higher regardiess of the blade planform. The
first of these increases nearly always leads to higher c¢,,,, values, while elevated Mach
numbers, which may be encountered in the outer portion of the blade, tend to reduce the
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Ctmax (see Ch VI). As a result of these conflicting influences between Reynolds and
Mach numbers, ¢ g, ,, Will first increase along the radius until it reaches its maximum
at some blade station, and then its value will decrease toward the tip. The character
of this variation is shown as a solid line in Fig 3.5.

< T

|
cg vs T (for given 00) :
|
|

' [
1

—

e 1.0 >

Figure 3. 5 Determination of the blade stdll regions

Using the procedure leading to Eq (3.19), the section lift-coefficient values for
some assumed representative collective pitch value (6,) can be calculated, and after
plotting them vs 7 (broken line in Fig 3.7), one could see, at this particular 6, level,
whether there would be a possibility of stall and if so, within which segment of the blade
it would occur.

Blade stall can also be studied by determining the local pitch angle at the various
blade stations at which stall would take place.

Equating the right sides of Egs (3.11) and (3.12), assuming V. = 0 (for hover),
and remembering that r = R¥ and dr = Rdr, the relationship between induced velocity v/

at a station 7, and lift coefficient of the blade element ¢z can be obtained:

vi = V,/(1/87)(bc/R)q - 7 (3.34)
or

vlV, = \/(7/81:)(bc/R)c,;F ) (3.34a)

For rectangular blades (bc/R = no), Eq (3.34a) becomes

V;/Vr = V(’/g) OC'; r. (3.34b)

When c¢,,, reaches its maximum value, so does the (v;/V,) ratio. Consequently,
within the limits of validity of small-angle assumptions, the pitch angle of the blade ele-
ment at station 7 corresponding to the beginning of stall will be

O7pr = Comaxy/07 + (VelVippyol T (3.35)

After the 0;“ values have been calculated for several blade stations, one will have a
fairly clear picture of the pitch angle 6, (of the blade as 4 whole) where stall begins.

107



Theory

If the maximum possible thrust from a biade of given planform and airfoil sec-
tion is required, it is possible to select a twist distribution wherein the section lift co-
efficients simultaneously reach their maximum values over the largest possible part of
the blade. When the blade is non-twisted (no washout), it is obvious that the lowest value
of 07:: is the blade pitch angle at which stall begins.

Using the previously established formulae, the rotor thrust value corresponding to
the beginning of stall can now be calculated from the known v;/V, = f(F) relationship.
The so-obtained thrust can be assumed as being close to its maximum value. However,
a more thorough study of 7,45 can be made when T is calculated for several values of
0, greater than the 6, at the beginning of stall. In this case, at those blade stations
where the local stall pitch angle 67, has been exceeded, the downwash velocity v7 should
be computed from Egs (3.34a) and (3.34b), using the poststall ¢, value (region a—b,
Fig3.6).

/

Figure 3.6 Typical ¢ vs acurve

The above discussion of the hovering case should enable the reader to deal with
stall and maximum thrust problems in vertical flight at a given rate-of-climb.

Induced Power in Axial Translation. In vertical translation (climb or descent),
as wel! as in hovering, the induced power can be estimated by following the outline given
in Sect 5.1 of Ch 1l. Once the v; values or the v7/V, ratios are computed as a function of
7, the whole procedure of finding the induced power—either in hover (Pindh) orinclimb
(P,-,,dc)—becomes quite simple. Eq (2.52) is rewritten using the velocity ratio approach:

[
Ping = 47R*V3p f (vs/ V) F dF (3.36)
7

where, depending on the unit system used, P, g Will be in either Nm/s or ft-lb/s.

Because of the complexity of the expressions for vz = f(F) or v;/V, = f(F), the most
practical procedure for finding P;,4 will be to perform the above integration, as in the
case of thrust, either on a computer or graphically. The latter procedure—analgous to
that illustrated in Fig 3.4 —is shown in Fig 3.7.

Knowing P;pg, the induced power factor ki, g = Ping/Pig can be determined; again
following procedures established in Sect 5.2 of Ch Il. This will be done analytically using,
as an example, a rotor with rectangular untwisted blades where a closed-form formula for
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(vilVe)* T

Pind = 47R* pV° A,

Figure 3.7 Graphical integration of induced power

Pingy, can be easily obtained in the following steps: {1) substitute the v7/V, ratio given in
Eq (3.18) into Eq (3.36), (2) define ao/76 as A and a06,/8 as B, (3) integrate within the
limits of ; = 0 to 7, and (4} neglect the terms containing A% and A”. Consequently,

s [2 (387, = 24%) (VA" + ar, )’ A
Pindy = 47R2V{ 0| o

, 2 s(Var + 87,)" - 747 (VA + 87

35 B?

2A%7, — ABF,’] .(3.37)

Equating thrust expressed in terms of ideal induced velocity (vig/) to the thrust
given by Eq (3.33), the following formula for the equivalent Videq is obtained:

3!
_ ! 4 A(2A* — 387,)(AT + B7,) (3.38)
Videq = 1.47v,1/;’r,’ *3 BF® + s o ]

therefore, the k;ng,, factor becomes
Kindy = Pinal27R? pl’id,q3 . (3.39)

Assuming the following geometric and operational characteristics for a rotor
with untwisted rectangular blades: R =7.6m, 0= 0.1, 7, = 0.96, 0, = 10° = 0.17 rad,
. =213 mfs, a = 6.0/rad, and p = 1.23 kg/m®, the thrust computed from Eq (3.33)
would amount to T = 70 JOON = 7150 kG. The induced power (Eq (3.37)) would be
Piny = 1019445 Nmfs = 1387 P, and the induced power factor, computed from Eqs
(3.38) and (3.39) is kKjng,, = 1.77. _
Blade Twist and Chord Distribution for Uniform Downwash in Hovering. The
operating conditions of a rotor are specified as: (1) the effective disc loading w, =
T/n7e* R?, tip speed V,, and air density p, or (2) simply as the average lift coefficient
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14, and V,. The problem consists of finding a blade twist and/or chord distribution which,
under the so-defined operating conditions, would produce a uniform induced velocity.
In the first case, the induced velocity which we try to make uniform would be v = \/w,/2p
while in the second, using nominal Ce,» itcan be expressed as:

v = (0.289v, /ey, 0 )/ 7.

However, from Eq (3.34),the lift coefficient which should exist at station rin order
to produce the required uniform downwash is:

Ctr = 8UR(V/V,)? [bc:T, (3.40)

For a rectangular blade and assuming that 73 = 1.0, the v/ V, ratio substituted from
Eq (3.21) gives the following Cy; distribution in terms of &, :

Cor = (213)(, IT) . (3.40a)

It is clear from Egs (3.40) and (3.40a) that the required ¢y - increases toward the
root of the blade as r decreases. For a tapered blade, this need for an increase in Cp7can
be at least partially offset by the chord enlargement (Eq(3.40)). Nevertheless it is obvious
that the special condition of 2 uniform downwash can only be fulfilled down to the value
of 7'where the required ¢y > does not exceed the maximum lift coefficient cg,,, .-

The blade pitch angle (67) at station 7 required to produce downwash v can now be
readily obtained. Under small angle assumptions, it will be:

bF = (cgz/az) + (v/V,F). (3.41)

For rectangular blades, the right side of Eq (3.40a) can be substituted for Cgzin
Eq (3.41) and v/V, can be expressed in terms of ¢z, ; thus, Eq (3.41) becomes

87 = (2/3)(cy, Ja5T) + (0.289\/Cy, 0/7,F). (3.41a)

For o = 0.7 and €ty = 0.3 04, and 0.5, the 67 = f(r) is computed from Eq (3.41a)
and plotted in Fig 3.8, and a7 from Eq (3.40a) is also shown, thus giving some idea re-
garding the blade twist and the sectiondift coefficient required to achieve a uniform
downwash in hover. Because of the large twist angles required toward the root, and the
high section lift coefficient, the goal of uniform induced velocity over most of the blade
(down to say, station 7= 0.7 ) is not practical. It should be noted, however, that even a
modest linear twist (6, = —70°) shouid well approximate the ideal twist distribution
for blade stations 0.4 € 7 < 7.0.

Power Losses Due to Slipstream Rotation. Slipstream rotation was not considered
in the momenwm theory; however, it can be seen that lift generation by the blade ele-
ments may introduce some rotation to the slipstream which, although not contribu ting
to the lift, will create a new requirement for power as additional energy is carried away in
the wake.

Slipstream rotation may even be present in a nonviscous fluid due to the fact that
downwash v associated with the blade element lift is not parallel to the rotor axis, but
is perpendicular to the resultant flow at the lifting line of that element as shown in Fig
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Figure 3.8 Blade twist and section lift distribution required for uniform downwash

3.9. It can be seen from this figure that v,5¢ /v = v; [ Vyes Assuming that v, = v and
Vees = V, I, the following is obtained:

Veor = V(VIV,T). (3.42)

Yrot

Figure 3.9 Slipstream-rotating component (v,q¢) of lift-induced velocity (v, )

The power loss {(in Nm/s or ft-Ib/s) due to the rotation of the fluid passing at a rate
of 2nR,2 p v 7 d 7 through an annulus located in the ultimate wake and having a radius
R, T and width R, d7 will be:

dPror = R? Ruzp""‘-’u2 P d7 (3.43)

where w, is the angular speed of the slipstream rotation in the fully-developed wake.
Defining the speed of slipstream rotation in the disc plane by w, remembering that
R, = R/+/2, and applying the principle of conservation of angular momentum, one will
find that

Wy = 2w (3.44)

and Eq (3.43) can be rewritten as follows:
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dPror = 2nR? VP(R’T‘-")Z rar, ( 3.45)
but R7w = vy, =42 [V, 7 (Eq (3.42)); hence,
Proe = IZ"RZPVS(V/VJZ /r]dr. (3.45a)

Next assuming that the induced velocity v is constant over the disc and performing
integration from F; 107, the following is obtained:

Proc = 20R* oV (v/V,)? logy (7, /F;). (3.46)
However, 27R? pv3 is the ideal induced power in hovering (P, ,); hence, .
Prot = PiglVIVi)? logy (7, /7). (3.47)
Forinstance, assuming that 7; = 0.25 and that Te = 0.96,
Proe = 1.345P,4(viV, )? . (3.48)

Since v/V, is usually less than 0.07 for contemporary helicopters, power losses due
to slipstream rotation should not exceed 0.7 percent.

2.7 Thrust and Induced Power of Intermeshing and overlapping rotors

Definition of Overlap. In multirotored aircraft, the rotors may be arranged in such
a way that the stagger distance (ds) between the axes of any two rotors may be smaller
than the sum of their respective radii (Ry and R3). When ds <(R; +R,), mutual inter-
ference occurs in axial translation and hovering, leading to aerodynamic characteristics
different than those of isolated ones. As to the arrangement of the rotors, they may be
either coplanar (pure intermeshing), or one may be elevated above the other, thus form-
ing an overlapping configuration (Fig 3.10).

The amount of overap (ov) for R, = Rz can be expressed as a nondimensional
number (or in percent) as follows:

ov =1 — (d/d) (3.49)

where d is the rotor diameter.
A physicomathematical model based on the combined momentum and blade ele-
ment theory may be helpful in understanding aerodynamic interference of intermeshing

The considered case will be limited to either truly coplanar rotors or those having
a relatively small vertical displacement (say h,. & 0.70R). This would permit treating
them as being intermeshing. Thus, it will be assumed that a common rate of flow is
established within the overlapped, or intermeshed, area,

Induced Velocity. The induced velocity (vo,) at any point of the overlapped
region can be obtained by considering an elementary area d4 of diameter dr (Fig 3.11),
the location of which is determined by 7y andr,.
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Figure 3,10 Overlapping and intermeshing rotors
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Figure 3.11 Notations and theoretical character of downwash distribution of
overlapping rotors in hover

The rate of flow through the element dA will be Voy P % mdr* and, according to
the momentum theory, the thrust produced will be:

dT = (n/4)2pv,,2 dr. (3.50)
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On the other hand, the elementary thrust dT—developed over the dA area due to
the action of Rotor 1—can be expressed according to the blade element theory. This can
be considered as the (ndr’/4)/2tr,dr fraction of the total thrust generated by the whole
annulus of radius r; and the width dr as given by Eq (3.12):

dTy = (1]16)p(Qry)? ¢y, be(dr fr,). (3.51)
Similarly, for Rotor 2,
dT, = (1/16)p(Qir,)? cppbe(art/ry). (3.51)

where ¢y, with a suitable subscript, is the section lift coefficient at the corresponding
radius r; =7,R orry =7,R . But the elementary thrust calculated using the momentum
theory should be equal to the sum of the dT, and dT, thrust produced from the blade

element theory:
a7 = dT, + ar,. (3.53)

Substituting Eqs (3.50), (3.51), and (3.52) into Eq (3.53) and further simplifying
under the assumption that the blades have a uniform chord and linear twist, the following
formula for downwash at any point of the overlapped area is obtained:

Vov = Ved=(1/8)0a + N(1/8)a0]* + (1/8)aclb(r, +r5) + 6,(r, + rzY}.
(3.54)

When the blade is nontwisted, Eq (3.54) becomes

Vov = Ve[~(1/8)0a + [(1/8)ac]* + (1/8)a0 8, (r, + r,]]. (3.54a)

It can be seen from the above equation that the sum F, * F, remains the same at
all points along the 0, — 02 axis joining the centers of the rotors. This means that for
rotors with untwisted blades, the downwash velocity is constant along this axis within
the overlapped area. Along the Y=y axis, the sum ry + ry increases with distance from
the 0,~0, line. This implies that the downwash velocity for flat blades increases toward
the sharp edges of the overlapped area (Fig 3.10a). Fig 3.10b shows the character of in-
duced velocity distribution for blades with a linear washout.

In the limiting case when the overlap amounts to 100 percent (i.e., when the rotors
are coaxial and hence 7y =7, = 7), Eqgs (3.54) and (3.54a) become identical with those
expressing the downwash for an isolated rotor with the exception that the solidity of
this single rotor is equal to the sum of solidities making a coaxial arrangement.

Experimental results® from direct induced velocity measurements using a bank of
pitot-static anemometers in model tests of coplanar, or slightly vertically displaced over-
lapping rotors (with an overap ot up to 40 percent) seem to confirm the predicted
trend (Fig 3.12).

Determination of Thrust and Induced Power, Knowing the induced velocity at
all points of the overlapped area and keeping in mind the expressions giving this value
in the nonoverapped portion, it is easy to calculate the thrust and induceg power for
each part of the total projected area of the overlapping rotors.
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Figure 3.12 Examples of predicted and measured downwash of overlapping and
intermeshing rotors incorporating 37)% percent overlap

Figure 3.13 shows a relative reduction in thrust of the overlapped configuration
with respect to that of two isolated rotors. This figure also gives a comparison with test
results.
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Figure 3.13 Thrust ratio vs percentage of rotor overlap

The &;ng,, factor of the overlapped configuration vs percentage of overlap is plotted
in Fig 3.14. It can be noted that for a helicopter having 37% percent overlap, the increase
in induced power would amount to about 10 percent over that required by two isolated
rotors jointly producing the same thrust.

115



Theory

= THEORY TWO FLAT ROTORS
x MODEL TESTS) o =~ 0.06 R=2FT
L] L}

’
v BASED ON 31 FLIGHTS OF FULL-SCALE _
HELICOPTER

14

13

X
x

Kindp,
8

X

1

LAARAL AAALASARRALAS 2

1 o 1 £ 2 1 A4 4 0 4 2 Lt 3 1 2 2 VU 1
) 10 20 30 40
PERCENTAGE ROTOR OVERLAP

Figure 3.14 Ratio of actual-to-ideal induced power vs percentage of overlap
2.8 Rotor Power, and Aerodynamic and Overall Efficiencies in Hover

Total Rotor Power. In axially symmetric regimes of flight, including hovering, the
advent of the combined blade-element and momentum theory paved the way for a more
realistic prediction of rotor power required than that offered by the pure momentum
approach. This was accomplished through the incorporation of blade profile power into a
conceptual model and establishing a means of determining time-average induced velocity
distribution along the disc radius. Consequently, the total power required by a rotor in
hover can now be presented as a sum of the induced and profile powers.

P=Png+ Por (3.55)

where values can be computed using the methods outlined in the preceding sections of
this chapter. However, for many practical engineering tasks, it may be more convenient
to rewrite Eq (3.55) in terms of rotor ideal power,

P = Piy kina, + Pp, (3.55a)

where the Ringy, factor reflects induced power losses due to both nonuniform downwash
distribution and tip loss, and Por is given in terms of the average blade profile drag
coefficient ¢4 (Eq (3.22a)).

Aerodynamic Efficiency (Figure-of-Merit). In parallel with improved analytical
methods of estimating rotor power as well as more refined testing techniques, there
appeared a need for a quantitative indicator which would measure the deviation of actual
rotor power obtained from its estimated ideal value.

For the static-thrust case (hovering), this is usually done through the so-alled
figure-of-merit (FM), which is also known as aerodynamic efficiency (n.):

M = Mg = Pid/P (356)

where P,y and P are ideal and actua powers required by the rotor at a given level of the

thrust generator loading as given by the total thrust 7 per rotor or, more generally,
by the nominal disc loading w = 7/2R?
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Remembering that Pig = T\/W/20; P = Pig king + (1/8) 07R? cq, V>, and ¢y, =
6w/op V?; the P;y and P values can be substituted into Eq (3.56) and the numerator
and denominator divided by T+/w/2p, thus leading to the following:

Ton = lking + %(eg, [0, )(V I /WI2B)] (3.57)
or, since v/w/2p = vjq, , Eq (3.57) becomes
| Nap = Wl king + %(Cay /o (Vi Viay)) . ‘ (3.57a)

For contemporary helicopters, the average lift-to-profile-drag coefficient ratios
would probably be included in these limits: 50 < (&, /Edo) < 70. Assuming, in addi-
tion, that kg, = 1.12, the n,, values were computed from Eq (3.57a) and plotted vs
(Vt/vidh) in Fig 3.15.
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Figure 3.15 Aerodynamic efficiency in hover (n, nlvs( Ve /Y igp) ratio

From this figure, it can be seen that with a disc loading of w = 40 kG/m* (8 psf)
and V, = 215 m/s (700 fps), (V, [V iq), ) = 17 and aerodynamic efficiencies as high as
ne = 0.78 may be expected. However, for w = 20 £G/m?, and the same V,, then
(Vr/v,-dh) =~ 24, and n, may drop to 0.7.

Overdll Efficiency. The figure-of-merit obviously provides a measure for evaluating
only the aerodynamic aspect of the excellence of design. In order to compare the overall
(total) efficiency (n,,,) of various rotary-wing aircraft (both shaft and tip-jet driven)
in hovering, a method based on a comparison of the ideal power required to the thermal
energy consumed in a unit of time may be more suitable®. As long as jet fuels with an
approximately equal heating value of about 10 300 Cal/kg (18 500 Btu/Ib) are used, the
rate of thermal power input (Pep ) in Nm/s or ft-Ib/s per unit (N or Ib) of thrust generated
can be defined as follows:

St Pep = 1220 tsfc
Eng Py = 4000 tsfc
and consequently, the overall total efficiency becomes
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Sl Neot = V,'dh/7220 tsfc

Eng Meor = Vigy /4000 tsfc (3.58)

where tsfc is used to denote the thrust specific fuel consumption (kG/hr,kG or ib/hr,lb)
with respect to the total rotor thrust 7.

Recalling Egs (1.1) and (1.1a), the above expressions can also be written in terms
of specific impulse (/,); thus Eq (3.58) becomes

Eng Neoe = lsViay, /14 000 000.

For instance, for a helicopter where w = 35 kG/m* (7.0 psf), Vidy, = 11.8 m/s
(38 fps), and /, = 70 000 s; Neor = 0.79.

3. FORWARD FLIGHT
3.1 Velocities

As in the case of vertical ascent and hovering, the blade element approach could
provide the proper means for predicting aerodynamic forces and moments acting on the
blade in forward flight. Again, it is necessary to know the magnitude and direction of the
relative air flow in the immediate vicinity of the investigated element of the blade. Once
this information is available, actual computation of forces and moments should be based
on the two-dimensional (section) airfoil characteristics, including Reynolds and Mach
number effects, special aspects of unsteady aerodynamics and, if possible, proper correc-
tions for oblique flow at various azimuth angles, effect of blade centrifugal field on the
boundary layer, etc. (see Ch V1).

In the general case of a steady state flight of a helicopter, the rotor axis is tilted
from the vertical through an angle a,; while the aircraft is moving at constant speed Ve
along the inclined path where Ve and Vp, respectively, are the vertical (rate-of<limb)
and horizontal components.

Using the concept of a stationary rotor as shown in Fig 3.16, the speed -V, can be
resolved into two components; one, axial (perpendicular to the airscrew disc) and the
other, parallel to the disc (inplane). Obviously, the axial components will be:

(3.58a)

Vex = =Vecosa, + Vpgsina,. (3.59)
The inplane component will be
Vinp =—Vhocosay, + V;sina,. (3.60)

In those cases when the tilt angle a, is small (as it usually is in all helicopter flight
regimes), Eqs (3.59) and (3.60) can be simplified as follows:

Vax = =V + Vpou, (3.59a)
and Vinp = —Vao + Veaq,. (3.60a)

As a first approximation, only the component of Vinp perpendicular to the blade
axis (V| ) will be considered for computing forces acting on the elements. Measuring
the azimuth angle from the blade downwind position (Fig 3.17), and assuming that the
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Figure 3.17 Air velocities at a blade element, due to flow in the disc plane
flow is positive when coming toward the blade leading edge, the following is obtained:

Vbl = V/np sin . (3.61)

In the case of horizontal flight (which is most often analyzed in detail), V;,p, may
be considered (for small a, ) as identical to the speed of flight Vs, and Eq (3.61) be-
comes:

Vo, = Vhosin ¥. (3.61a)

In addition to the Vj| component, blade elements experience flow due to the
rotor rotation at a tip speed of V, = RS). Consequently, for a blade element located
at an azimuth angle ¥, and at a distance r = R7, the total component of the inplane
velocity perpendicular to the blade (U/]) will be:
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UI(R) = ViF + Vposin . (3.62)

Assuming that the blade tips do not change their position with respect to the tip-
path plane representing the rotor disc, the air flow in the immediate neighborhood of
a blade element will be as shown in Fig 3.18. Designating the pitch angle of a blade ele-
ment as 8(7 Y, the corresponding angle-of-attack a{7y) will be

afry) = 0(ry) — #(ry) (3.63)
where ¢(7{) is the total inflow angle (positive in the clockwise direction),
tan=1o(Fy) = Vay cod BVIIUL(RY) (3.64)

and, in tum, Vyy,, is the sum of V, as defined by Eq (3.59a) and the induced velocity
V(F\y) at the considered element.

¢
PLANEITO ROTOR DISC *”"

Figure 3.18 Air velocities at a blade element

3.2 Thrust and Torque (Genera! Considerations)

If the value of the Vax o, fOr a blade element at station 7 and azimuth angle ¥ were
known, it would be possible to compute the following forces experienced by this ele-
ment: (1) lift dL(7Y), (2) profile drag dDp (g¥), and (3) total drag dD(7Y).

Within the limits of the small-angle assumptions (the validity of which should
always be checked prior to starting the actual calculations), these elementary aerody-
namic forces and torques can be expressed as follows:

Thrust:

dT(0) = dL(7Y) = %6Re (VF+ Vi sin ¥)* alF¥)(6(0) — #(0)1cr oF
Total Drag:

dD(ry) = dL{r)$(Tb) + % Rp[(Ve 7 + Vi g sin ¥)? crca(7V)] oF
Profile Drag:

dDpr(TY) =% Rp[(VeF + Vposin V)? czcaliV)]dF
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Total Torque:
dQ(r¥) = RFdD(7Y)
Profile Torque:

dQpATY) = RFdDpATY)
(3.65)

Now, the case of rectangular blades may be presented as follows:

Thrust: -
e 2T
T=sioRp [ [ {(ver+vogsin v atru)lony) - s} ooy
o
Total Torque:
Tq 27 1.0 a7

’i

i

Q = (bR/21) / / HFVJFAL(EN) Y + %o R p f f (Vi + Vho sin W) c f(F4)7dF v
/] 0

Profile Torque:
1.0 27

Qe = 4o Rs [ [ (4F+ho sinPesryraray

|
Total Power:

Pp = QQ
Profile Power:

Pﬁpr = Qp, Q,
where £ is the angular velocity of the rotor.

The integrations indicated by Eq (3.66) can usually be performed either on a com-
puter or graphically. In both cases, the thrust and/or torque for the whole blade is deter-
mined for selected azimuth angles, then the average for a complete revolution is found
and the result multiplied by the number of blades. However, in order to apply the above-
described procedure, the downwash velocity ¥(7 ) at each point of the rotor disc must be
known (Fig 3.18)

In those cases when the induced part represents only a small fraction of the total
axial inflow velocity (V'Xror)‘ the deviations of the actual induced velocity (at various
points on the rotor or propelier disc) from its average value are no fonger important.
it may be assumed hence, that the downwash is uniform over the whole disc, and can be
computed according to the simple momentum theory (Eq (2.36)). An additional small
improvement can be gained by including tip losses (7, < 7.0).

If information regarding the type of disc area loading is available, a chordwise dis-
tribution of time-average induced velocities can be obtained by the methods described
in Sect 7 of Ch |l. A further refinement of this approach—based on combining the blade-
element and momentum theories—is outlined in Sect 3.3,

(3.66)
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However, with the current state of the art of rotary-wing aerodynamics, the most
precise determination of v(ry) values—both time-average and instantaneous—can, in
principle, be obtained through the application of the vortex theory described in Ch IV,
and to a lesser extent, by the potential theory discussed in Ch V.

3.3 Downwash Distribution Along the Rotor Disc Chord

Taking into account such rotor characteristics as number of blades, blade planform,
twist, pitch angle, and section liftcurve slope, the blade element theory allows one to
determine the variation of the area loading along any of the chords of the rotor disc.
Once the above information is available, the chordwise induced velocity distribution
can be computed by using the method developed in Sect 7 of Ch |, The procedure
described below is based on the case of downwash distribution along the fore-and-aft
rotor disc diameter; expecting that the reader now has a grasp of the principles of this
approach and should be able extend it to other disc chords as well.

Downwash Distribution Along the Fore<and-Aft Rotor Diemeter. Similar to Sect 7
of Ch Il, the case of horizontal flight at speed Vi, is considered, assuming that Vo, »
Vho and consequently, the resultant flow through the rotor V' = Vh o, While the basic
notations of Fig 2.26 as adapted to the present case are shown in Fig 3.19.

1y

Figure 3,19 Basic Notations

In order to determine the elementary thrust o7 using the blade-element approach,
it should be noted that the considered element corresponding to the coordinate ¢ is also
located at radius r = RF=|R - §I.

If all b blade elements through one complete revolution (27) maintained the same
angle-of-attack and experienced the same velocity component perpendicular to the blade
axis (U1;) that they had at point {, their collective thrust would be dT aq-
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However, only part of this thrust may be credited to the thrust generation at the
considered element dx d §; and thercfore, would represent only a dx/2nR7 fraction of
ar.

2

7 .
dT¢ = dT;n(dx/20RF). (3.67)

In order to determine d T, , it is necessary to know: (a) the geometric pitch angle
(0;) when the blade element is at a poin: defined by the coordinate ¢, (b) all the com-
ponents of the axial inflow immediately ahead of the element, and (¢) axial velocity
components due to the flapping motion (if present). At this point, it should be recalled
that this flapping motion is geometrically equivalent to the variation of the pitch angle
of the considered blade element by the amount,

a6y = RFé/Ulg

where B is the flapping velocity at the appropriate azimuth angle (in this case, ¢ = 780
and O degrees), and U] is the velocity component perpendicular to the rotor biade axis at
station 7R when it passes over the point defined by the ordinate ¢{.

Summing up, it may be stated that knowing the blade twist, and either the variation
of the pitch angle with azimuth as required to eliminate flapping or the rate of flapping
at each azimuth angle, it will be possible to determine both the geometric and the equiva-
lent pitch angle 6 of each blade element along the fore-and-aft disc axis.

The actual angle-of-attack of the blade element (a.;-) will be equal to the difference
between 6 and the total inflow angle resulting from (a) rotor disc inclination @, With
respect to the direction of the incoming velocity (—Vj ) and (b) that due to downwash
(v;—) at the considered element. Therefore,

% = Op = (Vpoo, + vp)/Usg (3.68)

where, for the considered case of the fore-and-aft diameter, U/}, = V,7.
Now, the elementary thrust d7,, of all b blades corresponding to blade strips
dr = d¢ wide and having a chord ¢; will be

dTon = #o(Viif berag {61 = [(Vao o, + vplivirl ot (3.69)

where a ¢ is the sectional lift-curve slope at station {.
Substituting Eq (3.69) into Eq (3.67) leads to the following:

aTy = (1AReVe rlociiRlag {0 = [(Vaoay +vpVilllaxss  (3.70)

The expression in front of dxd ¢ is the local disc loading, wi = dT'{/dxdg-. It was
shown in Sect 7 of Ch 1l that knowledge of the local disc loading at any point along a
chord of the disc would permit one to determine the slope of the chordwise variation of
induced velocity at that particular point (see Eq 2.88)).

In Ch ll, the disc area loading was assumed uniform, while various rotor disc chords
were considered. By contrast, the present task consists of finding the induced velocity
distribution along the fore-and-aft diameter only, while the disc loading varies from one
point of the chord to another. Taking these differences into account, and using the nota-
tions shown in Fig 3.19, Eq (2.88) can be rewritten as follows:
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(dv/df}; = w§/4p Voo R. (3.71)

It was also shown in Sect 7 of Ch 1l that at any small but finite, distance € down-
stream from the point of induced velocity generation, the induced velocity slope becomes
twice as high as that given by Eq (3.71):

(@v/dS) ¢ re = wel2pVaoR. (3.72)

- By substituting the expression in front of dx d¢{ in Eq (3.70) for w¢, a formula
for the induced velocity slope just downstream of point ¢ could be obtained. One should
note, however, that v¢ whose value is unknown, appears in the expression for w¢ . This
value can be defined as:

4
v = f (dv/dt) ¢yt
(/]

and Eq (3.72) can be written as
¢
(dV/d”He = (a;.bc;V,f/&rR’y) 0;. — (a,u/7) —Lf (dv/d{)g.,,_ed{/vtr'} (3.73)

where u = V/V,,
Where the blades have a constant chord, and it is assumed that oy =a = const, then
remembering that V, = R, Eq (3.73) becomes

¢
(dv/d{); +e = (0a27/8u) 9; - (a,u/7) -[ f (dV/d§)§+£ds‘/ V,F] . (3.733)
0

Eqs (3.73) and (3.73a) can be evaluated by the finite differences step-by<tep pro-
cedure. This will yield not only the desired (dv/d§)§+e slope at every point { +¢, but will
also determine the sought relationship v = £(¢). In order to get these results, the whole
fore-and-aft diameter is first divided into a number of segments of length A { small
enough so that within each of them the induced velocity slope may be considered con-
stant. Next, at the mid-point of each segment, values of 6; and, in the case of a variable
blade planform of the chord (cz)—perhaps, at as weli—should be determined.

Starting with the first segment and gradually progressing to the following ones, a
general expression for the downwash slope at the nth segment can be developed which,
for a rotor with rectangular blades and a = const, becomes

(dv/d{)n = (V,0a7,/8Ry) (3.74)

n-1
6~ (ay/Fp)u—~ [Z(dv/d{)kA g/v,r,,]
1

or introducing the nondimensional A = AT/R, substituting ATR for Afin Eq (3.74),
and remembering that V, = R§2, the above equation becomes
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n-1

0, - (a,/F)u - [Z(dv/d{)kA—f,'QF,,]{. (3.74a)

7

(dv]ds), = (a0927,/8k)

The increment of induced velocity corresponding to the nt? segment will be Av, =
(dv/dt), At. Adding these increments, a complete v = f({) relationship can be obtained.

The method described above was used to calculate the induced velocity distribution
along the fore-and-aft rotor diameter for the case represented in Fig 3.20, for which
experimental downwash measurements were available (Fig 6, Ref 7).
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Figure 3.20 Comparison between calculated and measured induced velocity
along the fore-and-aft disc axis

It can be seen from this figure that a good agreement has been obtained between
the predicted (broken line) and the measured values (points).

An approach similar to that presented above can be applied to any fore-and-aft
disc chord. However, in expressing the induced velocity slope according to the momen-
tum theory, Eq (2.88) with the proper values of x,, should now be used.

3.4 Blade Profile Drag Contribution to Rotor Power and Drag (Simple Approach)

The blade element theory may be quite helpful for a better insight into problems
of the blade profile drag contributions to the rotor power required in forward flight as

well as rotor overall drag.
in the simple approach, only the component of the resultant air velocity perpen-

dicular to the blade at the 7, § coordinates (U] ;) is considered, while the influence of
the velocity component parallel to the blade is neglected.
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Under these assumptions, the elementary profile drag experienced by a blade strip
dr = RdT wide, and located at a distance r = R7 from the rotor axis when the blade is at
an azimuth angle , will be

dDpy = %Rpc,cd;w Ulw’ dr. (3.75)

and the corresponding elementary torque is
dQ,-w = RFdD;w. (3.76)
The drag component in the direction opposite to that of flight (deo;w) becomes:
dD"’W = dDpysiny. (3.77)

Defining the flow approaching the blade from the leading edge direction as posi-
tive, and using the notations from Fig 3.21, U 2 becomes:

U-l?w =V, F+ Vsiny (3.78)
or, with u = V/V,,
UlFW = V,(F+ usiny). (3.78a)
| 180°

Figure 3.21 Air velocity perpendicular to the blade

Since, in general, dDWJ varies with the azimuth angle y as well as the blade element

position 7, the values of the torque (Qp,) and drag (Df,,p,)contributions of all b blades
averaged over one full rotor revolution must be obtained through integration with respect
to 7 as well as ¢,

Substituting the value for U‘L?W from Eq (3.78a) into Egs (3.76) and (3.77), the
following is obtained: 1.0 21

Qpr = (bR pV,? /47) f f c;cd;wf{r' + usin yP dray. (3.79)
(4] (3]
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When the ¢(r, ) and cg(r, Y} variations indicated in Eq (3.79) cannot be neglected,
then the Qp, values are usually evaluated through numerical procedures on the computer
or graphically. However, Eq (3.79) can be easily integrated under the following simpli-
fying assumptions:

1. The drag coefficient is equal to Ty and is constant along the blade.

2. The drag coefficient does not vary as the blade changes its azimuth.

3. The blade chord is constant,

Under these conditions, Eq {3.79) is reduced to (Nm or ft-b):

Qor = (1/8) a nR3p Vtzzd(’ +i) (3.80)
and the corresponding profile power in Nm/s or ft-Ib/s becomes
Py, = (1/8)0nR? p VP Tyfl +4?) (3.80a)
or, in horsepower:
Sl Hy, = onR? pV3Ty(l + u? )/ 5880
{3.80b)
Eng Hp, = anR?pV 2 Ty(1 + 412 )/4400.
But(7/8)onR*pV,3Cy = Ppry,; ie. the profile drag in hovering, therefore
Por = Pprh(7 2 ). (3.80¢)

Similar to Qp,, the blade profile drag contribution to the rotor drag, in N or Ib,

can be expressed as
1.0 27

Dy, = (6RpV314n) [ [ cpeapy(F + msin y)* sin y dFdy (3.81)
0 0
and again, when c{ 7,y # const and cq( 7§} # const, the above integration must be per-
formed by numerical or graphical means. However, under the same simplifying assump-
tions, Eq (3.81) becomes

Dy, = 4onR?pV 2 uc, (3.82)
and the corresponding power in Nm/s or ftdb/s is
Pp,, = %omR pV > u*c, (3.83)
or,in HP:
S| tHo,, = onR? pV 2 u*T,/2940
(3.83a)
Eng Hp,, = onR?p V2 1€ 4/2200.

Remembering the previously quoted expression for Ppry, , Eq (3.83) can be re-
written as follows:

Poy, = Ppryh®. (3.83b)

127



Theory
3.5 Further Study of Blade Profile Drag Contribution to Rotor Power and Drag

It may be recalled that equations expressing the contribution of the blade profile
drag to the rotor power, £Eq (3.80c) and drag, Eq (3.83b) were developed under the
following assumptions:

1. Influence of oblique flow on the profile drag coefficient of the blade airfoil
was neglected.

2. Only the flow components perpendicular to the blade were considered in de-
termining the drag of any blade element.

3. Influence of the reversed flow region on the retreating side, and differences in
profile drag coefficient associated with this type of flow were neglected.

For a more realistic evaluation of the profile drag and associated power, a new
study is performed without the above limiting constraints, but with ¢ = const.

Using the notations in Fig 3.22, it is possible to express the total resultant speed
UF Vio¢ 31 aNy blade element located at station 7 and at an azimuth ¥ by the following:

me, = Vr\/(’-* wsin Y + coszT[}_ (3.84)

Figure 3.22 Flow directions and drag components at a blade element

Consequently, the total profile drag (dD Feos Of the blade element in the direc-
tion of the resultant local air flow becomes:

Doy = %PV: THusin ) + 12 cos? VlcgrycRd7 (3.85)
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where cg,, is the profile drag coefficient at station 7 and azimuth ¥, with due con-
sideration of the actual flow conditions; i.e., direction of flow (oblique, reversed) in addi-
tion to the usually considered infiuences of Reynolds and Mach numbers.

The contribution of dDzy,,, to the rotor drag component dD"’UJ can be ex-
pressed as follows (see Fig 3.22):

dDpryy, = [(ViFsin ¥+ VIUy)IdD7y,, - (3.86)
Making the proper substitutions from Egs (3.84) and (3.85), Eq (3.86) becomes:
dDp 1y = BPCRV*Capy (Tsin b + N7+ usin ) + u* cos® y dr. (3.87)

The total contribution to the parasite drag of a rotor equipped with & blades of
constant chord ¢ will be (in N, or Ib):
1 2n

Dpr = (1/4m)pbCcRV? f f CazglFsin ¥+ WNI(F+ usin y)* + i cos* y dFdy. (3.88)
00

After onR? is substituted for bcR, Eq (3.88) is rewritten in a form similar to Eq
(3.82):
127
Dp,=%pa1rR’uV,2(7/1m)/ / cdw(r's/m[/+ uN (F+usin Y2 + 4 cos® Y drdy.
0 0 (3.89)

By multiplying Eq (3.89) bv V, u= V, an expression for the resulting power (in
Nm/s or ft-lb/s, is obtained, while in horsepower (S1 units) it becomes:

127
Hop,, = (1?/2940)panR* V3 (1/nu) f/ cd;wm('r'sin V+uN(Frusing)? +ucos y'didy.
00 (3.90)
In English units, 2 2200 numerical coefficient would replace the 2940 appearing in Eq
{(3.90).

By examining Egs (3.89) and (3.90), it can readily be seer: that the expression
“(1/nu} times the double integral, ..."" replaces the €y terms in Eqs (3.82) and (3.83).
Thus, it may be considered as a true average drag coefficient (de ,) as far as rotor con-
tribution to the power and parasite drag is concerned:

1 2n
Cdpr = (l/mt),[/ Capy(Tsin ¥ + WN(F+usin g + u* cos® yardy. (3.97)
0 0

Because of the difficulties which may be encountered in expressing the variation
of ¢y with Fand ¥ under an analytical form, it will probably be more practical to perform
the integration in Eq (3.91) either numerically or graphically.

Comparing the values of 'c'dp, determined from Eq (3.91) with those of ¢y, some
feeling may develop as to the magnitude of error resulting from neglecting skin friction
and all other effects of skewed air flow with respect to the blade axis.
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As an illustrative example, the variation of the Ed,,, coefficient from Eq (3.91) was
computed vs u. In this simplified example, it was assumed that no compressibility effects
were encountered and variations in the blade lift coefficient were such that Capy Values
were influenced only by the direction of flow with respect to the blade radial axis.

The following numerical values were used in the present example: (a) airfoil thick-
ness, t/c = 15 percent, (b} the profile drag at the ‘sweep-back' angle I' = 0° is g =
0.009, (c) the friction drag at " = 90° is ¢/ = 0.0067, and (d) the drag coefficient in the
completely reversed flow: i.e., at I'= 780° is Cd g0 = 0.035. Furthermore, it was assumed
that for the oblique flow, the profile drag coefficient varies according to the- following
formula from p. 211 of Ref 8:

calT) = cs[1 + 2(tjc)cosT + 60(t/c)* cosT}.

Results of the computation of Ty . are shown in Fig 3.23. A glance at this figure
will indicate that the blade profile drag contribution to the parasite drag at first increases
rather rapidly with i and then very slowly as it approaches asymptomatically the average
drag coefficient of the stopped rotor (u = ). For u values encountered in high-speed
cruise (u = 0.35), it may be assumed that on the average,

Edpr = I.SEd.

\ Edp" f(u)

td = 0,009
0.01

0 02 04 08 08 1.0
Figure 3.23 Total equivalent profile drag coefficient versus u

Substituting the above value instead of “(I/m u) times the double integral, ..."”
into Eqs (3.89) and (3.90), the following D, is obtained (in N, or Ib):

Dy, = (3/8)ponR® V2 i, (3.92)
and for horsepower:
Sl Ho,, = (3/5880)0nR?p V2 u?C,
{3.93)
Eng Ho,, = (3/4400)onR?p v 1? Cy
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It should be realized that one-third of the values indicated by Eq (3.93) represents
the profile power in hover (HPp,,) and consequently, Eq (3.93) can be rewritten as
follows:

Hp,, = 36 Hp,,. (3.94)

Considerations similar to the preceding ones would indicate that the profile power
in forward flight increases more rapidly than indicated by Eq (3.80c), and the following
expression probably describes this power rise more accurately:

Py, = Hppy (1 + 1.742). (3.95)

Therefore, total power required to overcome the blade profile drag will be the sum of
Egs (3.94) and (3.95);
H

Plrot

= Hpo (1 + 4.743%). (3.96)
3.6 Contribution of Blade Element Induced Drag to Rotor Torque and Power

In performance predictions of helicopters in forward flight, it is usually sufficient
to estimate the induced power from the momentum theory and then correct those
estimates through proper factors (k;,,dfo). There are also cases where more detailed studies
of the induced power in forward flight of helicopters are required. To provide the neces-
sary insight into these problems, a simplified approach to the estimation of the rotor
torque (de) due to the blade element induced drag is briefly outlined.

Let dL;w be the lift generated by a blade element located at a station 7, while the
blade itself is at an azimuth ; then for those flight conditions and 7 values where the
small angle assumptions are valid, the elementary induced drag due to lift dL;'w may be
expressed as follows (Fig 3.24):

Dy 7y = [(vrglV T + usin ¥)]dLzy. - (3.97)

‘DL"'

Ve (P + psin y)

Figure 3.24 Forces and velocities at a blade element
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The corresponding elementary torque for all b blades (dQ,-,,d;w) will be
Qinazy = bRF[v,-w/V,)/(F + u sin w)]dL;w (3.98)

and the elementary power, in Nm/s or ft-Ib/s is dP,,,dw =QdQ,,,d;w which, in view of
the fact that QR = V,, can be written as follows:

Pindzy = OTIveyl(F + usin y)]dLzy,. (3.99)

However, once the induced velocity, ey = f(7,¥), as well as those of the actual or
equivalent blade pitch angle G;w = f(F,¥) are known, then dL;w can be computed from
Eq (3.1). Now, both Qing and Py, , can be obtained by evaluating the following integral,
either by computer or by graphical means:

Fy 27
Qing = (b/ZﬂQ)/ / [v,w/(7+usin W)]rdL;wdw (3.100)
0
while the induced power in Nm/s or ft-Ib/s becomes
Ping = RQjpq- (3.101)
and in horsepower,
Sl Ping = (l/735)$20,,,d
(3.101a)
Eng Plnd = (l/550)ﬂQ,nd.

3.7 Contribution of Blade Element Induced Drag to Rotor Drag

Under small-angle assumptions, the elementary induced drag due to the (dL) pro-
duced by a blade strip located at station r when the blade is at an azimuth Vis

a0, a7y = d. LFW(VFUJ/ Uy ;.p)

and the contribution of dD},,d;r v to the total drag of the rotor can be expressed as
follows:

dDInd"JJ = (ry/Ve(F + usiny)] sin ¥ dL; . (3.102)

Again, the induced part of the rotor drag (D,,,d) could be obtained as a double
integral of Eq (3.102) within the limits of F=Ftof=Fy,andy=0to y = 2. However,
in order to give the reader some idea as to the magnitude of induced drag, it will be
assumed that at some representative blade station 7, both the induced velocity and
elementary lift remain constant throughout a complete rotor revolution ;e ey S Vi =
const, and dL-,-‘l, = dLy= const. Under these assumptions, the integration of Eq (3.102)
must be performed within the ¥ =0 to Y = 27 limits only, thus making the following
contribution to the rotor drag:
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2m
dD,-,,d; = (dL;/27m)(v;/V,) / [sin Y/(F + usin )}dy. (3.103)
[/]

As an example, the (dDjng;/dLy) ratio has been evaluated from Eq (3.103) for
the following conditions: 7=0.7, u=0.3, V,= 200 m/s, and w = 40 kG/m?; resulting
in Vg = 12.6 mfs and v;, 4/ V, = 0.063. This leads to dDjngq ,/dlo. 7 = -0.02.

It should be noted that the sign of the above ratio is negative, which means that
instead of drag, a propulsive force will be obtained. This somewhat surprising result is
due to the assumption of the constancy of both elementary lift and induced velocity
throughout the revolution, which makes the absolute values of the negative drag com-
ponent on the retreating side higher than the positive value on the advancing side.

The magnitude of the dD/"doJ/dLO.? ratio is small, and under actual operating
conditions, would probably be even smaller than in the present example. Conseguently,
the contribution of the blade element induced drag to the total drag of the rotor is
usually neglected.

3.8 Propulsive Thrust and Power Required in Horizontal Flight

Let it be assumed that f stands for the equivalent flat-plate area representing para-
site drag, D,,,, of the helicopter as a whole, except for that contributed by the actual
blades. This means that in addition to airframe drag, f would also represent the drag of
the lifting rotor hub(s), including blade shanks and the entire tail rotor (if present).

In Sect 3.7, it was shown that contributions of the blade element induced drag to
the rotor drag may usually be neglected. Hence, the total drag of a helicopter in forward
flight will be:

D=0D,, + D,
where Dp,, = %pV?f. For a helicopter with 7 identical rotors, the total drag becomes:
D = (1/2)pV*f + (3/8)nponR?V 3 uc,. (3.104)

Thrust Inclination. Thrust inclination in forward flight (within the validity of small
angle assumptions) can now be expressed:

~a, = D/W = {(1/2)p V*f + (3/8)npanR* V2 uc,)/w. (3.108)

Defining W/f £ wy as the equivalent flat plate area loading and remembering that
W/omR? = w,, is the blade loading, Eq (3.105) can be rewritten as follows:

—a, = (1/2)pV ul(Wwy) + (3/4)n(o}w]Ty] . (3.105a)
or
—a, = (1/2)pV 2 ul(wws) + (3/4)(Cy/wp)] . (3.105b)

It is apparent from Eq (3.105b) that reduction of the blade area (high wy ) without
a corresponding increase in the &, values would be beneficial for reducing a,. Reduction
of the parasite drag (increase of wy) is obviously always beneficial.
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Total Rotor Power Required in Horizontal Translation, The total horsepower
required by rotorcraft in the horizontal helicopter regime of flight will be the sum of the
induced, profile, and parasite power. Thus, assuming that the total thrust of all » lifting
rotors is 7 = k.,,,ow and the actual disc loading is Wpo = k.,how, where w is the nominal
disc loading, w = W/A, the total rotor power in horsepower (in S| units) becomes:

Hg = (ky, } 1735)[(Wwkingy, o/20 Vo) + (1 +4.7u? )(n/8) onR? PVET, + %oV, o).
(3.106)

In English units, the numerical coefficient preceding the brackets would be 550 instead
of 735.

It should be noted that it is often assumed—especially in preliminary-design calcula-
tions—that the vertical download coefficient k,ho= 1.0. For more details regarding the
methods of determining Ryy, o values, the reader is directed to Ch Il of Vol I,

Assuming that transmission losses, power required for the tail rotor (if present),
and various auxiliary equipment represent a fixed fraction of the required APg, the shaft
horsepower, HPg can be simply expressed as:

Hs = Hg/n,, (3.107)

where n,,—the so<alled transmission efficiency—reflects all of the above-mentioned
losses, while the g is given by Eq (3.106). For more details regarding transmission,
accessory, and other losses, see Chs |-l of Vol 11, .

Eq (3.106) indicates that real rotorcraft would require additional power resulting
from the blade profile drag, in contrast to the ideal helicopter considered in Ch 11. Con-
sequently, a graph of the power required components of real helicopters (Fig 3.25) would
differ from that of the ideal rotor mounted on an airframe encountering parasite drag
(Fig 2.12).

POWER REQUIRED

SPEED OF FLIGHT

Figure 3.15 Power components of a real helicopter
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3.9 Rotor and Helicopter Efficiency in Horizontal Flight

All of the significant components of power required in the horizontal helicopter-
type regime of flight have been accounted for. Having this information, it may be desir-
able to develop a way of evaluating the degree of success in achieving a purely aerody-
namic efficiency for the rotor system or, an overall excellence of the rotorcraft as a
whole. The usefulness of the ‘yardstick’ used in such an evaluation would increase if it
. permitted one to grade the rotor systems and rotary-wing aircraft not only within
their own groups, but also to compare them with other lifting systems, other aircraft,
and even with various land and water vehicles as well. Some possible means for such a
comparison are discussed in the following sections.

Weight- (or Lift)to-the-Equivalent-Drag Ratio. Determination of the gross weight
of any vehicle to the equivalent-drag ratic (W/D,) represents one of the possible ways of
evaluating the overall efficiency of that vehicle in horizontal transiation. For aircraft, it
may usually be assumed that the lift is equal to the gross weight; hence, the term lift-to-
the-equivalent-drag ratio (L/D,) is often used when referring to the overall efficiency of
the rotorcraft, or aerodynamic efficiency of the rotor alone.

The equivalent drag of vehicles using shaft-type engines can be based on the SHP
required and defined as follows:

sl Dy = 735 SHPIV /s N
S| Dy = 75 SHP/Vm /s kG (3.108)
Eng Dy = 550 SHPIV 5, Ib

where the speed of horizontal flight is in either m/s or fps. When the speed of flight is
in km/h or in kn, it becomes

sl Dy = 204.2 SHPIV g N
st Dy = 20.83 SHP/V kG (3.108a)
Eng Dy = 325 SHPIV,, Ib

-

The weight-to-equivalent-drag ratio becomes

sl WD, = WV,,,/735 SHP WinN
s WIDy = WV /75 SHP Win kG (3.109)
Eng WDy = WV,,,/550 SHP Winlb

or Sl WDy = WV,imml20425HP  win N
sl W/Dy = WVimm/20835HP  WinkG (3.109a)
Eng WIDy = WV,,/325 SHP. Winlb

The typical shape of W/D, = f(v} for a helicopter is shown in Fig 3.26.
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Figure 3.26 Typical character of W/Dq vs speed of flight

Egs (3.109) and (3.109a) permit one to grade shaft-driven rotary-wing aircraft
within their own group as well as to make a comparison with other types of aircraft
and vehicles as long as they are powered by shaft-type engines. However, the definitions
given by these equations are not suitable for jet-driven helicopters, jet-propelled aircraft,
and vehicles in general which use other than shaft-type engines for propulsion. Therefore,
as in the case of hover (Sect 2.8), expenditure of thermal energy instead of SHP may be
used to provide 2 more general basis for comparison. In this approach, the ratio of weight-
to-equivalent-drag is based on the thermal power (W/D, )rh of vehicles using jet fuel.
When V is in m/s or fps:

1l

Si (W/D,}m 1220 tsfc |V, ;0
(3.110)

Eng (W/D,)m = 4000 BIc/V gy,

where &sfc is the hourly fuel consumption per unit of the gross weight of an aircraft or
vehicle in general.

Specific Power. Horsepower required per unit of gross weight, when shown vs
horizontal speed (H/W) = f(V, o/ may also serve as one of the possible means of assessing
the overall efficiency of rotorcraft, and can be used as a guideline in comparing them
with other shaft-powered aircraft and vehicles in general. This HP/W ratio obviously has
the dimension of velocity: (Nm/s)/N or (ft-b/s)/Ib. However, it may be more convenient
to present this quantity in a nondimensional (coefficient) form.

The specific power coefficient Co/r (P/T in the subscript symbolizing the power-
to-thrust, or gross-weight, ratio) can be obtained from the specific power (either P/T or
P/W) by dividing that quantity by the ideal resultant velocity of flow through the disc
(Vig in m/s or fps) corresponding to the case of the actuator disc (ideal rotor) in hori-
zontal translation in the absence of parasite drag. Under these assumptions, Vg can be

expressed according to the momentum theory as follows:
g — 2 2
Vie = VVig" + Vo
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and consequently, with P in Nm/s or ft-lo/s; 7 {or W) in N or Ib; and V' in m/s or fps,
the specific power coefficient becomes

CP/T = P/T\/V,'d2 + Vhoz . (31]])

It is obvious that the so-defined Cp,y can be based on (a) rotor power of an iso-
lated rotor, (b) rotor power of a rotorcraft as a whole, or {c) shaft power of the air-
craft.

A comparison of the actual Cp,y values with ideal values can provide a measure of
‘goodness’ of an isolated rotor, or a rotary-wing aircraft as a whole, in forward flight.
This approach is similar to the figure-of-merit, aerodynamic, and overall efficiency dis-
cussed for the case of hover in Sect 2.8.

For the ideal power required in horizontal flight (with hover as a limiting case)
P = Tviq, while v,q is expressed as in Eq (2.33) and then the rate of flow through the
rotor becomes:

-— e \
Vig = Vidh"/%Vhoz + VAVpo' + 1 (3.12)

and the ideal specific power coefficient, (CP/T);d expressed in terms of the nondimen-
sional velocity in forward flight, Vj, o = V) ,/v;q, , is

—_ — —— | —_ — =1
(Corr)iy = 1/—}51/,,0’ + NGVt + 7/ BVpo! + VUV, + 1. (3.113)

(Cp/-,-)‘,d = f(V), computed from Eq (3.113), is shown in Fig 3.27.

20+

4 S
’
Cory= 119 ’
: -\\\ /
b /
~
s 154 \ ’/
g 1 \\/uuoouwnm:n P
8 ]
§ 4
5 13-1
4
E ]
6 -4
. E
3
g 0.5
[}

10 ) 2'.0 N 30 v 40 ) 8.0 i .Yﬂ 10
MONDIMENGIONAL NORIZONTAL SPEED; ¥,
Figure 3.27 Examples of Cp sy vs nondimensional velocity of forward flight

For comparison, the Cp /r values for a typical helicopter based on both shaft and
rotor power minus the parasite part, are also shown in this figure.
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Figure-of-Merit or Efficiency Concepts in Horizontal Flight. Similar to the case
of hover, the figure-of-merit (FM, ) concept may be adapted to horizontal flight. It
appears, however, that an alternate term of efficiency—with various qualifying adjectives
—may be more descriptive than the figure-of-merit. This will become evident from the
following examples.

Rotor figure-of-merit in its usual sense, also called aerodynamic efficiency (n, )ho,
can be defined as:

Moo = FMho = (Cps7) iy (Corr) g (3.114)

where (Cp/r)ﬁ is based on rotor power required, excluding all power expenditure for
overcoming the parasite drag. A plot of Tepo fOF 2 typical rotor system is shown in Fig
3.28. In hovering, Eq (3.114) becomes identical with Eq (3.55) previously developed in
Sect 2.8.

10

EFFICIENCIES: n, 4%,

] A e 1 ' i J
[} 10 20 20 40 80 [ U 10

NONDIMENSIONAL HORIZONTAL SPEED; V),
Figure 3.28 Examples of the aerodynamic and shaft power-based efficlencles

Shaft power-based efficiency, NSy o+ May be defined in the following way:
she = FMs,, = (Cpr1)ig/(Corr)g (3.1142)

where (Cp/r)s is computed on the basis of shaft power required by rotary-wing air-
craft throughout the whole regime of horizontal flight and hover (Fig 3.28).

Total or overdll efficiency, ny, may represent the final generalization of the
concept by basing Cp /y values on the rate of expenditure of thermal energy:

7)", = FMrh = (CT/P)Id/(CP/T)th° (3~]]4b)

By plotting the above defined efficiencies vs nondimensional speed of horizontal
flight, one would be able to judge the extent to which a particular design approaches the
ideal represented by the actuator disc. Furthermore, a means of comparing various
rotary-wing aircraft in the helicopter regime of flight is obtained.
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4. CONCLUDING REMARKS

The basic philosophy of the blade element theory, consisting of investigating
aerodynamic phenomena occuring within a narrow chordwise strip of the blade, led to
the development of a powerful, but simple, computational tool for the determination of
forces and moments experienced by the blade as 2 whole. This approach became possible
through the use of two-dimensional airfoil characteristics, reflecting not only blade sec-
tion geometry (chord length and airfoil shape), but also such operational parameters as
Reynolds and Mach numbers, and, if necessary, special aspects of unsteady aerodynamics.

Since the proper application of airfoilsection coefficients requires a complete
definition of the flow—velocity magnitude and direction—in the immediate vicinity of
the blade, knowledge of induced velocities at the blade becomes essential. The combined
blade-element and momentum theory represents one of the possible methods for de-
termining the induced velocity field of a rotor. However, it should be noted that the
flow picture obtained in this way, although more realistic than that provided by the
momentum theory, is still somewhat idealized. This is chiefly due to the fact that air
movements associated with thrust generation are represented as time-average values,

If one would investigate the rotor wake with not-too-ensitive anemometers (pitot-
static tubes for instance}, one would probably find that indeed, the measured flows in
axial translation under static conditions, and even in horizontal flight, are in good agree-
ment with those predicted by the combined momentum blade-element theory; especially,
inboard from the blade tip regions. However, should more sensitive velocity measuring
devices such as hot-wire anemometers or laser beams be used, or the actual flow in the
wake visualized by smoke or other means, then one would realize that the velocity field
of the rotor is time-dependent and subject to various fluctuations.

The combined blade-element and momentum theory does not explain many of the
aerodynamic phenomena, It is also of no help when dealing with such problems as tip
losses, and of very little assistance in investigating the influence of the number of blades
per rotor, or their index angie, on induced power. With the exception of the last two
problems, limitations of the combined blade-element and momentum theory are not too
important from a performance point-ofview, but may become significant as far as pre-
dictions of blade air loads, vibratory excitations, and understanding noise generation are
concerned.

The so-called vortex theories, which will be reviewed in the following chapter,
should provide a more suitable physical representation of time-dependent aerodynamic
events, and will describe in more detail mutual blade interference, and give a clue as to
the blade-load variation in the tip region.

Nevertheless, there is still a place in rotary-wing aerodynamics for the combined
blade-element and momentum theory, since it provides the designer with a simple means
of investigating the influence of important design parameters on performance.

In the pure momentum approach, it was recognized that the disc loading was the
only significant design parameter. By contrast, the blade-element theory permits one to
investigate the influence of such quantities as tip speed, blade loading, blade airfoil char-
acteristics, blade planform, and blade twist distribution. This allows the designer to
examine the interplay between these parameters; which becomes especially useful in es-
tablishing general design and performance trends and philosophies, thus opening the way
toward design optimization.
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CHAPTER IV

VORTEX THEORY

The sequence of the material presented in this chapter reflects, to some extent, the
chronology of vortex theory development. The basic properties of vortices in an ideal
fluid—as determined by the Biot-Savart, Helmholtz, and Kelvin laws—are considered
first, followed by the early application of simple vortex systems to modeling of hovering
rotors having an infinite number of blades. Consideration of the horizontal transiation
of a lifting airscrew with a flat wake serves as an introduction to contemporary applica-
tions of the vortex theory to rotary-wing aerodynamics. Hover and vertical climb are
re-examined for cases reflecting a finite number of blades modeled by single vortices or
vorticity surfaces, while the wake is either rigid or is free to form its own shape. These
approaches are later extended to studies of forward flight., An examination of the im-
portance of such real-fluid properties as compressibility and viscosity concludes this
presentation of the proper vortex theory. Finally, the so-called local momentum theory,
although seemingly belonging to the preceding material, is added as an appendix to this
chapter for the reason that some basic knowledge of vortex mechanics is needed for an
understanding of this particular approach.

Principal notation for Chapter IV

Biot-Savart operator

AR aspect ratio

a lift curve siope rad'? or deg!
b number of blades

C; rotor thrust coefficient

c blade, or wing chord m or ft
%) section lift coefficient

d distance mor ft
e vortex core radius m or ft
7, /-,’ k unit vectors in Cartesian coordinates

Ky, K,, K, iteration factors

v lift per unit length N/m or Ib/ft
M Mach number

M moment Nm or ftlb
N exponent

o)

P

pressure N/m? or psf
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<
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parameter

rotor radius

radial distance

nondimensional radial distance; 7 = r/R
position vector

speed of sound

distance along a curve

thrust

time

velocity of flow approaching the vortex
influence functions

induced velocity components along x, v, z axes
velocity

total induced velocity

Cartesian coordinates

X=Ex/rysyln 7=z
angle-of-attack

flapping angle

circulation

circulation per unit fength

increment

small increment

blade section pitch angle (to zero-lift chord)
angle as defined

angle as defined

inflow ratio; A=V, /V,

rotor advance ratio; 4 = Vipo/Ve
ordinates

air density

rotor solidity ratio

induced velocity influence coefficient
time

inflow angle

velocity potential
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m or ft
m or ft

m or ft
m/s or fps
m or ft
Norlb

H

m/s or fps

m/s or fps
m/s or fps
m/s or fps

m or ft

rad or deg
rad or deg
m? /s or ft? /s
m/s or ftfs

rad or deg
rad or deg
rad or deg

mor ft
kg/m® or slugs/ft®

s
rad or deg
m? /s or ft? /s
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v blade azimuth angle rad or deg
Q rotor rotational velogity rad/s
w solid angle steradian
Subscripts

av average

b blade

c curvature

! final

/ initial
2 lower

rorv at stationr or 7

t tip

tg tangential

u upper

B due to flapping

I paralle!

1 perpendicular

Superscripts

- vector

- nondimensional

~ average, or as defined

A as defined

1. INTRODUCTION

The simple momentum and the combined blade element-momentum theories per-
mit one to investigate aerodynamic events created by the presence of a lifting or pro-
pelling airscrew only within the confines of the slipstream. Outside of this limited sphere
of influence, the fluid—whether flowing or stationary (hovering)—is assumed to be com-
pletely unaffected by the presence of the airscrew. This is a serious conceptual limitation
as one would like to be able to investigate the flow fields induced by a rotor within the
whole unlimited volume of fluid without a priori space restrictions—and only then decide
whether some regions of the surrounding space should be eliminated from the investi-
gation.

At the beginning of this century, Joukowsky and Kutta proved that lift generation
was related to the presence of a vortex exposed to a flow having a velocity component
perpendicular to the vortex filament and thus opened the way for modeling both fixed
and rotating wings through vortices. This approach eliminated the slipstream-only restric-
tions of the momentum and blade-element approaches since, by analogy with electro-
magnetic induction, the influence of a vortex in an ideal fluid is unlimited, even though
according to the Biot-Savart law, the strength of that influence decreases with distance.
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An additional benefit resulting from the application of vortices to airscrew modeling
was the possibility of examining time-dependent flows—an aspect that was missing in the
theories discussed in the two preceding chapters.

The actual application of the vortex concept to modeling of airscrews started with
the development of the ‘vortex theory’ whose foundations were laid by Joukowsky' in
the USSR in the late teens and early twenties, and in the West by Goldstein? in the
twenties. Joukowsky was also the first (late teens) to apply the vortex concept to the
solution of the problem of a hovering rotor with an infinite number of blades. The same
task was considered much later (1937) in the West by Knight and Hefner®. However, the
ever-growing application of the vortex theory to rotary-wing aerodynamics began in the
fifties. In the West, the works of Gray, Landgrebe, Loewy, Miller, Piziali and others
paved the way for that growth, Probably most of the important contributions in that
domain were listed and summarized by Landgrebe and Cheney*. In the USSR, there was
also a large number of researchers who, by pursuing an independent, although somewhat
parallel, course contributed to further development of the vortex theory. In that respect,
the names of Baskin, Vildgrube, Vozhdayev and Maykapar come to one’s mind. Their
most significant efforts, with those of many others, have been collected in book form’.

To gradually introduce the reader to the more complex aspects of the vortex
theory, the material in this chapter is, in principle, presented along the lines of the
historic development of that theory. After a brief review of the Biot-Savart law, the
simplest concept of the wake as represented by a rotor with an infinite number of blades
is considered first. Then more and more sophisticated physicomathematical models are
examined and the following schemes in particular will be considered in an incompressible
fluid: (a) those based on linearized theory (rigid wake), where it is assumed that first tip
vortices and then all the fluid elements forming the vortex sheet move rectilinearly
with a uniform velocity; (b) those incorporating corrections for the deformation of the
wake caused by slipstream contraction {especially in hover and lowspeed axial transla-
tion) which are called quasi-linearized, or semirigid; and (¢} those based on the concept
of nonlinear interactions among the vortices. This latter approach is also called the free-
wake concept. An examination of the role of viscosity and compressibility of the fluid
conclude this chapter.

The material presented in this way should enable the reader to follow the philoso-
phy of the aifoad and performance prediction computer programs in Vol 1i {(Sect 1 of Ch
11, and 3.2 of Ch 111) as well as to be prepared to study the more advanced original papers
now appearing in ever-increasing numbers. For those who are especially interested in
theoretical aspects of the application of the vortex theory to rotary-wing aerodynamics,
the book by Baskin et al® —frequently referred to in this chapter—is highly recommended.

2. GENERAL PRINCIPLES OF ROTOR MODELING BY VORTICES

In an incompressible medium, the vector field of induced velocity can be com-
pletely determined with the help of a suitable vortex system, However, to achieve this
goal in a compressible fluid, one has to rely on an additional field of sources.

Fortunately, most of the problems encountered in rotary-wing aerodynamics can
be treated as being incompressible. Consequently, classical expressions of the Biot-Savart
law can usually be applied when establishing the relationships between the strength and
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geometry of vortices I' = f(x,y,z) (defined by the strength of circulation and shape of
the filament), and velocities V = f(x,y,2) induced by them in the surrounding fluid:

v = f(T).

The basic Biot-Savart law can be modified for those cases where compressibility
should not be ignored; and thus, within the limits of linearized theory, one can obtain
an induced velocity vector field from the known vortex system without having to resort
to an additional field of sources’.

Incorporation of the vortex theory into the creation of physicomathematical
models of airscrews in various regimes of operation opened new possibilities for a more
precise treatment of the time-average flow phenomena. However, it proved especially
valuable for consideration of instantaneous flows which could not be handled by the
airscrew model concepts based on the simple momentum and combined momentum and
blade-element theories.

Many design and analytical problems can now be attacked with the help of the
approaches offered by the vortex theory; for instance, the significance of the number of
blades, tip losses, upwash, impulsive loading, impulsive noise generation, etc. Further-
more, when one begins to think about large rotors with a small number of blades rotating
at 2 rps or even slower, the whole concept of a continuous steady flow within a well-
defined streamtube which may be acceptable for a rotor configuration with a large
number of blades (Fig 4.1a), does not appear to properly represent the physical reality
(Fig 4.1b).

* l k, Y

(a) (b)

Figure 4.1 Examples of flow visualization for (g} six-bladed, and (b) one-bladed
rotor in hover®

As to the structure of the complete vortex system of an airscrew, theoretical con-
siderations postulate—and various visualization techniques such as smoke in air®, dyes and
bubbles in water tunnels®, and laser 7+8 tend to confirm—that such a system can be repre-
sented by (a) the socalled bound vortices which are attached to the blade and are di-
rected along their longitudinal axes, and (b) free vortices which actually form the wake.
In the latter category one may distinguish, in turn, the so<alled shed vortices which, at
the moment of leaving the blade, are parallel to its axis, and trailing vortices springing
along the blade span in the original direction either perpendicular or approximately per-
pendicular to the blade axis. Among the trailing vortices, those leaving the blade tips—the
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so-called tip vortices—usually dominate the flow picture in all regimes of airscrew opera-
tion (Figs 4.1 and 4.2),

Figure 4.2 Example of flow visualization of a rotor in nonaxial translation®

It is therefore understandable why the early physicomathematical models of the
rotor had logical structures built around the tip vortices ajone. However, as indicated by

TI® [y
VORTEX

Figure 4.3 Scheme of the Wake structure for G single blade in hover*
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All vortex surfaces represent a discontinuity in the fiow field, due to the rotational
motion of the fluid particles. However, outside of these surfaces, the flow can usually be
considered as irrotational, or potential.

Should the wake of a lift generator remain invariable with time*, then the perturba-
tions (velocities) induced in the fluid flowing past it could be computed with clear con-
science using the Biot-Savart law which does not contain any provision for the time
required to transmit a signal from vortices to the point where the induced velocity is
determined. However, in reality, because of the interaction between vortices, flow fluc-
tuations, and various maneuvers, the geometry of the wake,and strength of vortices
forming that wake may vary with time. Furthermore, even when the wake stays basically
invariable, the distances of various blade stations from the vortices may change with time.
For instance, this would be the case in determining induced velocity at a point located
in the coordinate system rotating with the blade (say at some station along its span at a
given position along the chord). Consequently, noninstantaneous transmittal of aerody-
namic signals might have some significance.

Examination of flow visualization pictures (e.g., Figs 4.1b and 4.2) focus one's
attention on another property of real fluids; namely viscosity. It can be clearly seen from
these figures that due to its influence, vortices dissipate downstream in the wake. This
phenomena has been examined for both fixed-wing® and rotary-wing' ® aircraft. Although
the process of vortex dissipation is quite complicated, its significance should be kept in
mind when airscrew physicomathematical models based on the vortex theory are de-
veloped. At this point, it may be added that some first-order corrections related to the
existence of viscosity can be directly incorporated by propery modifying the classic
Biot-Savart relationshipsl .

3. VORTICES IN IDEAL FLUID
3.1 Basic Laws

Single Filaments. All early attempts in the development of the vortex theory were
based on the classic approach, treating air as an incompressible fluid. In addition, all the
assumptions of classical hydro and aero mechanics regarding vortices were retained. In
any textbook on this subject (e.g., Ref 11), one can find that fluid motion associated
with the existence of a vortex can be broken down into (a) rotation of the infinitesimally
narrow vortex core (filament), and (b} irrotational (potential) flow outside of the core
itself. Two-dimensional flow induced by an infinitely long straight vortex of strength I’
occurs in concentric circles, and tangential velocity(v,,) at any given point of a circle of
radius r is constant and equal to

Vig = T/2nr, (4.1)

To avoid infinite vy values at the vortex center, it is assumed, even in the classic
theory, that the core has a finite cross-section. Consequently, v, increases only to its
finite maximum value at the border of the core, which is assumed to rotate as a rigid

*Unstalled fixed wing, or a rotor with an infinite number of bisdes may represent such s case.
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body, and the character of the tangential velocity distribution around the vortex may be
expected to be as shown in Fig 4.4,

Figure 4.4 Velocity and pressure distribution in the interior
and neighborhood of a rectilinear vortex!!

The behavior of vortex filaments in an ideal fluid is governed by the following
theorems of Helmholtz and Kelvin:

1. “No fluid can have a rotation if it did not originally rotate."

2. “Fluid particles which at any time are part of a vortex line (filament) always

belong to the same vortex line.”
3. “Vortex filaments must be either closed lines or end on the boundaries of the

fluid.”
As to the strength of circulation, Eq (4.1) indicates that

' = 21rrv,,.

But the right-hand side of this equation can be interpreted as aline integral

c
r= f Vegds

where Veg is the tangential velocity corresponding to any radius r, and the integration is
performed along the circle of that particular radius.
This relationship can be generalized; thus one can determine the circulation inside
a region bordered by any closed curve (C) which contains a single vortex filament, or a
system of vortex filaments:
[~

r =f veos 8ds (4.2)
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where 0 is the angle between the velocity vector and the tangent of the path along which
the circulation is computed.

Figure 4.5 Determination of circulation

Consequently, if the velocity distribution within a particular region of a two-
dimensional flow is known, the associated circulation may be found by the use of Eq
(4.2).

Vortex Surface. When vortex filaments are very close to each other, they may be
considered as forming a continuous surface of vorticity {vortex sheet). Denoting the cir-
culation per unit width of the sheet as 7, the relationship between its value and that of
the tangential velocity component just above v, and below vy the vortex sheet can be
found using the principle expressed by Eq (4.2).

Circulation 8T associated with a 8s-wide element of the vortex sheet can be de-
termined as a line integral of velocity taken around that element (Fig 4.6). Since &s is
small, it may be assumed that the velocity components perpendicular to the sheet are the
same at both ends of the element. Thus, their contributions to the line integral would
cancel each other, and the resulting value would be

8 = v, 85 — vy8s;
buty=8T/8s, hence

7 = vu — vt, (4.3)
vll
omm—
g
8s vt

Figure 4.6 Circulation associated with a vortex sheet
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Eq (4.3) shows that a vortex sheet represents a surface of discontinuity of the tan-
gential component of the velocity of flow, and the strength of circulation per unit width
of the sheet (7) represents the amount of that discontinuity.

3.2 Biot-Savart Law

Three-Dimensional Vortex. The Biot-Savart law is one of the principal tools for
determination of the flow field induced by a system of vortex filaments. In vectorial
notations, the elementary velocity dv induced at a point P by an element o5 belonging
to vortex filament C of strength I' is expressed as follows (Fig 4.7):

av = (T/4m)[(&'x d)/ o], (4.4)

while the total induced velocity (v) at that point becomes

[
7= ) § (6% D) (4.42)

where the integral sign indicates that an integratiog is carried along the line of filament
C, d¥ represents an element of that filament, and o is the distance between the point in
space where we want to determine velocity v and the element ds” The latter is so directed
on the filament C that looking along o5 one should see the circulation around C in the
clockwise direction. The cross-product d¥ x d has a value of ds d sin(¢) and has a direc-
tion perpendicular to a plane defined by ds and » while ¢ denotes an angle between the
vectors. In Prandtl’s Fundamentals* ! the following was used to describe v

The velocity v is obtained by adding together the contributions of the
individual filament element &5, and the contribution of this element is
perpendicular to d_s’ and d, and is inversely proportional to the square of
the distance ¢ from the point in question. This, however, is exactly the
law of Biot and Savart in electrodynamics from which the magnetic field
in the neighborhood of a current-carrying wire can be calculated, :

Nt n,$)

Figure 4.7 Induction of velocity ¥ at g point P
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Going from vectorial notations to Cartesian coordinates, vector V can be resolved
into components (4, v, w) along the x, y, and z axes of that coordinate system. Baskin,
et al', outlined the following procedure: Let the equation of line C (Fig 4.7) be given in
a parametric form:

£ = tp) n=np)=2%0p (4.5)

where p is the parameter (usually an angle for a curved vortex filament). As parameter
p varies from its initial (p;) to its final value (), point N(E, n t) describes curve C. Now,
vectors d, and d5 (which may be considered a derivative of d ), can be expressed in light
of Eq (4.5) as foliows:

d=(t—xi+@m—yi+ -2k

gt \» [cn \= [dt \-
ds =|— ] +|— i + | — k
’ (dp dp) (dp dp)’ <dp dp)

—
where /. j, and zare unit vectors of the coordinate sytem x, y, Z.
Introducing the above expressions into Eq (4.4a), the x, y, 2 components of the
induced velocity vector are obtained:

Pr

(4.6)

1 Pfan o ap
u=—{ dp(z—r)—dpcv—n)J = (4.7)
pP; L
Pl h
_r s %, g
V—‘"!f R Rt e O b (4.8)
Prr 1.
e L Myl ®
WT"’J; Lo - —b v- - (49)
where
d=Vlx =&+ -n)? +(z-3)% (4.10)

Vortex in a Plane. If the vortex filament lies in a plane, Eq (4.4a) can be simplified
as follows:

L f e in ¢ (4.11)
v=—080 —sin¢. .
4 g?

When the actual shape of a vortex filament can be approximated by linear seg-
ments (as for instance, AB in Fig 4.8), Eq (4.4) may be modified to a form more conven-
ient for finding, in practice, the induced velocity increment (A v) corresponding to this
particular segment of the vortex filament.
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Figure 4.8 Increment of velocity Av induced (up from the paper plane)
by vortex segment A-8

It can be seen from this figure that ds = o d9/sin ¢ and d = r/sin ¢, where r is the dis-
tance of point P from the A8 axis. Consequently, ds can be expressed as ds = (r/sin® ¢)d9.
Substituting the above determined values for ds and d,Eq (4.11) becomes

A8
Av = (C/énr) f sin¢ a9,

but since ¥ = 1 — ¢ and sin ¢ = sin 8, the above equation can be rewritten within limits
of integration from 9, =7 —¢, to O, =n—¢,:
d,

Av = (TI'/4nr) f sin 9d9. (4.12)
9,

Performing the above integration and remembering the relationships between Y and 9,,
and ¢, and ¢, the following is obtained:

Av = (T/4nr)[cos ¢, + cos (m—9,)].

Looking at Fig 4.8 one would note that 7 — $1 = A, and ¢, = A,, and the above
equation can be rewritten as follows:

Av = (T/énr)(cos A, +cos A,). (4.13)
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When the vortex filament A8 becomes very long; i.e., when it extends from —oe to
%, then A, = A, =0, and Eq (4.13) is reduced to Eq (4.1).

Interaction between vortices. |t should be noted at this point that although vor-
tices induce velocities within the fluid they, in turn, may be subjected to the action of the
fluid. According to Heimholtz's theorem, there is no exchange of either mass or momen-
tum between the vortex core (filament) and the rest of the fluid; hence, if a vortex fila-
ment were located in the mass of moving fluid, it would move with the fluid. This obvi-
ously means that velocity fields induced by a system of vortices can produce reciprocal
motion of those vortices belonging to the system. Thus, in an incompressible fluid, the
classic Biot-Savart law should, in principle, provide a sufficient tool for determining from
an initially given system of vortices, not only the associated field of induced velocities,
but the resulting motion, or perturbation of motion, of the vortices themselves.

33 Kutta-Joukowsky Law

Circulation and Lift. The Kutta-Joukowsky law represents another important tool
in the application of the classic vortex theory. It permits one to establish a relationship
between the loads on the blades and strength (circulation T') of bound vortices. This law
states that lift (£) per unit span of a blade (or wing in general)! ! can be expressed as:

£=pUT (4.14)

where T" is the strength of circulation around the considered blade section, p is the air
density, and U] is the air velocity component perpendicular to the vortex filament at
that section.

If ¢ is the chord and ¢y is the section lift coefficient at the considered station, then
Eq (4.14) can be rewritten as:

¢ = 2I'fUsc (4.15)
or

I = Y% Ujc. (4.16)

Trailing Vortices. Considering the Helmholtz and Kutta-jou kowsky laws, Eq
(4.16) would indicate that whenever the value of the product of ¢z Ujc varies along the
rotor blades, then over a length dr, a vortex filament of strength dT" = —(aTI"/ar ) dr
should leave the blade. By the same token, if the circulation around the blade remains
constant along its entire span, then the vortex bound to the blade would leave it at the
tip and root only. In this case, in hovering or vertical ascent, the vortex system would
resemble that shown in Fig 4.9, where vortices springing out from the tip form an approx-
imately helical line {also see Fig 4.1b).

As to the root vortex, it is apparent that since 27 is zero at the rotor axis, the only
remaining velocity (in the case of vertical flight or hovering) is axial. Hence, it is not diffi-
cult to imagine that each vortex leaving the blade at the root combines with those of the
other blades to form one common vortex line along the rotor axis.

Constant Blade Circulation and Cy. In hovering or axial translation at speeds such
that velocity (U] ;) experienced at various blade stations 7 (where 7 = r/R) may be con-
sidered as UL, ®= V.7, itis easy to express the constant blade circulation in terms of the
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FEI/R

Figure 4.9 Scheme of vortex system In axidl translation for constant
circulation along the blade

rotor thrust coefficient (Cy), tip speed (V, ), rotor radius (R), and number of blades (b).

Eq (4.14) indicates that for U} = V,r, the load distribution along the blade is tri-
angular, reaching its maximum value per unit of blade length of £, ,, =T'p 0 V; at the
tip, where I, is the circulation along the blade. The total load (thrust) per blade 7, will
hence, be 7, = I'pp V,R/2. However, T, = T/b where T is the total thrust. Consequently,

T, = 2T/bpV,R. (4.17)

Multiplying the numerator and denominator of the above expression by 7R V., we
obtain

[y = 2CyaRV,/b. (4.17a)
4. ELEMENTARY CONSIDERATIONS OF HOVERING ROTORS
4.1 Rotor with a Single Cylindrical Wake

Assumptions. The task consists of determining induced velocities at the disc of a
rotor hovering far from the ground. To solve this problem, it is assumed that the rotor has
a very large (infinite) number of blades. This implies that distances between the conse-
cutive vortex helixes are so small that instead of having either helical vortex sheets or
helixes of tip vortices corresponding to the number of blades, the whole wake below the
rotor may be considered as filled with vorticity. It is further assumed that (a) circulation
along the blade is constant, and (b) there is no slipstream contraction. Consequently, the
whole vortex wake would consist of a single cylinder of vorticity having radius R, and
extend downstream from the rotor disc (v, = 0) to infinity (v, = —oo) (physical con-
cept somewhat similar to that of Fig 4.1a). Vortices bound to the rotor blades and the
root vortices extending along the cylinder axis would complete the vortex system of the
rotor (Fig 4.10).
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B

L
=

Figure 4.10 Scheme of the cylindrical wake of a stationary rotor

Coordinate System. The Cartesian xyz coordinate system shown in this figure will
be used in most of the cases considered in this chapter. It can be seen that the y axis is di-
rected in the thrust (vertical) direction. This is done in order to retain the traditional v
symbol for the induced velocity component (downwash) directly associated with thrust
generation. In forward flight regimes, the x axis will coincide with the direction of rotor
displacement with respect to the still air mass.

Andlysis. As to the contribution of various vortices to the downwash induced at
the rotor disc, it can be seen that neither root nor bound vortices would have any influ-
ence in that respect. Root vortices (distributed along the y axis), or those representing
any ¥ component (if present) on the surface of the cylindrical wake, being perpendicular
to the rotor disc cannot induce any velocities in the direction normal to the disc plane.
They can only contribute to the rotation of the slipstream. :

It is easy to show that the contribution of the bound vortices to the creation of
downwash in the plane of the disc (under the assumption of a large number of blades)
will also be zero. By selecting an arbitrary point on the disc, it can be seen that the
tendency to create downwash by the sum of all the vortices located to one side of a line
drawn through the chosen point and the center of the disc will be exactly equal in magni-
tude but opposite in sign to the sum of those located at the other side of the line. Itis
obvious, hence, that under these assumptions, no downwash can be created by the bound
vortices. Consequently, only the vortices forming circles parallel to the rotor disc on the
cylindrical wake can contribute to the generation of the induced velocity normal to the
rotor plane®,

The Biot-Savart law indicates that at a point P, the velocity potential ¥p corre-
sponding to a closed vortex filament of strength T will be (Ref 1 1, p. 104):

¢p = (Fdmw

where w is the solid angle subtended by that closed vortex line. The velocity (vp) induced
at that point will be:

155



Theory
D’F = gTac’qup = (1/4n) grad Tw. (4.18)

in view of the above, the induced velocity (i.e., that in the direction of the y axis)
will be obtained by differentiating 'w with respect to y. However, under the assumption
of a cylindrical wake with no slipstream contraction, the intensity of circulation per unit
of length in the y direction (Y = 8T [§y) remains unchanged, which also means that
dT/dy = const.

it may be assumed that between the two coordinates y, and y,, the gradient of
angle w can simply be expressed as the difference in w(y,) and w(y,) values. Now, Eq
{4.18) can be rewritten as follows:

Vp = (1/4n)(d T/ dy)[wly;) — wlvy)]. (4.19)

It was assumed that the rotor was far from the ground and thus, its wake extended
far below: y;-= —o (Fig 4.10). For any point P located in the plane of the rotor disc
but inside the circle of the vortex cylinder, w(y,) = 0,since the supporting ring is in-
finitely far from point P. Fory, =0, w(y;) = 27, and the point P lies in the plane of
the supporting ring. This means that the induced velocity in the plane of the disc becomes

vp = —%(dT/dy) = const. (4.19a)

In view of the fact that the above equation was established for an arbitrary point
of the rotor disc, the induced velocity should be constant over the whole disc area.

Should point P be located outside of the rotor disc at P, both wfy,) and w(y,)
equal zero, thus, according to Eq (4.19), no flow (at least in the y direction) would be
induced by the assumed wake.

The downwash velocity far below the rotor (v__) can also be found with the help
of Eq (4.19): If point P is moved far below the rotor, then obviously, w(y,) still remains
equal to zero, but w{y,) = 4n. Therefore,

V_. = —(dT/dy). “(4.19b)

Comparing Egs (4.19a) and-(4.19b), one sees immediately that v__ = 2v, as in-
dicated previously by the momentum theory.

Taking Eq (4.17) into consideration, the total value of the circulation transferred
to the wake during one revolution of the rotor becomes

AT = 2T/pV,R (4.20)
and
dl/dy = —AT'/Ay (4.21)

where Ay = vAt is the distance traveled by the wake during the time At = 2qR/V/, corre-
sponding to one compliete rotor revolution. Making the necessary substitutions for AT
and Ay in Eq (4.21), and then introducing the so-obtained dT/dy values into Eq (4.19a)

will result in the following:
v =+ T/2nR?p.

The above expression is immediately recognized as the formula for the ideal in-
duced velocity previously obtained in the momentum theory.
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Although the above results are correct, at first glance it may appear that some
logical contradictions exist in the physicomathematical model, as the increase of velocity
in the downstream direction postulated by Eq (4.19b) should cause contraction of the
wake convecting the shed vorticity; but in spite of this, a constant crosssection of the
slipstream was still assumed.

However, closer examination of the consequences of slipstream contraction indi-
cates that the relationship established for the cylindrical wake would still be valid if con-
tinuity of the vortex surface far downstream were assumed. Obviously, w(y,/) and
w(y,) appearing in Eq (4.19) will not change; being 0 and 2, respectively, and the value
of dT'/dy will also remain constant as in the cylindrical case. To visualize this result, one
must imagine the vortex filaments forming the rotor wake as being of small, but finite,
diameter. Since they are ‘packed’ so tightly that consecutive vortex rings touch each
other—thus forming a continuous vortex sheet—the number of vortex filaments per unit
of the wake length will be the same in the contracted slipstream region as in the non-
contracted portion.

4.2 Circulation Varying Along the Blade Surface

Wake Vorticity. From the point-of-view of practical application, cases wherein
circulation varies along the blade should be of greater interest than I'(r) = const. In the
simplest physicomathematical model of a rotor with varying circulation when hovering
out-of-ground effect, it may be assumed that a vortex filament leaving the blade at a
particular station moves (as in the preceding case) along a circular cylinder of a radius
equal to that of the blade station from which the filament originated. This would result in
wakes wherein vortices are distributed along concentric cylindrical surfaces. For a large
number of blades, it may be assumed that a continuous distribution is obtained along
each cylindrical surface.

The strength of each vortex filament leaving the blade is equal to the corresponding
variation of circulation along the radius, but is of the opposite sign.

Knowing I" = f(r) for the blade (Fig 4.11), the variation of circulation for a blade
element dr wide and located at a distance r from the rotor axis will be (dT/dr)dr. Thus, a
vortex of this strength should leave the blade at station 7 + dr. It was shown that vortices
springing out at a given radius do not produce any downwash in the plane of the disc
outside of the radius at which they separate from the blade. This means that the con-
sidered vortex of strength —(d I'/dr)dr leaving the blade at station  + dr has no influ-
ence on the downwash velocities of blade elements outboard of this station. The vortex,
however, may affect the inboard elements, and this influence can be easily estimated.

The strength of the vortex at station r + dr will be

T,.4 =T, + (d/drjar.

Differentiating the above expression with respect to y, and neglecting Infinitesi-
mals of higher order, the following is obtained:

dT,y g ldy = dT,[dy.

Induced Velocities. Substituting d T,/ dy instead of dT,,,, /dy into Eq (4.19a),
the corresponding velocity induced at the rotor disc at station 7 + dr = r becomes
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Figure 4.11 Circulation varying along the blade

v, = —%(dT,/dy). (4.23)
The downwash created by the inboard elements at station r (0 to r) will be

1 d[T, + (dT/dr)ar — T, ]
v = —— .
O~r 2 dy

(4.24)

Neglecting the infinitesimals of higher order, Eq (4.24) reduces to zero.

These results indicate that under the assumption of a large number of blades and
cylindrical wakes, the circulation existing at any blade element influences the downwash
at that particular element only. Thus, the blade elements may be treated as being recipro-
cally independent, as was assumed in the combined momentum and blade-element
theory.

It is now possible to establish relationships between the circulation, the geometry
of the rotor (chord, number of blades, etc.), and the characteristics of the airfoil sec-
tion at each blade station without considering any possible ramifications from any other
point along the blade.

The lift coefficient of a blade section at a given radius ¢ is:

cg, = a6, — ¢,).

where values of g, (section-lift curve slope), 6, (blade pitch angle), and ¢, (total inflow
angle) are all determined at station r. In hover, under small angle assumptions, ¢, = v/,
and

¢, = a,[0, — (v,/Q,)]. (4.25)

Substituting 27 in Eq (4.16) for the velocity of flow U}, and expressing c, accord-
ing to Eq (4.25), the total circulation at station r for & number of blades is readily ob-
tained:

T, = Jia, bc,[6, — (viQr)]Qir. (4.26)
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In the case of hover, the vortex filaments spring out from each blade station and
move down with the slipstream. It is clear that the distance (d) ) traveled by the vortices
springing from all b blades along the rotor axis during one-revolution will be:

dy = 2nv, /8. (4.27)

wa, the average change of circulation along the rotor axis y in the negative direc-
tion, —(dT/dy) can be obtained by dividing Eq (4.26) by Eq (4.27):

—(dT/dy), = (1/4n)a,bc,[6, — (v/Q)] Qriv,. (4.28)

In analogy to Eq (4.19a), v, = =% (dT"/ dy),; therefore, expressing this derivative
according to Eq (4.28) and switching to the 7 notations (7= r/R) for determining the
position of the considered element on the blade, the following equation—now in vy—is
obtained:

81RV? + Viapbc,v; — V2 azbe;F6; = 0. (4.29)

A glance at the above equation will indicate that it is identical to Eq (3.14) ob-
tained from the combined momentum and blade-clement theory when Ve =0.

5. SIMPLE ROTOR WAKE MODELS IN FORWARD FLIGHT
5.1 Development of the Concept

In the consideration of axial rotor translations (with hovering as a limiting case),
the simplest physicomathematical mode! of the rotor vertex system was built around the
tip and root vortices only. A similar approach can also be taken for nonaxial regimes of
flight. However, the basic differences between the two cases should be noted: (1) A com-
plete axial symmetry existed in steadystate vertical climb and in hover, and the blade
azimuth angle had no influence on the circulation. Consequently, constancy of the
circulation along the blade radius (T, = I'(r) = const) represented a sufficient condition
for obtaining the rotor wake models discussed in Sect 4.1 of this chapter. (2) In contrast,
it should be anticipated that the azimuth angle could influence the blade circulation
value in forward flight; hence, in order to obtain the desired simple wake with no shed or
trailing vortices along the blade span, it must be stated explicitly that

Ty = I(r,¥) = const. (4.30)

In such a case, the vortices would leave the blade only at the tips and roots, and at
low nonaxial translational speeds the wake would appear as shown in Fig 4.12a. Further-
more, assuming that there is no slipstream contraction, all of the tip vortices would form
helical lines on the surface of an elliptic cylinder of constant cross-section (Fig 4.12b). In
both cases, the root vortices can be imagined as forming a single filament along the wake
axls.

As the inplane velocity component increases, one may also imagine that the wake
assumes a more and more skewed position with respect to the rotor disc plane, while its
thickness measured perpendicularly to the cylinder axis becomes progressively reduced.
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{a) Contracting Wake {b) Cylindrical Wake
Figure 4.12 Tip and root vortex wake of a two-bladed rotor at low horlzontal speeds
Finally, at the limit (as, for instance, in high-speed horizontal flight), it may be assumed
that the whole wake degenerates into a constant-width flat ‘ribbon’ of vorticity trailing

behind the rotor (Fig 4.13). This would obviously represent the simplest model for the
wake of a rotor in horizontal translation.

-V

Figure 4.13 Flat wake formed by tip vortices of a two-bladed rotor at u=0.25"

Having established the physical model of the wake, further procedures in finding
induced velocities at points of interest (say, at the rotor disc) can be visualized as follows.
First, obtain analytical expressions for the shape of vortex filaments in the xyz coordi-
nate system and then using suitable Biot-Savart formula given in Sect 3.2, try to get the
solution either in a closed form, or one based on the use of special functions (e.g., elliptic,
Legendre, Bessel, etc.) which are available in tabulated form. If, for some reason, the
above approach proves too difficult, then advantage may be taken of computer tech-
niques. In this case, the actual shape of vortex filaments would be approximated by
broken lines, with the length of these straight-line segments selected so as to reach a de-
sirable compromise between accuracy and time of the computations.

160



Vortex Theory
5.2 Consequences of the I',(7,y) = const Assumption

At this point, it may be of interest to examine the extent to which the [ (7y) =
const assumption could refiect a reality. In order to do this, the corresponding variation
of blade loading with radius and azimuth will be examined.

Relationship between Rotor Thrust and Circulation per Blade. Assuming that the
induced velocity at the blade is small in comparison with the velocity component U] per-
pendicular to the blade axis of the resultant flow at some relative station 7=r/R, the ele-
mentary thrust (lift) dT, per length d7R of one blade, according to the Kutta-Joukowsky
law, can be expressed as

dT, = pT,U RdF (4.31)

where I, is the circulation around the blade and U) = (7 + u sin )V, (Fig 4.14). Con-
sequently,

dT, = pT, V R(F + usiny)dr. (4.31a)

-v
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Figure 4,14 Notations

Integrating the above equations within limits of 7= 0 to 7= 1.0, and averaging the
obtained lift per blade over one revolution, a relationship between the total rotor thrust
T of all b blades, and the circulation per blade can easily be established:

1.0 27
T = pr‘bVR// (F + u siny)drdy

from which
T = %bpT,V, R (4.32)
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or conversely,
L, = 2T/bpR V. (4.33)

It can be seen from the above equation that the relationship (under the Tp(r)=
const assumption) between 7 and Ty is identical to Eq (4.17) and independent of the
advance ratio u.

In order to further examine the practical consequences of the assumption that
blade circulation remains constant along the radius and is independent of the azimuth,
let us examine variations of the load-per-unit length of the blade span (dT,/Rd7) as a
function of both 7 and ¥. From Eq (4.31a),

dTy/RAF = pTpV,(F + u siny). (4.34)

Thrust Offset. The above equation indicates that the load over the disc would
become asymmetric with respect to the x0y plane as u begins to increase. This is illu-
strated in Fig 4.15 for a typical high-speed advance ratio of u = 0.35.

Figure 4.15 Character of load distribution at u = 0.35 for Ty(7¥) = const

It can be seen from this figure that the resultant thrust would be displaced to the
advancing side of the disc, thus producing an unbalanced rolling moment M, .

The magnitude of this moment can be easily calculated; remembering that the
elementary rolling moment (dM, ) shown in Fig 4.14 is:

dM, = —dT,RFsin y.

Denoting d7,, in the above expression as given in Eq (4.31a) and performing the
double integration for all b blades from 7= 0 to7= 1.0, and from ¢ = 0 to ¥ = 2, the
following is obtained:
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M, = —4bpT,R* Vyu where u = |VI/V,. (4.35)

The relative thrust (lift) offset (Zy, = z/R) can be found by dividing Eq (4.35)
by 7 (as given by Eq (4.32)) and by R. This results in

Z-Mx = Yu. (4.36)

Such large thrust (lift) offsets are not realistic for single-rotor configurations,
although they may be tolerated in helicopters using paired contrarotating ‘rigid’ rotors;
for instance, the ABC type shown in Fig 1.30. Consequently, for most of the cases en-
countered in practice, the validity of the physicomathematical mode! based on the
assumption of constant circulation must be critically examined before using—for the sake
of simplicity—the I'(7, ) = const approach.

Circulation Variation Required to Eliminate Thrust Offset. Elimination of the
rolling moment can be achieved by postulating that the blade thrust moment, with re-
spect to its actual (in articulated rotors) or virtual (in hingeless configurations) flapping
axis, remains constant regardiess of the azimuth value.

1.0
My = / RFdT, = const. (4.37)
(/]

Expressing d T, according to Eq (4.31a) in Eq (4.37) and changing the notation
for ', to I‘b(d/) in order to emphasize the dependence of circulation on the azimuth, the
integral from Eq (4.37), with constant multipliers omitted, becomes

T, (W7 + (3/2)usin Y] = const (4.38)

where I', (V) can now be interpreted as circulation averaged over the entire blade length
when the blade is at an azimuth . Consequently, the required character for the varia-
tion of the average blade circulation with ¢ will be

Cp(¥) = const/[7 + (3/2)usin ¥]. (4.39)

This can also be expressed as
Tp(y) = T, + AT, (¥), (4.40)

where Fb is the blade circulation averaged over one revolution.

Wake of a Rotor with No Thrust Offset. Since in almost all practical rotary-wing
configurations, very little or no thrust offset is permitted, the average blade circulation
must vary with the azimuth angle as indicated by Eq (4.39). This in turn implies that shed
vortices appear in the wake. The actual circulation aiso usually varies within the blade
span, which leads to the presence of trailing vortices springing from the blade. It may be
stated hence, that in the majority of cases encountered in forward flight, the blade circu-
lation is a function of 7 and y.

The example in Fig 4.16 of the actual character of circulation variation for an
articulated rotor in forward flight shows that indeed, circulation varies not only with the
azimuth, but with blade stations (7) as well.
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Figure 4.16 An example of circulation variation for an articulated rotor in forward flight

Because of the fact that generally, 'y = I'(7 ), the whole conceptual model of the vor-
tex system reflecting the reality of rotor operation in forward flight may become more
complicated than the simple scheme based on the existance of tip and root vortices
only. A discussion of the flat wake is presented in the following section as an example
of how even in a simplified mode!, some of the Ty, = T(r,¥) aspects are taken into con-
sideration.

6. FLAT WAKE

It was indicated in Sect 5.1 that the so<alled flat wake represents a limiting case
when all of the vortices transfered to the slipstream of a rotor moving at a relatively high
forward speed (usually purely horizontal) are reduced to a single ribbon of vorticity.
In spite of the basic simplicity of such a vortex system, it merits attention, as many
practical problems of rotary-wing aerodynamics can be quantitatively examined using
a mathematical model based on the flat-wake concept. Furthermore, studying a wake of
this type should provide the reader with introductory material, later facilitating working
with more complicated vortex systems. The basic presentation of this subject closely
follows the development of the wake concept by Baskin et al', and then a somewhat
different approach by Ormiston'* is briefly discussed.

6.1 Variabie Circulation Along the Blade

Determination of the Vortex System. it was shown that the assumption of
Ty (¥) = const may lead to unbalanced rolling moments. Nevertheless, for the sake of
simplicity, Baskin et al assume that the variation of circulation with azimuth may be
neglected for practical calculations if, at each blade station, the circulation is averaged
over a complete rotor revolution. In this way, a conceptual model is obtained where the
radial change I',(7) of the y-averaged blade circulation becomes the only variation to be
considered.
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It should be recalled that acceptance of I'p () = const would imply that there are
no shed vortices. Bound vortices, as in the case of hover, would not generate any vertical
induced velocities, but would contribute to the slipstream rotation by inducing tangen-
tial velocities above and below the rotor disc. For single rotors, these effects may be
neglected since these tangential velocities are usualy no higher than 0.5 percent of the
tip speed. For the two-rotor configuration (coaxial and intermeshing), they may be con-
sidered in a more detailed analysis.

Because of the assumption that I'p(7) # const, the trailing vortices would spring
from various blade stations and form a system which, when viewed at a particular instant
in time, would consist of cycloids of various shapes, depending on the station of their
origin (Fig 4.17).

DIRECTION OF. -V
FLIGHT w = (3/2 )1

Figure 4.17 Trailing vortices of a rotor with circulation varying
along the blades

Using the notations given in this figure, the equation of a single vortex filament
shed from the tip can be expressed quite simply as

x =Vt — Rcos ¢
(4.41)
z2 = Rsiny

where V is the velocity of the distant flow (with the proper sign), ¥ is the blade azimuth
at time ¢, and R is the rotor radius. Denoting ¥, as the azimuth angle at which the tip
vortex separates from the blade, ¢ can now be expressed in terms of the azimuth angles
vand yg: t=(¢y— V¥ oJ/2n(rps) where rps = V,/21R. Introducing the above values into
Eq (4.41), the following is obtained:

x = uR[(¥—¥,) —cos ¥]
(4.41a)
z = Rsiny
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where u is the tip-speed ratio (which, in the assumed coordinate system, should be taken
with the minus sign).

The trailing vortices leaving the blade along its span can be imagined as discrete
filaments /f the blade circulation jumps by steps. However, if the circulation varies ina
continuous manner (d Ty 7/d7, finite along the whole blade), then a continuous sheet of
vorticity would also form. This sheet can be visualized as consisting of separate, As wide,
ribbons of vorticity. As discussed in Sect 4.2 of this chapter, the circulation strength of
such a ribbon springing from a blade segment Ar = AFR long will be

AT, 7 = —(dTy3/dr)AFR, . (4.42)

while its shape will be represented by a cycloid whose equation (in analogy to Eq (4.41a))
can be written in a nondimensional form as follows:

u¥ —yg) — Feos ¥

X
(4.43)
Z = TFsiny
where
X = x/R andZ = z/R.

In order to determine the strength of circulation  per unit width of a ribbon of
vorticity As wide, let us look at Fig 4.18. It can be seen from this figure that taking all b
blades into account,

Y = (AY,/2m)bAT,;/As
where &s = Ax sin 9, while tan 0 = dz/dx = 7 cos W (u+ 7 sin ).

vV =3/2)n(-n/2)

-—V
LS 4 Y x
Ay, Ab8x |
|
V=0 % x
0 H,T
b
el DIFRECTION
OF FLIGHT
vV =n72 2

Figure 4.18 Elementary vortex strip

However, according to Eq (4.43), the nondimensional distance Ax between the two cy-
cloids encompassing the considered vortex strip is AX = pA Y, and
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Ay, /As = 1/ uRsin ¥, v = bAT ,7/2nRu sin 9.

Equivalent Rectilinear Vortex System. The cycloidal vortex strip can be resolved
into two components; one, paraliel to the x, and another to the z axis (Fig 4.18 and
4.19) having a circulation strength per unit width of 7, and v,, respectively. The x com-
ponent may be called longitudinal, and the z component lateral.

Vv =gem DIRECTION
OF FLIGHT

Figure 4.19 Vortex filaments from a four-bladed rotor

The values of these components within various ranges of the azimuth angle are as
follows:

bATyz u+ 7siny n 3
Yycos 9§ = — for— ¢y €« — 1
2nRu rcosy 2 2
Y = (4.44)
bAT )z p+ ¥ sin L LS
—vcos 9 = — b'u__ v for——< ¢y € —
2nRu  Tcosy 2 2
and
bAT > | 3
ysind = 4 for — < ¢y<—n
2nRu 2 2
n 3
7, = 0 for =—and y=—1n 4.45
2 '] 2 v 2 (4.45)
bAT'; n "
—Ysin® = for — =< ¥y <—,
2nRu 2 2
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It can be seen from Fig 4.19 that lateral components (v,) of vortices which spring
from a circle of radius 7 will exist only inside of that circle. Outside, they will cancel each
other (point P, Fig 4.19). By contrast, the 7x components will add to each other and con-
sequently, the strength per unit width of the longitudinal vortex will double outside of
the circle of radius 7. All of the above considerations indicate that the original system of
cycloidal vortices shown in Figs 4.17, 4.18, and 4.19 can be replaced by a simpler sys-
tem of rectilinear vortices more suitable for mathematical treatment (Fig 4.20).

Figure 4.20 System of rectilinear vortices equlvalent to that of cycloidal vortices
6.2 Determination of Induced Velocities

Linear Problem. As long as the assumption of a ‘rigid’ wake is maintained, no in-
N >
teraction exists between induced velocity v and the wake structure; thus, the probiem be-
comes linear. This means that in computing the resultant v, the components generated by
various vortex subsystems forming the wake (in this case, lateral and longitudinal vor-
tices) can be computed separately and then superimposed.

This process of summation can be best performed by determining the contributions
of the lateral and longitudinal vortices to the components (Vs Yy, Vy) of vector v along the
X, ¥,Z axes. At this point, it should be noted that rectilinear vortices can induce velocities
only in planes perpendicular to them. Consequently, lateral vortices contribute only to
components v, and v, located in the xOy plane, or in planes parallel to it, while the
longitudinal ones contribute to ¥y and v,. Since both longitudinal and lateral vortices
contribute to the v, component, the first contribution will be symbolized by Yo and
the second, by Yoo

Velocities Induced by Lateral Vortices. The magnitude of the elementary velocity
vector d{(A ;) induced at some point C(x,, Y1 2,) (Fig 4.21) by an element of lateral
vorticity dx wide and dz long located at a point (x,z), and having strength ¥, per unit
width, Eq (4.11) can be expressed as follows:

d(Av) = v, (sin ¢/4nd*)dx dy (4.46)
where

d= \/(x"xl)2 +y, + (Z’ZIFI

and

sing = ix—x)* + y,?/d.
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It can be seen from Fig 4.21 that the y and x velocity components will be

d(Avyl) = —d(Av)cos 6, and dfA Vx,) = ~dfAv)sin 8., (4.47)
where

sin6 =y /NIx—x;2 + »*, and cos8 = (x—x, )/\Vix, —x P+ y 7,
1 1 1 2 — X% 1

yh

"

Figure 4.21 Velocities induced by lateral vortices

By substituting Eq (4.46) into Eq (4.47), and expressing (a) all the above angles in
terms of r, x, and 2, and (b} 7, as shown in Eq (4.45); the 4v,, and Av, , values can be
obtained by performing double integration. This was done once with respect to x (from
—rtor), and once with respect to z (from =/ — 2 to /7 —2z? ). A closed-form
solution was obtained in Ref 1, with the following results:

Avy, = (bAT,, /41RpWAD, (4.48)
and
Av, = (bAT,,/4mRu) AD, . (4.49)

In Eq (4.48), the vertical componentAvyl is given in terms ofA|'>yl which, in turn,

is expressed as follows: ;

ab, = mf Y, dz (4.50)

-1
where

1/(71 - \/(7“?1)2 + 712 + (7+ ix);
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while
Xy, =x,/r, ¥y =y,/r, z, =2z /r

It can be seen from Eqs (4.48) and (4.50) that the character of the distribution
of velocity induced by fateral vortices along the fore and aft rotor diameter is as shown
in Fig 4.22.

DIRECTION
y OF FLIGHT

Avn

Figure 4.22 Character of Av,  distribution along the fore-and-aft
rotor disc diameter

With respect to the horizontal component (A v, ), the following notations were

used in Eq (4.49):
¥=g

AV, = —(1/27) f Vv, 7z (4.51)

T=—1

where

7x=”7- i Z+ N =P '
4 + (z_zl) v(}'l_', ’7_?)2 +7|2 + (i—?|)2

S -VI-7
‘1/(71 —M)z + 7, +(i—-i|?]

The following can be deduced from Eqs (4.48) and (4.51):
1. At points symmetrical to the y0z plane, the Al?, values are the same:

Av, (-%,) = AV, (X,) .

2. Fory; > 0 (above the rotor disc), Av, < 0 (induced velocities opposite to the di-
rection of flight); while for 7, <0 (below the disc), Av, > 0.
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3. Fork, »=, AV, »0.
4. Fory, o, AV, +0.

A Y, and Av, represent velocity components induced by lateral vortices asso-
ciated with an annulus of radius r and width Ar. in order to obtain complete velocity
values Yy, and v, induced by the whole lateral vortex system, Av values associated with
all annuli of the disc from the root (F,) to the tip ( 7 = 1.0) should be summed up:

=10 r=1.0

YW, = Z Avy1 Ve = Z Av,

rero F'Fo

To facilitate calculations, the values of 3, and le are presented in graphical form
in Ref 1.

Velocities Induced by Longitudinal Vortices in the y0z Plane. It was shown in
Fig 4.19 that outside of the circle of radius r from which the vortex springs, the strength
of the circulation of a strip of longitudinal vorticity dz wide (AT, = 27, dz) is twice that
which is inside the circle. However, inside this circle, the contribution of longitudinal
vortices located ahead of the z axis is equal to that behind it. Consequently, the pre-
viously discussed vortex system which exhibits a jump in circulation strength when pass-
ing through the circle of radius r (Fig 4.23a) can be replaced by another one having a
uniform circulation strength of 2v, per unit width, which extends from the z axis where
x=0to x =—o (Fig4.23b).

Figure 4.23 Replacement of the (a) longitudinal vortex system by system (b)

Incremental velocity dfAv) induced at some point £ (0, v,, z, ) of the y0z plane
by a vortex element gz wide located at a distance z can be expressed as one-half of that
which would be generated by a rectilinear vortex extending from —eo toeo (Eq 4.1):

d(Av) = —(2v,/4nd)dz (4.52)

where d=/y,? + (z—-2,)%.

The downwash (vertical component of this elementary induced velocity) becomes
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d(A"yo) = —d(Av)cos 9, cos¥ = (z—2,)/d
or, in light of Eq (4.52), this changes to
d(av, ) = (vx/2nd* )iz — 2, )dz.

Expressing 7, according to Eq (4.44), and integrating fromz = —r to z = r, the
following is obtained:

av,, = (bAr,,;Man)ADyo . (4.52)
where
f @ )utrsiny)
" -z 7 sin
ad, = (i/n) f ~—hse T (4.53)
o _ P+ @-2,)*)Fcos y
-F
Evaluation of Afl;,o along the z axis (), = 0) would indicate the following®:
o + z, ~
-1 - —";—-—1— for z;, < -7
AVZ S )
AffyO ={ -7 for-71 €7, €17 (4.54)
Lt forF, >0,

A

where u, = u/7.

Eqgs (4.53) and (4.54) indicate that the longitudinal vortices belonging to the
system of vorticity springing from the rotor at radius r generate uniform induced veloci-
ties along the lateral diameter of that circle. An example of the above result foru=0.75
and 7 = 1.0 is shown in Fig 4.24,

RETREATING 8IDE ADVANCING S1DE
p=015] |
=10
] 2.0
]
p.
:‘_—a// T
-2.0 -1.0 0 1.0 Z,
™
)l

Figure 4.24 Example of the character of Al?yo vs2!
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Induced velocities along the z axis which are caused by vortices leaving the blades
at all radii of the disc can be determined by the following method. In Eq (4.52), AT, 7

is expressed according to Eq (4.42) and then the integration is performed from the root
(ro) to the tip (R):

) e ¢ 8%, (2,) 22t 4 (4.55)
v, (Z,) = — —— ] v, (2,) — dr. .
vo'©t 4nRu e ar
o

Taking advantage of Eq (4.54), expressions can be obtained for components along
the lateral rotor axis of the induced velocity resulting from longitudinal vortices. For
points inside the rotor disc located on the advancing side between the tip and root sta-
tions, this becomes:

blu+Z @r, /dF)dF
volfe <& <1)=~- blu+z,) f—‘-ﬁ/—)— (4.56)

4nRu VIt — 7

IfZ, > 1, then
!
b(u+%,) [ (dT,,[dF)dF,

v, (Z, > 1) =~ 4.57
vol@r > 1) e VAT (4.57)
To
On the retreating side inside the disc (-7, » Z, » —1),
Z,
b(u+z,) (dTy,/dF)dr
v, (—Fp » 2, & —1) = ’ 4.58
vol—To 2 24 ) P, N AR (4.58)
and outside (7, <-17),
1
b(u+z,) [ (dT,/dF)dF
Voo B1 < =1) = ——+ —‘:—-L, . (4.59)
4nRu VvZ,¢ - F

o

With the help of Cauchy's theorem, it can be proven that in spite of the discontinu-
ities in Eqgs (4.56) and (4.58) associated with |Z,| = r; and in Eqgs (4.57) and (4.59)
resulting from |F,| = 7, the integrals appearing in these equations have finite values.

It can be seen from Eq (4.58) that for Z, = —u on the retreating side, v, = 0;
while Eqs (4.54), (4.56), and (4.58) indicate thatv, , also equals zero in the —7y & Z; <
7, region. Furthermore, it can be deduced from gqs {4.56) and (4.58) plus Eqs (4.57)
and (4.59) that for the same |Z, | magnitudes, v, values on the advancing side of the
rotor are higher than those on the retreating side.
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In many practical computations, cireulation distribution along the blade, I'y; =
I'(7), may be given in graphical form. Then, a finite increment approach instead of
integration should be taken. For instance, instead of Eq (4.58) for —ro *> 2, » -1,
the following formula should be used:

-, =z
_ blu+?) ' AT,;

MRy F=p 7P

v, (%,/ (4.60)

Yo

Some conception of how the type of circulation variation along the blade span
affects the character of the associated Yyo velocities can be obtained by assuming three
types of Iy; = I'(7) distributions; namely, (a) triangular (Tp7 = aF), (b) constant along
the blade span (T, = const), and (c) curvilinear where [p7 = 0 at both ends of the blade
(Tp7 =aF?(1 —F)). The necessary derivatives of d¥y3/dT appearing in Eqs (4.56) through
(4.59) and the resulting Vyo Yalues can easily be computed. The results obtained foru=
0.2, and shown in Fig 4.25, were reproduced from Ref 1.

Lateral Component of Velocities Induced by the Longitudinal Vortices. The lateral
component (A v,o) of velocity induced by vortices as shown in Fig4.23 is

d(Av,o} =d(Av)sin®; sin9=y, /d.

Similar to the development of Eq (4.52), it can be determined that

Tx
dfAv =— dz
( Z0 ﬂdz yl
and
bAT 7

By, = hR:’ Ab,, (4.61)

where
1
A 1 71 (}lo + sin W)d;
Av, =—

xS *(i-nflemy

Velocities Induced by Longitudinal Vortices in Planes Parallel to the y0z Plane.
In order to determine velocities induced by longitudinal vortices in a plane parallel to
the y0z plane and located at a distance x; (Fig 4.26), the following approach was used
in Ref 1. The strip of longitudinal vorticity associated with radius r (or 7 in nondimen-
sional notations) may be assumed to be composed of two systems whose individual con-
tributions, using a linear approach, can be superimposed. The first system would consist
of a strip of double, strength (2v,) vorticity extending to —e from the plane passing
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Figure 4.25 Types of circulation distribution along the blade
and associated characteristics of v, (7)
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SYSTEM 1 SYSTEM 2

Figure 4.26 Equivalent system of longitudinal vorticity

through x, . Induced velocity components A Vyo and Av,o generated by this system can
be readily computed from Egs (4.52) and (4.61).

The second system would be formed by two subsystems (a) and (b) consisting of
strips of vorticity of finite length, and having a strength of 7, Per unit width, Subsystem
(a) would extend from the plane of interest to the leading edge of the circle of radius r,
while subsystem (b) would extend only to the trailing edge of the circle. The total system
will ‘induce velocities with vertical and lateral components of Avy,, and Av,,, respec-
tively.

When calculating vy, and A Vz,» the strength of the vorticity of subsystem (b)
should be considered negative for ix; | < \/r? — 7 » while the absolute strength of vortex
filaments belonging to this system is the same (7‘).

The vertical component due to the combined effects of subsystems (a) and (b) is
expressed in Ref 1 as follows:

av,, = ij;:’ ab,. (4.62)
where
AV, = —HuM + N).
Similarly,
av,, =%:—:’l’ av,, (4.63)
where
AV, = —%(u.K + I). (4.63)

The values of functions ﬁ, N, k: and Z are given in graphical form in Ref 1. It
was also indicated that at points symmetrical with respect to that of the rotor disc (x0z
plane), velocities A 17“ remain the same; while A?n are of the same magnitude, but with
opposite signs:
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A ~ -~ A -~
Avyz(;l;_yl:zl) =AVy2(;1,,V|,21)
(4.64)

()71;—71171) = "'Apz ('\71))7!; ;1)

For points symmetrical wkth respect to the vertical plane (v0z) passing through the
z axis, the signs of velocities Av,,, and Av , are reversed, while their magnitudes remain
the same:

~ - o~ o~ A o~ o~
AVy,(—xu)’nll) = —AVy,(Xx».Vnzl)

o . (4.64a)
(—xl,)’nzl) = —A4y, (Xu)’an)-

For X; * =, it is shown that AV Av , and Av * Av,o However, in prac-
tice, for points Iocatzd downstream atx, < - 10 lt can be assumed thatAvn and Avzz
values are equal to those ofAvyo and AV,° for the same coordinates 1 and Z; .

Velocities Induced at an Arbitrary Point in Space. Having determined induced
velocity components generated by various systems of vortices which left the rotor from a
circle of radius 7, the complete components along the x, v, and z axes of velocity induced
by these vortices at an arbitrary point in space can be computed. For the sake of sim-
plicity, subscript & will be omitted from the symbol of circulation referred to one blade
(T instead of I'), and equations for the induced velocity components become:

bAT
Av, = av,, (4.65)
4nRu
bAT .
Ay, = Av,, (4.66)
4nRu
and
bAT
v, = —— AV, (4.67)
nRu
where
Ve ~
Avy = Av” + Ay, 0 + Ay
and
A A A
Ay, = Av“ + Av“.

For x *+ o, it can be shown that & 9“ » 0; consequently, when At';n * Aoyo ,

Ab, =240, (4.68)

This means that at distances sufficiently far downstream from the rotor, the vertical
component of induced velocity becomes twice as large as its value in the y0z plane, as
long as the y and z coordinates remain the same.
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Figure 4,27 Distribution of circulation averaged along the blade

If the circulation distribution along the blade, averaged over one revolution, is
known (Fig 4.27), then the procedure of determining induced velocity components
(Vs Yy v,) at an arbitrary point (%3, ¥1,2,) can be visualized as follows.

The continuous curve of " = I' (7) is approximated by a segmented line by taking
nondimensional radius increments of, say, AF= 0.7 which provides sufficient accuracy for
practical calculations—assuming that the mean circulation for each interval is equal to the
actual one at the 7= (7, +7_,,)/2station. In this way, incremental variations (AT) at
stations r = 1.0, 0.9, ...0.7 will be obtained (with the proper sign) as

Ar‘r = rr—)‘Ar - Pf*"df. (4.69)

The sought values of the induced velocity components , as well as inputs repre-
senting circulation are expressed in_Ref 1 as nondimerls_ional _Quantities; namely, 7, =
VISR ¥, =v [QR; V,=v /QR T = I'YQR?; and AT, =AT,/T,,* where T, is the
circulation for one blade averaged over a complete revolution. Expressions for Ve, ¥,

y ?
and v, can be written as follows:

Vx(’?l;)_’nix) = (bF"/‘"l‘)ox(;n;u;l) (4.70)

%X, 71, 2,) = (6T, /400, (%,, 5,, 7,) (4.7)

7;('\71.71; El) = (bfgyﬁﬂﬂ)c’(gh;n z,) (4-72)

where

F=1

W, 5,2,) =Y aLA®, 7,7 )AT; (4.73)
=7
f=1

cy(fu)-’uz—n) =Z Aoyﬁ’(;nyn;x)Ar‘,' (4.74)
=7
=

(%, 50, 5) = 3 a0 (7, 5,,7,)aF- (4.75)
=7y

*it e obvious that AI} can siso be expressed ss a ratio of dimensionsl veluss of the appropriste
ciraulation.
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It can be seen from Eqs (4.70) through (4.72) that in order to calculate the desired
velocity components at some point (xy, 7:,2,),itis necessary to know the overal! aver-
age circulation around the blade F' v and the values ofv y» and v Some idea regarding
the practical procedure of determmmg the v components can be acqu:red by considering
the necessary steps for computing vy(x, , V1, Z) ) by assuming, for example, thatx, =
—1.2; 7, =0.2; Z, = 0.2 and p = 0.2. For a blade divided into ten segments, Eq (4.74)
can be written in explicit form as follows:

b,(.) = ab (.)aT, + a%,/2 aT, + ..+ ab,1%aT,

where 4 l",, wld rno represents incremental jumps in the relative blade circulation (with
respect to the average) at blade staticns 7= 0.7 to 7= 1.0. Then, Xy, Y1, Z, and py are
computed for each of the considered blade stations. For instance, for 7= 0.1, those values
would be X, E X, [F=-12; ¥, )7, [F=2;,7Z, 22, [F =2, and s = /T = 2, respectively.
Having computed these values, A7, vy 1) can be evaluated using the graphs given in Ch {1 of
Ref 1. Repeating the above procedure for other blade stations, the numerical values of all
Av multipliers can be determined.

The same procedure can be used for other AV components and other points of
interest; thus, if the values of I‘ and & I'l A Fxo are known, it is possible to map the
induced velocity field in any reglon of space influenced by a rotor in forward flight.

Average Circulation at a Blade Station. According to the Kutta-Joukowsky law
expressed by Eq (4.14), elementary thrust d T developed by a strip dR = RdF wide, and
located at radius r = R7 can be expressed using the notion of the average circulation ()
at that blade station,

dT; = pQFRT;RdF. (4.76)
However, circulation at station F actually varies with the azimuth angle symbolized by

T'(7,¥) and the elementary thrust d 7> should be expressed as follows:

2m
d7; = (7/21I)p/ T(Fy)U RAFdY. (4.
0

Elementary thrust expressed by Egs (4.76) and (4.77) should be the same, hence
the right-hand sides of these equations can be equated to each other. This results in the
following expression for the average circulation at station 7:

T; = (1/27F) / o U dy (4.78)
where
0, = yy/QR.

Neglecting the thrust component caused by the profile drag, the circulation at
station 7 and azimuth ¢ given in Eq (4.16) can be written in terms of the local blade
section lift coefficient (c,) only;
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T(7,¥) = ey U, (4.79)

In order to express circulation in nondimensional form [I(7,y) = I'(7,y)/R*Q),
both sides of the above equation are divided by R* £ which leads to

T(F¥) = ey &U). (4.80)

where - is the nondimensional chord &7 =¢;/R at station 7.

The section lift, as in Ch 11, can be given in terms of the local angle-of-attack
[af7,¥)] of the blade station and the two-dimensional liftcurve slope a: afr,y)=0(F,y)
+ ¢(F,y) where 6(F,y) (see Fig 3.17) is the local blade pitch angle including twist and all
control inputs, and ¢(7,¥) is the total inflow angle, taking into account the following:
(1) the axial component of the forward velocity, V sin @y, (2) local induced velocity,
v(F,¥) = v, (7,¥), and (3) the velocity component due to flapping, vg(rv).

Under the small angle assumption, the section angle-of-attack cam be written as
follows:

Vad*"y{rru’) + Vp(f'.\(/)
Uy

a(F,¥) = 6(Fy) +

or, dividing the numerator and denominator of the last term of the above equation by
V, = §1R, a becomes

afF,y) = 6(Fy) + (ﬂad*Vy(f-,W + 75(7.!#)]/(71. (4.81)
Using Eq (4.81) and remembering that 6 (r,¥) = aa(7,¥), Eq (4.80) becomes

T(r¥) = %a;(0(F )0, + v, (70) + Va(rw) + pagy). (4.82)

Substituting Eq (4.82) into Eq (4.78), switching to nondimensional circulation
(F=I/R*Q), and performing the indicated integration, the following expression is ob-
tained for the circulation at a particular blade station:

2mn

= 1 . A, 14 _ ' r_ =

T =3 ac,[?(?,lll)r(l + 3 ;5)*'#0»4 + 7, (F)+ 27‘/ vﬂwUldw] . (4.83)
[

In the above equation, the last integral represents the contribution of flapping
motion. As long as the motion is assumed to be of the first-harmonic type, the integral
is equal to zero. This means that although the circulation at various azimuth angles may
vary because of blade flapping, its total contribution averaged over one complete revolu-
tion would be zero.

Eq (4.83) contains a new symbol, P, (7) which stands for

an a7 2n
ISR B NS B "y
Vo lF) = Z—ﬂfof v, (P,y)Uidy = P _! n(rv)dy + —-2"‘:_0[ Y (F) sin Ydy.

(4.84)
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On the right-hand side of this equation, the expanded expression for ¥, (7) repre-
sents the induced velocity at station 7 averaged over one complete rotor revolution.

Hence, it will be called

7 27
Vr = o J v,(Fy)dy. (4.85)

It is shown in Ref 1 that 7; is related to T'; in the following way:

P = bl
o 4nv’

(4.86)

where b is the number of blades and V'=V/QR is the nondimensional resultant velocity
of flow through the disc . For high-speed horizontal flight, it may be assumed that V=

The physical significance of Eq (4.86) lies in the fact that it shows, as in the case of
hover discussed in Sect 4.2 of this chapter, that the value of induced velocity averaged
over a complete revolution at a given blade station (7) depends only on the level of
circulation at that station—also averaged over one complete revolution. 1t is not influ-
enced by the circulation at other blade stations.

For the second integral on the right side of Eq (4.84), a new symbol of Vu(T) can
be introduced:

w(7) = (W27, (4.87)
where
an
%, (7) = (1) [ ,(F9)sin ¥ oy (4.88)
0

represents a coefficient at s/n ¥ in the development of Vy(f,tl/) into the Fourier Series.
Again, it is shown in Ref 1 that Eq (4.87) can be evaluated in terms of (a) the averaged
nondimensional circulation (I%;) at blade station 7, {b) number of blades b, and (c) ad-
vance ratio g

ulF) = — (WF)oT5/4n). (4.89)

Substituting Egs (4.86) and (4.89) for the integrais on the right side of Eq (4.84),
we have:
I
; woly
v () = - (1 + ;z) o (4.90)

Now, substituting Eq (4.90) into Eq (4.83) and solving it for f‘;, the following is
obtained:

2
T, =8 [o;r (7 +5’ 1;—,) + uad] (4.91)
where
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4nauc
8mu + abe[1 + (12/7?))

8 =

Relationships developed during the preceding discussion of the flat-wake concept
should enable one to write a suitable computer program for determination of the induced
velocity field. Those interested in achieving this goal without the aid of computers can
find the necessary inputs in the graphical presentations of functions K, I, M, and N in
Ref 1.

6.3 Validity of the Flat Wake Concept

Figs 4.28 and 4.29, reproduced from Ref 1, give some idea as to the limits of the
validity of the flat-wake concept. In Fig 4.28, the downwash velocity Vy =fly)atr=0.7
was computed for a rotor with flat untapered blades; having 0 = 0.07; and operating at
ay=0°u= 0.75, and Cy = 0.006. The FVNI) relationship represented by dashed lines
was first computed for circulation constant with the azimuth and varies only with (7)
according to Eq (4.91). Then, the variation of circulation with the azimuth (solid lines
with crosses) was considered; assuming thatI'=Ty + T, sin § + Ty cos 2y. It can be seen
from this figure that the assumption of I'(Y) =const at F= 0.7 has little influence on the
V, values also computed at 7= 0.7, In both cases, a satisfactory agreement with test
measurements is shown, although the v, values computed on the Iy = const assumption
appear to be even closer to the experimental results.
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Figure 4.28 A comparison of predicted and measured v, =f(Y)atF=0.7

Figure 4.29 provides further insight into this comparison by showing computed vs
measured ¥, = f(r} at various azimuth angles along the rotor diameter.

It may appear somewhat surprising that the measured downwash values at the ad-
vance ratio of u= 0.15 agreed so well with those predicted by the flat-wake approach.
It should be realized that at low u values, the amount of average deflection of the wake
in the vicinity of the disc is quite noticeable and then doubles further downstream.
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Figure 4.29 A comparison of predictions and tests of Gy (7) at several azimuth angles®

The order of magnitude of the wake deflection with respect to the velocity vector
of the distant horizontal flow can easily be obtained from the simple momentum theory
which indicates that the ratio of induced velocity at the disc (v) to V, is v/V,, =
Cy/2u*. For the considered example, this ratio amounted to v/Vj, = 0.73, or about
7.5°. Although the results of the analysis were good at this particular wake deflection, it
may be expected that the flat-wake concept may lose its validity for larger slipstream in-
clinations.

These inherent limitations are recognized in Ref 1 where it is indicated that the
flat-wake approach should be used only when the advance ratio > 1.62+/Cy. It should
be noted that for the Cy value shown in Figs 4.28 and 4.29, this u limit value would
amount to u 3 0.72, and thus the considered case was still within the validity range of
the flat-wake model.

6.4 Other Approaches to the Flat-Wake Concept

In the United States, Ormiston'* investigated the flat-wake concept and indicated
that because of less computational complexity, this approach may be especially suitable
for preliminary design stages. However, similar to Baskin et al, he recognized the limita-
tions of mathematical models based on this concept. Consequently, he recommends that
it be applied to advance ratios where u2 0.75.
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Similar to the previously considered case, the flat vortex sheet representing the

wake is broken down into the simple vortex forms shown in Fig 4.30.

TRAILING VORTICITY

CIRCULAR ELEMENTS, e SHED VORTICITY, s

LONGITUDINAL ELEMENTS, Yp BOUND VORTICITY, b
Pl -
ROOT f— !
VORTEX | f———
S
-_—

Figure 4.30 Schematic of vortex decomposition'*

The trailing vorticity is decomposed into circular (1) and longitudinal (7,, in-
cluding root vortices) components. Shed vorticity is represented by radial vortex fila-
ments (v,). Finally, bound vorticity (7p ) is assumed to be radially distributed with its
center at a fixed point of the wake (rotor hub). For the special case of bound circulation
constant with the azimuth, 7, vanishes and 7y, does not contribute to the downwash
generation (see Sect 4.1 of this chapter). (n general, however, all four types of vorticity,
plus the root vortex, should be considered.

We will now consider the wake vorticity as consisting of circular and radial elements
which are resolved into orthogonal x and y components amenable to the Biot-Savart
interpretations’

An example of the character of downwash distribution at the rotor disc obtained
in this way is shown in Fig 4.31. This was done by assuming that I'(7¥) = const, which
postulates the existence of 2 strong root vortex, whose importance in the determination
of downwash velocity can be appreciated by comparing Fig 4.31b with 4.31¢.

7. HOVERING AND VERTICAL CLIMB OF A ROTOR HAVING A FINITE
NUMBER OF BLADES

Development of the Wake Concept. The simple wake models of a rotor in hover
and forward flight discussed in Sects 4 through 6 of this chapter should have exposed the
reader to most of the basic techniques that may be encountered in dealing with the appli-
cation of the vortex theory to various rotary-wing aerodynamic problems within the
limits of incompressible and inviscid flow. In order to provide a practical example of the
application of the acquired basic knowledge to more sophisticated wake concepts de-
veloped for hover OGE and vertical climb, the problem of determining aerodynamic
loading of a rotor having a finite number of blades under static conditions and during
axial translation in the thrust direction will be considered.
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Figure 4.31 Character of downwash distribution (shown here as going qp)
at the rotor disc for T (r, ) = const

In Refs 4 and 5, many investigators tried to improve the blade load and hence,
rotor performance methods by developing more realistic rotor-wake modeis than those
discussed in Sect 4 of this chapter. Three of these approaches, dealing with a rotor in
hover or vertical climb, are discussed below in the order of increasing complexity of the
assumed vortex system.

7.1 Noncontracting Wake

A vortex system consisting of bound vortices and noncontracting wake generated
by the individual blades may be considered as one of the simplest conceptual models of
a rotor having a finite number of blades. An example of this approach can be found in
Ch VI of Ref 1. Here, the blades are represented by segments of the lifting-line filaments
with the circulation varying along their span: I'(7) # const. Furthermore, it is assumed
that trailing vortices springing from the lifting line move downstream in a rectilinear
motion at a constant speed equal to the sum of the distant incoming flow (V”) and the
induced velocity averaged over the disc (V). In this way, a helical vortex sheet formed
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behind each blade would be inscribed into a cylinder of the same radius as that of the
rotor (Fig 4.32a). Any individual vortex filament on the vortex sheet would form a helix

of constant pitch (Fig 4.32b). Such helix can be described by a relatively simple para-
metric equation.
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Figure 4.32 Noncontracting woke

For practical computations, the blade wake is “discretized” by dividing the blade
into m segments and assuming step variations in circulation at each segment, and a dis-
crete vortex of strength Ty, T;, ..}, leaving the blade at each step (Fig 4.33). Knowing
the I'; values and having equations of the corresponding vortex filament shapes, the Biot-
Savart relationships can be used to compute the induced velocities (\7) in the space around

the rotor. In particular, velocities induced at control points (/) along the blade lifting line
can be determined as

m
v=2, i; T, (=1,2,3.m) (4.92)
=1
i=1 |=2 (=3 m.=10

1)}
I

hy

Figure 4.33 System of discrete vortices of a blade
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where F,-I. are the proper influence coefficients, while F,- values can be related to the blade
geometry and its operating conditions. Details of this operation can be found in Ref 1,
where it is shown that by using this mode! of the vortex system of a rotor, a good agree-
ment can be obtained between computed and measured performance values, including

hover (Fig 4.34).
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Figure 4.34 Comparison of predicted and measured Cy = C+{Cg)"

Reservations Regarding Noncontracting Wake. 1in spite of the good agreement
demonstrated in rotor performance predictions, other investigators indicated that ne-
glecting the wake contraction may lead to a seriously disturbed blade loading, especially
an underestimation of loads in the tip region'®. For this reason, different approaches
aimed at the incorporation of wake contraction were developed. In some cases, this
was done on a rigorous basis with a minimum of simplifying assumptions, while in others,
semi-empirical corrections were added. The method developed by Erickson and Ordway'®
can be cited as an example of the rigorous approach, while that of Davenport, Magee,
et al’ 7 represents the philosophy of semi-empirical corrections.

7.2  Free Wake
The Model. The essence of the method of Erickson and Ordway (developed in co-
operation with Borst and Ladden) consisted of finding a way of determining the deforma-

tion of a blade vortex sheet as it moves downstream. These deformations would comprise
an elongation of the sheet along the rotor axis, accompanied by a radial contraction and
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tangential distortions. In addition, the edges of the sheet are locally unstable and tend to
roll up. All of these deformations may be potentially important in the case of static
operation (hover), since their magnitude is larger than in vertical climb, and they occur
close to the rotor disc.

Because of the type of considered flow (purely axial), a rotor-fixed polar coordi-
nate system (Fig 4.35) appears suitable for this case. As before, the y axis coincides with
the rotor axis; however, this time it is more convenient to assume that its positive direc-
tion is the same as that of the downwash flow. The rotor induced velocity V at a point
P(y, r, 8) may therefore be considered as a vectorial sum of the following components:
v (axial), v {radial), and w (tangential). All b blades are assumed to stay in the y=0 plane,
and the =0 axis coincides with that of the first indexed biade (/=7); thus, the blade
positions may be given as

O, =2n(i—1)lb i=1,2, ..b. (4.93)

o <D-

Figure 4.35 Polar coordinates

As before, the individual blades are modeled by straightdine segments of bound
vortices whose circulation varies with the blade radius: T'(7) # const.

Induced Velocities. If one takes into account both bound and trailing vortices,
then at any instant of time at a specified point in space, using the Biot-Savart law, the
induced velocity components can be expressed as follows:

P
u= i f[l‘(r,) Ug - d:f:i) U-,—]dr,

i=1 R
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where R, and R, respectively, are the cutout and the blade radii, I" is the strength of
bound circulation at (0, 7, 9;), and —dT is the strength of an elementary vortex ribbon
leaving the blade at (0, r;, ;). As defined in Ref 16, Ug, Ve, and Wg, respectively, are
influence functions for the u, v, and w velocity components at point {v,r, 9), induced by
a bound vortex of unit strength and unit length. Similarily, Uy, Vr,and Wy repre-
sent the influence functions for the arbitrarily deformed trailing vortex ribbon of unit
strength and semi-infinite length which sprang from the blade at (0,7;,9i). As in the pre-
viously considered cases, the influence of the bound vortices can often be neglected,
since their contribution to the axial (and obviously, radial) induced velocity components
is zero, and is only negligible to the tangential ones. Explicit expressions for influence
functions are given in Ref 16.

Formulation of a Free Wake. In this approach, it can be clearly seen that no pre-
conceived assumptions are made regarding the wake form. The wake is free to assume any
shape that may result from the mutual interaction between the total vortex system of the
rotar, and the velocity field induced by this system. The mechanism for achieving the
ultimate wake shape (assuming that eventally, a steady-state can be reached} can be
imagined as follows: The elements of vorticity forming the trailing (free) vortex sheets
are carried in the rotor slipstream only under the influence of the velocity components
given in Eq (4.94). During an infinitesimal increment of time d7, an element of vorticity
will be carried for the following distances in the y and r directions, and through an ange
O

dy = vdr; dr = udr; a9 = [Q + (w/r)]dT. (4.95)

At time ¢ (considered here as a parameter), the distances y, 7, and the corresponding
angle ¢ traveled by the considered element of the wake will be

t t ¢
r, =f u,dn, Yy, =f vdr; 0, =9, + Ot +f(w/r)d'r. (4.96)
[/ 0 0

Eq (4.94) can be combined with Eq (4.96) and thus express the dependence of in-
duced velocities on the position of the blade vortex sheets. These combined expressions
are given in the following form in Ref 16:

u = Oy (T, —dT/dr; uv,wW)
v = Oy (I, —=dl/dr; u,v,w) (4.97)
w = Ow(T', —dT/dr; u,v,w)
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where Oy, Oy, and O, respectively, are the Biot-Savart operators for the radial, axial,
and tangential velocity components.

Blade Circulation. In Eq(4.97), circulation distribution along the blade and hence,
its derivative, are still undetermined. In order to relate these quantities to rotor geometry
and its operating conditions, it is recalled that the blade section lift coefficient at some
station r; can be expressed as

€ = 2(dL/dr)lpU) }ec. (4.98)

where ¢ is the local blade chord and as before, UL; = Qr + w; is the component perpen-
dicular to the blade axis of the resultant flow encountered by the blade at station r; (Fig
4.36).

Figure 4.36 Flow scheme at a blade station

Taking Eq (4.16) into consideration, circulation I" at blade station r; can be written
as

I = Y%c,Uyc. (4.99)

Final Determination of Wake Shape and Induced Velocity Values. Egs (4.97) and
(4.99) now form a complete set of equations which should permit one to determine the
rotor wake shape and the associated field of induced velocities. The solution to this set
of equations can be obtained through an iteration process using numerical techniques
adapted to large capacity computers.

To facilitate this process, Eq (4.97) is rewritten under the following form:
u = u~K,[u-04(r,.)]
v=v— KJv—0yr,..)] (4.100)
w=w—K,w-0,([,..)]

where K, K,, and K,, are the iteration factors which are “‘chosen as necessary to achieve
convergence and may be constant or depend on any variable of the problem.”
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The iteration process begins by some approximation for the inflow as well as the
blade circulation and a guess at the induced velocity field in the rotor wake. In this
respect, the combined blade element and momentum theory can provide a good approxi-
mation for the blade circulation I = I'{r) in Eq {4.99) and the induced velocity values.

Knowledge of the v; and w; values at the intermediate steps of the iteration process
permits one to obtain the corresponding I'(7) and —dT'/dr. The relationship of this quan-
tity through Eq (4.99) to blade geometry ¢ (r) and 6,(r), operating conditions 6, and
V,, and blade airfoil characteristics can be easily established (Fig 4.36)

Once the fixed values of v; and w; are obtained, the rotor thrust and power can be
computed by integrating sectional inputs in a manner similar to that previously dis-
cussed in Ch Il1.

In principle, the above outlined rigorous approach should provide a suitable tool for
an exact prediction of blade loading and rotor performance in hover. in practice, how-
ever, correlation with tests is often not as good as that resulting from simpler methods
(Fig 4.37). Furthermore, the free-wake method is somewhat limited because of the
amount of computer time required to obtain acceptably accurate solutions. For this rea-
son, semiempirical techniques were developed, which also take into account rotor-wake
interactions.
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Figure 4.37 Comparison of predictions with test results'®
7.3 Semi-Empirical Approach.

Wake Contraction. A method developed by Davenport, Magee, et al' 7 is briefly
reviewed as an example of an approach in which wake contraction effects are evaluated
through empirically-established influence coefficients. An additional interest in this
method stems from the fact that it forms a basis for the computer program used in Ch
11, Vol 11, of this textbook.

Similar to the two previously considered cases, each blade is modeled by a bound
vortex filament with the circulation strength varying along the radius I'(r) # const. It was
also assumed that T'(Y) = const; consequently, there are no shed vortices in the wake,
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In order to facilitate numerical calculations, it is postulated {as in the case of the simpli-
fied approach) that blade circulation varies in steps; thus resulting in a wake consisting of
discrete trailing vortices. In contrast to the simple case considerations, the blade intervals
associated with jumps in circulation are not assumed equal, but by following the so-calied
cosine law, they become shorter at the tip:

ri=1 - cos® (4.101)

where & = % m/n; n being the total number of blade segments to be considered (usually
n 2 13). This cosine law contributes to a greater accuracy of analysis, especially in the
blade tip region.

It was previously emphasized that contrary to such cases as vertical climb at a high
rate, the flow that carries vortex filaments in the wake during hover is solely induced by
these vortices. Consequently, it becomes of utmost importance to establish, in the be-
ginning, the so-called nominal wake whose shape would approximate as closely as possible
the wake corresponding to the velocity field induced by the rotor. Contraction of the
slipstream represents one of the most important inputs as far as the shape of the wake is
concemed. The simple momentum theory as discussed in Sect 3.1, Ch |1, gives only the
ratio of the slipstream radius far downstream (R“) to that at the rotor disc (R}, which
is assumed to be the same as that of the rotor itself. in hover, this ratio was R /R =
0.707 regardiess of rotor C values.

By modeling the wake with the help of vortex rings of finite crosssection'®, a
trend between the ultimate wake contraction and rotor thrust coefficient was established.
It was shown that R_/R is influenced by Cy values as well as by the ratio of the ring vor-
tex core radii to the rotor radii. In the presently discussed approach, however, the influ-
ence of this parameter was ignored and a single-line relationship for (RJR} = f(Cy) was
assumed (Fig 4.38).

Slipstream Acceleration Parameters. Knowledge of the relative contraction of the
distant wake, together with the known radius at the disc, give only two extreme cross-
sections of the wake boundary. In order to get some idea as to its shape at the inter-
mediate locations, it is assumed that the axial velocity in the rotor slipstream varies as
follows:
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Figure 4.38 Wake contraction ratio variation
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Viy)Ive = %2 — (1 —A)e=Nr/R] (4.102)

where A is the slipstream cross-section area ratio; and for the case of hover, Vo is de-
termined from the simple momentum theory:

v = VeV2CHI(T — (RJR)PT;

R, being the blade root radius. Values of A were computed from the variation of R /R
given in Fig 4.38 and the continuity equation.

As the flow moves downstream and the slipstream contracts, the flow accelerates
and its rate of acceleration would depend on the magnitude of the exponent N in Eq
(4.102). Assuming that the value of N is known, the nominal wake geometry of vortices
carried out by the flow inside of the slipstream can be figured out. As to the tip vortices
which lie on the boundary of the rotor slipstream and the outside low—the latter being
zero in the case of hovering—it is assumed in Ref 17 that these vortices are convected
axially at a rate equal to the average of the speed of the slipstream and the outside flow.

Values of the exponent N were obtained empirically by computing the perform-
ance of several propellers and rotors in hover, using various magnitudes of N and noting
those which best correlate with test results. This data was then plotted vs thrust co-
efficient, and a single envelope over the entire test range was obtained (Fig 4.39).
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Figure 4.39 Slipstream acceleration parameter

Induced Flow and Blade Loading. Establishment of the nominal shape of the wake
permits one to approximately establish positions of the discrete trailing vortex filaments
in the rotor slipstream. It now becomes possible to develop a procedure leading to the
achievement of the following goals:

(1) Matching the loading (via blade element angle of attack) to the induced flow at
the blade which depends on vortex wake strength and shape, and

(2) Matching the wake shape to the induced flow at all points of the wake.
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This is done in the following way: In addition to the previously mentioned blade
stations 7,- (/=1,2,... n) where circulation undergoes a step variation in its value, another
set of control points is selected for induced velocity calculations between the jumps in
circulation. Further procedure is carried out in the following steps:

(1) Inputs necessary to determine the nominal wake are obtained from the data re-
garding the desired thrust 7, tip speed V., air density, and the velocity of axial translation
if Ve # 0. Consequently, the location in space of all the vortex filaments representing the
rotor trailing vorticity can be established (Fig 4.40). The Biot-Savart law is now applied
through the proper computer program to determine the velocity component induced at
each control point by each vortex filament of unit circulation strength. As in previous
cases, the so-determined velocities are called “influence coefficients.”

BLADE ELEMENT FROM WHICH
R VORTEX TRAILS

vy

Figure 4.40 Geometry of a single vortex filament

(2) From the assumed I'(7) of the bound vortex, AT corresponding to each vor-
tex filament is determined. Induced velocities at control points /=17, 2, ...n are computed
from the known vortex strength A l‘, and the corresponding influence coefficients.
Appropriate adjustments are made to reflect the departure of the vortex filament geom-
etry from the nominal (originally used to compute the influence coefficients).

(3) Using the influence coefficients obtained in step (1) and the ATy values in step
(2), the induced velocities at control points j are computed. Having the new induced
velocity values, adjustments are made to reflect the departure of the vortex filament
positions from those which were originally assumed.

(4) Taking into consideration the blade geometry (collective pitch, chord, and twist
distribution) as well as the previously obtained induced velocity values, new blade loading
at each control point is computed (see Fig 4.36, and the associated procedure) using tabu-
lated two-dimensional airfoil data.
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The {ast three steps are repeated until an acceptable agreement between the blade
loading and velocity components is obtained.

Now, the thrust and torque of the rotor as a whole are computed in a way similar
to the previously discussed procedures.

A final check is performed by comparing the so-obtained thrust with the originally
assumed one, If there is not a satisfactory agreement, a new collective pitch value is as-
sumed and the entire procedure repeated.

An example of the degree of correlation between the computed and measured blade
loading values is given in Fig 4.41.
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Figure 4.41 Blade loading correlation

The discussion presented above shou!d contribute to an understanding of the
method of refining the rotor wake geometry through empirical inputs. The reader in-
terested in computational procedures associated with this approach is directed to Ref 17.

8.  APPLICATION OF THE LIFTING-SURFACE THEORY (HOVER AND
VERTICAL CLIMB)

8.1 Statement of the Problem

In the preceding discussion of rotors having a finite number of blades, the blades
were modeled by a single bound vortex filament. However, even on a purely intuitive
basis, one may expect that such a model might be accurate for slender blades, but would
not be adequate for blades having a low aspect ratio. One may also expect that in the
blade tip regions where three-dimensional effects are more noticeable, greater accuracy in
predicting air loads should be obtained if such aspects as chordwise variation of the load
is taken into consideration. For this reason, a place may be found in rotary-wing aero-
dynamics for a conceptual model based on the lifting-surface approach.

Boundary Conditions and Basic Assumptions. The goal of modeling a blade by a
thin lifting surface may be stated as follows: Knowing the geometry of the blade and its
motion through the medium, the associated field of induced velocities and aerodynamic
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loading of the surface must be determined. In this respect, one may visualize several
boundary conditions which must be fulfilled in a meaningful physical model: (a) No flow
may penetrate the lifting surface. This means that the component of the resultant flow
normal to the lifting surface must be V1, = 0. (b) The Kutta-Joukowsky condition of
finite velocity of flow at the trailing edge must also be fulfilled.

It is usually assumed that the blade is not stalled and thus, the flow around the
lifting surface is smooth and without separation. Under these conditions, only the lifting
surface itself, and possibly its wake, represents a surface of discontinuity in the otherwise
irrotational potential flow.* Consequently, it can be imagined that the lifting surface is
formed by a continuous layer of properly distributed vorticity which, in turn, may be
approximated by a grid of horseshoeshaped vortices of finite strength. The central seg-
ments of these horseshoes are parallel to the rotor axis, and remain bound to the blade
while the free ends first move along the lifting surface and are then carried in the rotor
slipstream. Should the horseshoe vortices be infinitesimal, then a continuous vortex sheet
would stream from the blade. With the finitesize horseshoe vortices, discrete vortex fila-
ments would be present in the rotor wake.

As discussed in Sect 7 of this chapter, it may be assumed that the rotor slipstream
either retains a constant cross-section, or it contracts. For instance, in Ch VIl of Ref 1, it
was assumed that no slipstream contraction occurs. As a result, in such regimes of flight
as vertical climb, all trailing vortices would move downstream along straight lines at a
uniform speed equal to the sum (V, + v,) of the incoming flow (—=V,), and the ideal in-
duced velocity at the disc (—v, ) (see Eq (2.11), etc.).

The relationship between the induced velocity field and strength of a continuous
vortex sheet can be expressed with the help of the Biot-Savart law, leading to an integral
equation. However, by approximating the vortex sheet system as an assembly of discrete
horseshoe vortices, this equation can be replaced by a system of linear algebraic equa-
tions. This latter approach, discussed in detail in Ch V11 of Ref 1, is briefly reviewed here.

8.2 Discrete Vortices
Equations of the Vortex System. The blades are indexed by  (n = 1,2, ..b)and 2

Cartesian coordinate system Oxyz is attached to the number one blade (Fig 4.42). The
parametric equation for the lifting surface modeling the n-th blade may be written as

b ¢ . 7q71 Q=2 ;‘2 ?pq up(q'lﬁpi'f:ﬂ/“”’:"1 .
| 21 &l -4 + - P!
9] —L = + z
9 - | + + T i i ) p=2
-

7 Eib; p=3
< m j=m

.

Figure 4.42 Approximation of lifting surface by discrete vortices

*For & more detsiled discussion of potentisl flow, see Ch V.
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X =Fsin(d,—9), y=1»F(Fr8), ZI=Fcos(s,-9) (4.103)

where &, = 2nfn — 1)/b, T is nondimensional radius (7 = r/R) which, together with an
angle ¥ (positive when moving away from the z axis in the direction opposite to that of
rotor rotation), represent the polar coordinates of point (x,0,Z) forn=1.

The grid of discrete vortices replacing the lifting surface can be constructed as
follows: Let us imagine a number (Q + 7) of cylindrical surfaces

X+ gt =72 (@=1,23..Q+]) (4.104)

which cut the lifting surface (Fig 4.42). The intersecting lines of these surfaces are de-
fined by an index “q". In tum, each of the g lines is divided into P segments of equal
length.

A system of discrete horseshoeshaped vortices (indexed / = 1,2, ...m wherem = PQ)
is substituted for the lifting surface. Each of the / vortices consists of a bound segment
extending along the line p (p = 1,2, ...P) between nodes M, and Mp.q+1" and a pair of
trailing vortices consisting of two segments; first going along the lifting surface (along the
line g) and then, starting from point P, taking the shape of a half-infinite helix as a result
of the vortex filament being carried in the rotor slipstream.

Induced velocities are computed at control points j (j = 1, 2,...m) located between
the bound and trailing vortices.

Under the previously mentioned assumption of a uniform flow (no contraction) in
the rotor slipstream, parametric equations for the shape of trailing vortices can easily be
written.

Determination of Induced Velocities. The procedure for obtaining induced veloci-
ties may be visualized as follows: Induced velocity components, generated at point j by
a bound vortex of unit strength, are defined as 4, Vpi, and wj;, while those due to a
trailing helical vortex of a strength equal to —7 are called Eq,-, Vgj» and Wojs and Ugyq i
Vae1.js and wg4g ;- Detailed expressions for the above components can be found in Ch
VIl of Ref 1. Here, only the relationships for velocity components induced by the / horse-
shoe vortex of unit strength located on the n-th blade are

Gi; =@y + Ug; — @,
i P qi q+1.j

.n - - -

Vij = Vo ¥ Vaj = Va+1,j (4.105)
-n - - —_

Wij = Wpj t Waj = War1j.

It is also indicated in Ref 1 that programming expressions for &g j, Vg j, and Wg ;
and those with index g+7, as well as Eq (4.105) should be done in such a way that first,
the velocities of components Jg;, etc., are computed for p = P. For computations of
velocities induced by the helical vortices extending from nodes of the linep =P — ],
there is no need to again perform the integration along the semi-infinite region. It is su ffi-
cient to add the velocities generated by segments of helical vortices included between
lines p = P — 1 and p = P to the previously obtained velocities. A similar procedure is
followed in determining induced velocities from helical vortices springing from the line
p=P—2 P—3 .1 Itis possible to simplify the procedure by substituting broken
lines having apexes at the nodes of the grid for the curved g lines.
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In order to determine induced velocities v i(a;, vj, w;) generated by the rotor at con-
trol point *j"' of blade 7, components of velocity vector V,-I-(Ei,-, V,I-, v_v,-l-) induced by the
vortices with identical indices */" and unit strength must be calculated. Summing up the
velocities given for the n-th blade by Eq (4.105), one obtains:

k k k
n n n
Uil' = E ui/r Vil' = 2 Fl/ wl',' = Z ij‘ (4106)
n=1 n=J ney

Since vortices with identical indices /' have the same circulation l_",,, the desired
components of vector v will be

m m m
g =Y f, v =3 wl, wi =23 wily.  (4.107)
i=1 i= j=1

In this way, computation of the velocities in Eq (4.107) corresponding to given
values of I'; is reduced to the determination of coefficients in Eq (4.106) on a computer.
The problem now consists of determining circulation I'; on the basis of boundary condi-
tions.

8.3 Boundary Conditions

Nonpenetration of the Lifting Surface. It was mentioned at the beginning of this
section that physical considerations require that the flow around the airfoil does not g0
through the lifting surface modeling the blade. In order to transiate this physical require-
ment into mathematical language, Eq (4.103) is presented in the following form:

y = f(xz2), (4.108)

Then, F =y — f(x,Z) = 0 and the unit vector 5 °—normal to the lifting surface—can
be expressed as

7° = grad Fl\grad A (4.109)
where projections of gr_aa F on the coordinate axes are
oFfox = —f,, AaFfIy = 1, oFfaz = =f, 4.110)

where 7, = 98f/0x, and f, = 3f /7.
If V(V,j, Vyjo V,,-) represents the resultant velocity vector of flow at the lifting
surface at point /, the condition of nonpenetration can be written as
7,7 =o. (4.111)

Due to the rotation of the rotor about its axis, the components of nondimensional
velocity along the x, y, and z axes at point/ are -Z;, 0, and X;; hence, the nondimensional
velocity components of the total flow at that point would be

Vaj = @y ~ % Vyy=vi -V Vej = Wj + X;. (4.112)

198



Vortex Theory

Taking into account Eqs (4.110) and (4.112) in the expanded product given by Eq
(4.111), the following is obtained:

Vi = Gjfxy — Wifej = Rify; = Zifej + V. (4.113)

Derivatives £x; and fy; are determined at point / from the known geometry of the
lifting surface (say, assumed to be composed of the mean lines of airfoil sections forming
the blade) and known blade collective pitch angle.

Substituting v; and w; values as given by Eq (4.107) into Eq (4.113), a system of
linear algebraic equations for the determination of the sought circulation is obtained.

m
2 wli=g (4.114)
i=1
where
-';ij = ;i,‘ - Elffxi - Wil'fz/. 5,' = ‘\7I'flj —_ ;I.fxl_ + —V-“.

In the first order approximation for conventional airscrews, v'v',',f,i and Fif,/- can be

neglected; therefore
71,' = Vig - Eijij: Gi= Ve — Ejij-

If Vu=— Ve is iow, then lﬂiil < lx,',l and correspondingly, l-/}l- Rz ‘7’/"

The Kutta-joukowsky Condition. As to the second boundary condition; namely, the
Kutta-)oukowsky requirement of a finite velocity at the trailing edge, itis indicated in Ref
1 that for the assumed distribution of discrete vortices and control points, this condition is
automatically fulfilled.

Compoarison with Tests. A comparison of predicted and measured nondimensional
circulation values vs nondimensional blade stations shows that for both relatively siender

(AR = 12.5) and more stubby (AR = 9.7) blades, a better approximation of T =T\(7) in the
tip region is obtained by the liftingsurface than by the lifting-ine approach (Fig 4.43).

9. THREE-DIMENSIONAL WAKE MODELS IN FORWARD FLIGHT
9.1 Regimes of Forward Flight Requiring Advanced Wake Concepts

Performance predictions at medium (u > 0.75) and highspeed flight regimes of heli-
copters may quite often be adequately treated with the help of procedures rooted in the
combined momentum and blade-element theory. For those cases where more detailed
knowledge of the induced velocity field outside of the immediate rotor slipstream may
be required, the previously discussed flat-wake concept may provide the necessary informa-
tion.

At the other extreme of the flight spectrum; i.e., hover and vertical ascent, again the
combined momentum and blade-element theory is quite often adequate for practical per-
formance predictions. For problems requiring more detailed knowledge of blade loading,
vortex theory methods based on the more sophisticated wake concepts discussed in the
preceding sections can be used. It appears hence, that except for the transition region from
p= 0 to u = 0.15, the various approaches previously discussed should prove adequate in
dealing with aerodynamic problems of the helicopter flight spectrum.
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Figure 4.43 Comparison of measured with predicted T = T(7) values®

With respect to performance predictions in this particular regime of flight, the mo-
mentum theory may provide suitable guidance for the determination of the character of
induced power variations between previously established power values in hover and say,
k= 0.15. In this region, induced power usually represents the largest fraction of the total
rotor power, Consequently, the known Ping (V) trend may serve as a guide for the estab-
lishment of a sufficiently accurate Pa(V) relationship for engineering practice. Here,
accuracy may be further improved by taking into account the profile power variation
Po-(V) indicated by the blade-element theory.

However, there are aerodynamic problems associated with transition flight where
the above-mentioned approaches are inadequate, and more sophisticated physicomathe-
matical models than those offered by the momentum, or the combined momentum and
blade-element theories are required. The following tasks may be cited as examples of such
requirements.

(a) Determination of time-dependent blade airloads as may be needed for heli-
copter vibration and rotor stress analysis.

{b) Mapping of the induced velocity field to determine aerodynamic interaction
with other rotors in the multirotor, or the tail rotor in single-rotor configurations.

In the past, transition chiefly represented a transient stage between vertical takeoff
and cruise, and from cruise to hover and vertical landing. As a result of this. a thorough
understanaing and precise analysis of this regime of flight was of lesser importance to
helicopter designers and analysts than those of hover and high-speed forward tlight. How-
ever, with the increasing interest of the military in nap-of-the-earth flying, lowspeed hori-
zontal translation is now commanding the growing attention of rotary-wing practitioners
and thoereticians.
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9.2 Rotor Vortex-System Models

Similar to the previously considered case of hover and vertical climb, one may
imagine several rotor vortex-system models of various degrees of sophistication which,
in principle, may be suitable for low-speed, forward-flight analysis.

First of all, the blades may be modeled either by segments of a vortex filament or
by lifting surfaces. As to the structure of the rotor wake, here again, in the simplest con-
cept, it may be assumed that the wake is rigid. This means that it is formed by free vortex

- elements leaving each individual blade and carried downstream along straight lines at a
speed equal to the sum of the inflow velocity due to the rotor inclination with respect to
the distant flow, and induced velocity averaged over the disc. In this case, obviously
neither contraction nor further deflection of the wake further downstream is implied.
Since such wake is not time dependent, induced velocity components generated by various
rotor vortex subsystems can be computed independently and then superimposed.

At the other extreme, it may be assumed that the wake is free to take any shape
that may result from the interaction of the induced velocity field and the free (both
trailing and shed) vortices.

Between these extremes, similar to Sect 8 of this chapter, the socalled semi-rigid
wakes may be imagined where prescribed wake deformations from the simplest form are
superimposed through either experimental or analytically established corrections.

Of the three basic possibilities, two examples will be briefly reviewed; namely, one
representing the rigid, and another, the free-wake approach.

9.3 Rigid Wake

Wake Structure. An example of the three-dimensional, rigid-wake concept can be
found in Ch X of Ref 1, where it is recommended that it be applied to those flight re-
gimes when u < 7.41\/(:—7'. As to the structure of the wake itself, Baskin et al assume that
flow ir_Lthe wake downstream from the rotor is uniform, ard as shown in Fig 4.44a, at a
speed V',

— -

Vi= Vv, +7,, (4.115)

where 7“ is the velocity of the distant flow, and 7" is the average induced velocity at the
disc.

A Cartesian coordinate system (Oxyz) originates at the hub center with the y axis
coinciding with the rotor axis of rotation, while f/; is in the xQy plane. The rotor rotates
about the y axis at an angular velocity §2. Each blade of the b-bladed rotor is modeled by
a segment of the bound vortex filament where circulation T, = I'(7, ). Vector V' forms an
angle a - with the plane of rotation; thus

Vy = ~V'cos ay, Vy = V'sina,, Ve, =0. (4.116)

The wake of the vorticity leaving each blade forms a vortex sheet. Let us look at a
particular element of this vortex sheet which separated from point A of the bound vortex
filament OB when it was at azimuth Y, (Fig 4.44b). As the considered bound vortex
filament moved through angle 9 to a new azimuth position y, the trailing vorticity ele-
ment traveled downstream to point £. The coordinates at point A are
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(b)

Figure 4.44 Rigid wake of (a) a four-bladed rotor and (b) a single-vortex filament

4 = —rcos (¢ —9), na =0, $a4 = rsin (Y —9). (4.117)

The time of rotation of the blade modeled by filament OB through an angle ¢ is
At = ¥/ and the corresponding displacement of the trailing vortex element from its
original point of separation (A) is

Aty = —V(¥/Q)casa,; An, = VI(9/Q)sina,, Af, = 0. (4.118)

Coordinates of the vortex element when it reaches point £ can now be presented in
a nondimensional form (linear dimensions divided by R and velocity by S2R) as follows:

£ = V9cos a, — rcos(y —¥),
7 = V¥sina,, (4.119)
T =Fsin(y-9)
where
fo KT 1.0, 0< y < 27 0 0 < o0,

Eq (4.119) represents the desired parametric equation of the blade vortex wake. It
should be noted that for a blade at azimuth angle ¥ and known V" and a itis possible,
from Eq (4.119), to get an equation of a single skewed helix representing the complete
path of the vortex filament (Fig 4.44b) which sprang from blade point 8 corresponding
to the relative blade station 7). Obviously, this can be done by assigning the proper 7 =
const and ¥ = const values for those two parameters and letting & + o, By the same
token, by permitting 7 to vary within its limits of 7, € 7 < 1.0, the whole family of
skewed helixes forming a sheet of trailing vorticity left by a single blade can be obtained.
It can be visualized that along these skewed helical lines extend elementary trailing vor-
tices with circulation
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—(3/87)[T(7, y - 9)] dF.

It is also possible from Eq (4.119) to get an equation of a family of straight-line
segments located on the vortex sheet, and paraliel to the rotor plane-of-rotation. This can
be done by assuming that both ¥ and & = const, and letting 7 vary within limits of F, <
7 < 1.0, In tum, by varying 8 within limits of 0 < 9 < o, a complete blade wake will be
outlined by these segments. It may be imagined that along the so-obtained straight lines
extend elementary shed (lateral) vortices of strength

— (3/39)[F(r,—8)] 4.

Induced Velocities. Having established the mathematical model of the wake and
knowing the law of blade circulation variation with both radius and azimuth, it should
be possible to evaluate the instantaneous as well as time-averaged velocities induced by
the rotor in the surrounding space. In this process, advantage of the superposition princi-
ple can be taken by separately computing velocities induced by the various groups of the
total vortex system of the rotor. For example, instantaneous induced velocities can be
obtained from independently computed components due to trailing, shed, and bound
vortices. Then, time-averaged components can be determined for the same vortex groups.

Expansion of induced velocities into Fourier Series and ways of determining co-
efficients representing induced velocities through their harmonics is also possible. In this
process, Baskin et al emphasized a classic mathematical approach, where integral expres-
sions were evaluated with the help of Legendre equations and polynomials. As a result of
this philosophy, it is now possible to deal with the rigid-wake model by using graphs and
tables similar to those presented in Ch X of Ref 1, without the necessity for high-capacity
computers. By the same token, the above-discussed model may also serve as a basis for a
suitable computer program.

9.4 Free Wake

Basic Concept. Studies by Sadler may be cited as an example of the free-wake con-
cept and its application to the determination of blade airloads and associated induced
velocity fields under steady-state conditions'® and during maneuvers®®. In both cases,
dynamic aspects were included by taking into consideration not only biade flapping, but
also blade bending and torsional harmonic deformation. Here, attention will be focused
on the aerodynamic side of the problem only.

The basic philosophy of the free-wake approach can be appreciated by citing the
following excerpts from the Summary of Ref 19;

Rotor wake geometries were predicted by a process similar to the start-

up of a rotor in a free stream. An array of discrete trailing and shed

vortices is generated with vortex strengths corresponding to stepwise

radial and azimuthal blade circulations. The array of shed and trailing

vortices is limited to an arbitrary number of azimuthal steps behind each

blade. The remainder of the wake model of each blade is an arbitrary

number of trailed vortices. Vortex element end points were aliowed

to be transported by the resuitant velocity of the freestream and vortex-

induced velocities. Wake geometry, wake flow, and wake-induced veloc-

ity influence coefficients were generated by this program for use in the

biade loads portion of the calculations.
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Blade loads computations included the effects of nonuniform inflow due
to a free wake, nonlinear airfoil characteristics, and response of flexible
blades to the applied loads. The resulting nonlinear equations were solved
by an iterative process to determine the distribution of blade shears, bend-
ing moments, and twisting moments.

From the above, it can be expected that in contrast to the rigid wake which could
be managed through classical mathematical techniques, the computational procedure re-
quired in the free-wake method could only be accomplished by the use of high-capacity
computers. Fig 4.45 gives some idea regarding the most important steps in an actual com-
putational program.

FLIGHT CONDITIONS BLADE MODE SHAP
PRELIMINARY CONTROL SETTINGS, SHAPES
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Figure 4.45 Flow dfagram of program usage

Wake Geometry, Wake geometry, of course, is time-dependent, and its variation
is examined in the following way: At time O, the blades are assumed to be at some azi-
muthal and flapping positions without wake vortices.

The blades then rotate through an azimuthal increment, Ay, and shed and
trail vortex elements of unknown strength, but with known positions. The
strength of the vortices that are shed immediately behind the blade are then
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determined, and inciude the effect of their own self-induced velocities.

All vortex element end points not attached to the blade are then aliowed

to translate as the blade is stepped forward for a time At with velocities as

determined by the free stream and induced velocities. Here, At = Ay/Q2,

where 0 is the rotational speed. This completes a typical first step in the

wake geometry calculation.

A similar procedure is applied by further rotating the blades through increments of
AyY. As in the first step, the vortices just behind the blade have unknown strength; how-
ever, the strength of those in the waxe is already known. The resuiting wake vortex sys-
tem can be approximated by a mesh of discrete straight-line segments representing both
shed and trailing vortices (Fig 4.46).

BOUND VORTEX

r(rlfj) d’l-—f)
P(’,, \_Pj._y)

SHED VORTICES

F(','ﬁ»_\pj—z)
F(",‘+1. '1’,'.1)

TRAILING
VORTICES

Figure 4.46 Wake model with combination of ‘full-mesh’ wake, and
‘modified’ wake of trailing vortices only

The strength of the bound vortices, as well as the induced velocities at the end
(nodal) points of vortex elements and the elements themselves, are computed. The nodal
points of the vortex mesh are assumed to be convected with the velocity resulting from
the freestream flow and induced velocities.

It was indicated in Ref 19 that if the complete mesh of vortices is retained, but for
the sake of reducing computer time, Ay is made large, considerable inaccuracy in the
whole procedure would result. By the same token, if the Ay step values are selected
sufficiently small to assure acceptable accuracy, computer time would become prohibi-
tive. As 2 compromise, only the trailing vortices were retained further downstream, and
the full mesh was confined to represent the wake immediately behind the blade (Fig
4.46).
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Finite-Size Cores of Vortices. Contrary to the previously considered cases, here the
wake and blade vortices are assumed 1o have finitessized cores of rotational fluid, and the
core sizes at the blade are controlled by an input parameter so as to be adjustable to im-
prove agreement between calculated and experimental or theoretical data, as desired.

In Fig 4.46 all vortex elements are assumed to be straight for purpose of calcula-
tions, except where induced velocity determinations are performed for an end point (i.e.,
point A in Fig 4.46) at the inboard junction of the trailing and shed vortices. At such a
point, the neighboring elements are assumed to be arcs with curvature determined by
three appropriate end points.

Induced Velocities. Induced velocity components generated at any point (C) of
the space surrounding the rotor can be computed for each straight-line segment of the
vortex sheet using Eq (4.13) which, in Refs 19 and 20, is written (with the notations
shown in Fig 4.47) under the following form:

Av = (['/4nd)(cos 6, — cos 6g). {4.120)

A 9A ’\ GB
A 8

Figure .47 Vortex induced flow mode!

The total induced velocity at any point of interest is obtained by summing the
contributions of all the vortex mesh segments. However, when computing the vortex in-
duced flow at a point adjoining that vortex element, Eq (4.120) becomes indeterminable.
Following the approach developed by Crimi?"! , an expression for induced flow by adjoin-
ing finitecore-radii vortex elements was developed:

8R %\ 7 8R AV
I‘,-_,[ln(ai_c:' tan —';—) + -4’]-0- I‘,[[n( a.‘" tan 4—’>+ ;] .

!

Ay, =

SR

cy

(4.121)

In the above equation, end points are used to define the approximate radius of
curvature R, of a circular arc. In addition, I is the vortex strength, a is the core radius,
and ¢ is the angle defined in Fig 4.48.

Egs (4.120) and (4.121) snould permit one to determine the interaction of vortex
elements. However, when the vortex end point falls inside the finite core of another
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Pi—"

Figure 4.48 Vortex self-induced flow model

element, the theoretically predicted induced velocities may be unrealistically high. To
alleviate this physically unacceptable situation, an arbitrary limit expressed as a fixed per-
centage of the tip speed is imposed.

Actual determination of the variation of the wake geometry is performed within
a Cartesian coordinate system having its vertical axis located in the vertical plane to coin-
cide with the rotor shaft. In Figure 4.49, the y axis is oriented along the shaft, while
vector Vg, lies in the plane passing through the y and x axes. At this point, it should be
noted that in Refs 19 and 20, the coordinate system is different from the present one.

by

/A

nea

-

Figure 4.49 Rotor system coordinates
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Blade Circulation. Circulation around the blade in the free-wake approach is com-
puted in a manner similar to the cases previously considered. At station r, the inplane
velocity component perpendicular to the blade axis is

Up = Qr + Vg sin
while that perpendicular to the disc plane is
V] = Viola, - ag) +v o (4922

where g, is the shaft axis angle with respect to the freestream, positive aft; ag is the for-
ward tilt of the rotor plane with respect to the shaft axis due to flapping; and v is the
induced velocity component due to the wake (v =0 at startup).

Combining the expressions for unit span loading according to the blade element
theory with that given by the Kutta-Joukowsky law in Eq (4.16) and taking into account
Eq (4.122), the following expression for blade circulation (Tp) at station 7 and azimuth
v is obtained:

Ty = %calag(Qr + Vg sin ) + Viola, — a.B) + v]. (4.123)

It is indicated in Ref 19 that “the wake-induced velocity on the blade, v, (called w
in the reference) is made up of velocities due to known circulations in the wake and to
unknown circulations at the blade, and may be written in the form

V(’,'.Wk) = VN(’;.\‘UJ + ;-’; ? a;,-(f,-,wk)l‘(rl.w,-) (4.124)

where vy, (r,-,ll/k) is the induced velocity due to all known wake circulations; F(Q,W,') is
the blade circulation at r[,wi; and °t/’i"“k) is an influence coefficient which, when
multiplied by circulation I'(rg,V¥;) gives the induced velocity of that element at riVy.

“The summations over indices £ and/ indicate a summation over all radial sections
of all blades at their respective azimuthal positions. Then a set of equations for all I''s
may be obtained, and is of the form

Lig = (c/2)a [’E 3: % ixT2; + ao(S2r; + Vp siny,) + Violas - ag) + v,,]. (4.125)

“Here, I';, is equivalent to I‘(r,-,wk), and occurs on both sides of the equation. This
equation is solved with a simple iterative procedure."”

Resufts. With blade circulation values determined for a given Y, the vortex-induced
velocities are computed at all end points of vortex elements in the wake. As the blade
moves through an increment position Ay during time At = AY/§Q, the end points are con-
vected at A ¢ intervals at a speed resulting from the sum of the freestream flow and induced
velocities. Then, the entire procedure is repeated. For details of this approach for applica-
tion to predictions of blade airloads associated with the free-wake concept under steady-
state flight conditions as well as in maneuvers, the reader is directed to Refs 19 and 20,
respectively, Here, Fig 4.50 is reproduced from Ref 19 as an example of the path traveled
by the tip vortex of a two-bladed rotor at a low # value,
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Figure 4.50 Tip vortex location of a two-bladed rotor: u=0.097, a;=-3. 1°

With respect to the accuracy of predicting actual downwash by the free-wake
method, it appears that under steady-state conditions, the agreement with test data is
good (Fig4.51).

The same applies to airloads {Fig 4.52). However, judging from the figures pub-
lished in Ref 20, success in predicting airloads in maneuvers can be qualified as only
fair.

10. COMPRESSIBILITY EFFECTS
10.1 Basic Relationships

Up to this point, compressibility effects, if considered, were applied to airfoil
characteristics only (e.g., lift-curve slope, drag divergence, and maximum lift coeffi-
cient). The significance of a finite value of the speed of sound resulting in the noninstan-
taneous transmittal of aerodynamic signals from vortex filaments to the surrounding
space has been ignored in the classic Biot-Savart law. However, the role of compres-
sibility was considered by many investigators of aircraft propellers. It was also studied
in the case of helicopter rotors by Baskin et al (Ch X of Ref 1). In the section on Basic
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Assumptions and Notations, they indicate that an expansion analogous to the classic Biot-
Savart vectorial relationship (4.4a) can be developed for a compressible medium.

It is assumed (1) that a field of induced velocities ¥{w,v,w) at a point Plx,y,2) is
generated by a vortex filament S moving uniformly at a speed V(V,0,0) within a large
mass of compressible fluid, and (2) that Iv| € |Vi. Then, the vectorial relationship will be:

. _ W [dxdS

v—
4178 d,}

(4.126)

where £, 7, and ¢ are coordinates of the vortex element ds,

dy= VPAE-—xP + (a-yP + -2/, v=NI/1-M), M =V

and s is the speed of sound in undisturbed flow.
In analogy with Egs (4.7) to (4.9), expressions for induced velocity components
are obtained:

Pr
i B0 -20 - iz
b
P
i Beo-Sels e
o (Tt & & (4.129)
o5 G- 9)E

As in Sect 3.1, it is assumed that the equation of fine S is given in 2 parametric form
with p as a parameter: ¢ = E(p);n=nfp); t =t(p). In Eqgs (4.127) to (4.129), integration
is performed from the initial (p;) to the final (p;) parameter values.

10.2 Application to a Rotor in an Oblique Fiow

The rotor velocity system is similar to that considered in Sect 9, and illustrated in
Fig 4.44. As previously noted, a coordinate system, xyz, is attached to the rotor which
is exposed to a uniform flow of compressible fluid moving at velocity V along the X axis
of another stationary Cartesian coordinate system, XYZ (Fig 4.53). Vector V makes an
arbitrary anglc-of-attack, a,, with the rotor disc. The blades are modeled by segments of
bound vortex filaments whose circulation varies with 7, T' = I'(r), but remains constant
with the azimuth: T[(¥) = const. As a result of this concept, a vortex sheet composed of
trailing vortices only is formed behind each blade. A parametric equation in nondimen-
sional form for the OXYZ coordinates of that vorticity surface can be written as follows:

fE=rcos(¥—0)cosay+ V;n = —Fcos(¥ — ) sinay; { =—Fsin (y—9) (4.130)

where angle § is the parameter.
Velocity ¥ induced by the rotor can be imagined as the sum of velocity v, due to
the bound vortices, and ¥, generated by the free vortices (in this case, the trailing ones
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Figure 4.53 Coordinate systems

only). Using nondimensional definitions for velocities, this relationship can be expressed
as follows:

<i$

(@,5,W) = Ty(Ty, Ty, Wy) + 3¢(@y, Uy Wy). (4.131)

In order to determine the time-averaged velocity 'v'b induced by a b-bladed rotor at
an arbitrary point P (X, 7,Z) related to the Oxyz coordinate system, we assume that x =
—Trpcos Up; Z=T7psin yYp, where 7p is the radial, and Yp is the azimuthal location of
point P. Next, Eq (4.130) with & = 0 is substituted into Eqs (4.127) through (4.129) and
the results are time-averaged and then transferred to the Oxyz coordinate system. The re-
sults of this operation are given in Ch X of Ref 1* as

2n 1
—ub = ysiny
0, =— PALLE.
b gg // r d? dray

07,

2n 1

- _ = =Isin(V—4p)
Vp = 8_1(2 / / r z Ey, dr dy (4'132)
o 7,

an 1

- —vb = ycosy
Wb = 81[2 [ f F‘—F—dys d?dw
o 7,

where

4} =L + 7 + (A +1)dg; dy = ysina,—L, cos a,;

* When comparing the actusl expressions in Ref 1 with those in this text, the difference in some
symbol definitions shouid be kept in mind.
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while,

L =~F +7p® — 2frpcos (W~ ¥p); and L, = Fcos ¥ — Tpcos Vp.

It can be seen from Eq (4.132)that contrary to the previously considered cases, the
induced velocity v, generated by bound vortices is not zero. However, when v = 7 (in-
compressible fluid), the v, velocity field vanishes.

Velocity induced by bound vortices averaged over the entire radius 7p will be

i Ipsn (v 4y) |
f//f‘ — dFdyayp. (4.133)
o 0 0

!
\I

From this equation it can be seen that by changing the independent variables from
¥ and ¥ p to — and —yp, the V7 changes its sign. This means that the v, field is asym-
metric with respect to axis x.

The &, v;, and w, components due to free vortices can be determined in a similar
way in the Oxyz coordinate system. For points on the rotor disc in particular, the follow-
ing expression is obtained:

n

2 | -
b ol’
L LY : +
Yt = %n ’V/ [ar[r Fipcos (Y —V¥p) + ul,
o 7,
1 ardy
+ — LTcosycosa . 4,134
v v "] L(L + vL,cosa,) ( )

where V = V/V, is the nondimensional velocity of distant flow which, for cases of high
and even medium velocities of flight, may be considered as Vg andl,=Tsiny—Fp
sin Yp. In axial flow, ay, = +90° and in Eq (4.134), the second term containing v (re-
flecting compressibility) disappears and that equation can be reduced to

4V’

Ff =
For hovering, when flow through the rotor becomes identical to the induced

velocity at the disc (V=vs= V), the above equation can be written in a dimensional
form as follows: .

v, = —5[bT(7)/v(2n/D)].

By inspecting this equation, one would recognize that 6T (7) is the circulation
transferred from radius 7 to the wake by all & blades, while v (2n/Q) is the distance
traveled by the trailing vortices during one rotor revolution. Consequently, it may be
stated that [bI'(r)/v,(27/2)] = dT/dy, and the expression for v, becomes identical to
Eq (4.19a).
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Baskin et al pointed out that the stationary field of induced velocities does not de-
pend on the blade rotational Mach number Mg = Sr /s (where s is the speed of sound),
but only on M, = V/s of the uniform flow along the skewed cylindrical vortex wake.

As an illustration of the influence of compressibility, comparative calculations of
ve (from Eqs (4.132) and (4.134)) were performed at M = 0 and M = 0.2 for a rotor
operating at QR = 227 m/second, u = 03, a,=—-18 andC 7=0.007.' Under these con-
ditions, compressibility effects are relatively small (Fig 4.54).

0.32 t\ Y= V/Vt 1-
- \\ ,._/
L
0.01 /\‘\
| \
0 ] 100 200 300 qf

Figure 4.54 Example of compressibllity effects on v* of ¢ rotor
atu=0.3and Ve= 221 m/second

The reader interested in a more thorough discussion of the implication of the finite
velocity of sound on vortices in a compressible medium, and application of those findings
to airscrews, is directed to Ch XV of Ref 1.

11.  VISCOSITY EFFECTS
11.1 General Remarks

There are two important physical aspects of viscosity effects in the vortex theory.
First, the existence of a finite radius core at the moment of “birth” of a vortex and
second, the diffusion of that core with time. The final result of the second phenomenon
may be 2 complete dissipation and loss of identity of the vortex structure. The process of
core diffusion and complete vortex dissipation is quite complicated. However, a thorough
understanding of this process and development of reliable mathematical treatment s
important in predicting the decay of tip vortices of fixed-wing aircraft in terminal opera-
tions. Because of flight safety aspects, a continuous high-evel effort (both analytical and
experimental) may be expected in this domain®.

As far as investigations into the diffusion of vortices of rotary-wing aircraft is con-
cemed, the available analytical material seems to be quite limited. It also appears that
outside of some initial pioneering efforts (for example, see Ref 10), there is a lack of
methodical experimental studies in spite of the fact that in almost every visualization
technique, the qualitative aspects of vortex dissipation are quite apparent (Figs 4.1 and
4.2).

* Presumaebly at7=0.7 or 7 = 0.75.

214



Vortex Theory

With respect to the analytical treatment of the diffusion of vortices and its influ-
ence on the field of induced velocities, one may find a brief discussion of this phenome-
non in Ch XV of Ref 1.

10.2 Influence of Free Vortex Diffusion on Instantaneous Induced Velocities

It should be emphasized at this point that in the vortex system of an airscrew,
diffusion may affect the free (shed and trailing) vortices only, and obviously has no bear-
ing on bound vortices.

At time zero (t = 0), when a free vortex separates from the straight-ine vortex
segment modeling the blade, circulation of the just “‘born” vortex is equal to ', while the
associated vorticity field T is enclosed inside a tubular filament. With the passage of time,
a diffusion process takes place according to the following equation of dissipation.

(8T/31) = vpqaT (4.135)

where v,q is the equivalent kinematic viscosity coefficient for turbulent flow. Eq (4.135)
represents an equation of heat transfer for vortex vector T.

Let it be assumed that one wants to investigate the state of diffusion of a vortex
filament downstream in the wake at a location defined by angle & (Fig 4.55) at the time
the blade from which this filament sprang is at azimuth V. The time interval between the
moment of “birth” of the investigated section of the vortex filament and its present posi-
tion downstream at 3 is

t=(y - 9)/Q. (4.136)

Figure 4.55 Vorticty wake of a blade
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Keeping the above presented general remarks in mind, a comparison c¢an be made
between expressions determining velocities V¢ induced by free vortices with, and withou t,
consideration of the diffusion.

Without diffusion, velocity induced at a pointP (X-E' Yp, 2p) whose location in space
is determined by the position vectorTP = xP7+ y,,]"+ Zpk can be obtained from the classic
Biot-Savart law (Eq (4.4a)). Assuming that the n-th blade of a b-bladed rotor is at azimuth
angle ¥, an expression for the 7, corresponding to the wake of that blade as shown in
Fig 4.55 can be written as follows:

b R VYn o -

.- axX D(r,7) .

Velrp V) = 3 ff e dardd (4.137)
n=1% Zo T

where 7 = x7+_’y7' + 2k is the position vector locating elements of vorticity on the blade
wake, d =71 — Ip, and Y, = ¥ + 2nfn—1)/b, while

Oie) = 57 35 “ 55 3

is the Jacobian.

When the law of dissipation as given by Eq (4.135) is taken into consideration and
time is defined according to Eq (4.136), the new expression for 7, is obtained by multi-
plying the integrand of Eq (4.137) by K(d), where

da/é

K(d) = (4/n) f x?e=*? gx
0

and
& = 24/ Vogt:

Intermediate steps in the development of these relationships can be found in Ch
XV of Ref 1.

At the beginning of this section, it was indicated that there was an apparent lack of
intense research on the dissipation of rotor-wake vorticity. This status may be partially
explained by the fact that in the past, interest was focused primarily on the flow field at
the rotor disc—where induced velocities are most significantly influenced by the near
wake, while vortex dissipation usually occurs further downstream. However, should this
interest be expanded to include fields of flow more distant from the rotor; for instance,
in the case of rotor-wake interaction with the fuselage or tail rotor, then the whole prob-
lem of vortex dissipation would acquire more practical attention.

12, CONCLUDING REMARKS

The application of vortex systems to physicomathematical modeling of both lifting
and propelling airscrews offers, in principle, the most versatile too! available at present
for the determination of time-average and instantaneous flow fields generated by rotary
wings in unlimited space. Because of this freedom of space and time in dealing with aero-
dynamic phenomena, the vortex theory is attracting the attention of theoreticians as well

216




Vortex Theory

as applied aerodynamicists and aeroelasticians, resulting in a steadily growing flow of
literature. In parallel, new vortex computer programs aimed at air4oad determination,
aeroelastic problems, performance, and special tasks such as noise are continuously
being written.

With respect to performance, it should be noted that the results have often been
disappointing. In spite of large expenditures in computer time, the predicted perform-
ance figures, when compared with actual flight or wind-tunnel test results, appeared no
more and sometimes less accurate than those obtained by the combined blade-element
and momentum theory.

Paradoxically, these discrepancies usually result from what constitutes one of the
strongest points of the vortex theory; namely, the ability to pinpoint the occurrence
of very strong local induced velocities. Although the high induced-velocity regions are
usually limited to the proximity of the vortex core, large loads may be generated when a
strong tip vortex comes into the vicinity of the blade.

The existence of high concentrated blade loads and vibratory excitations resulting
from vortex-blade interaction was investigated by many authors and confirmed both in
flight (e.g., Scheiman and Ludi*?), and in wind-tunnels (e.g., Surendraiah®* and Ham?*),
Hence, in this case, it is clear that the ability to use the vortex theory to predict the
positions of discrete vortices and indicate the existence of high induced velocities in the
vicinity of their core may lead to a better understanding and more precise quantitative
analysis of actual physical processes.

However, the very nature of the vortex theory which allows one to pinpoint the
existence of singularities having actual physical meaning, might become a source of
erroneous physical interpretation and computational errors when applied to the case
of performance predictions. The classic theory, where vortex cores of infinitesimally
small cross-sections are assumed, might be especially prone to errors. Here, during the
execution of a computer program, physically non-existent areas of high induced veloc-
ities may appear simply as a result of the fact that, inadvertently, some of the points
where induced velocity is determined happen to be too close to the vortex filaments.

For this reason, when developing computer programs based on the classic vortex
theory, it is important to incorporate various safeguards against the possibility of running
into mathematical singularities having no physical counterparts. Proper selection of
collocation points' may be cited as one example of such a safeguard. Further improve-
ment in the program may be derived from recognizing the fact that vortex cores actually
have finite diameters, while vortex sheets are of finite thickness, and incorporating
this into the mathematical model.

In parallel with the more meaningful modeling of individua airscrews, their assem-
blies, and even the whole rotorcraft through approaches derived from the vortex theory,
there is a growing trend toward finding meaningful shortcuts which would allow one to
reduce computer time without sacrificing basic accuracy. This was borne out by Land-
grebe et al*S in a review of the status of the vortex theory in the mid-seventies and
especially, its application to aerodynamic technology of rotorcraft. For instance, in the
static case, the authors came to the conclusion that “the lifting-line approach is adequate
for predicting the hover performance of a wide range of conventional and advanced rotor
designs.” However, this approach was improved through a special program called CCHAP
(Circulation Coupled Hover Analysis Program) which couples the wake geometry to load
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distribution. |t was indicated that accuracies similar to those associated with lifting-surface
methods can be achieved through CCHAP, but at a much lower computer time and cost.
When predicting performance in forward flight, emphasis seems to be concentrated on the
following areas: (a) use of variable inflow methods for rotor-power predictions, (b) re-
finements in unsteady aerodynamics and skewed flow, (c) the role of aeroelastic coupling
in the design of optimized rotors, and {d) a preliminary assessment of rotor airframe in-
terferemce? 5.

Outside the framework of the vortex theory proper, there is a continuous effort to
develop simpler methods, but still have the ability to determine, in both time and space,
unrestricted velocity fields induced by an airscrew in various regimes of flight. The appen-
dix to this chapter, describing the local momentum theory, is given as an example of
these efforts, while in the following chapter it is shown that many basic objectives of the
vortex theory can be achieved through the velocity- and acceleration-potential approach.
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APPENDIX TOCH IV

LOCAL MOMENTUM THEORY

1. INTRODUCTION

The local momentum theory approach proposed by Azuma and Kawachi in Ref
26 is similar to Sect 2.2 of Ch Il in that a combination of the momentum theory with
the wing or blade element theories represents the main vehicle for relating wing or rotor
geometry and some characteristics of their airfoil sections to the determination of in-
duced velocity and airloads. However, in the present case, some aspects of the vortex
theory are used; therefore, it seemed appropriate to include an overview of this material
as an appendix to Ch IV,

The Azuma and Kawachi approach is aimed toward determination of both time-
average and instantaneous fields of rotor induced velocities. The authors achieve this goal
with reasonable accuracy, but without the computational complexities of the classic
vortex theory. In this case, the physicomathematical mode! of a rotor is based on the con-
cept of representing an actual aerodynamic load and downwash distribution of a blade by
a series of n overlapping wings of decreasing size; each having an elliptical circulation
along the span and therefore, producing a uniform downwash velocity.

The main task consists of finding a way of relating the geometry of a single blade
(planform, twist, pitch angle, etc.) as well as that of the whole b-bladed rotor, plus its
operating conditions (hovering, axial, and forward translation), to sustained loads and
downwash produced by the component wings. Knowing these values, actua blade loading
and downwash velocity can be obtained as a summation of the aerodynamic loads and
downwash velocities produced at the point of interest by the component wings.

Since this approach is rooted in fixed-wing aerodynamics, the basic philosophy
of the theory will be more appreciated by first considering its application to the non-
rotating wing. However, at this point it should be stressed that practical use of the jocal
momentum theory is more suitable for rotary-wing than for fixed-wing applications. In
the latter case, a large amount of error may accumulate by not taking into account the
upwash flow at both tips of the elliptic wings which model the actual wings. By contrast,
the upwash flow on the root side of the elliptic wings modeling a rotor blade is not as
important except perhaps, around ¥ = 90° in high u forward flight.

This theory may be more helpful in solving unsteady, rather than steady, problems
in rotary-wing aerodynamics. Flight maneuvers and gust response conditions may be cited
as suitable areas of application because in such transient motions of the rotor, the vortex
theory would require a large amount of computational effort to precisely determine the
downwash distribution?®.

2.  FIXED WING

The classic aerodynamic theory''.'3 indicates that an elliptically-loaded wing
moving at a speed —V develops a uniform downwash velocity v, along its lifting line
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(1/4<hord). Far downstream, this velocity still remains uniform, while its value becomes
2v,. The magnitude of the regions of upwash existing outside of the wing span can be
expressed as follows (Fig A4.1)*:

v =l = i)Vt -1 (A4.1)

where 1 = y//%b with b being the wing span.

ELLIPTICAL LIFT
DISTRIBUTION

DIRECTION L
OF FLOW

INDUCED
VELOCITY
DISTRIBUTION

Figure A4.1 Downwash distribution of an elliptically-loaded wing

Integrated effects of upwash on the flow fields are small, and the total lift of the
ellipticallydoaded wing can be expressed as

L = 2mp(b/2) Vv, (A4.2)

where p is the air density.
Load (¢) per unit of wing span becomes:

2= (4L/nb)1 — 7*. (A4.3)

If the spanwise wing loading is not elliptical because of planform, twist, and airfoil
characteristics, it can still be approximated as a sum of the lift of 2 number (n) of ellip-
tically-loaded wings. The individual contribution {L;) of each of these wings can be ex-
pressed in a way similar to Eq (A4.2), while the total wing lift now becomes

L= X 2ap(b,/2)* vAvy, (Ad.4)
1

where the symbo! Av; is introduced to signify the downwash velocity contribution of
each wing, and b; is the corresponding wing span.

*/t should be noted that in this Appendix, a coordinate system identicel to the original paper wes
adopted. This is different from that used in the preceding chapters.
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The contributing elliptically-loaded wings can be arranged in many ways. Examples
of symmetric and one-sided arrangements are shown in Fig A4.2. If the upwash regions of
the component wings are neglected, then at any nondimensional station, n=y/%b, of the
actual wing, the downwash velocity will be

n
ve 3 Av;. (A4.5)
1
,L'/ s Ln
by + ef b+ + e gE,
/ AVn
7YAvVs

Av,

{a) SYMMETRIC ARRANGEMENT

L L. Ls
Vi / 5
/ / N b/ Y
L . b = v bl +_. 1’ . A —
/ / —— Ava
7 }VAVI

{b) ONE-SIDED ARRANGEMENT

Figure A4.2 Two types of arrangement of equivalent wings

For a symmetrical arrangement of the elliptical wings, lift (£) per unit of wing span
length at station £ becomes

n
z= 2’ %(&)
where §; = y,;//b; is the nondimensional span station of the /-th wing.

It was assumed that the lift distribution of the equivalent wing is elliptical; there-
fore, simiiar to Eq (A4.3), the unit span loading of the /=th wing will be

L£; = (4Li/7’b;)\/7 - E,-'.

and the expression for { will now be
n
L =3 @Lime)VT — &7 (A4.6)
7
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Since the upwash regions of the component wings have been neglected, only
I£;|< 7 are considered.

In order to express the lift supported by any single wing (say, the j ) of the whole
series of n equivalent wings, and to link this lift to the geometric and aerodynamic char-
acteristics of the actual wing, the momentum and strip approaches are combined.

According to the strip approach, the lift of the portion of the actual wing between
the left-hand side tips of the j and (/ + 7) wings (cross-hatched area in Fig A4.3) can be
expressed as follows:

= YpV? f a(dy -2 Av,-/V) c, dy. (A4.7)
[
- Kb

Figure A4.3 Horizontal projection of equivalent wings

where, in the most general case, the lift-curve slope @ may vary (but not likely) along the
wing span due to section airfoil characteristics, etc.; 6, , the angle of incidence, may also
vary along the span 6, = 6(y ) as well as the wing chordc =¢(y). However, the value of
the T Av,;/V sum for the 1to j limits is assumed to remain constant within the interval of
y=-54 b toy =-%b, i1 (between the consecutive wing tips) and, under the small-
angle assumptlon represents the inflow angle which, subtracted from the local angle of
incidence, gives the section angle-of-attack.

In Ref 26, the relationship expressed by Eq (A4.7) is simplified by assuming @ =
const and taking the mean values of ¢ and @ for the considered wing segment; namely,

= c[‘(ﬂj + 77]+1)/2] and o‘ = 0[_(71,' + nj+1)/2] . (A4.8)

As an alternate to Eq (A4.7), lift L can be expressed as a sum of the contributions
of the appropriate segments of the component elliptic wings from n=17ton =
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Remembering that the resultant span loading 4; of all j wings is given by Eq (A4.6),L";
according to the momentum theory becomes

—%bjyy
/
L, = / 3 [[4L,/b,)\/l - 5,?] dy. (A4.9)
i
- Wb,
/

Equating the right sides of Eqs (A4.7) and (A4.9), the necessary relationship for
finding v; = £ Av; for the 7 to / limits can be obtained. Dividing both sides of the so-
developed equation by % (b; — bj+3), it can be rewritten in terms of the unit span loading
(£,). Furthermore, replacing ¢, and 8, by their mean values according to Eq (A4.8),
and switching to nondimensional span coordinates (n = y/%b), the following is obtained:

=MNj+1
8, = %pV? f cjal6; — v,/ Vidn/(n; — 1 44)
=Nj+1 j
= / S @Lmb)NT — (6/6,) 2 dnl(n;—njeq). (A4.10)
1

Eq (A4.10) permits one to find v; and ¢; at station /. Repeating this process for all
stations from j = 7 toj = n, both the downwash and span loading along the lifting line of a
fixed wing can be obtained.

3. Rotary Wing

When trying to apply the above-discussed approach to a rotary-wing, new physical
facts encountered in the latter case should somehow be reflected in the development of
the conceptual model. Some of the more important differences between the fixed and
rotary wings are as follows: (1) in all regimes of flight, the velocity of flow varies along
the blade span; consequently, for each individual blade, there is no symmetry of down-
wash, and (2) aerodynamic interactions between the blades should be anticipated. The
induced velocity field generated by the preceding blade would influence the flow at the
following blade. Furthermore, some attenuation of induced velocities may occur before
the following blade enters the perturbed area.

In view of (1), Azuma and Kawachi represent the blade by a series of wings arranged
to one side as shown in Fig A4.4, and assume that each of the wings has an e/liptically
distributed circulation. Due to the existence of the incoming velocity gradient U(7) =
RSLT + sin , the spanwise load distribution along the blade will not be elliptical. Never-
theless, it is assumed that the downwash velocity along the span of each wing still remains
uniform.

(n order to determine the flow field at the rotor disc, a plane passing through it is
divided into elements whose positions are given by coordinates £ and m. ‘For the case of
vertical climb and hovering, the sequence of normal velocity variation with time at some
selected points of the disc are illustrated in Fig A4.5.
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AIRLOADING IS NOT ELLIPTICAL
BUT CIRCULATION ISELLIPTICAL

AIRLOADING
Utip Utip Utip
y T 7
n Av,
U -
Uroor root =1 Av:
INDUCED VELOCITY
Figure A4.4 Representation of a rotary wing
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Figure A4.5 Sequence of induced velocity variation at 3 points of the disc
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Let it be assumed that at some instant #;_,, the blade element is located at a point
(2’,m") where it encountes the velocity of incoming flow U, ;. According to the con-
vention accepted in Ref 26, “...the first subscript shows the /-th radial position of the
blade element, the second subscript shows the time or azimuth-wise location of the blade,
and the third subscript shows any quantity which is related to the k-th of 2 b-bladed
rotor."”’

The total velocity component normal to the disc can be obtained as a sum of the
following: (a) velocity Vij-1.k induced by the blade element at the point of interest
(2°.m’) and at this particular instant (£=1;_, }; (b) velogity Ve induced by the blade
element that passed over this point one increment of time before, and {c) the normal
component V,,, which may be due to axial translation of the rotor {vertical climb) and/or
the flapping motion of the blade. In steady-state horizontal translation, this component
would be Vy, = Vag, where ay is the angle-of-attack of the disc plane.

At time ¢;, the blade element will pass through point (2, m); and at time Livts
through (£ ", m") . In the meantime, the velocities which had been induced at point t',m)
will attenuate. This physical fact is accounted for by applying, to those velocities, a
proper attenuation factor Cj:’,,,c corresponding to the blade position at instant £ =1¢;. At
time t = t;,,, the attenuation factor at point (£',m) will be symbolized by c ,'”’,,- It can
be seen from Fig A4.5 how this philosophy is applied to other points: (¢,m) and (¢, m").

Thus, as stated in Ref 26, "-.-Vf’m can generally be given by the following recurrent
formula:

R i_1f i-1 n b
vvll.m = Cl,m(v,l,m +X X Vi.i—1,k53,m> (A4.11)
=1 k=1

where the attenuation coefficient C{’m should be a function of the normal component
of the velocity passing through the station (£, m) at time t;_y, and where §, , should be
one if any blade element hits station (2,m) at time t;_, ; and otherwise, zero.”

Similar to the previously discussed fixed-wing case, means s>ould be found of link-
ing blade and rotor geometry as well as its mode of operation with loads and induced
velocities associated with a series of ellipticalcirculation wings replacing the blade.

At this point it may be recalled that all outboard tips of the equivalent wings coin-
cide with the blade tip. Consequently, any blade station (F=r/R) can be related to posi-
tion 7; of the inboard tip of the / wing and its own nondimensionalized coordinates §; =
v,/ %b (see Fig A4.6) in the following way:

F=d4l1+7) + §0-F) or £=[2r = (1+F)I-7).  (A4.12)

imagining that between blade stations r; = 7; R and at blade tip R there is a quasi-
elliptically-loaded wing of semispan R(7 — F;)/2, the mass tlow m; associated with that
wing would be

m; = prl|R(1 —7)12]* U; (A4.13)

where U; = [V sin y + RQU1 +7;)/2] represents the mean velocity of flow approaching
the considered wing.
Similar to the previously discussed fixed-wing case, the blade geometry and rotor
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Figure A4.6 Downwash and loading of the equivalent wing

mode of operation can be linked through the blade element theory to the unit lift (¢;) be-
tween blade stations 7; (position of the inboard tip of the / wing) and T144 corresponding
to the inboard tip of the /+7 wing:
Tiv1
L =%p / Ulcial6,— ¢,)dr/(F;yy — T) (A4.14)

i

where the mean values of the velocity of the incoming flow (U;), blade chord (c;) be-
tween stations 7; and 77, ;, and inflow angle (¢;) are given below:

]
U, = Vsin.<¢k'° + 3 Aw)\) + RQr; + rigq)i2
A=1

¢ = [el7) + c(Fiuq)l /2 (A4.15)
¢i = (VN + Vélm + Vi'i'k)lu,'.

In the above equation, ¥x,o is the initial azimuth angle of the  blade,and Ay the
azimuthal step. In general, U;, 6,, and ¢; are f(Y) which should be reflected in full sub-
scripts of /j k. However, for the sake of simplicity, the j& subscripts were omitted in Eq
(A4.15).

The totdf lift (L;) corresponding to the blade segment between stations rrand 7,
can be written as
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L, = 2m;Av; (A4.16)

where rh,- is given by Eq (A4.13) and Av, represents the downwash velocity associated
with the / wing. However, additional aspects must be considered in order to establish the
1{ 7) relationship; i.e., to find how the total load is distributed along the blade span.

According to the Kutta-j oukowsky law, 2(7) = pU| (7) T(7) where U} (F) and I'(7)
respectively, are the incoming flow velocity component perpendicular to the blade at sta-
tion 7, and I'(7) is the velocity circulation at this station.

It was assumed that each of the component wings have elliptical circulation distri-
butions. Furthermore, it was also assumed that trailing vortices are straight—perpendicular
to the wing span-and extend to infinity. Consequently, the elliptical circulation can be ex-
pressed as follows:

I(7) = 2RAv,(1 —F)NT— £ = 2RAv(1 —FJNT = [(2F— 1 = F)I(1 —7)]*
(A4.17)

and the total lift of the / wing, expressed in terms of both circulation and the simple
momentum relationship of Eq (A4.16) is

r
L, =pr]_(7) I(7)RdF = 2m,;Av, (A4.18)
7

or, expressing m, explicitly by Eq (AS.11), the above becomes
!

L, = f pUL(FIT(F)RAF = 2pn[R(1 —T))/2]*U,Av,- (A4.18a)

!

‘i

By combining Eqs (A4.17) and A4.18a), the desired expression for lift distribu-
tion along the blade span—derived from the momentum consideration—can be obtained:

Li(F) = [4L,/7R(1 — F)I[(RQF + V sin W)U INT = [(27 = 1 = 2)1(71 = F))2.
(A4.19)

Equating the ¢, expression according to the blade element theory of Eq (A4.14)
to that based on the momentum consideration of Eq (A4.19), one can obtain the equa-
tion necessary to solve the induced velocity contributions (v) appearing in Eq (A4.11).

With respect to upwash generated outside of the span of each elliptical wing,
Azuma and Kawachi indicate that its effect on the inboard side can be neglected in all
regimes of flight. As to the upwash at the outboard side, it may be neglected in hover and
vertical climb. In the advancing rotor, however, the upwash flow left by the preceding
blades is not always small on the blade-tip side and, as shown in Fig A4.7, it is necessary
to take this into account when estimating the load distribution of the considered blade
operating outside the tip vortices of all preceding blades. The tip-side upwash at station
7 > 1 can be given by

Av(F> 1) = nZAv, [7 — (27 =1 = )2 = 1)(F = r,)]’. (A4.20)
!
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PART OF BLADE
\ IN THE UPWASH
FIELD

N\

Figure A4.7 Upwash effect on the succeeding blade outside the tip vortex

The induced velocity v; at some station (£, m) must be calculated by not only tak-
ing into account the actual blade (7 < 7) passing over that station, but also its hypotheti-
cal extension through the upwash region (7> 7). Similar to the downwash treatment,
the same attenuation coefficients should also be applied to the upwash velocity com-
ponents.

The magnitude of the attenuation coefficient, Cj.1 = vlvg at station (¢,m) occupied
by blade element (i, , k), will depend on the relative position of the local station and time
elapsed between passages of the blade: At = L—t_y.

Values of the attenuation coefficients computed in Ref 26 are shown in Fig A4.8a
for both hover and horizontal translation. It is also indicated that in the simpler cases,
the constant attenuation coefficient may be assumed (Cf',:' = C) and the representative
C values for 7=0.75 can be obtained for the various thrust coefficients (C-,-) and number
of blades shown in Fig A4.8b.

3.1 Applications

The steady-state hovering case for an articulated rotor with two untwisted blades
was investigated using the above-discussed method. The spanwise partitioning of the
blade was 7 = 20, and the azimuthal increment was A ¥ = 2n/b. The so-obtained span-
wise load distributions shown in Fig A4.9 indicate a good agreement with experimental
results.

Steady-state forward flight was also examined. The actual procedure as outlined by
Azuma and Kawachi is as follows:

The effect of upwash velocity observed in the outboard part of the blade
must, as stated before, be included in determining the angle of attack of
every succeeding blade. The trace of the upwash velocity as well as the
downwash velocity left on any station in the rotor plane is stored in the
computer memory and is recalled every moment, and then multiplied by
the attenuation coefficient at that instant for the calculating of induced
velocity.?®
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Figure A4.8 Attenuation coefficients and comparison of theoretical and
experimental results of hovering rotors
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Figure A4.9 Spanwise loading of a rotor with two untwisted blades

Using this approach, spanwise aifoading was computed at 4 =0.18. As before, the
blade was divided into 7 > 20 segments, but the azimuthal increment was reducedto Ay =
10°. The field was divided into a net of R/80 square elements, the number of which was
ZX m=160 X 320. Alift coefficient of zero was assumed in the reversed flow region.

A comparison of predicted and exoerimental values of spanwise loading is shown in
Fig A4.10, indicating a good agreement between analysis and tests.
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Figure 4.10 Spanwise loading in forward flight

Finally, it can be reaffirmed that this method appears especially suitable for un-
steady conditions since it considerably reduces computer time. As an example of such
applications, rotor response to a rapid increase in collective pitch and to sudden input of
cyclic pitch is discussed in Ref 26.
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CHAPTER V

VELOCITY AND ACCELERATION
POTENTIAL THEORY

Basic formulac of the velocity potential in an incompressible fluid are recalled, and
then ways of applying them to rotary-wings are indicated. Next, the same steps are taken
with respect to the acceleration potential, and the links between the two potentials are
shown along with ways of applying them to rotor blades moldeled by lifting lines and
lifting surfaces. Considerations of the consequences of fluid compressibility completes
the presentation of potential-theory fundamentals; followed by their application to such
tasks as determination of the induced velocity field of an actuator disc having a pre-
scribed area loading, and computation of blade ioading in steady and unsteady flows.
Finally, a brief discussion of the application of potential methods to mapping of the
flow around nonrotating helicopter components concludes this chapter.

Principal notation for Chapter V

(4]
CL
c

74
F

h

-y -

iR

S0 0™ 3 IN

TN v

uv,w

matrix

area lift coefficient

Blade, or wing chord

section lift coefficient
load-perunit span

elevation

unit vectors along x, v, z axes
distance

flow doublet strength (moment)
vector normal to the surface
pressure

strength of flow source

strength of pressure doublet
radius

radial distance

nondimensional radial distance, 7= r/R
surface

thrust

time

velocity of distant flow

velocity components along x, ¥,z axes
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m or ft

N/m or Ib/ft
m or ft

m or ft

m* /s or ft* /s

N/m? or psf
m? /s or ft* /s

m or ft

m or ft

m? or ft?
Norlb

s

m/s or fps
m/s or fps
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XY2Z
X r,Z
Z;, XYy

j+]

4 € D Ee &6 M> 0 >0 b

Subscripts

I
1

v

Superscripts

*

velocity in general m/s or fps
perturbation velocity m/s or fps
normal velocity component mfs or fps
Cartesian coordinates m or ft
Cartesian coordinates m or ft
coefficients

angle-of-attack rad or deg
velocity circulation m?/s or ft* /s
increment

short distance m or ft
angle, or blade-pitch angle referred to zero-chord rad or deg
angle rad or deg
angle rad or deg
area m? or ft?
velocity potential m? /s or ft? /s
acceleration potential

azimuth angle rad or deg
rotational velocity rad/s
solid angle steradian

del; v=7(3/ax) + [13/3y) + £ (9/32)
Laplacian (del?) V2 = (2% /ax?) + (3% /3y?) + (3% /az?)
column

matrix

paraliel
perpendicular
velocity

time derivative

vector
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Potential Theory
1.  INTRODUCTION

From previous discussions of the various theories, the reader has probably come to
the conclusion that the vortex theory offers the most precise description of the aero-
dynamic phenomenon of the rotor, but in practical applications, it requires the largest
amount of computational effort. This is especially true if one attempts to rigorously
account for all, or at least most of the interactions between vortices, such as in the case of
nonrigid wakes, unsteady aerodynamics (e.g., aeroelastic phenomenona), some maneu-
vers, etc. Application of velocity and acceleration potentials makes it possible to de-
termine steady and unsteady flow fields induced by the rotor in both incompressible and
compressible fluids with a precision similar to that offered by the vortex theory approach
but with less computational effort.

Mangler and Squire! were probably the first (1950s) to adapt the velocity and
acceleration potential concepts to the determination of the induced velocity field of a
rotor. This was done for the case of forward flight where induced velocity was con-
sidered small in comparison with that of the distant flow (reverse of the rotor transla-
tory velocity). The accompanying pressure differential between the surfaces of the disc
was assumed to be a relatively simple function of the rotor radius only (axisymmetric
loading).

The Mangler and Squire approach of finding time-average induced velocities was
extended by Baskin, et al* to include the case of a rigid wake associated with a finite
number of blades. In addition to the two types of disc loading examined in Ref 1, they
studied a third one; also with an axial symmetry. Finally, they investigated disc loading
as a function of both rotor radius and azimuth angles.

Investigations dealing with the application of potential methods (both velocity
and acceleration) to more sophisticated rotor models were initiated in the 1960s. Such
aspects as unsteady aerodynamic effects and their influence on airfoil section character-
istics, effects of comressibility, and finite values of the speed of sound were taken into
consideration. In addition to the determination of both time-average and instantaneous
induced velocities, the task of evaluating both span and chordwise loading of the blades
was undertaken.

To deal with these problems, the basic methodology of potential flow was avail-
able from fixed-wing technology. However, inherent complexities resulting from rotor
blade motions, as well as mutual interference between the blades makes the task of
applying potential methods to rotary-wing aircraft more difficult.

When considering the adaptation of velocity and, especially acceleration potentials
to unsteady rotor aerodynamics the contributions of Dat3.4.5 and Costes® 7 should be
mentioned. van Holten®-® along with other investigators in this field, tend to emphasize
the acceleration potential approach, while jones and his coworkers and followers?9.11.12
built their approach around the velocity potential. Similar to the vortex theory, there is a
steadily growing body of literature dealing with the application of the potential concepts
to rotary-wing aircraft as exemplified by Refs 13 and 14.

Before discussing the various philosophies and methods of application presented in
Refs 1-14, in more detail, some basic aspects of the potential vector field will be briefly
reviewed. This will be followed by a brief resume of fundamental relationships; first of
velocity and then, acceleration potentials. The presentation of actual samples, however,
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will be given in reverse order; starting with the acceleration potential concepts, and then
the application of the velocity potential. Finally, application of the potential methods to
the mapping of flow around nonrotating helicopter components will be briefly outlined.

2. VELOCITY POTENTIAL IN AN INCOMPRESSIBLE FLUID
2.1 Basic Relationships

The theory of vector fields (see any textbook on Vector Analysis; e.g., Vector and
Tensor Analysis'®, or Fundamentals of Aerodynamics'®, p. 65) states that under some
conditions, which will be specified later, a scalar function of the spatial (Cartesian)
coordinates ¢(x,y,z) may exist, and knowledge of the (P} value at an arbitrary point
P(x,y,2) would enable one to determine the magnitude and direction of a field vector
at this point by computing its components along the x,,2 axes as: 9yp/dx; d¢/dy; and
dy/oz.

Should such function ¢, which will be called the velocity potential, exist in a field
of flow, the components of velocity vector V(P) associated with ¢ can be obtained as

u = 9ypfox .
v = d¢/dy (5.1)
w = 3¢[oz.

Velocity v(P) can also be defined as a vector sum of its components as given by Eq
(5.1):

v = T(0¢/dx) + J(dpldy) + E(3p/dz). (5.1a)

where 7:7: and & are unit vectors along the x,y, and z axes, respectively. The relation-
ship between V(P) and y(P) does not depend on the type of the coordinate system. It
should be valid in the Cartesian as well as cylindrical, or any other set of coordinates.
This fact can be expressed in the universal language of vector analysis as

VIP) = grad [(P)]. (5.1b)

However, in the Cartesian system, Eq (5.1b) is often written using a vector operator
called “‘de/” which is symbolized by ¥:

v = 7(3/ax) + J(3jay) + & (3/d2). (5.1¢)

It can easily be shown that a continuity of flow in an incompressible fluid requires
that

(0u/ax) + (3v/ay) + (dw/oz) = 0. (5.2)

The expression on the left side of Eq (5.2) is called the divergence, “div"”, while the
whole equation states that wne divergence must be zero in order to preserve the continuity
of flow in an incompressible fluid. The physical truth of this statement should be inde-
pendent of the type of coordinate system. This fact is again expressed in the language of
vector analysis as
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divy = 0. (5.2a)

Since v = grad ¢, the condition of continuity given by Eq (5.2a) can be written
as follows:

div grady = 0, (5.2b)

which in light of Eq (5.1) leads to

(@*efax?) + (@2¢/ay?) + (9%yfaz?) = 0. . (5.3)

The above relationship indicates that if some function ¢ can fulfill the condition
expressed by Eq (5.3), the vectors obtained as space gradients of v would form a con-
tinuous field, called the potential field, while the equation itself is known as the Laplace
equation, and the left side is often abbreviated through the “del®"" symbol:

v? = (3%/ax%) + (3%/ay?) + (3%/az%).

In the particular case of flow fields determined by velocity vectors, the existence
of a potential; i.e., a function fulfilling Eq (5.3), is synonymous with the lack of fluid
rotation in such a flow.

Vector rotation (in this case, velocity V) is symbolized in vector analysis as rot v.
The lack of rotation requires that rof v = 0. In Cartesian coordinates, this can be ex-
pressed as

7ot v =7[(av/ax) — (3ufay)] +7[(du/dz) — (dw/ax)] + —l;[(aw/ay) —(avfaz)] = 0,

(5.4)
which, in turn, leads to the following conditions:
(ov/ax) — (dufoy) = 0
(9ufaz) ~ (dwfox) = 0 (5.4a)

(ow/ay) — (av/az) = 0.

Expressing u, v, and w in Eq (5.4a) according to Eq (5.1), and then summing the
three expressions, will result in the Laplace equation (Eq (5.3)), thus proving that exist-
ence of the velocity potential is synonymous with the absence of rotation in the flow of a
fluid.

The Laplace equation has some properties that are of importance for the applica-
tion of potential methods (either velocity or acceleration) to rotary-wing aerodynamics.
One of them is the fact that Eq (5.3) has an infinite number of particular solutions. This
in turn provides a large latitude of function ¢ which can be used when selecting expres-
sions for either velocity or acceleration potentials. In this process, however, it should be
remembered that in addition to complying to Eq (5.3), these functions should also satisfy
the particular boundary conditions associated with the considered problem.

Another important property of Eq (5.3) is that it is a linear equation, which means
that any linear combination (addition or subtraction) of its particular solutions as repre-
sented by various potential functions will still satisfy the Laplace equation. In other
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words, any linear combination of potential functions also leads to a potential function,
which opens the way for the use of superposition in dealing with various tasks of flow
and load determination.

2.2 Application to Rotary-Wing Aircraft

Similar to the previously considered cases, it will usually be assumed that the rotor
is étationary, while an infinite volume of fluid moves past it with a uniform distant veloc-
ity (—U,, = —L"_) directed toward the negative half of the x axis of the Cartesian Sys-
tem of coordinates as shown in Fig 5.1,

DISTANT FLOW

Figure 5.1 Axes of coordinates

The presence of the rotor disturbs the flow by inducing perturbation velocities (V)
and changing the pressure from its distant value of p. Perturbation velocities

Vv=Tu +7v +Fw (5.5)

will obviously modify the flow.
ﬁowever, it is usually assumed that absolute values of v are small in comparison
with U,

Ivl <€ (Ul

Consequently, it may be stated that the flow velocities in the perturbed flow wili
be as follows:

Vy = v {5.6)
Ve = w.

Furthermore, the flow must satisfy some boundary conditions. The most important
of which are as follows:
1. The flow is undisturbed far ahead of the rotor; hence, 7_ vanishes.
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2. Far downstream from the rotor, pressure in the fluid must return to its original
value of p..

3. Envelopes consitituting lifting surfaces (as those of any physical nonporous
body submerged in the flow) cannot be penetrated by the flow. This means that

A

Ven, =0 (5.7

where i/’is the resultant velocity of the flow at the surface, and n-—,, is the unit vector nor-
mal to the surface,

4. The Kutta-Joukowsky condition of a smooth flow must be fulfilled at the
trailing edges of the lift-producing airfoil sections.

The velocity potential approach can be used for the detemination of both time-
average and instantaneous velocities induced by either a blade or a rotor. In the case of
time-average problems, the potential will be expressed solely as a function of the space
coordinates (spatial location of the point of interest P), ¢ = ¢(P); however, when dealing
with instantaneous phenomena, the variation of the potential with time should also be
considered: ¢ = ¢(P,t).

Since the existence of a potential is synonymous with the absence of rotational
flow, it is obvious that potential methods cannot (at least directly} be applied to the rotor
vortex system; i.e,, to the rotor disc where bound vortices are present, and to the wake
formed by the shed and trailing vortices. Ways of overcoming difficulties associated with
this subject will be discussed later.

2.3 Expression of Velocity Potential through Doublets

In principle, there are many ways of finding functions of spatial coordinates which
may express the velocity potentials of fixed-wings, rotors, or blades and still satisfy all the
necessary boundary conditions. The one most often used relies on doublets of proper
strength and distribution over such surfaces as the rotor disc, rotor blades, and the blade
and rotor wakes.

In the case of wakes, the application of doublets would permit one to map a flow
induced by such surfaces of vorticity as vortex sheets. In the vortex sheet, the flow is
obviously rotational; i.e., nonpotential. However, a velocity potential usually exists out-
side of the sheet itself, and its value can be related to the strength and distribution of
doublets located on the vortex sheet.

Flow Doublet and Its Potentidl, At this point it may be recalled that the concept
of a doublet in the flow field of a fluid was derived as a limiting case by imagining that a
source of strength Q (flow rate} and a sink of strength —Q approach each other in a way
such that the absolute value of Q increases without restriction as the source-sink distance
€ decreases. At the limit when €+ 0, the sourcesink pair becomes a doublet, while the Ce
product reaches a finite value: m = Qe, The symbol standing for m- the product of
distance and flow rate—is actually the doublet moment. However, it is also called the
doublet strength, and the latter, more descriptive term, is used in this text.

The velocity potential at point Pfx, y,z) due to a doublet focated at an arbitrary
point PolX o, Yo, o), and having strength m (e.g., Ref 16, p. 252) would be

e(P) = — (8/3no)(m/féng) (5.8)
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or
w(P) = (mx/énf) = (mcos 6/4n8?) (5.8a)

where £ = [(x — xo)? + (v —yo)? + (z — 2,)%1'2; and 8/3n, signifies differentiation
with respect to the doublet axis (assumed in Fig 5_.2 to coincide with the x axis); while 6
represents an angle between the doublet axis (x, or ne) and £.

y

STREAMLINES

DOUBLET AXIS

Figure 5.2 Flow doublet

Representation of a Vortex Surfoce through Flow Doublets. 11 is assumed that the
point of the doublet location (P,) lies on a surface of vorticity (say, a vortex sheet),
and the doublet itself is so oriented that its axis (say, x) coincides with vector 77’,, normal
to the surface. At point P(x, y,z), this doublet would induce a velocity whose value (v, )
in a direction perpendicular to £ can be expressed as a proper derivative of the doublet
potential given by Eq (5.8a): ‘

vi = (m/4n)(sin 6/£3). (5.9)

On the other hand, velocity v can be expressed in terms of circulation l"(S.,c) of
a vortex sheet (S,) at the doublet location:

I'(S,) sin 6
v = /_;_u_z’— ds (5.10)
Sy

where the subscript S, at the integral sign signifies integration over the surface of vor-
ticity.

Equating the right sides of Egs (5.9) and (5.10), one finds that a relationship can be
found between the strength of the doublet inducing the same velocity, and circulation
value at the corresponding area of the vortex sheet:

m = fr(s.,)ds. (5.11)
Sy
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The following expression linking velocity potential at some point £ to the circula-
tion of a vortex surface is obtained by substituting Eq (5.11) into Eq (5.8):

eP) = — f (T(S,)/47) (8/an,)(1/L)dS. (5.12)
Sy

Velocity potential at point 2 may result from the influences of many areas of
vorticity (S,,, Svp ~Sv, ). However, due to the previously discussed linearity of the
Laplace equation, this resultant potential can be simply obtained as a sum of the indi-
vidual contributions of [s,,, [sy5, etc. Consequenty if the shape of the whole vortex
system is known and the velocity circulation values within it are related in some way
to the design and operational parameters, then the following approach to the determina-
tion of the induced velocity (perturbation) fietd of the rotor would appear attractive.
The whole vortex system could be divided into proper areas of vorticity which can be
either defined by simple analytical expressions, or approximated by flat geometric
figures. Knowledge of the orientation of vectors 71 (f1 , 71a,...7ln ) and values (24, £2, - £4)
determining the absolute distance from those ‘‘patches’ of vorticity to point P would,
using Eq (5.12), permit one to calculate the individua contributions to the total velocity
potential at P. As the next step, the induced velocity V(P) can be found as grad ¢(P).

This approach, which in principle appears simple, unfortunately encounters con-
siderable difficulties in calculatingVat the vortex surface itself {be it vorticity repre-
sented by vortices attached to the blade, or moving freely in the wake). Looking at Eq
(5.12), one would realize that with £ + 0, the expressions for the velocity potential and its
gradient become meaningless.

The above result should be anticipated from the geneLa_I_’discussion of the velocity
potential which states that the potential exists only where rot v =0, Of course, this does
not apply to the blade or rotor vortex system.

There are ways of relating velocity potential to physical quantities other than
circulation. But the above-discussed difficulties in determining induced velocities at the
vortex surface would still exist. For this reason, induced velocity determination based on
the acceleration approach may appear advantageou s’

3. ACCELERATION POTENTIAL IN AN INCOMPRESSIBLE FLUID
3.1 General Relationships

When discussing the velocity potential approach, only two properties of the fluid
were explicitly mentioned: (1) incompressibility, which means that the speed of sound
{i.e., velocity of transmitting signals) is infinite; and (2) pressure, where it was stated that
in establishing boundary conditions, the pressure far downstream should return to the
same value as in the distant incoming flow. Knowledge of the fluid density p was not
required. In the acceleration potential methods, this additional characteristic of the fluid
becomes important.

Acceleration of fluid—expressed by the complete derivative of velocity Vv with
respect to time (dV/dt)—can be related to the fluid pressure (p) and its density (o)
through the Euler equation which, in vector analysis notations, is expressed as
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dvidt = —(1/p) grad p (5.13)

and in Cartesian coordinates, this becomes

£+u£+vﬂ w‘a—u———,‘ae
ot ox oy 0z p Ox
ov av ov ov 1 op
—_— —+ v— —_— = - == 5.13a
2t YT Yoy T Yz p 3y (5:134)
e w1
at dx oy oz p 0z

By retaining the previously accepted assumption of [v| <€ [U_| which led to Eq
(5.6), Eq (5.13a) can be simplified to the following form:

o w1
at x - p Ox
o v 1 dp
ot ax = pay (5.14)
ow  Ow 1 ap

ar 5;U"_ p 0z

By summing up the above equations and remembering the continuity relationship
expressed by Eq (5.2), it can be shown that

2, 2 2
Bp, Vo, ¥p
ax? Y  ar?

This indicates that pressure p, which should be interpreted as the difference be-
tween p_ and local pressure, &p = p — p_, satisfies the Laplace equation and thus; repre-
sents a potential function.

Looking at the physical aspects of Eqs (5.13) and (5.13a), however, one would
clearly see that as far as fluid acceleration is concerned, it is not the pressure differen-
tial alone, but the (p — p_)/p which influences the dv/dt values. Consequently, it appears
logical to call this quantity the acceleration potential (V) and define it as follows:

Y = —(p-p_Jlp. (5.16)

By solving Eq (5.16) for p and substituting those values into Eq (5.15) it is easy to
show that ¥ as defined by Eq (5.16) is also a potential function since it satisfies the
Laplace equation

= 0. (5.15)

?*v v v
— t—= + = =0. .
ax*  ayr 8z (5.17)
Similar to the velocity potential, the acceleration potential is obviously a function
of the space coordinates, but it also may be a function of time; hence, in general, ¥(P,t),
where P symbolizes the location of the point of interest, P(x, ¥,z) and t is time,
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3.2 Application to Lifting Surfaces

With respect to the practical application of the acceleration principle to rotary-