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M 	 ABSTRACT

The principal focus of the Aircraft Production and Earnings Potential

model is a behavioral explanation of the process of technological change in

the U.S. aircraft manufacturing and airline industries. 	 The general purpose

of this model is to indicate: first, the principal factors which influence the

aircraft (airframe) manufacturers in researching, developing, constructing and

promoting new aircraft technology; and second, the financial requirements

which determine the delivery of new aircraft to the domestic trunk airlines.

Once the model was fully specified and calibrated, the types and numbers

of new aircraft were estimated historically for each airline's fleet.

Examples of possible applications of the model to forecasting an individual

airline's future fleet also are provided. 	 From a purely methodological point

of view, it should be noted that the functional form of the model is a

composite which has been derived from several preceding econometric models

developed on the foundations of the economics of innovation, acquisition,

and technological change -- thus representing an important contribution to the

improved understanding of the economic and financial requirements for aircraft

selection and production. 	 The model's primary application will be to

forecast the future types and numbers of new aircraft required for eacr

domestic airline's fleet.
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1. BEHAVIORAL FOUNDATI

Traditional neoclassical microeconomic theory has been subjected over the

years to a steady and occasionally heavy stream of criticism . l	Among the

more serious challenges to the neoclassical model are those that relate to its

treatment of the processes of change. 	 The prototypical neoclassical theory is

one of full equilibrium under conditions of perfect and costless information

-- to many observers, a narrow and generally inapplicable setting.	 As the

theory has progressed in recent years, the meaning assigned to equilibrium has

become less restrictive.	 The elements of a more advanced theory were set

forth originally by Joseph Schumpeter , 2 who argued that, at the level of the

individual firm, the crucial element is full recognition of the trial-and-

error character of the innovation process. 	 Despite the apparent importance

of this consideration and of its prominent stature in the history of the

discipline, very little empirical research has 'been done to incorporate

l Microeconomic theory refers to economic analyses of relatively smaller units
in^the economy ( like profit maximization in a firm or concentration in an
industry), in contrast the macroeconomic theory which pertains to economic
analysis of larger aggregates (like gross national product or unemployment of
whole countries).	 " Neoclassical" microeconomic theory refers to the stream 	

y

of economic thought on production, distribution, efficiency and exchange that
has characterized twentieth- century proponents of market-place solutions
rather than large-scale government involvement in economic issues. 	 Its
etymology can be traced back to Alfred Marshall's Principles of Economics which
was originally published in 1890. " Neoclassical" microeconomics' predecessor
was "classical" economics -- the stream of economic thought that can be traced
back to the writings of Adam Smith, Thomas Malthus, David Ricardo and the
Mills.	 Contemporary microeconomic theory then is a composite of neoclassical
economics and variations on maximization themes within the theory of the firm.

2Joseph Schumpeter, Business Cycles ( New York: McGraw-Hill, 1939).

x
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the trial-and-error concept into formal microeconomic models.3
t.

The approach in this study is to illustrate a formal "evolutionary" model

of;technological change that can be applied to the aircraft manufacturers'

industry in explaining the behavior cf those firms in adopting particular types

of'aircraft technology for the domestic trunk carriers.	 At any given time,

the behavior of an individual firm (like an aircraft manufacturer) is

postulated to be governed by its current decision rules, which link its

actions to various environmental stimuli. 	 While these rules may be both

quite complex and quite sensible, they are not typically the result of a

deliberate optimization (such as profit maximization) over some precisely

defined set of alternatives. 	 The objective functions of the individual firm

may yield considerable variation of behavior in a changing environment 4 and

may be approached from the viewpoint of the foundations established in the

work on the "behavioral theory of the firm". 5	As an example, applying the

,Recent exceptions are Richard R. Nelson and Sidney G. Winter, "Neoclassical
vs. Evolutionary Theories of Economic Growth: Critique and Prospectus",
Economic; Journal, 84 (December 1974), pp. 886-905; and R.R. Nelson, S.G.
Winter and H.L. Schuette, "Technical Change in an Evolutionary Model",
Quarterly Journal of Economics, 90 (February 1976), pp. 90-118.

4,
James T. Kneafsey, The Economics of the Transportation Firm (Lexington MA:
D.C. Heath and Co., 1974 , Chapter 6. The objective functions for airline
firms are probably multiple-attribute functions which may be subject to
various forms of regulatory constraints.	 The fundamental difference between
an analysis of airline firms and the traditional neoclassical model depends
not so much on a constant and known objective function, like profit maximi-
zation, but on the fact that the domestic trunk carriers are regulated by an
independent regulatory commission.

5 Richard M. Cyert and James G. March, A Behavioral Theory of the Firm
(Englewood Cliffs N.J.: Prentice-Hall, Inc., 1963. Mach of the foundation of
the behavioral theory of the firm and its doctrine of nonmaximization (known
as "satisficing") can be attributed to the authors and to their colleagues at
the (then) Carnegie Institute of Technology, especially Herbert A. Simon.

l

I^

IL
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concept of "satisficing" from the behavioral theory of the firm to the

fiircraft manufacturers would suggest a set of interrelated objective

functions that predict a range of optimal points of production, whereas the

strictly neoclassical postulate of profit maximization would yield only a

single optimal output.

Over a longer period of time, two types of dynamic mechanisms are assumed

to be operative in the aircraft manufacturing industry.	 First, at the firm_

level, R & D policy changes may occur through processes of deliberate problem

solving, perhaps involving some imitation of the observed decisions and

successes of other firms. 	 Or, second, technological change may "just happen"

as particular capabilities in the firm improve through "learning-by-doing",

deteriorate through disuse, or are adapted to shifting input (labor or

capital) characteristics. 	 This model will then treat the economic growth

of the aircraft manufacturing firm as an adaptive, and not as a maximizing,

process.	 In contrast, the neoclassical theory assumes universal access tc

the. same technology, that firms choose optimally, and look to factor supply

shifts for the explanation of productivity differences. 6

The desirable feature in the manufacturers' model is its anticipated

ability to explain, at least econometrically, the behavior of the aircraft

!As Nelson, Winter and Schuette have stated, "It is not a matter of different
positions on the same isoquants; it is a matter of evolutionary change in the
mix of firms of very different types.", 92. cit., p. 93.	 Isoquants refer
to contours on a production map where identical amounts of output (or
quantities) and/or service can be produced by varying combinations of inputs
(like labor and capital). 	 On a two-dimensional production surface,
differences among isoquants (which themselves are usually convex to the
origin) reflect different levels of output that alternatively could have been
produced by different combinations of inputs.
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manufacturers in adopting, developing, and promoting both the products and

the timing of new aviation technology. 	 What factors can be postulated to

determine the rate of technological change in this industry? 	 On a priori

grounds, one would expect it to depend to a large extent on the amount of

resources devoted by the airlines, the manufacturing firms, independent

inventors, the military, and the federal government to the improvement of

the industry's technology. 	 The amount of resources devoted by the government

depends on how closely this industry is related to national defense, on the

extent of the external economies to the airline industry generated by the

relevant research and development, and on more purely political factors.	 The

amount of resources devoted by independent inventors and by industry depends

heavily on the profitability of their use and on internal industry political

transactions.	 Comprehensive econometric studies ? indicate that the total

dollars a firm spends on research, technology and development (R & D, or R,

T & D) is influenced by the expected profitability of the R & D projects

under consideration, and that the probability of its accepting a particular

R & D project depends on the project's expected returns. 	 Case studies of

particular inventions and studies of patent statistics seem to corroborate

this view.

In the aircraft industry, research into purely technological items (like

the components of an aircraft, such as the supercritical wing) needs to be

separated from the "products" of technology (or the outcomes of R & D that are

produced and applied to existing aircraft). 	 In the former case, many of the

7 See _Edwin Mansfield, Industrial Research and. Technological Innovation: An
Econometric Analysis (New York: W.W. Norton and Co., Inc., 1968); and Nathan
Rosenberg, On Technological < Expectations," Economic Journal, 86 (September
1976), pp. 523-555.

,
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technology items are "placed on the shelf' and never find their way into

application, for one reason or another. 	 However, some of these items either

sre transferred into aircraft production or represent "spinoffs" for other

products of aircraft technology. 	 In the latter case, visible output is

produced by the manufacturers and represents the key dependent variable that

the research team modeled and estimated. 	 For our modeling purpose, only

those purely technological items which are converted (or can be immediately

converted) into new or modified aircraft types were considered, especially on

a year-to-year basis 	 the unit of temporal variation in our postulated

behavioral' model. 	 Thus, the specification of the model should capture the

underlying determinants behind the joint decision of the manu-Facturers to

produce aircraft and of the airlines to purchase them during varying conditions

of aircraft retirements, fleet expansion, and capital markets.8

8Carroll, Sidney L., "The Market for Commercial Airlines", Chapter 8 in
Richard Caves and Mark Roberts' Industrial Organization (1976); Lloyd-Jones,
D.J., "The Next Commercial Aircraft: What, When and Why as American Airlines
Views It", Air Trans oortation Research Industrial Forum, San Francisco
(May 9, 19777T,—Phillips, Almarin, Technolo and Market Structure: A Stud of
the Aircraft Industry (Lexington, MA: D.C. Heath and Co., 1971); Ranfte,
Robert M., "R & D Porudictivity - A Key Issue", Journal of Astronautics &
Aeronautics, June 1976, pp. 50-56. 	 Rosenberg, Nathan and Alexander Thompson,
"Technological Change and Productivity Growth in the Air Transport Industry",
Working Paper, Dept. of Economics, Stanford University (1977).



2. MODEL SPECIFICATION

One of the major issues faced by the aircraft manufacturers is how to 	
a

determine the proclivity of individual airlines to purchase new equipment.
	 i9

The manufacturers must understand and estimate how rapidly the airlines are

able to displace older aircraft and replace them with newer ones. 	 This

replacement process depends on two factors: the rate of imitation -- the rate

at which the airlines begin to use newer aircraft, and the intrafirm rate of
diffusion -- the rate at which a particular airline, once it has begun to use

a newer aircraft, proceeds to substitute it for older ones. 	 Note 'that the

intrafirm rate of diffusion does not measure the speed with which the airlines

begin to use newer equipment, but only its activity after the type of

equipment has originally been procured.	 Together the rates of imitation and

intrafirm diffusion determine how rapidly economic productivity increases in

response to the existence of the newer aircraft and thus provide an incentive

(at least potential) for airlines to replace portions of their existing fleets

with newer aircraft.

The general model can be specified in three interrelated stages: first,

aI T equation which relates a technology variable (for example, the number-of

new aircraft of a particular type delivered during time period t) to a set of

possible explanatory variables that reflect purely economic characteristics

of the airline firms, manufacturers' performance, and external factors; second,

an equation that can explain variations in the stocks or inventories of

existing aircraft types in the fleets of airline firms (or alternatively, an 	
Y

inverse demand function for new aircraft); and third, an equation which

explains variations in the profitability or cash flow positions of the

i

i
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airlines -- who are the users of the new aircraft. 	 The estimates of the

second and third equations are postulated to become an additional argument

(explanatory variable) in the first equation.	 Together, these two equations

produce an estimate of the number of new aircraft of type j produced and

delivered to airline i through time period t--Tij(t) 9 •	 The specific

functional forms of the model are the following:

For any airline i (the subscript i will be omitted from the

specification of the independent variables):

Tj (t)	 = f [Tr a(t,t-1,...),7TM(t,t-1 .... ), RM(t,t- 19 ,..) G+(t+3), K(t,t-l, ... ),

I(t,t-1,...), PP-1) and	 (1)

J

where Mij (the coefficient of time) can be separately estimated as:

Mij = co + C i li + c2Li + c3
S i + c4Ci + cSOi + c6 Fi + e i	 (2a)

and

Tr i ( t) 	 g [-YLD(t), AVCOST(t), C(t), LFA(t), RPMS(t), RPMNS(t)	 (3)

9 In , addition, another equation that depicts the number of time periods that
an airline must wait (or expect to wait) for aircraft delivery is given below
as Equation (2a).	 This equation serves as a "control" equation to ensure
that the estimates of the proportion variable in Equation (2) are
meaningful
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In the above specifications, the interpretation of each variable is:

T^	 product of technology (number of new aircraft of type j produced
and delivered during time t)

a	
= profitability of the airline firms using aircraft type j

TrM	 profitability of the manufacturer producing aircraft type j -- also
labeled PLAG

R 
	 = revenues of the manufacturer producing aircraft type j

G+	= expected growth of the industry (estimated three periods earlier)

K	 = monetary stock (aggregate money supply) -- M2 definition: currency,
demand deposits and time deposits in commercial banks

I	 = interest rate -- long term corporate bond rate, as denoted by the
Federal Reserve Board

t	 = time period (also represents an explanatory variable in the Pij(t)
equation)

P
iJ	

= proportion of the aircraft of type j in airline is fleet (where
i = 1, ..., m) -- also labeled PRO

P^	 = weighted average of all the airlines' proportion variables (Pij)

= estimated value (from another equation)

n i
	

= the profitability of the i th airline

L i	= the time interval between when the first airline began using
aircraft type j and the period when the i th airline began to use
it: a competition variable

S i	= a size variable: number of employees of the i th airline

C i	= a liquidity measure: debt-equity ratio of the i th airline at the
time when the airline began to use aircraft type j

O i	= a vintage variable the percentage of the i th airline's fleet that
was five years or older when it began to use aircraft type j

YLD	 = yield

AVCOST = average cost

LFA	 = load factor

I
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ADV	 = advertising expenditures 	 1

RPMS	 = revenue passenger miles

RPMNS	 non-scheduled revenue passenger miles

ei	disturbance term

9

In our system of three equations, the dependence variable P and ei

j

are estimated successively and their values inserted as arguments in the

technology equation T.	 Variable M is merely part of a control equation

used to authenticate and validate the consistency of equation (2).

^	 9a
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3.	 RATIONALE FOR THE AIRCRAFT TECHNOLOGY EQUATION (Tj)

The process by which new aircraft are ordered by airlines and produced

and, delivered by the aircraft manufacturers has been fascinating to observe

and analyze.	 The methods (some observers might say game-theoretic devices)

used by the participants in the process are intricate and frequently subtle.

A single error in ordering equipment can cost a manufacturer or an airline firm

millions of dollars.	 Thus, the success or failure of a new aircraft order

depends on a careful calculation and assessment by all participants of each

airline's requirements, profitability, and anticipated traffic as well as a

variety of external macroeconomic factors.	 The first portion of the

manufacturer's model reflects these latter factors as they influence the

distribution of aircraft deliveries by the manufacturers to the airlines (the

T equation).	 The ripdel's second portion is designed to explain the timing

and diffusion of aircraft types within each airline's fleet (the P ij equation).

The theory behind the aircraft technology (T) equation in the context

of the expected signs of the regression coefficient, a priori, is the

following:

7Ta	 expected sign: positive, with lags. 	 As the profits of the airline
firms that are potential users of type j aircraft increase, the greater
is the likelihood of increased orders for that aircraft.

TrM _ expected sign: positive, with no lag. 	 Since the dependent variable
represents delivered aircraft, and since airline payments for new
aircraft represent on the average 67% of the delivered cost in the
period that the delivery occurs (52 down payment on order date,
escalating to 33% by delivery date, 67% remainder on delivery), it is
expected that an increase in T will be accompanied by increases in
the manufacturer's profit position, ceteris paribus.

RM	expected sign: positive, with lags.	 In order that revenues of the
manufacturers could have increased in the past, aircraft sales would
have to be providing a foundation and therefore a proclivity toward

n

n :

s=-



increased market share for the range of aircraft in which type i
aircraft competes.	 Thus, increased revenues implies a marketing
advantage for the manufacturer of type j aircraft, thereby suggesting
ever larger sales.

G+ = expected sign: positive, with forward lags.	 On the order date of
aircraft type j, a value of the expected rate of growth in the
industry is generated three years hence to coincide with the average
delivery date: the higher the expected growth rate, the greater the
deliveries.

K = expected sign: positive. The higher is the money supply in real
terms, other things being equal, the greater is the potential for
airline firms to borrow funds in the money and capital markets in
order to finance new equipment.

I	 = expected sign: negative.	 The higher the interest rate, the more
cumbersome is the financing package (and the greater the incentive for
alternative uses of funds), and therefore the fewer deliveries will
take place.	 While variations on interest rates are expected to be
inversely correlated in general with changes in the money stock, the
relative "stickiness" of interest rates should preclude a serious
multicollinearity problem with the K variable.

Initial regression runs were conducted on the T model, even though some

data on the T variable were not yet available.	 Early results suggested that

the profitability and growth variables possess good explanatory power for

B,-707, DC-8, B-727, DC-9 and B-737 aircraft deliveries.	 These aircraft

types were the only ones on which experiments were conducted, because the

time series data for the wide-bodied aircraft are not sufficiently long.

Additional data collection efforts would be necessary so that subsequept

and alternative regression estimates can be made in the future.	 As indicated

above, the complete T equation cannot be estimated until the P ij (t) equation

has been fully calibrated. 	 Once the complete model has been estimatd and

the results withstand the test of econometric scrutiny, the T estimate then

becomes an important ingredient in explaining supply variations insofar as

they ultimately affect the demand for air transportation.

ILIr
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4. RATIONALE FOR AND STRUCTURE OF Pij(t)

Essentially, the aircraft replacement model is an attempt to describe

the behavioral process by which airlines decide to • purchase new aircraft

(and the timing of aircraft deliveries form its manufacturer). The submodel

represents a "stock" or inventory item that is insered into the T equation

as an argument. The basic thrust of the submodel is an estimate of the re-

lationship between the proportion of aircraft of type j in the i th airline's

fleet at any point in time. The remainder of "unfilled slots" for potential

deliveries of aircraft type j to airline i in the future represents the po-

tential demand for that aircraft type from airline i.10

Equation (2) above is simply a logit function relaiton P ij (t) to time.

For example, taking natural logarithms of both sides of equation (2) yields

P •

	

1 n	 i(t).] 'i)__	oci + Mi t
	

(4)

Empirically, it is an easy matter to regress the left hand side of equation

(4) against t to generate an estimate Mij . This estimate is then used as the

dependent variable in equation (3) and is further regressed against the

independent variables on the right hand side. This procedure is done to

insure that the Mij term does indeed conform to the specification of gquation

(2). If the estimates of the coefficients do turn out to have the expected

signs, and if the usual statistical properties adhere, then the submodel can

10 
The justification for the submodel is straightforward, even though its

complete derivation may be cumbersome. An alternate derivation is exhibited

	

in Appendix C.	 The rationale for the airline earnings potential submodel
is presented below in Section 6.2.3 and a lengthy discussion of its indepen-
dent development and usage appears in Appendix B.
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explain a substantial portion of the interfirm variation in each airline's

rate of diffusion in ordering new aircraft and hence in offering another

determinant to the manufacturer's timing of producing and delivering new

aircraft.
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5.	 DATA SOURCES

^i

The number and types of aircraft deliveries are reported by the Civil

Aeronautics Board ( CAB) on both quarterly and annual series. 	 Aircraft

order data are more difficult to generate since the information is reported

only by the announcements of the manufacturers and/or the airlines --

generally the information is reported in the Wall Street Journal or other

trade publications.	 Since our preference was for consistency, the CAB

delivery data were used in the analysis, assuming known distributions about

the average lead times between order dates and delivery dates for each

ai rcraft type.

The proportion data are merely derivatives of the fleet numbers as 	 3

reported by the CAB.	 The profitability data are also reported quarterly by

the airlines to the CAB -- our numbers were annual summations of the quarterly

figures.

All other data were generated from published sources on an annual

basis: manufacturer revenues and profitability from Standard and Poor, Inc.;

industry growth rates from a combination of CAB and FAA sources; and

macroeconomic data from the Council of Economic Adviser's report entitled

"Economic Indicators".

t
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6.	 MODEL CALIBRATION	
L-

6.1	 Response Variable Quantification

The response variable (T) is defined as the number of new aircraft of

type j produced and delivered in time t. For the purposes of calibration,

new aircraft deliveries were summed for each airline to give an accumulated

total of aircraft of type j in the fleet. 	 This conveniently avoided the

occurrence of zero deliveries.

Aircraft were grouped into three basic types by range, number of engines

and the kind of routes which they could serve:

a) Boeing 727-100 and Boeing 727-200 series;
a

b) Boeing 707 and Douglas DC-8 aircraft; and

c) Douglas DC-9 and Boeing 737-100/200 series aircraft.

The Boeing 720 was omitted from all groups in the basis of its unique

characteristics with regard to performance, number of engines and range -- and

its general deletion from existing fleets.

Historical data on fleet size of aircraft type j at year- , end was

collected for each U.S. domestic trunk airline from the data of first

delivery to the end of 1975 inclusive.
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6.2	 Explanatory Variable Quantification

	

6.2.1	 Proportion Variable

The computation of the proportion variable is discussed more fully in

Appendix A.	 The value predicted for each year from the equation:

-a.. + Mt	 -1..
Pij =	 1 + e ii	

i^	
, the antilog of Eq. (4) above,

was introduced as an explanatory variable in the manufacturer's model.

Generally a two-year lag was applied to the proportion, P ij , such that an

aircraft delivery in year (t) was in some way associated with the predicted

proportion of the aircraft in the airline's flP-at in year (t-2) - PR02. (In

one particular case a four-year lag was more appropriate (PR04)).	 The two-

year average lag time between order dates and delivery dates was further

supported by the empirical evidence from B-727 deliveries which suggests an

average lag from 1963-1976 of 2.3 years for all the domestic trunk carriers.

6.2.2	 Profitability of Manufacturer

The profitability of the manufacturer producing aircraft type j was
considered as a model variable.	 Pre-tax operating profit was taken from the

,k
i

18`c-eing Co. and McDonnell Douglas Corporation annual income statements. Various

lags were tried, although usually a two-year lag (PIM2) provided the best

statistical results.
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6.2.3	 Profitability of the Airlines

A model for predicting and forecasting the profitability of airline i to

be used as an explanatory variable in predicting deliveries of aircraft type

J is discussed more fully in Appendix B.	 Profitability was defined in that

model as annual operating profit ($) before deduction of depreciation

allowances.	 In strictly accounting terms, this figure could be considered

more as a measure of cash flow than profitability -- but it is regarded in

the empirical sense as the major variable on which airlines base their

aircraft ordering decisions.

The profitability of an airline (not only two years, but two, three and

four years prior to delivery) was hypothesized to be appropriate in explaining

acquisitions of new aircraft.	 The problem then arose of how to distribute

the lagged values of profitability to make the variable most powerful in the

manufacturer's model.

Distributed lags had been previously used by Elliott in his forecast and

analysis of corporate financial performance using econometric models. 11 In

one of his equations, he used a three-year Almon-weighted average of money

supply and high employment government expenditures, with a second degree

polynomial constraint.	 Almon-weights, however, can only be computed for

equations where all explanatory variables are to be lagged.12 	 Elliott

1 ,J. Walter Elliott, "Forecasting and Analysis of Corporate Financial
Performance with an Econometric Model of the Firm", Journal of Financial and
quantitative Analysis, March 1972, pp. 1499-1526.

12Z. Gri l i ches , "Distributed Lags: A Survey", Econometri ca, Vol. 35, No. 1
(January 1967) pp. 16-49,

3

I

s
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side-stepped this problem by computing his weights on macro-economic data

before inserting them into his equations. 	 Unfortunately, no studies have

been done on the lagged relationship between profitability and acquisition

of major assets in other industries which might be applicable to our aircraft

production potential model. 	 As a "next best" approach two types of fixed

weighting were tested:

Equal weights:	
3 ^t-2 + 1T	 + ^t-4

Declining weights:	 0.5 ^t-2 + 0.3 'T t-3 + 0.2 Irt-4

However, the results of testing the model with these weightingschemes showed

that the method of weighting was not very critical to the significance of the

profitability variable in the equation. 	 Thus, we were able to use

exogenously selected lags in each airline equation with increased confidence.

6.2.4	 Airline Traffic Growth

The acquisition of new aircraft must to some extent be based on previous

traffic forecasts conducted by the airlines. 	 Individual airline forecasts

could differ from the overall industry forecasts due to a greater optimism

by airline forecasters and the individual airline route plans, though
i

expansion in the latter is affected by CAB policies. 	 The traffic growth

variable should ideally, therefore, be the estimate of traffic growth actually

made by the airline two or three years prior to delivery of the new aircraft.

It has been assumed in this study that airlines had projected their
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traffic growth by a simple extrapolation of their previous five years'

growth.	 While this approach may seem rather aggregate in the light of

present day techniques, for the period under consideration it is a good

approximation.	 It also places a relatively high weight on more recent

events -- a factor which might be considered appropriate to management

decisions at the time of ordering aircraft.

If any new aircraft were delivered in period (t), projections of traffic

growth have been estimated at period (t-3) on the basis of the previous five-

year trend.	 This average annual growth rate has then been applied to the

(t-3) actual number of revenue passenger miles to arrive at the forecast

number of RPMs for year (t). 	 This variable was given the abbreviation GROW

ow G+ .	 The same forecast number of RPMs was also applied to deliveries in

period (t+l)-to produce another variable GROW 1 which was used as an

alternative explanatory variable.

6.2.5	 Corporate Bond Rates

The average annual level of yields on corporate bonds (Moody's Aaa

rating) was used as a proxy for the general economic climate at the time the

decision to acquire the aircraft was made (Q12). 	 As for the other explana-

tory variables, a two-year lag was considered to be best both from behavioral,

and expectational points of view.
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6.2.6	 Others

Other proxy variables for macroeconomic activity were tested such as

`	 "Money Supply" and real GNP.	 In addition, other measures of performance of

the aircraft manufacturers were considered such as total revenues and current

	

assets.	 Since our early results, however, confirmed the highly interactive

theoretical foundation of some of these variables, these were eliminated as

arguments in the equations durinq subsequent computer runs. 13

6.3 Model Structure and Evaluation Techniques

6.3.1	 Structure

The majority of the evaluation was performed on models which were linear

in both parameters and variables of the type:

	

Yi 	 $O 
+ 

ai x i l + aA 2 , —1 + Vin + 6i*

This formulation appeared to be appropriate to at least all the Boeing 727

data an.d, although coefficients show changes In terms of absolute 'levels and

not percentages, and cannot therefore be compared across airlines, further

1 3An existing model which uses some of these variables (e.g. monetary stock)
is given in Yves G. Aureille, "The Outlook for the U.S. Airiine Industry:
An Econometric Approach", in Proceedings of the Workshop: Air Transportation
Demand and Systems Analysis, M.I.T. Flight Transportation Laboratory Report
R75-8 August 1975), pp. 386-443.

y{

1€F.i3-..^. c=^^,._	 ...^r_^ _ ...... ........ 	 _ .... _.____. 	 .... ...	 ...:^_..r....,.f F..-ra •̂a. ,..w .,..:.:...,..,..._m,.^—... _	 ...	 _.	 ....._.._-..—^.+.=r:. :_...^.,.,.=_W...,...me ..-., .e.®,_.,... 	 ..
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:t

refinement appeared unnecessary.

A log linear mathematical expression of the form:

Y i = SD Xi al.  
X
^2 , ... ,	 On	 En

was tested for one of the Douglas DC-8 operators in order to try to improve

the fit.

6.3.2	 Evaluation Techniques

The models given above were calibrated using the ordinary least-squares

technique.	 In order to find the minimum number of explanatory variables

which maximizes the accuracy in prediction as well as providing the best

behavioral analysis of the relationship, the Mallows "C p " criterion 14 was

chosen.'

Briefly, the C p statistic is calculated for all combinations of

explanatory variables and the response variable. 	 It has a bias component

and a random error component and is an estimate of:

n	 n
r p =	

2	
(vi - ni )2 + E a (Yi)a2
	 i=1

where
j

V i = E(Y i ) according to the true relation

1 4C. Daniel and F. Wood, Fitting Equations to Data, New York, J. Wiley and
Sons 1971, pp. 86-87.

f
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rt i = E(Y i ) according to the fitted equation

Cy (Y) = variance of fitted value Yi

02 = true error variance

Assuming that Q2 is a good estimate of Q2 , it can be shown that:

SE
Cp = S ^Ep - (n - 2p)

a

where

SSEp = sum of squares due to error

Q2 = standard error of regression, all variables included

p	 number of variables included

n = number of observations

The smaller the bias component in the fit, the closer the value of C 

approaches p.	 If C  values are plotted against the number of parameters (p),

the set of parameters r se Cp vai ue i s

a) the lowest and

b) closest to the line C p = p

will be chosen as the set which minimises both bias and random error. 	 The

"best" set of variables chosen under the C  criterion should, however, also

make good theoretical sense.

One of the assumptions of the ordinary least squares technique which

originally was violated in several regressions in this study was that the

explanatory variables should not be correlated among themselves. 	 High

muiticollinearity leads to a significant increase in the sample variance of

i
the coefficient estimators, resulting in inaccurate estimate of those

coei'ficients and uncertain specification of the model with respect to

_	 - --
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inclusion of that set of explanatory variables.

One way to correct for multicollinearity is to use principal components

of the set of explanatory variables and make a linear combination of them

in such a way that they capture as much of the variation in the response

as possible.

The extent to which multicollinearity is present can be gauged by the

condition number of X, or the largest condition index -- defined as the ratio

of the largest singular value to the singular value of the i th principal

component.	 By deleting one or more principal components with high condition

numbers, multicollinearity can be significantly reduced, though at the risk

of reducing some of the fit if the linear combination deleted happened to be

highly correlated with the response variable Y.

An example is shown below for the Eastern Boeing 727 model:

Original Model

Tp = 21.9 + 0.076 PR02 + 0.029 PLAG2 + 0.002 GROW

(2.81)	 (1.90)	 (2.40)

R2 = 0.982

SER = 4.93

Singular Value	 Condition Index_

	

Principal Components: 1	 53396.0	 1

	

2	 367.7	 145

	

3	 178.2	 300

	

4	 1.5	 36705

Multicollinearity could be significantly reduced by deleting the fourth

principal component, whose condition index was proportionately larger than

any of the others .

1

L-.
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New Model

T	 - -6.45 x 10-6 + 0.057 PR02 + 0.048 PLAG2 + 0.002 GROW
P

(2.13)	 (3.22).	 (3.62)

R2 = 0.887

SER = 11.57	
}

Highest Condition Index = 300
	 t

The trade-oft between goodness of fit and accuracy of estimation of

coefficients is illustrated by the drop in R 2 from 0.98 to 0.89 and increase

in the standard error of the regression from 4.93 to 11.57, but an improvement

in all T-statistics.	 One other effect of the procedure is to greatly reduce

the constant term, giving perhaps a more realistic picture of aircraft orders

at zero profitability and traffic.	
i

Where principal component analysis has been performed, the highest

condition index will be given alongside other goodness of fit statistics.

Where only the "C
P
 " criterion has been used, in no case did the simple

correlation between any of the explanatory variables exceed 0.80.	 Although

for forecasting purposes this rule of thumb was considered adequate, it should

be mentioned that for analysis and control, there is still a small danger of

two of the explanatory variables taken together being related to a third

explanatory variable.

6.4	 Boeing 727-100/200 Equations

Models were calibrated for the Beoing 727s for all U.S. domestic trunk

airlines except one: Delta Airlines acquired its B-727 aircraft in 1972 as a

result of their merger with Northeast, such that they did not take delivery



V	 I
-25-

of the aircraft based on the same stimuli as the other trunk lines.

Aggregating these two airlines' fleets was thought to present further

complications in aggregating explanatory variables.	 For the remaining trunk

carriers, the initial B-727 deliveries occurred in 1963 for United, followed

by American, Eastern, National, Northwest, and TWA in 1964.

Both the proportion and profitability variables appear in all the

equations given below with high t-ratios and relatively low Bonnferoni joint

confidence intervals.	 Priority was given to developing a model where the

effect of changes in explanatory variables both individually and jointly on

the response variable could be estimated with a high degree of confidence.

1) American

T = 4.46 + 1.21 PR04 + 0.04 PLAG2

	

(1.23)	 (6.62)

n = 12	 R2 = 0.98	 F = 219.5	 C p = 3.42	 SER = 5.14

2) Braniff:

T = 1.22 x 10 5 + 0.05 PR02 + 0.02 PLAG(2) + 0.03 Q12

	

(6.50)	 (28.60)	 (4.63)

n	 10	 R2 = 0.94	 F = 35.2	 Cond. No. = 6	 SER = 4:77

3) Continental:

T - 2.23 x 10-5 +- 0.02 PR02 + 0.02 PLAG(2) + 0.002 GROW

	

(1.36)	 (3.40)	 (2.69)

n	 9	 R2 a 0.95	 F = 39.4	 Cond. No.	 111	 SER = 2.44
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}	 4) Eastern:

T	 = -6.45 x 10-6 + 0.06 PR02 + 0.05 PLAG2 + 0.002 GROW

(2.13) (3.22)	 (3.62)

n =	 12 R2 	= 0.89	 F	 =	 21.0 Cond. No.	 =	 300	 SER	 11.58

5) National:

T	 = 5.06 + 0.04 PR02 + 0.005 PIM2 + 0.016 PLAG2

(5.27)	 (1.68) (1.43)

n 12 R2 	= 0.90	 F	 =	 33.0 CP	=	 3.48	 SER	 =	 4.08

6) Northwest:

T	 = -17.3 + 0.05 PR02 + 0.004 PIM2 + 0.02 PLAG2 + 0.04 Q13 a

(2.43)	 (1.11) (4.36)	 (1.75)

n =	 12 R2 	= 0.96	 F	 60.8 Cp	=	 4.56	 SER	 4.15

7) TWA:

T	 = 1.52 + 0.20 PR04 + 0.011 PLAG2
i

(10.14)	 (1.5.7)

f	 n 12 R2 0.93	 F	 =	 72.9 C	 =	 2.01	 SER	 =	 6.48

1
I	 8) United:

T	 = -3.3 x 10 4 + 0.068 PR02 + 0.088 PLAG2 + 0.001 	 GROW1 - 0.095 Q12

(4.32) (6.42)	 (1.79)	 (-2.76)

n =	 13 R2	 = 0.89	 F	 16.4 Cond. No.	 =	 244	 SER	 =	 19.52

f



-27-

9) Western:

T	 -14.4 + 0.04 PR04 + 0.014 PLAG2 + 0.003 GROW1

(2.04)	 (1.63)	 (5.17)

n - 7	 R2 = 0.97	 F = 61.0	 Cp = 3.19	 SER = 1.07

A summary of these results is given in Table 1 of coefficients, t-

ratios, computed and critical F-ratios and Bonnferoni joint confidence

intervals. 
15
	 The latter estimates the parameters $O' $1 , $3 jointly such

that together they are significant at the 100 level.

The entries of Table 1 should be read across the rows for each airline.

For example, in the case of American Airlines (AA), the significant variables

are PR04 and PLAG2, or a four-year lagged proportion variable and a two-year

lagged profitability variable. 	 This model suggests that a unit change in

the proportion of B-727 aircraft in American's fleet four years ago produced a

1.21 increase in the number of B-727 aircraft needed in its fleet now, ceteris

paribus. Also, a unit increase in American's profitability (PLAG2) two years

ago will be associated with a 0.044 unit increase in the number of B-727s in

its fleet now, ceteris paribus.	 In each case involving either the PRO or

PLAG variable, the estimates of its values are extracted from Equations (2)

and (3) discussed above in the "Model Specification" section.

Each of the airline's equations can be interpreted in a similar fashion

by reading across the rows accordingly._ Note that some airlines' equations

contain more statistically significant variables than others - but in every

J. Neter and W. Wasserman, Applied Linear Statistical Models, Richard Irwin,
1974, pp. 146-147



TABLE I SUMMARY OF B-727 REGRESSION COEFFICIENTS

-
tra f fi c -

Propor- Pft Pft Projection Interest Criti-cal
tion Mfgr Airline Airline Rates Computed F
PR02/4 PIM2 PLAG2 GROWTH Q12/3 F (x = 5%

AA Coefficient 1.210
4

0.044 -- 219.5 4.3
t-ratio 7.23 6.62
Intervals t0.373 ±0.015

BN Coefficient 0.046
2

0.020 -- 0.0262 .35.2 4.8
t-ratio 6.50 28.6 4.63
Intervals ±0.016 ±0.02 ±O.Ol 3

CO Coefficient 0.016
2

0.016 0.002 39.4 5.4
t-ratio 1.36 3.40 2.69
Intervals ±0.028 ±0.011 ±0.002

EA Coefficient 0.057
2 -- 0.048 0.002 21.0 4.1

t-ratio 2.13 3.22 3.62
Intervals ±0.060 ±0.033 ±0.001

NA Coefficient 0.038
2

0.005 2 0.016 -- -- 33.0 4.1

t-ratio 5.27 1.68 1.43
Intervals ±0.016 ±0.007 ±0.025

NW Coefficient 0.050
2

0.004 2 0.020 0.0403 60.8 4.1

t-ratio 2.43 1.11 4.36 1.75
Intervals t0.046 0.008 0.010 0.051

I



TABLE 1	 Concluded

Traffic
Propor-	 Pft Pft Projection Interest Critical-

-- tion	 Mfgr Airline Airline Rates Computed F
PR02/4	 PIM2 PLAG2 GROWTH Q12/3 t a = 5%

TW	 Coefficient 0.2054	-- 0.011 -- -- 72.9 4.3
t-ratio 10.14 1.57
Intervals ±0.045 ±0.016

UA	 Coefficient 0.0682	-- 0.088 0.001 -0,0952 16.4 3.8
t-ratio 4.32 6,42 1.79 -2.76
Intervals ±0.034 ±0.030 ±0.002 ±0,076

WA	 Coefficient 0.0402	-- 0.014 0.003 -- 61.0 9.3
t-ratio 2.04 1,63 5.17
Intervals ±0.050 ±0.022 ±0.002

Interval- = Bonnferoni joint confidence interval ±(1 - a/4, n-2) S(b), where a = 10%.

2,3,4 = number of years lag prior to aircraft delivery.

N !-_
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n 1̂
	 case estimates of the proportion and profitability variables (with appropriate

lags) appear in the main T equation. 	 The principal reason for variation

among the explanatory variables for different airlines is that each airline's

route structure and organizational requirements are unique. 	 The models

merely portray the major factors affecting airline profitability and aircraft

choice.

6.5	 Boeing 707/Douglas DC-8 Equations

Models were calibrated for six U.S. trunk airlines for the Boeing 707

Gall variants, but excluding the 720) and the Douglas DC-8 (all variants).

Of the other four airlines, Continental retired their last Boeing 707 in 1973

and operated no DC-,8s such that the aircraft group had no forecasting

relevance.	 Western.Airlines only operated B-707s for the past five years,

their fleet size of five aircraft in each year showed no variation and t;^us

the ordinary least squares technique was not considered appropriate. Braniff

operated both aircraft types, posing some problems in aggregation,_ in

particular for the manufacturer's profitability.

The final equations are presented below for American, Delta, and TWA.

The results for Eastern, Northwest, and United will be discussed below.

1) American (707)

T = -44.2	 0.012 PR02 + 0.063 PLAG2 + 0.080 Q12

(-0.95)	 (20.40)	 (8.66)

n	 17	 R2 _ 0.99	 F	 567.4	 C p = 3.75	 SER = 3.31
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2) Delta (DC-8)

T = 0.001 + 0.108 PR02 + 0.010 PLAG2

(2.73)	 (1.35)

n = 17	 R2 = 0.69	 F - 9.7	 Cond. No.	 20
	

SER	 7.91

3)	 TWA (707):

T	 =	 9.00 + 0.107 PR02 + 0.033 PLAG2 + 0.013 PIM2

(3.72)	 (2.43)	 (1.73)

n	 =	 17	 R2	0.90	 F	 =	 47.8	 C p	2.44	 SER	 =	 10.29 1

A summary of these results is given in Table 2 of coefficients, t-

ratios, computed and critical 	 F-ratios and Bonnferoni joint conference

intervals.	 The percentage of variation in T "explained" by the Delta i

models was significantly lower than for either TWA or American, though for

American a negative sign for the coefficient of PR02 was unexpected.

The results for Eastern, although reasonable statistically, did not

include profitability as a significant explanatory variable.	 Aircraft

deliveries could, however, be explained in terms of the proportion variable

with a four-year lag, manufacturer's profitability with a two -year la	 andY	 9	 P	 Y	 Y	 9

corporate bond yields with a three-period lag.	 Clearly aircraft orders for

Eastern must in some way be related to both its profitability and expected a

traffic growth, though in a more complex way than was assumed in the model.

The Eastern fleet of DC-8s has been reduced from a maximum of 40 aircraft in

1969 to only 5 in 1975, and since these five have since been leased to another

airline, the need for forecasts disappears.
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TABLE 2 SUMMARY OF B-707/DC-8 REGRESSION COEFFICIENTS

Critical
Computed F

PR02	 PIM2	 PLAG2	 GROWTH Q12	 F	 5%

AA (707)

Coefficient -0.012	 --	 0.063	 0.08	 567.4	 3.2
t-ratio	 -0.95	 20.40	 8.66
Intervals	 t0.027	 tO.007	 tO.021

DL (DC-8)

Coefficient   	 0.108	 --	 0.010	 9.7	 3.3
t-ratio	 2.73	 1.35
Intervals	 t0.084	 tO.016

TW (707)

Coefficient	 0.107	 0.013	 0.033	 47.8	 3.4
t-ratio	 3.72	 1.73	 2.43
Intervals	 tO.061 t0.016 tO.029
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The Northwest model also suggested variables other than those chosen

a's being more powerfully associated with aircraft deliveries. 	 The

proportion variable was particularly weak for two-, three-, and four-year

lags, and may have been influenced by a rapid reduction in fleet size from

30 aircraft in 1972 to only 8 in 1975.

For United, a regression equation incorporating the proportion and

traffic growth variables explained 78% of the variation in aircraft

deliveries.	 As with Eastern, profitability was not significant.

6.6 	 Douglas DC-9 Equation

Delta was chosen for calibration of a DC-9 model since they were the

only airline not included in the short/medium haul Boeing 727s. 	 The result

was not so good as the B-727 calibrations, particularly with respect to
:i

inclusion of the profitability variable which displayed very low t-statistics

and was highly correlated with the proportion variable.

Attempts to remove some of the multicollinearity by principal component

analysis did not give good results, and led to a reversal in the profitability

coefficient sign.	 The model presented below, therefore, includes only

proportion and corporate bond yield variables:

Delta Airlines:

T	 15.2 + 0.10 PR02 + 0.06 Q12

(2.22) (1.24)

n	 =	 11	 R2 =	 0.76	 F
T

=	 16.8	 C_	 -	 0.84	 SER	 -	 13.30
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7. MODEL RESULTS -- PREDICTED VS. OBSERVED

In this section of the report, we present the comparisons of our model

predictions in relation to actual fleet numbers. 	 It must be remembered that

only narrow body aircraft have been analyzed to date, since the time series

for wide-body aircraft are not yet sufficiently long.

7.1	 Boeing 727

The model results have been tabulated both for individual airlines and

for the U.S. domestic trunks as a whole. 	 For the aggregate fleet size,

model predictions_ were less accurate in the earlier years, when the U.S.

fleet of this aircraft type was dominated by one or two large carriers. 	 See

Table 3.

	

Two effects tend to suggest that model predictions might not track 	 l

actual data on a year-by-year basis.	 First, the timing of deliveries

depends very much on the manufacturer's rate of production, excess capacity

and international orders.	 The assumption of an approximately 2-year lead

time between airline decision and delivery is a rough average over the period

and will clearly depend on whether an order was made, say, in 1964 or 1973.

Second, the trend of actual fleet sizes will follow a stepwise path,

whereas the model variables will suggest a more continuous time path. For

1

	 example, a drop in profitability and slow-down in traffic growth in one year

can be accommodated by using the existing fleet less intensively, rather than

selling or leasing some of the fleet to other carriers and re-acquiring them

t

j`
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TABLE 3 MODEL RESULTS: OBSERVED VS. PREDICTED

BOEING 727 -- TOTAL U.S. TRUNKS

YEAR	 OBSERVED	 PREDICTED	 PRED/OBS

1963 4 6 1.50

1964 94 108 1.15

1965 156 131 0.84

1966 248 226 0.91

1967 362 315 0.87

1968 455 425 0.93

1969 545 52,7 0.97

f970 568 542 0.95

1971 585 6213 1 .06

11972 609 640 1.05

1973 638 645 1.01

1!974 651 635 0.98

1975 674 687 1.02
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I;	 again when traffic picks up, which could be a costly way of matching capacity

to traffic.

AMERICAN. Early year predictions are out of line for the reasons given

above, while more recent results are good. 	 The model predicts a rise in

fleet size to 105 aircraft in 1971 due to good profitability two years

previously and, perhaps, a faster rate of BAC-111 retirements estimated from

the proportion model.

BRANIFF. Reasonably good results with a noticeable divergence between

observed and predicted in 1973. 	 Actual additions in that year totaled 13

aircraft compared with 3 predicted by the model. 	 One possible explanation

is the fleet standardization policy that this airline adopted around that

time, which would override any natural growth in economic, traffic or

profitability parameters.

CONTINENTAL. Relative latecomers to Boeing 727 operation, Continental's

fleet size has increased steadily since 1973. 	 The model predictions follow

closely the observed pattern.

EASTERN. The model predicts a slower rate of introduction of these

aircraft up to 1969.	 Over this period, the airline was also acquiring

Douglas DC-9s which may be considered interchangeable with the B-727s on

some of Eastern's routes.	 Thus, it is possible that the DC-9 model would

overstate the rate of introduction of those aircraft. 	 As in the case of

American, the model predicted a relatively large increase in new aircraft in

1971 which did not occur.

NATIONAL. The fleet size for National increased to 38 aircraft in 1967

and has remained unchanged since then.	 Since 1967, any traffic expansion
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TABLE 4 MODEL RESULTS -- OBSERVED VERSUS PREDICTED

BOEING 727 -- INDIVIDUAL AIRLINES

American Braniff Continental Eastern National

Year Obs. Pred. Obs. Pred. Obs.	 Pred. Obs. Pred. Obs. Pred.

1963 -- - - --	 -- -- -- -- --

1964 18 28 -- -- --	 -- 25 18 7 10

1965 19 30 -- -- --	 -- 42 17 10 10

1966 41 34 12 14' --	 -- 53 37 13 14

1967 47 44 24 15 5	 7 67 56 38 30

1968 80 76 27 28 13	 9 75 69 38 34

1969 98 94 33 34 13	 15 86 84 38 39

1970 98 100 39 42 13	 14 101 96 38 41

1971 98 105 44 48 19	 18 101 106 38 35

1972 100 101 50 56 22	 24 109 114 38 38

19!73 100 99 63 59 29	 29 118 123_ 38 36	 i

1974 101 101 67 63 33	 33 114 116 38 37

1975 107 105 69 68 36	 34 113 112 38 44

i

I

FW



TABLE 4	 Concluded

No rthwes t TWA Un i ted Wes to rn

Year Obs.	 Pred . Obs . Pred . Obs., Pred-. Obs . Pred'.

1963 --	 -- --' -- 4 6 --' --

1964 3	 6 16 18 25 28 -- --

1965 14	 7 21 19 50 48 -- --

1966 24	 28 22 25 83 74 -- --

1967 32	 35 29 28 120 100 -- --

1968 36	 43 44 56 142 110 -- --

1969 54	 50 67 59 150 147 6 5

1970 56	 52 67 61 150 129 6 7

1971 56	 58 72 66 150 179 7 7

1972 56	 56 72 68 150 141 12 12

1973 56	 57 72 72 150 158 12 12

1974 55	 52 74 78 151 138 18 17

1975 63	 62 77 83 150 158 21 21
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on National's routes has been taken up by increasing load factor, aircraft

utilization, and the acquisition of Douglas DC-8s and later DC-10-10s. The

model has to some extent taken these effects into account, mostly through the

proportion variable.

NORTHWEST. The model predictions have closely followed actual fleet

size, especially in recent years.	 Six new deliveries were, however,

predicted for 1971, when none actually occurred.

TWA. The model forecasts additions to the TWA fleet in every year,

whereas in three of the years no newaircraft were acquired. 	 The rate of new

deliveries was higher than predicted in earlier years and lower in the years

since 1971.

UNITED. As the largest operator of this aircraft type, United's fleet

has a large weight in the aggregate fleet size. 	 United was the first to

take delivery of this aircraft in 1963, and reached this present fleet size

in 1969.	 The model results for United were not good, with actual United

deliveries very much higher than predicted in the years 1966/67/68 and below

predicted in 1971/72.	 The main reason for this imbalance is found in a

paper 
16 

giving the story of the United Airlines $750 million order of new

aircraft made in April 1965.

"To offset the delay in getting the small jet (Boeing 737), the
Boeing Company was quite willing to deliver more B-727s in 1966-and
1967 so that United could offer the same quantity of jet service
as if it had purchased DC-9s (with no delay). 	 But this would
have meant operating a more expensive airplane for a year and•
possibly ending up with more 727s than were needed."

16W.R. Nesbit, Airline Fleet Planning - United's $750 Million Decision, from

"Decision-Making Criteria for Capital Expenditures	 4th Summer Symposium
Papers, American Society of Engineering Education, 1965.
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WESTERN. The model results track very closely the actual deliveries

from the time of introduction in 1969.

7.2	 Boeing 707/Douglas DC-8

The model results for the narrow-bodied long-haul aircraft were

generally inferior to those for the Boeing 727. 	 The American and TWA models

gave predictions which followed closely actual aircraft fleet size. 	 The TWA

model predicted a reduction in fleet size in 1971 of 16 aircraft which did

not occur (the airline acquired two more), while the American model showed a

run-down in these aircraft starting in 1972/1973 when it took place in fact

a year later.

The Delta DC-8 model shows a steady increase in fleet size to 46

aircraft in 1975.	 In fact, Delta's fleet peaked in 1969 at 41 aircraft and

declined between 1972 and 1975 to only 29 aircraft. 	 The Northeast	 merger

is a possible explanation of this divergence.

7.3	 Douglas DC-9

The model predictions are given below alongside actual fleet size for

Delta Airlines.	 Relatively poor results can be expected from a model which

included only the proportion and corporate yield variables. 	 In any event,

the merger with Northeast in 1972 most probably affected aircraft purchases

both prior to and since that time

The fall in fleet size since 1972 was primarily due to the Northeast
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merger and acquisition of 14 DC-9s (and 21 B-727s) from that company. The

problems which would result from improving the model by pooling the Northeast

and Delta data have already been discussed.
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TABLE 5 MODEL RESULTS	 -- OBSERVED VERSUS PREDICTED

BOEING 707/DOUGLAS DC-8 -- INDIVIDUAL AIRLINES

B-707 DC-8

American TWA Delta

Year Obs . Pred . Obs . Pred . Obs . Pred .

1959 24 24 20 27 6 1

1960 23 22 27 25 6 1

1961 23 23 35 47 6 12

1962 23 25 43' 53 10 13

1963 24 24 52 50 1"2 15

1964 27 27 65 50 1'5 17

1965 34 32 67' 56 19 18

1966 40 46 81 83 20 20

1967 63 61 100 103 24 23

1968 91 89 ill 105 39 27

1969 100 97 121 109 41 29

1970 98 103 102 110 41 32

19,71 96 99 104 94 41 34

1972 98 100 103 98 41; 37

1973 98 92 102 98 34 39

1974 90 89 91 105 34 42

1975 90 91 100 111 29 46
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TABLE 6 MODEL RESULTS:	 OBSERVED VS. PREDICTED

Delta DC-9

Year Observed	 Predicted

1965 4	 12

1966 14	 12

1967 23	 42

1968 60	 48

1969 68	 53

1970 73	 59

1971 77	 67

1972 77	 76

1973 72	 75

1974 70	 76

1975 62	 79
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8. EXTENSION AND APPLICATION OF THE MODEL TO OTHER AIRCRAFT TYPES

a
The model to date has been calibrated on time series data for those

generic aircraft types that satisfy two criteria: (1) the aircraft is still

a prominent part of the trunk carriers' fleets; and (2) that the time series

data be of sufficiently long duration to meet the inherent statistical and

econometric requirements.	 In the above analysis, the following aircraft

types meet these criteria: B -727, DC-8, DC-9 and B -737 aircraft.

Since the B-727 series aircraft is the overwhelmingly dominant airliner

in the domestic fleet at the present time, it is very useful that our

econometric model did capture its ordering and delivery process. 	 This

aircraft is also expected to -increase in popularity in the future. 	 On the	 a

other hand, the DC-8 and B-707 aircraft have been experiencing declining

usage within the commercial fleets -- having been relegated to supplemental

carriers or sold to foreign purchasers.	 The twin-engine commercial aircraft

(DC-9 and B-737 aircraft) are expected to hold their own over the next decade.

These comments, of course, will be altered by any new derivative aircraft

being introduced commercially or by any substan*ial entry to the American

markets by foreign manufacturers (like the A-300).

What about the wide-bodied aircraft?	 Here in the cases of the.DC-10,

L-1011 and B-747 aircraft, our time series to date unfortunately is not

sufficiently long enough to meet criterion (2) above.	 As economic
1

researchers, we need at least two more years of data for the B -747 and three

or four more years of historical data for the DC-10 and L-1011 aircraft.

Even so, we were tempted to determine if any relationships existed using the

j

4

3
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n ^
current data series and concluded that the results were promising, despite

the inability to make any statistical inferences.	 This area clearly offers

exciting opportunities For the application of this integrated model during

the next two or three years.	 Then the model could be used to forecast the

total trunk carriers' fleets and to improve upon and supplement existing

(Largely judgmental) forecasts like those provided in Table 7.

Of course, a final area of extension of the model is to the

international arena.	 The model then would need to be calibrated on data

from foreign flag carriers as well as from charter operations.	 Once all

these arenas are represented, a world-wide fleet of aircraft distribution

could be forecast.



I

-46-

TABLE 7 FLEET ADDITIONS TO MEET 1976-85 TOTAL ASM REQUIREMENT:

AN EXISTING FORECAST

12/31/75 1975-85 Changes 12/31/85

Type	 Operating Fleet	 Retirements	 Additions Operating Fleet

747	 95 6 58 147

DC-10	 121 - 181 282

L-1011	 78 88 166

707-30OB/C	 179 141 38

707-1006	 89 87 - 2

707-300	 10 10 -

72.OB	 23 23

DC,-8-61/62	 59 32 27

DC,-8-20/50	 85 85 -

727-20U	 379 - 239* 618*

72!7-100	 380 257 - 123

DC'9-30/50	 134 - 30 164

DC4-10	 27 27 - -

737	 84 - - 84

L-188	 15 115 - -

Model. X - 155 155

TOTAL	 1758 683 731 1806

Includes possible new generation aircraft in the 140 passenger size
category.

New generation aircraft assumed to be in the 185-200 passenger size
category.

Source:	 Donaldson, Lufkin and Jenrette (1977).
F
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9.	 AN APPLICATION OF THE MODEL FOR FORECASTING PURPOSES

While countless applications of the model can be performed in its use

as a forecasting tool, this section of the report discusses briefly three

cases.	 We have selected B-727 aircraft (because of its importance) as the

generic type to be forecast for three different trunk carriers: American,

United and Weste^n.	 The target year is 1985.

The forecast results are displayed in Table 8.	 In the upper third of

the table are the results for American Airlines. 	 Here the significant

variables are the proportion variable, lagged four periods, and the

profitability variable, lagged two periods. 	 In our narrative discussion

above, Equation (2) was a model developed to forecast the proportion of B-727

aircraft in each airline's fleet, while Equation (3) was a model designed to

forecast individual airline's profitability (cash-flow).	 In the present.

table, the actual data are displayed for 1975.	 In addition, since our time

series terminated with 1975 data, we present a "forecast for 1976 and show

the comparison between the 1976 forecast and the 1976 actual numbers for

the T-variable -- the number of B-727s in each airline's fleet.	 Finally,

in the right hand column are the forecast numbers for 1985.

AMERICAN. The model forecasts 110 B-727 aircraft in American's fleet,

a'deviation of 4% from its actual 115 at year-end. 	 For 1985, however,

assuming that the proportion of B-727s in its fleet in 1981 is 0.60 (the
x

fpur-year lag in PR04), and assuming that the airline's profitability in 1983

is -$184.7 million (the _two-year lag embodied in PLAG2), the model forecasts

a'mean value of 158 B-727 aircraft required for American's fleet in that

year.	 If there were a f20% shift in American's profitability in 1985, then

I

s;
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{	 TABLE 8	 SELECTED MODEL FORECASTS Of B-727 AIRCRAFT IN THREE AIRLINES

Actual Forecas-, Forecast
Variable 1975 1976

--

1985

American

P4 38.5 42.6 60.0

Tr -2
*

1219.2 12 31 .2 1846.8

T (.number of B-727s 107 110 175	 (high)

in fleet) (Actual	 115) 158 (middle)

142	 (low)

United

P2 51.3 56.5 60.0

GROWTH 22570 30393 60786;
it 2 1904.8 2286.7 3355.1
Q12 7.8 9.0 910

T (number of B-727s 150 185 404	 (high)

in fleet) (Actual	 150) 329 (middle)

254 (low)

Western

P4 11.3 14.6 30.0

Tr 2* 576.7 609.3 914.0 a

GROWTH 8094 16188

T (number of B-727s 21 19 61	 (high)

in fleet) (Actual	 21) 48 (middle)

36 flow)

In hundreds of thousands of dollars.

In millions of revenue passenger miles.

^i

Y
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its 1985 forecasts for B-727 aircraft would be 175 and 142 aircraft,

respectively.	 Any other perturbations to the explanatory variable would be

handled accordingly.

UNITED AIR LINES. The 1976 forecast of 185 B-727 aircraft is 185,

off considerably from the airline's actual number of 150. 	 However, UAL,

Inc., does have on two orders at this time a total of 46 B-727-200 aircraft,

for delivery completion at the end of 1979.

Since the model results were presented early 1977 to several

airlines' representatives, including those of UAL, Inc., it appears likely

that United hesitated in making its ordering decision in 1975' and 1976, due

to the adverse economic conditions prevailing at the time. 	 By the end of

1979, it is probable that the model forecasts and the actual number of B-727

aircraft in United's fleet will coincide.	 For 1985, United's fleet is

forecast at 329 B-727 aircraft, utilizing forecasts of the four variables in

United's T equation: proportion, growth, profitability, and interest rate

levels.	 As is the case with each airline's model, the forecasts of the

proportion variable and the profitability variable are calculated internally

whereas the forecasts of all microeconomic variables are made exogenously.

In its final form the growth variable forecasts will be taken from the

aggregation of the regional-pair market forecasts embodied in our General

Passenger Market Model, described in Volume II. 	 The high and low forecasts

of the T variable reflect, as in the case of American, a f20o change in

United's profitability in 1983.

WESTERN AIRLINES. In Western's fleet, our model predicts 19 B-727

aircraft for 1976 (compared with 21 actual).	 In addition, under the same

ground rules pertaining to the assumptions and forecasts of the other
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airlines' models, the 1985 forecast for Western's B-727 aircraft is 48 --

with a high of 61 and a low of 36, depending on the sensitivity of its

profitability in 1983.

One interesting feature of this model is that a wide range of

forecasting scenarios can be portrayed for any future year, assuming that

forecasts for the exogenous variables (all those except the proportion,

profitability, and growth variables) can be made. 	 Since the airline decision

with respect to aircraft acquisition does depend on both internal and

external economic and technological factors, this model does manage to

capture in the aggregate the relative importance of these factors.
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10.	 CONCLUDING ISSUES

Understanding various aspects of the aircraft ordering decision process

has been undertaken in the past almost entirely on the basis of simplistic

forecasts which relied to a large extent on judgmental factors. 	 Now that

the aircraft manufacturer and airline industries have reached a mature

stage in their respective developments, the need to use more advanced

analytical tools as a guide to economic forecasting becomes all the more

compelling. In this study, the M.I.T. research team has developed an

analytical model which offers some promise in forecasting the distribution

of aircraft among the nation's airline fleets. 	 While the forecast of a

specific airline's fleet for a given year in the future obviously contains

certain amounts of unknown factors, the model does provide a solid mechanism

and a scientific foundation on which forecasts can be made, even though

possible future disturbances cannot be captured (except by soothsaying.

The model of manufacturers' aircraft technology and airline earnings

potential presented in this study represents a unique endeavor to portray

some important factors which influence  both the airlines and the aircraft

manufacturers in the joint decision of purchasing and selling new aircraft.

The model results can also be interpreted as contributive factors to the

supply (cost) side of airline markets in which air passenger demand is

influenced by the types of aircraft technology available. 	 Also, while the

findings of the model have reflected current and historical patterns of the

airline firms and the manufacturers, it is expected that the model could

provide useful information on the impacts of incrementally new aircraft

technology on airline demand variables.
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Together with previous results, the model suggests that there exist

important economic and technological analogues to the classic psychological

laws that relate reaction time to the intensity of the stimulus.

Profitability opportunities act as stimuli, from which the intensity of the

airline firms' speed of response seems to be governed quite closely. 	 With

respect to the diffusion process of new aircraft technology, the econometric

model also suggests both how rapidly the airlines begin to use new aircraft

technology (subject to manufacturer production constraints) and how rapidly

the airlines substitute newer aircraft technology for older equipment.

In' addition, the model depicts the economic conditions under which the

purchases of newer aircraft by the airlines have been historically worthwhile
i

and profitable endeavors. 	 To this end, while the uses of the model for	 {

forecasting purposes may only indicate the appropriate magnitudes at this

time, it is anticipated that future applications and refinements to this

model will sharply define and predict the likely impacts of future

developments in new aircraft technology.



1{

-53-
r

SELECTED ECONOMIC BIBLIOGRAPHY

1. Bonker, Dick, "The 'Rule of 78'", Journal of Finance XXXI (June 1976),
pp. 877-888.

2. Carroll, Sidney L., "The Market for Commercial Airlines", Chapter 8
in Richard Caves and Marc Roberts' Industrial Organization (1976).

3.- Falvey, Rodney E., "Transport Costs in the Pure Theory of International
Trade", Economic Journal, 86 (September 1976), pp. 536-550.

4. Glickman, Norman J., Econometric Anal ses^of Regional Systems:
Explorations in Model Building and Policy Analysis New York:
Academic Press, 1977).

5. , "A Note on Simultaneous Equation Estimation
Techniques Applications with a Regional Econometric Model", Regional
Science and Urban Economics, 6 (September 1976), pp. 275-287.

6. Kihlstrom, Richard E., "Firm Demand for Information about Price and
Technology", Journal of Political Economy, 84 (December 1976),
pp. 1335-3141.

7. Kneafsey, James T., Transportation Economic Analyses (Lexington., MA:
D.C. Heath and Co., 1975).

8. Lloyd-Jones, D.J., "The Next Commercial Aircraft: What, When and Why
as American Airlines Views It", Air Transportation Research
International Forum, San Francisco May 9, 1977).

9. Mansfield, Edwin, The Economics of Technological Chan ft- (New York:
W.W. Norton Co., 1968 T	 -

10. Nelson, Charles R., "Inflation and Capital Budgeting", Journal of
Finance, XXXI (June 1976), pp. 923-932.

111. Phillips, Almarin, Technology and Market Structure: A Study of the
Aircraft Industry Lexington, MA: D.C. Heath and Co., 1971).

1,2. Ranfte, Robert M., "R & D Productivity - A Key Issue", Journal of
Astronautics and Aeronautics, June 1976, pp. 50-56.

13. Rosenberg, Nathan, "On Technological Expectations", Economic Journal,
86 (September 1976), pp. 523-535.

14. Rosenberg, Nathan and Alexander Thompson, "Technological Change and
Productivity Growth in the Air Transport Industry", Working Paper,
Department of Economics, Stanford University (1977).

IL

l

s



-54-

I
1::. Spence, Michael, "Informational Aspects of Market Structure: Anti	

Introduction", Quarterly Journal of Economics, XC (November 1976),
pp. 591-597.

16. Taneja, Nawal K., The Commercial Airline Industr (Lexington, MA:
D.C. Heath and Co., 1976).

17. Twiss, Brian, " Economic Perspectives of Technological Progress:
New Dimensions for Forecasting Technology", Futures, 8 (February
1976), pp. 52-63.

YA

t=

{

I

. _	 ^.



DERIVATION OF THE P
ij

(t) SUBMODEL FOR THE PROPORTION VARIABLE

IN THE MANUFACTURERS' MODEL OF AIRCRAFT PRODUCTION

AND AIRLINE EARNINGS POTENTIAL

i
f

i

4



56

The following submodel is an attempt to describe the process by which

airlines decide to purchase new aircraft. 	 If Aij (t) is the number of

aircraft of type j owned by airline i at time t, if Ni is the number of

older vintage (like piston engine, early jet) aircraft operated by the

airline before it adopted newer technology, and if R i is the number of older

aircraft (indexed) replaced by a single newer aircraft, then it can be

postulated that the total number of aircraft operated by airline i at time t,

Ti (t) is:

Ti (t) = Ni - ( Ri - 1) Aij (t)	 (A-1)

Since the airline will employ N i /R i aircraft of type j when the fleet

contains all j type aircraft, then there are N i /R i - Aij (t) places left to

be filled with new aircraft at time t. 	 Suppose, for example, that the Aij

were DC-9s and that at time t, airline i bought four of them. 	 Suppose

further that each DC-9 had replaced two Convair 580s (R i = 2) and that the

fleet size was 40, prior to the DC-9 purchases. 	 Then the total number of

aircraft of all types in the fleet at time t was 36 or 40 - (2-1)4

according to Equation (A-1). 	 In other words, four DC-9s had replaced eight

4

	

	 Convair 580s, ceteris paribus. 	 It should be noted that the R i variable

value is an empirically elusive measure, but, fortunately, its significance

will dissipate during the derivation of the submodel.

Let 11ij be the rate of' return that airline i would obtain by filling

- one of these slots with a newer aircraft, U ij (t) be a measure of apparent

riskiness at time t in making such an investment, S ij be a measure of the

size, and C ij be a measure of liquidity at the time when the airline began

to purchase the newer aircraft type j. 	 Letting Wij (t) be the proportion of
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unfilled slots that were filled with newer aircraft type j during the '.
i

period, its functional-
*

form would be:
i

Wij (t)	 - frit ij ,	 U ij (t),	 S ij , Cij ,	 .. (A-2)

L

Alternatively, Wij (t) can be regarded as a measure of the latent demand for

newer aircraft of type j and can be stated in terms of next period's

deliveries:

Wij (t)	 _ [Aij (t+l) - Aij (t)	 /[N i /Ri	- Aij (t)] (A-3)

To continue with the above example, assume that the deliveries of DC-9s in

the next period will total two.	 Then Aij (t+l) equals six and

Wij (t) = (6-4) : (20-4) = 1/8. 	 In other words, 16 slots were available at

the beginning of the period and two were filled during time period t.	 But

since Uij (t) cannot be measured directly, assume that W ij (t) can also be

written as:

Wij (t) = f(Lij , Ri Aij (t)/N i , ...)	 (A-4)

whe re L i 
j 

is the time interval between when the first airline began using

aircraft type j and the year when the i th airline began using them, and

where Ri Aij (t)/N i is the proportion of slots in the i th airline already

filled at time t.

Inserting (A-4) into (A-2) yields:

Wij (t) = f0l
ij , L

ij , Ri Aij(t)/Ni , Sij , Cij , ...)	 (A-5)

For the foundations of this analysis applied to other industries, see Edwin
Mansfield, Industrial Research and Technological Innovation: An Econometric
Analysis (New or : W.W. Norton and Co., Inc., 	 .
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f	 Assuming that Wij (t) can be approximated adequately by a Taylor's expansion

of IIi j, Lip	 Ci j , that drops third and higher order terms, so that the

coefficient of Ri Ai (t)/N il 2 is essentially zero.	 The corresponding

differential equation then) can be substituted for the difference equation

that results.	 Recognizing that, as we go backward in time, the number of

firms having introduced the newer aircraft of type j must tend to zero,

we have:

lim	 A (t) = 0
it -^	 d

and this in turn yields

-(a
Aij (t) = N i Ri [1 + e	

i j + Mij t
 J
}1	 -1
	 (A-6)

where

Mij = Cl + C 211 + C3L i + C4Si + C 5 
C i + c i	

(A-7)

Finally, if Pij (t) is the proportion of the i th airline's aircraft

that are tYpe j at time t, then

Pij(t) = Aij(t)/Ti(t)	 (A-8)

Thus, by inserting equations (A-1) and (A-6) into (A-8) yields:

P i .(t) = 11 + e-(aij + M
ij (t) -1	

(A-9)
J	 L	 .

which states that the proportion of the airline's aircraft that were type j

should be a logistic function of time, and that the parameter measuring the

intrafirm rate of diffusion, Mi j , should be linearly related to Hij , Lij,

S ij , and Cij and any others that might seem appropriate. 	 The model has then

been tested using data from the Civil Aeronautics Board and Moody's
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Industrial Classification Service. 	 The value of Pij (t) then is inserted as

an argument to the T equation and assists in explaining the variation in the

number of aircraft delivered each time period.	 Equation (A-9) is simply

transformed into its usual structure by taking natural logarithms of both

sides of the equation:

k n	 P'	 = a i j + Mi j t

This submdel is a unique attempt to measure the diffusion of new

technology in the literature on the economics of technological change. 	 As

such, it is an aggregate method to depict the major factors which determine

variations in the timing and diffusion of new technology. 	 The submodel

hopefully reflects the relative capabilities of individual airlines to add

(and delete) different aircraft types from their fleets as economic conditions

change.	 In this way the estimation of an annual proportion variable can

contribute to a better understanding of when and how many new aircraft

are purchased by the domestic airlines.

i

I

I

:r
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APPENDIX B

AN ANALYSIS OF AIRLINE PROFITABILITY
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1.	 INTRODUCTION

Recent predictions have estimated that U.S. airlines will require $60

billion in order to satisfy their equipment needs in the 1980's. 	 While a

carrier's decision to purchase new capital equipment is a function of a

variety of factors, clearly their market performance has important

consequences on capital budgeting decisions. 	 Not only does an airline's

profitability determine the amount of internal funds available for investment,

but it also contributes to determining the financial risk of the firm and

its ability to utilize debt and equity capital on favorable terms. The

inability to generate funds, because of poor performance, can therefore

severely limit the investment decisions of the carriers.

As a recent Air Transport Association of America (ATA) study states,

"...based on past earnings, airlines will be unable to compete effectively

with U.S. manufacturing enterprises for capital funds."'

Investigation of corporate performance allows not only for

determination of key factors in investment decisions, but also evaluation

and examination of several variables that impact on the profitability of

individual  car. i e rs .

The objective of this report is an identification of those factors

that have been significant in determining the profitability of individual

ai[r carriers . The general methodology that has beer followed centers on

analysis, via econometric techniques, of selected operational, financial,

and economic factors frequently cited as contributing to the success or

failure or an individual airline.	 A brief description and discussion of the
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most significant items is .given in Section 3 while the econometric model

is developed in Section 4.

Before either the significant factors or the model can be discussed,

however, an understanding of the regulated market structure in which the

airlines compete needs to be developed. 	 This should include the unique

aspects of airline economics that are often omitted when traditional

microeconomic theory is applied to airline analysis. 	 Coverage of air

transportation economics will be made in Section 2 and will rely heavily on

the work of R.W. Simpson and NX Taneja (both of MIT) and their course

notes.	 While this d1scussion is not meant to be exhaustive, it should

point to the complexities and correlation among factors that are important

in their influence on a carrier's profits.

1.1	 Reference

1.	 The 60 Billion Dollar Question, Air Transport Association of America,

September, 1976.

I

t

4.l
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2.	 AIRLINE ECONOMICS -- A BRIEF SUMMARY

The U.S. airline industry operates in an environment that is closely

regulated by the Civil Aeronautics Board (CAB). 	 As a result, many of the

market structure traits that are normally determined by "free market forces"

are instead the result of CAB regulation.	 Theories as to why such

regulation was (and is) necessary are well documented and will not be

covered here. I

While this study is an examination of the influence of various

managerial and regulatory decision variables on individual carrier

performance, these factors are, quite naturally, altered in response to

changing supply and demand characteristics experienced by each airline.

Section 3 will discuss in more detail specific factors, such as advertising,

aircraft utilization, that are management controlled, as well as the

idiosyncrasies of demand (seasonality, density) that are to some extent

controlled by the CAB in the context of their influence on carrier

performance.

However, as a basis for that later discussion, this section will cover

the fundamental components of an airline's demand and costs. 	 While the

final analysis will involve an evaluation of performance in terms of system

variables, this section will discuss demand and costs as they exist at the

market and network level.	 As we shall see, demand exists for a given

market, while supply and hence costs are the result of decisions made with

regard to a system of markets or a network. Many of the points to be made

are drawn from a recent discussion of these factors by R.W. Simpson of MIT.
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2.1	 Nature of the Product

An airline produces a set of flights throughout the system of routes

(or city pairs) it serves.	 Unlike many products but common to services,

ai'Irline output cannot be inventoried or stockpiled for later use.	 When a

flight departs a given location, those "seat-departures" that are not

utilized are lost forever.	 As a result, strikes, for example, are

particularly damaging since demand cannot be satisfied by drawing down

inventories.	 While the carriers have organized to minimize the impact of

labor stoppages, 3 strikes have a major impact on the carrier's market

performance.

Without the ability to inventory output, carriers are faced with the

need to either (1) expand their fleet and personnel to satisfy peak demand,

(2!) reduce schedules in one market so that extra traffic can be accommodated

in a second city pair, or (3) maintain the fleet and schedules at present

levels and allow the extra traffic to move to the competition.

Alternatively, differential pricing has been used with varying degrees of

success in attempting to smooth the distribution of demand throughout the

day or season.

2.2	 Airline Costs

It is generally accepted that airline costs can be separated into three

major categories.	 The first, flight operations, covers the cost of flying

the aircraft, i.e., crew, fuel, maintenance and ownership expenses. 	 These

n '^
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costs can be related to the number of hours flown (either block or flying
	 a

hours), or to the number of seat miles of output, which takes into account

the actual revenue earning potential of the aircraft.

As can be seen in Table 2.1, operating costs per block hour vary

considerably for different aircraft types.	 This variation is reduced when

aircraft size and speed is reflected in the cost per seat hour ratios.

Large reductions in seat mile aircraft costs resulted from the

introduction of larger and faster jet aircraft in the 1960s.	 This in turn

ensured a period of falling fares and total market expansion, which meant

that the earnings potential of the more productive aircraft could be fully

realized.	 The trend towards a greater number of seats per aircraft

continued into the seventies, though, with fuel and labor costs eroding

aircraft productivity advantages and causing fare increases, a situation of

overcapacity gradually developed.

"For most of the 1960's, airlines were able to counter the
adverse effects of inflation by transforming their fleets
from propeller-driven to more efficient jet transports. It
would be hard to exaggereate the cost benefits that jet
engines meant for airline economics. 	 But today, with most
of the conversion to jet aircraft complete, these benefits
have run out.	 Inflation has overtaken them and, in
consequence, the industry is suffering." 4

A plot of total operating expenses vs. time clearly shows the steady

decrease in costs as the jets were introduced (see figure 2.1).

One additional characteristic that impacts on the flight costs is the

design range of each particular aircraft.	 When an aircraft is operated at

its design range, the payload it can carry, and hence the revenue it can

generate, is at a maximum.	 However, if the aircraft flies further than its



Avg

Cost/Hr O _ Seats _ Cost/Seat Hr Stage Length

1968 1975 1968 1975 1968 1975 1968 1975

8707-100 645.79 1167.47 126.7 130.6 5.10 8.94 1099 868

8707-300C 596.45 1241.94 135.8 144.4 4.39 8.6 978 1082

8727-100QC 515.62 950.61 95.1 99.7 5.42 9.53 509 585

B727-200 495.57 985.04 128.6 126.6 3.85 7.78 545 489

B737-200 387.97 900.03 95 95.7 4.08 9.40 193 301

DC-8-50 666.91 1203.11 134.1 133.9 4.97 8.99 910 754

OC-8-61 744.51 1442.39 196.6 192.6 3.79 7.49 1094 896

DC-9-10 424.37 829.85 69.9 70.2 6.07 11.82 287 392

DC-9-30 427.56 745.92 90.1 90.1 4.75 8.28 283 342

8747 1829.68 (1970) 2769.39 341 352.6 5.36 7.85 2097 1796

L-1011 1501.80 (1972) 2128.21 213.7 242.3 7.02 8.78 1237 882

DC-10 1173.57 (1972) 1889.21 224.6 233.1 5.22 8.10 1067 1187

Source:	 U.S. Civil Aeponautics Board Aircraft Operating Cost and Performance Reports.

rn
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TABLE 2.1	 OPERATING COSTS
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design range, payload must be reduced to accommodate the additional fuel

required.	 This not only reduces revenues, but increases costs.	 Likewise,

when a long range aircraft flies a short haul route, the operating costs are

generally higher than they would be if an aircraft of short range design were

utilized.

Since an airline operates over a variety of stage lengths (with

equally diverse traffic densities) it is impossible to match aircraft design

range with stage length on every segment. 	 Consequently, a carrier's system-

wide operations are a compromise between routes, demand, and expected traffic

growth on the one hand, and the design range and capacity of the aircraft in

the existing fleet on the other. 	 A carrier's ability to match these two

factors can have considerable impact on their profitability, and decision to

replace or expand their fleet.

The second major category of costs are labeled ground operating costs

and include the expenses of refueling, dispatching, aircraft servicing,

reservations and sales, baggage handling, and passenger boarding. 	 Ground

costs can be particularly significant -if a station only serves one or two

daily or weekly flights.	 In such instances, the carrier still requires

certain minimum ground facilities regardless of the low level of operations.

The obvious consequence is that an airline serving many remote, low density

airports can be faced with inordinately high ground operating costs. 	 While

certainly not as large an expense as the flight costs, ground handling

operations do at the same time require considerable investment in capital

and _labor that cannot be divided into fractional parts and must be maintained

R
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at levels necessary to accommodate short-run peaks in aircraft arrivals/

departures.	 In some cases, however, carriers lease, or subcontract, certain

items of equipment or use part-time personnel to handle these peaks in

demand.	 Nevertheless, the ground support requirements are no small matter

andican be aggravated by the number of aircraft types that operate at a given

location.	 While some commonality does exist, an aircraft tow tractor, for

example, may or may not be capable of being used on both a 727 and 747. 	 If

daily operations included both aircraft types, theoretically two tractors

would be required.

An additional factor which can cause costs to far exceed normal

expectations is the impact of the introduction of a new aircraft type into a

Carrier's fleet.	 During a so-called "break-in" period, ground handling

time, servicing time, station maintenance operations, and aircraft handling

are often less polished and subject to less efficient work as mechanics,

baggage handlers and others learn the pecularities of new aircraft types.

This was a particularly pronounced phenomenon when the widebody aircraft were

introduced in the early 1970's.

The third category of costs is the system operating or overall costs.

These  expenses consist of equipment depreciation (other than aircraft),

general administrative costs, promotional and advertising costs, and ground

maintenance.	 As these expenses are independent of the aircraft type used

or the number of miles or hours flown, they have often been the focal -point

of intense managerial action to reduce overhead expenses without

significantly reducing output 	 With costs continuing to rise, this area

9
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has been a prime target for cost reductions as carriers attempt to maintain

their financial strength.

It is important to remember, however, that for the most part, costs

are fixed; a flight that is cancelled will save only the cost of fuel and oil,

and landing fees, since schedules and crew expenses are pre-negotiated and

ownership costs continue even if the aircraft never flies.	 Consequently

the industry is one of high operating leverage resulting from the presence of

large fixed costs.	 This results in two important facts: (1) the breakeven

point or the point where revenues cover total costs is much higher than if

fixed costs were lower, and (2) profits are larger, once the breakeven point

is reached, than would be true with lower fixed costs.

2.3	 Airline Demand

The demand for air transportation is derived from the fact that

individuals are interested in moving between two locations.	 As such, air

travel is not consumed in and of itself, but as a means to an end.

Consequently, air carriers must compete in terms of price and quality of

service with the other modes of transportation that are available (bus, auto,

rail) to satisfy this desire for travel. 	 Clearly, the advantages of.air

travel, namely speed and relative price, are the most pronounced on long haul

markets where auto travel is less feasible.

When considering a particular mode of transportation, the total trip

time should be represented by the "door-to-door" time. 	 In the case of air

travel, this includes: (1) the time to reach the airport, (2) the time
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waiting for departure, (3) the actual airborne flight time, (4) the wait

time after arrival for baggage, and transferring 'to another mode (bus, car,

taxi) and (5) the travel time from the airport to the final destination.

As the length of haul is decreased, the amount of time spent in actual

flight becomes a mu ,7h smaller percentage of the total.	 Airlines are aware

of the impact of time on the travel choice and selection of carrier by

passengers, and schedule in such a way that the time waiting for a departure

is reduced to levels consistent with trip distance and market density. A

greater number of departures not only increases demand by reducing wait time

but, by increasing the probability that a seat will be available, induces

mare passengers to consider air travel.	 In general, it is thought that when

annual average load factors on scheduled services rise to a level

significantly above 60%, passengers will be unable to reserve seats at

peak periods.	 Figure 2-2 illustrates the impact of frequency on demand for

three stage lengths.

Total trip time is one of several variables that, as Simpson states,

determine the quality of service offered by a particular carrier. 	 Among the

other service quality factors are the following:

(a) Trip Reliability -- This factor includes the probability of

obtaining a seat, the probability of cancellation and the probability-of

on-time departure and arrival.	 Indirectly these factors relate to the

airlines' perception of how highly its customers value their time and.the

impact of possible delays, either for scheduling or operational reasons, or

their choice of carrier.

(b) Trip Comfort	 This factor involves the basic on-board services

i
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that each carrier provides.	 It includes the differentiation of the various

service classes based upon meals, first vs. coach seating configurations,

movies, free stereo and so on.

The primary significance of these quality variables, when viewed from

a system-wide perspective, is their impact upon the interfirm strategies

among airlines.	 As Taneja states,

"Since the price charged is the same on all carriers in a given
market, a marketer can increase his carrier's share of the market
by showing his service is different. 	 Thus from a marketing
point of view service can be considered differentiated. For
example, on a given route the services offered at different times
of day are quite different services from a passenger's viewpoint...
Even flights that depart at exactly the same time with the
same equipment are different services due to the differences
in cabin service, distribution channels, on-time performance
service, and services on the ground -- that is the passenger's
image of carrier services." 5

Consequently, airlines spend considerable amounts on advertising and

promotion in an attempt to differentiate their product.

Although carriers charge the same price in the individual markets

they serve, on a system-wide basis the traffic mix that a carrier serves can

vary considerably.	 If an airline operates in markets that are predominantly

business-oriented the yield (or revenue per revenue-passenger-mile) will

generally be higher than in a similar market that is pleasure-oriented.

Assuming the costs of the two routes are close to being equal, the carrier

that has the higher yield will experience the larger profits. 	 In recent

years, charter travel has grown considerably.	 Not only have the charter

operators, "non-skeds", diverted considerable traffic from the scheduled
4

operators, but the certificated airlines have entered into the charter

business subject to various CAB limitations. 	 The important point, however,

x
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is that charters' lower yields are justified by their significantly lower

costs and consistently higher load factors.

One of the most pronounced characteristics of airline demand involves

the fluctuation of traffic over time. 	 Demand patterns vary (1) with the

hour of the day, generally peaking around 9 a.m. and 5 p.m. depending upon

the particular market and the influence of changes in time zones; (2) with

day of the week due to the business cycle and the market -- this cycle is

less pronounced than others; and (3) over the year as a function of the

particular month.	 For example, August is generally a peak month and

February and November are low demand periods. 	 As stated earlier, the

obvious consequence of such variations in demand is either excess capacity

in February and November if fleets are expanded to meetAugust demand or

lost traffic to competitors if fleet size is maintained at levels dictated

by the February and November valleys. 	 One way out of the dilemma,

excluding complementary route awards by the CAB, is seasonal leasing or more

aggressive development of markets that would utilize the excess capacity.

However, in air transportation the prices that are charged are subject

to the approval of the CAB.	 While individual carriers may initiate fare

changes, the Board has the right to disallow the change, and establish

maximum and minimum fares between city pairs.

As a result of the Domestic Passenger Fare Investigation fares are

based upon a distance formula in which the fact that costs decrease as

distance increases is one of the primary motivations. 	 Consequently, although

fares increase with the length of the trip, they do so at a decreasing rate.
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2.4 Supply and Demand Interactions

Depending upon the particular time horizon, the variable costs for an

individual flight are relatively small.	 Once a flight has been scheduled

(schedule changes usually occur monthly in response to seasonal demand

fluctuations), the opportunity cost of cancelling the flight would only

include the fuel and oil that would not be consumed, and the landing fees.

On the basis of a slightly longer time horizon, say next quarter, the cost

savings for cancelling a flight would include fuel and oil, landing fees,

and direct maintenance. However, maintenance burden and ownership costs

would still be paid, so that they could not be considered as part of the

savings.

	

When considering the interactions between supply and demand, several	

i

points are particularly important. 	 In the first place, the quantity of

supplied service does not equal the quantity demanded.	 The number of

departures (and seats) in a given market is a function not only of the demand

of a single region pair but also of several other segments that might be

part of a particular route or even network. 	 In addition, given the demand-

frequency responses discussed earlier, carriers almost always schedule excess

capacity so that passengers are not turned away. 	 The implication of-the

supply-demand disparity is the need to. define the ratio of the demand for

seats and the seats supplied. 	 This ratio is referred to as the load.factor

and can be calculated with various units of demand (i.e., passengers,

passenger-miles, tons, ton-miles) and corresponding._supply units (available

seats, seat-miles, available tons, ton-miles).	 In any case; both the
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quantity demanded and the quantity supplied are variable.

A somewhat modified definition of load factor is also useful in

analyzing the supply-demand interaction. 	 Since different aircraft exhibit

varying operating costs, for a given flight the cost that the airline incurs
d

can vary considerably.	 Because the price that each passenger pays is

independent of the aircraft that flies a given route, the larger aircraft,

with higher per hour costs, will require more passengers to cover these

costs.	 Therefore, the break-even load factor, LF BE , can be defined as the

ratio of the number of passengers required to generate revenues equal to

the cost of a flight, divided by the available seats.

With most costs, in the short run, basically fixed, once the break-even_

load factor is reached the profit margin for each extra passenger is quite

Large.	 It has been estimated that 85-90% of the revenues from passengers	
i

over LFBE goes directly to pretax income. 	 It is here that the lower costs 	
4

per seat mile of the widebody jets are so attractive.	 Although it takes

many more passengers to reach the break-even point, having done so, the 	
3

profit margin for each passenger above break-even is much greater on a 747

than a DC-9.	 The fact that larger aircraft are flown on longer stage

lengths, which lowers costs per seat mile, further enhances the advantages

of the widebodies (assuming break-even LF can be reached).

The existence of the high operating leverage under which airlines

operate indicates the importance of matching aircraft (or plant capacity)

todemand in as many markets as possible. 	 While the economic issues

discussed earlier may limit this matching process, clearly the more

successfully a carrier can make the match, the better chance it will have

p
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0  to reach load factors above LFBE and thereby enjoy increasingly higher

profit margins.

A variety of factors, most notably the interactions of network and

scheduling constraints,prevent carriers from supplying service optimally in

every market they serve.	 Nevertheless, the implication, once again, is that

long haul, dense markets served with large, low-variable-cost aircraft are

desirable from the point of view of generating large profit margins.

With the large fixed costs, previously discussed, and the volatility

of demand, airlines compete heavily for each additional passenger.	 As one

carrier reports, one additional passenger on each flight is worth $23
6

million a year.

2.5	 Summary

This chapter has attempted to explain the nature and unique

characteristics of air travel demand and costs. 	 In so doing, the importance

of network analysis can be seen both from the point of view of traffic flow

as well as aircraft scheduling and utilization.	 Through its control of

routes and fares (based on distance) the CAB strongly influences the level

and pattern of demand available to each airline. 	 Based upon the demand

patterns of the markets they serve, and the cost characteristics o. their

fleets, airline managements schedule frequencies of service so as to

stimulate demand and, at the same time, minimize costs.

Departures in a given city-pair, and the aircraft selected to perform
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these departures are selected upon the segment demand and not

just the traffic in a single city pair. 	 If the segment flow

is sufficiently large to justify larger aircraft, costs

per seat can be lowered due to the economies of scale of these planes.
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3.	 FACTORS AFFECTING PROFITABILITY

In order to model airline profitability, it is necessary to identify

those control variables that are used to influence airline performance.

Drawing upon the discussion of demand, costs, and their interactions in

Section " this section discusses in greater detail those managerial and

regulatory factors that are used to adjust carrier performance.	 By managing

both assets and liabilities management can, theoretically, greatly influence

profits within the environment of controlled pricing and entry and exit of

the CAB.

Managers influence demand by effective marketing that successfully

differentiates their service from that of the competition and defines the

mix of services that best utilizes their assets.

Costs, on the other hand, are controlled by efficient use and selection

of equipment and personnel.	 With fares basically fixed, adjustment of

schedules and aircraft type ultimately results in changes in a carrier's

break-even load factor.	 By comparing this load factor with the load factor

that is actually obtained (due to the demand carried by a particular

airline), one can fairly easily determine the pr°ofitability of a carrier.

Although the bull: of this section is devoted, to a discussion of.the

various factors that are considered influential in their impact on airline

profitability, the initial portion will cover the general modeling

philosophy that was followed and some of the previous financial models that

have investigated corporate decision-making.

f
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3.1	 Econometric Models of the Firm

Mathematical models of corporate processes are designed to measure and

analyze relationships among variables that represent various economic,

operational, and in the case of airlines, regulatory factors that exist in

the market structure in which these firms operate.

A variety of models have been constructed in order to explain very

specific aspects of corporate performance.	 The range of topics covered by

these formulations not only indicates the potential uses for such tools,

but also emphasizes the need for the model builder to carefully identify

the purpose of a proposed model, and the level of detail necessary to

satisfy its objectives. 	 Models can be predictive, descriptive, or normative,

again depending upon the objectives of the model builder.	 They can consist:

of multi-equation simulation formulations that are based upon standard

econometric techniques or they can consist of accounting identities.

Within the framework of simultaneous multi-equation models, several

examples exist that further illustrate the range of application for this

type of statistical tool.	 Davis, jaaccappolo and Chaudry have developed an

econometric model to be used for corporate planning analysis in AT&T by

quantifying the economic interrelationships of demand, production, and

finance. l 	They conclude that the preset state of applied economics andI
i` 	 the availability of planning technology is such that firm behavior can be

analyzed by applying standard economic theory.	 While relating a corporate

submodel to a model of the national economy and a model of management control

policies, the core of the formalatioli i s the corporate submodel that consists
r

-..Z.-	 to a:. ^	 ^x.z :one-an'eax^xx`+x _.a^ ..za	 atm c x a .. _m_ 	 ym`^.Yer_3	 x	 x ^r Y _	 ^. ii .
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of mathematical relationships for price, demand, revenues, production,

finance (expenses), and capital market relationships (cost of capital).

A second example of an econometric representation of a firm is provided

by Saltzman's 2 analysis of an unidentified company in which the model is

organized into three sectors: (1) sales, prices, and inventory and output,

(2) investment and expenses, and (3) costs and profits. 	 These three sectors

were represented by 10 equations and several identities with the coefficients

being estimated via ordinary and two-stage least squares procedures.

Saltzman's purpose in building the model was to develop a relatively

comprehensive simultaneous equation model of a firm.	 The model, then, is

more descriptive than predictive, although it could theoretically be used for

the latter.

A third study  undertaken by-J.W. Elliott was designed to forecast

sales and other performance elements` in a firm's income statement.

Utilizing eleven structural equations the model was designed to

simultaneously explain the lines in a corporate income statement.	 The

primary hypothesis under which the model was formulated was that many aspects

of corporate performance are jointly determined and can only be explained

in a simultaneous, multiple-equation model that deans with the aspects of

interrelated relationships. 	 Elliott concludes

"Simultaneous equations models of corporate financial
performance of the type developed and evaluated in this
study can provide_ an important means for explaining this
performance and a potentially useful means for predicting
performance." 4

In addition to the simultaneous equatior econometric models discussed

above, it is also possible to construct a financial simulation model that

l
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is made up of accounting identities taken from the balance sheet and income

statement.	 Warren and Shelton 5 in constructing such a model submit that

such a formulation can assist corporate managers with a means of specifying

why and when the firm needs financing and the risks and rewards possible to

those who can provide the funds. 	 Utilizing Sears Roebuck as an example,

Warren and Shelton feel that a financial simulation can allow for the

quantification of the effects of alternative policies and decisions such

as debt/equity ratio, dividend yield, price earning ratios, and others.

Perhaps the common factor in all the models discussed thus far is

the use of a simultaneous equations formulation. 	 While such complexity

is clearly necessary if one of the objectives of the model is to capture the

structural relationships within and around a firm, however, if the goal of

the model is purely predictive, a reduced-form6 system can be employed.

The strength of the equation then is measured on how well the relevant

predictions are made. 	 Such a framework can also free the model from the

requirement that the underlying corporate relationships be accurately

represented.	 Although this is not to say that intuitive or empirical

hypotheses should be ignored, as such beliefs can provide the basis for the

initial selection of explanatory variables. 	 Fromm and Hyman ? have developed

single-equation, reduced form models that are used to predict sales as a

function of various macroeconomic variables such as personal consumption

expenditures and changes in non-farm business inventories.

Generally speaking, the single-equation, reduced form format was the

procedure that was initially followed in the development of the airline

profitability model.	 Having determined that the primary purpose of the
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model is to provide predictions of profitability, or cash flows, the need for

a detailed structural, descriptive model was considerably reduced.	 At the

same time, a major consideration of the specification process was to account

for the basic variables that are suggested by the economic and regulatory

framework discussed in Section 2.

An example of a single-equation, econometric model that-evaluates

airline profitability was developed by Fruhan. 8	In short, Fruhan found that

the variables controlled by the CAB are more influential than those under

managerial direction: "The CAB exercises greater control over the relative

profitability of the carriers than do the carrier management groups

themselves."9

Not only does Fruhan's study reinforce one's intuitive belief that the

CAB exercises considerable control over carrier performance, but it also

provides an excellent discussion of many of the factors that are considered

important in the determination of carrier performance. 	 These factors will

be discussed shortly.

Having determined the purpose of the model, to predict profitability,

or cash flows, and that a detailed, simultaneous equation is not necessary;

the next step is to identify the operational, financial, and regulatory

variables that are likely to cause variation in the response term.	 Having

done this, the next step is to determine if the factors, that have been

identified can be quantified.

Figure 3.1, taken from Roy J. Pearson's discussion of airline

efficiency , gives a pictorial representation of the forces and relationships

that determine performance. 	 While most anal:*ses have focused on the lower
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box (operational, network, and economic characteristics), it is, in fact,

the interrelationship of all these forces that determine carrier

performance; for example, Delta Airline's ability to remain highly profitable

despite what some would argue are poor network and operational constraints.

In any event, to formalize the hypotheses that are implicit in Figure 3.1

requires consideration, at least, of specific variables that are

representative of each of the boxes that are shown. 	 The remainder of this

chapter will expand on each of the factors and discuss variables that have

been or could be used to represent a given area.

3.2	 Model Specification Dependent Variable (Profit Performance)

Selection of an appropriate measure of a firm's financial performance

rests upon individual assumptions concerning firm behavior. 	 While several

newer theories are based upon the belief that firms attempt to maximize

something other than profits, 10 it is not unreasonable to assume that on a

long run, total firm basis, the objective of management isstill to maximize

the return on the capital invested in the company by the owners of the

company's stock.	 Even if managers do not seek to only maximize shareholder

wealth, such a goal is bound to be of considerable importance. 	 It is

reasonable to assume, therefore, that airline managements_ will be directing

their decision-making and relationship with the CAB in the direction that

maximizes return on invested capital.

In addition, several other measures of profitability are often

r
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1

considered as appropriate indicators of firm performance and should,

therefore, be mentioned and viewed more closely before they are discarded

entirely.	 These include:

Profit Margin = Net Income/Sales

Return on Total Assets = Net Income /Total Assets

Return on Equity = Net Income/Shareholder's Equity

Expansion of the hypothesis that maximization of market value is management's

objective can be made by assuming that the value of the firm is the current

market value of all outstanding claims on the firm's future and present

cash flows.	 So that maximizing future cash flows will, in turn, maximize

the wealth of the owners.	 Since capital budgeting decisions are made on

the basis of an investments impact on firm value, via the present value of

the project estimated cash flows, total firm cash flows represent not only

a measure of firm value, but also a variable that can be useful in estimating

future capital budgeting decisions. 	 Consequently, using cash flows as a.

dependent variable also seems reasonable.

Turning to various choices of independent variables (or carriers),

several possibilities are suggested by the remarks in Section 2 as well as

by the model of Fruhan mentioned earlier. 	 In order to maintain some

Logical pattern of discussion, factors will be discussed in the context of

those areasdepicted in Figure 3.1. 	 As is illustrated by the figure, one

of the complications that must be faced when dealing with air transportation

is the interrelationships  among many of the factors, plus the need to

Before interest expense and taxes.

Cash Flow = Transport Revenues Operating Expenses
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aggregate the characteristics of many nonhomogeneous markets (long haul vs.

short haul, business vs. pleasure, dense vs. low density) into a single

measure.	 This requirement necessitates not only some flexibility but also

limits the use of some factors that have high intuitive appeal with

respect to their impact on profitability.

Nevertheless, proper definition of the conditions and circumstances

that impact upon a firm's revenues and/or costs should enable a model to be

constructed that explains a carrier's performance on a system-wide basis.

3.3 Operational, Network and Economic Characteristics

Perhaps the first point that comes to mind regarding this aspect of

profitability measurement is the pervasive control by-the Civil Aeronautics

Board (CAB or the Board) in the regulation, of pricing, entry and exit by

participating firms.	 While some operational variables are controlled by

management, the CAB has, in effect, taken many decisions out of the hands

of management and substituted regulation for traditional market forces.

The theory as to why such regulation is necessary will not be covered here

nor will the arguments pro and con for the elimination of regulation. 11

By controlling entry and exit to and from various city pair markets,

the CAB effectively controls the basic level of traffic demand each carrier

can address.	 In turn, the number of competitors that can participate

in any given market is also controlled by the Board.	 This leads to the

definition of several factors that one would intuitively expect to impact

on profit performance.

i
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3.3.1	 Competition.

The precise effect of added competition on the profitability of an

individual firm depends upon the assumptions that are made concerning the

oligopolistic behavior within the market being studied. 	 Ranging from an

assumption that competitors will maintain fixed output regardless of

production decisions by any single firm (Cournot) to the belief that firms

wili schedule (or price) collusively, decisions concerning certification of

rew carriers in a market can have varied results. 
12
	 In addition to

requiring assumptions relative to the competitive reactions of various

firms, additional assumptions are required concerning the specific nature of

demand in the market, to see if it is business (inelastic price elasticity

of demand) or pleasure (elastic price elasticity).

In general, however, the addition of carriers into a given,market has

generally resulted in a reduced market share and, therefore, lowered the

profitability of the incumbent airline.

Monopoly markets (defined	 be those where one airline has a market

share greater than 80%) generally allow for fewer flights and higher load

factors than would exist under more competitive situations.

Before too quickly assuming that competition, or a lack thereof, can

immediately lead to profitable operations, it is necessary to consider two

additional variables

s_
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3.3.2	 Stage Length

As was discussed in Section 2, break-even load factor, for a given

aircraft or for an entire system, decreases as stage length increases. Since

CAB fare calculations are based upon distance, longer stage lengths increase

revenues, although at a decreasing rate.

r

	

i.e.	 d^ > 0	
8 2 <'

0
6X

	

R	 revenues	 X = distance

Also, at longer stage lengths, costs per seat-mile or ton-mile are

considerably less, since the expenses (per seat-mile) associated with putting

capacity in . the air (crew wages, fuel, maintenance, depreciation) are

significantly reduced.

A carrier that produces 100 revenue passenger-miles consisting of

one passenger flying 100 miles will incur lower costs than a carrier that

carries one passenger 50 miles and a second passenger 50 miles.	 While the

output is the same, the ticketing, boarding, and unloading costs are, in

effect, doubled and the carrier with shorter stage lengths suffers

accordingly,

3.3.3	 Density

Increased demand, or density, not onl yy provides access to potentially

increased revenues but allows for more efficient utilization of aircraft.

Carriers operating in dense markets can, potentially, more easily attain (or

I	 ^
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exceed) break-even load factors (for a given stage length) on a larger number

of:flights.	 Carriers that, because of CAB regulation, are required to

serve various routes with a level of service not justified by the traffic

density are forced to provide costly service that is not covered by the

revenues they receive.

An important additional factor that is not explicitly defined in any

of the three variables discussed thus far is the significance of the

interrelationship among these three factors. 	 As Fruhan states:

"One might predict that a monopoly operation in a city pair
mark-et would be quite profitable. Such a prediction would
probably be in error if the total trip length in the city
pair market was less than 300 miles. 	 The prediction would
probably also be in error if the trip length were 2500 miles,
if only five passengers per day made such a trip." 13

For the moment, suffice it to say that these interrelationships should

be kept in mind when factors are quantified for use in a model.

	

3.3.4	 Concentration

Aggregation of traffic demand in a small number of markets should

allow for concentration of aircraft in these markets and thereby result in

a larger market`s'hare and increased profitability. 	 Aircraft are more

readily available to be scheduled to accommodate peak demarid periods,

support and maintenance facilities can be centrally located, backhaul

problems can be reduced, and aircraft can be "repositioned" over dense

routes rather than over lightly-traveled markets. 	 In those less dense,

isolated markets where service is required, small aircraft can be

operated infrequently, thereby keeping costs down.
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3.3.5	 Seasonality

The nature of an airline's seasonal demand and the inability to

maintain inventories to compensate for peak demand was covered earlier.

In short, once again, seasonality results in either underutilized capacity

during slack periods if fleets are expanded to meet peak demand; or lost

traffic if capacity is maintained so as to efficiently satisfy demand

during slack periods.	 With high operational leverage, unused capacity is

a burden that a profit-maximizing firm cannot afford.

The factors discussed thus far, in general, are affected by virtue of

the CAB's control of entry and exit by carriers in a given city (or region)

pair market.	 With the exception of the level of competition that can be

altered by managerial decisions concerning scheduling, aircraft choice, and

in-flight amenities, the number of competitors per route, the mix of long

and short haul routes, and the ability to draw from dense or spare routes

is regulated by the CAB. 	 However, as Pearson states,

"Any effects that the characteristics in the bottom box
(operational, network, and economic characteristics) may
have on profit performance are felt indirectly via their
combined effects on costs and marketing results." 14

3.3.5	 Yield

Since all certificated airlines are required to charge the same price

'	 for identical service, a more accurate measure of the revenue generating

strength of a carrier's system is the amount of revenue received per unit

of output. While an increase in this measure could possibly improve



R

profitability, the impact of yield (price) on the demand for travel

applicable to a particular airline depends upon the segmentation of demand

(business, pleasure, first class, coach, cargo, etc.) and the price

elasticities of these groups. 	 Assuming a relatively inelastic demand

curve, 
15 

an increase in yield should increase airline revenues.	 Again,

certain managerial decisions are available even with CAB-regulated fares;

managements are, free to choose which market segment to aim for (business,

pleasure, cargo, charter) and can, therefore, affect their yield.

Nevertheless, the CAB establishes the framework in which the corporate

manipulations are made.

With the caveat of Pearson, mentioned earlier, strictly in mind, we

shall move on to factors that are more directly under the control of

corporate management.

-	 3.4 Aircraft Productivity

Perhaps the single most important capital budgeting decision made by

an airline is the choice of aircraft type and the number to purchase.

Not only does this decision represent investment in assets valued from

$5445 million but, in aggregate, it also involves 50-60% of the totai value

of the firm's assets.

At a somewhat simplified level, airs raft are purchased to match design_

characteristics with the operational and economic factors discussed

16earlier. 	 As technology has made aircraft more productive via increased

9

a

)
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a
speed, or more seats, these factors, combined with greater fuel efficiency,

efficiency due to better engines and more efficient air foils, have allowed

unit costs to decline until recently, when fuel and labor costs have

skyrocketed.	 Thus, carriers that can employ more efficient, more

productive aircraft not only realize the benefits of lower unit costs, but

also are able to convey product differentiation (wide-body vs. narrow-body,

jet vs. prop) and more reliable, dependable equipment. 17

At the same time, newly introduced aircraft are not without their

problems, as they often require certain "break-in" periods during which time

costs have been higher due to mechanical difficulties as well as

unfamiliarity on the part of pots, mechanics, and ground handlers. 18

43.4.1	 Utilization

As a common indicator of aircraft productivity, utilization measures

each carrier's ability to match its capacity with the demand in the markets

it serves.	 In addition, however, it is also a reflection of the regulatory

process in that longer stage lengths (from CAB route awards) allow for

greater aircraft utilization.	 Assuming that utilization is also a function

of demand, carriers with seasonal networks are likely to have underutilized

capacity.	 A carrier with short stage lengths will, because of increased

ground handling time, taxiing, and so on, have its aircraft utilization

reduced, thereby requiring additional capacity to satisfy demand.

:
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Closely related to aircraft productivity is the productive capacity
z

of the carrier's labor force.	 The greater the productivity of the fleet,

the more productive the labor force. 	 As has been mentioned previously,

longer stage lengths not only allow for greater aircraft utilization, but

also spread the labor costs, which are basically fixed, over a larger I

ton-mile base.

The importance of employee productivity was clearly demonstrated in

a recent study of Delta and Eastern Airlines.
r

"Bearing in mind the similarity of routes, it is fair to
conclude that Eastern is 13-20% overstaffed by Delta
standards .... Eastern  should be able to service its system
With some 29496 employees or 5829 fewer than it has
A reduction of 5829 employees at Eastern's average salary
would save some $84 million." 19

r

Needless to say, it is imperative that sufficient demand exist to

Justify the utilization rate that is achieved.	 Flying empty aircraft in

order to maintain utilization rates is far more costly than allowing

aircraft to sit on the ground. 	 The latter, however, reflects serious

disparities between anticipated and actual demand, or severe seasonality.

Either case represents large fixed costs in the form of interest and

depreciation expenses that are not matched by any form of revenue.

Utilization, while clearly a function of stage length, reflects

management's ability to match supply and expected demand and at the same time

deal with the seasonality issues discussed earlier.

3_.5	 Labor Productivity
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And lastly, if a large proportion of output is produced in non-

scheduled service, labor costs can be significantly reduced, as this type

of service allows for certain economies of scale- in the provision of ground

handling and inflight services. (Of course charter service also provides

lower yields.)

Labor efficiency can also be greatly affected by the relationship

that exists beliseen the management and the various labor groups. 	 Table

3.1 shows the unions that are presently representing various categories of

workers at individual carriers. 	 Table 3.2 shows some of the strikes that 	 have

occurred at selected	 carriers since 1957. 	 As mentioned in Section 2,

work stoppage can severely affect an airline, and while the carriers have

responded to strike threats by forming a mutual aid agreement, the absence

of strikes and the ability to avoid mutual aid payments are certainly

advantageous.	 Of all the trunks, Delta Airlines stands out as having the

best labor relations and labor productivity reflected in the absence of

unions and strikes.20

Ultimately, both labor and aircraft productivity and the airline's

operational and economic characteristics manifest themselves in the cost

function that each airline faces. 	 It is at this point, as well, that the

entrepreneurial skill of individual managers is felt.
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TABLE 3.1 UNION REPRESENTATION OF AIRLINE EMPLOYEES

Flight	 _ _ _ Flight	 j

Airline	 - Pilots Attendants Mechanic: Dispatchers Engineers

American APA 1WU TWU TWU FEIA
E

Braniff -ALPA ALPA IAM ATDA
-

Continental ALPA ALPA IAN TWU ALPA

r
Delta ALPA PAFCA

Eastern ALPA TWU IAN IAM ALPA

National ALPA TWU* IAN TWU FEIA

Northwest ALPA IBT* IAM ALBA IAN
e

b

Pan American ALPA TWU TWU TWU FEIA

Trans World ALPA TWU TWU ALPA

United ALPA ALPA IAN IAN ALPA

I-
Western ALPA ALPA IBT TWU ALPA

!. Change in representation (last two years)

G

**Representation

_

activity
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TABLE 3.2 DOMESTIC TRUNKS STRIKES, 1957-1975

BN' .......... September 21 - 22, 1974

EA .......... July 8, 1966 - August 19, 1966

NA .......... September 18 - October 24, 1957

January 31 - May 26, 1970

July 15 - October 31, 1974

September 1 - December 31, 1975

NW .......... July 7 - 23, 1960

October 11 - December 31, 1960

January 1 - February 24, 1961

July 8 - August 19, 1966

June 30 - October 11, 1972

TW .........July 8 - August 19,	 1966

October 20 - 21, 1970
November 14 - December 18, 1973
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Since a fairly lengthy discussion of costs was given earlier, only a

few additional points will be made at this time.

Pearson, again, argues that 309 of airline costs lie outside

management's direct control (e.g., fuel and landing fees), while the

remaining 70% are open to executive constraints and evaluation. 21

Disaggregating in a slightly different fashion, 30-40% of total

operating costs are incurred on the ground in conjunction with servicing

aircraft. 
22
	 Of the remaining 60%, three components have dramatically

impacted on the cost of providing service and have significantly eroded

the initial gains that increased aircraft productivity provided.

3.6.1	 Labor Costs

Several factors have contributed to the increase in employee

compensation and the high wages paid airline employees (see Figure 3.2).

At the risk of some oversimplification, airline employees are generally in

highly qualified, technical professions that require considerable training

periods (pilots, mechanics, and, to a lesser degree, flight attendants).

Given the impact of work stoppages that has been previously mentioned, wages

are pushed upward by the demand that exists for a somewhat fixed supply of
assets.	 Although new pilots and mechanics can be trained, in the short

run they can exert significant leverage.	 Secondly, as a highly unionized
t

industry, the ability to present a more unified and powerful position on the

1
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part of individual occupations has contributed to the fact that employee

compensation in the airline industry now averages $20,000 per year and is

the highest of all major U.S. industries.	 Table 3.3 gives some

illustrative wage rates.

3.6.2	 Fuel Costs

The impact of the rising cost of fuel has manifested itself in several

areas of carrier operations. 	 First, as the average price of fuel has risen

160 percent,	 from 12 cents per gallon in 1973 to 32 cents per gallon in

1975, the portion of direct operating costs that this represents has

increased to around 35-40 percent (see Figure 3.3). 	 This has resulted in

numerous requests (and approval) for fare increases.	 In addition,
a

operating procedures (i.e., cruise speed, taxiing with engines shut down)

and schedules have been modified to reduce fuel consumption. 	 And lastly,'

higher fuel	 prices will accelerate the retirement of less efficient

aircraft, particularly in light of recent governmental directives concerning =A

noise and exhaust emissions.	 This, of course, harkens back to the remarks a

in the Introduction stating that some $60 billion will be required for

fleet modernization and expansion. 	 Where the funds will come from for

these aircraft brings us to the last major cost element.

F

a
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TABLE 3.3 ILLUSTRATED PAY LEVELS (WAGES ONLY)

a

July 1976

Low High Life of Contract High

B-747
Captain $69,400 (TW)  $77,500 (AA) $82,300 (EA) 1977

B-727
Captain $49,500 (TW) $57,600 (AA) $59,600 (TW) 1977

Flight
Attehdant $11,000 (TI) $13,000 (AA) $15,300 (AA) 1977

Mechanic $17,300 (TI) '$19,000 (UA) $23,000 (NC) 1978

Station
Agent $14,400 (BI) $15,300 (NW) $18,200 (NW) 1979

1

y

R

i

r
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Figure 3.3 Fuel Costs as percent of DOC

Source = Gordon Sim and Russell H. Hopps, "Commercial

Transports —Decade of Derivatives	 Astronautics

81 Aeronautics, February 1975, p.31.
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3.6.3	 Financial Costs

As a highly capital-intensive industry, carriers have required huge

amounts of funds to finance fleets that have not only expanded but become

increasingly more expensive.	 Since internally-generated funds have not

been (and will not be in the future) sufficient to provide the capital

requirements of the airlines, external sources have been extensively used to

finance aircraft purchases.	 However, highly volatile earnings (Figure 3.4)

have caused stock prices to fluctuate considerably and necessitated the use 	
I

of high volumes of debt capital. 	 In turn, the high financial leverage has

created even more volatile equity returns. 	 While airline industry stock

prices generally move together, differences in historical and expected

Carrier earnings, plus varying degrees of leverage, result in variations in

individual carrier's equity values. Investors' evaluation of each company's

Gash flow, growth opportunities, and riskiness of these flows are reflected

in the market value of a share of common stock. 	 This price, or market

value per share, is set so that investors receive a rate of return

commensurate with the risk of the investment. 	 Since the expected cash flows

vary from carrier to carrier, and growth estimates for each airline are

different, the risk associated with each carrier varies and in turn prices

cover a wide range.	 By comparing market values to book values of common 	 i

F

	 stock, it is possible to get a quick estimate of the expected productivity

of a firm's assets (see Table 3.4). 	 Since, in recent years, market values

have been les% than book values, carriers have turned to heavy use` of debt

i
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FIGURE 3.4
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TABLE 3.4 FINANCIAL DATA

Book Value (BV) Market Value (MV)

Per Share Per Share (Avg) MV/BV - Debt/Assets!

1968 1975 1968 1975 1968 1975 1968 1975

AA 18.78 18.05 30.13 7.63 1.6 .42 .48 .28

BN 4.11 8.37 20.5 7.13 4.99 .85 .55 .42

CO 7.81 13.04 14.5 5.25 1.86 .40 .59 .52 o
c

DL 11.17 26.07 30.63 33.38 2.74 1.28 .33 .28

EA 17.67 14.11 37 9.38 2.09 .66 .61 .47

NA 14.91 25.93 34.5 11.88 2.31 .46 .28 .34

NW 18.09 28.87 40.38 17.38 2.23 .60 .25 .20

TW 28.64 17.57 42.63 8.88 1.49 .50 .63 .51

UA
I

30.66 29.29 50 21 1.63 .72 .46 .26

WA 7.26 10.33 11.38 7.69 1.57 .74 .52 .25

lodus try
Composite 46.73 31.27 .67 .57 .38

N

3
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financing.	 At present, even debt financing has become more difficult as

the cost of debt has risen due to increased leverage and volatile, risky

earnings.	 Table 3.4 shows the ratio of debt to total assets for each

carrier.	 The high values for 1968 reflect the large debt commitments

resulting from the transition to all-jet fleets by the trunk airlines.

Although debt levels (as a % of assets) . have declined, increased risk and

other uncertainties make this form of capital generation highly expensive.

	

An indication of the increased cost of debt financing and a measure
	

a

of how close a firm is coming to financial embarrassment is given by the

times-interest earned ratio.	 These figures are given in Table 3.5.

The reduced availability of debt capital, plus its increased cost,

has resulted in the growth of leased aircraft and hybrid securities such as

convertible debentures, warrants, preferred stock and others.

3.7	 Marketing Efficiency

In an industry that produces largely a homogeneous product, the

ability of one firm to differentiate its service from that of its competitors

can provide a significant advantage.	 A variety of campaigns have been

conducted by airlines in an attempt to create the belief on the part of

consumers that their service is superior to that of the competition. 	
i

Since an airline would be hard-pressed to attract passengers if it

charged a higher price than its competitors for the same service, air carrier

marketing strategies have historically stressed areas of high consumer
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TABLE 3.5 INTEREST COVERAGE

G

3

1968	 1975

AA	 2.1	 0',

BN	 2.0	 2:6

Co	 1.4	 10

DL	 9.8	 5.1

EA	 .27	 0`

NA'	 17.6	 :68

NW	 24'.8	 2.7

TW	 1.26	 0

UA	 2.7	 0

WA	 3.0	 1.37

Interest coverage	 operating profit interest expense

1
4

I

A

1, 	 ..-..	 .-..........w..w..^.-,.a..^.---,.^^r,+.^n.a:.......ncwn-x:vsa^+r-w+m.....:... 	 .....___._. .. 	 _..-,.r....w+.vn
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appeal: namely, reduced flight times; increased frequencies; larger,

faster aircraft; and in fl fight amenities. 23

While pricing flexibility does exist in the form of night coach,

excursion, see-America, economy and super-saver fares among others, once

such a price is set by one airline it is almost always matched by the

competition. Reduced fares (they seldom seem to go up as a competitive

measure) are aimed at traffic stimulation more than diversion and

differentiation from the competition.

Of the management-controlled variables that constitute the so-called

"marketing-mix" (product, place, promotion, price), the majority of the

airline's efforts have been directed in the areas of product quality

(frequencies, flight time, ground and inflight services) and promotional

activities (advertising, promotions, travel agents).

Critics of airline advertising submit that airline advertising tries

too hard to differentiate that which cannot be differentiated. They

caution that much of this activity promotes an impression of luxurious

service and exquisite cuisine that does not exist. 
24
	 Instead, management

should concentrate on advertising and promotion that highlights service

features important to passengers and that are hard to imitate. 25



I

a

P
1

Although everyone agrees that firm performance can be altered by

3

1) increasing yields

2) decreasing costs

3) increasing load factors

they also concede that intrinsic managerial ability and effectiveness are

influential in ultimate performance. 	 The difficulty arises when one

attempts to quantify something as illusive as entrepreneurial skill.

Some attempts have been made to measure managerial effectiveness by
	

i

relating the total number of officers (VP's) and management to either total

employees or an indicator of output (such as ATM's or departures).26

While there is probably some strength in the hypothesis that a top-

heavy bureaucracy at an airline is indicative of inefficiency, it is not

easily confirmed statistically. 	 Again the often-compared Delta vs. Eastern

duo 
27 

makes a specific point of this issue and recent trends at Eastern

eliminating much top-heavy management would tend to lend support to the

theory.28

a
The last major factor that bears mentioning is the close relationship

that exists between the performance of the airline industry and the strength

of the national economy. 	 During periods of economic downturn or recession,

people tend to postpone travel; businesses cut back on company trips,. the

number of peoplesent on trips, and often change from first-class to coach

travel.	 These factors combine to reduce yields, and at a time when



inflationary pressures are causing costs to rise rapidly, profit margins all

but disappear.

Given the lag between delivery and ordering of aircraft plus somewhat

inaccurate forecasts of traffic growth, carriers generally order additional

capacity during periods of high growth in traffic demand. 	 Unfortunately,

these factors then contribute to the existence of excess capacity and high

fixed costs with extremely reduced revenue when demand declines during

economic recessions.	 In brief, this phenomenon of macroeconomic

fluctuations represents the ultimate in seasonality variations for the air

carriers.	 In this case, however, individual airlines are far less able

to adjust output or otherwise modify operations to deal with the reduced

demand.

3.9 Summary

In order to specify a model that is to predict profitability; one must

first identify those factors that intuitively should impact on an airline's

efforts to maximize profits. 	 On the assumption that management attempts

to increase demand and reduce costs within the constraints of CAB

regulation, this section has identified variables that are appealing and

amenable to quantification.

As the ultimate goal is the calibration of a model that predicts'

r	

profitability, a brief discussion of other corporate models is also

included.t

l



In the next section, the factors that have been listed here will 	 be

quantified and tested, via econometrics, to determine if the qualitative sa

^. hypothesis concerning their impact on profitability is verified J'i

statistically. +
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26. Ibid., p. 40.

27. See McIntosh, op, cit., p, 25.
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4.	 AIRLINE PROFITABILITY -- EMPIRICAL RESULTS

Having identified various factors that intuitively should have a

relationship to firm profitability, or cash flows, it next becomes necessary

to match one's intuition with the data that is available. 	 Generally, this

requires numerous tradeoffs between what is considered an ideal

quantification, available information ( either by firm or time frame) and ease

of collection.	 In addition, use of regression analysis requires certain

assumptions concerning the data being analyzed, the model that is specified,

and the error terms that result when the model is calibrated.

In all the model specifications that will be discussed, a linear

additive form was used such that the models were linear in the coefficients.

Various nonlinear transformations were also tested of individual carriers

(independent variables), implying that the relationship between the response

variable and the particular carrier is non-linear, whereas the coefficient

is not.

In addition, use of a linear, additive model implies that the

elasticity of the dependent variable with respect to a particular independent

variable is not constant over the range of observations.	 As a first effort,

such an assumption seemed reasonable. 	 The log-linear model indicates.

constant elasticities, and can only be used when all the values of both

dependent and explanatory variables are positive; this led to a change of
Y

definition of cash flow to include depreciation, such that all dependent

variables, were positive for individual carriers.

In selecting variables with which to specify the models to be

1I
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tested, the major thrust of the effort was to determine a quantifiable

measure that had as its foundation the factors discussed in Section 3. As

the modeling process proceeded, those variables that produced satisfactory

results were retained, while those with poor statistical strength were, at

least temporarily, removed from the model. 	 When new variables were added,

their selection was once again based upon their ability to relate to the

factors of Section 3.

For the most part CAB documents have been used to provide the

necessary data.	 Specific documents used have included the following:

AIR CARRIER FINANCIAL STATISTICS

Passenger revenues

Transport revenues

Maintenance expense

Promotion and sales expense

General and administrative expense

Depreciation

Total operating expense

Operating profit

Interest expense

Net income after special items

i	
Total assets

r	 Long-term debt	
w

Shareholder's equity

.y



J

}	 x

AIR CARRIER TRAFFIC STATISTICS

Revenue passenger-miles

Revenue ton-miles

Available seat-miles

Stage length

Aircraft revenue hours

AIRLINE OPERATING STATISTICS

Employment	 {

WORLD AVIATION_ DIRECTORY & TRANSPORT WORLD

Fleet size t

STANDARD & POOR'S INDUSTRY SURVEYS AIR TRANSPORT

Load factor -- actual ton- mile i,

Load factor --" break-even

t 4.1	 Specification 1

s

This specification was based upon quarterly observations covering

the period first quarter 1968 through second quarter 1975. Utilizing a
t

standard, additive, linear regression, several dependent (or response)

variables were regressed against various combinations of independent-,variablesY

drawn-from the factors of Section, 3.

For the initial ` regression two carriers, Delta and Eas.tern, were



used because of the similarity of their route systems and the fact that they

represented extreme points in terms of profitability (Delta - high, Eastern -

A	
low).

In addition, for each carrier various measures of profitability

('discussed below) and alternate methods of q uantifying certain independent

variables were tested.	 Specific details for each of these measures are

discussed later in this section.

The dependent variable can be measured in one of several ways:

is

DEPENDENT VARIABLES	 {;

Profit margin (PM)*

Return on total assets (ROA)

Return on equity (ROE)

Return on invested capital (RTNO)

net income (after special items but before interest)_
where RTNIN = invested capital

and invested capital = long-term debt + shareholders' equity

_.	 Again, relying on the discussion in Section 3, independent variables

were selected and quantified as described in the following section.

*Defined in Section 3.2, pp. 84-87

1

k

S

3 
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4.1.1	 Independent Variables

'4.1 .1 .1	 'Competition

i

On the assumption that each carrier will be attempting to maximize

its market share and hence profits in its top ten markets, an aggregate

measure was developed based upon traffic in these city pairs.	 As a high

market share in a dense market would impact more heavily on profitability

than an equal market share in a less dense market, a weighted average was

used.	 Selection of markets was based upon a variety of factors including

route density, stage length, and the market's relationship to the carrier's



F An-94 urth 191 	 ning

TRPj = total number of revenue passengers flown in all of

carrier j's top ten markets by all carriers

10
TRP. =	 E RP.

J	 i=1	 i

Lastly

Ms i .
J.
 = carrier j's market share in market i

10.
CMPA =	 E (RPi/TRP.) x MS i .

i =1	 J	 J

In addition, revenue passenger-miles were also substituted for revenue

passengers in a second specification. 	 So that

10
.JCMPB	E (RPMi /TRPMj ) x MSij

	

4.1.1.2	 Length of Haul

Average domestic stage length.

4.1.1.3	 Density

3

Again using a carrier's top ten markets, a ratio was formed by dividing

the total revenue passengers carried by all carriers in carrier j's top ten

r markets by the total revenue passengers in the top ten domestic markets in

the U.S.
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TRP .

0 TRPT

TRPj = as defined before

TRPT - total revenue passengers in top 10 markets in the U.S.

4.1.1.4	 Concentration

r

Aggregation of traffic demand into a small number of markets should

allow for concentration of aircraft in these markets.

Therefore

CONC = TRPT/RPM

TRPT = as defined

RP.	 = as defined
J

}

	

	 Revenue passenger-miles were also substituted for revenue passengers

in4oth numerator and denominator.

4.1.1.5	 Seasonality

g

Several methods were available to measure the factor of seasonality.

Each was tested in various calibration attempts.

(a) Seasonality	 revenue passengers in peak month of quarter

revenue passengers in mininium month of quarter

(b) passengers in peak moth passengers in minimum

month

W	 _

1
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7

1

4.1.1.6	 Yield

The factor of yield is simply revenue per revenue passenger-mile on

scheduled services, i.e.,

YLD	
passenger revenues

revenue passenger miles

4.1.1,7	 Utilization

Allowing for the fact that various aircraft are not distinguished from

each other, utilization per day is = aircraft revenue hours
total f eet x 0

4.1.1.8	 Equipment Quality

With certain misgivings and qualifications, depreciation expense was

used as a surrogate for this variable. 	 Since depreciation is a function of

several factors (age, cost, arbitrary depreciation schedules, salvage value,

aircraft type), the variable is viewed, at least as presently quantified,

with some skepticism.

4.1.1,9	 Management Quality

i Again, general and administrative costs were used as a surrogate for

this important, yet almost intangible quality.

s
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4.1.1.10	 Advertising

The variable of advertising was measured in a variety of ways in order

to capture the influence of additional advertising dollars.	 Promotion and

sales expense, which covers a broader scale than pure advertising, was used

and this fact was not considered to seriously affect the influence of product

differentia ;^ion that was trying to be captured.

ADV s	
revenue passengers

promot on and sales expense

4.1.1.11	 Financial Status

r

A variety of ratios are available that measure several aspects of

a firm's financial strength.

(1) Leverage	 debt/shareholder's equity

(2) Interest coverage = gross income/interest expense

(3) Liquidity = current assets/current liabilities

(4) Debt service = interest expense/operating expenses

(5)
Value = market value per share common stock

book value per share common stock

Results of regressions for Delta and Eastern are given in Table 4.1 	
4

3

together with a description of each term in Table 4.2.

Despite the acceptable R2 , the remaining summary statistics indicate

the need for adjustments and modifications to this specification (low F

statistic, high standard error). 	 It is felt that much of the difficulty can

be attributed to the high degree of multi col l i neari ty. rthat exists between	 f

S



EASTERN
Run 1 Run 2

Variable Coeff.	 (t) Coeff.	 (t)

CMPA 0.508	 (1.51) --

CMPB -- -0.182 (-1.73)

L l 0.0011	 (1.45)
4

7.88 ('2.85)

D
1

0.604 (2.02) -0.408 (-0.743)

CONC 1 -0..4703	 (-0.89) --

cONC 2 -- 0.510 (2.04)

U -0.76E-5 (0.030) 0.035 (0.21)

UTIL -- --

Y 2.62	 (1.82) -0.272 (-0.40)

MQ -4.02 (-0.088) --

A 1.76	 (1.90) 1.93	 (1.39)

DS 3.26	 (1.31) -0.953 (-0.59)

E -2,,36	 (-1.10) -	 .0159 (-0.50)

EQUIP -- --

SIEAS I -0.03	 (-0.21) --

CONSTANT -1.54 (-2.06) 0.000285 (2.69)

R 0.70 0.82

F 1.97 2.10

Std. error 0.0317 0.0320

D4 1.72 1.79

Mean of PM 0.0324 0.0392

I

TABLE 4.1	 RESULTS OF REGRESSION RUNS

*	 FOR EASTERN AND DELTA

1



Run 1 Run 2
Variable Coeff. (t) Coeff. (t)

CMPA 0.164 (0.388) --
CMPB -- -0.585 (-2.78)
L l 0.000173 (0.786) -0.286 (-0.63)
D1 1.15 (2.31) -0.844 (-0.287)
CONC 1 -0.23 (-3.40) --
CONC 2 -- -0.556 (-1.69)
U' 88.90 (2.28) -.0.176 (-2.08)
UTIL -- --
Y -1.11 (-0.91) 01.163 (1.01)
MQ -0.105 (-1.21) --
A 0.856 (1.62) 1.15 (2.18)'
DS -0.267 (-0.016) -2.42 (-1.50)'
E -0.880 (-1.56) -1.64 (-2.93)
EQUIP -- --
SEAS 1 -0:631 (-0.86)

3
--

CONSTANT -.213 (-0.31) 0.672 (1.40)

R2 0.82 0.80
s'

F 3.73 4.94
Std. error 0.0282 0.0268
D-W 2.46 2.09
Mean of PM	 0.118	 0.118

r
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TABLE 4.2 VARIABLE DESCRIPTION

10 RP.
CMPA = S TRP . MS j

a

10 RPMi
CMPB,	 iE l TRPM]	ii

3	 3
L. =	 E L./3	 (L = Z L. for one DL equation)

i =1	 ii=1

TRP j

D1 - TRPT

TRPM.
D2	T	 where TRPM] = total revenue passenger miles in carrier j's

top ten markets, flown by all carriers

TRPMT = total revenue passenger miles flown in top
ten markets in U.S.

CONC1 = TRPj/RPENj where RPEN = revenue passenger enplanements by
carrier j, all markets

CONC2 = TRPM/RPMi where RPMj = revenue passenger miles by carrier j
in all markets

E Ili

a

asj

SEAS =
peak month en lanements	

(EA only)1	 minimum month eno anements



i 	 -1 ?7-

i

TABLE 4.2 (concluded)

r

r

V	 -	 M1f CLI. IIIQ1 I I%11.IIa11bz %.VQ1.J/a 11 bIQI4 1CVCIJUC IIVUIa

EQUIP = 1/depreciation expense

MQ	 _ general and administrative costs/available seat miles

A	 = RPEN•/promotion and sales expense

DS	 = interest expense/transport expenses

Y	 = transport revenues/RPM	 A

R

E

y

I
Y

1-

i
 F

r
F

I	 •.
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many of the variables.	 This would, in turn, cause high standard errors

for the estimated coefficients ( s i ' s) and subsequently lower t-statistics.

Nevertheless, it is noted that for Run 1 of both Delta and Eastern,

the D1	(density) variable is positive and significant, indicating increased

available traffic has caused profitability to increase, other things being

held constant.

The variable CMPB, competition, is also relatively significant for

both carriers and indicates that increased competition has reduced

profitability, as one would expect from economic theory.
ti

Lastly, advertising (A) shows results that indicate this factor could

be of significant influence, perhaps slightly modified by a transformation.

In this specification, one can tentatively assume that product

differentiation, via promotion and sales effort, does influence profitability.

As mentioned earlier, several other potential measures for the

dependent variable were formulated, as well as alternate quantifications for

some of the independent variables.

Regression runs were also made using these variables in an attempt

G
to develop a statistically stronger equation. 	 No single criteria was used

to measure this strength, but many factors were weighed. Among these were

RZ (multiple correlation coefficient), F statistic, standard error of'the

regression (SER), plus the sign and t statistic-of individual estimates of

coefficients.	 Combinations of variables were selected based upon the

information provided in the regression output (the factors listed above plus

the correlation matrix) and intuitive beliefs regarding the various factors.

Since Delta and Eastern may 'represent erratic behavior, two additional

{
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airlines (American and Braniff) were also calibrated.

Results of various runs are given in the next section.

1

4.1 .2	 Results

t

4.1.2.1	 American

RTNIN -.14	 +	 .0106 UTIL	 -	 .0051 ADV	 +	 .0023 LEVG	 + .125 LGTH

(1.8)	 (-1.1)	 (.34) (1.9)

f

- .12 CMP 1	+	 .044 DNSTY	 -	 .0022 YLD (4-1)

(-.93)	 (.79)	 (-.44)

{ a

R2 	.60 F = 2.6	 SER = .010	 DW = 2.19	 MEAN OF RTNIN .0035

4.1.2.2	 Braniff

RTNIN	 = -	 .12	 +	 .U04 UTIL	 +	 .0024 ADV	 -	 .0038 LEVGE +	 .034 LGTH

(1.82)	 (2.74)	 (-.87) (1.4)

+	 .024 CMP1	+	 .137 DNSTY	 +	 .0032 YLD (4-2)

(.65)	 (1.98)	 (1.27)

R2 _ .88 F = 13.2	 SER	 .0028	 DW _ 2.86	 MEAN OF RTNIN .0152,

)

l
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i
4.1.2.3	 Delta

ROE _ .05 + .035 ADV - .032 YLD - .001 VALUE - .208 CMP 	 (4-3)

	

(2.2)	 (-2.5)	 N.07)	 (-2.7) .

R2 	 .49 F = 3.9 SER	 .024 MEAN OF ROE _ .068

4-.1.2.4	 Eastern	 l

ROA = - .104 + .005 ADV + :049 ONSTY - .004 LEVGE + .003 VALUE

(3.3)	 (2.0)	 (-1.0)	 (1.2)

	

+ .083 CMP	 (4-4)

(3.0)

.69	 F = 6.7 SER = .0049 MEAN OF ROA = .0067

The results given here are not the only specifications that were

tested.	 Various combinations of dependent and independent variables were

tested with equally poor results.

In general, the additional airline results are consistent with the

initial calibrations. 	 While the R2 are acceptable, and several variables are

significant and of the expected sign, high standard errors of the regressions'

and low F statistics persist. . Of the significant variables, advertising

remains the strongest, although the problems of multicollinearity can-be

causing the t statistics of individual variables to be reduced.

i'
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-4.2	 Specification 2

Specification. 2 was tested in an effort to address several of the

shortcomings of specification i by retaining, when possible, those factors

that had performed well and, at the same time, adding measures that were not

explicitly included in the model.

4.2.1	 Modifications to Specification 1 i

The first major modification was the shift to annual observations in

place of a quarterly time period. 	 It-was felt that annual observations

would eliminate many of the seasonality biases that existed previously, and

would better relate the decision variables that were being used to the profit

maximizing goal of the management.

4.2.1.1

Both density and competition could not be.used due to data

availability.	 Although competition was significant in one specification for
i

i

Delta and another for Eastern, it did not perform well in later

specifications for either American or Braniff.	 In addition, as alternative -

measures of profitability were tested, the competition variable often became-

negative (which is contrary to economic theories of firm behavior) oris

insignificant for an airline for which it had previously been acceptable.
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i

3

Consequently, it was felt that the competition variable, as presently

measured, lacks the robustness necessary for continued inclusion in the model.

Re-examination and calibration of this variablenmre	 the several stepsa	 among	 rs ea	 ep,

that should be considered to strengthen the model.'
^,

f

As mentioned above, data limitations forced elimination of the

density variable as it was presently measured. 	 In this specification various

measures of individual airline activity, such as total departures, enplaned 3.

passengers and total revenue passenger -miles were substituted as instrumental

variables in lieu of density.	 While the results were generally below

x
acceptable standards, the variable was carried, in concept, to specification

3 where the results were generally more encouraging.

4.2:1.2

Additional explanatory variables were added to include several of the ,.1

` factors discussed in Section 3 that were not used in the quarterly_

specification.

4.2.1.2a	 Costs

In general this variable represents the impact of increased airline

productivity on unit costs due to the introduction of faster, larger atircraft,
y

^. and more recently due to automation in some ground services. 	 While in some

cases the reduction in cost was lost to increased wages, or fuel, or moreFs

flights, other airlines have been able to capitalize on the trend of cost

F

reductions shown earlier i n Figure 2.1.	 This variable measuresthe average

•.... >., ,	 s 	 _ ._..,_.Y .. xa ,.:;: he	 —.:^	 a^timts' '#C'S..^# "-s^-tea	 -'.+i^*',-4^a^8+^^'^X.z` =.rmra"w.	 _
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N

f

cost per unit of output and is equal to operating expenses per available

ton-mile.

4.2.1.2b	 Labor Efficiency

As discussed in Section 3, increased labor productivity indicates more

production use of labor inputs with the corresponding reduction in cost due

to fewer salaries needing to be paid. 	 This variable implicitly measures

the carrier's ability to effectively manage and motivate its employees by
a

measuring the number of available ton-miles "produced" by each.

4.2.1.2c	 General Traffic Growth

This variable, general traffic growth, measures the trend in passenger

growth that has prevailed over the past ten years and assumes that a certain

portion of each airline ' s change in profits has been the result of this

trend.	 Although most forecasts have proven to be woefully inadequate, those

airlines that can accurately predict this growth and match their capacity to

the traffic level can take advantage of the higher operating leverage that

exists in the industry.

4.2.1.2d	 Macroeconomic Activity
t

Both the inability to inventory output and the face that air travel is

a 'derived demand make airlines highly susceptible to fluctuations in the

national economy.	 In this case several aggregate measures, as well as some

more closely tied to average individual economic well-being, were tested in

order to track the influences of the business cycle on the fortunes of the
0

airl ines .	 The measures used included:

(1)	 Gross National Product ( Real and Nominal') as a measure of the

overall strength of the economy as a whole,

^t

u<

r_
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^ J

(2)	 Gross National	 Product Per Capita (Real and Nominal) normalizes 	 p

., GNP so as to measure increased output per capita that would result from

higher business production and not merely more activity.

(3)	 Personal Consumption Expenditures.	 This measure views the

overall economy from the opposite side of the equation and measures the 	 r

economy's well-being from the point of view of individual willingness to

purchase goods and services rather than save.	 In the belief that increased

consumer activity stimulates business activity, which increases the desire

for business and pleasure travel, increased personal consumption translates

into higher demand for air travel.

(4)	 Money Supply ( M2).	 This measure is defined as cash, coin, bank

deposits, and time deposits; the supply of money is closely tied to

fluctuations in GNP and interest rates. 	 Increased M2 will lower interest

rates, while a larger GNP will increase the demand for money. 	 Although the	 W

money supply is controlled by the Federal Reserve 6ank , it was felt that an increase

in the money supply will signal a stronger economic situation and will result

in increased demand for the airlines.

f

4.2.1.3	 Data Base Expansion

A last major change to this specification of the model involved
a

expanding the available data base to include both time series and cross-

section observations. 	 However, since data pooling requires one to assume

that the cross-section parameters remain constant over time, it was

considered necessary to reduce the original time frame that we considered._

3
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Specifically, the time frame 1957-1975 represents one of considerable change

in airline fleet composition, as the carriers moved to all-jet fleets. This,
r'

in turn, caused the model to deal with major changes in underlying cost

functions, aircraft scheduling, utilization and other factors.

Consequently, for specification 2 the time period is reduced to include

only 1965-1975.

4.2.2 Approaches to Pooled Regression

s

Various approaches are available to deal with the specification of

pooled cross-section and time series data.	 First, ordinary least squares

can be performed on the entire data set.	 Second, one might assume that

omitted variables may lead to changing cross-section and time series inter-

cepts; as a result a binary variable can be added for each cross-sectional

unit and each time period.	 This, of course, results in some loss in degrees

of freedom when the calibration , process begins.	 This is often referred to

as a covariance model.	 Third, one can employ the so-called "error-

components" model that essentially assumes the error term of the regression

can be divided into a times series component, a cross-section component, and

an overall component.l

In other words
j:

eit	
ui + vi + wit

where

ui	the time series component

vi	the cross-sectional component



l

and a
y

' wit	 =	 the time series and cross-sectional components
1

It is also assumed that each element is distributed according to }

a Gaussian distribution with zero mean and variance equal to a u2 , av 2 , and

2
11W

respectively.	 And lastly, as with ordinary least squares, each

component is not serially corr^-fated nor correlated with another element;

consequently, 
eit 

is homoscedastic.

The error components model assumes that 'the mean effect of the random

x time series and cross-section variables of the covariance model is included

i

in the intercept term and the random deviations about the mean are equated to

the error components u i and vi .2

For the purposes of this study, the first two approaches will be used

{
s

as an initial approximation of the true specification of the model.

As was the case with specification 2, additions and modifications_ to

the response and carrier variables were also investigated so as to allow for

evaluation of the numerous factors that were discussed in Section 3.

In this case, operating profit, or cash flow, equal to total transport
ti k

revenues less operating expenses, is used as the response variable.	 Since

S

firms evaluate investment alternatives based upon expected cash flows from

that project, sellers of goods can measure potential customer willinggess and

ability to purchase their product by evaluating the change in the buyer cash
s

flow their product will produce.	 For example, airframe manufacturers

determine their production schedules and decisions based upon future sales of

aircraft.	 An airline's decision to purchase a given airplane is theresult

of an evaluation of the net impact or cash flow of a given aircraft„
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Historically, new aircraft have meant increased prod

operating costs per seat mile.

4.2.2.1	 Additional Independent Vari

In addition to evaluating operating profit as

several new independent variables were added to the n

These included:

4.2.2.1a	 Non-Scheduled Revenue 1

In this case the assumption is that airlines t

l

tt

ty and lower

a

i

- 2

!ependent variable,

specification.

1 es

=1y a large number

hand, charter flights are generally undertaken in times of slack scheduled

demand and, thus, as long as the yield covers variables costs (fuel and

landing fees), they make a valuable addition to total profits.	 Some

international charters, however, are conducted on a "regular" basis at prices

that make no contribution to the fixed costs.

4.2.2.1b	 Actual Load Factor

As defined earlier, this factor represents the ability of management

to match capacity with expected and realized demand. A carrier can influence

its load factor by attracting additional traffic due to effective advertising

or aircraft scheduling, or it can adjust the size of aircraft serving a given 	 Y
Y
9A	 city pair.	 Of course, if size or frequency fall too low, passengers are

turned away to the competition.

E

:
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4.2.2.1c	 Break-Even Load Factor

Defined to be the point where costs are just covered by revenues,

the break-even load factor ratio is a function of the average cost of

producing the schedule of flights and the revenues that are generated by

these flights.

4.2.2.2	 Preliminary Results -- Pooled Time Series and Cross-Section

As an initial regression, the following results were obtained:

PROFIT = .102 ADV + 7666 LFA 	 9609 LFB	 320 LABOR

(.83)	 (4.09)	 (-4.72)	 (-1.87)

+ 69.3 GNP	 234338	 (4-5)

(2.8)

R2 - .22	 SER = 54816	 DW - 1.01	 MEAN OF PRFT = 47222.6 	 F(5.94) = 5.41

One immediately notices the low R2 and the high value for the equation's

standard error.	 This is probably due to heteroscedasticity, or nonconstant

errors across observations, which is a common difficulty when dealing with

cross-sectional data.	 Also, when one considers the volatility of the

airlines' profits, such a result is not surprising (see Table 4-3)..

Lastly, the OW statistic indicates that in addition to nonconstant

errors, serial correlation is also present.

With respect to individual terms,somewhat surprising is the low t

statistic for the ADV term that previously had been significant in other

specifications.	 No explanation is immediately evident for this result.

Concerning the other terms, all are significant and of the expected

sign with the possible exception of LABOR (i.e. labor efficiency = available

z



n-139-

TABLE 4.3	 OPERATING PROFITS($000)	 1965-1975

DOMESTIC TRUNK AIRLINES

1

Mean Standard Deviation

AA 46,832.9 41,850.7 1
BN 21,607.5 10,591.3

CO 24,402.3 8,689.9

OL 85,878.5 27,798.9

EA 55,356.7 69,364.7

NA 85,119.7 128,342.5

NW 56,836.4 47,422.9

TW 6,962.3 59,979.1

UA 73,758.6 47,238.9

WA 19,114.4 14,295.7

All
Trunks 47,222.6 60,316.6

i

..

f5y	 '
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a

ton-miles per employee). 	 While one would expect an increase in labor
	 a

productivity to result in increased cash flows, the negative sign indicates

the opposite.	 Only if output reached excessive levels would excess capacity

(or productivity) produce reduced cash flows. 	 As the airlines are often
	

)

accused of excess competition in the form of added frequencies, perhaps the

negative sign is not totally erroneous.

Calibration of the model using a binary variable for each airline

did not improve the equation's statistical strength and did not contain any

significant terms among the various firm's "dummy" variables. 	 Although the

results are not reproduced here, the values for the firm intercepts varied

widely, illustrating the considerable variation in the profitability of

individual airlines.

4.2.3	 Mallows C Criteria	 r
p

Several techniques exist that can be used to further analyze the

data set.	 However, rather than employ these methods on the specification of

equation 4•-5, it was considered more prudent to once again modify the list

of response variables and employ a method that selects the "best" subset

of explanatory variables.

Simply, this technique, known as Mallows C p criteria, selects this

best subset from a given list of carriers by measuring the "total squared
a

error" as estimated by the C  statistic. 	 That is, the C  statistic measures

the sum of the squared biases plus the squared random errors in Y so that
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RSS
Cp2	 - N + 2p

S

where

RSSp = residual sum of squares with p terms in the equation

S2	 = estimate of a2 , the population variance

N	 = number of data points

p	 = number of parameters

In using the C  criteria, one looks for subsets of variables that

generate a value of C  near p (i.e. there is little bias) and C  is itself

small .3

4.2.3.1	 Other "Stepwise" Algorithms

Several other so-called "stepwise" algorithms are available to analyze a

various subsets of variables.	 However, these procedures need to be viewed

with caution.	 For example, in a forward stepwise procedure an independent

variable is selected based upon its partial correlation with the dependent

r variable; when a successive variable is selected, the partial 	 correlation

of each variable in the equation is calculated, given the other variables that
3

are present; if one of these term's.. partial correlation is below a given

level, that variable is removed from the specification: 	 This creates the

situation where, for example, x 2 can be eliminated because its partial

correlation with the dependent variable y is decreased because of the

addition of a highly correlated second variable x 3 .	 However, if x3 is }
i

subsequently eliminated, x 2 is not reintroduced,and the cause for x2's
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elimination is no longer present.

By utilizing the C  criteria this difficulty is avoided, more than

one specification is offered as being among the "best" and the model builder

is allowed a certain amount of latitude in determination of the model.

Since computer software is available to easily perform regressions

on subsets of parameters and calculate the corresponding C  statistics,

it is easy to quickly calibrate the set of "best" regression from which

the most effective can be selected.

4.2.3.2	 Additional Independent Variables

Before this selection procedure was conducted, a few modifications

were made to the list of explanatory variables.

4.2.3.2a	 GNP

Although GNP was significant in equation 4-5, throughout the

calibration process there have been difficulties with multicoilinearity

between it and other variables.	 While the results of equation 4-5 are

encouraging, another measure was substituted for GNP in order to avoid

these difficulties.

4.2.3.2b	 Revenue Passenger-Miles

In lieu of GNP, changes in total industry revenue passenger-miles was

"	 chosen to represent the influence of changing macroeconomic activity on the

airline industry.	 Measured as both a percent and a cardinal value, passenger

travel can be assumed to reflect both the business and pleasure traveler's

response to fluctuations in the economy.	 t

3

J

a
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4.2.3.3	 Results Using the C 
P 

Criteria

1 11.

Among the specifications selected was the following:

PRFTA	 1416.74 + 9.459 ADVA - 22.77 ATMTA - 34.77 NSATMA

(2.87)	 (-2.77)	 (-5.38)

+ 223.51 YLD - 118.56 AVCOST - 151.72 LEVGE + 73.55 LFA

(3.43)	 (-8.'97)	 (-2.29)	 (6.59) (4-6)

R2 = .55	 R2
 
= .52	 F = 16.41	 SER = 419.3 MEAN OF PRFTA - 472.22

where

PRFTA	 operating profit (105)

ADVA	 promotion and sales expense (106

ATMTA	 total available ton-miles (108

NSATMA	 non-scheduled available ton-miles

YLD	 yield (/RPM}

AVCOST	 average cost (t/ATM)

LEVGE	 debt to equity ratio

L FA	 actual load factor

Ironically, neither measure of growth was selected in this

s peci fi cati on

Otherwise, the specification is quite satisfactory.

(1) Considering the fact that pooled observations are used, an

of .52 is not unreasonable.

(2) The standard error of the regression, while still high relative

•

J
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to the mean, is less than the standard error for operating profits of the

i industry (see Table 4.3).

3	 Individual var i ables are si ni i	 and	 the(	 )	 a	 g	 f cant a	 of	 proper sign.

(a)	 A one-cent improvement in yield will cause a larger increase

in operating profits than the corresponding decrease due to a one-cent

increase in costs.

(b)	 Although leverage does not directly affect operating

profits in the present period, past and current investment decisions do

depend on financing.	 As a result, many airlines have been forced to forego

investment opportunities because their financial structure has created

excessive risk and raised their cost of capital. 	 In that this prevents

expansion or modernization, it can potentially reduce operating profits.

(c)	 A 1% increase in actual load factor can raise operating

profits by $7 million.	 On average, this is probably a reasonable number. {

4:2.4	 Evaluation of "High Leverage" Data Points-

Following an initial specification by least squares, it is worthwhile

to determine if single observations exert unusual influence or leverage on

the calibration of the model. 	 Although this is normally accomplished by

examining bivariate scatter plots, when Cie number of parameters exceeds

two these plots are less than clear.

i
As an alternative, it is possible to use the "hat matrix" to identify i

high leverage points (see Appendix C). 	 Employing this technique on the

present data set reveals the high leverage points given below.
)

i

K
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Continental = 1966, 1967

Delta	 = 1974

K	 Eastern	 = 1966*, 1967*, 1974

National	 = 1973, 1974

Northwest	 = 1972
*	 *	 points with standardized

TransWorl d = 1970 1974
residuals >2

United	 = 1973

In addition, discrepant values can also be detected by examining the

standardized residual for each observation and considering the elimination

of those wi th r' > 2.

Ideally, having identified points as high leverage observations,

they should be investigated individually to determine if any adverse effects

result when the equation was fit.	 In other words, arbitrary elimination

of observations can reduce the precision with which coefficients are

estimated.

Despite this caveat, due to external limitations and the belie` that

aii a first cut the impact of removing all twelve points would be minimal,

this was the procedure that was followed. 	 After an initial run it was

found that the ATM variable was not significant, so that it was removed as

well.	 This then resulted in the following equation':

i

I`



PRFT _ - 1163.8 + 10.14 ADV - 20.97 NSATM + 109.31 YLD

t	 ( 3.5)	 (-2.16)	 ( 4.54)

- 61.81 AVCOST + 54.16 LFA - 160.92 LEVGE

(-4.54)	 (6.23)	 (-3.3)

2

(4-7)

R	 .46	 F = 11.77	 SER = 279.59	 MEAN OF PRFT = 411.36 	 DW = 1.65

While elimination of the discrepant, high leverage points reduces the

SER from that of equation 4-6, the change in the coefficients of YLD,	 .

AVCOST, and LFA exceeds one standard deviation of their estimate and would

therefore warrant closer scrutiny of individual observations than was

conducted here.

In any event, the latter equation seems to represent an improvement

over the previous one

3

4.2.5	 Heteroscedasticity

As was mentioned previously, when dealing with cross-sectional data

heteroscedasticity is often a problem.	 One possibility is to transform the

data by dividing each observation by the standard error of the residual that

was obtained from the least squares solution. 	 This, in turn, results in

4error terms that have constant variance.

i'

1
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Since the model also contains time series observations, it also

becomes necessary to consider the problem of autocorrelation. 	 As discussed

previously, several techniques are available to deal with autocorrelation

such as Cochrane-Orcutt (employed here) and others.5

In testing the ability to correct for these conditions, first

heteroscedasticity was addressed, then serial correlation, then both.

Adjustment for Heteroscedasticity

PRFT' _ - 2.02 + 3.35 ADV' - 6.14 ATM' - 21.5 NSATM' + 100 YLD'

(1.08)	 (-.78)	 (-3.5)	 (1.94)

70.25 AVCOST' - 166.26 LEVGE + 52.0 LFA	 (4-8)

(-3.91)	 N3.36)	 (5.98)

R2 a .45	 SER .70	 F = 9.57	 MEAN = 1.01	 DW = 1.65

The high standard error and the large changes in coefficients tend

to make these results subject to some doubt.

Adjustment for Serial Correlation

Using the Cochrane-Orcutt technique to re-estimate equation (44)

gives the following results

PRFT* _ - 1310.75 + 12.35 ADV *	21.63 NSATM* + 121.29 YLD*

(1.76)	 (-3.2.7)	 (2.16)

a
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64.49 AVCOST - 164.28 LEVGE * + 56.78 LFA*	(4-9)

( -4.28)	 (-3.0)	 (5.82)

R2 = .47	 F = 12.28 SER = 276.47	 DW 2.08 MEAN = 407.63

where

*
PRFT	 = PRFT - pPRFT - 1

ADV	 = ADV - pADV - 1

*
NSATM	 - NSATM - pNSATM - 1

*
YLD	 = YLD - pYLD - 1

*
AVCOST = AVCOST - pAVCOST - 1

*
LEVGE	 = LEVGE - PLEVGE - 1

LFA	 = LFA - pLFA - 1

p	 = .187

(1.77)

Based upon the results of equation 4-9 it would appear that

elimination of the serial correlation is much more effective in improving

the forecasting ability of the specification than is correcting for

heteroscedasticity.	 Although the standard error is still larger than one

would ideally hope for, again given the volatility of the industry's profits

t
and the earlier results;, equation 4-9 is a better forecasting tool.

NOTE: R2 Statistic

A note should be added at this point concerning the R2 statistic for

this equation.	 When dealing with time series data, one normally finds a

I	 __

1-
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higher R2 because one variable growing over time is likely to do a good job

explaining another variable growing over time. 	 However, in cross-section

regressions, a low R2 does not necessarily indicate an unsatisfactory model

since the variation across observations is much larger, thereby reducing

the percent of the variation explained by the same subset of variables.

The R2 statistic is only one of several variables used to evaluate a given

regression and it should not be considered the ultimate test of a

specification's strength to forecast given new data.

4.2.7 Correction for Serial Correlation and Heteroscedasticity

This estimation simply combines the procedures of (1) data transformed

by dividing each observation by the residual standard error and (2)

adjustment for serial correlation using Cochrane-Orcutt.	 However, since

the results of these modifications did not differ significantly from those

of specification 4.8 they will not be repeated here.

As a result of these modifications, the strongest specification would

appear to be the pooled time series cross-section model that eliminates high

leverage points and contains a correction for serial correlation.	 Given the

relatively low SER and strong explanatory variables, this model should

provide better forecasts. than the previous specifications.
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4.2.8	 Individual Airline Equations

In contrast to the final portion of the preceding section, where the

model was calibrated based upon pooled data, in this section we return to

the task of estimating an equation for each individual airline.

Once again using the C  criteria, a model is selected from the

designated "best" regressions and used not only as a forecasting tool for

each airline, but also as a means of comparing one air carrier with another.

Table 4.1.1 gives the set of independent variables that were considered.

While variables remain essentially the same as earlier specifications

(Section 4), minor modifications were made based upon available data. These

changes are not considered serious.	 In addition, the period of observation

for individual trunks was re-established to 1957-1975.	 Although the

problem remains concerning the impact of fleet modernization on airline

operations and management, it is considered less serious than in the pooled

data set.	 Given the paucity of observations for each trunk airline, the

need to expand the data base was considered more important than the problem

of jet additions.	 Rather than discuss the variables for each carrier

individually, the results for individual airlines will be given first,

following which will be an evaluation of the separate terms.

q

I
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TABLE 4.1.1	 INDEPENDENT VARIABLES

Advertising (AD)	 = promotion and sales expense x (106)

Yield (YLD)	 = passenger revenue per revenue passenger

mile M

,Leverage (LEVGE)	 = debt to equity ratio (book values)

Labor productivity
(LABOR)	 available seat mile/employee

Average cost (AVCOST) = operating expense/available seat mile

Actual load factor
(LFA)	 = revenue passenger miles/available seat

miles

Money supply - M2
(MS)'	 = coin and currency plus time deposits plus

demand deposits

Passenger growth
(GROWTH)	 = increase or decrease in revenue

passenger miles

% passenger growth
(PERCENTG)	 percent change in revenue passenger miles



TABLE 4.1.2 INDIVIDUAL AIRLINE COEFFICIENTS AND t-STATISTICS

LOAD
CARRIER ADV YLD LEVGE LABOR AVCOST FACTOR M2 GROWTH % GROWTH

AA -24.1 976.1 -- -- -1186 97.9 13.3 .369 -31.1
(-3.19) '-(6.9) (-4.0) (5.7) (2.9) (2.0) R.2)

BN 7.26 -- -25.7 -.76 -142.7 10.8 3.1 -.09 --
(3.13) (72.0) (-4.4) (-3.3) (3.0) (7.2) (4.1)

CO -11.6 -- -- -- -- 15.0 3.0 -- -3.9
( =3.77) (2.3) (5.2) (-.91)

DL 16.3 761.9 333.2 -3.4 -2029 57.8 6.1 -.30
cn

(3.96) (4.3) (2.9) (4.7) (-6.2) (5.6) (1.9) (-2.5)

EA -- 582.8 -- -- -1213 62.9 1.5 -- --
,(2.4) (-4.1) (4.0) (2.0)

NA -- -- 576.6 -- -1113 47.5 -- -- --
(2.8) ( -16.0) (3.3)

NW -- -- 451.2 -- -1372 72.6 16.8 -.53
(1.3) (4.9) (4.3) (2.6) (-1.7)

TW -.19.48 871..0 -17.6 1.49 -930 40.5 6.2 .75 -21.1
( -5.28) (5.8) (-2.2) (2.8) (-3.9) (1.8) (2.5) (3.8) (-1.6)

UA 10.5 2270 470.9 -- -4021 287.1 -- -- --
(7.03) (8.1) (2.6) (-9.6) (8.1)

WA -- •246.5 -- -- -498 39.2 .70 .15 -18.8
(3.2) (-6.3) (6.9) (2.7) (2.1) (-3.1)

y

'.
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4.2.9 Analysis of Individual Variables
a

g 4.2.9.1	 Advertising

is

The variable of advertising appears in six of the ten equations for the

4	 trunk airlines.	 For Braniff, Delta, and United, the sign is positive and

would imply that increased advertising has had a positive effect upon

x	 operating profits.	 If size of coefficients is any indication, Delta's

advertising could be assumed to be more effective as it would have a larger

incremental influence on the size of profits.

In contrast, American, Continental and Trans World have negative

coefficients in their calibrated equations, indicating that increased

advertising has not only failed to generate additional traffic, but has

actually reduced operating profits.	 Although this conclusion is somewhat

questionable, TWA's "Lasagne Over L.A." campaign with a high-priced movie

personality and Continental's "We Move Our Tail" have been found offensive

by many people and not pertinent to the product attributes that the public

is purchasing.	 Of course, the specification may be improper and erroneously

causing the improper sign.

Insofar as those carriers where advertising does not appear (EA, IAA,

NW, WA), there is no immediate explanation for this absence.

f
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G

4.2.9.2	 Yield

' 	 The "yield" term appears in the equations of the so-called Big Four (AA,

1	 EA, TW, UA) plus Delta (now included in the "Big Five"), and Western.
1

While yields are, of course, critical to any form, it is interesting to note

that the large carriers are at least statistically connected to this variable. 	 3

With their large capital investment, and operating leverage, these airlines

are potentially confronted with more sparse routes, increased scheduling

problems, increased costs and heavier reliance on higher yields to break

even.

4.2.9.3	 Leverage

T

Although leverage, or the financing mix of the firm, does not directly

impact upon operating profits, financial policy does impact upon past and

future investment decisions and the firm's ability to expand or modernize

fleets.	 Interestingly, the three carriers with the lowest percent of their

capital in long-term debt (DL - 36%, NA - 34%, NW - 15%) have positive

coefficients on the leverage variable. 	 This would seem to say that these

carriers have been able to resort to debt issues on a limited basis; have

therejy avoided high interest expenses and used equity financing to support

fleet additions.	 Because they can use debt to increase stockholders'

returns without approaching a state of financial distress, these carriers

have been able to better match aircraft operating characteristics and costs

with their route systems
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United Airlines also appears with a positive sign, and although their

percent of debt capital is 54%, their finances have generally been in good

enough shape to acquire the needed aircraft.

Of the two airlines with negative coefficients, one (TWA) is not at all

surprising given its debt level of 71%, while the second (Braniff) is

somewhat of a mystery.	 Also in doubt is why this variable did not enter the

equation for Eastern, with a debt level of 63%.

r, ^`
M "I

4.2.9.4	 Labor Efficiency

The results of the variable for labor efficiency are felt to be as

much a result of the carrier's route structure as the productivity of the

carrier's employees.	 TWA, for example, with long domestic and international

routes, obtains a positive coefficient, while Delta and Braniff, with much

shorter routes, are left with negative coefficients.	 On the other hand,

Delta is frequently cited as a high labor-productive firm, free of much of

the influence of uni ons.

4.2.9.5 Average Cost

The variable for average cost (AVCOST) appears in the estimation for

all airlines except Continental.	 Once again, there is not an instantly

obvious reason for the omission in that equation. 	 In all other cases the

variable is negative, as expected, and the coefficients range in value from

-142 for Braniff to -4021 for United.	 Based upon the range of results, it
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does not seem possible to attach any particular significance to the size

of a given coefficient relative to a particular airline.

4.2.9.6	 Load Factor

As would be expected, load factor increases cause operating profits to

increase.	 Again, although it is difficult to attach any particular

significance to the relationship between a given coefficient and the

respective operating characteristics of the appropriate airline, some

tentative inferences might be drawn concerning the nature of the load factor

increases and their influence on profits. 	 For example, American as a

predominantly business-oriented carrier might expect increases in load

factors to result in larger changes in profits since full fares (possible

first class) will be paid. 	 Or, taking Northwest with many long-haul

monopoly routes,•an increase in load factor would be expected to have a much

larger effect.

And lastly, United with its large network could expect a system-wide

improvement in load factor to have a large impact on profits; which the

coefficient indicates it will.

4.2.9.7 Money Supply

As is often stated, the variable of money supply for the airlines tends

to fluctuate quite significantly with the state of the economy. 	 The results

for all carriers (except National and United) confirm this factor. Why these

ON MOM 0".jv
	 ..	 x



-157-

two were omitted is considered to be due more to statistical shortcomings

w	 in model specification than it is to lack of general correlation with the

economy.

4.2.9.8 Growth

The variable for growth produces somewhat mixed results, since one

would intuitively expect increases in revenue passenger-miles to result in

increased profits. 	 If a carrier were unable to absorb the increased traffic

due to fleet limitations, a problem of inadequate supply would result.

However, for the carriers with a negative coefficient (BN, DL, NCI) this is

not the case, and in fact, is quite the contrary.

4.2.9.9 Percent Growth

The results of the variable for percent growth seem to touch on a point

made several times previously, that the airlines have generally had

difficulty forecasting traffic growth, and have often been left with

insufficient or excess capacity. As a consequence, rapid changes in traffic

growth result in lost profits due to inadequate equipment.

f

4.3 Specification 3

r As in specification 2, annual data for individual airlines were used,

covering the period 1957 through 1975. 	 Bearing in mind that forecasts of
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profitability were to be produced using forecasts of independent variables,

'w	 the following explanatory variables were dropped, either due to poor

i	 explanatory power or due to high correlation with other explanatory variables

and difficulty in interpreting the coefficient sign:

k

(a) Labor efficiency

4
(b) Money supply

(c) Growth

(d) Percent growth

Explanatory variables retained were:

(a) Yield

(b) Leverage

(c) Average cost

(d) Load factor

(e) Advertising

Two additional factors were tested, namely Revenue Passenger Miles

(RPMS) and Non-Scheduled Revenue Passenger Miles (RPMNS). 	 The dependent

variable definition remained as total transport revenues less operating

expenses.	 As before, Mallow's Cp criterion was used to select the "best"

set of explanatory variables.	 A linear form of equation was appropriate

for every airline except Continental, where a log-linear form was possible

(the airline had a positive cash flow in every year) and significantly

improved both fit and ,interpretative power.
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'	 4.3.1	 Individual Airline Results

k

Coefficients, t-ratios and R 2 values are given in Table 4.4.

R'	 Independent variables are defined as follows:

PRFT	 = (transport revenues - operating expenses) x 105

YLD	 =	 per RPMS

'	 AVCOST = ¢ per available seat mile

LEVGE	 = debt/equity ratio

LFA	 = actual load factor M

RPMS	 = scheduled revenue passenger miles

RPMNS	 = non-scheduled revenue passenger miles

RZ ranged from 0.73 for both American and Western to 0.97 for Northwest.

4.3.1.1	 Yield

This variable appeared in every "best" equation but Braniff.	 A	 t

3
positive sign in front of the coefficient is to be expected, especially

S

accompanied as it was for almost every year of the period, by traffic growth.

There was a slight tendency for the big-four carriers' t-ratios to be

higher than the rest, stressing the importance of yield changes to their

performance.
3

_

yam..
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4.3.1.2	 Average Cost

. 1.

This appeared (with negative sign) in all equations but Continental,a nd add

T-ratios for National, Northwest, TWA and United were high.

4.3.1.3	 Leverage

This factor was only significant in the case of Continental, where it

had a negative coefficient and Northwest, where it had a positive

coefficient.	 It is unclear exactly how leverage affects profitability.

High leverage allows some airlines to make use of profitable investment

situations that would not otherwise be possible, though at the higher cost

of debt versus equity financing.

4.3.1.4	 Load Factor

Load factor was significant for all airlines except Continental. All

equations had a positive coefficient for 'this variable, which, assuming no

change in yields, one would expect.

4.3.1.5	 Scheduled Traffic 	 -

Changes in the level of scheduled RPMs were a factor in explaining

changes in profitability for all airlines except Eastern and TWA.- There was



I
I

coefficient was observed in each case.	 Traffic growth had been achieved

over most of the period by the positive stimulus of continuing GNP growth.

If traffic growth can only be achieved by price cutting and yield dilution,

increasing carrier market share in terms of economic and total market

recession, this positive relationship between traffic and profitability

would be expected to change radically.

4.3.1.6	 Non-scheduled Traffic

E

This variable was included in the equations for Continental, Eastern,

National and Northwest, in each case with a positive coefficient. 	 This

would be expected as long as the beneficial effect on costs through better

utilization was not outweighed by yield dilution.

4.3.1.7	 Mul ti col 1 i neari ty

The individual airline equations were selected so as to reduce

multicollinearity to a minimum, without too much loss of goodness of the

overall fit.	 Individual simple regression coefficients (r) between

independent variables were generally well below 0.80, though in some cases

(EA) they exceeded 0.90 for the relationship between yield and average cost.

This indicates that the airline may have followed closely a cost plus method

of pricing, on the assumption that its targetmarket was particularly price

inelastic.	 Multicollinearity was generally acceptable for forecasting

i

r
a
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	 purposes, though for analysis and control the model should be further

improved.

4.3.2	 Total Domestic Trunks

q

3

PRFT	 -62788.0 + 8891.1 YLD - 14219.2 AVCOST + 1044.3 LFA

	

(+5.88)	 (-7.47)	 (6.02)

+ 1702.1 LEVGE + 0.541 RPMNS

	

(1.70)	 (5.51)

R2 	0.87	 2 = 0.82	 F	 16.94	 Cp = 6.43 {

The results for the domestic trunk aggregates over the same period

were similar to the individual airline models, with the exclusion of RPMS.

Multicollinearity was only present to any degree between yield and avcost

(r = 0.81).

4.3.3 Comparison of Continental in Log and Linear Forms

(a) PRFT	 648.0 - 52.62 ADV 	 4791 LEVGE + 241.2 AVCOST

	

(-3.28)	 (-2.43)	 (3.16)

+ 0.413 RPMS

(3.48)

Cp	 2.73	 F	 7.03	 R2	0.67	 R2 _ 0.57

M
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TABLE 4.4 TABLE OF COEFFICIENTS AND t-RATIOS
i

Dependent = PRFT

YLD LEVGE AVCOST LFA RPMS RPMNS

American 1435.93 -- -2277.03 140.60 0.042 --
(3.70) (-5.46) (4.71) (2.43)

Braniff -- -- -112.76 19.95 0.089
(-2.42) (3.92) (8.38)

Continental 5.077 -0.976 -- -- 0.428 0.365
(2.53) 4.12) (2.24) (4.77)

Delta 431.69 -- -851.18 45.23 0.067
(2.02) (-3.48) (3.67) (5.12)

Eastern 570.78 -- -1075.43 66.26 -- 0.376
(2.69) (-3.94) (5.03) (2.83)

National 144.72 -- -492.67 33.76 0.093 7.98
(1.93) (-7.06) (8.00) (4.93) (3.16)

Northwest 303.39 162.96 -684.63 62.96 0.060 0.362
(4.23) (1.90) (-6.50) (12.22) (3.37) (5.28)

TWA 751.92 -- -1807.71 112.89 -- --
(3.48) (-7.77) (7.15)

United 2335.19 -- -3682.68 240.80 0.061 --
(6.99) (-8.75) (7.79) (6.38)

Western 215.15 -- -391.54 27.01 0.043 --
(2.38) (-4.73) (5.34) (4.84)

* Log-linear-equation

I' n
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(b) LOG(PRFT) _ - 3.79 + 5.08 LOG(YLD) - 0.98 LOG(LEYGE)

(2.53)	 (-4.12)

+ 0.43 LOG(RPMS) + 0.37 LOG(PRMNS)

(2.24)	 (4.77)

Cp = 5.00	 F = 41.55	 R2 = 0.92	 _R2 = 0.90

In the linear model, both the overall goodness of fit was poor and the

coefficient signs for advertising and average cost were contrary to

expectation.	 Furthermore, yield was not significant in explaining changes

in profitability.	 Advertising has been omitted entirely from the log-linear

model, and the results are much improved.

4.4 Specification 4

The success with the log-linear model form for Continental under the

previous specification suggested avenues for further research.

As stated previously, in order to convert the data to log form it is

necessary for positive values to appear in each year. Unfortunately, this was only

the case for the dependent variable (PRFT) for Braniff, Continental and

Delta.	 No problem was encountered with independent variables. The other

airlines incurred losses in the following years:

AA	 1970, 1973, 1975

EA	 1960, 1961 1962, 1963, 1973 1975

NA. 1959, 1960, 1961, 1970

NW 1972
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TW	 1957, 1958, 1961, 1970, 1971, 1973, 1974, 1975

UA	 1970, 1975

WA	 1969, 1975

By changing the definition of profitability to exclude depreciation

from total costs, a positive value was obtained for all airlines in every

year (except for National in 1970 due to a long and damaging strike and

American and TWA in 1975).

Profitability (PROF) = transport revenues - operating costs +

depreciation.	 This revised definition of profitability represents a measure

of internal cash flow which would be a major determinant of both capital

investment expenditures and the ability of the firm to obtain further

outside finance.	 A number of studies have used similar measures in

explaining investment expenditure.6

The independent variables remained unchanged from the previous

specification, other than dropping advertising expenditures.

a
Model form: y	 60X1  1 . X2$2. X363 .... X m an +

Log transformation: log y a log SO + a, log X I + 0 2 log X2 + ...0

4.4.1	 Individual Airline Results

A comparison of Table 4 . 5 with the previous results shows a marked

w2improvement in R	 Other than TWA which will be discussed below, -01 ranged
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TABLE 4.5 TABLE OF COEFFICIENTS AND t-RATIOS

PROF = b0YLD b I • MOST 
b2 

LFA b 3 RPMS b
	 b
4RPMNS 5 LEVGE 

b 
6

YLO AVCOST LFA RPMS RPMNS LEVGE R2

American 5.84 -6.39 4.65 0.76 -- -- 0.97
(8.20) (-12.87) (9,02) (12.01)

Braniff -- -1.18 3.54 1.32 -- -- 0.96
(-2.23) (3.91) (13.57)

Continental 2.70 - -- 0.69 0.19 -0.44 0.97
(3.35) - (9.00) (6.09) (-4.64)

Delta 5.41 -4.53 3.63 0.97 -- -- 0.996
(8,42) (-10.21) (11.07) (28.19)

Eastern 4.37 -6.38 5.50 1.20 -- -- 0.90
(2.15) (-4.51) (4.41) (7.33)

National 8.44 -6-.76 5.44 0.54 -- 0.90
(3.00) (-5.07) (2.97) (1.71)

Northwest 3.67 -4.33 3.19 1.07 -- - 0.95
(3.58) (-6.44) (6.80) (9.15)

TWA* 670.3 -1603.3 81.2 -- 0.25 0.74
(2.42) (-5.37) (3.49) (2.16)

United 9.66 -9.19 8.72 -- 0.40 0.78 0.85
(4.62) (-5.48) (4.27) (7.11) (2.38)

Western 5.37 -5.28 4.46 0.77 0.12
(4.86) (-7.49) (5.65) (10.58) (2.52) -- 0.96

i

Linear model.
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from 0.850 for United to 0.996 for Delta. 	 Yield was significant in every

model except Braniff.	 All coefficient signs were correct and multi-

collinearity was very similar . to the results of the previous specification

(3).	 For forecasting purposes, then, the equations appear at a first

glance more than satisfactory.

TWA

After obtaining unsatisfactory results in running the data for TWA in

log form (omitting 1975), it was decided to revert to the linear form with

every year included.	 The goodness of fit of the final equation was still

well below the other airlines (R 2 = 0.74), but no furhter improvement was

possible.	 Possible reasons for those results are:

(a) TWA's large international operations

(b) Cargo operations not included explicitly in the model

Analysis of Individual Variables

One of the advantages of the log-linear form is the comparability of

coefficients.	 If other variables are held constant, it can be easily

observed from the table that a l% increase in yield has a very much greater

impact on profitability for United than Continental.

YLD 1% yield increase produced following increase in profitability:
5

k^

United	 10.

National	 8

American	 6'

Del ta 	5: K

Western	 5	 1.
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in profits:

United

Easter

Nation

Americ

Wes teri

Delta

Brani f

Northw
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t Eastern	 4

Northwest	 4

Continental	 3

MOST 1% decrease in average costs produced following increase in

profits:

United	 9

National	 7

American	 6

Eastern	 6

Western	 5

Delta	 5

Northwest	 4

Braniff	 1
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Traffic	 1% increase in scheduled traffic produced following increase

in profits:

%	 i
Braniff 1.3

Eastern 1.2

Northwest ` 1.1

Delta 1.0

Western 0.8

American 0.8

Continental 0.7

National 0.5

Multicollinearity Strong relationships between independent variables

seriously impair the ability of the model to explain changes in the

dependent variable by changes in each of the independent variables,

individually.	 From this point of view, the best equations were for

Continental, Northwest and, to a lesser extent, TWA, National and Delta,

where. multicollinearity was least in evidence.

Yield and average cost were positively correlated in many cases, and

scheduled traffic and load factor negatively correlated. 	 The highest single

correlation coefficient (r) was 0.94 for Eastern's yield and average dost

and -0.84 for Braniff's traffic and load factor.

1	 ^.

i

,f.
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5.	 CONCLUSIONS AND RECOMMENDATIONS

The purpose of this report has been to develop individual airline

models for the ten U.S. trunk airlines which could be used for the analysis,

forecasting and possibly the control of profitability.	 While one should

conclude that the final models presented under specification 4 were found

to be most suitable for forecasting, as well as having a very strong

theoretical underpinning, some of the earlier specifications also gave

results that had interesting implications.

At all stages in the work, variables have been added to or subtracted

from the model according to both intuitive sense and also empirical results.

Some of the variables eventually withdrawn, such as aircraft utilization

and length of haul, although useful for management control purposes, did not

at the aggregate or system level provide sufficient agreement with actual

variations in the data.	 Others such as advertising and leverage fitted the

data relatively well, but gave ambiguous results in terms of causation.

All variables, both dependent and explanatory, which were used in the

calibrations of the four model specifications, are listed in Table 5.1.

Specification 1 was calibrated on quarterly data, 2 on both pooled (cross-

sectional and time series) and cross-sectional alone data, and the remainder

on annual data.	 Certain explanatory factors such as management quality

are almost impossible to quantify. 	 General administration costs were

considered as a proxy with little success. 	 Few would agree that management

quality and continuity have not been vital factors in the profit performance
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^ over the period of the study.of both Delta and Northwes 

Perhaps the single most difficult problem from a statistical and

interpretive point of view is the fact that many of the factors that are

intuitively important in influencing profits, also exert influence on

another factor.	 Otherwise referred to as multicollinearity, the pervasive

presence of this condition seriously affected the estimated coefficients

in 'many cases, although it also confirmed one's prior opinion that many of

the factors important to a successful carrier are interrelated. 	 As a

statistical alternative, the technique of orthogonal polynomials should

perhaps be tried to address this issue.

In order to further improve the model, the problem of simultaneity

should also be addressed. 	 Mentioned briefly in Section 4, the fact that

several independent variables are also potentially a function of the

dependent variable requires that additional structural equations should be

specified.	 Not only would this deal with the causality issue, but it

would also provide useful insights into factors that influence higher actual

load factors or determine average costs. 	 For example the preliminary

results that actual load factor is negatively correlated with passenger

complaints is one such observation. 	 Techniques such as two-stage and

three-stage least squares or simultaneous equations could be used to provide

the additional, corrected estimates.

As with any statistical model, the results should not be taken as

inviolate truths that can perfectly and effortlessly predict the operating

profits of an airline. 	 They can, however, be used to draw inferences

concerning the influence of a given factor and as such provide a tool for

ly.
ly

r
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TABLE 5 . 1 SUI'MARY OF VARIABLES TESTED

k

Variables Spec. 1	 Spec. 2	 Spec. 3 Spec. 3 Final

Y: Dependent:

t	 i

1 Profit margin x #

Return on assets x
Return on equity x
Return on capital x

Operating profit x x x
Cash flow x

Explanatory:

Competition x
Length of haul x
Density x
Concentration x
Seasonality x-
Yield x x x x x A
Utilization x
Equipment quality x
Management quality x
Labor productivity x x
Advertising x-- x x x
Debt service	 - x
Liquidity x
Leverage x x x
Non-sched x x x x
Load factor x x x x
Capacity x
Traffic x x x x
Costs x x x x
Breakeven L/F x
GNP x
Money supply x
Traffic growth x .,

h

i
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management to be used in the evaluation of various decisions concerning

the operation of the firm.	 Above all, the models can be used to generate

forecasts of airline profitability, thereby providing aircraft

manufacturers, regulatory authorities and others involved in the future of

the air transport system with a useful guide to the future.
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APPENDIX C
a

THE HAT MATRIX	
9

i

(See Hoaglin, D.C., and R.E. Welsch, "The Hat Matrix in Regression and

ANOVA Harvard University and MIT, January 1977.)

A
Recalling that estimates of B, g, are defined as

9

$ _
(X	 XTXT 

and

Y = SX

so that Y = X(XTX)-1XTY

and the hat matrix, H. = X(XTX) -1 Xr

By calculating the diagonal elements of the H matrix it is possible to

identify points that are significantly influencing the fit.

As an approximation, these diagonal elements, h i , can be obtained as

follows
r.

h
i
 = 1 - ^*

r 

where r  = least squares residual

ri	= predicted residual

Using 
2N 

as a cutoff point (P = number of parameters, N = number of

observations), "high" leverage points can be identified.

E It is also useful to examine the residuals themselves in order to detect

outliers.	 However, as Welsch and Hoagland again point out, in order to allow
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for differences in the variances of the residuals, one should look at the
,f

standardized residuals where

r.	 _	
-- ri

(S	 1-hi

ri g = standardized residual

r i,	 least squares residual

S2	residual mean square

h i	= diagonal element of hat matrix.


