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EVALUATION OF SHUTTLE TURBOPUMP BEARINGS

by

K. F. Dufrane and J. W. Kannel

April 6, 1979

INTRODUCTION

NASA and the Rockeydyne Division of Rockwell International are

developing long-life turbopumps for use on the shuttle. Because of the

re-usable design of the shuttle, lifetimes of 27,000 seconds (7.5 hours)

are being sought. Since most turbopumps to date have operated for periods

of on the order of only hundreds of seconds, the desired lifetime is a

significant extension of technology. The mainshaft support bearings are of

= 1.
	 particular concern in this regard. In support of these efforts, Battelle's

Columbus Laboratories (BCL) undertook the one month study described in this

report to examine a used pair of bearings. The examination was similar to
z:

that conducted previously on a set of bearings under contract NAS8-32987.

The two bearings examined were run in high pressure turbopump (HPTP)

No. 9103. A total of 5403 seconds of running were accumulated, most of

which was at 100 percent output (approximately 28,000 rpm). The running

included 19 starts. The bearings are angular-contact ball bearings, applied

as a preloaded pair, locked to the shaft, inner race rotating, with the outer

races permitted to move unrestrained axially over a limited distance (i.e.,

the bearings are intended to provide radial location only). The bearings

examined in the study were from the turbine end and were identified as fo-!.-)ws:

Bearing	 Bearing Serial
	

Bearing Part
Position	 Number
	

Number

3	 8517903
	

02602-2DRS007955-001

t	 4	 8517900
	

02602-2DRS007955-001

i
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Battelle's specific objectives in the study were:

(1) Perform a visual, scanning electron microscopy

(SEM), metallurgi:.al, and dimensional analysis

of the bearings (as needed).

(2) Estimate the nature and magnitude of the loads

applied to the bearings based on the contact

patterns.

(3) Recommend further analytical efforts required

(including an estimate of magnitude of costs)

and any design, material, or lubrication

changes that will improve the durability of

the bearings.

SUMHARY AND RECOMNDATIONS

Examination of the bearings produced conclusive evidence that a very

high axial load (at least 27,000 N [6000 pounds]) had been applied to bearing

8517903 during a significant portion of the service time. The high loads

caused serious ball and race wear and surface fatigue pitting. In all likeli-

hood, continued operation of this bearing with the high axial load would have

caused increasing deterioration and catastrophic failure. In contrast, bearing

8517900 showed much less deterioration and probably had experienced only the

axial loads deliberately applied by the preload spring. Bearing 8517900

represents the beat-case operation with the loads controlled to the levels

intended in the design.

Fatigue life calculations on bearing 8517903 with an axial load of

27,000 N (6000 pounds) showed the intolerance of the bearing to such load

levels. The predicted Ll fatigue life was only 20 minutes (1200 seconds).

This extremely short life indicates that the bearing was grossly overloaded.

The theoretical prediction was partially confirmed by the Dresence of surface

fatigue spalls in the ball-contact band of the inner race. Continued service

would enlarge these pits, and their presence, along with the wear bands on the

balls, would result in increasingly rough bearing operatics. Eventually the

retainer would deteriorate and complete catastrophic failure would _follow.
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This probabl y would have occurred in a relatively short additional time of

operation.

Based on these findings, we make the following specific recommendations:

(1) Make the assembly or design modifications

required to insure that no high axial load

levels are applied to the bearings. The

high load experienced by bearing 8517903

must have resulted from an outer race

lock-up or operation at the extreme limits

of axial travel. Both possibilities should

be explored to identify the cause.

(2) Reduce bearing curvature from 0.53 to 0.52

on both races to reduce contact stress and

enhance transfer film lubrication.

(3) Initiate a bearing design program at Battelle

to include:

• Transfer film evaluation

• Bearing pretreatment evaluation

• Bearing configuration design analyses

• Bearing test recommendations for

Rocketdyne [see (5) below] to develop

reliable bearing tests that simulate

actual operation.

(4) Conduct a research evaluation on the hydrogen

pump bearings of the type presented here for

the oxygen pump bearings.

(5) Conduct a matrix of bearing tests at Rocketdyne

to optimize bearings for both the hydrogen and

the oxygen pumps. Parameters should include:

• Race curvature as per (2) above

• Pretreatment of bearing components

• Precoatings such as sputtered films

Of MoS2.
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COMPONrN7 INSPECTION

Bearing 8517903 Examinations

Races

^V

The inner race of bearing 8517903 showed evidence of considerable

distress when examined at low magnifications. Three distinct continuous

bands were present, which resulted from contact with the balls. Extending

from the chamfer on the largest inner race diameter was a smoothly worn

band approximately 2.97 mm (0.117 inch) wide. Its color was grey to brown

'.	 in patches, which probably was a combination of oxide layers and transferred

TFE from the retainer. By placing a ball from the bearing in this portion

of the race, the use of transmitted light showed that the wear (and Doss:bly

&-formation) was sufficient to change the race curvature to match that of the

ball. Extending away from the smoothly worn band was a 2.08 mm (0.082 inch)-

wide band consist-r ug of numerous fine pits. Finally, a third polished narrow

band 0.69 mm (0.027 inch) wide completed the ball contact track. Since the

bands did not vary significantly in width or location, apparently the synchro-

nous radial loads were not high compared to the axial loads in service.

Scanning electron microscopy (SEM) was used to examine the details

of the race wear. Typical areas are presented in Figure 1. In Figure l(a),

the larger pits appear to be shallow fatigue spalls that progressed from right

to left in the micrograph. The wear features shown in Figure 1(b) were aligned

with the direction of rolling. The surface consisted of a series of furrows,

which were probably caused by mild adhesive wear with the balls, and scattered

fine pits.

Metallographic sections were prtiared across the inner race to measure

the depth of the spalls, to determine whether any fatigue cracks extended into

the bulk material, and to measure the microhardness as an indication of

maximum operating temperature. A r icrograph of a section through one spall

is presented in Figure 2. The spalled region was approximately 2 ym (80 micro-

inches) deep. The micrograph also shows that a crack had progressed into

the surface and to the right from the bottom of the spall. The crack progressed

y	 along the carbide-matrix interface or through the carbides themselves. This

9
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spell probably would have tripled in width and reached a depth of 6.3 um

(250 microinches) in a short time of additional running. Microhardness

readings taken on the metallographic section just under the worn surfaces

{{>
	

could detect no reduction in hardness from the bulk hardness. Since 440 C

stainless steel requires a tempering temperature of 204 C (400 F) to begin

to reduce hardness, temperatures of this level were not attained by this
L

inner race in service.

The outer race of tearing 8517903 also had continuous distinct bands

of wear and pitting resulting from contact with the balls. Mild wear, generally

not entirely through the original grinding scratches, extended from 10 mm

;0.040 inch) from the thrust-s:.de chamfer with a width of 3.12 mm (0.123 inch).

The edge of the mild-wear track away from the chamfer was defined by a con-

tinuous row of pits with depth; of approximately 0.013 mm (0.0005 inch).
i

Alongside the row of pits was a worn 'nand 1.1 mm (0.042 inch) in width con-

sisting of mild wear and fine pitting. Finally, a smooth, polished band

0.64 mm (0.025 inch) in width completed the total area of ball contact. All

of the bands were continuous in width and location around the race, which

indicates that no significant non-synchronous (stationary) radial load was

experienced during running.

SEM micrographs of the outer race wear areas are shown in-Figure 3.

The pitting in Figure 3(a) was a combination of straight-sided pits (probably

lobalized fatigue pits) and shallow rounded pits (probably caused by inden-

tation by the debris from the fatigue pits). The pitting in the mildly worn

band, Figure 3(b), was similar to that in the heavily pitted band of Figure

3(a), except that the concentration of pits was much lower. Also, the areas

between the pits were smooth and polished, which gave the appearance in

optical microscopy of this band having had much milder wear.

Balls

The balls from bearing 9517503 all had several small-circle (non-

equatorial) bands intersecting at random angles to each other. Transmitted

light with a ball placed against the inner race showed the bands to have a

significant wear depth (measurements described below in section on cross-race

curvature and ball roundness measurements). The balls (including most of the

bands) had a blue to grey color cast, which was suggestive of oxidation of

T
s
3
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the surface. A few of the bands were metallic in color, which indicates

that these bands probably formed last and the surface coloration was worn

away during their formation.

Examination of the balls by SEM found the worn bands to have the

appearance shown in the micrograph in Figure 4. The wear probably occurred

by an adhesive mechanism combined with some pitting. Subsequent running

over the area then flattened the raised portions, which resulted in tine

raised featureless areas in Figure 4. Areas between the hands were very

mildly worn with remnants of original finishing scratches still present.

Metallographic sections were made through the balls to examine the

microstructure under the bands. At lower magnif i ^ations, Figure 5(a), the

bands were seen to have nearly flat areas worn on the overall ball curvature.

The straight reference line was placed in Figure 5(a) above the flat region.

to demonstrate its length and distinct change from the normal ball curvature.

At higher magnifications, Figure 5(b), the microstructure was seen to be

uncharged from normal near the surface as a result of the bang' formation.

Microhardness readings also confirmed that the steel had not been tempered

as a result of local overheating wher the band was formed.

Retainer

The retainer from the bearing 8517903 was found to be in excelle -L-t

condition with only very mild wear on the outer guiding surface and in the

ball pockets. Thera was no evidence cf delamination, distortion, or heavy

wear as a result of service. A slight lip of TFE was found in pockets

on the outer diameter, which apparently resulted from a finishing step when

the retainer was being manufactureu.

Talysurf profiles were taken across the ball pockets to measure

the aepth of wear from contacting the balls. Representative traces are

shown in Figure 6. The lip at the outer diameter can be clearly seen as the

raised portion at the left of the traces. The maximum wear depth was found

to be approximately 0.025 mm (0 001 in-h) which is quite tolerable.
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{	 Bearing 8517900 Examinations
2

i

	 Races

The inner race of bearing 8517900 showed evidence of very mild wear

and no distress as a result of its service time. The ball contact track

was continuous and uniform in width and location. The track was approximately

l	 4.1 mm (0.160 inch) in width and was located with one edge ap?roximately 1.1 mm

(0.045 inch) from the chamfer. Since original grinding scratches were faintly

visible on most of the track width, the depth of wear was.apparentlr on the

order of the depth of the scratches. There was also some evidence of race

denting :rom soft debris, but the dents were of minor depth and randomly

scattered. An area near the center of the band was darker in color, which

was possibly the result of deeper wear or more extensive transfer of TFE.

The outer race of bearing 8517900 was also mildly worn in a ball

contact path that did not vary in width or location. It had one edge located

approximately 2.8 mm (0.110 inch) from the edge of the chamfer on the thrust

side with a width of approximately 3.6 am (0.140 inch). Similar to its mating

inner race, remna^.ts of original grinding scratches were present it much of

the ball contact path, which is associated with mild wear. Scattered soft

debris dents were also present on the outer race ball.-contact track. An

SEM micrograph of an area in the ball contact path is shown in Figure 7.

The surfaces consist mostly of very fine pits with scattered larger pits,

which may have resulted from debris.

Balls

The balls from bearing 8517900 were very mildly worn with equatorial

bands on most of them. Three balls showed small-circle bands. However,

examination by light microscopy at 50OX showed that these bands consisted

Y_.marily of transferred small patches of brown material, :: •hica ',,as probably

TFE. Otherwise, the balls showed evidence of scattered fine pittin=, similar

to the races, over most of their surface.

a



14

4

`V ^yt
"'Otte 

•	 ^.
\\\\1 

Teti 
	 S^

•'^	 - ^- _tip c - .: ^	 -

22046 	 1000K

FIGURE 7. BALL CONTACT PATH ON OUTER RACE
OF BEARING 8517900

QV4(/^rs
•,G

J1

N4

.



I

I

t

15

Retainer

The retainer from bearing 6517900 was in excellent condition and had

only minor wear areas in the ball pockets. There was no evidence of distress

as a result of service. Stylus profilometer traces across the ball pocket

wear areas are shown in Figure 8. A raised lip was also present at the outer

diameter surface of the ball pocket of this retainer, which can be seen at the

left of Figure 8. The wear depth appeared to be a maximum of less than 0.025 mm

(0.001 inch).

Cross-Race Curvature and
Ball Roundness Measurements

Bearing 8517903

A Talyrond roundness measuring instrument was used to attain cross-

race curvature profiles on the races and roundness measurements on the balls.

For the races, the stylus diameter was set by gage blocks to be twice the

specified race radius of 6.731 no (0.2650 inch). Adjustments within the radius

tolerance were found to be adequate to match the curvature.

Shown in Figure 9 are the traces attained on the races from bearing

8517903. The outer race, Figure 9(a), showed a groove approximately 5 um (200

microinches) in depth near the center of the race. Since the area of the

groove appeared to be completely unworn by microscopic examinations, the

groove probably was produced by the original manufacturing. However, the

groove measuring 1.27 um (50 microinches) deep corresponded to the wear track

area. The area of heavy race wear was clearly visible on the profile of the

inner race, Figure 9(b). A maximum wear depth of approximately 15 um (600

microinches) was measured in the region that conformed to the curvature of

the ball.

Talyrond traces of two balls from bearing 8517903 are shown in

Figure 10. The depth of the wear bands below the original curvature is clear-

ly visible. A maximum depth of approximately 11 um (450 ,..icroinches) was

measured. Since the Talyrond magnification is very high radially, the shape

of the wear bands is greatly distorted. The actual shape was shown to be

more n:aarly flat areas in the metallographic cross sections. Measurements of

I
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the angular locations of the bands showed the average included angle of

the cone formed by mid-position of the bands and the center of the ball was

approximately 125 degrees. The average angular width of the bands was 25

degrees. The bands represent a major deterioration of the original geometry

of the balls.

Bearing 8517900
I

Cross-race curvature measurements made on the races from bearing

8517900 are shown in Figure 11. The slight deviation from roundness on the

outer race, Figure 11(a), may have been produced during m nufacturing. The

groove seen in Figure 11(b) on the inner races was approximz^tely 3.8 um

(150 microinches) below the normal curvature. Since this occurred in the

ball track area, it probably was caused by wear from the balls.

The roundness traces attained on two balls from bearing 8517900

are shown in Figure 12. The difference betweAn the maximum and minimim dia-

meters of the ball in the upper trace was rppronimately 3.4 um (135 microinches).

Since these balls were very mildly worn in .vocal bands only (whose planes

were oriented perpendicular to the plane of the chart), this out-of-roundness

was probably present from manufacturing. This deviation is well out Gf tolerance

for balls used in precision bearings. The second ball, in the lower cart,

showed a deviation from roundness of approximately 0.64 um (25 microinches),

a	 which is much more acceptable.

Bulk Hardness Measurements

Rockwell C hardness measurements were taken on the bearing uouiponents

to determine whether the original heat treatments were within specification.

The results, presented in Table 1, show all of the components to have an accep-

table hardness for the application.

TABLE 1. ROCKWELL C HARDNESS READINGS
OF BEARING COMPONENTS

Inner Race	 Outer Race	 Ball

8517903	 61	 61	 59

8517900	 61	 61	 59
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LOAD AND STRESS ANALYSIS

The bearing inspections have revealed that ball-race contact occurred

over a wide portion of the inner races and th p ^ serious wear occurred on the

inner race of bearing 8517903. In addition, numerous shallow pits, which could

be suggestive of surface initiated fatigue, have been observed. These obser-

vations strongly suggest that the bearing was in a terminal condition and that

continued running would have resulted in a catstrophic failure. The purpose

of the following analyses is to estimate the level of loading that the bearing

incurred and to guide corrective measures to enhance bearing life.

The method for bearing-load computation at Battelle involves the use

of a computer program series under the general name, BASDAP. BASDAP programs

can be used for static or dynamic analyses of bearings fora aide range of

applications. BASDAP programs have been used in static or quasi-dynamic

analyses to determine ball-race stresses and ball steady-state motions as well

as analyses of dynamic behavior of the cage to determine cag y stability and

ball-cage loadings. The BASDAP program treats each bearing, in a set, indepen-

dently.

For the project discussed herein, only a quasi-dynamic version of

the BASDAP computer code was utili —A . This code involves calculation of

ball-race forces (inner and outer), contact piessures, contact dimensions,

and contact angles as a function of:

(1) axial load

(2) radial load

(3) centrifugal load

on the bearing.

The computation technique involves first computing the load sharing

between the balls in the absence of centrifu.Cal forces. This involves a
s	 formalized trial and error (nesting type) procedure. Essentially, estimates

of the axial and radial deflection of the bearing are made. The correct value

of these deflections results in the correct radial and axial load. After the

ball load shaving has been computed, the effect of centrifugal force on contact

angle is computed. Essentially, this force causes the inner and outer race

contact angles to be different from each other as well as different from the

static contact angles. The method for the deflectior and contact angles calculation

^_	 s
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is modeled after the classic work of A. B. Jones*.

Results of Calculations

The characteristics of the bearing analyzed is shown in Table 2.

Figure 13 shows the effect of axial load on predicted contact angle. Note

here that the outer-race contact angle is more sensitive to load than is the

inner. The inner-race contact angle can be assumed to be approximately 32

degrees for all conditions analyzed.

Figure 14 shows the effect of axial load on contact stress. It is

obvious that increasing load seriously increases contact stresses. Also shown

in Figure 14 is the upper stress limit for effective transfer-film lubrication.

This limit was discussed in cur previous report (November 1978) and is based

on some cursory experiments in another project. The accuracy of this presumed

limiting condition, thus, is unknown for the shuttle configuration, although

it is by no means a conservative number. A;;suming that this upper limit is

accurate, it is apparent that axial loads in excess of 90,000 N (2000 pounds)

can be extremely detrimental to bearing performance.

Figure 15 shows the variation in ball track width with increasing

axial load. At loads of, say, 27,000 N (6000 pounds), the total track width

is 4 mm (.162 inch). As will be discussed, this is equivalent to the observed

track width in bearing 8517903.

Figure 16 was prepared to show the effect of loss of internal clear-

ance on bearing stresses. It can be observed that the bearing is quite to:.erant

of diametral clearance losses in excess of .1 mm (.004 inch). It is unlikely,

then, that clearance loss due to large inner race temperatures are a major

contribution to bearing distres ,

Eb timation of Actual Axial Loads

Figures 17 and 18 combine the actual measurements of ball contact path

locations with those contact angles and ball contact widths that give the best

simultaneous fit. In this manner, an estimate can be made of the actual axial

loads applied to the bearings during service.

Jones, :. R., "A General Theory for Elasticall y Constrained Ball and Roller

3earings Under Auxiliary Load and Speed Conditions", Trans. AS"TE7 , J. Basic
Eng., Series D, Vol. 82, No. 2, June 1960, pp 309-320.
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TABLE 2. ASSUMED BEARING DESIGN CONDITIONS

Bearing Type
Parameter	 7955

Ball Diameter	 m(in)	 .012 (.500)

Pitch Diameter	 m(in)	 .081 (3.19)

Contact Angle	 Degrees	 20.5

Inner Race Curvature 	 .53

Outer Race Curvature 	 .53

Number of Balls	 13

Speed	 RPM	 30,000
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In Figure 17, the locations of the predicted ball contact paths

are seen to coincide quite well with the measured locations for axial load

of approximately 27,000 N (6000 pounds). The small-circle banding of the

balls probably resulted from contact with the chamfer on the inner race,

which corresponded fairly well to the average location of the bands (not

shown in Figure 17).

In Figure 18, the wear patterns on bearing 8517900 indicate that

the normal axial preload of 3,800 N (850 pounds) was probably not exceeded

for any significant period of time during operation of this bearing. The

wider contact areas on both races resulted from start-up operation when the

contact angle operates near the 20-degree design angle. As the bearing

reaches operating speed, the contact angles change to those shown in Figure 18,

thus explaining the wider wear areb.s, especially on the inner race.

The results of these measurements and calculations show that the

bearing pair had a strong 2.xial load applied against the 8517903 inner race,

which was resisted by the outer race of that bearing. Since the outer race

is designed to be able to respond to axial loads, by moving axially, either

the outer race was restricted from doing so because of mechanical interference

or the total limit of travel was reached.

TT CMTC C TATT

There are many possible reasons for a bearing to fail to perform

its required function for an acceptable period of time. The two most common

causes of failure are fatigue of the bearing steel and inadequate lubrication.

Fatigue Considerations

In 1.947, Lumbert and Palmgren published a theory for the failure

distribution of ball and roller bearings. This theory is summarized by Coy,

et al. in NASA TND-8362 (December 1976). Basically, the theory stated that

bearing life can be expressed as

K z h 1/e
1 0

Li0 =
Tc V

0

(1)
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where L10 = Life in millions of stress cycles (based on 90% survival)

K - 3.58 x 10 56 (based on 52100 steel, English units)

e = 1.11

h - 2.334

c - 10.334

V = stress volume (zo w)

w = semi-width of rolling track

zo = depth of maximum shear stress

To = maximum shear stress

Z = length of rolling track.

Using the case postulated in Figure 17, a 27,000 N (6000 pounds)

axial load on bearing 8517903,

zo = 40 inches

10 = 140,000

k = 8.5 inches

V = .027 cubic inches

so

L10 = 33 million cycles

or 3 hours of bearing operation. The L 1 Life (99% survival) can be

computed to be

Ll = 20 minutes.

Thi^ implies that bearing failure due to fatigue is highly likely

with the high axial load. Bearing life could also be considerably diminished

by the surface dents which serve as initial failure points. It is mandatory

that efforts be made to insure freedom of axial motion of the bearing and

thereby prevent such high axial loads if any realistic life of the bearings

is to be achieved.

Lubrication Effects

As we discussed in our November 1978 report, bearing performance

depends heavily on the presence of some type of lubricant between the balls

and races. There are two general types of lubricant films normally factored

into bearing design: hydrodynamic and boundary. Hydrodynamic lubrication

occurs as a result of the hydrodynamic action of the lubricant (normally a

mum
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'	 Liquid) which forces a full film layer to form between ball and races.

ender good hydrodynamic lubrication, a bearing will last indefinitely.

Boundary lubrication occurs as a res •ilt of a chemical reaction between the

lubricant, the lubricant additive, or dissolved oxygen in the lubricant with

the metal surfaces. The "boundary films" are only a few monolayers thick and

afford protection against cold welding of the surfaces. Both hydrodynamic

and boundary films are necessary for good bearing performance. The hydrody-

namic films keep the surfaces apart and the boundary films provide a back up

during start up or during partial full film loss due to high asperities, system

dynamics, inadvertent high load or debris in the lubricant.

Since cryo t.ri-z fluids which are probably gaseous in ball-race contact

regions are not considered to be suitable lubricants, the pump bearings must be

lubricated by some other mechanism. This mechanism appears to be a pseudo-

transfer film (retainer to ball) process. Such films have been observed in

our examination of the bearing. The use of transfer films in high-sp=ed, high-

load applications is beyond the art of bearing technology and little is known

of their assets or limitations. One limitation that is known is the allowable

stress level. This level is on the order of 2 GPa (280,000 psi) maximum Hertz

stress. Above this stress, the bearing elements are operating in metallic

con _t. A second limitation is the supply rate of the lubricant by the

retainer wear prccess in the ball poc?cets. If this process is too high, the

retainer wears out prematurely. If it is too low, inadequate lubrication

results. With the very small amount of retainer wear measured, the wear rate

should be increased.

Under poor lubrication conditions, considerable frictional forces

between the balls and races will occur as a result of the ball spin on the

non-controlling race. This friction force alters not only the surface shear

stresses, but also the whole subsurface stress patterns. Under very high

friction (f = .2) the maximum shear stress is on the surface.

Assuming Equation (1) is valid, it can be seen that

LlO'*wzo1.2	
f	 (2)

where, as mentioned before, zo is the depth to the maximum shear stress.

Obviously, as the maximum stress approaches the surface, bearing life approaches
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"zero." Relative bearing life is shown as a function of coefficients of

friction in Figure 19. The relationship between zo and friction i ., modeled

after the work of Smith and Lui* and, realistically, is only rigorous for

line contacts (plain strain) problems.

One interesting observation from the stress analyses is that a

_	 friction coefficient level of around 0.1 or greater, two peaks in shear stress

curve occur. The first peak is at the surface and the second peak is near the

!	 normal depth. The surface shear stress peak becomes the largest at f < 0.2.

However, it is interesting to speculate the surface initiated fatigue may well

be occurring for 0.1 < f < 0,2 and may be responsible for the shallow fatigue

pit such as shown in Figure 1(a).

The above calculations indicate that in order to optimize bearing

performance, it is mandatory that, as a minimum, adequate transfer film lubri-

cation must be maintained. This means that the stresses in the bearing must

be kept below 2 GPa (280,000 psi). With the current configuration, achieving

this stress level is very difficult as shown in Figure 14. Computer runs were

made for other bearing configurations involving minor changes in curvature

and zontact angles from the current design. The results of these runs are

shown in Figure 20. It appears that reducing the curvature (both inner and

outer race) from 0.53 to 0.52 could greatly enhance the probability for

bearing survival. Note however, that changing the contact angle does not

appear to improve the stress levels. Full bearing Le3t5 SiGuld be conducted

with the bearing of 0.52 curvature to check the validity of this recommendation.

Measuring Units

Since the bearing drawings and all input data provided by NASA

were in English units, ail measurements and calculations were performed in

English units. Therefore, the SI units presented in this report were con-

verted from English units. Data on which this report is based are located

in Battelle Laboratory Record Book No. 34405.

*Smith, .J.O., and Liu, Chong Keng, "Stresses Due to Tangential and Normal
Loads on an Elastic Solid with Applications to Some Contact Stress Prob-
lems", Trans. ASME, J. App. Mech., June 1953, pp 157-166.
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