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Daring the period of April 1, 1975 to Septe`3er 30, 1979, the supercon-

ductiae n.ateria-s research prograim in the Departaent or Applied Physics d

Infer-,_.at:.7-a Science at the University of California, San Diegc vas sup-

ported by the National Aeronautics and Sr3ce Adninistration under the project

"Super .:^nductiv iv; in Ternary Molybden.= Sulfides". Due to sore unusual

circumstances, a no-cesz extension of six eanths was requested and granted.

During the entire period of study, this pro¢ran was under the Monitoring of

Dr. John A. Wooll .. of the NASA Levi = Research Center. Dr. i:oollay was also

an active participant in various aspects cf the project. Dr. S. A. Alterovitz

of Tel Aviv University was also an active participant of this work. At the

time, Dr. Aiterovitz was visiting the Lewis Research Center as a Senior

Research Associate of the National Research Council.

Our research work can be divided into two categories.

I. The preparation, characterization and systematic investigation of ternary

molybdenum sulfides.

II. Preliminary studies of other materials related to superconductivity.

The first category embraces the major effort in our investigation. At

present, the superconductor with the highest critical field belongs to the

ternary molybdenum sulfide group. Prepared with conventional techniques, the

termary sulfides are always in the form of irregular porous lumps. We were

the first to succeed in preparing them in coherent films with the sputtering

technique.

Because of their high critical fields, the potential of applications

for the ternary molybdenun, sulfides exists. The preparation of this material

in coherent films has made it possible to study their fundamental physical

properties. At the moment, this investigation is very much an ongoing effort.

The National Science Foundation has agreed to provide continual support for

t, • e study.
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The second category involves mostly amorphous materials. "Amorphous"

phase is still a frontier in the study of materials. Using sputtering or

other vapor condensation techniques for preparation, the end product is often

amorphous. For the same substance, the characteristics of the amorphous

and the corresponding crystalline phases are drastically different. This

motivated our investigation. We have made considerable progress in both

categories of studies. The progress was documented in a series of articles

published in widely circulated professional journals. The following is a

list:

1. S. A. Alterovitz, J. A. Woollam, L. Kammerdiner and H. L. Luo, "Critical

current in sputtered copper molybdenum sulfides," Appl. Phys. Letters 31,

233 (1977). Also Abstract, Bull. Amer. Phys. Soc. 22, 402 (1977).

2. S. A. Alterovitz, J. A. Woollam, L. Kammerdiner and E. L. Luo, "Critical

current and scaling laws in sputtered copper molybdenum sulfides," J. Low

Temp. Phys. 30, 797 (1978). Also Abstract, Bull. Amer. Phys. Soc. 22,

402 (1977).

3. S. A. Alterovitz, J. A. Woollam, L. Kammerdiner and H. L. Luo, "Critical

current in sputtered PbMo 6S 8 ," Appl. Phys. Letters 33, 264 (1978). Also

Abstract, Bull. Amer. Phys. Soc. 23, 383 (1978).

4. S. A. Alterovitz and J. A. Woollam, "Upper critical field of copper

molybdenum sulfides," Solid State Commun. 25, 141 (1978).

5. J. A. Woollam and S. A. Alterovitz, "Normal state properties of the ter-.

nary molybdenum sulfides," 27, 669 (1978).

6. J. A. Woollam, S. A. Alterovitz and E. J. Haugland, "Hall effect and

magnetoresistivity in the ternary molybdenum sulfides," Phys. Letters

68A, 122 (1978).
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7. J. A. Woollam and S. A. Alterovitz, "Indirect measurements of Fermi

surface parameters of some Cherrel phase materials," J. Mag. Mag.

Materials, in press (1978).

8. J. A. Woollam and S. A. Alterovitz, "Low temperature normal state re-

sistance of ternary molybdenum sulfides," Solid State Commun. 27, 571

(1978).

9. J. S. Lannin, H. F. Eno and H. L. Luo, "The specific heat of bulk amor-

phous arsenic," Solid State Commun. 25, 81 (1978).

10. H. L. Luo and J. G. Huber, "Superconductivity in `"h-Zr alloys,"

J. Less-Common Metals (in pr 3 1979).

11. B. Stritzker and H. L. Luo, "Superconductivity in Pd-Si-H(D) alloys,"

Solid State Commun. (in press 1979).

12. H. L. Luo and H. F. Eno, "Low-temperature specific heat of amorphous

Pd-Si alloys," J. Non-Cryst. Solids, (submitted).

In the above list, the first nine publications have already been published

and copies are in file with the monitoring scientist. Publications #10, 4411 and

#12 are in press; preprint copies are attached.

We wish to express our gratitude for the support that NASA provided.	 j

In particular, we hope to continue the beneficial working relationship with

Dr. J. A. Woollam developed during the course of this investigation.
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Summary

Using a fast-quenching technique, a wide range (40 - 80 at."o Zr) of the
body-centred cubic phase is retained for the'Th-Zr system. The super-
conducting transition temperatures of this phase are higher than those of the
close -packed TIC-rich or Zr-rich solid solutions.

1. Introduction

A common feature of the Group 1V transition elements Ti, Zr, Ilf and
Th is that their crystal structures are all of the close-packed form but
transform to a body-centred cubic (b.c.c.) modification at high temperatiLre.
They are all supc-rnnducti ,l;*, with rzt'ier low transition temper tunes T, [ 1 ] .
In our initlZtl investigation of the Th-Zr alloys, we detected value of T c aS
high as 6 K in the as-cast state. Recently, Peterson et al. reported that a T,
of 5 - 6 K was associated with the high temperature b.c.c. phase, although
the ir data indicate that they encountered difficulty in retaining the hi;;h
temperature phase by quenching [21. This investigation aims to stud%'
specifically the b.c.c. please retained using the technique.of quenching from
the molten ;tale.

2. Gxperimenuil

The samples were prepared from metals of at Icast 99.05 r= purity:
"iodide"'lh (Ventron Corp.) and Nlarz grade Zr (Materials ltes, , arch Cor-p.).
For each ally appropriate amounts of thr elements were first arc meltod
thoroij ;WN in a purr lichunl atnlosplivre drawn directly from the hull-off
of a li!luid hrliunl Hvw;ir in order to minimize gawous contamination durir,ti
meltini:. The alloy buttons were then sliced with a carhorundum N% heel into
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pieces suitable for our fast-quenching operation. This arrangement, adapted to
an arc furnace, has been described elsewhere (3 J . Since weight losses during
melting were negligible, all compositions reported here are nominal.

The quenched specimens were in the form of irregular thin flakes, tip to
several millimeters in dimensions. X-ray diffraction patterns were obtained
with a Debye-Scherrer camera 114.6 mm in diameter using nickel-filtered
Cu K radiation. Systematic errors in the lattice spacings were corrected by
extrapolating against the Nelson-Riley function.

Superconducting transitions were detected using an inductive technique.
The measurements monitored the reactive off-balance of an -,i.e. Wheatstone
bridge which compared the self-inductances of two identical coils, one
containing a specimen, the other empty. All T r measurements were made in
an He° cryostat except that for pure Zr which required a dilution refrigerator.
Between 4.2 and 1.2 K, lie  vapor pressure served as a thermometer; above
and below this temperature range, calibrated germanium and carbon resistors,
respectively, were used.

3. Results

Fast-quenched alloys in the Th-Zr system exhibit three s„gle-phase
regions: face-centred cubic (f.c.c.), 0 - 15 at. 'V Zr; b.c.c., .10 - 80 at-'; Zr;
and hexagonal close-packed (h.c.p.), 90 - 100 at.", Zr. The range and the
lattice parameters of the h.c.p. prase are essentially the same as those
renorted by Peterson et al. ( 2J:The f.c.c. solid solubility is slightly greater
than that of earlier reports (1 J . The most sirniucant feature of the present
investigation is the retention by rapid quenching of a wide range of the high
temperature b.c.c. phase. The lattice parameters and the atomic volumes of

TABLE 1

Lattice parameters and atomic volumes of cubic phases in the Ti p - Zr alloy system

Phase	 Zr(nt.7^)	 Lattice parameter (,l ) 	 Atomic %o:-jrne ( 0)
f.c.c. Th 5.0870. 0.000r, 32 91
f.c.c. 5.0 5.0605	 0.0005 32.40
f.c.r. 10.0 5.035	 t 0.001 31.91
f.c.c. 15.0 5.015	 O.005 11.51

h.r.c. •10.1 1.Ar;7	 n.nns 2A,!il

b.c.c. 50.2 3.821	 r O.rM5 27. R9
h.c.c. 5'1.7 3.774	 0.002 26.8h
b.c.c. 6G. f, 3.7 11	 0.1101 26.22
b.c.c. 70.0 3.7272	 0.0(in5 25.N9
h.c.c. 75.0 1.701	 O.onl 2SA I
h. C. C. 80.2 1.riH0	 O.no2 21.92

t
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Fig. 2. Superconducting transition temperatures or rapidly f;l;rnrhrd Th -7.r allo y s, The
inset shows the Tr values for ns-cast Th rich (.C.C. alloys; the ol,:Crvrd linearity with Zr
confpusilion (solid line) is shuu • n as a broken line.

the cubic phases are listed in Table 1. We have also Plotted in Fig. I these
atomic volumes together %%Ith other appropriate data reported in the
literature.

The Tr results of all specimens vhose superconducting tran"' :tions were
%-ell defined are %hov:n in Fig. 2. As indicated by our experimental data, all
thew specimens vtirre single'-phase or nearly so. In thr` flCurc, the syrnhc!s
mark the midpoints (if the transitions and the vertical hars indicate the width
hence( n 10", arid 90: of the detected signals. For s r)mr f.c.c. arid h.r.p.
spec • irncns two di.tim t transitjwi r were -t't, n; the pf • rc vn!acn s of thf' total
signals c orrvspcnd:ng to each Stich trcu;sitiun are tfuutud on the figure.
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4. Discussion

Previous studies of the superconductivity of Th-Zr alloys have dealt
with the Th-rich and Zr-rich ends of the phase diagram [ 2, 51, These studies
showed that all phas,-s superconduct and that the T c value of the close-picked
phases increase with increasing solute content. Our measurements confirm
these observations; significantly, we find that the T, value of the b.c.c. phase
are uniformly elevated, having onsets between 5.6 and 6.4 K over the span
from 40 to 80 at.", Zr. Since Th and Zr belong to the same transition metal
group in the periodic table, such a small variation with composition is
anticipated. It is, in fact, the rapid variation-of T, in the f.c.c. and h.c.p.

j phases that seems surprising. Future heat capacity measurements might
f provide an explanation for the present result. Concerning the T, of pure Zr,
t Jensen has shovm that this depends strongly on sample preparation [61

thus the broad T, beginning below 0.2 K, while unusually low, is not
i alarming. When are melted only, the same Zr had a sharper T, starting just

above 0.3 K. The foregoing complications aside, it is the overall picture that
is note ,,vorthy. The Th-Zr system provides a unique demonstration that,
independent of any influence of the valence electron to atom ratio, the b.c.c.
structure is clearly more favorable for high T, values than either of the close-
packed structures.

j Peterson et al.	 reported an additional ortborliomhic phase at the
composition 80 - 85 at.'," Zr [21. This phase must he related to the instability
of the b.c.c. phase and can therefore he considered as an intermediate stake
of the transformation from the b.c.c. to the h.c.p. structure; no trace of it
was detected in the present investigation, — ving to the much faster quenching
rate. I to xever, according to the reported lattice parameters and the corre-
sponding atomic volumes, the occurrence of such an orthorhombic phase is
nearly identical to the case of the Ag-Cd system [ 7 ] . The parallel bet vecn
the Th-Zr and ^g-Cd allo ys may not be totally surprising if we acrep t the
vie%v that the Th-Zr alloy would behave like some simple metal alloys
because Th and Zr are isoelectronic and hence the nature of valence electrons
would not ( hange drastically across the system.

The wide range of single-phase b.c.c. solid solution retained by the
present fast-quenching operation provides some very interesting observations.
In this ran:,e, the lattice parameters show a strictly linear dependence on the
alloy composition. 'fhe extrapolated lattice spacings for b.c.c. Zr and Th at
room temperature are 3.58 .3 A and 4.062 A, respectively. The Zr value
aaces reasonably well with the number extrapolated from data on fast,
qu(-nchrd Zr- M r) Lind Z.r-fit' alloys [ 81. Additionally, usinv the early high
trr mperaturr data 191, the linear thermal expansion coefficient for the b.c.c.
phase is estimated to he about 9.0 x 10 " °C 1.
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1. Introduction

Since the discovery of superconductivity in

the Pd-H system, ) the subject has been an active

area of research. 2 In particular, the enhance-

ment of superconducting transition temperatures
(T c ) in the Pd-H-noble metal alloys  and the ob-

servation of inverse isotope effect"' S have

aroused great interest in the subject. A number
of theories have been proposed to explai.n the ex-

perimental results. The mechanism of the quench-
ing of spin-fluctuations 6 is plausible but can

only be viewed as one of the necessary conditions

for the occurrenze of superconductivity in these

systems. Another important ingredient is the en-

hanced electron-phonon interaction due to the

strong pseudopotential of H(D) . 7 The contribu-
tion to such interaction due to the optic photons

was particularly suggested ee9 and was subse,%uent-

ly confirmed through tunneling experiments.) '11,12

On the other hand, the most widely investi-
gated metallic amorphous material is the Pd-Si

alloy in the range of 17 — 20 at. % Si. The mag-

netic susceptibility data 13 indicate that the

spin fluctuations are completely suppressed in

the amorphous Pd-Si alloy. The electronic spe-

cific heat of amorphous Pd-Si alloys 14 (_ 1.0
mJ/mole-K 2 ) is equivalent to that of a 50 at. %

Ag, Pd alloy 15 which would become superconducting

after hydrogenation with an estimated Tc of ,<. 1K.3

Considering the amorphous Pd-Si phase as

compatible with the Pd-noble metal alloys, it is

thus of interest to iuv estigate the possible

superconductivity of the former after optimal
hydrogenation. In particular, since all super-

conducting hydrogenated Pd-alloys reported so for

have the same face-centered cubic (fcc) struc-

ture, it is pertinent to examine if the crystal

symmetry is important for the occurrence of

superconductivity in these -ystens. Reported

here are the results.

2. Experimental Procedures

For most specimens, the Si was of ultra-

high purity (electronics grade from DuPont) and

the Pd was supplied by Johnson-Matheys with mag-

netic impurities < 3 ppm. In the amorphous re-

gion, a second set of specimens were also pre-

pared using a less pure grade of Pd which con-

tained 100	 200 ppm Fe.

Appropriate amounts of the elements were
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first either induction- or arc-melted thoroughly
in an argon atmosphere. 	 Alloy foils were then

fabricated by quenching from the molten state

Ĵ
QQ•G ^^^

using the	 piston-and-anvil technique. 
16	 The

dimensions	 foils	 1.5cm ingeneral	 of the	 were -..
X.	 Q̂1P' diameter and 40 — 50 }n thick.	 Since the weight

losses during the melting processes were insig-
O^ QO
O^

nificant, the reported compositions were all

nominal.
All alloy foils were examined using x-ray

diffraction techniques. 	 Only those specimens
which were of "single-phase", either fcc solid
solution or amorphous, were subjected to ion-
implantation and to the subsequent T 	 measure-

ments.	 Even so, we feel	 that the specimen of
7 at. % Si contained a small amount of second
phase.

The implantatio •	H(D) was carried out in
two steps.3
(1)	 Precharging at 3uu°C under 4 bars H2 (D 2 ) gas

pressure !	A final H(D)/metal ratio between
0.74 (0.66)	 and 0.44 (0.35)	 in the crystal-
line alloys with Si content up to 4.7 at. X
was reached, whereas the amorphous alloys
with — 20 at. /% Si did not take up any mea-
surable amount of H or D.

(2)	 Implantation experi..ients of H2 or D2 ions

were performed with an energy of 100 kev for

all Pd-Si alloys.	 The specimens were kept

below 10°K during the entire implanting

process.

3. Results

The lattice parameters of the fcc solid so-
lution increase very slightly with increasing Si

contents as listed in Table I.

Table I. Lattice Parameters of the Face-Centered

Cubic Pd-Si Solid Solution.

At. % Si	 Lattice Parameter (A)

0	 3.890 '- 0.001

0.7	 3.890 ± 0.002

2.5	 3.894 t 0.003

3.9	 3.895 1 0.005

4 . 7	 3.900 i 0.005

The optimum Tc 's with respect to the 11(D) con-

centration are shown in Figure 1 as a function of

alloy compositions. Starting from 3.8 °K (10.7°K)
in Pd-11(D) alloys, T  passes through a maximum as



the Si content increases. The Si concentration
at which such maximum occurs is lower in the
Pd-Si-D than in the Pd-Si-H system. Throughout
the fcc region (up to 4.7 at. % Si) the inverse
isotope effect is maintained. Apparently the
isotopic mass exponent changes sign as the Si
content increases. In the amorphous region
(17.2... 19.9 at. % Si), the superconducting
transitions are much sharper than those of crys-
talline material, and the corresponding isotopic
mass exponent has at least the correct sign. Its
magnitude is still much less than the commonly
accepted valve of ... 0.5. The exac t, composition
at which the sign change occurred could not be
determined because it was definitely located in
the two-phase region.

The optimal H(D)/metal ratios were estimated
from the precharged concentration z,nd the actual

counting of ion chargss by assuming that the dis-
tribution of the implanted atoms inside the Pd-Si
alloys was independent of the Si content. The
H(D)/metal ratios corresponding to the maximum T-

values decrease with increasing Si content in the
fcc region from 1.0 to 0.7. In the amorphous re-
gion, the optimum H(D)/metal ratio is close to
0.5.

Under the same hydrogenation condition, the
amorphous alloys prepared from the Pd containing
100 ^ 200 ppm Fe remained normal down to 1.3°K.

4. Discussion

The Tc of the Pd-Si-H(D) alloys is plotted

in Fig. 1 to express our view: Had a "single-
phase" material been prepared throughout the com-
position range in the present investigation, we
would have expected that the isotopic-mass ex-
ponent would vary continuously and smoothly from
the inverted to the normal values-with increas-
ing Si content.

This view is consistent with the general
behavior of other Pd-M-H(D) systems 2 where M is
an element which contributes to suppress the
strong spin fluctuations in pure Pd. In fact,
with all Pd-M-H(D) systems, two common feature:
are noteworthy:
(1) With increasing concentration of M, T c ini-

tially , increases and passes through a maxi-
mum value. In all known cases, Z the T

c,max
in the Pd-M-D system always occurs at lower



N concentration than that of the correspond-

ing Pd v-H system.
(2) The isotopic mass exponent changes sign with

increasing M content.

At the present time, it is not possible to
offer quantitative explanations for these suoet-
conduc[ing behaviors cocoon to all Pd-`t-H(D) sys-
tems, even though a number of theoretical no:lels
have been proposed . 2 However, based on the
e-isting theories, a good qualitative understand-
ing can be advanced.

In view of the fact that superconductivity
is induced by hydrogenation in pure Pd metal as
well as in several Pd-`1 alloy systems, the den-
sity-of-states which is responsible for the super-
conductivity must be mostly o:*': the sp-band but
admixed with some residual d-;;tad characte •: of Pd.
Such hybridization would vary six o[h'. an! ilowly
in such a mauler that the influet.ce of -.he d-band
character would gradually diminish as mere and
more M-element was alloyed with Pd. In o--her
words the superconductivity of Pd-H(D) and
Pd-M-H(D) cannot be attributed to any sharp rise
in the density of states of the system.

Equally important for the occurrence of
superconductivity is the -`rong electron-phonon
coupling. The supercondu ivity in Pd and Pd-11
alloys after hydrogeriatio:. can be attributed to
the special role of i or D. The H(D) intersti-
tials give rise to a large electron--phonon coup-
ling due to the optic phonon modes occurring at

rather low energies within the Pd lattices -12

and to the large pseudopotential of the rather un-
screened protons or deuterons.' Recent theories
based on detailed band structure calculations 9v17

underline the importance of the low frequency
H(D) node.

When a third element M is allo yed into the
Pd-H(D) system, the added conduction electrons
would provide more screening which would lead to
the reductions of both the Coulomb repulsion and
the electron-phonon coupling. The former tends
to raise T while the latter can lead to lower

C

it. These competing effects could probably ex-
plain the Tc,max in the Pd-X,-H(D) systems.

The anharmunic model proposed by Ganculy8
was rather attractive in explaining the inverse
isotope effect. The sign reversal of the iso-
topic mass. exponent at higher `t concentration can
then be uiiderscood as due :o the decrease in har-
monicity. according to this model. the inverted

4
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4

L r r,,G:.
isotope effect in the Pd-Cu-H(D) system would uJk1G114r' Qtjp.^r^
have been further enhanced at higher Cu content of 

pO^R
due to the consideration of decreasing 'lattice

constants. But experimental results showed just

the opposite. 18 In this connection, a rough pic-

ture can be presented based on Melillan's

theory. 19 Strong Coulomb repulsion coupled with

strong electron-phonon coupling could give rise
to an inverted isotope effect. Simultaneous re-

duction of both would lead a sign reversal in the
isotopic mass exponent. For a better understand-

ing,accurate specific heat, neutron scattering

t	 and tunneling measurements on superconducting Pd-

alloys implanted with different but well-

controlled amounts of H and D are necessary to

reveal the relative importance of the effects due

to the electronic density of states, the acoustic

and optic phonons, and anharmonicity.

The present results clearly show that the

occurrence of superconductivity in hydrogeaated

Pd alloys does not depend on a regular fcc host

lattice. Presumably, a densely-packed, a-or-
phous agglomeration of Pd, element `t and E(D)

atoms is sufficient to initiate superconductivity	 t
in these alloys. From this experiment, it can be

inferred that neither any specific peak in the

electronic density of states near the Ferri sur-

face nor distinctive phonon distribution which

usually associates with crystalline lattice is

responsible for the occurrence of superconduc-

tivity in the Pd-M-H(D) alloys.

It is also interesting to note that 100

200 ppm of Fe depressed the T of Pd-Si-H(D) to
below 1.3'K. Tha large suppression of 'Tc is in

full agreement with specific heat measure--eats of

the Pd-H alloys. 20 Even though we cannot rule

out the effect due to possible local polarization,

it is very likely that Fe forms a well-defined

magnetic moment in the Pd-Si-H(D) alloy matrix
as in the case of Pd-H alloys. 21 In this situa-

tion, the magnetic impurities modify drastically
the superconducting properties of the host ma-
trix through the pair-breaking effect of the spin

exchange interaction with cenductian electrons. 22

We estimate that the initial depression. of T is

comparable with that of the Mo-Fe alloys. 23 c

Acknowledgement--This work was initiated during

a 12-month stay (of HLL) in Germany sponsored by

the Alexander von Humboldt Stiftung. We are

grateful to Professor P. Duwez for allowing us

to use his laboratory facilities in preparing all

the specimens.



;..e
 s

ru
d
y
.

I.:
ao

h
00

co
C)

•
r I

rl
n

^O
O

^D
W

;n
O^

rl
CT

r- 1
L

l
r••1

•ri
W

v
m

O
co

th I

_

00	
a

+1
cn

S
T

E	
rl

O
 C

 C
>

-Z
m

a
w

m
	

m
w

 r1 	
co

C)
v1	

1
u

u
+-I	

•	
T

a
O

^U
I

+mI
cn

E
T

A
m

x ^^
• -I

T
E

C
 a,

+I 43
m

• v
Xi

rl
C)

CO r-1 	
C)

C
>

U
n
 N

 C
)

a
ca

.0
r~ 	

w

O
	

w
L
n
 
C
1
4
	

G
U

V
m

h
 -

7
 4

rI
I^

X
 
L

m
 U

n
	

T
CT	

11
Cd

7
b

H
	

CO	
a

v
 v

Le)
^ m

u
0

C
C

 O
 N

H
 0

r-1
 cn 	

•
1-1	

a
m

w
 3

 E
• v

 U
v

h
	

a
N

 T
u

.] v
 v

.
.
a

►+
 m

te
a
.	

•
w

+
^
 m

w
.+

a
z
H

n
 
p
 04 v

-4 .•
	

L
n
 O

r-1
4

O
T

ON	
O

a
h
	

G
q

h
H

 I U
 .-I

m
c]

.0
m

 O
H
	

V) 	
•

^ ,O
	

CT
O

 m
U

a
m

 i-7
%

. U
 :	

C^
• .T c'1 	

r--I
m

 cn C
.14

i.
Oq 	

C)
0% •+- I 	

N
n c

r)	
v ^7

C:	
w

m
'cv	

r-1
W

W
 W

N
 C

 ..
N
	

h
O

 1-1 	
7

T
W

O
a
 O

N	
G

L: S rO
C\	

t+ IG
. 1	

C) N
r-i w

J U
- )

CO -H
a

.-1 	. 3
.-+b

u r 1
v +1 m

O
N

u a
u

•-• 	
^ "C

U
 m

w
Ln 'O

C
v
 E

 G
Ln

C)	
00

l
r-I J

 a
 
L
n
 N I G

-1 T CL
O

d
 C

►+
m	

C)	
14

OCl W
	

N
v
, 4 h

 
N

 N
G
	

w
I
t	

C i
.O

 7
^ ► 7

 m
	

=
l

G
 a

 U
.-i

co	
0

m
 0

N
 
-
H

 C
 -4

i 
N

v
 a

 r- i-, ,e
O

 7 '.q
w

c') I ::1
r-I	

^
O

h
	

1
 0

d
•ri	

d cn O
U

 U
7

.j
v
	

C
'

't
 
J

O
,
 v
	

>
h a 

>
 
w
 
r
l
 
r
-
 
Z

rl
O

m
 
x

,O	
w

h
 
u
 
U

.-1	
tz C

4
-i 	

G
) :C
	

C
, O

W
 W

 a
ti

J
Ln	

.]
O

N
 C

 N
m
	

,
 

C
 W

 ^
r-I m

 W
 w 	

r I U
J C

)
C

N
	

L
-
1
 O cn

U
	

N
 X

 N
 U

r 1	
r-1	

J r-1
rn

J
 G

' 7
CL^

E
i. '--4

N
 O

 C
N

 u
C

1-1 U
 H

 -14
IM

 a
	

CO w
 rr1

t)
rn

W
O

"
lo

o
  =

.:
J
 U

 co O
Cl 	

aG Z	
r4	

m
N
	

u +
I

1
7
 z

d
 b

w
 .':

r^ I In
 U

to
 

L+  N
 V

)
►+	

C
^+ ++	

Sa	
m

b
	

C
^4

J
C^ ^n

.-1 	
U

u
m
	

C	
tia	

^	
•

•r-I 	J	
CO

m
m

 . 4
G

U-4	
ra! •. cn	C1 +

00
w

 T
 U

 
C

) rn
I W

1-1
C

 =
7.4 ••

7 C]. H
Q)	

•-+
 x

10
X

 m
 J

 .c
O

 w
 z

v
<

^
-
I c

rl r	
-

C
r-,	

m
	

C
s.

C#	
< I U 	

•C
N

J G
, 
J
 u

 N
	

^
cn 0 d

(D
 w

2:
+a cn

Cl) I	
10

H
	

C)
W
	

v4 C)	
z

H
.",

u O
W

 cn
C	

^ C
rl C

q]	
r
l

^
 rl 	

^
	

CJ	
r -I

 -bd	
F --I

C
 z

m
T

I 'L
U	

<
m

 +I >
 C

O
b
 Z

 b
 r 1

^C
 N

 W
 N
	

-4 W
D

^, 4 ^
+4 u]

w
 C

J
 ^

L+
rl W

 C
 c

l
-r4

 .0
 H
	

m
 m

W
 J

1-4
+

I U
h

 h
'"

I^'
U

 J
	

Q
	

I
• ri H

 C
¢

m
 U

 H
-
 U >, ^4

>
1

<
:L W

 O
N

 r 1
 0

C
 0

0
 7

 '7
J	 f:.1
C

,e W'.1^ O
J U

 r 1 C
J
 U

 O
 a

o
 v

0 i 3
-

^
	

m
 ^

 
y

 •
H

7
 C!

J 	
G).

••-1-I V-
r, 	

:a
'44 ^ H

.1	
V)	

•^	G
r^	

m
	

C'	
• rl

a
 -
H

T
	

^:
00	

v
C

=
I C

b
CO 	

v	
G

u
$

V
 V

 -+
.4

Cl	
^4

7
	

• O
r
l
 

W
 N
	

7
 
a
:
 G

H
u
.0

 m
cn

1-4 -1	
:.

3
J
 J

 U
 
-
I
 m

C
T : C
	

W
 G
	

'+-+ =
Cn

-4
W

U
>

 J
n

C) 	
u
	

^)
G rO 	

J U
r-1	

L
••	

^ E-+ U
O

 U
C

 O
 co

w
=	

C) 	:L,
•r- I	

>+
ry	

J
	

c,7 r1
.
]
 H
	

0L
 J
	

.
Z

C
 
J

<
O

z C
r

>
 
J
 
v

►+
cn

 d
 E

 C
^ u

W
 d
	

::.1w
 L

e)
an0^

cr.
.:

v
 
v

U
	

N
 G

to	
. 

, 4 cn 3:4 •r•1 O
C

 z
E	

^ H
r I p

w
 -4

 --4
24 C	

^ O
CO v

 O
 H

 I
S

 	
U
	

U
 w

 -3
H

 U
 H

O
 O

. a
o

7
 O

 J
to
	

-
C

 U
 C

) W
r4

 L
 O
	

W
=

 J
C
	

.-1
U

 n
 .3

G
U

r-1	
CO

cn ••-I 	
m	

C
14	

- C3 C
q  "7 C

a U
 O

:0	
• =

- 3
L+ O

1-1	
-

+	
•	

•
-J 	

E E
l

<
 m
	

V
 -1

u
 J
	

m
 a

a
 O

v	
3

7 C-.
b	m •-)

U
 C

 C
A

Z
 T

^
>

 :n
	

-C	
J O

..]
J

0
 0

C
 >,	

,c
-
^
 N	

H
X

 m
 -

H
 C

J
 n

: 
U

 
C
	

E-4
"'

:+
	 .-^

•'7
L
+

 ^
	

•
 
h

CO

V
3 	

v
 v

 m
v
	

t) b b	
't7 N G)

. ,- 1	
>, E

W
 N

 C
 C

 z C
	

H
•C

N
 x

>+ E-
-1	

...
w

'ZI
a
 N

 >
 =

. v
C	

(C	
M
	

co	
^ En

C
 .]

a
	

a
x V)

Z
 H

 s
O

 C	
^

T
.+ H
	

Cn
L. = C

4 W
 Z x .-a O

• C
-a O

..:!^	
-a rn

=
 3
	

J
.0

 3
	

C
 >>

? =3 	
':3 W

 w
=) U

• N
 U

H
 C

O
 x

O
 ::

x
-'

n
 J O

<
w

 
J
 
r
J
 Cn

c
n
 S
	

rj z
 

• 1
. U

<
6 W

 W
::) 	

U
:4

 !
h
 Y 	

^4
C) rl	

z
r-I	

C
v
^
 
v
 :.0

0
N

 N
 -I V

. N
	

G
-H

r.
W H

am¢
i-. W

 z r -I
c
o
-:>

,
-

1 O
 O

 O
E

n
z
H

O
a

^
<

'̂
 N

%
'' 

h
 I ^

-I=+	 U
 S

cl
>

<
<

 
i.

C)	
:T

J
 C

n
 U

 G
 v

:G
 -^ H

 %
 M

 
r-4

 U
 Cl.

h
 =

 C
l w

'r:4 V
)

r
 Cr

-^	
X

 s.
y >4 	

h
O

 ^L $4
 T

 O
:O

 =
 H
	

• N
r
-
1
 H
	

- 'W
C'1 N

-') 	 :--I	
•	

^„)
CO

 H ¢ • 4
a
c
n
	

O
 ti4

>
 :r C

n
	

c
n

 z
 <

w
 V

 z
U

 G
a .%

h
 
a

-3	
<

 --I
<
	

H
C
L

N
 
-
4
 
"
V

H
C
,

1	
r
-
+

W
	

C
l
,

.
7	

O
 -•1	

>,
.	

.	
.	

.	
.	

.	
.

d
	

.	
.	

.
.	

.
.i 	

•	
•

.	
.	

.
v01 	

O
. O

 U
	

• -4
V

) H
 W

<
=

:a 0
	

x
 m

 s>
a A

r-1 d C
	

a0:
L;

^
 
P

. n
:: ^ c: 3

 U
 :n

• 7
 rL

, , n
 Cn

^C
	

-
I
 
N

r•1 ^7 C
n
 ,D

 h
 00 O^

O
 r -1

 N
1
4
 .7

 Cn
,D

 h
o
o
 (0	O

ra N
	

1;
r--I	 .-^	 r-1

r-4	-1	.-1
r--I	r4

r-1
 r1

 N
N

 N
	

N



Figure Caption

Figure 1. Superconducting transition tempera-
tures of the Pd-Si-H(D) alloys.



· . 
. 

2 
---

0
-

H-

20 



LOW-TEMPERATURE SPECIFIC HEAT OF AMORPHOUS	

r ^;
Pd-S1 ALLOYS* I

H. L. LUO and H. F. ENO t.

Department of Applied Physics & Information Science, University of California,

San Diego, La Jolla, California 92093, USA

Abstract

The low temperature specific heat of an amorphous Pd 0.818 Si 0.182_ alloy

is measured and compared with that of amorphous Pd.775S1.165Cu.06, and the

corresponding crystalline phases. The electronic contribution is about the

same in all cases. The lattice contribution to the specific ',*4j; is largest

in the binary alloy, intermediate in the ternary alloy, and 4mallest in the	
i

crystalline forms. The results are discussed in terms of softening in shear

resistance of the material.	 I

";cGEDING PAGE BLANK C40T F1^.'A=1

Supported by NASA Grant NSG 3103

t Deceased 1978. This manuscript was written posthumously.
j



1 it

•	 1

9.•, 	+094^ !OMMKI^

Introduction.

Among metallic glasses, the amorphous phase in the Pd-Si system (con-

taining 17 N 20 at. % Si), produced by rapid quenching, is the most widely

known and the most extensively studied. Since it is difficult, to prepare

the binary amorphous Pd-Si phase in bulk form, most of the data on proper-	 .7

ties that required bulk specimens were usually obtained from samples con-

taining a few percent of a third element, such as Cu (1-3], which tends to

stabilize the amorphous state.

Under this circumstance, it is appropriate to ask the question: Is

there any difference between a binary Pd-Si alloy and its ternary variations

prepared by different quenching procedures, even if they are all."amorphous"?

In an attempt to find the answer, we measured the low-temperature

specific heat of binary amorphous Pd-Si alloys. Reported here are these

results and their comparison with published data on a ternary alloy.

Experimental Procedures.

A master alloy of the composition 18.2 at.% Si; Pd was prepared by

induction-melting the appropriate amounts of the pure elements in an argon

atmosphere. There was no detectable weight change due to the melting process.

Small slices (0.2 — 0.3 gm) of the master alloy were quenched into thin foils,

using the anvil-and-piston arrangement (4]. The dimensions of quenched foils

were — 2 c in diameter and 40 — 50 pm thick.

Prior to specific heat measurements, all specimens were screened by x-ray

diffraction. In the as-quenched state, all foils were amorphous. Crystalline

specimens were obtained by annealing the quenched foils in vacuum at , 400°C for

a f ew hours.

SI)OCIFlc heat experiments were conducted in two temperature ranges:

2° to 20' K and 60°C to 500°C. In the lcw temperature range, the

1



Sullivan-Seidel AC technique [5] was used, while the upper range employed

a Perkin-Elmer differential scanning calorimeter at 20°C/min. Both of

these techniques are extensively covered in the literature. In each case,

a sample of — 50 mg, cut from the quenched foil, was used.

Results and Discussion

The results of the differential scanning calorimetry from several runs

were quite consistent. The onset temperature of crystallization at 390°C

and the heat of crystallization of 950 . 5 cal./gm formula wt. agree closely

with the literature data [6]. However, the glass transition temperature, ex-

petted at — 380% could not be -convincingly delineated.

The low-temperature specific heat (C) is plotted as a function of temper- 	
1

ature (T) in the usual
T
 vs T 2 manner, shown in Fig. 1, together with the

published data of an alloy Pd 0.775 
Cu 0.06 Si 

0.165 [1,2]. The specific heats in

the crystalline states in all cases are quite compatible. The well-known

features of the low-temperature excess specific heat of the amorphous states

are evident. Of particular interest is the observation that the excess

specific heat of the amorphous 
Pd81.8Si18.2 

alloy is larger than that of

the amorphous Pd 0.775 
Cu 0.06 Si 

0.165 alloy. Such variation points to a fun-

damental difference in structures of the two cases. In order to make direct

comparison, we fitted all data with the same expression

C=yT+ST3,

without higher-order terns, where Y is the electronic specific heat, and S is

a function of the Debye temperature ( ,)). Since the excess specific heat

increases rapidly with increasing T above 5°K, only the data below 3°K were

used for the fittin; procedures. The values of Y and 
I'D 

arc listed in Table I.

The decrease of Qll arid the excess low-termperature specific heat can be

2
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considered of the same structure-related origin. Comparing the crystalline

and amorphous states of the alloy Pd 0.775 
Cu 0.06 Si 

0.165' the shear modulus

(C4G ) of the latter is much lower, which corresponds directly to a lower

®D [1]. The present results indicate that the C 44 of the binary amorphous

Pd-Si phase is lower than the ternary amorphous alloy quenched in bulk form.

So far, there is no direct measurement on C 44 of any binary amorphous

Pd-Si alloy. But such C 44 values can be reliably estimated from the data on

Young's modulus (E) and bulk modulus (B) which are more convenient to measure.

For an isotropic material, the three elastic moduli C11, C12' and 
C44

are not independent but are related by the expression C
44 = 2 (C11 - CL2).

Since it is known that the bulk modulus of a metallic glass differs from its

crystalline counterpart by just a few percent and is given by B= 3 (C 11 + 2C12)'

the Young's modulus, given by

E	
(C 11 - C 12 ) (C 11 + 2C12)

^	 —

C 1 + C12

is expected to be roughly proportional to C 44 . Therefore calculating C44

from E for any given metallic glass is equivalent to extrapolating the linear

relationship between C 44 and E. This is plotted in Fig. 2 using published

data [7,8]. Using E = 7.8 x 1011 dynes/cm 2 for a Pd
0.82 0.18

Si	 alloy [9],

the C44 is estimated to be 2.77 x 10 11 dynes/cm2.

The densities of the binary 
Pd0.818S10.182 

and the ternary Pd0.775Cu0.06

Si 
0.165 

are nearly identical. The difference in 
C,D 

can therefore be attribu-

ted entirely to the variations in C 44 . Indeed the 
ED 

and C44 values listed

in Table I satisfy the relation ® D a C44

3



Thus the low I'D - value of an amorphous phase derived from low-

temperature specific heat data provides a good indicator of its structure-

t	 related properties.

The "amorphous" state is a poorly defined term. The case of arsenic

t.

is a good example. Amorphous states of As prepared by different processes

demonstrate drastically different structure-related behaviors [10]. The

present results also indicate that there are important structure differences

Is

 between amorphous states for Pd-Si and related alloys by different prepara-

tion processes.

Recently a set uf low-temperature specific heat data in amorphous Pd-Si

alloys and the ternary variations produced by a spinning wheel technique

was reported [11]. These values fall in between that of the present investi-

gation and those reported in Ref. [1] and [2], further illustrating that the

structure of an amorphous phase is very dependent on the quench'.ng rate or

#!, a the specimen preparation procedures in general. On the other hand, the

diff=rer:ce between an amorphous phase and its derivatives obtained from sub-

sti.tcting just a few percent of its constituents with other components may

be minor, as indicated in Ref. [11]. Conventional diffraction techniques,

h!-WLVer, may not be sensitive enough to detect the small structure differ-

ences due to different preparation conditions. The analysis based on energy

dispersive x-ray diffraction [12] may prove to be more useful.

Another interesting observation concerns the stability of an amorphous

phase. We suggest that one of the reasons that, in scene systems, amorphous

phases only exist over certain limited composition ranges is due to their

softness in the shear resistance. For this to be true, there must exist a

compositi011 within the ratigo of stability for amorphous phases for which E

or 0D reaches a maximum value. On either side of the maximum the F. or "D

4



value will then necessarily decline. The compositional limits of the amor-

phous phase thus corresponds to the points at which the amorphous phase be-

come unstable against shear. Admittedly this model has not taken other

important crystallization factors into consideration. However, a survey of

known metallic glasses with limited composition ranges indicates that a

number of such examples indeed exist,; eg. Zr-Cu, Nb-Ni [13], Pd-Ni-P [8],

and La-Ca [14]. When the specific heat data of Pd-Si alloys in Ref [11]

are analyzed, the OD-values also satisfy this criterion.

Acknowlegement: We are indebted to Professor P. Duzez for allowing us to

use the fast-quenching facilities in hiF laboratory.
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Figure Captions

Figure 1.	 Specific Heats of Pd-Si Alloys. (Open symbols: amorphous state,;

solid symbols: corresponding crystalline state).

Figure 2.	 Relationship between Young's Modulus and Shear Modulus of Metallic
	

i

Glasses. All data were taken from Ref. 7 and 8.
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