
A QUERY INTO THE SOURCE OF PROTON EMISSION
 

FROM 	SOLAR FLARES
 

Sara 	F.Martin
 

,(4AS,AI I1629-'A QuEzy- INfl r-~iSuciC 
UT- 214ISsIoN FR O ,AB F-~H s RjPi 2i K-79-22990SOL . FIARPS, R2PORT 2
'Final Report (Spectra Optics, Sylmar,

Calif.) 32 p 	 CSCI 03B
C A03/MF A01 unclas
 

. G3/92 25107
 

REPORT 11
 

FINAL REPORT: 	 CONTRACT NAS8-32855
 

February 1979
 

SUBMITTED TO: 	 GEORGE C. MARSHALL SPACE FLIGHT CENTER
 
Marshall Space Flight Center
 
Alabama 35812
 

BY: 	 SPECTRA OPTICS 
12317 Gladstone Avenue 
Sylmar, California 91342 p451,, 

-a)
 

to ?
1Q.4 

https://ntrs.nasa.gov/search.jsp?R=19790014819 2020-03-21T23:38:47+00:00Z



A QUERY INTO THE SOURCE OF PROTON
 

EMISSION FROM SOLAR FLARES
 

Sara F. Martin
 
Spectra Optics
 

Sylmar, California
 

1.0 INTRODUCTION
 

From the literature review conducted during this study it was concluded
 

that no properties of flares or active centers have yet been found which
 

uniquely identify a flare that produces protons in the vicinity of earth from
 

one which does not. This conclusion does not disclaim the fact that there are
 

certain properties of some flares and their active centers that are statisti

cally correlated with the detection of very energetic protons. It merely means
 

that exceptions have been found to every such statistical association.
 

Because of this apparent lack of unique proton flare properties, it is
 

important to ask the question, "Are all major flares sources of proton emis

sion?" Since the conditions of particle propagation in the interplanetary
 

medium are not well enough known and the conditions of proton injection are
 

even less well-known, there is at present no definitive answer to this question.
 

However, for purposes of this study, it is assumed that the answer is likely to
 

be, "Yes, all major flares eject protons." Accordingly, this report follows the
 

recommendation in the literature review that information on the possible source
 

of proton emission should be sought by studying the properties that all major
 

flares may have in common.
 

The question of the possible source of proton emission is addressed
 

herein by re-examining seven solar flares that were followed by major proton
 

events. These seven events were chosen for this study because of the
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availability of high quali-ty H observations prior to or during these events and
 

because this sample of events includes very diverse flare characteristics. The
 

dates and times of these events are listed inTable I.
 

2.0 PROPERTIES COMMON TO ALL MAJOR FLARES
 

Ground-based observations (references cited in reviews by Svestka, 1976;
 

Martin, 1979; Report I of the subject contract) have shown that major flares
 

invariably occur in active centers or complexes of active centers where the
 

line-of-sight component of both the magnetic field and velocity field are zero.
 

The chromospheric elements are divided into two or more emission segments,
 

which are centered with respect to locations where VV 0 intersect or coin

cide with Hi= 0 lines. Inaddition, Ha structures and motion provide evi

dence that the direction of the magnetic field inthe chromosphere and low
 

corona is parallel or very near parallel to the H = 0 lines prior to the 

occurrence of major flares. This combination of conditions at the sites of
 

solar flares is consistent with the geometry of either a current sheet or a
 

field that is strongly sheared in a horizontal plane (a plane approximately
 

parallel to the solar surface). The magnetic field geometry at flare sites is
 

also similar to the geometry of "tangential discontinuities" in the interplane

tary magnetic fields.
 

The Skylab ATM experiments revealed two more properties thought probably
 

to be associated with all major flares: (1)the occurrence of coronal flare
 

loops at x-rays and EUV wavelengths and (2)the occurrence of white light
 

transients beyond 20 solar radii. (Obviously, transients were only observed
 

for events sufficiently close to the solar limb.)
 

Under the assumption that all flares are proton flares, the visible
 

flare characteristics which could be somehow related to proton acceleration
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Table 1
 

Optical Flare Proton Event*
 

Date Start Max. Duration Location Imp. Date N Time N Duration
 
(Min.) 

2 Aug. 1972 1838 1844 18 N13E28 IB 4 Aug. 0200 0.5
 

2 Aug. 1972 1958 2058 218 N12E28 2B 4 Aug. 1400 7
 

7 Aug. 1972 1449 1534 152 Nl6W35 3B 9 Aug. 0000 5
 

29 Jul. 1973 1312 1239 >348 N14E45 3B 31 Jul. 0800 ?
 

7 Sep. 1973 1141 1212 170 S18W46 2B 9 Aug. 0000 5
 

5 Jul. 1974 1506 1515 65 S14W23 lB 6 Jul. 1800 1-2
 

5 Jul. 1974 2123 2143 119 S17W26 2B 7 Jul. 1200 2-3
 

*Neutron Monitor Reports
 

All data in this Table is from Solar Geophysical Data
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are reduced to:
 

(1)chromospheric flare elements adjacent to H = 0 lines 

(2)flare loops
 

(3)coronal transients
 

3.0 DIVERSE CHARACTERISTICS AMONG MAJOR FLARES
 

3.1 The Range of Emission Features with Flares
 

In order to not be too simplistid, the diverse characteristics of flares
 

need also to be considered. In the most general sense, a flare historically
 

has been considered to be any brightening observed in Ha or other spectrum
 

lines. In addition to the bright chromospheric flare elements which occur on
 

opposite sides of the H I =0 line at the feet of the EUV'and x-ray coronal
 
II
 

loops, a number of other emitting flare elements are known. These have been
 

identified as:
 

(1)Ha loops in emission (prior to loops inabsorption)
 

(2)Peripheral chromospheric brightenings
 

(3)Emission traversing curved trajectories
 

(4)Faint diffuse moving emissions described variously as
 

"emission front," "flare-halo" and "flare-veil"
 

(5)Bright surges or parts of surges
 

(6)Brightened filament mass
 

This multitude of flare features, particularly items (l)-(4),are often
 

not separately distinguishable in low resolution films of flares and sometimes
 

not even in the current higher quality, larger scale Ha images. If the various
 

forms of flare emission are not distinguished, the properties that major flares
 

have in common may also be obscured. Using the seven proton flares mentioned
 

above, examples of the various forms of flare emission are discussed below,
 

excluding surges and erupting filaments whose identification usually poses
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no problem.
 

3.2 Ha Loops
 

An exquisitely clear example of an Ha flare loop system in emission isseen
 

in Figures 1 and 2 with the flare of 7 August 1972. In these illustrations from
 

the Big Bear and Lockheed Solar Observatories, the tops of individual loops stand
 

out as curvilinear emission arcs lying approximately midway between the chromo

spheric flare elements at 1555 UT'and later. It is now well known that the arcs
 

are sections of flare loops which join the inner boundaries of the chromospheric
 

ribbons (Rust and Bar, 1973). The 7 August 1972 flare develops into a classical
 

example of what is known as a "two ribbon" flare. The row of more or less paral

lel loops has been called the "third flare ribbon." Itmay be noteworthy that
 

the spectra in Figure 2 reveal the Ha profiles of loops to be more broad than
 

the chromospheric flare elements at the time shown! Unfortunately, the multi

slit Hct spectra were not obtained earlier in the flare.
 

Another example of a flare showing the classical two ribbon form is shown
 

in Figure 3. This flare on 29 July 1973 occurred in a nearly "spotless-" active
 

region. When the 16 mm. copy of the film of this event is viewed on a motion
 

picture projector, sections of very faint emission loops are seen prior to
 

their changing to absorbing loops as seen in Figure 3. In narrow band filter

grams, such as these, one only sees the section-of
6the-loops which lie nearly
 

perpendicular to the line of sight because Doppler shifted mass flowing along
 

the loops renders the complete loops invisible unless one has the capability
 

of tuning the passband of the filter into the wings of the Ha line.
 

In Figure 3, it is seen that the bright flare ribbons separate as a
 

function of time. Both the separation and the duration of flare ribbons seems
 

to be inversely proportional to the strength of the magnetic field at the flare
 

site. As an example, the 29 July 1973 flare (Figure 3) shows a marked
 



6 BIG BEAR SOLAR OBSERVATORY 

GREAT FLARE 8/7/72
 

Fig. 1. This bright flare develops into the classical "two ribbon" form between
 
1530 and 1555 UT. The tops of flare loops inemission are seen at 1555 UT as
 
short arcs appearing to join the chromospheric flare ribbons. Inthe upper part

of the flare at 1555 UT, some coaler absorbing loops have already formed.
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Fig. 2. The flare of 7 August 1972 photographed at the LockedSlrOsr
 
vatory is compared with the active region filaments seen on the preceding day.
 
The filaments around which the flare is centered erupted at the outset of the 
flare. The slit in the upper right frame which crosses the loops reveals a. 
relatively broad Ha profile (3-4A) in contrast to the profile of chromospheric 
flare ribbons at the time shown. 
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44 

1346:38 1405:07 1415:27
 

1425:10 1435:05 1453:00 

1506:14 1524:17 1529:35 

160 5 05 16 5 90 3 0 

Fig. 3. These Ha images of the flare on 29 July 1973 photographed at Big Bear
 
Solar Observatory show two almost parallel chromospheric flare ribbons which 
gradually separate with time. Knots of faint emission moving along loops are seen
 
between the flare ribbons at 1415 UT and earlier. Subsequently, the visible sec-
tions of the flare loops are seen in absorption projected against the limbward
 
ribbon.
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separation of the flare ribbons and an extremely long duration, over six hours.
 

Incontrast, the 7 August flare occurred close to strong spots and revealed a
 

lesser degree of ribbon separation and a shorter lifetime.
 

Inmany flares, however, the loops as seen in Figures 1, 2 and 3,may 

not be resolved and they may be superposed in projection against the bright 

chromospheric flare ribbons. In such circumstances, the two ribbon character 

of the chromospheric flare, as seen in the flare of 7 August 1972 (Figures 1 

and 2) may not be evident. Such examples, where the separation of the chromo

spheric flare element is not clearly seen in Ha, are the two flares of 

5 July 1974, shown in Figures 4 and 5. The briqht core of the flares appear 

in the same position relative to the sunspots inFiqures 4 and 5. Only in the 

D3 Hel imaqes in Figure 5 (or in the wings of Ha--not shown), is it seen that 

the flare has discrete chromospheric elements that separate around the H = 0 

line. The motion of the flare ribbons in this case is apparently restricted 

greatly by the strong fields of the sunspots underlying the flare. At Ha 

line center one cannot, at the times shown in Figures 4 and 5, distinguish 

between Ha loops and Ha chromospheric emission. After flare maximum, however,
 

as some of the emission is decaying, the bright arcs, as in the 7 August 1972
 

flare, become distinguishable in the center of the brightest emission seen in
 

Figures 4 and 5. Thus, these flares on 5 July 1974 are in fact "two ribbon" 

flares.
 

3.3 Peripheral Chromospheric Brightenings
 

In addition to the bright flare core of the 5 July 1974 flares, seen in
 

the lower left of each frame in Figure 5, smaller flare elements are seen in
 

the upper part of each frame. This peripheral emission is readily seen in
 

absorption in the D3 Hel images in Figure 5. Such peripheral emission has also
 

been identified in soft x-ray images (Rust and Webb, 1977). Unlike the flare
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5 July 1974
 

1504:03 1507:03
 

1507 18 1507:33 

1508:03 OF R QUA 1508 48
 

Fig. 4. Only the early development of this flare photographed at Big Bear Solar
 
Observatory isshown. Initially the boundaries of the chromaspheric flare
 
appear to be very sharp. As the flare develops, a diffuse patch of emission
 
appears near the center of the flare and suddenly expands to encompass the sun
spot to the left of the flare. This isthe flare "veil". Maximum extent
 
appears at 1508:45 UT. Subsequently, the veil disappears and the flare boun
daries again appear sharp.
 



5 JULY 1974
 

21 3900 21 4200 214730
 

Fig. 5. This second major flare on 5 July 1974 photographed at the Lockheed
 
Solar Observatory developed almost identically to the flare in Fig. 4. This
 
flare is shown at its maximum brightness (2142:00) and maximum size (2147:30)

in Ha, (top row), Ha multi-slit spectra (middle row) and D3 Hel (bottom row).
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core and flare loops, the peripheral emission is not centered with respect to
 

Hi = 0 lines. The initial appearance of the peripheral emission is also delayed 

with respect to the start of the flare core emission. The more distant elements
 

of peripheral emission brighten last as if the emission were initiated by some

-thing emanating from the area of the flare core at its flash phase. It is
 

similar to the chromospheric brightenings described by Smith and Harvey (1971)
 

except that itoccurs in this-case within the active center of-the flares. The
 

peripheral emission is usually an enhancement of plage or network elements that
 

were already slightly brighter than the average background. The elements show
 

little or no apparent motion. The Ha spectra of the peripheral emission is
 

always weak and very narrow in profile. In Figure 5 it is seen as a slight
 

weakening of the Ha line.
 

3.4 Emission Traversing Curved Trajectories
 

Emission traversing a curved path, apparently above the chromosphere, is
 

another form of flare emission which is cuite common but is rarely mentioned
 

in the literature.. One example-was described by Smith and Ramsey (1967). In
 

single pictures it is often difficult to differentiate this emission from the
 

chromospheric flare elements. However, in cine-projection, this emission is
 

readily distinguished by its relatively rapid motion incontrast to the slow
 

development of chromospheric elements at the foot points of loops. Hence, if
 

not superposed against a background of chromospheric flare elements, it is
 

identifiable by its motion in the plane of the sky, by its relatively short
 

duration,and sometimes by its Doppler shifts which may be either toward or away
 

from the observer. The motions suggest that this emission is following specific
 

curved paths defined by the magnetic fields of the corona overlying active
 

regions. However, in Ha no pre-existing structures are seen along the trajec

tories of the moving emission. Itmay be relatively bright or very faint. An
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example of this moving emission appears in the lower right corner of the Ha
 

images in Figure 5. One can see that rapid changes have taken place in this
 

region while the flare core in the lower left corner seems to have simply
 

expanded. The two Ha spectra in the lower right of the center frame of Figure 5
 

reveal some red shift and some blue shi-ft. Also, thespectra show this moving
 

emission to be less bright than the flare core emission, but relatively broad
 

in profile. This emission probably corresponds to the dynamic parts of some
 

flares seen very near the limb and gives us a clue to why limb flares and flares
 

on-the disk often appear to have such widely differing properties.
 

3.5 Veil Emission
 

A faint, diffuse veil of emission is seen with some bright flares. This
 

emission has also been called the flare halo by Zirin and Tanaka (1973). The
 

emission fronts described by Martin (1978) may also be the same type of phenom

enon when seen offset from the flare core emission rather than- superposed against
 

it. In this report we choose to adopt the term "veil" or "veil emission" orig

inally used by R.Hedeman at McMath-Hulbert Observatory because this term may
 

imply an obscuration of background structures and irregular shape. The term
 

"halo" is not used because "halo" implies that the phenomenon is stationary and
 

symmetric with respect to the flare, which it generally is not.
 

The veil differs from the above-described emission in that it does not 

have well defined boundaries. It is an extensive flash of emission that appears 

in the vicinity of a flare and appears to emanate from around the flare core. 

It begins very close to flare start, increases in brightness and area during 

the flash phase of the flare and then rapidly fades from view. Examples of 

the veil emission are in Figures 4, 6 and 7. In the filtergrams in these 

illustrations, one notices only that the developing chromospheric flare boundary 

isnot sharp. After the veil disappears from view, the expanding flare 



2 AUGUST 1972
 

H4 + 0.5 A HaSPECTRADI 

0)
 

4.f 

H.. -.O A 
H x 

1840 UT 

Fig. 6. In the wings of the Ha line (left) the flare shows two well separated flare ele
ments. The Ha center-line image (lower right) shows a diffuse veil of emission overlying
 
or surrounding the chromospheric emission elements. In the spectra (upper right) the veil
 
appears as a slight overall decrease in absorption in the Ha line between the chromospheric
 
elements.
 



BIG 	 BEAR SOLAR OBSERVATORY 15 
MULTIPLE FLARE 8/2/72 

~POOR 

Fig. 7. The flare in Fig. 6 is also shown here in the first two frames in the left 
column. A second flare begins to develop less than an hour following the preceding
 
flare. The second flare ismuch slower indevelopment, much larger inarea, and
 
less impulsive than the previous flare. The second flare does not reveal a flare
 
veil as seen for the earlier flare at 1839:26 UT.
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boundaries again show distinct sharp or cerated edges. In both of the 5 July
 

1974 flares (Figures 4 and 5) and in the 2 August 1972 flare (Figure 6) the
 

peripheral chromospheric flare elements appear immediately after the apparent
 

rapid expansion of the veil as seen only in cine-projection. The properties
 

and timing of the veil and the subsequent appearance of peripheral emission
 

suggest that it is a transient coronal phenomenon which partially and tempor

arily obscures the underlying flare and surrounding chromosphere in the line

of-sight. For these reasons, Glackin and Martin (1978) proposed that this
 

class of phenomena may be a visible aspect in the early development of a white
 

light coronal transient. This is a debatable hypothesis because it implies the
 

existence of neutral hydrogen in the low corona during and possibly before
 

flares, for which there isyet little supporting evidence.
 

The spectra in Figure 6 show a low level brightening of the entire Ha
 

lines where the slits in the filtergram (lower right in Figure 6) cross the
 

veil where it is not superposed against the chromosphere parts of the flare.
 

A distinct profile is not seen in the wings of Ha. The blue wing filtergram
 

(lower left, Figure 6),- however, shows the veil to be slightly brighter than in
 

the red wing of the line (upper left, Figure 6). This is the only event in
 

which the veil emission is bright enough to appear in the spectra and i.n the
 

wings of the Ha line. The veil with the flare on 2 August 1972 is the brightest
 

one detected to date. The associated flare is only a Class 1 flare, but itwas
 

very impulsive. The subsequent extensive Class 2 flare (Figure 7)which devel

oped just south of this early flare at 1804 showed no sign of the hazy veil.
 

This flare, though large, developed very slowly.
 

The above pattern, however, was not repeated for the pair of homologous
 

flares on 5 July 1974 (Figures. 4 and 5). In this case, the early flare showed
 

an outstandingly bright flare veil, placed almost symmetrically around the flare
 

core. The second flare developed a similar but much fainter veil. A
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peculiarity of the flares with the two brightest veils is that they are the 

smallest of the seven flares, and neither was associated with a clear cut fila

ment eruption. The 2 August event, however, was associated with a mass ejecta 

--probably a bright surge. The later flare on 5 July, which showed a faint 

veil of emission, was associated with an erupting filament. In fact, the veil 

develops as the filament erupts. Thus, the flares which reveal veils do not 

seem to represent any distinct class of flare. Veils only have in common their 

association with relatively bright flares. 

3.6 Emission Phases in Surges and Erupting Filaments
 

In addition to the forms of Ha flare emission discussed and illustrated
 

above, flare-related surges and erupting filaments may also exhibit phases of
 

emission. Sometimes surges begin as an emission feature and gradually make a
 

transition from emission to absorption. The early flare on 2 August 1972 in
 

Figure 6 is associated with such a surge. Erupting filaments always start as
 

absorbing features when viewed against the disk. However, some filaments
 

in active regions, make a transition from absorption to emission before the
 

radial component of velocity shifts the filament out of the center of Ha.
 

Part of the erupting filament with the second flare on 5 July 1974 became
 

unusually bright before itmoved out of the field of view of the telescope
 

(not shown in Figure 5). Usually, the identification of surge or filament
 

mass in emission is readily made by observing the apparent origin and trajec

tories of the mass.
 

3.7 Unidentified Forms of Flare Emission
 

Occasionally, an emission feature isobserved that does not readily fit
 

any of the above descriptions of the various common forms of flare emission.
 

One such unidentified emission feature is seen limbward of the flare on
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7 September 1973, illustrated in Figure 8. It most closely resembles a surge
 

except that it is not seen to ever fall back into the sun. It originates with
 

a small brightening close to a filament that subsequently erupts with the fol

lowing major flare. The emission feature does not appear to be part of the
 

filament which seems to remain in place until flare start. It appears to be
 

too well defined to be a flare veil, and too cohesive to be an enhancement of
 

successively brightened chromospheric elements. Hence, it remains for the
 

present in the category of unidentified flare emission.
 

There are unusual aspects of the ejected emission with this flare on
 

7 September 1973 which are worth noting. First, it is a preflare phenomenon.
 

It begins nine minutes prior to the start of the major flare. Secondly, it
 

occurs in the location where a transient x-ray event appeared on the previous
 

day. Third, it was followed by additional emission very close to the limb
 

which somewhat resembles the slow-mode waves reported by Rust and Svestka
 

(1977). A detailed comparison of this feature with x-ray and EUV data from
 

Skylab would be worthwhile.
 

4.0 PROPERTIES IN COMMON-AMONG MAJOR FLARES IN THIS STUDY
 

Although the flares discussed above include several diverse forms of 

emission, these events also have some properties in common. In all cases, the 

brightest elements of the flares are centered with respect to a preflare fila

ment or filament channel. (Filament channels are recognized by paths of 

alligned fibrils in Ha (Martin, 1973).) Since filaments only form at boundaries 

between opposite polarity fields as seen on magnetograms of the line-of-sight 

component, we know that the core of these flares was centered with respect to 

lines where H = 0. These are also locations which Martres et al (1971) andII
 
=
Harvey and Harvey (1976) found to intersect or coincide with sites where V 0.
 

Only two of the seven flares were not associated with the eruption of a
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7 Se tember 1973
 

1058:16 1116:4 4 1126:45 71128: 53 

1134:07 11374 8 1139:57 1143:05 

1144:36 1148:46 1149:53 1152:31 

1204:08 12 11:02 1219:55 1230:27 
oRIGNAL PAE IS 

Fig. 8. This flare recorded by the-rhr patrol at Ramey AFB shows an unusual 
preflare and flare-associated emission feature. It begins following a small bright
ening at 1116:44 UT, is related to the absorbing feature seen in the blue wing of Ha
 
at 1128:53, and is seen inemission at line center. From 1134:07 until 1152:31, the
 
faint emission continues to move limbward as a major flare ensues at 1139:57.
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filament. These were the earlier of the two flares on both 2 August 1972 and 

5 July 1974. Both of these flares were followed on the same day by subsequent 

larger major flares that were accompanied by an erupting filament along the 

same polarity boundary (H11 = 0, the so-called neutral line) around which the 

core of the earlier flare was centered. This demonstrates that the earlier 

flares on 2 August 1972 and 5 September 1974 were the type that would have been 

associated with an erupting filament, if conditions had been favorable for the
 

accumulation of filament mass in the filament channel before these flares
 

occurred. Thus, obe common property among these seven flares is the associa

tion of the flare,core with-a filament channel irrespective of whether filament
 

mass occupied the channel prior to the flares.
 

Four of the seven flares were clearly associated with Ha loops in emis

sion which subsequently changed to loops in absorption, as seen superposed
 

against the solar disk at Ha line center. The flare on 7 September 1973 has
 

been studied only in low resolution Ha films and. its possible association with
 

Ha loops remains uncertain. The two events which did not reveal-loops in Ha
 

were the two flares on 2 August 1972. The conditions for loop formation in-Ha
 

are unknown, although loops inemission are most often seen with flares which
 

show an increasing separation of the chromospheric flare ribbons with time and
 

occur in active regions with moderately strong magnetic fields. The earlier
 

flare on 2 August 1972 did not show a marked separation of the flare ribbons
 

with time. In fact, the flare elements were highly sheared with respect to
 

the H = 0 line in the magnetograms. The second flare on 2 August 1972 was a
 

more classic two ribbon flare but the flare developed extraordinarily slowly.
 

This suggests that itwas perhaps more like two ribbon flares in very weak
 

active regions which are generally associated with erupting filaments but
 

seldom with obvious loops in Ha.
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Although the 2 August 1972 flares and the 7 September 1973 flare were not
 

clearly associated with Ha loops, a very certain conclusion from the Skylab
 

observations is that all flares are associated with coronal loops or coronal
 

loop systems and these flares should be no exception. Thus" the existence of
 

flare loops isanother property common to these flares.
 

Coronal flare loops are known to join chromospheric flare ribbons (Rust
 

and Bar, 1973; Svestka et al., 1979) which lie in opposite polarity line-of

sight magnetic.fields. It follows that the progressive development of chromo

spheric flare elements, whether or not the elements distinctly separate from the
 

neutral line, is evidence of formation of successive coronal loops. Since all
 

of the seven flares examined here exhibited the successive development of
 

chromospheric flare elements, this is further evidence that they all were
 

associated with the development of coronal loop systems. This has been clearly
 

demonstrated for the flares on 29 July 1973 (Svestka et al., 1979). In effect
 

this means that all of these flares were "two ribbon" flares, even though the
 

flares on 5 July 1974 and the early flare on 2 August 1972 departed greatly in
 

appearance from the classic two ribbon form.
 

The events on 29 July 1973 and 7 September 1973 are known to be associated
 

with white-light coronal transients. From the results of the HAO coronagraph
 

flown on board Skylab, it is now known that essentially all major flares within
 

45' of the limb were associated with coronal transients. Thus, it is quite safe
 

to assume that all of the flares in this study should have been associated with
 

a coronal white-light transient also. Since coronal transients are also highly
 

correlated with Type II radio bursts, the occurrence of Type II events with most
 

of these flares is further evidence of the high probabil'ity of their association
 

with coronal transients.
 

Three of the seven events inTable 1 were also associated with a coronal
 

emission veil as described inSection 3.5. These are the early flare on
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2 August 1972 and two flares on 5 July 1974. These three flares had the most
 

impulsive development of all the flares in Table 1; that is,the period from
 

flare start to flare max (maximum brightness) was shorter than for the other
 

flares. Also,.the total duration of these three events was shorter than for
 

the other four flares., This suggests that, somehow, the impulsiveness is
 

important in revealing this emission. Indeed if the veil emission is related to
 

the development of a white light coronal transient, as proposed by authors
 

(Martin, 1978; Martin and Glackin, 1978), itseems reasonable that the sudden

ness of energy release ofa flare might be related to its visibility. It is
 

perhaps like the relationship of Ha loops to coronal flare loops; the Ha loops
 

are only visible under certain conditions even though the coronal loops are
 

invariably present. The emission veil may require a certain minimum density,
 

temperature, or energy (velocity) to render it visible.
 

5.0 CONSIDERATIONS ABOUT THE SOURCE OF PROTON EMISSION
 

5.1 Questions Concerning Proton Escape
 

The flares discussed above were selected because they are diverse in
 

character and yet have the common property of being events for which protons
 

were subsequently recorded at the earth by ground level detectors. Questions
 

that are many times asked are, "When, how, and where during a flare does the
 

proton acceleration take place?" It seems logical that the acceleration would
 

take place during the flash phase of the flare (Krivsky, 1977) when the greatest
 

amount of electromagnetic radiation occurs throughout the solar spectrum. How

ever, itis not certain whether acceleration to such great energies can take
 

place just during the flash phase. Various models of two-stage acceleration
 

have been proposed to account for the long duration of proton events near
 

earth.
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5.2 White-light Transients
 

Kahler et al. (1978) propose that a mass ejection event (white-light
 

transient) may be a necessary condition for the occurrence of prompt proton
 

events. They suggest that the occurrence of mass ejection events facilitates
 

the escape of protons and that there may exist a proton acceleration region
 

around or above the outward moving mass ejecta far above the flare site.
 

The Kahler et al. (1978) assertion is in keeping with the quest of this 

study in searching for the source of proton emission among the properties that 

major flares have in common and my conclusion that the white-light transient 

would thus be considered a candidate for proton acceleration. -However, the 

evidence of Kahler et al. (1978) is largely circumstantial. They offer no 

compelling reasons why proton acceleration must necessarily be accomplished in 

the vicinity of the white-light transient, and inany case, they do not postulate 

this association for the initial acceleration of protons. I have no evidence or 

reason either to suggest that either a first stage or second stage acceleration 

of protons should occur in association with white-light transients. Instead; I 

suggest that it is equally likely that the acceleration of the white-light 

transient (not observed) and the acceleration of protons could have a common 

cause--taking place well below the 2"0 solar radii occulting disk of the white

light coronagraph. 

5.2 Chromospheric Flare Elements
 

The remaining candidates among the optical aspects of solar flares for a
 

possible association with proton acceleration are the chromospheric flare
 

elements and flare loops.
 

There isone property of chromospheric flare elements which strongly miti

gates against these elements as being directly associated with proton accelera

tion. That property is the red-shift. It has long been known that flares are
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brighter in the red wing than the blue wing at equal distances from line center
 

(Waldmeier, 1941; Ellison, 1943). Ellison (1952) described the red wing bright

ening as a "red'wing assymetry" inwhich the peak of the flare emission profile
 

is coincident with line center. Teske (1962), however, found a symmetric flare
 

profile displaced a few tenths of an Angstrom into the red wing of Ha. This
 

type of profile is hereafter referred to as the "red-shifted" profile. Confirm

ation of red-shifted profiles was established by Martin (1975) and Ramsey et al.
 

(1975). It is still unknown whether all red wing excess brightening can be
 

explained as due to red-shifted elements or whether separate true red wing
 

assymetry (Svestka, 1976) also exists. In any case, the red wing brightening
 

was found to be a property of virtually all newly forming chromospheric flare
 

elements (Ramsey et al., 1978).
 

The flare red-shift is consistent and supportive of particle impact flare
 

models (Brown, 1973; Canfield, 1974) even though initial attempts to theoreti

cally reproduce observed flare profiles under the assumption of electron deposi

tion in the chromosphere have not yet met with much success. The flare red-shift
 

unmistakably implies that chromospheric elements are depressed by either high
 

energy particles or shock waves. As such, the chromospheric flare elements are
 

most likely to be a response to impact rather than themselves a primary source
 

of proton acceleration, although we cannot yet exclude the chromospheric elements
 

responding to particle bombardment as a possible second source of proton acceler

ation. However, the lack of magnetic field changes in the chromosphere coinci

dent with flare elements (Harvey and Harvey, 1976) further mitigates against
 

chromospheric elements as the primary site of proton acceleration.
 

5.3 Flare Loops
 

The last of our optical candidates for being a site of proton acceleration
 

are flare loops. Ha flare loops have not been proposed as being related to
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proton emission because they are most typically seen during the late stages of
 

solar flares. In fact, the common designation for Ha flare loops is "post

flare" loops. Actually, Ha loops, when in emission, never occur after the
 

other.parts of the flare emission have decayed. When the loops are in emission,
 

as shown in Figures 1 and 2, they become apparent during or soon after flare

maximum. Subsequently, they become absorbing loops before becoming invisible
 

against the solar disk. However, at the limb the loop systems remain visible
 

for hours after the chromospheric flare emission has disappeared (Bruzek, 1964).
 

Hence, limb observations account for the term "post-flare" loops.
 

A theory of the formation of flare loops has been developed by Kopp and
 

Pneuman (1976). The starting point of the Kopp and Pneuman model is the assumed
 

opening of magnetic field lines during the rise of a solar flare. According to
 

the Kopp and Pneuman model, the fields become closed again at lower elevations
 

in the solar atmosphere by a sudden magnetic field reconnection.- The reconnec

tion results in loops which fill with ionized mass flowing up the reconnected
 

field from the chromosphere. The mass cools and condenses at the tops of the
 

loops and then is subsequently seen to flow down the legs of the loops back to
 

the chromosphere.
 

This model by Kopp and Pneuman iswell supported by ground-based observa

tions. However, as originally proposed, itwas not intended to explain the
 

existence of high temperature flare loops above the Ha loops (McCabe, 1973;
 

Svestka et al., 1979b). The model could be observationally consistent with
 

coronal observations as well as ground-based observations if a minor modifica

tion to the model ismade. The essential change would be assuming that the
 

opening of field lines (stretching or elongating) takes place prior to the
 

start of the flare and that the start of the reconnection process is coincident
 

with flare start. With this modification, successive rapid reconnections take
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place during the flash phase and subsequently as long as new chromospheric flare
 

elements are seen. With this proposed shifting of the sequence of events in the
 

Kopp and Pneuman model to earlier times, the model becomes not just a "post

flare" loop model but a flare model as well. With this proposed change the
 

model becomes consistent with additional flare properties and has the following
 

advantages:
 

(1) reconnection provides a mechanism for creating loops at
 

flare onset;
 

(2) reconnection provides energy for accelerating protons and
 

electrons downward and outward to very high velocities;
 

(3) the red-shift of flare elements can be accounted for by the
 

collision of accelerated particles into the chromosphere and
 

photosphere from their initial positions along the lower
 

half of the reconnected field;
 

(4)acceleration of particles along the upper half of the recon

nected fields as well provides a mechanism for-ejecting
 

protons and electrons into the interplanetary medium;
 

(5) reconnection detaches a part of the coronal magnetic field
 

from its former roots in the chromosphere and photosphere,
 

thereby creating the outward moving confined magnetic field
 

and associated mass known as the white-light coronal transient;
 

(6) the acceleration of protons through the upper half of the
 

reconnected field (the white-light transient) provides an
 

opportunity for some protons to charge-exchange with neutral
 

atoms in the transient thereby creating the flare veil
 

described in section 3.5.
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If this modification to the Kopp and Pneuman model has validity, one
 

would also expect in the future to find that:
 

(1) the maximum velocities of the white-light transients and
 

erupting prominences should be proportional to the energy
 

of reconnection;
 

(2)the red-shift of newly-formed chromospheric flare elements
 

should be proportional to the energy of reconnection and hence
 

would decrease gradually after the flash phase of a flare;
 

(3)from (1) and (2) it follows that the maximum red-shift of
 

chromospheric flare elements should be proportional to the
 

maximum velocity of the white light transient;
 

(4) the ascent of filaments before flares would be a visible
 

response to the opening (distending) of coronal field lines
 

above and around the filaments;
 

(5) the coronal fields as seen in 5303A, EUV, and soft x-ray
 

wavelengths should expand outward before the start of the
 

chromospheric flare and flare loops.
 

6.0 DISCUSSION
 

According to the preceding arguments, the x-ray, 5303A, EUV and Ha flare
 

loops in the corona would be the aftermath of bombarding the chromosphere with
 

high energy particles. The process of loop formation would be similar to that
 

proposed by Kopp and Pneuman (1976) but the effects more cataclysmic due to
 

the acceleration of particles trapped along the distending magnetic field.
 

In this suggested revision of-the Kopp and Pneuman flare-loop model, the
 

development of chromospheric flare elements would be indirect measures of the
 

energy of reconnection and hence also indirect measures of the duration of
 

proton and particle injection into the interplanetary medium. If protons and
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electrons are primarily accelerated at the instant of loop formation, particle
 

injection could occur at least as long as new chromospheric flare elements are
 

forming and possibly much longer since loop formation does not cease at the end
 

of the chromospheric flare. This raises the question of whether or not protons
 

continue to escape even during the true "post-flare" loop phase and also whether
 

proton acceleration and escape occurs during filament eruptions when no chromo

spheric flare elements are visible. Webb and Kundu (1978) have already found
 

evidence of electron events with such erupting filaments not accompanied by
 

chromospheric flare elements.
 

Excluding for the moment the known effects of the interplanetary medium,
 

and assuming that proton acceleration occurs primarily at the instants of
 

magnetic field reconnection and loop formation, the arrival of protons at earth
 

would be at least partially determined by:
 

(1)the time profile of the energy of reconnection, and
 

(2)the duration of loop formation until the energy isno longer
 

sufficient to accelerate particles to escape velocities.
 

A profile of decreasing energy of reconnection throughout most of the dur

ation of flares would serve to greatly stretch out the interval during which
 

particles arrive at the earth in contrast to the duration of the solar event
 

ejecting the particles. This'would be such a substantial factor in determining
 

the particle arrival times that there may be no need to invoke mechanisms for
 

the storage of particles in the corona. The requirement instead is to supply
 

particles into the coronal magnetic fields which are reconnecting.
 

Since loop systems may occupy an extensive volume of space over solar
 

flares, this mechanism of reconnection for particle injection agrees with Lin
 

and Kahlers' (1968) conclusions that particle injection does not occur at a
 

point source.
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7.0 CONCLUSION
 

From this analysis of the diverse and common properties of major flares,
 

it is concluded that the most probable site of primary proton acceleration is
 

cospatial with the site and instant of formation of coronal loops. Since loop
 

formation occurs through the entire duration of major solar flares over signif

icantly large areas of active centers, it is proposed that proton injection
 

occurs from a relatively large volume of space in the corona of active centers
 

and is continuous throughout, and possibly even after, the visible duration of
 

the related chromospheric flare. A direct, short-lived manifestation of proton
 

ejection may be the phenomenon described herein as the "flare veil". The flare
 

veil is hypothesized to occur as a result of proton charge-exchange taking place
 

in the white-light transient..
 

The Kopp and Pneuman (1976) model of loop formation by magnetic field
 

reconnection is suggested to be an adequate and satisfactory model for all major
 

flares with the provision that the beginning of the rapid magnetic field recon

nection is coincident with flare start. This model could satisfactorily account
 

for the red-shift of chromospheric flare elements and all loop formations
 

throughout flares. It is also consistent with observations of erupting fila

ments and coronal transients with flares.
 

Since the Kopp and Penuman model requires an initial opening or distend

ing of closed magnetic fields, it is predicted that coronal magnetic field
 

changes should occur prior to all major flares. Such changes are very likely
 
a 

to be observable in 5303A coronal observations, in soft x-rays and at EUV wave

lengths as outwardly moving coronal structures such as reported by Bruzek and
 

De Mastus (1970). The preflare ascent of filaments before they erupt with
 

flares is thought to be a passive preflare response of filaments to the preflare
 

distending of the coronal magnetic field surrounding and above such filaments.
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