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SYMBOLS 

A angle of  attack 

linear  acceleration  component 

B angle of sideslip 

Ci direction  cosine  rate  parameter 

CK Kth  control  surface 

CFi ith  control  force 

CMi ith  control  moment 

UF~,CO derivative of  the rzth aerodynamic  forcc  component  with  respect to  the  Kth  control 
surface 

Di,j direction  cosine 

Dpi, uj derivative of  the  ith  aerodynamic  force  component  with  respect  to  the  jth  component 
of linear  velocity 

Dl,-. p. derivative  of the  ith  aerodynamic  force  component  with  rcspect  to  the  jth  component 
1' J of angular  velocity 

Db-, A ,  derivative of the  ith  aerodynamic  force  component  with  respect  to  the  jth  component 
1' I of  linear  acceleration 

DM., U .  derivative of the  ith  aerodynamic  moment  component  with  respect  to  the  jth  compo- 
1 1  nent  of  linear  velocity 

D M ~ , ~ , ,  derivative of  the  ith  aerodynamic  moment  component  with rcspect to  the  jth  compo- 
nent of angular  velocity 

Fi(X)  force  component i n  wind-tunnel  axes 

Fi( Y )  force  component in body  axes 

k'Gi ith  component  of  gravitational  force 

I*'DUi ith  component of aerodynamic  force clue to  linear  velocity  perturbations 

FDPi  ith  component of acrodynamic  force ciue t o  angular  velocity  pcrturbations 

FRi it11 conlponent of the  inertia  force 

I l l  
... 



ith  component  of  thrust 

gravity  vector 

angular  momentum  vector 

jth  component  of  the  inertia  moment 

a  component  of  the  inertia  tensor 

angle of  elevation  of  the  nth  thrust  vector 

ith  component  of  the  position  vector of the  point  of  application  of  the  nth  thrust 
vector 

ith  component of the  aerodynamic  moment  due  to  linear  velocity  perturbations 

ith  component of the  aerodynamic  moment  due  to  angular  velocity  perturbations 

i  th  component  of  the  angular  velocity  vector 

rotation  matrices 

ith  component  of  the  static  aerodynamic  force  in  body  axes 

nth  component  of  static  aerodynamic  force in wind-tunnel  axes 

ith  component  of  static  aerodynamic  moment  in  body  axes 

nth  component  of  static  aerodynamic  moment  in  wind-tunnel  axes 

transformed  aerodynamic  stability  derivative  of  the i th  aerodynamic  force  component 
with  respect to  the  jth  component  of  linear  velocity 

ith  component  of  the  transformed  control derivative 

transformed  aerodynamic  stability  derivative  of  the  ith  aerodynamic  force  component 
with  respect to  the  jth  component  of  angular  velocity 

transformed  aerodynamic  stability  derivative  of  the i th  aerodynamic  force  component 
with  respect to  the  jth  component  of  linear  acceleration 

transformed  aerodynamic  stability  derivative  of  the i t h  aerodynamic  moment  compo- 
nent  with  respect  to  the  jth  component  of  linear  velocity 

transformed  aerodynamic  stability  derivative  of  the i t h  aerodynamic  moment  compo- 
nent  with  respect  to  the  jth  component of  angular  velocity 
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AA i 

ACK 

APi 

A Ui 

ith  component  of  the  thrust  moment 

it11 component  of  the  linear  velocity  vector 

velocity vector 

wind-tunnel  coordinates 

body  coordinates 

linear  acceleration  increments 

control  increments 

angular  velocity  increments 

linear  velocity  increments 

- 
w angular  velocity  vector 

Subscripts 

1:' earth-fixed  coordinate  system 

F forces 

i components of aerodynamic  forces  and  moments,  gravity  forces,  inertia  forces,  thrust 
forces  and  moments 

M moments 

n force  and  moment  components 

0 initial values 

Superscripts 

a identifying  indices  and  indices  of  contravariance 

P identifying  indices  and  indices of contravariance 

i identifying  indices  and  indices  of  contravariance 

i identifying  indices  and  indices  of  contravariance 
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COMPUTER  FORMULATIONS OF  AIRCRAFT MODELS FOR SIMULATION  STUDIES 

James C.  Howard 

Ames  Research  Center 

SUMMARY 

A  mathematical  model  of  a  dynamical  system  describes  the  physical  characteristics  of  the 
system  and can be used to determine  the  response  of  the  system  to  the  forces  encountered. In the 
case of  aeronautical  systems  exposed to gravity,  inertia,  aerodynamic,  and  thrust  forces,  the  mathe- 
matical  model  enables  the  engineer to determine  the  state  of  the  vehicle,  its  spatial  orientation,  and 
the  geographical  location  as  a  function  of  time.  Sometimes  the vehicle response is determined  by 
direct  calculation;  at  other  times,  simulators  are  used.  The  simulator  moves in response to  the  com- 
puted  solutions  of  the  mathematical  model  equations.  These  solutions  represent  the  response  of  the 
system to the  forcing  functions  generated  by  the  simulator pilot’s control  inputs.  The  formulation 
of mathematical  models  of  complex  multidegrees-of-freedom  dynamical  systems is time  consuming 
and  subject  to  human  error. In  view of  the  complexity  involved,  it is dcsirable to mechanize as 
much  of  the  formulation as possible.  Recent  developments  in  formula  manipulation  compilers have 
led to an  extension  of  the  area  of  application  of  digital  computers  beyond  the  purely  numerical  data 
processing stage.  These  developments,  combined  with  the design of several symbol  manipulation 
languages, enable  computers  to be  used for  symbolic  mathematical  computation.  This  technique 
provides  for  the  symbolic  manipulation  of  mathematical  expressions:  for  example,  the  expression 
SIN(X)  can  be  differentiated,  resulting in the  expression  COS(X).  Moreover,  it can be used fre- 
quently  to  obtain  symbolic  solutions in problem  areas  that  heretofore  could  only  be  approached 
numerically. A computer  system  and language that can  be  used to perform  symbolic  manipulations 
in an  interactive  mode have  been  used to  formulate  a  mathematical  model of an  aeronautical 
system.  The  example  demonstrates  that  once  the  procedure is established,  the  formulation  and 
modification of models  for  simulation  studies can  be  reduced to  a series of routine  computer 
operations. 

INTRODUCTION 

Excluding  the  control  loops,  the  mathematical  description of an aeronautical  system  requires 
at least 12  equations  (ref. 1 ): 3 force  equations: 3 moment  equations; 3 Euler angle equations  or 
9 direction  cosine  equations to determine  the  spatial  orientation of the vehicle, and 3 equations  to 
determine  the  geographical  location  of  the vehicle  in inertial  space. In  view of  this  complexity, it 
is desirable to  mechanize as much  of  the  formulation as possible. 

Research  undertaken  with  the  object  of  mechanizing  the  formulation  of  mathematical  models 
of  aeronautical  systems,  has  directed  attention  to  the use of  digital  computers  for  symbolic  mathe- 
matical  computation. To date,  the  majority  of  computer  systems  and languages has  been  developed 
to  facilitate  the processing of numerical  data in one  form  or  another. More  recently,  however,  a 
variety  of  symbol  or  formula-manipulation languages has  evolved.  The  choice  of  system  and  lan- 
guage to  be used for  a given purpose  depends  on  accessibility,  personal  preference,  the  type  and 



magnitude  of  the  problems  to  be  formulated,  and  the  computer  facilities available to  the user.  At 
the  time  of  writing,  the  two  most  important  contenders  in  the  symbol  manipulation field  appeared 
to  the  author  to  be  REDUCE  and MACSYMA. REDUCE is a  program  designed  for  general  algebraic 
computations  of  interest  to  mathematicians,  physicists,  and  engineers.  In  addition  to  the  usual alge- 
braic  manipulations,  it  has  the  capability  of  performing  calculations  of  special  interest to high 
energy  physicists.  Originally,  it began as  a  system  for  solving  special  problems  that arise in  high 
energy  physics,  where  much  tedious  repetitive  calculation is involved.  However,  it  was  quickly 
recognized that  the  computer processes  being  used  were quite  general,  and  could  be used for  a  great 
variety  of  algebraic  manipulations.  Although  REDUCE can operate  in  a  batch  processing  mode,  it 
is intended  primarily  for  interactive  calculations  in  a  time  shared  environment.  Hence,  it is com- 
mand  oriented,  rather  than  program  oriented,  since  the  result of a given command  may  be  required 
before  proceeding to  the  next  step.  REDUCE is available on  most IBM 360 or   370 series  computers, 
the DEC  PDP-IO,  and  the CDC 6400, 6500, 6600, and  7600  machines.  At  the  time  of  writing,  the 
MACSYMA system was  available  only at  MIT  through  the  Advanced  Research  and  Project  Agency 
(ARPA)  Network  (ref. 2). It is a large computer  programming  system,  which can  be  used to  perform 
symbolic  as well as  numerical  mathematical  operations.  It  was  developed  by  the  Mathlab  group  of 
project MAC’S Automatic  Programming Division specifically  for  interactive  use. In addition  to 
manipulating  algebraic  expressions,  the MACSYMA system  can  differentiate,  integrate,  take  limits, 
solve systems  of  linear or polynomial  equations  and  factor  polynomials,  expand  functions,  plot 
curves,  and  manipulate  matrices.  Moreover,  it is continuously  evolving to  meet  the  needs  of users. 
In view of  its  flexibility  and  diverse  capabilities, MACSYMA  was the  system  chosen  to  formulate 
mathematical  models of aeronautical  systems  for  simulation  purposes.  Subsequent  experience  with 
the  system  confirmed  the  wisdom  of  this  choice. Of  special  interest to  users is the  facility  with 
which  MACSYMA  can  derive  special forms  from  a  more  general  formulation.  The  same  feature 
permits  users to  introduce  new  sets  of  system  parameters  or  modify  existing  ones as the  occasion 
demands.  It will be  seen  that  a  simple  programming  statement  can  be used to  introduce  a  new  set  of 
inertia  tensors,  static  aerodynamic  coefficients,  control  force  derivatives,  aerodynamic  stability 
derivatives, or  thrust  coefficients  to  meet  model  or  design  changes. An important  aspect  of  the 
formulation of mathematical  models  of  aeronautical  systems  for  simulation  and  other  purposes is 
the  specification of the  system  of  forces  and  moments. In aeronautical  applications,  the  thrust  and 
inertia  forces  and  moments,  and  the  gravity  force  can  be  formulated  without  difficulty;  but  the 
aerodynamic  forces  and  moments  require  more  detailed  consideration.  These  are  represented  by  the 
static  forces  and  moments,  the  control  forces,  and  the  perturbation  forces  that  depend  on  the  aero- 
dynamic  stability  derivatives.  These  forces  and  moments  have to  be  transformed  from  wind  or  wind- 
tunnel  stability  axes to  aircraft  body  axes  before  the  formulation  can  proceed.  Although  these  for- 
mulations  and  transformations  are  not  complicated,  they  are  complex  and  unwieldy  and  are  likely 
to  contain  errors  when  performed  manually.  The  interactive  capability,  versatility,  and  simplicity 
of  the MACSYMA system  make  it  attractive  to  programmers  and  nonprogrammers  alike.  To illus- 
trate  these  aspects of the  system,  a  mathematical  model  of  an  aeronautical  system  has  been  formu- 
lated  and  subjected to  a series  of  modifications. 
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ANALYSIS 

Transformation Laws 

A necessary preliminary to the  formulation  of  mathematical  models  of  aeronautical  systems is 
the  transformation  of  static  aerodynamic  forces  and  moments,  control  force  derivatives,  and  the 
aerodynamic  stability  derivatives  from  wind  or  wind-tunnel  stability  axes  to  aircraft  body  axes.  It 
will be  seen  that  whereas  the  static  forces  and  moments  obey  the  same  transformation law as  the 
system  coordinates,  the  aerodynamic  stability  derivatives  transform  like  the  components  of  a  mixed 
tensor,  having  one  index of covariance  and  one  index  of  contravariance  (ref. 3). Moreover,  because 
of  the  equivalence  of  covariant  and  contravariant  transformations  in  orthogonal  Cartesian  systems 
of  coordinates,  the  transformations  can  be  treated  as  doubly  covariant  or  doubly  contravariant, if 
this  simplifies  the  formulation.  The  rule  for  transforming  static  force  coefficients  from  the X frame 
of  reference  (the  wind-tunnel  axes  system) to the Y frame  (the  body  axes  system) is obtained  as 
follows. 

Since all vectors,  including  the  position  vector  of  a  point,  obey  the  same  transformation  law, 
it  follows  that  the  force  and  moment  vectors  obey  the  same  transformation law as the  system  coor- 
dinates;  that is, if SI.;, denotes  a  static  aerodynamic  force in the  X  frame  of  reference,  and SFi 
denotes  the  corresponding  transformed  force in the Y reference  frame,  then since the  transforma- 
tion law for  coordinates is 

it  follows  that 

where Y = Y ( X )  remains  to be specified. 

Likewise, if D F  c denotes  the 12th control  force  derivative  with  respect to the  Kth  control 
surface, as measured 111 the  X  reference  frame,  and TDi,(. denotes  the  corresponding  transformed 
derivative in the Y frame,  then 

n: K 

The  aerodynamic  stability  derivatives  measure  the  rates of change of aerodynamic  forces  and 
moments  with  respect  to  motion  vector  components. I n  keeping  with  tht. usual practice in aerody- 
namic  formulations,  motion  vector  components will refer  specifically to  components of the  linear 
velocity  vector,  components of thc angular  velocity  vector. and components of the  corresponding 
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linear  and  angular  acceleration  vectors.  The  transformation law for  these  derivatives  may  be 
obtained  as  follows: 

Let Fi(Y) be  a  force  or  moment in the Y system  of  axes,  and  let U i ( Y )  be  a 
motion  vector  component  in  this  system of axes. 

Similarly,  let Fa(X) be  a  force  or  moment in the X system of axes,  and  let 
r / p ( X )  be  a  motion  vector  component in this  system of axes. 

Then  the  stability  derivatives  with  respect to  motion  components, as  measured in the Y system  of 
axes,  are  related to  the  corresponding  derivatives in the X system  of  axes  by  the  following  equation: 

Force,  moment,  and  motion  vector  components  obey  the  same  transformation law  as the  system 
coordinates,  that  is,  since 

and 

it  follows that 

Substitution  from  equations (5) and (7) in equation (4) gives 
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In these  and  subsequent  equations  the  summation  convention is assumed;  that  is,  if i n  any 
tcrm  an  index  occurs  twice,  the  term  is to be  summed  with  respect to  that  index  for all admissible 
values of the  index. 

Equation (8) shows  that  the  aerodynamic  stability  derivatives  transform  like  the  components 
of a mixed  tensor, having one  index  of  covariance  and  one  index  of  contravariance. Being a  tensor 
of rank 2,  equation (8) represents 9 equations,  with  each  equation having,  in general, 9 terms. 

A disadvantage  of  the  transformation  law as formulated  in  equation (8) is the  requirement  that 
the  transformation  equation X = X (  Y )  must  be  used.  Fortunately, it is possible to  avoid the use of 
the inverse transformation X = X (  Y )  if the  coordinate  transformations  are  orthogonal  Cartesian. I t  
can be shown  that for orthogonal  Cartesian  transformations 

Substitution of this  relationship in equation (8) yields 

The  form of equation  (10) 
aerodynamic  stability  derivatives 

shows  that if the  transformations  are  orthogonal  Cartesian,  the 
can  be treated  as  doubly  contravariant  tensors.  This  form  has  the 

advantage that  the inverse transformation  X = X( Y )  is no longer  required. 

Although  the  notation used in equations (8) and (10) reveals the  tensor  character of the 
transformation,  superscripts will not  be used in subsequent  work.  They will be  replaced by sub- 
scripts,  which  are  more  convenient  for  programming  purposes. For the  same  reason,  the  Greek  sym- 
bols a and will be  replaced  by  the  letters M and  N.  The  following  definitions  are  required: 

and 

where D1.;21, u denotes  the  derivative  of  the  Mth  component  of  aerodynamic  force,  with  respect to 
the  Nth  component  of  the  motion  vector:  and TDF. I/. denotes  the  transformed  derivative  of  the 
ith  component  of  aerodynamic  force,  with  respect to the  jth  component  of  the  motion  vector. 

N 
1' I 
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Aeronautical  Reference  Systems 

There  are  many  coordinate  systems in  use in  aeronautical  research.  Aerodynamic  data  obtained 
from  wind-tunnel  experiments  may  be  referred to wind  axes or  to wind-tunnel  stability  axes. When 
the wind  axes  are  used,  the X ,  axis  is  aligned with  the relative  wind at  all times. Most wind-tunnel 
data  are  referred to the  wind-tunnel  stability  axes  system.  For  this  system,  the X ,  axis  is in the 
same  horizontal  plane  as  the  relative  wind  at all times.  In  addition to the wind  axes  and  the  wind- 
tunnel  stability  axes,  there  are  other  systems  of  axes  fixed  in  the  body  and  moving  with  the  body. 
These  are  referred to  as  body  axes. In aerospace  applications,  a  body  axis  system  has  the Y ,  axis 
fixed  along  the  longitudinal  centerline  of  the  body,  the Y 2  axis  normal  to  the  plane  of  symmetry, 
and  the Y ,  axis  in  the  plane  of  symmetry.  The  equations  of  motion  of  aerospace vehicles  are formu- 
lated  with  respect to  body axes.  The  main  advantage  of  these  axes  in  motion  calculations is that 
vehicle moments  and  products  of  inertia  about  the  axes  are  constants. When the  body  axes  are 
chosen so that  the  products of inertia  vanish.  they  are  known  as  principal  axes. A system of axes, 
which is frequently used to  study  the  stability  of  aircraft in the presence  of  disturbing  forces that 
produce small perturbations, is the flight  stability  axes.  This is  an orthogonal  system  fixed to  the 
vehicle,  the Y ,  axis  of  which is aligned with  the  relative wind vector  when  the vehicle  is in a 
steady-state  condition,  but  then  rotates  with  the vehicle after  a  disturbance  as  the vehicle  changes 
angle of  attack  and  sideslip.  Some  of  these  axes  are  shown in figure 1 (ref. 4). 

Figure 1 .- Systems of reference  axes.  including body, principal,  wind,  flight  stability,  and  wind-tunnel  stability. 

Transformation  Equations 

The  elements  of  the  matrices  defining  a  transformation  from wind or wind-tunnel  stability 
axes to  body  axes  arc  functions  of  the angle of  attack ( A )  and  the angle of  sideslip ( B ) .  Moreover, 
coordinates in wind-tunnel  axes are denoted by a  column  vector of coordinates Xi, and  the  body 
axes  coordinates  by a column  vector Yi. To bring a reference  frame  from  the wind axes  into  coin- 
cidence  with the  body  axes involves a negative rotation ( B )  about  the Y ,  axis,  followed  by  a  posi- 
tive rotation ( A )  about  the Y ,  axis.  These  matrices  may  be  entered  and  multiplied  when  communi- 
cation has bcen established  and  the  system  prints ( ( 1  ). When this  occurs,  the  user  types 
ENTERMATRIX(n1.n)  which  allows onc  to  enter a matrix,  element by element,  with MACSYMA 
requesting valucs for each of the  (m,n)  entries  as  follows: 
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( C 1  ) ENTERMATRIX(  3,3) ; 

ROW 1 COLUMN 1 C O S ( A )  ; 

ROW 1 COLUMN 2 0; 

ROW 1 COLUMN 3 - S I N ( A ) ;  

ROW 2 COLUMN 1 0; 

ROW 2 COLUMN 2 1 ; 

ROW 2 COLUMN 3 0; 

ROW 3 COLUMN 1 S I N ( A ) ;  

ROW 3 COLUMN 2 0; 

ROW 3 COLUMN 3 C O S ( A ) ;  

MATRIX-ENTERED 

( C 2 )   E N T E R M A T R I X (  3,3) ; 

ROW 1 COLUMN 1 COS ( B  ) ; 

ROW 1 COLUMN 2 - S I N ( B ) ;  

ROW 1 COLUMN 3 0 ;  

ROW 2  COLUMN 1 S I N ( B ) ;  

ROW 2 COLUMN 2 C O S ( B ) ;  

ROW 2 COLUMN 3 0; 

ROW 3 COLUMN 1 0; 

ROW 3 COLUMN 2 0 ;  

ROW 3 COLUMN 3 1 ; 

[ C O S ( A )  0 - S I N ( A )  ] c 1 
r o  1 0 1 

1 
[ S I N ( A )  0 C O S ( A )  ] 
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MATRIX-ENTERED 
[ COS(B)  - S I N ( B )  0 ] e 1 
c 1 
[ o  0 1 1  

( D 2 )  [ S I N ( B )   C O S ( B )  0 ] 

( C 3 )   E N T E R M A T R I X ( 3 , l ) ;  

ROW 1 COLUMN 1 X [ l ] ;  

ROW 2 COLUMN 1 X [2 ] ;  

ROW 3 COLUMN 1 X[3]; 

MATRIX-ENTERED 

( D 3 )  

( C 4 )   ( D l ) .   ( D 2 ) .   ( D 3 ) ;  

[ COS(A)  ( X 1  COS(B)  - X2 S I N ( B ) )  - X3 S I N ( A )  ] 
r 1 
I: 1 

c 1 c 1 

[ 1 

c X1 S I N ( B )  + X2  COS(B) 1 

S I N ( A )  ( X 1  COS(B)  - X 2  S I N ( B ) )  + X 3  COS(A)  ] 

( C 5 )  FOR 1:1 THRU 3 DO ROW[l]:FIRST(ROW((D4),1))$ 

( C 6 )  FOR 1: l  THRU 3 DO (Y[I]:ROW[I][l],DISPLAY(Y[I])); 

Y 1  = COS(A)  ( X 1  COS(B)  - X 2  S I N ( B ) )  - X 3  S I N ( A )  

( D 6 )  Y 2  = X1 S I N ( B )  + X 2  COS(B)  

Y3 = S I N ( A )  (X1 COS(B)  - X 2   S I N ( B ) )  + X 3  COS(A)  

8 



In  order  to  more fully  appreciate  the  results  obtained so far,  the  reader  should  note  that 
MACSYMA requests  the i th  row  and  the  jth  column  of  the  matrix being  entered  by  typing 
ROWICOLUMNJ. The  user  merely  provides  the  corresponding  element. When  all rn X n elements 
have been  entered,  the  system  types  MATRIX-ENTERED,  formulates  the  matrix  and assigns an 
identifying  number  (DI). When the  user  types  the  command  (C4),  that  is,  (Dl).(D2).(D3),  the  three 
matrices  are  multiplied  in  the  order  requested  and  the  product  matrix is displayed  in  (D4). 

The  two  programming  steps  shown  in  (C5)  and  (C6) lead to  the  functional  form  (D6),  which 
represents  the  required  transformation  from  wind  axes X, to body  axes YJ.  

FORCES 

Transformation  of  Static  Forces 

The  static  aerodynamic  forces  transform  like  the  components  of  a  contravariant  vector;  that  is, 
if SF denotes  a  static  aerodynamic  force in the X frame  of  reference,  and SFi denotes  the  corre- 
spondmg  transformed  force in the Y reference  frame,  then  from  equation (2) n. 

.where Y = Y ( X )  is obtained  from  the  displayed  output  (D6). 

Given the  transformation  equations  (D6),  the  transformed  aerodynamic  static  forces  are 
obtained  by  expanding  equation (2). Three  programming  steps  are  sufficient  to  formulate  the 
required  values.  The  simple  program  and  the  displayed  results  are 

( C 7 )  SF[ I] : =0$ 

( C 8 )  FOR I: 1 THRU 3 DO FOR M: 1 THRU 3 DO 
SF[I]:SF[I]+DIFF(Y[I],X[M])*S[F[M]]$ 

( C 9 )  FOR 1:1 THRU 3 DO D I S P L A Y ( S F [ I ] ) ;  

SF1 = 

SF3 = 

- S C O S ( A )   S I N ( B )  + S COS(A)   COS(B)  - SF S I N ( A )  
F2 F1 3 

S F 2  = S S I N ( B )  + S COS(B)  
F1 F2 

- sF2 
S I N ( A )   S I N ( B )  + S F   S I N ( A )   C O S ( B )  + S COS(A)  

1 F3 

DON E 
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Transformation  of  Control  Force Derivatives 

The  control  force  derivatives  obey  the  same  transformation  law  as  the  static  forces:  that  is,  if 
D,u c denotes  the  nth  control  force  derivative  with  respect to the  Kth  control  surface  as  mea- 
sured In the X reference  frame,  and T D I , ~  denotes  the  corresponding  transformed  derivative  in  the 
Y frame,  then using equation (3) 

n. K 

where Y = Y ( X )  is again obtained  from  the  displayed  output (D6). 

As in the  preceding  section,  the  transformed  control  derivatives  are  obtained  by  expanding  the 
transformation law for  derivatives given the  transformation  equations (D6). The  transformed deriva- 
tives are  obtained  by  executing  the  following  simple  program,  which has exactly  the  same  form as 
the program  used to transform  the  static  forces.  These  are: 

(C10) TD[I,C]:=O$ 

(C11) FOR 1:1 THRU 3 DO FOR M:l THRU 3 DO 
TD[I,C]:TD[I,C]+DIFF(Y[I],X[M])*D[F[M],C[K~~$ 

(C12)  FOR 1:l THRU 3 DO DISPLAY(TD[I,C]); 

TD1 ,C - -DF2,CK 
- COS(A)SIN(B) + DF cOs(A>cOs(B) - DF3,CK SIN(A) 

1 ’  K 

TD2,C - DF1  ,CK 
- SIN(B) + DF COS(B) 

2’ K 

TD3,C - -DF2,C~ 
- SIN(A)SIN(B) + DF SIN(A)COS(B) + DF COS(A) 

1 ’  K 3’ K 

The  corresponding  control  forces  are  obtained  by  multiplying  the  control  derivatives  by  the 
appropriate  control  increments ACK. The  following  two  programming  steps  are  sufficient to ensure 
evaluation  of  the  required  forces.  These  are  denoted  by CFi in  the  displayed  output. 

(C13)  FOR i : l  THRU 3 DO CF[I]:TD[I,C]*DEL(C[K])$ 

(C14)  FOR 1:l THRU 3 DO DISPLAY(CF[I]); 

CF1 = (-DF COS(A)SIN(B) + DF COS(A)COS(B) - DF SIN(A)) DEL(C~) 
2’ K 1 ’  K 3’ K 
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cF2 = (DF C SIN(B) + DF c COS(B))DEL(CK) 
1 ’  K 2’ K 

CF3 = (-DF SIN(A)SIN(B) + DF SIN(A)COS(B) + DF COS(A))  DEL(CK) 
2’ K 1 ’  K 3’ K 

DONE 

Forces  Produced  by  Linear  Velocity  Perturbations 

The  next  step  in  the  formulation  involves  the  determination  of  the  aerodynamic  forces  pro- 
duced  when  an  aircraft is subjected to  linear  velocity  perturbations  AUj.  Before  these  forces  can  be 
determined,  the  aerodynamic  stability  derivatives,  with  respect to linear  velocity components,  must 
be  transformed  from  wind  or  wind-tunnel  stability  axes to  aircraft  axes.  For  a  detailed  discussion of 
the  transformation  of  these  derivatives,  the  reader is referred to  equations (4) through  (1 0). In  this 
application,  the  aerodynamic  stability  derivatives  of  the  ith  force  with  respect  to  the j t h  velocity 
components are denoted  by D F ~ , ~ . .  The  corresponding  transformed  derivatives  are  denoted by 
T D F ~ , ~ ~ .  The  program  required  for  this  application  assumes  the  form 

(C15) TDU[I,J]:=O$ 

(C16)  FOR 1 : l  THRU 3 DO  FOR J : l  THRU 3 DO 
FOR M:l THRU 3 DO FOR N:l THRU 3 DO 
TDU[I,JI:TDU[I,JI+DIFF(Y[I],X[M])*DIFF(Y[J],X[N])*D[F[M],U[N]]$ 

It  only  remains to  multiply  the  transformed  derivatives by the  appropriate  velocity  increments 
to  obtain  the  required  forces,  which  are  denoted  by  FDUi.  The  next  three  programming  steps 
instruct MACSYMA to evaluate  and  display  the  forces  produced  by  linear  velocity  perturbations. 
These  are 

(C17) FDU[I]:=O$ 

(C18)  FOR I : 1 THRU 3 DO  FOR J: 1 THRU 3 DO 
FDU[I]:  FDU[I]+TDU[I  ,J]*DEL(U[J])$ 

(C19)  FOR 1:1 THRU 3 DO DISPLAY(FDU[I]); 

FDUl = (DF COS(A)SIN(A)SIN~(B) 
2’ 2 

- DF2,U1 COS(A)SIN(A)COS(B)SIN(B) 

- DF1 ’U2 COS(A)SIN(A)COS(B)SIN(B) + DF SIN*(A)SIN(B) 
3’ 2 

1 1  



- D ~ 2 , ~ 3  COS2(A)SIN(B)  + DF 1’ 1 COS(A)SIN(A)COS~(B)  

- D ~ 3 , ~ 1  S I N 2 ( A ) C O S ( B )  + DF 1’ 3 C O S ~ ( A ) C O S ( B )  

- DF3,U3 C O S ( A ) S I N ( A ) ) D E L ( U 3 )  

COS(A)SIN ( B )  - DF 2 
2’ 1 2’ 2 

+ ( - D F  U COS(A)COS(B)SIN(B) 

+ DF1  ’U1 

+ DF1 ’U2 

COS(A)COS(B)SIN(B) - DF3,U1 SIN(A)SIN(B) 

COS(A)COS2(B)  - DF SIN(A)COS(B))DEL(U~) 
3’ 2 

+ (DF2,U2 C O S ~ ( A ) S I N ~ ( B )  - D~ 2’ 1 COS~(A)COS(B)SIN(B) 

- DF, ’U2 COS~(A)COS(B)SIN(B)  + D~ 
COS(A)SIN(A)SIN(B) 

3’ 2 

+ D ~ 2 , ~ 3  COS(A)SIN(A)SIN(B) + DF COS~(A)COS~(B) 
1 ’  1 

- D ~ 3 , ~ 1  COS(A)SIN(A)COS(B) - DF COS(A)SIN(A)COS(B) 
1 ’  3 

+ DF3,U3 

SIN(A)SIN (B) - DF u 2 
FDU2 = ( - D F l  ,U2 SIN(A)COS(B)SIN(B) 2’ 2 

+ DF1 ,U1 1 3  

+ D  SIN(A)COS2(B) + DF COS(A)COS(B))DEL(U3) 

SIN(A)COS(B)SIN(B) + OF ,u COS(A)SIN(B) 

F2’u1 2’ 3 

+ ( D F l  ¶ U 1  + DF2,U, COS(B)SIN(B) + DF 1 ’  2 
COS(B)SIN(B) 

+ DF2,u2 COS2(B))DEL(U2) + ( - D F  1 2  , u  COS(A)SIN~(B) 

COS(A)COS(B)SIN(B) + DF COS(A)COS(B)SIN(B) 
1 ’  1 
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- DF1 ’U3 
S I N ( A ) S I N ( B )  + DF C O S ( A ) C O S ~ ( B )  

2’ 1 

- D ~ 2 , ~ 3  SIN(A)COS(B))DEL(U~) 

FDU3 = (DF SIN2(A)SIN2(B) - D F  SIN~(A)COS(B)SIN(B) 
2 ’  2 2 ’  1 

- DF1,u2 SIN~(A)COS(B)SIN(B) - D ~ ~ , ~ ~  COS(A)SIN(A)SIN(B) 

- DF,2,U3 COS(A)SIN(A)SIN(B) + DF SIN~(A)COS~(B) 
1 ’  1 

+ DF3,U, COS(A)SIN(A)COS(B) + DF COS(A)SIN(A)COS(B) 
1 ’  3 

COS 2 ( A ) ) D E L ( U 3 )  + ( -DF 
+ DF3,U3 2’ 1 S IN(A)S IN~(B)  

- DF2,U2 
S I N ( A ) C O S ( B ) S I N ( B )  + OF ,, SIN(A)COS(B)SIN(B) 

1 ’  1 

’ DF3,U1 COS(A)SIN(B) + DF 1 ’  ,, 2 SIN(A)COS~(B) 

+ D ~ 3 , u 2  C O S ( A ) C O S ( B ) ) D E L ( U 2 )  

+ (DF2,U2 COS(A)SIN(A)SIN*(B) 

- DF2,U1 

- DF1 ’U2 

COS(A)SIN(A)COS(B)SIN(B) 

COS(A)SIN(A)COS(B)SIN(B) + DF SIN’(A)SIN(B) 
2’ 3 

- D ~ 3 , ~ 2  C O S ~ ( A ) S I N ( B )  + D~ 1 ’  1 COS(A)SIN(A)COS~(B)  

SIN ( A ) C O S ( B )  + DF ,, 2 
- OF1 ’U3 3’ 1 COS~(A)COS(B) 
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Forces  Produced  by  Angular  Velocity  Perturbations 

The  program used in  the  preceding  section  can,  with  suitable  notational  changes,  be  used  to 
formulate  the  forces  produced  by  angular  velocity  perturbations.  However,  whereas  in  the  preceding 
application  the  required  forces  were  obtained  by  multiplying  the  transformed  aerodynamic  stability 
derivatives  by  linear  velocity  increments,  in  the  present  case  the  transformed  derivatives  must  be 
multiplied  by  angular  velocity  increments.  In view of  these  similarities,  the  following  program  and 
displayed  forces  will  be  present.ed without  further  comment,  except to point out that  the  aerody- 
namic  stability  derivatives  of  the  ith  force  with  respect to the   j th  angular  velocity component  are 
denoted  by D F ~ , ~ ~ .  The  corresponding  transformed  derivatives  are  denoted  by T D F ~ , ~ ~ ,  and  the 
resulting  forces  by  FDPi. 

(C20) TDP[I,J]:=O$ 

(C21)  FOR I: 1 THRU 3 DO  FOR  J: 1 THRU 3 DO 
FOR M: 1 THRU 3 DO FOR N: 1 THRU 3 DO 
TDP[I,J]:TDP[I,J]+DIFF(Y[I],X[M~)*DIFF(Y[J],X[N])*D[F[M],P[N]~$ 

(C22) FDP[I]:=O$ 

(C23)  FOR I :  1 THR’J 3 DO FOR J :1 THRU 3 DO 
FDP[ I]:  FDP[I]+TDP[I  ,J]*DEL(  P[J])$ 

(C24) FOR 1:1 THRU 3 DO DISPLAY(FDP[I])‘; 

FDPl = (DF COS(A)SIN(A)SIN~(B) 
2’  2 

COS(A)SIN(A)COS(B)SIN(B) 

COS(A)SIN(A)COS(B)SIN(B) + DF SIN~(A)SIN(B) 

- DF2,P1 

- DF1 ,P2 3’ 2 

- ” ~ 2 3 ~ 3  COS~(A)SIN(B) + D~ 1 ’  1 COS(A)SIN(A)COS~(B) 

- D ~ 3 , ~ 1  SIN~(A)COS(B) + D~ 1 ’  3 COS~(A)COS(B) 

COS(A)SIN (B) - DF 2 
+ (-DF p  COS(A)COS(B)SIN(B) 

2’ 1 2’  2 

+ DF1 ,P1 COS(A)COS(B)SIN(B) - DF3,P1 SIN(A)SIN(B) 

+ DF1 ’P2 COS(A)COS~(B) - D~ 3’ 2 SIN(A)COS(B))DEL(P~) 
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” (DF2.P2 COS~(A)SIN~(B) - D~ 2’ 1 COS~(A)COS(B)SIN(B) 

- DF1 ’P2  COS~(A)COS(B)SIN(B) + D~ COS(A)SIN(A)SIN(B) 
3’ 2 

+ D ~ 2 , ~ 3  
COS(A)SIN(A)SIN(B) + DF COS~(A)COS~(B) 

1 ’  1 

- D ~ 3 , ~ 1  
COS(A)SIN(A)COS(B) - DF COS(A)SIN(A)COS(B) 

1 ’  3 

+ DF3,P3 SIN‘(A) ) D E L ( P ~  ) 

FDP2 = ( - D  SIN(A)SIN~(B) - D ~ ~ , ~ ~  
F1 ’ p2 

SIN(A)COS(B)SIN(B) 

+ DF1 ,P1 

+ DF2,P1 SIN(A)COS~(B) + D~ 2 3  ,p COS(A)COS(B))DEL(P~) 

SIN(A)COS(B)SIN(B) + DF , p  COS(A)SIN(B) 
1 3  

SIN (B) + DF ,p 
2 

+ DF1 ’ P I  COS(B)SIN(B) + DF COS(B)SIN(B) 
2 1  1 ’  2 

+ DF2,P2 COS2(B))DEL(P2) + (-D F1 Y P 2  COS(A)SIN~(B) 

- DF2,P2 COS(A)COS(B)SIN(B) + DF COS(A)COS(B)SIN(B) 
1 ’  1 

- OF1 ’ P 3  S I N ( A ) S I N ( B )  + D 
F2’p1 

- D ~ 2 , ~ 3  SIN(A)COS(B))DEL(P,) 

COS(A)COS~(B) 

SIN  (A)SIN (B) - DF p 2 2 FDP3 = ( D F  SIN~(A)COS(B)SIN(B) 
2’ 2 2’ 1 

- OF1 ,P2 SIN~(A)COS(B)SIN(B) - D~ 3’ 2 
COS(A)SIN(A)SIN(B) 

- D ~ 2 , ~ 3  COS(A)SIN(A)SIN(B) + DF SIN~(A)COS~(B) 
1 ’  1 

+ DF3yP1 COS(A)SIN(A)COS(B) + DF COS(A)SIN(A)COS(B) 
1 ’  3 
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COS  (A))DEL(P3) + ( -DF 2 
+ DF3,P3 2' 1 SIN(A)SIN~(B) 

SIN(A)COS(B)SIN(B) + DF SIN(A)COS(B)SIN(B) - DF2yP2 1 '  1 

+ D ~ 3 , ~ 1  COS(A)SIN(B) + DF 1' 2 

+ D ~ 3 , ~ 2  COS(A)COS(B))DEL(P~) 

- DF2,P, COS(A)SIN(A)COS(B)SIN(B) 

- 'F1,p2 COS(A)SIN(A)COS(B)SIN(B) 

+ ' ~ 2 3 ~ 3  SIN[(A)SIN(B) - D~ C O S ~ ( A ) S I N ( B )  
3'  2 

+ 'F1 'PI COS(A)SIN(A)COS~(B) - D ~ ,  ,p3 SIN*(A)COS(B) 
n 

+ '~33~1 COS~(A)COS(B) - D~ COS(A)SIN(A))DEL(P,) 
3' 3 

Forces  Produced  by  Linear  Acceleration  Perturbations 

The  procedure used  in the  preceding  two  sections  may,  with  equal  facility,  be used to formu- 
late  the  aerodynamic  forces  produced  by  linear  acceleration  perturbations.  However, in this case the 
required  forces  are  obtained  by  multiplying  the  transformed  aerodynamic  stability  derivatives,  with 
respect to acceleration  components,  by  linear  acceleration  increments.  The  aerodynamic  stability 
derivatives of the  ith  force  component Fi with  respect to the  jth  linear  acceleration  component Ai 
are  denoted  by DF.  A . ,  and  the  transformed  derivatives  by T D F ~ , A ~ .  The  corresponding  force  com- 
ponents  in  body  axes  are  denoted  by FDAi. I*  f 

Due to the  fact  that  lift  responds  in  a  transient  manner  when,  for  example,  the angle of  attack 
A or  the  linear  velocity  component U3 is suddenly  changed,  the  acceleration  derivatives  are very 
different  from  the  velocity  derivatives,  which can  be determined  on  the basis of  steady-state  aero- 
dynamics.  This is a  consequence  of  the  fact  that  the  pressure  distribution  on  a  wing  or  tail  surface 
does  not  adjust  itself  instantaneously t o  its  equilibrium value when  the angle of  attack  or  the veloc- 
ity  components  are  suddenly  changed.  Hence,  in  order to get  a  sufficiently  accurate  description  of 
these  derivatives  during  the indicia1 response  phase,  it  may  be  necessary t o  use function  generation 
or look-up  tables  (ref. 5 ) .  
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When the program of  the  preceding  section has been  modified to  incorporate  the necessary 
notational  changes,  it  assumes  the  following  form : 

(C25) TDA[ I J] : =0$ 

(C26)  FOR I : 1 THRU 3 DO  FOR J : 1 THRU 3 DO 
FOR M: 1 THRU 3 DO  FOR N:  1 THRU 3 DO 
TDA[I~J]:TDA[I~J]+DIFF(Y[I]~X[M])*DIFF(Y[J]~X[N])*D[F~~~~~A~N~~$ 

(C27) FDA[ I] : =0$ 

(C28)  FOR I : 1 THRU 3 DO  FOR J : 1 THRU 3 DO 
FDA[I]:FDA[I]+TDA[I,J]*DEL(A[J])$ 

(C29)  FOR 1:1 THRU 3 DO DISPLAY(FDA[I])$ 

Execution of this  program  yields  the  aerodynamic  forces  produced by linear  acceleration  per- 
turbations.  These  are 

n 

FDA1 = (DF A COS(A)SIN(A)SIN'(B) 
2' 2 

- DF2,A1 COS(A)SIN(A)COS(B)SIN{B) 

COS(A)SIN(A)COS(B)SIN(B) + DF A S I N ~ ( A ) S I N ( B )  
- DF1,A2 3' 2 

COS ( A ) S I N ( B )  + DF A 2 COS(A)SIN(A)COS~(B) 
- D ~ 2 , ~ 3  1' 1 

+ (-DF A COS(A)SINL(B) - DF A C O S ( A ) C O S ( B ) S I N ( B )  
2' 1 2' 2 

+ DF1 'A, COS(A)COS(B)SIN(B) - DF A SIN(A)SIN(B) 
3' 1 

n 

+ OF1 'A2 C O S ( A ) C O S ~ ( B )  - D SIN(A)COS(B))DEL(A~) F3 

+ ( D ~ 2 , ~ 2  COS*(A)SIN~(B) - DF 2 1  ,A COS~(A)COS(B)SIN(B) 

- DF1 'A2 COS~(A)COS(B)SIN(B) + D~ A COS(A)SIN(A)SIN(B) 
3' 2 
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+ DF2,A3 COS(A)SIN(A)SIN(B) + DF A COS~(A)COS~(B) 
1 ’  1 

- ‘ ~ 3 3 ~ 1  COS(A)SIN(A)COS(B) - DF A  COS(A)SIN(A)COS(B) 
1 ’  3 

+ DF3,A3 

SIN(A)SIN  (B) - DF A FDA2 = ( - D F  ,A SIN(A)COS(B)SIN(B) 2 
1 2  2’ 2 

+ DF1,A1 

+ DF2,A1 SIN(A)COS2(B) + DF A 2’ 3 

COS(B)SIN(B) + DF A COS(B)SIN(B) 

SIN(A)COS(B)SIN(B) + DF ,A COS(A)SIN(B) 
1 3  

COS(A)COS(B))DEL(A3) 

(DF1 ,A1  SIN2(B) + DF ,A 2 1  1 ’  2 

+ DF2,A2 COS~(B))DEL(A,) + (-DF ,A 1 2  

- DF2,A2 

COS(A)SIN~(B) 

COS(A)COS(B)SIN(B) + DF A COS(A)COS(B)SIN(B) 
1 ’  1 

SIN(A)SIN(B) + DF A 
- DF1,A3 2’ 1 

- D ~ 2 , ~ 3  SIN(A)COS(B)DEL(A~) 

FDA3 = (DF A SIN2(A)SIN2(B) - DF A SIN~(A)COS(B)SIN(B) 
2’ 2 2’ 1 

- DF, ’A2 SIN~(A)COS(B)SIN(B) - DF A COS(A)SIN(A)SIN(B) 
3’ 2 

COS(A)SIN(A)SIN(B) + DF A SIN~(A)COS~(B) 
- D ~ 2 , ~ 3  1 ’  1 

+ D ~ 3 , ~ 1  COS(A)SIN(A)COS(B) + DF A COS(A)SIN(A)COS(B) 
1 ’  3 

+ DF3,A3 COS2(A))DEL(A3) + (-DF 2 1  ,A SIN(A)SIN’(B) 

- DF2,A2 SIN(A)COS(B)SIN(B) + DF A SIN(A)COS(B)SIN(B) 
1 ’  1 
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+ ' F 3 4  
COS(A)SIN(B) + DF A SIN(A)COS~(B) 

1' 2 

+ D ~ 3 , ~ 2  C O S ( A ) C O S ( B ) ) D E L ( A 2 )  

+ ( D ~ 2 , ~ 2  C O ~ ( A ) S I N ( A ) S I N ~ ( B )  

COS(A)SIN(A)COS(B)SIN(B) 

COS(A)SIN(A)COS(B)SIN(B) 

SIN~(A)SIN(B) - D~ A COS~(A)SIN(B) 
3 '  2 

COS(A)SIN(A)COS~(B) - D~~ y A 3  SIN~(A)COS(B) 

COS ( A ) C O S ( B )  - D F  A 2 C @ S ( A ) S I N ( A ) ) D E L ( A 1 )  

3 '  3 

The  components of the  resultant  aerodynamic  force  are 

(C30) FOR I : 1 THRU 3 DO FA[  I] : FDU[   I ]+FDP[   I ]+FDA[   I ]+CF[   I ]+SF[  I]$ 

Gravity  Forces 

The  gravitational  force  vector  acting  on  an  aircraft  has  the value Mg, where M is the mass of 
the  aircraft  and g is the  gravitational  acceleration  vector.  The  magnitude  of g is assumed constant, 
which is tantamount  to  the  assumption of a  flat  earth.  The gravity vector is specified  in  an  earth- 
fixed  reference  frame;  and  it is required  to  find  the  components of this  vector  in  aircraft  body  axes. 
I n  accordance  with  aeronautical  convention,  a  transformation  from  earth-fixed  axes  to  aircraft  body 
axes involves a rotation R 3  about  the Y ,  body  axis,  followed  by  a  rotation R ,  about  the Y ,  body 
axis,  and  a  rotation R ,  about  the Y ,  body  axis.  Hence, if it is assumed that  the  body  axes  and  the 
earth-fixed  axes  are  initially  coincident,  the  components  of  the  gravitational  force FGi in  body  axes 
are given by  an  equation of the  form 

where [FG'] is a  column  vector of body  axes  components, [ R ,  1, [ R , ] ,  and [ R 3  1 are  rotation 
matrices,  and [MgJ is a  column  vector of earth-fixed  axes  components.  These  matrix  operations  can 
be  performed  by MACSYMA to  yield  the  required  force  components  in  body  axes  as  follows: 
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( C 3 1 )   E N T E R M A T R I X (  3,3) ; 

ROW 1 COLUMN 1 C O S ( R [ 3 ] )  ; 

ROW 1 COLUMN 2 S I N ( R [ 3 ] ) ;  

ROW 1 COLUMN 3 0; 

ROW 2 COLUMN 1 - S I N ( [ 3 ] ) ;  

ROW 2 COLUMN 2 COS ( R [ 3 ] )  ; 

ROW 2 COLUMN 3 0; 

ROW 3 COLUMN 1 0; 

ROW 3 COLUMN 2 0; 

ROW 3 COLUMN 3 1 ; 

MATRIX-   ENTERED 1 C O S ( R 3 )   S I N ( R 3 )  0 1 
1 

r 1 c 0 0 1 1  

( D 3 1 )  [ - S I N ( R 3 )   C O S ( R 3 )  0 ] 

( C 3 2 )   E N T E R M A T R I X ( 3 , 3 ) ;  

ROW 1 COLUMN 1 COS(   R[2 ] )  ; 

ROW 1 COLUMN 2 0; 

ROW 1 COLUMN 3 - S I N ( R [ 2 ] ) ;  

ROW 2 COLUMN 1 0; 

ROW 2 COLUMN 2 1 ; 

ROW 2 COLUMN 3 0; 

ROW 3 COLUMN 1 S I N ( R [ 2 ] ) ;  

ROW 3 COLUMN 2 0; 

ROW 3 COLUMN 3 COS ( R [ 2 ] )  ; 
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MATRIX-   ENTERED 
[ C O S ( R ~ )  o - S I N ( R ~ )  1 

1 
( D 3 2  1 c o  1 0 1 c 1 

[ S I N ( R 2 )  0 C O S ( R 2 )  I 
1 

( C 3 3 )   E N T E R M A T R I X (  3,3) ; 

ROW 1 COLUMN 1 

ROW 1 COLUMN 2 

ROW 1 COLUMN 3 

ROW 2 COLUMN 1 

ROW 2 COLUMN 2 

ROW 2 COLUMN 3 

ROW 3 COLUMN 1 

ROW 3 COLUMN 2 

ROW 3 COLUMN 3 

MATRIX-ENTERED 

( C 3 4 )   E N T E R M A T R I X ( 3 , l ) ;  

ROW 1 COLUMN 1 0; 

ROW 2 COLUMN 1 0; 

ROW 3 COLUMN 1 M*G; 

MATRI   X-ENTERED 

( D 3 4  1 

0 0 1  
1 

1 

1 

C O S ( R 1 )   S I N ( R 1 )  1 
- S I N ( R 1 )   C O S ( R 1 )  3 
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The  product  of  these  four  matrices gives the  following  column  vector  of  gravitational  force  com- 
ponents  relative to aircraft  body  axes: 

(C35) (D33).(D32).(031).(D34); 

-SIN(R2) G M ] c 1 
[ 1 
[ 1 

[ SIN(R1) COS(R2) G PI ] 

[ COS(R1) COS(R2) G M ] 

These  vector  components  may  be  expressed  in  conventional  form  by  executing  the  following 
two  programming  steps,  which  yield: 

(C36)  FOR 1:1 THRU 3 DO ROW[I]:FIRST(ROW((D35),1))$ 

(C37)  FOR 1: l  THRU 3 DO (FG[I]:ROW[I][l],DISPLAY(FG[I]))$ 

FG1 = -SIN(R2) G M 

FG2 = SIN(R1) COS(R2)  G M 

FG3 = COS(R1 ) COS(R2)  G  M 

where Ri = (Ri" + 6Ri), RiO are  equilibrium values, and 6Ri are  angular  perturbations. 

Inertia  Forces 

The  formulation  of  the  inertia  forces involves the  determination  of  the  product of an  angular 
velocity  matrix  and  a  column  vector of linear  velocity  components.  This  product  is  the  matrix 
equivalent  of  the  familiar  vector  product W X v. By adding  to  the  components of this  vector,  the 
components  of  linear  acceleration relative to aircraft  body  axes,  the  components of inertial  accelera- 
tion relative to  these  axes  are  obtained.  The  required  matrices  may  be  entered  and  multiplied as 
follows: 

(C38) ENTERMATRIX(3,3); 

ROW 1 COLUMN 1 0; 

ROW 1 COLUMN 2 -P[3]; 

ROW 1 COLUMN 3 P[2]; 

ROW 2 COLUMN 1 P[3]; 
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ROW 2 COLUMN 2 0; 

ROW 2 COLUMN 3 -P[1]; 

ROW 3 COLUMN 1 -P[2]; 

ROW 3 COLUMN 2 P [ l ] ;  

ROW 3 COLUMN 3 0; 

MATRIX-ENTERED 
c 0 4 3  

(D38)  p3 0 - P I  1 

I: -P2 p1 0 1  

c 
1 
1 r 

(C39) ENTERMATRIX(3,l ) ;  

ROW 1 COLUMN 1 U [ l ] ;  

ROW 2 COLUMN 1 U[ 21  ; 

ROW 3 COLUMN 1 U[ 31; 

MATRIX-ENTERED 

(C40)   (D38) .   (D39)  ; 

(C41) FOR 1:1 THRU 3 DO ROW[I]:FIRST(ROW((D40),1))$ 

(C42) FOR 1:1 THRU 3 DO (C[I]:ROld[I][l],DISPLAY(C[I]))$ 
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c1 = P2 u3 - u2 P3 

c2 = u1 P3 - P1 u3 

C 3 = P  u - u  P 1 2  1 2  

A statement  of  the  fact  that  the  ith  component of the  linear  velocity  vector  is a function  of 
time,  requires  the use of  the  DEPENDENCIES  function.  The use of  this  function  permits  the 
system to differentiate  the  components Ui with  respect to time.  The  remaining  two  programming 
statements  request  the  system to add  the  components,  multiply  the  individual  sums  by  the  mass M 
of  the  vehicle,  and  display  the  resulting  inertial  force  components FRi as  follows: 

(C43) DEPENDENCIES(U(I,T))$ 

(C44)  FOR 1:1 THRU 3 DO FR[I]:M*(C[I]+DIFF(U[I],T))$ 

(C45)  FOR I: 1 THRU 3 DO  DISPLAY (FR[I])$ 

FR1 = G- U1 + P 2  U 3  - U2 P3) M 
(dT 

Resultant  Forces 

It  only  remains t o  request MACSYMA to combine  the  aerodynamic,  gravitational,  and  inertia 
forces  that  were  formulated  in  preceding  sections  and  display  the  results.  The ith  component  of  the 
resultant  force will be denoted  by FTi where Ti is the  ith  component  of  thrust.  The  two  program- 
ming  steps  and  the  formulated  equations  follow. 

(C46)  FOR I : l  THRU 3 DO FT[I]:FR[I]-FS[I]-FA[I]$ 

( C 4 7 )  FOR 1:1 THRU 3 DO DISPLAY(FT[I])$ 

FT1 = -(-DF  COS(A)SIN(B) + DF COS(A)COS(B) 
2’ k 1 ’  K 

24 



COS(A)SIN(A)COS(B)SIN(B) + DF SIN~(A)SIN(B) - DF1 ,U2 3 ’  2 

- D ~ 2 , ~ 3  C O S 2 ( A ) S I N ( B )  + DF COS(A)SIN(A)COS~(B) 
1’ 1 

- D ~ 3 , ~ 1  SIN2(A)COS(B) + DF 1’ 3 COS~(A)COS(B) 

COS(A)SIN(A)COS(B)SIN(B) + DF ,p S I N ~ ( A ) S I N ( B )  - DF1 ,P2 3 2  

- D ~ 2 , ~ 3  C0S2(A)SIN(B) + DF ,p COS(A)SIN(A)COS~(B) 

- DF3,P, SIN2(A)COS(B) + DF ,p COS~(A)COS(B) 

1 1  

1 3  

- D F 3 , P 3   C O S ( A ) S I N ( A ) ) D E L ( P 3 )  - (DF ,A COS(A)SIN(A)SIN~(B) 
2 2  

- OF2,A1 
COS(A)SIN(A)COS(B)SIN(B) 

COS(A)SIN(A)COS(B)SIN(B) + DF A SIN2(A)SIN(B)  
- OF1 ,A2 3’ 2 

- D ~ 2 , ~ 3  COS2(A)SIN(B) + DF 1 1  ,A COS(A)SIN(A)COS~(B) 

- ’ ~ 3 3 ~ 1  SIN2(A)COS(B) + OF1 ,A3 COS~(A)COS(B) 

- D F 3 , A 3   C O S ( A ) S I N ( A ) ) D E L ( A 3 )  - ( - D F  COS(A)SIN~(B) 

- DF2,U2 1 ’  1 

2 ’  1 

COS(A)COS(B)SIN(B) + DF COS(A)COS(B)SIN(B) 

SIN(A)SIN(B) + DF COS(A)COS’(B) - D ~ 3 , ~ 1   1 ’  2 

- D ~ 3 , ~ 2   S I N ( A ) C O S ( B ) ) D E L ( U 2 )  - ( - D F   C O S ( A ) S I N ~ ( B )  
2 ’  1 
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- DF2,P2 COS(A)COS(B)SIN(B) + DF COS(A)COS(B)SIN(B) 
1’  1 

- D ~ 3 , ~ 1  S I N ( A ) S I N ( B )  - DF COS(A)COS~(B) 
1’  2 

- DF2,A2 COS(A)COS(B)SIN(B) - DF1 ,A1 COS(A)COS(B)SIN(B) 

SIN(A)SIN(B) + DF ,A - D ~ 3 , ~ 1  1 2  

- D ~ 3 , ~ 2  SIN(A)COS(B))DEL(A2) - (DF ,u COS~(A)SIN~(B) 

- DF2,U1 COS2(A)COS(B)SIP4(B) - DF ,u COS~(A)COS(B)SIN(B) 

2 2  

1 2  

+ D ~ 3 , ~ 2  COS(A)SIN(A)SIN(B) + DF ,u COS(A)SIN(A)SIN(B) 

COS 2 (A)COS2(B) - DF ,u COS(A)SIN(A)COS(B) 
3 1  

COS(A)SIN(A)COS(B) + DF ,u SIN~(A) )DEL(U~ 

2 3  

+ DF1 ,U1 

- DF1 ,u3 3 3  

- (DF2,P2  COS2(A)SIN2(B) - DF , p  2 1  

- DF1 ,P2 

COS~(A)COS(B)SIN(B) 

COS~(A)COS(B)SIN(B) + D~ ,p COS(A)SIN(A)SIM(B) 
3 2  

+ D ~ 2 , ~ 3  COS(A)SIN(A)SIN(B) + DF , p  COS~(A)COS~(B) 
1 1  

- D ~ 3 , ~ 1  COS(A)SIN(A)COS(B) - DF ,p COS(A)SIN(A)COS(B) 
1 3  

+ DF3,P3 sIN2(A))DEL(P1) - (DF 2 2  ,A COS~(A)SIN~(B) 

- ’F2,A1 COS~(A)COS(B)SIN(B) - D~ 1 ’  A 2 COS~(A)COS(B)SIN(B) 

+ D ~ 3 , ~ 2  COS(A)SIN(A)SIN(B) + DF A COS(A)SIN(A)SIN(B) 
2’ 3 
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+ DF1 ,A1 COS~(A)COS~(B) - D~ ,A 3 1  

- DF1 ,A3 COS(A)SIN(A)COS(B) + DF A SIN~(A) )DEL(A~ ) 

COS(A)SIN(A)COS(B) 

3’ 3 

+ SIN(R~)GM + ( - -  d u1 + ~ 2 ~ 3  - U2P3)M 
dT 

+ S COS(A)SIN(B) - S COS(A)COS(B) + S SIN(A) 
F2 F1 F3 

FT2 = -(DF  SIN(B) + DF c COS(B))DEL(CK) 
1’ K 2’ K 

- (-DF1 ,U2 SIN(A)SIN’(B) - DF 
SIN(A)COS(B)SIN(B) 

2’ 2 

+ DF1 ,U1 SIN(A)COS(B)SIN(B) + DF COS(A)SIN(B) 
1 ’  3 

+ DF2,U1 SIN(A)COS~(B) + D~ 
COS(A)COS(B))DEL(U3) 

2’ 3 

SIN(A)SIN ( B )  - DF 2 
- (-DF1 ’P2  SIN(A)COS(B)SIW(B) 

2’ 2 

+ DF1 ,P1 SIN(A)COS(B)SIN(B) + DF COS(A)SIN(B) 
1 7  3 

+ DF2,P1 SIN(A)COS~(B) + D~ 2’ 3 COS(A)COS(B))DEL(P3) 

SIN(A)SIN ( B )  - DF A 2 
- (-DF1 ,A2 2’ 2 SIN(A)COS(B)SIN(B) 

+ DF1 ’A1 
SIN(A)COS(B)SIN(B) + DF A COS(A)SIN(B) 

1 ’  3 

+ DF2’A1 SIN(A)COS’(B) + D~ A COS(A)COS(B))DEL(A3) 
2’ 3 

- (DF1 ’U1 S I N ~ ( B )  + D~ COS(B)SIN(B) + DF COS(B)SIN(B) 
2’ 1 1 ’  2 

+ DF2,U2 COS2(B))DEL(U2) - (DF SIN 2 (B) + DF p COS(B)SIN(B) 
1’ 1 2’ 1 

+ DF1 ,P2 COS(B)SIN(B) + DF COS~(B))DEL(P~) - ( D ~  A SIN~(B) 
2’ 2 1’ 1 
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DF2,A1 
COS(B)SIN(B) + DF ,A COS(B)SIN(B) 

1 2  

+ D ~ 2 , ~ 2  C O S 2 ( B ) ) D E L ( A 2 )  - ( - D F  1 2  ,u COS(A)SIN~(B) 

C O S ( A ) C O S ( B ) S I N ( B )  + DF COS(A)COS(B)SIN(B) - DF2,U2 1’ 1 

- DF1 ,U3 
SIN(A)SIN(B) + DF ,u C O S ( A ) C O S ~ ( B )  

2 1  

- D ~ 2 , ~ 3  SIN(A)CoS(B) l D E L ( U 1  ) - (-OF1 ,p2 
COS(A)SIN~(B) 

COS(A)COS(B)SIN(B) + DF ,p COS(A)COS(B)SIN(B) - DF2,P2 1 1  

- DF1  ,P3 
S I N ( A ) S I N ( B )  + DF 

2’ 1 

- D ~ 2 , ~ 3  SIN(A)COS(B))DEL(P~ ) - ( - D F  A C O S ( A ) S I N ~ ( B )  
1 ’  2 

- DF2,A2 
COS(A)COS(B)SIN(B) + DF A COS(A)COS(B)SIN(B) 

1 ’  1 

S I N ( A ) S I N ( B )  + DF A C O S ( A ) C O S ~ ( B )  
- DF1 ,A3 2 ’  1 

- D ~ 2 , ~ 3  S I N ( A ) C O S ( B ) ) D E L ( A 1 )  - S I N ( R 1 ) C O S ( R 2 ) G M  

+ ( - -  U2 - P1U3 + U1P3)M - S SIN(B) - S C O S ( B )  d 

d T  F1 F 2  

F T 3  = - ( - D F  S I N ( A ) S I N ( B )  + DF SIN(A)COS(B) 
2 ’  K 1 ’  K 

+ DF3,CK COS(A))DEL(C~) - ( D F  ,u S I N ~ ( A ) S I N ~ ( B )  
2 2  

C O S ( A ) S I N ( A ) S I N ( B )  - DF u C O S ( A ) S I N ( A ) S I N ( B )  
- D ~ 3 , ~ 2  2 ’  3 

S I N 2 ( A ) C O S  2 ( B )  + DF 
+ DF1 ,U1 

COS(A)SIN(A)COS(B)  
3’ 1 
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+ DF1 ,U3 COS(A)SIN(A)COS(B) + DF ,u COS2(A)  )DEL(U3)  
3 3  

- (DF2 ’P2 S I N ~ ( A ) S I N ~ ( B )  - D~ 2’ 1 SIN~(A)COS(B)SIN(B) 

- DF1  ’P2 SIN~(.A)COS(B)SIN(B) - DF COS(A)SIN(A)SIN(B) 
3’  2 

- D ~ 2 , ~ 3  C O S ( A ) S I N ( A ) S I N ( B )  + DF ,p S I N ~ ( A ) C O S ~ ( B )  
1 1  

+ D ~ 3 , ~ 1  C O S ( A ) S I N ( A ) C O S ( B )  + DF ,p COS(A)SIN(A)COS~(B) 
1 1  

- DF1 2 3  S I N ~ ( A ) C O S ( B )  + D~ 3 1  ,p C O S ~ ( A ) C O S ( B )  

- D F 3 , P 3   C O S ( A ) S I N ( A ) ) D E L ( P 1 )  - (DF 2 ’  A 2 COS(A)SIN(A)SIN~(B)  

- DF2,A1 COS(A)SIN(A)COS(B)SIN(B)  

+ P 1 U 2 )  - COS(R 

- S S I N ( A ) C O S  
F1 

+ DF1  ,P2 S I N ( A )  

- DF1 ,A2 COS(A)SIN(A)COS(B)SIN(B) + DF A SIN~(A)SIN(B) 
2 ’  3 

- D ~ 3 , ~ 2  C O S ~ ( A ) S I N ( B )  + D~ 1 ’  A 1 COS(A)SIN(A)COS~(B)  

- DF1 ,A3 SIN~(A)COS(B) + D~ 3’ A 1 C O S ~ ( A ) C O S ( B )  

- D F 3 , A 3   C O S ( A ) S I N ( A ) ) D E L ( A 1 )  + M ( - U  P + d -- U 
l 2  dT 3 

1 ) ~ ~ ~ ( ~ 2 ) ~ ~  + s SIN(A)SIN(B) 
F2 

( B )  - SF C O S ( A )  
3 

COS ( B )  + DF COS ( A )  COS ( B  ) ) DEL ( P 2 )  

S I N ( A )  S I N  ( B )  - DF A 2 

2 
3’ 2 

- (-DF2,A1 2’ 2 S I N ( A )  COS(B)  S I N ( B )  

+ DF1 ,A1 S I N ( A )  COS(B)  S I N ( B )  + DF A COS(A)  SIN(B) 
3’ 1 
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+ DF1 ,A2 SIN(A) COS'(B) + D~ A 3 '  2 
COS(A)  COS(B)) DEL(A2) 

- (DF2,U2 COS(A) S I N ( A )  SIN2(B) - DF2,U, 
COS(A) S I N ( A )  COS(B) S I N ( B )  

- DF1 'U2 C O S ( A )  SIN(A)  COS(B)  SIN(B) + DF SIN'(A) SIN(B) 
2' 3 

COS2(A)  SIN(B) + DF- ,u C O S ( A )  S I N ( A )  COS2(B) - D ~ 3 , ~ 2  I 1  

- DF1 ¶U3 
S I N ~ ( A )  COS(B) + D~ C O S 2 ( A )  COS(B) 

3' 1 

- 'F3,U3 COS(A)  SIN(A)) DEL(U1) - (DF2,p2 COS(A) S I N ( A )  S I N ~ ( B )  

- DF2'P1 
COS(A) SIN(A) C O S ( B )  SIN(B) 

- DF1 ,P2 
COS(A)  SIN(A)  COS(B) S I V ( B )  

+ D  SIN~(A) S I N ( B )  - D~ ,p COS2(A) S I N ( B )  
F2 "3 3 2  

+ D  COS(A)SIN(A)COS(B) 
F1 "3 

+ DF3,P3 COS~(A) )DEL(P , )  - ( D ~  2 2  ,A S I N ~ ( A ) S I N ~ ( B )  

- DF2,A1 SIN~(A)COS(B)SIN(B) - DF ,A 
SIN~(A)COS(B)SIN(B) 

1 2  

COS(A)SIN(A)SIN(B) - DF ,A COS(A)SIN(A)SIN(B) - D ~ 3 , ~ 2   2 3  

+ DF1 ,A1 SIN2(A)COS2(B) + DF ,A 3 1  

+ DF1 ,A3 COS(A)SIN(A)COS(B)  + DF ,A C O S 2 ( A ) ) D E L ( A 3 )  

- (-DF2,U1 

+ D  

COS(A)SIN(A)COS(B) 

3 3  

SIN(A)SIN ( B )  - DF u 2 SIN(A)COS(B)SIN(B) 
2' 2 

F1 Y U 1  
SIN(A)COS(B)SIN(B) + DF ,u COS(A)SIN(B) 

3 1  

+ DF1 ,u2 S I N ( A ) C O S ~ ( B )  + D~ 3 2  ,u COS(A)COS(B))DEL(U~) 
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- (-’F2,P1 SIN(A)SIN~(B) - DF 2’ 2 SIN(A)COS(B)SIN(B) 

+ DF1 ’Pl SIN(A)COS(B)SIN(B) + DF COS(A)SIN(B) 
3’ 1 

Special Forms of the  Equations of Motion 

In  aeronautical  studies involving small  perturbations  about  the  equilibrium or trim  condition, 
the  investigator  sometimes  wants to know  how  the vehicle will respond if the  motion is  restricted  in 
some  way. For example,  he  might  wish  to  determine vehicle response in the  absence  of sideslip. 
MACSYMA is well equipped to implement  assumptions of this  type. By using  a  substitution  com- 
mand, MACSYMA goes  through  the  equations,  makes  the  required  substitutions,  and  displays  the 
modified  results. For the case of zero  sideslip  the  program  requests MACSYMA to make  the  substi- 
tutions:  SIN(B) = 0 and  COS(B) = 1  in  each  force  equation.  The  required  substitution  and  display 
commands  and  the  modified  equations  assume  the  following form: 

(C48)  FOR 1:1 THRU 3 DO FT[I]:SUBST([SIN(B)=O,COS(B)=l],FT[I])$ 

(C49)  FOR 1:1 THRU 3 DO DISPLAY(FT[I])$ 

FT1 = -(DF  COS(A) - DF c SIN(A))DEL(CK) - (-DF SIN~(A) 
1 ’  K 3’ K 3’ 1 

- DF3,U3 COS(A)SIN(A) + DF COS(A)SIN(A) 
1 ’  1 

+ DF1 ,U3 COS2(A))DEL(U3) - (-DF SIN 2 (A) - DF p COS(A)SIN(A) 
3’ 1 3’ 3 

+ OF1 ’PI COS(A)SIN(A) + DF p COS2(A))DEL(P3) - (-DF A SIN~(A) 
1 ’  3 3’  1 

- ’F3,A3 COS(A)SIN(A) + DF A  COS(A)SIN(A) 
1 ’  1 

COS(A) - DF p  SIN(A))DEL(P2) - (DF A COS (A) - (OFl ’P2 3’ 2 1 ’  2 
n 
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- DF1 ,A3 
C O S ( A ) S I N ( A )  + DF A C O S ~ ( A ) ) D E L ( A ,  ) + SIN(R~)GM 

1 ’  1 

+ ( - -  U1 + P2U3 - U2P3)M + S S I N ( A )  - S C O S ( A )  d 

dT F3 F1 

FT3 = - ( D F  S I N ( A )  + D F   C O S ( A ) ) D E L ( C K )  
1 ’  K 3’ K 

- (DF1 ,U1 S I N 2 ( A )  + DF ,u COS(A)SIN(A) + D~ C O S ( A ) S I N ( A )  
3 1  1 ’  3 

+ DF3’U3 C O S ~ ( A ) ) D E L ( U ~ )  - ( D ~  S I N  2 ( A )  + D F  p COS(A)SIN(A) 
1 ’  1 3’ 1 

+ D ~ 1 , ~ 3  C O S ( A ) S I N ( A )  + D F   C O S 2 ( A ) ) D E L ( P 3 )  - ( D F  A SIN‘(A) 
3 ’  3 1 ’  1 

+ D ~ 3 , ~ 1  
C O S ( A ) S I N ( A )  + DF A C O S ( A ) S I N ( A )  

1 ’  3 
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S I N ( A )  + D F   C O S ( A ) ) D E L ( P 2 )  - (DFl ,A2 S I N ( A )  
3’ 2 

n 

+ DF1 ’U, C O S ( A ) S I N ( A )  + DF u C O S ~ ( A )  ) D E L ( U ~  
3’ 1 

- (-DF1 ,P3 s I N 2 ( A )  - DF3’ p3 C O S ( A ) S I N ( A )  + D F  1’ 1 C O S ( A ) S I N ( A )  

+ DF3’P, cos2(A))DEL(p1 - (-DFl ,A3 SIN~(A) 

’ D F 3 , A 3   C O S ( A ) S I N ( A )  + D F  1 ’  A 1 C O S ( A ) S I N ( A )  

COS ( A ) ) D E L ( A 1 )  + M(-U1P2 + -- U3 + P,U2) 2 d 
+ D ~ 3 , ~ 1  dT 

- COS(R1)COS(R2)GM - S S I N ( A )  - S C O S ( A )  
F1 F3 

In  addition to  the  zero sideslip  condition,  the  investigator  might  wish  to  determine  vehicle 
response  when  the  angle  of  attack A is limited to  small  values. For  this  condition  the  program 
would  request MACSYMA to make  the  substitution SIN(A) = A. Moreover, if the angle  of  attack 
were  sufficiently  small,  the  program  would  request MACSYMA to  make  the  additional  substitution 
COS(A) = 1. 

In  this  case,  the  required  substitutions  and  display  commands give rise to  the following  modi- 
fied  equations: 

( C 5 0 )  FOR 1:1 THRU 3 DO FT[I]:SUBST([SIN(A)=A,COS(A)=l],FT[I])$ 

( C 5 1 )  FOR 1:1 THRU 3 DO D I S P L A Y ( F T [ I ] ) $  
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) D E L ( P 3 )  - ( D F  A 
L 

+ D F 3 , P 3   1 ’  1 A + D ~ 3 , ~ 1  A + DF1 ,A3 A 

n 
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)DEL(A1) + M(-U1P2 + -- U3 + P1U2) - COS(R1)COS(R2)GM d 
+ D ~ 3 , ~ 1  dT 

Examination of these  equations  reveals  the  existence of terms  such as A * .  If  it is assumed that 
second-order  terms  in A are  negligible,  a  program  statement  instructing MACSYMA to  make  the 
substitution A* = 0 would  simplify  the  equations  as  follows: 

(C52) FOR I: 1 THRU 3 DO FT[I]: SUBST( [A**2=0]  ,FT[I])$ 

(C53)  FOR 1:1 THRU 3 DO DISPLAY(FT[I])$ 

- (-DF3,P, A - OF1 ,P3 A + DF1 ,P1 )DEL(P~) - (-DF A A - DF1 ,A3 A 
3’ 1 

- SIN(R1)COS(R2)GM + ( - -  U2 - P1U3 + U1P3)M - S d 
dT F2 
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DEL(U3) - (DF p A + DF1 'P3 A + DF3,P3 )DEL(P3) - (DF A A 
3 '  1 3 '  1 

- (-'F3,U3 A + DF1,U1 A + DF3,U1 )DEL(U1) - ( -DF  3' 3 A + DF1 'P1 A 

+ M(-U1P2 + d -- U3 + P1U2) - COS(R1 )COS(R2)GM - S A - S 
dT F1 F3 

Additional  simplifications  are  possible if it is  assumed that  angular  velocity  perturbations  are 
negligible. This assumption  can  be  implemented  by again  using the  substitution  command,  which 
yields  the  following  greatly  simplified  equations: 

(C54) FOR I: 1 THRU 3 DO FOR J: 1 THRU 3 DO 
FT[I]:SUBST(  [DEL(P[J])=O],FT[I])$ 

(C56) FOR 1:1 THRU 3 DO DISPLAY(FT[ I ] )$  

- ( -DF3yU1 A - DF1 'U3 A + DF1 , U 1  )DEL(U1) - ('DF3,Al A - DF1 ,A3 A 
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FT3 = - ( D  
F1 "K A + DF3,CK 3' 1 A + DF1 ,U3 A + 'F3,U3) 

)DEL(CK) - (DF U 

DEL(U3) - (DF A A + DF1 'A3 A + 'F3,A3 )DEL(A3)  - (DF1,U2 A 
3' 1 

+ DF1 'U1 A + DF u )DEL(U1) - ( - D F ~ , A ~  A + DF1 ,A1 
A 

3' 1 

) D E L ( A 1 )  + M(-U1P2 + --  U3 + P1U2) d 
+ ' ~ 3 3 ~ 1  dT 

- COS(R1 )COS(R2)GM - SF A - S 
1 F3 



- COS(R1)COS(R2)GM - S A - S 
F1 F3 

Thrust  Forces 

It should  be  noted  that  the  thrust  forces FTi appearing  on  the  left-hand  side  of  these  equations 
are  the  resultant  of  a  number  of  thrust  generating  systems,  each  contributing  a  thrust  vector T,. 
Each  thrust  vector is referred to  a  thrust  axes  system X,l with origin at  the  point  of  application  of 
the  thrust  vector.  The  axes  are  chosen  such  that  each  thrust  vector  coincides  with  the X,’ axis of 
the  system.  Moreover,  each  thrust  vector is then  transformed to a  coordinate  system Yni which  has 
the same  origin as the  thrust  axes,  but is parallel to  the  body  axes  system.  Finally,  the  components 
of  thrust  in  the Y,l system  of  axes  are  transformed to  the  body  axes  system,  which  has  its  origin  at 
the  center  of  gravity of the  aircraft.  Each  thrust  axis X,’ is related to  the Y,i system  by  the  follow- 
ing  transformation  equations  (see  sketch): 

Y,’ = x,’ cos(K,)  cos(P,) 

Yn2 = X,’ cos(K,)  sin(P,) I 
Yn3 = -Xn’  sin(&) J 

yn3 

Hence,  the  components  of  the  thrust  vector T, in the Yni system  of  coordinates  are 
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These  are  also  the  components  of  thrust  in  the y i  system of coordinates,  which  has  its  origin  at 
the  center  of  gravity  of  the  aircraft.  The  thrust  components  due  to all thrust  generating  systems  are 
obtained  by  summing  the  right-hand  side  of  the  following  equation 

The  expanded  form  of  equation (1 5),  when  summed  over n will  yield the  resultant  thrust  com- 
ponents. When the  number  of  thrust  generating  systems is known,  the  components fi can  be  formu- 
lated  and  displayed  by  using  equation  (15),  and  executing  the  following  two  commands,  which 
yield the  components  contributed  by  the  nth  thrust  generating  system.  These  are 

( C 1 )   Y E 1   , N I : X [ l  ,N]*COS(  K[N])*COS(P[N])$ 

( C 2 )   Y [ 2 , N ] : X [ l  ,N]*COS(K[N])*SIN(P[N])$ 

(C3)   Y [3 ,N ] : -X [ l   ,N ] *S IN(K [N ] )$  

( C 4 )  FOR I THRU 3 DO T[I]:DIFF(Y[I,N],X[l,N],l)*T[N]$ 

( C 5 )  FOR 1:1 THRU 3 DO D I S P L A Y  ( T [ I ] ) $  

T1 = TN COS ( KN)  COS(  PN) 

T2 = TN C O S ( K N )   S I N ( P N )  

T 3  = -TN S I N ( K N )  

Determination  of  the  Geographical  Location  of  Aircraft 

In  order to  determine  the geographical  location  of  an  aircraft  relative to  some  initial  location, 
it is necessary to  transform  the  components of  the  aircraft’s  velocity  vector  from  aircraft  body  axes 
to  a  system  of  earth-fixed  axes.  The  transformed  components  can  then  be  integrated  to  find  the 
location  of  the  aircraft  as  a  function  of  time.  The  product  of  the  three  rotation  matrices  (D33)’ 
(D32),  and  (D3 1)’ which  were  used to  transform  the gravity  vector  from  an  earth-fixed  axes  system 
to aircraft  body  axes,  may  be  transposed  and used to  transform  the  aircraft  velocity  components 
to an  earth-fixed  system. If the  column  vector  (D39) of aircraft  velocity  components is premulti- 
plied by  the  transposed  matrix,  the  velocity  components  relative to the  earth-fixed  system  are 
obtained as follows: 

( C 5 6 )   T R A N S P O S E (   ( D 3 3 ) .   ( D 3 2 ) .   ( D 3 1 )  ) . ( D 3 9 )  ; 
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( D 5 6 )  MATRIX([U3(SIN(Rl)SIN(R3) + COS(Rl)SIN(R,)COS(R3)) 

+ UZ(SIN(R1  )SIN(R2)COS(R3) - COS(R1)SIN(R3)) + U,COS(R,)COS(R,)], 

[U2(SIN(R1  )SIN(R2)SIN(R3) + COS(R1)COS(R3) 1 

+ U,(COS(Rl )SIN(RZ)SIN(R3) - SIN(R,)COS(R3)) + U1COS(R2)SIN(R3)], 

[-U1SIN(R2) + U2SIN(R1)COS(R2) + U3COS(R1)COS(R2)]) 

If the  components A?i relative to  the Earth-fixed  system  be denoted  by DXi ,  execution  of  the 
following  programming  steps will ensure  that  the  required  velocity  components  are  displayed in 
conventional  form. 

(C57) FOR 1:1 THRU 3 DO ROW[I]:FIRST(ROW((D56),1))$ 

(C58) FOR 1:1 THRU 3 DO (DX[I]:ROW[I][l],DISPLAY(DX[I])); 

DX1 = U3(SIN(R1)SIN(R3) + COS(R,)SIN(R,)COS(R,)) 

DX2 = U,(SIN(Rl)SIN(R2)SIN(R3) + COS(R,)COS(R,)) 

+ U3(COS(Rl)SIN(R,)SIN(R3) - SIN(R1)COS(R3)) + U,COS(R,)SIN(R,) 

DX3 = -U1SIN(R2) + U2SIN(R1)COS(R2) + U3COS(R1)COS(R2) 

Integration of these  velocity components will yield the  required  coordinates  of  the  aircraft 
relative to  a  set  of  earth-fixed  reference  axes.  These  are 

where X k o  are the  initial  values  of  the  coordinates in the  earth-fixed  reference  frame. 

MOMENTS 

Transformation  of  Static  Moments 

The  static  aerodynamic  moments  obey  the  same  transformation law  as the  static  aerodynamic 
forces;  that  is, if SM, denotes  a  static  moment in the X frame of reference,  and SMi denotes  the 
corresponding  transformed  moment in the Y reference  frame,  then 
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where Y = Y ( X )  is obtained  from  the  displayed  output  (D6)  and  reentered  here  to  facilitate  the 
formulation  of  the  moment  equations. Given the  transformation  equations  (D6),  the  transformed 
aerodynamic  static  moments  are  obtained  by  expanding  equation (17). The  three  programming 
steps used to  transform  the  static  forces  may again be  employed to transform  the  static  moments. 
The  simple  program  and  the  displayed  results  are 

( C l )  Y [ l ] ~ X [ 1 ] * C O S ( A ) * C O S ( B ) - X [ 2 ] * C O S ( A ) * S I N ( B ) - X [ 3 ] * S I N ( A ) $  

( C 2 )  Y [ Z ] : X [ l ] * S I N ( B ) + X [ Z ] * C O S ( B ) $  

( C 3 )  Y [ 3 ] : X [ l ] * S I N ( A ) * C O S ( B ) - X [ 2 ] * S I N ( A ) * S I N ( B ) + X [ 3 ] * C ~ S ( A ) $  

( C 4 )  SM[ I ]  : =0$ 

( C 5 )  FOR 1 : l  THRU 3 DO FOR N : l  THRU 3 DO 
SM[I]:SM[I]+DIFF(Y[I],X[N])*S[M[N]]$ 

( C 6 )  FOR I : 1  THRU 3 DO D I S P L A Y  (SM[I])$ 

SM = -S C O S ( A ) S I N ( B )  + S COS(A)COS(B)  - SM S I N ( A )  1 M2 M1 3 

SM2 = SM S I N ( B )  + S COS(B)  
1 M2 

SM3 = -S S I N ( A ) S I N ( B )  + S S I N ( A ) C O S ( B )  + S COS(A)  ” 1 M3 

Transformation  of  Control  Moment  Derivatives 

The  control  moment  derivatives  obey  the  same  transformation law as the  static  moments;  that 
is, if DM,,CK denotes  the  nth  control  moment derivative  with  respect to  the  Kth  control  surface  as 
measured in the X reference  frame,  and T D I , ~  denotes  the  corresponding  transformed  derivative in 
the Y frame,  then 

where Y = Y ( X )  is again obtained  from  the  displayed  output  (D6). 

As in the  preceding  section,  the  transformed  control  derivatives  are  obtained  by  expanding  the 
transformation law (1 8) given the  transformation  equations  (D6).  The  transformed  derivatives  are 
obtained  by  executing  the  following  simple  program,  which  has  exactly  the  same  form as the  pro- 
gram  used to  transform  the  static  moments.  These  are 
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(C7) TD[I,C]:=O$ 

(C8)  FOR I: 1 THRU 3 DO FOR N: 1 THRU 3 DO 
TD[I,C]:TD[I,C]+DIFF(Y[I],X[N])*D[M[N],C[K]]$ 

(C9) FOR 1:l THRU 3 DO DISPLAY(TD[I,C])$ 

TD1 ,c - - D ~ 2 , ~ K  COS(A)SIN(B) + DM COS(A)COS(B) - DM3 3% 
- SIN(A) 

1' K 

TD2,C = DM1 ,CK SIN(B) + DM 2' K COS(B) 

TD3,C - -'M2,CK 
- SIN(A)SIN(B) + DM SIN(A)COS(B) + DM  COS (A) 

1' K 3' K 

The  corresponding  control  moments  are  obtained  by  multiplying  the  control  derivatives  by  the 
appropriate  control  increments DEL(CK). The  following  two  programming  steps  are  sufficient  to 
formulate  the  required  moments.  These  are  denoted  by CMi in the  displayed  output. 

(C10)  FOR 1:l  THRU 3 DO CM[I]:TD[I,C]*DEL(C[K])$ 

(C11)  FOR 1:1 THRU 3 DO DISPLAY(CM[I])$ 

CM1 = 

CM2 = 

CM3 = 

(-DM2  ,CK COS(A)SIN(B) + DM c COS (A)COS ( B )  
1 '  K 

- DM3,cK SIN(A))DEL(CK) 

'CK 
SIN(B) + D COS ( B )  )DEL ( CK) 

M2 "K 

(-'M2,CK SIN(A)SIN(B) + DM 1' K SIN(A)COS(B) 

+ 'M3'c~ COS (A) )DEL ( cK) 

Moments  Produced  by  Linear  Velocity  Perturbations 

The  next  step in the  formulation  involves  the  determination  of  the  aerodynamic  moments  pro- 
duced  when  an  aircraft is subjected  to  linear  velocity  perturbations DEL(UJ).  Before  these  moments 
can  be  determined,  the  aerodynamic  stability  derivatives  with  respect to linear  velocity  components 
must  be  transformed  from  wind  or  wind-tunnel  stability  axes to body  axes.  For  a  detailed  discus- 
sion of the  transformation  of  these  derivatives,  the  reader is referred to  equations (4) through  (10). 
The  program used for  the  transformation  of  force  derivatives  can  be used in this case also. In this 

42 



application,  the  aerodynamic  stability  derivative  of  the  ith  moment  with  respect to the  j th velocity 
component will be  denoted  by Dn/ri,u.. The  corresponding  transformed  derivatives  are  denoted  by 
TDM. u.. When the  program is rewrit c en  to  accommodate  the  notational changes  required for this 
applicat~on,  it assumes the  following  form: 1. I 

(C12) TDU[I,J]:=O$ 

(C13)  FOR 1:l THRU 3 DO FOR J:l THRU 3 DO 
FOR R:l THRU 3 DO  FOR N: 1 THRU 3 DO 
TDU[I,J]:TDU[I,J]+DIFF(Y[I],X[R])*DIFF(Y[J],X[N])*D[M[R],U[NII$ 

It  only  remains to multiply  the  transformed  derivatives  by  the  appropriate  velocity  increments 
to obtain  the  required  moments,  which  are  denoted  by  MDUi.  The  next  three  programming  steps 
instruct MACSYMA t o  evaluate  and  display  the  moments  produced  by  linear  velocity  perturbations. 
These  are 

(C14)  MDU[ I]: =0$ 

(C15)  FOR 1:1 THRU 3 DO  FOR J:1 THRU 3 DO 
MDU[I]:MDU[I]+TDU[I,J]*DEL(U[J])$ 

(C16)  FOR 1:1 THRU 3 DO DISPLAY(MDU[I])$ 

- DM2,u1 COS(A)SIN(A)COS(B)SIN(B) 

COS(A)SIN(A)COS(B)SIN(B) + DM SI~(A)SIN(B) 
- DM1 ,U2 3’ 2 

- D ~ 2 , ~ 3  COS~(A)SIN(B) + D~ 1 ’  1 COS(A)SIN(A)COS~(B) 

COS(A)SIN(A))DEL(U3) + (-DM 
- DM3’U3 

COS(A)SIN~(B) 
2’ 1 

- DM2,1J2 COS(A)COS(B)SIN(B) + DM COS(A)COS(B)SIN(B) 
1 ’  1 

- D ~ 3 , ~ 1  SIN(A)SIN(B) + DM COS(A)COS*(B) 
1 ’  2 

- D ~ 3 ’ ~ 2  SIN(A)COS(B))DEL(U2) + (DM 2’ 2 COS~(A)SIN~(B) 
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- DM2’u1 COS~(A)COS(B)SIN(B) - oM 1’  2 COS~(A)COS(B)SIN(B) 

+ D ~ 3 , ~ 2  COS(A)SIN(A)SIN(B) + DM COS(A)SIN(A)SIN(B) 
2 ’  3 

+ DMl ’U1 COS~(A)COS~(B) - D~ 3 1  ,u COS(A)SIN(A)COS(B) 

- DM, ’U3 COS(A)SIN(A)COS(B) + DM SIN~(A))DEL(U, ) 
3’ 3 

MDU2 = ( -DM SIN(A)SIN~(B) - D~~ SIN(A)COS(B)SIN(B) 
1 ’  2 2 ’  2 

+ DMl 4, SIN(A)COS(B)SIN(B) + DM COS(A)SIN(B) 
1’ 3 

+ DM2’u1 S I N ( A ) C O S ~ ( B )  + D~ 2’ 3 COS(A)COS(B))DEL(U,) 

SIN (B) + DM 2 
+ (DM1 , U 1  COS(B)SIN(B) + DM COS(B)SIN(B) 

+ DM2,U2 COS~(B))DEL(U,) + ( - D ~  1 ’  2 COS(A)SIN2(B) 

2’ 1 1 ’  2 

- ’M2,U2 COS(A)COS(B)SIN(B) + DM COS(A)COS(B)SIN(B) 
1 ’  1 

- DMl ’U3 SIN(A)SIN(B) + DM COS(A)COS~(B) 
2 ’  1 

- D ~ 2 , ~ 3  SIN(A)COS(B) )DEL(U,)  

MDU = (DM 3 2’ 2 S I N ~ ( A ) S I N ~ ( B )  - D ~ ~ , ~ ~  SIN~(A)COS(B)SIN(B) 

- DMl ’U2 SIN~(A)COS(B)SIN(B) - D~ COS(A)SIN(A)SIM(B)  
3 ’  2 

- ‘ ~ 2 7 ~ 3  COS(A)SIN(A)SIN(B) + DM S I N ~ ( A ) C O S ~ ( B )  
1 ’  1 

+ DM3’u, COS(A)SIN(A)COS(B) + DM u COS(A)SIM(A)COS(B) 
1 ’  3 

+ DM3’U3 COS 2 (A))DEL(U3) + ( - D ~  SIN(A)SIN~(B) 
2’ 1 
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- SIN(A)COS(B)SIN(B) + DM SIN(A)COS(B)SIN(B) 
1 ’  1 

+ 
COS(A)SIN(B) + DM S I N ( A ) C O ~ ( B )  

1 ’  2 

+ D ~ 3 , ~ 2  COS(A)COS(B))DEL(U2) + (DM 2’ 2 COS(A)SIN(A)SIN~(B) 

- DM2,u1 COS(A)SIN(A)COS(B)SIN(B) 

- DM1 ’U2 COS(A)SIN(A)COS(B)SIN(B) + DM S I N ~ ( A ) S I N ( B )  
2’ 3 

- D ~ 3 , ~ 2  COS~(A)SIN(B) + D~ 1 ’  1 COS(A)SIN(A)COS~(B) 

- D M l  ,U3 SIN~(A)COS(B) + D~ 3’ 1 COS~(A)COS(B) 

- DM3,U3 COS(A)SIN(A))DEL(U~ ) 

Moments  Produced  by  Angular  Velocity  Perturbations 

The program used in the  preceding  section  can,  with  suitable  notational  changes, be  used to 
formulate  the  moments  produced  by  angular  velocity  perturbations.  However,  whereas in the pre- 
ceding  application  the  required  moments  were  obtained  by  multiplying  the  transformed  acrody- 
namic  stability  derivatives  by  linear  velocity  increments, in the  present case the  transformed  deriva- 
tives  must  be  multiplied  by  angular  velocity  increments. In view of  these  similarities,  the  following 
program  and  displayed  moments will be  presented  without  further  comment,  except  to  point  out 
that  the  aerodynamic  stability  derivatives  of  the ith  moment  with  respect  to  the  jth  angular velocity 
component  are  denoted  by Dlzli,pi. The  corresponding  transformed  derivatives  are  denoted  by 
TDM. p . ,  and  the  resulting  moments  by  MDPi. 

1 9  I 

( C 1 7 )  TDP[I,J]:=O$ 

(C18) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO 
FOR R:l THRU 3 DO FOR N:l THRU 3 DO 
TDP[I,J]:TDP[I,J]+DIFF(Y[I],X[R])*DIFF(Y[J],X[N])*D[M[R],P[Nl$ 

(C19) MDP[I]:=O$ 

(C21)  FOR I: 1 THRU 3 DO FOR J: 1 THRU 3 DO 
MDP[I]:MDP[I]+TDP[I,J]*DEL(P[J])$ 

(C22)  FOR 1:1 THRU 3 DO DISPLAY(MDP[I])$ 
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MDPl = (DM COS(A)SIN(A)SIN~(B) 
2’ 2 

COS(A)SIN(A)COS(B)SIN(B) - DM2,P1 

- OMl ’P2 COS(A)SIN(A)COS(B)SIN(B) + DM SIN‘(A)SIN(B) 
3’ 2 

- D ~ 2 3 ~ 3  COS2(A)SIN(B) + DM 1 1  ,p COS(A)SIN(A)COS~(B) 

- D ~ 3 , ~ 1  SIN2(A)COS(B) + DM 1 3  ,p COS~(A)COS(B) 

- DM3’P3 COS(A)SIN(A))DEL(P3) + (-DM COS(A)SIN~(B) 
2’ 1 

- DM2,P2 COS(A)COS(B)SIN(B) + DM ,p COS(A)COS(B)SIN(B) 
1 1  

- D ~ 3 , ~ 1  SIN(A)SIN(B) + DM ,p COS(A)COS~(B) 
1 2  

- ’~3,pZ SIN(A)COS(B))DEL(P2) + (DM COS~(A)SIN~(B) 
2’ 2 

- DM2,P1 COS~(A)COS(B)SIN(B) - D~ 1 2  ,p COS~(A)COS(B)SIN(B) 

+ DMl ’PI C O S ~ ( A ) C O S ~ ( B )  - D~ ,p 

+ D ~ 3 ’ ~ 2  COS(A)SIN(A)SIN(B) + DM ,p COS(A)SIN(A)SIN(B) 
2 3  

COS(A)SIN(A)COS(B) 
3 1  

COS(A)SIN(A)COS(B) + DM ,p S I N ~ ( A )  )DEL(P~ - D ~ l  9 ~ 3  3 3  

MDP2 = (-D S I N ( A ) S I N ~ ( B )  - D ~ ~ , ~ ~  
M1 ’ p 2  

SIN(A)COS(B)SIN(B) 

+ DMl ’P, SIN(A)COS(B)SIN(B) + DM COS(A)SIN(B) 
1 ’  3 

+ D  SIN(A)COS ( B )  + DM COS(A)COS(B))DEL(P3) 2 
M2 p1 2’ 3 
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SIN ( B )  + DM 2 
+ (DMl  ,P1 2’ 1 C O S ( B ) S I N ( B )  + DM 1 ’  2 C O S ( B ) S I N ( B )  

+ DM2,P2 C O S ~ ( B )  ) D E L ( P ~ )  + ( - D  M 1  Y P 2  COS(A)SIN~(B) 

- DM2,P2 C O S ( A ) C O S ( B ) S I N ( B )  + DM p COS(A)COS(B)SIN(B)  
1 ’  1 

- DMl ,P3 S I N ( A ) S I N ( B )  + DM 
2’ 1 

- D ~ 2 , ~ 3  SIN(A)COS(B))DEL(P~ ) 

MDP3 = (DM S I N ~ ( A ) S I N ~ ( B )  - D~ SIN*(A)COS(B)SIN(B) 
2’ 2 2’ 1 

- DMl ’P2  SIN~(A)COS(B)SIN(B) - D~ 
COS(A)SIN(A)SIN(B)  

3’ 2 

- ’ ~ 2 7 ~ 3  
COS(A)SIN(A)SIN(B) + DM S I N ~ ( A ) C O S ~ ( B )  

1 ’  1 

+ D  C O S ( A ) S I N ( A ) C O S ( B )  + DM ,p 
M3 ”1 

C O S ( A ) S I N ( A ) C O S ( B )  
1 3  

+ D  
M3’P3 

C O S ~ ( A ) ) D E L ( P ~ )  + ( - D  S I N ( A ) S I N ~ ( B )  

S IN(A)COS(B)SIN(B)  + DM ,p SIN(A)COS(B)SIN(B) 

M2 ’ p 1  

- DM2’P2 

+ DM3,P, 

+ D ~ 3 , ~ 2  COS(A)COS(B))DEL(P2) + (DM 2’ 2 COS(A)SIN(A)SIN~(B) 

1 1  

COS(A)SIN(B) + DM ,p S I N ( A ) C O S ~ ( B )  
1 2  

- DM2,P1 COS(A)SIN(A)COS(B)SIN(B) 

- DMl ,P2 COS(A)SIN(A)COS(B)SIN(B) + DM SIN’(A)SIN(B) 
2’ 3 
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- DM3’P3 COS(A)SIN(A))DEL(P1) 

The  same  procedure  may  be used to formulate  the  aerodynamic  moments  produced  by  linear 
and  angular  accelerations.  These  moments will not  be  included  here,  since  the  cases  considered so 
far  are  sufficient to  demonstrate  the facility  with  which  symbolic  mathematical  computation  can  be 
used to  formulate  and  transform  aerodynamic  moments. 

Inertia  Moments 

The  formulation of inertia  moments involves the  determination  of  the  product  of an  angular 
velocity matrix,  a  matrix of inertia  coefficients,  and  a  column  vector of  angular  velocity  compo- 
nents.  This  product is the  matrix  equivalent of the  familiar  vector  product W X E ,  where W is the 
angular  velocity  vector  and is the  angular  momentum  vector. By adding to  the  components of this 
vector,  a  vector  which  represents  the  rate of change of  angular  momentum relative to  the moving 
body  axes,  the  inertial  moments relative to  these  axes  are  obtained.  The  rate of change of angular 
momentum relative to  the moving  body  axes  may  be  expressed  as  the  product of  the  inertia  matrix 
and  a  column  vector of angular  acceleration  components.  The  required  matrices may be  entered  and 
multiplied  as  follows:  The  first  matrix t o  be entered is the  inertia  matrix,  with  elements Ji,,. It is 
entered by typing  the  statement  ENTERMATRIX(3.3)  and  responding  to  the  system’s  request  for 
elements. 

(C23) ENTERMATRIX( 3,3);  

ROW 1 COLUMN 1 J[1,1]; 

ROW 1 COLUMN 2 J [ l  ’21; 

ROW 1 COLUMN 3 J [ l  ,3]; 

ROW 2 COLUMN 1  J[2,1]; 

ROW 2 COLUMN 2 J[2,2]; 

ROW 2 COLUMN 3  J[2,3]; 

ROW 3 COLUMN 1  J[3,1]; 

ROW 3 COLUMN 2 J[3,2]; 
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ROW 3 COLUMN 3 J[  3,3]; 

MATRIX-ENTERED 
[ J 1 ,  1 J1, 2 J 1 ,  3 ] 

1 J 2 ,  1 J 2 ,  2 J2, 3 1 

1 
1 

c 

1 J3, 1 J3, 2 J3, 3 3 j 
[ 

A statement of the  fact  that  the  ith  component of the  angular  velocity  vector is a  function of 
time  requires  the use of the DEPENDENCIES function.  The use of  this  function  permits  the  system 
to  differentiate  the  components Pi with  respect  to  time,  and  to  enter  the  resulting  acceleration 
components in the  form  of  a  column  vector  as follows: 

(C24) DEPENDENCIES(P(I,T))$ 

(C25)  ENTERMATRIX( 3,l) ; 

ROW 1 COLUMN 1 DIFF(P[l],T); 

ROW 2 COLUMN 1 DIFF(P[2],T); 

ROW 3 COLUMN 1 DIFF(P[3],T); 

MATRIX-ENTERED 

[ d  1 
1 c 1 

c ;; 1 

1 

1 
d- P3 1 ] 
dT 

The  angular  velocity  matrix  and  a  column  vector of angular  velocity  components  are  entered 
next 

(C26) ENTERMATRIX(3,3); 

ROW 1 COLUMN 1 0; 

ROW 1 COLUMN 2 -P[3]; 
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ROW 1 COLUMN 3 P[ 21; 

ROW 2 COLUMN 1 P[3]; 

ROW 2 COLUMN 2 0; 

ROW 2 COLUMN 3 - P [ l ] ;  

ROW 3 COLUMN 1 -P[2]; 

ROW 3 COLUMN 2 PC1 1; 
ROW 3 COLUMN 3 0; 

MATRIX- ENTERED 

(C27)  ENTERMATRIX(3,l); 

ROW 1 COLUMN 1 P[1]; 

ROW 2 COLUMN 1 P[2]; 

ROW 3 COLUMN 1 P[3]; 

MATRIX-ENTERED 

L 

p3 0 -pl j 3 

1 -p2 p1 0 1  1 

Thcsc four  matrices  arc now combined to  yield ;I column  vector of inertia  moments relative to 
aircraft body axes. 

(C28) ( (D23) .   (D25)+(   D26) .   (D23) .   (D27)  ) ; 

(D28)  MATRIX([J1,3 ( - -  d P3) + J ( - -  d P2)  + J ( - -  P1) d 
dT 1 ’ 2  dT ”’ dT 
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The  next  two  programming  steps  enable  the  system  to  express  these  inertia  moments in con- 
ventional  functional  form. 

(C29) FOR 1:1 THRU 3 DO ROW[I]:FIRST(ROW((D28),1))$ 

(C30) FOR 1 :1  THRU 3 DO (IM[I]:ROW[I][l],DISPLAY(IM[I]))$ 

Resultant  Moments 

It  only  remains  to  request MACSYMA to  combine  the  aerodynamic  and  inertia  moments 
which  have  been  formulated in preceding  sections  and to display  the  results.  The ith  component of 
the  resultant  moment will be  denoted by TMi, where TMi is the  ith  component  of  the  moment  due 
to  thrust.  The  two  programming  steps  and  the  formulated  equations  follow. 

(C31) FOR I:l THRU 3 DO TM[I]:  IM[I]-SM[I]-CM[I]-MDU[I]-MDP[I]$ 

(C32) FOR 1 :1  THRU 3 DO DISPLAY(TM[I])$ 

5 1  
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TM1 = - ( - D M  ,c COS(A)SIN(B) + DM C O S ( A ) C O S ( B )  
2 K  1 ’  K 

- D ~ 3 , ~ K  SIN(A))DEL(CK) - (DM 2 2  ,U COS(A)SIN(A)SIN~(B) 

- DM2,U1 

- DMl ,U2 

COS(A)SIN(A)COS(B)SIN(B) 

C O S ( A ) S I N ( A ) C O S ( B ) S I N ( B )  + DM S I N ’ ( A ) S I N ( B )  
3 ’  2 

- D ~ 2 , ~ 3  COS~(A)SIN(B) + DM 1 1  , u  C O S ( A ) S I N ( A ) C O S ~ ( B )  

- D ~ 3 ’ ~ 1  SIN2(A)COS(B) + DM 1 3  ,” C O S ~ ( A ) C O S ( B )  

- DM3,u3 COS(A)SIN(A))DEL(U3) - (DM 2’ 2 COS(A)SIN(A)SIN~(B) 

- DM2’P, 
COS(A)SIN(A)COS(B)SIN(B) 

- DMl ,P2 COS(A)SIN(A)CoS(B)SIN(B) + DM SIN~(A)SIN(B) 
3’ 2 

- D ~ 2 , ~ 3  COS~(A)SIN(B) + D~ 1 ’  1 COS(A)SIN(A)COS~(B) 

- DM3,P3 COS(A)SIN(A))DEL(P3) - ( - D M  2’ 1 COS(A)SIN~(B) 

- DM2’u2 COS(A)COS(B)SIN(B) + DM COS(A)COS(B)SIN(B) 
1 ’  1 

n 

- SIN(A)SIN(B) + DM C O S ( A ) C O S ~ ( B )  
1 ’  2 

- D ~ 3 , ~ 2  SIN(A)COS(B))DEL(U2) - (-DM 2’ 1 COS(A)SIN~(B) 

- 
COS(A)COS(B)SIN(B) + DM COS(A)COS(B)SIN(B) 

1 ’  1 

- D ~ 3 , ~ 1  SIN(A)SIN(B) + DM C O S ( A ) C O S ~ ( B )  
1 ’  2 
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- DM2,U1 C O S ~ ( A ) C O S ( B ) S I N ( B )  - D~~ ,+  C O S ~ ( A ) C O S ( B ) S I N ( B )  

+ DM2,U, C O S ( A ) S I N ( A ) S I N ( B )  + DM COS(A)SIN(A)SIN(B) 
9’ 3 

J L  L 3  

+ OMl ’U1 C O S ~ ( A ) C O S ~ ( B )  - D~ 
C O S ( A ) S I N ( A ) C O S ( B )  

3 ’  1 
n 

- DM1 ’U3 COS(A)SIN(A)COS(B) + DM S I N ~ ( A )  ) D E L ( U ~  
3 ’  3 

- (DM2,P2 cos 2 ( A ) S I N ~ ( B )  - D~ COS~(A)COS(B)SIN(B) 
2’ 1 

- DMl ,P2 
C O S ~ ( A ) C O S ( B ) S I N ( B )  + D~ COS(A)SIN(A)SIN(B) 

3 ’  2 

+ D ~ 2 , ~ 3  COS(A)SIN(A)SIN(B) + DM C O S ~ ( A ) C O S ~ ( B )  
1 ’  1 

- D ~ 3 , ~ 1  COS(A)SIN(A)COS(B) - DM COS(A)SIN(A)COS(B) 
1’ 3 

TM2 = - ( D M  SIN(B) + DM C O S ( B ) ) D E L ( C K )  
1 ’  K 2 ’  K 

- (-DMl ,U2 SIN(A)SIN 2 ( B )  - DM SIN(A)COS(B)SIN(B) 
2’ 2 

+ DMl ,U1 

+ DM2.U1 S I N ( A ) C O S ~ ( B )  + D~ 2 3  ,u COS(A)COS(B))DEL(U3) 

- (-DMl, P2 S I N ( A ) S I N  2 (B) - DM S IN(A)C~S(B)S IN(B)  

SIN(A)COS(B)SIN(B) + DM COS(A)SIN(B) 
1 ’  3 

2’ 2 
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+ DMl ,P1 
SIN(A)COS(B)SIN(B) + DM COS(A)SIN(B) 

1 ’  3 

” DM2,P1 S I N ( A ) C O S z ( B )  + DM 2 ’  3 

- (DMl ,U1 SIN’(B) + D~ , u  COS(B)SIN(B) + DM ,u  COS(B)SIN(B) 

C O S ( A ) C O S ( B ) ) D E L ( P 3 )  

2 1  1 2  

c o s 2 ( B ) ) D E L ( u 2 )  - (DMl ,pl SIN (B) + DM 
2 

+ DM2,U2 
COS(B)SIN(B) 

2’ 1 

+ DMl ’P2  

- (-DMl ,U2 COS(A)SIN2(B) - DM ,u 

+ DMl ,U1 

+ DM2,U1 C O S ( A ) C O S 2 ( B )  - DM ,u 2 3  

- (-DMl  ,P2 

COS(B)SIN(B) + DM ,p COS2(B))DEL(P2) 
2 2  

C O S ( A ) C O S ( B ) S I N ( B )  
2 2  

COS(A)COS(B)SIN(B) - DM SIN(A)SIN(B) 
1 ’  3 

SIN(A)COS(B))DEL(U~) 

COS(A)COS(B)SIN(B) COS(A)SIN ( B )  - DM p 2 
2’ 2 

- DMl ,P3 SIN(A)SIN(B) 

SIN(A)COS(B))DEL(P~) - SM 
2”3 

+ DMl ,P1 
COS(A)COS(B)SIN(B) 

+ DM2,P1 C O S ( A ) C O S ~ ( B )  - D~ SIN(B) 
1 

TM -(-DM , c  3 SIN(A)SIN(B) + DM SIN(A)COS(B) 
2 K  1 ’  K 

+ O M 3 , c K   C O S ( A ) ) D E L ( C K )  - (DM ,U 
S I N ~ ( A ) S I N ~ ( B )  

2 2  

- DM2,U1 

- ’M3,U2 COS(A)SIN(A)SIN(B) - D ~ ~ , ~ ~  

SIN~(A)COS(B)SIN(B) - D~ SIN~(A)COS(B)SIN(B) 
1 ’  2 

COS(A)SIN(A)SIN(B) 
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+ DMl ’U1 
S I N ~ ( A ) C O S ~ W  + DM u COS(A)SIN(A)COS(B) 

3’ 1 

+ D  C O S ( A ) S I N ( A ) C O S ( B )  + DM ,u C O S z ( A ) ) D E L ( U 3 )  
M1 J 3  3 3  

- (DM2,P2 SIN2(A)SIN2(B) - DM ,p SIN~(A)COS(B)SIN(B) 
2 1  

- DMl ’P2 SIN~(A)COS(B)SIN(B) - DM 3’ 2 
COS(A)SIN(A)SIN(B) 

COS(A)SIN(A)SIN(B) + DM ,p SIN~(A)COS~(B) - D ~ 2 , ~ 3  1 1  

+ DM3’P, 
C O S ( A ) S I N ( A ) C O S ( B )  + DM COS(A)SIN(A)COS(B) 

1’ 3 

COS ( A ) ) D E L ( P 3 )  - ( - D ~  ,u 2 
+ DM3yP3 2 1  SIN(A)SIN~(B)  

- DM2,U2 SIN(A)COS(B)SIN(B) + DM SIN(A)COS(B)SIN(B) 
1 ’  1 

+ D ~ 3 , ~ 1  
COS(A)SIN(B) + DM SIN(A)COS~(B) 

1 ’  2 

+ DM3,U2 C O S ( A ) C O S ( B ) ) D E L ( U 2 )  - ( - D M  2’ 1 SIN(A)SIN‘(B) 

- ’M2,P2 SIN(A)COS(B)SIN(B) + DM SIN(A)COS(B)SIN(B) 
1 ’  1 

+ DM3’P1 
COS(A)SIN(B) + DM 

1’ 2 

- DM2,U1 COS(A)SIN(A)COS(B)SIN(B) 

- DMl ,U2 COS(A)SIN(A)COS(B)SIN(B) + DM S IN~(A)S IN(B)  
2’ 3 

- D ~ 3 , ~ 2  COS~(A)SIN(B)  + D~ 1 ’  1 COS(A)SIN(A)COS~(B) 

- DMl ,U3 S I N ~ ( A ) C O S ( B )  I + oM 3’  1 C O S ~ ( A ) C O S ( B )  
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- DM2,P1 COS(A)SIN(A)COS(B)SIN(B) 

- DMl ’P2 COS(A)SIN(A)COS(B)SIN(B) + DM SIN~(A)SIN(B) 
2’ 3 

- D ~ 3 , ~ 2  COS~(A)SIN(B) + D~ COS(A)SIN(A)COS~(B) 
1 ’  1 

- D ~ l  3 ~ 3  SIN2(A)COS(B) + DM 3’ 1 C O S ~ ( A ) C O S ( B )  

- DM3’P3 COS(A)SIN(A))DEL(P~) + sM2 SIN(A)SIN(B) 

SIN(A)COS(B) - d  d 
- ’Ml COS(A)  + J3,3(“ dT P 3 )  + J3,2(” dT P2)  

- PZ(J1’3P3 + J1,2p2 + plJ1,l) 

Special  Forms  of  the  Moment  Equation 

As in the case of  the  force  equations,  the  investigator  sometimes  wishes  to  modify  the  moment 
equations  to  determine  how  the  vehicle will respond if the  motion is restricted  in  some  way.  For  the 
case  of zero  sideslip, MACSYMA goes  through  the  equations,  makes  the  appropriate  substitutions, 
and  displays  the  modified  results.  The  zero  sideslip  condition  requires  that SIN(B) = 0 and 
COS(B) = 1. The  substitution  and  display  statements  required  to  implement  this  assumption  and 
the  modified  moment  equations  assume  the  following  form: 

(C33)  FOR 1:1 THRU 3 DO 
TM[I]:SUBST([SIN(B)=O,COS(B)=l],TM[I])$ 

(C34) FOR 1:1 THRU 3 DO DISPLAY(TM[I])$ 

TM1 = -(DM c COS(A)  - DM c SIN(A))DEL(C~) 
1 ’  K 3’ K 
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+ DM1 'P1 C O S ( A ) S I N ( A )  + DM COS~(AI)DEL(P,) - (oM COS ( A )  
1 '  3 1 '  2 

- DM3,U* .;?(A).)DEL(u~) - (DM1 'P2  - D M 3 y P 2   S I N ( A ) ) D E L ( P 2 )  

- (DM3yU3 s1N2(A) - DM3,U1 C O S ( A ) S I N ( A )  - DM1 ,u3 C O S ( A ) S I N ( A )  

+ DMl 'U1 C O S ~ ( A ) ) D E L ( U ~ )  - ( D ~  S I N  2 ( A )  - DM COS(A)SIN(A) 
3 '  3 3 '  1 

- DM1 'P3 C O S ( A ) S I N ( A )  + DM C O S ~ ( A ) ) D E L ( P , )  + s SIN(A) 
1 '  1 M3 
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SIN (A) - DM u 2 
- (-OMl ,U3 3’  3  COS(A)SIN(A) + D,,, 1 ’  1 COS(A)SIN(A) 

+ D ~ 3 , ~ 1  COS~(A))DEL(U~) - ( - D ~  SIN 2 (A) - DM p COS(A)SIN(A) 
1 ’  3  3’ 3 

+ DM1 ’ P I  
COS(A)SIN(A) + DM C O S ~ ( A ) ) D E L ( P ~ )  - sM sIrl(A) 

3 ’  1 1 

In  addition  to  the  zero sideslip condition,  the  investigator  frequently  wishes  to  determine 
vehicle response  when  the angle of attack is limited to small values. For this  condition MACSYMA 
would  implement  the  assumption  that  SIN(A) = A.  Moreover,  if the angle of  attack were suffi- 
ciently  small,  the  program  would  request MACSYMA to  make  the  additional  substitution 
COS(A) = 1. 

In this case, the  required  substitution  and  display  statements give rise to the  following rnodi- 
fied moment  equations: 

(C35)  FOR 1:l THRU 3 DO TM[I]:SUBST([SIN(A)=A,COS(A)=l],TM~I])$ 

(C36) FOR 1: l  THRU 3 DO DISPLAY(TM[I])$ 



R 

TM 3 = - ( D  A + 'M3,CK )DEL(CK) - (DM U A 2 + DM3,U1 A 
M1 "K 1 '  1 

A + D  2 
+ DMl ,U3 M 3 '  U 3 )DEL(U3)  - ('M1,P1 A + DM3,P1 A + DMl ,P3 A 

- p2(J1  '3'3 + J 1  '2'2 + 'lJl ' 1 )  

Examination  of  these  equations reveals the  existence of terms  such as A ' .  If it is assumed that 
second-order  terms in A are  negligible, a program statement  instructing MACSYMA to  make the 
substitution A 2  = 0 would  simplify  the  moment  equations  as  follows: 

(C37)  FOR 1:1 THRU 3 DO 
TM[I]:SUBST([A**2=O],TM[I])$ 

(C39)  FOR 1:1 THRU 3 DO DISPLAY(TM[I])$ 
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+ DMl ’U3 )DEL(U3)  - (-DM  3’ p  3 A + DM, ,P1 A + DM 1 ’  p  3 lDEL(‘3) 

lDEL(‘3) - DM U DEL(U2)  - DM2, p2  DEL(P2) - (DM 
2’  2 2 ’  1 

TM = -(DM 3 1 ’  K A + DM3,CK )DEL(CK) - (DM 3 ’  U 1 A + DMl ,U3 A 

- (-DM3,U3 A + DMl ,U, A + DM3,U1 - ( - D M  3 ’  p  3 A + DMl ,P1 A 

+ D ~ 3 , ~ 1  ) D E L ( P ~ )  - s A + J ~ , ~ ( - -  d p3)  - sM d 
M1 dT 3 + ’3,2(d; ‘2) 
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- p2(J1  ,3 3 1,2'2 + 'lJl '1) P + J  

An additional  simplification  is possible if the  assumption  that  angular  velocity  perturbations 
are negligible is a valid one.  Implementation  of  the  assumption  that DEL(Pi)  = 0 yields  the  follow- 
ing  greatly  simplified  equations: 

(C40) FOR I : 1 THRU 3 DO FOR J :  1 THRU 3 DO 
TM[I]:SUBST(  [DEL(P[J])=O],TM[I])$ 

(C41) FOR 1:1 THRU 3 DO DISPLAY(TM[I])$ 
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- p2(Jl ,3‘3 + J1 ,2‘2 + ‘lJl ,1) 

Thrust  Moments 

As indicated  previously,  the  thrust  moments TMi appearing  on  the  left-hand  side of these  equa- 
tions  are  the  resultant  of  the  moments  produced  by a number  of  thrust  generating  systems.  Equa- 
tions ( 1  3) relate the  thrust  axes  coordinates X,i to  the  coordinate  system Yni, which  has  the  same 
origin  as the  thrust  axes  but is parallel to  the  body  axes  systems. 

To facilitate  the  formulation,  equations (13) are  entered  here. 

(Cl) Y[1  ,N]:X[l ,N]*COS(K[N])*COS(P[N])$ 

(C2) Y[2,N]:  X[l  ,N]*COS(  K[N])*SIN(  P[N])$ 

The  point  of  application  of  the  nth  thrust  vector  relative  to  the  body  axes  system,  with  origin 
at  the  center  of  gravity,  has  components  (L,  ,n.L2,n,L3,n).  The  components of the  nth  thrust  vector 
in this  coordinate  system  are given by  equations (14). The  product of the  position  matrix  with  ele- 
ments ( L l  ,n,Lz,n,L3,n)  and  a  column  vector  of  thrust  components  can  be  processed as follows. 

First  enter  the  (3.3)  position  matrix,  element  by  element,  as  requested  by MACSYMA. Next 
enter  the  (3.1 ) column  vector  of  thrust  components  in  the  same  manner. When the  matrices  are 
entered,  the  displayed  form  of  each  matrix  assumes  the  conventional  textbook  form 

(C4) ENTERMATRIX(3,3); 

ROW 1 COLUMN 1 0; 

ROW 1 COLUMN 2 -L[3,N]; 

ROW 1 COLUMN 3 L[2,N]; 

ROW 2 COLUMN 1 L[3,N]; 

ROW 2 COLUMN 2 0; 

ROW 2 COLUMN 3 -LC1 ,N] ; 

ROW 3 COLUMN 1 - L [ 2  ,N] ; 

ROW 3 COLUMN 2 LC1 ,N]; 

ROW 3 COLUMN 3 0; 
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MATRIX-ENTERED 
r o  -L3,N  L2,N 1 r 

( D 4 )  1 L3,N 0 -L1 ,N ] 
1 -L2,N L1 ,N 0 1  1 

( C 5 )   E N T E R M A T R I X ( 3 , l ) ;  

ROW 1 COLUMN 1 T[N]*DIFF(Y[ l   ,N ] ,X [ l   ,N ] ) ;  

ROW 2 COLUMN 1 T[N]*DIFF(Y[2,N] ,X[ l   ,N] ) ;  

ROW 3 COLUMN 1 T[N]*D1FF(Y[3,N],X[lyN]); 

By requesting  the  system to multiply  these  two  matrices,  the  following  product  matrix is 
obtained: 

In order  to  express  this  column  vector of thrust  moments in  conventional  functional  form,  the 
following  two  programming  steps  arc  requi~ 

( C 7 )  FOR I :  1 THRU 3 DO 

(C8)   FOR I :  1 THRU 3 DO 

TM1 = -L3 ,N  TN  COS(  

red : 

ROW[I ] :F IRST(ROW(  (D6) ,1 ) ) ;  

(TMCI]:ROW[I][l],DISPLAY(TM[I]))$ 

K N )   S I N ( P N )  - L2,N  TN 

TM2 = L3,N TN COS(KN)  COS(PN) + L1 ,N TN S I N ( K N )  

TM3 = L1 ,N TN  CoS(KN) SIN(PN) - L2,N T N COS(  KN)  COS(PN) 
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These  equations give the  moments  produced  by  the  nth  thrust  vector. When the  number  of 
thrust  generating  systems is known,  these  equations  can  be  summed  on  n  to  obtain  the  total  thrust 
moments. 

Spatial  Orientation in Terms of the Direction  Cosines 

The  differential  equations  for  the  direction  cosines  can  be  obtained  by  first  entering  a (3 , l )  
column  vector  of  direction  cosines,  with  elements Dl1 , D l 2 ,  and Dl,, where I can  assume  the va!ues 
1,2,3,  and  by  premultiplying  this  vector  by  the  angular  velocity  matrix.  This op5r:tion isAequivalent 
to  the  vector  cross  product of the  angular  velocity  vector  and  the  unit  vectors I ,  J, and K .  The  pro- 
gramming steps and  the  displayed  output  are 

(c1 

ROW 

) ENTERMATRIX( 3,1 ) ; 

1 COLUMN 1 D[I,l]; 

ROW 2 COLUMN 1 D[I,2]; 

ROW 3 COLUMN 1 D[I,3]; 

MATRIX-ENTERED 

(Dl ) 

(C2)  ENTERMATRIX(3,3); 

ROW 1 COLUMN 1 

ROW 1 COLUMN 2 

ROW 1 COLUMN 3 

ROW 2 COLUMN 1 

ROW 2 COLUMN 2 

ROW 2 COLUMN 3 

ROW 3 COLUMN 1 

ROW 3 COLUMN 2 

c [ DI,l 3 
E DI,2 3 
1 DI,3 ] 

ROW 3 COLUMN 3 0; 
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I 

MATRIX-ENTERED 

(D2) 

The  product of these  two  matrices is 

(C3) (D2). ( D l  1; 

L 

c '3 DI,l - '1 DI,3 ' 1 
p1 D L 2  - p2 DI,l 1 1 

The individual terms of this  column  vector  can  be  evaluated  for 1 = 1,2,3 by  executing  the fol- 
lowing  program  statement: 

(C4) FOR I : 1 THRU 3 DO FOR J: 1 THRU 3 DO 
EV(C[I,J]:ROW((D3),J))$ 

The  evaluated  terms  can be printed  out by  using the  now familiar  display statement 

(C5)  FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO DISPLAY(C[I,J])$ 

C =[D  P - D  P I  C =[P D - P  D ] 
1,l [ 1,3 2 1,2 31 2,3 [ 1 2,2 2 2,1] 

C =[D P - P  D ] 
1,2 [ 1,l 3 1 1,31 

C = [ P  D - D  P ]  
1,3 [ 1 1,2 1,l 21 

C =[P D - P  D 1 
3,3 [ 1 3,2 2 3,11 

C =[D P - P  D 1 
2,2 [ 2,l 3 1 2,31 
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The  dependence of the  direction  cosines  on  the  indices I and J and  the  time T can be shown by 
using the  DEPENDENCIES  statement.  The use of  this  statement  facilitates  the  formulation  of  the 
differential  coefficients 

(C6)  DEPENDENCIES(D(I,J,T))$ 

It  only  remains to  request  that  the  differential  coefficients  of  the  direction  cosines DCIJ with 
respect to  the  time T be added to  the  coefficients C ~ J  and  displayed  as  follows: 

(C7) FOR I : ]  THRLl 3  DO FOR J:1 THRU 3  DO 
DC[I,J]:C[I,J]+DIFF(D[I,J],T)$ 

(C8) FOR 1:1 THRU 3  DO FOR J:l THRU 3  DO DISPLAY(DC[I,J])$ 

DC =[D P - P  D ] + - - 0  d = O  
2,2 [ 2,l  3 1 2,3] dT 2,2 

DC =[P D - P  D ] + - - D  d = O  
2,3 [ 1 2,2  2  2,11 dT 2,3 

DC  =[P  D - P  D ] + - - D  d = O  
3,l [ 2  3,3  3  3,2] dT 3,l 

DC =[P D - P  D ] + - - 0  d = D  
3,2 [ 3 3,l 1 3,31 dT 3,2 

DC =[P D - P  D ] + - - D  d = O  
3,3 [ 1 3,2  2  3,1] dT 3,3 
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This  concludes  the  formulation  of  the  simplified  aeronautical  model  considered.  The  formula- 
tion gave rise to  18 equations: 3 force  equations; 3 moment  equations; 9 direction  cosine  equations 
to determine  the  spatial  orientation of the vehicle;  and 3 equations to determine  the  geographical 
location  of  the vehicle  relative to an Earth-fixed  reference  frame. I t  is seen that  the  technique  of 
symbolic  mathematical  computation,  as  implemented  by  the MACSYMA system. can be used to 
facilitate  the  formulation  of  complex  mathematical  models of physical  systems  and  reduce the 
errors  to  which  human  operators  are  prone.  The  versatility  and  simplicity  of  the  system  make  it 
attractive to programmers  and  nonprogrammers  alike.  Moreover,  as  already  noted,  the  capability of 
working  interactively  enhances  the  utility  of  the  system  by  permitting  the  user t o  modify  the  for- 
mulation  as  he  proceeds. 

Ames  Research  Center 
National  Aeronautics  and  Space  Administration 

Moffett  Field,  California  94035,  January 12,  1979 
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