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ABSTRACT

Relations for the asperity-contact time fraction during elastohydro-
dynamic lubrication of a ball bearing are presented. The analysis is
based on a two-dimensional random surface model, and actual profile
traces of the bearing surfaces are used as statistical sample records.
The results of the analysis show that transition from 90 percent contact
to 1 percent contact occurs within a dimensionless film thickness range
of approximately four to five. This thickness ratio is several times lar-
ger than reported in the literature where one-dimensional random sur-
face models were used. It is shown that low pass filtering of the statis-
tical records will bring agreement between the present results and those
in the literature.

INTRODUCTION

Elastohydrodynamic lubrication (EHD) is the term used to describe
part of the technology concerning lubrication of concentrated mechanical
contacts. In essence, EHD lubricant film formation depends on the
coupled effects of physical changes in the lubricant, which are caused by
high pressures in the Hertzian contact area, and elastic changes in the
shape of the Hertzian contact area, which affect the pressure distribu-
tion. The high pressures in the EHD contact area act to squeeze out the
lubricant. However, the lubricant becomes thicker (more viscous) with
increasing pressure and resists being squeezed out. The net result is



the formation of a thin lubricant film that is beneficial in preventing
seizure and rapid wear of the contacting parts (refs. 1 to 4). For many
applications the F,HD film thickness is the same order of magnitude as
the surface rms roughness. Experimental measurement of the film
thickness is very difficult because films are so thin. Various methods
that have been used are optical (interferometry), X-ray, and electrical
capacitance and conductance techniques (ref. 5). Of the aforementioned
measurement methods, the capacitance and conductance methods are
most suited to measurement of film thickness in full-scale bearings
(refs. 6 and 7). The conductance method of measurement depends on
having a known relation between film thickness and contact time frac-
tion. The contact time fraction is directly related to the normalized av-
erage voltage observed when a low voltage is applied across the lubri-
cant film.

In 1964, Tallian and his coworkers (ref. 7) formulated a statistical
model of bearing surface roughness and used the model to infer EHD
film thicknesses, based on electrical conductance measurements. Their
results were applicable to the regime of "partial EHD contact," where
the load is shared by the EHD film and the high points or asperities of
the metal surfaces that momentarily interrupt the lubricant film (ref. 8).

By the early 1970's it was generally accepted that asperity contact
must be viewed as a random process (refs. 8 to 14). 1\tost researchers
used stylus traces of the surface to obtain profile statistics for the ran-
dom process models. In 1971, Nayak (ref. 14) explained how Longuct-
Higgens' theory of ocean surfaces (refs. 15 to 17) could be used to model
rough surfaces as two-dimensional, isotropic, Gaussian random pro-
cesses. He showed that significant differences exist between 5urfitcc
statistics and profile statistics and that a naive analysis assuming that
profile statistics may be directly used is erroneous (refs. 1 .1 and 18).
Sidik has extended the theory of Nayak to obtain a model for asperity-
contact time fraction as a function of film thickness in partial EHD con-
tact lubrication (ref. 19). In reference 20, the theory is generalized to
nonisotropic Gaussian surfaces. In reference 21 the computational
methods are developed.

The objective of this paper is to apply the relevant results of two-
dimensional random surface analysis to obtain a relation between
asperity-contact time fraction and average EHD film thickness for a
typical ball bearing and to compare the results with those expressed in
references 6 and 11. Also, recent work by Sayles and Thomas (ref. 22)
is used to correlate the results.

IL
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Asperity-Contact Model

The ball bearing for which this analysis was performed has a 20-
millimeter bore and three 7.15-millimeter- (9/32-in. -) diameter balls.
Three different thrust loads were considered in the analysis of contact
time fraction. Table I gives the calculated Hertzian stresses and con-
tact ellipse dimensions corresponding to the different loads.

Under loaded conditions, assume that the ball and race surfaces are
two-dimensional ergodic Gaussian processes and that within the Hertzian
contact zone the mean planes are parallel and separated by a lubricant
film of thickness h. A cross section of a single ball-race contact is
presented in figure 1. Coordinate x is in the direction of rolling. The
ball surface is denoted by zb(x,y) and the race surface by zr(x,y). The
two processes zb and z  are independent, with mean levels µb = 0

and µr = 0, correlation functions Rb and Rr, and variances ^ and

respectively.
The composite process z = zb + zr is also an ergodic Gaussian

process with mean zero and correlation function R and variance o2,
where

d2R(Tx, ry) bRb (Tx , Ty) + 02Rr (Tx, Ty)	 (1)

With this notation, then (as shown in fig. 2) any metallic contact occur-
rence is represented by the composite surface rising above the level h.

An approximation to the time fraction during which there is metallic
contact anywhere withir, the Hertzian zone will now be derived. Consider
the process z above the x-y plane. At a level h above the reference
plane, pass a cutting plane that will occasionally intersect z. The sets
of points in the reference plane where z (x, y) >_ h are called excursion
sets. Such excursion sets are represented as the crossed areas in fig-
ure 3. Superimposed upon this plane is an elliptical region that repre-
sents the Hertzian contact area. For constant rolling velocity, this el-
liptical region moves to the right at a constant velocity v through the
region bounded by the parallel dashed lines y 1 and y2 . At the termi-
nation of a test period of time T the Hertzian area is at the elliptical
region at the right in figure 3.

If it is assumed that A = h/v is large there will be few excursions
of z above h and, hence, few metallic contacts. The contacts will be
small in area, and the probability of two or more contacts in a small
area is negligible. The contact occurrence is as follows: The dashed
ellipse on the left in figure 3 represents the location of the Hertzian area
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when the contact is first made. The dashed ellipse on the right repre-
sents the location of the Hertzian area when the contact is broken. The
two points P(xM , yM) and P (xB , y B) denote coordinates of the make-
contact and break-contact occurrences. The distance of P(x B ,yB) to the
centerline of the ellipse on the right is termed LB . Thus, contact exists
for a total distance L that is composed of three parts. Two of these
parts are LM and LB ; the third is termed X and is the distance
x  - xB . It is assumed that X is negligible with respect to L M and
LB and the excursions are uniformly distributed with respect to the
y-axis. Also L M and LB are approximately equal. As a result, the
statistical expectation of the contact distance L is

E{L} ! 2E{LM
T 71

2

where -,J/2 is the average length of the Hertzian ellipse. The expected
total contact time E{T *} can be approximated by the product of the av-
erage number of excursions and the average time of contact for each.
Equivalently, E{ T* } can be approximated by the expected number of ex-
cursions per unit area E{X} times the area rolled over, times the av-
erage time of contact for each. If T is large, the rolled-over area is
approximately vTw, so that

E{T*} == E{X}(vTw)r71l	 (3)
\2v

The expected contact time fraction is obtained as

E{Tc } _ E' IT* _ 1%-v E
{X}	 (`i)

T	 2

Thus, E{T e } as a function of A can be calculated directly from a com-
putation ' E {X } as a function of A. The determination of E{X} is
presented next.

Following the method of Nayak (ref. 14), let the following variables
^ i (i -- 1,6) be defined:
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2

41 ^1(x,Y) - a2 z(x+Y)
8x

2

^2 = Yx ,Y) = 
8 z(x,Y)

8x 8y

2

^ 3 # 3(x' Y) =	 2 z(x, Y)	 (5)

Y

^ 4 = Qx ,Y) = z(x,Y)

t5 t 5 (x ,Y) _	 z(x,Y)
ax

	

5 = %(x , Y) =	 Z (x , Y)
8y

The expected number of summits of height 44 within a unit area is

given by the triple integral

f( 4)	
1/2 ,S, 1/2	 3 J .\:^, 	 I1 3 - ^ 2 1 e_(1!2)R del d2 d3

(6)

where the region of integration V is defined by

4 1 ` 0

	

4 3 0 	 (7)

Y3 - 4 2 ? 0

and ,F and 5 by the moments of the power spectral density (see

appendix)
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m40 m  m22 -m 20

M 31 m22 m13 -mil

M22 m13 m04 -m02

-m 20 -m il -m02 m00

M20 m 11

	

S =	 (9)

M il m02

	

Q = (^ V. 2' ^ W t4r l (t l ' t 4' 4 3 ' i 4 )T 	 (10)

Equation (6) is transformed to cylindrical coordinate :, followed by a ro-
tation. The transformation equations are

4 1 
_r - pcos(p
^

^2
sp in rp

=
2

= r+pcos ^P

	

3	

A

i

^4 = Am00

It now becomes evident that the region V describes a semi-infinite Cone,
as shown by the limits of integration on the transformed equation.

	

(^r	 r
_ 	 1	 1	 r2 2	 (1/2^

f (A)	
1 /2 S 112 ^ 3	 /	

2^^ e	 ^ dA dr

^ ^^	 ( ,	 (2 1 
rte' P=O cps

(12)

(11)

t
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A j -m20 -m11 -m02	 1	 A
m1/2 m l/2 m1/2
00	 00	 00

Equation (12) was evaluated numerically on the digital computer. The
expected number of summits per unit area Dsum is given by the in-
tegr nl

Dsum = .- ^.
f(A )d (A )	 (14)

The probability density for summit heights is given by the ratio

	

p*(A) = f(A)	 (15)
Dsum

The expected number of excursions above level A per unit area is ap-
proximated by the product of peaks per unit area and the proportion of
such peaks that exceed the level A.

l^

E{X(A)I ^ DsumJ=A P*(O ck _	 f(4)dt	 (16)
 k=A

This approximation is valid only in the limiting sense as A- ► ^.
Adler and Hasofer (ref. 23) also provide an approximation for the

uperossings of a process z(x, y) over the level A . In terms of the pres-
ent notation, their results are given by the relation
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AISI 1/2 exp _A
2

2r
E{x (n)}	

1P73/202

	 (17)

It is interesting to note that this expression does not involve any fourth-
order moments.

The derivation to this point provides contact time fraction as a func-
tion of h for a single Hertzian contact. Next, the results are applied to
a ball bearing with three balls for three different loads. It is assumed
that at each of the six ball-race contacts the mean film thickness is the
same and that each contact is statistically independent of the others.
Because of the geometry of the balls and the race, however, the nomi-
nal Hertzian areas at the inner and outer race contacts are different.
Table I presents the calculated conditions at these contacts for three dif-
ferent loads. From equation (4) it is evident that L fTc } is simply the
area of the Hertzian contact times EW

Let Tc, in and Tc, out denote the expected contact time fractions
at the inner and outer races for a single ball. Thus . the probability of
no contact on a single ball is 1 - Tc, inTc, out' From the independence
assumption, the probability of no contact on any of the three balls is the
quantity

To = 1 - Tc, ov = (1 - Tc, inTc, out)3	 (18)

Surface Measurements

The first step in determining the expected number of excursions per
unit area is to obtain and analyze surface profile traces from the bear-
ing surfaces. By using these profile traces, the important surface pa-
rameters are computed as outlined in the previous section. As ex-
plained in the appendix, in order to characterize the surface statistics,
one must first obtain profile traces in at least three different direc-
tions. The surfaces of the ball) and race specimens were traced to obtain
records of the surface profile. Several traces in different directions on
the ball surface showed that it was an isotropic surface: the race surface
was nonisotropic.

It was not possible to obtain a sample record on the race surface in
any direction other than the rolling direction and the cross groove di-
rection. In order to obtain the necessary additional traces, a flat speci-
men was prepared by material and finishing methods identical to those

I
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used in making the bearing race. The flat specimen was approximately
2.5 by 5.0 centimeters (1 by 2 in.) with a 0.13- to 0.25-micrometer
(5- to 10-µin.) CIA surface finish. Similarly, a surrogate ball, 14.'3
millimeters (9/16 in.) in diameter with a 0.03- to 0.05-micrometer
(1- to 2-pin.) CLA surface finish, was used to obtain sample ball rec-
ords of sufficient length.

Figures 4 and 5 show the microtopography of the ball and the flat
specimen. Traces to be analyzed were recorded for three different di-
rections on the ball and six different directions on the flat specimen.
Nominally, the traces were taken 45 0 apart for the ball and 180 apart
for the flat specimen. The first trace on the flat specimen was taken
in the direction of the lay of the surface finish. This is the rolling di-
rection for the ball in the race. Five more traces were taken, with the
last trace being at 90 0 to the lay of the surface finish. The traces were
recorded in analog form as an FM signal on magnetic tape. This tape
was sampled at equal intervals and written in digital format on another
tape. The sampling intervals and the number of sampled points, along
with the total sampled length, are presented in table H.

Each of the digitized profile traces was processed by a computer
program that performed the following steps:

Plotted input. - All the plots were examined for faithful reproduc-
tion of the original record and were visually found to be identical.

Moving-average trend removal. - The raw data required detrending
for two reasons. First, the stylus head does not follow a path parallel
to the mean line ofth.^ profile when tracing. This causes a linear trend.
The other reason for detrending was to anticipate the detrending that
occurs naturally in the lubrication process. 'Therefore, it was decided
to remove trends with wavelengths longer than the Hertzian contact.
The moving-average trend remover, which is essentially a high-pass
filter, was effective in removing these trends.

The number of points in the moving average is a function of the sam-
ple interval and the load since the contact ellipse dimensions change with
load. The number of points for each load and each profile are given in
table III.

Normal probability plot. - A simple graphical test for normality is
to plot the sample cumulative distribution function on Gaussian probabil-
ity paper. The plots indicate general agreement with Gaussian distri-
bution (fig. 61.

Estimated spectral moments. - Spectral moments a.-e estimated by
the variance of the derivatives where the derivatives are approximated
by the finite difference method. Table IV presents the estimated mom-
ents for the three load conditions.
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Adding ball moments to flat profile moments. - According to the de-
finitional equatioi. for spectral moments (eq. (A8)), the spectral mom-
ents of a profit-_ of the composite surface are simply the sums of the
appropriate individual surface moments.

Estimating spectral moments by least squares. - The following re-
lations between the two-dimensional moments m ij and the profile mom-
ents mn, 0 are obtained from equation (A8).

m0, B _ m00 = a2	 (19)

m2, 0 = m20 cos t 0 + 2m 11 cos 0 sin 0 + m02 sing 8	 (20)

m4, e 2-- m40 Cos 40 + 4m 31 Cos 30 sin 0 + 6m22 Cos 20 sin 20

+ 4m 13 cos 8 sin 30 + m04 sin 40	 (21)

Equation (19) implies that the best estimator for m 00 is simply the av-

erage of the m0, 0. The results for m00 are 5.97x10-2, 6.41x10-2,

and 5.90x10-2 square micrometer, respectively, for loads of 90, 445,
and 3100 newtons (20, 100, and 700 lbf).

Equation (20) provides one equation for each 0, or a total of seven
equations in three unknowns. For each load the estimates for m20,
m ll , and mpg are given here in a matrix format, emphasizing that
this represents the covariance matrix of (px and cpy in the spectral
density function. The matrices are nearly diagonal, which means that
the distributions of cpx and rpy are effectively uncorrelated. For the
90-newton (20-lbf) load,

	

m20 M 1	 2.39x10-3 3.4x10 -5
(22)

m 11	 m02	
3.4x10-5	 5.73x10-3

For the 445-newton (100-lbf) load,

m 20	 m11	 2.22x10-3	 1.31x10-4
	(23)

	

M 1 m02	 1.31x10-4 5.58x10-3



I 

For the 3400-11CWton (70u-Ihf) lo. ► d,

tn 20	 11111
	

2.17x10-3	 -4.4x10-5
(9.4)

hi ll 	11102 	 -4.4x10-5	 5.66x10-3

F:quation (21) provides one equation for each 0, hence, seven equations
in the five unknowns m40, m :3l , m 22' m13' and m01 . For each load
the estimates of these moments are as follows: For the 90-newton
(20-•lbf) load,

m 10	 m31	 III,)-)	 6.65x10-2	 3.8840 -4 	 1.89x,0-2

tri 31	m '2 2 	 1111 ;3	 3.8840_4
	

1.85)x10 2	 2.14x10 -3 µm-2

m92	 m1:3	 m04	 1.89x10 2	 2.1440
-3 	

7.27x10-2

(25)

For the 445- newton (100-I1)f) load,

r-	 -9 t--

m40	 m:31	 nl,)9 6.61x11)	 2	 :3.13x10 3	1.5:"1x10	 2

3.1;3x10'	 1. °'1:'1x10-`	 4. 39x10 - µm-mn,,,,,	 ttt l . 3:31

111'.)2	 1111:3	 111 04 1..55410-2	 4.39x10
-3

	7.20x10-2

(26)

For the :3100-newton (700-1bf) load,

n),	 111;31	
111.,.,	 6.4!1x10

_v
`	 4.50x10

-.3	 1.51x10-2

11''31	
111 2 ..) 	 m 1 .3	4.50x10-3	 1 51x10 -2	5.33x10-3 µm-2

m 92	 m 1 ,3	m04	 1.51x10 "	 5.33x10
-3 	

7.05x10-2

(27)

k
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RESULTS AND DISCUSSION

The final result of this analysis was obtained by using the moment
estimates for the two-dimensional process to calculate the expected num-
ber of excursions per unit area (eqs. (12) to (16)) for various film thick-
ness ratios. These expectations were then used to obtain the no-contact
time fraction To (eq. (18)). The results are presented in table V.
Curves of no-contact time fraction against film thickness ratio are
plotted in figure 7. The WeW.:tions for these results required some
30 hours of computer timt.

For comparison, values of E{X } were calculated from the spectral
moments in table IV by using the method of Adler and Hasofer (eq. (17)).
Tiie resulting no-contact time fraction for the 90N (20 lb) load is also
plotted in figure 7 for comparison. The spacing between curves for the
445N and 3100N loads was similar, but are not shown on figure 7. The
Adler and Hasofer method gives curves that are shifted toward lower
values of A by an amount approximately equal to 0. 35. The reason for
this difference is unclear. Both methods should be asymptotically
equivalent, and values of A greater than 4 should be sufficiently large
for the asymptotic results to hold. Adler and Hasofer's "uperossings"
seem closer to the required "excursion sets" in the development of
contact time fraction than the approximation based on peak height distri-
bution. Nevertheless both are approximations.

Measurements of the no-contact time fraction by Tallian, et al.
(ref. 7) on a 4-ball apparatus and by Poon and Haines (ref. 12) on a
point contact disc machine are shown in figure 7 for comparison. The
measurements indicate that the no-contact time fraction begins to in-
crease from zero at A z 1 and monotonically increases until there is
100-percent film at A 3.5. By comparison the results of this inves-
H gation show this change in contact time fraction occurring for film
.sicknesses several times larger. Also, the incremental change in
film thickness corresponding to the incremental change from no-contact
to 100-percent contact is smaller.

The theoretical differences in probability distributions for peak
heights of summits on a two-dimensional surface and peak heights on
profile traces along a fixed direction on the surface may partially ac-
count for these differences. However, the recent work of Sayles and
Thomas (ref. 22) provides much more insight. They have shown that the
asperity density and spectral moments are strongly dependent on the
surface sample interval. Their work shows that an order of magnitude
decrease in sample interval causes approximately an order of magni-
tude increase in the second-order moments and two orders of magni-
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tude increase in the fourth-order moments. Also, as the sample inter-
val becomes smaller than 10 µm, the summit density seems to increase
without approaching an asymptote. Therefore, it was decided to com-
pare the present asperity-contact model to several models in the litera-
ture within the framework of effects of asperity summit density and order
of magnitude changes in the spectral moments. Basically these ar,; the
effects of low pass filtering of the surface traces.

The surface traces used for the work in this paper were sampled at
0.31 pm intervals which was sufficient to accurately reproduce the ana-
log traces. It is not practical at this time to filter and reprocess the
original surface traces. However, the effect of filtering can be pro-
duced by using Adler and Hasofer's result with the second-ordc mor. -
ents reduced by one or two orders of magnitude. The result of this pro-
cedure is shown in figure 7. The effect is to bring the To curve closer
to the result generally reported in the literature.

Curves were calculated using the method of Johnson, Greenwood,
and Poon (ref. 11), and Kannel and Snediker (ref. 6) which is based on
an earlier paper by Greenwood (ref. 9). Reference 11	 ,umes that
there are 20,000 summits/cm 2 and reference 6 assume. `0,000 summits/
ern 2 where the assumption was "used to obtain a •ersonable fit with the
experimental results" (ref. 11) which were reported by Tallian (ref. 7)
and Poon and Haines (ref. 12).

Results were also obtained by substituting the values of E{ X I from
table V into Johnson, Greenwood, and Poon's Poisson process model. In
addition, results were obtained using the Kannel and Snediker model but
it is now assumed that there are ^-108 summits/cm 2 . The results were
identical for the two methods and there was exact agreement with the
method of Coy and Sidik near the full film conditions as shown in fig-
ure 7.

From the comparisons presented it is clear that the main reason for
the disparity in results is due to the effects of sample interval which is
equivalent to low pass filtering.

Some comments are needed regarding the usefulness of these curves
as a means of measuring film thickness by the electrical conductance
method. The results presented show the incremental change in film
thickness corresponding to the incremental change from no contact to
100-percent contact to be small. Therefore, the usefulness of the model
is limited to a narrow range of film thickness for any given constant load.
In addition the location of the curves is a strong function of surface sn.mp—
ling interval. At this time, there is no known rational way to choose the
sampling interval consistent with the asperity-contact phenomenon in
elastohydrodynamic lubrication processes.
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CONCLUSIONS

Relations for asperity-contact time fraction as a function of nominal
elastohydrodynamic film thickness have been presented. The calculations
were based on a two-dimensional random surface model. Results were
obtained for a 20-millimeter-bore ball bearing with three 7.15-millimeter
(9/32-in.) balls. Surface traces were obtained by using a profilometer,
and a statistical analysis was performed in v. , hich the profile traces were
used as statistical sample records. The results were compared with
previously reported results based on simple one-dimensional models.
The investigation showed that

1. Using the two-dimensional asperity-contact model, with surface
traces at small sample interval, the no-contact time fraction varied from
almost full contact (90 percent) to almost no contact (1 percent) in the di-
mensionless film thickness range 4 to 5. Full contact occurred at a film
thickness ratio several times larger than commonly reported in the lit-
erature.

2. Choosing larger sample intervals in digitizing surface traces is
the same as low-pass filtering. The effect is to lower the asperity count.
Low-pass filtering of surface traces will shift the no-contact time frac-
tion curves to lower values of film thickness.

3. All the asperity no-contact time fraction results may be corre-
lated on the basis of asperity density counts, which is connected with a
sample interval effect.

4. A rational basis for selection of the surface sampling interval
consistent with the elastohydrodynan-,ic lubrication process does not
exist at the present time.

5. The usefulness of the curves of contact time fraction as a means
of determining film thickness by electrical conductance measurements is
limited to a narrow range of film thickness ratio.
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APPENDIX

The probabilistic behavior of an ergodic Gaussian random surface is
entirely defined by either the correlation function R or the power spec-
tral density (psd) function 3 . They are Fourier transform pairs. A
Gaussian random process z (x, y) is one (') that follows a Gaussian dis-
tribution with mean p and variance 02 and (2) for which, for all finite
n and values of Tx, i and Tye i (i = 1, n), the variables z (x + Tx, i,
y + Tye i ) follow joint multivariate normal distributions. In this report
the correlation function is defined as

	

R(Tx , Ty) = 1 E C(x + Tx, Y+ Ty) - J [Z (X ,Y) - µ]	 (A1)
v2

This function measures the degree of relation between the heights of the
random surface above two points of the reference plane that are a fixed
distance and direction apan.

The ergodic assumption states that the statistics of the process are
not a function of x and y. Therefore, the expectation may be taken in
the ensemble sense as in equation (A1) or as an average over the x-y
plane as follows:

^Tx TY

R (T	 z (x +x, T) = lim 1 1	 1	 Tx, Y + Ty) -	Y Tx-- 02 2Tx 2T  " -T
x

	L
T	 x	 Yy- ao 

	

xC(x, Y) - u] dy dx	 (A2)

The psd is the Fourier transform of R given by

ej (w x , cpy) = 1	 exp Ci(Txcpx + TycpyJ R(Tx, Ty)dTx dTy
(2 ,ir) 2 \_ _^	 -00

(A 3)

Hence, by means of the inverse Fourier transform the correlation func-
tion is obtained.

1
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R ( 'rx , Ty) = I	
1	

exp li('Yox + Ty('y] 41((Px+ (Py )d(px dopy	(A4)
^,. _oo	 -11-00

The correlation function is a characterization of the surface in the
x-y plane$ the psd is a characterization of the surface in the frequency
domain, where (px and coy are frequencies. That is, a random surface
z(x,y) may be thought of as a superposition of many surface waves of dif-
ferent wavelength. Frequencies at which the psd is largest contribute
more terms= frequencies at which it is smallest contribute the least.

Spectral moments..- The interpretation of the psd as a probability
density function leads naturally to considering the moments of that dis-
tribution as descriptors of its shape. These moments, mij , are defined
here as

mid = a1

	

	 cPI (P i QJ (,px , (Py)dcpx dopy	(A 5)
_. J-00

The psd d (x, y), as defined here, is truly a probability density
function. Thus, strictly speaking, the m ij as defined by equation (A5)
should not include the factor a2 . The reason for including it in this way
is so the spectral moments defined herein will correspond to the definition
of spectral moments as presented by Longuet-Higgins and Nayak (refs.
14 to 18). Nayak (ref. 14) has discussed a method of estimating the two-
dimensional moments from a series of one-dimensional profiles obtained
In at least three different directions. This method is explained next.

Relation between surface and vrofile Dower s pectral densities. -
Consider a straight line through the origin in the x-y plane and at an angle
0 to the x-axis. The height of the surface above this line is a one-
dimensional random function of r, the distance from the origin. The
correlation function and psd are defined by

RO (T) - 1 
E 

L 
(r) - J rZ (r + T) - ._!	 (A6)

2
v

and

J ,^
cog (cP) = 1 J	 RO (T)e-i^ T dT	 (A7)

2 n J.
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The moments of the profile spectrum are calculated by

^ad-
M

n, o	 W nQjo ((P )
d

(D
	

(A8)
_00

The moments of profile psd's and the surface psd are related by the
following equation (ref. 14):

n

mn, 8 - ' (k) mn-k, k sinko cosn-ko	 (A9)

k=O

where (k) denotes the number of combinations of n things taken k at
a time.



TABLE I. - HERTZIAN CONTACT CONDITIONS AT DINER AND OUTER

RACES FOR THREE THRUST LOADS

[Width of rolling track is determined by major axis width.]

Race Contact condition Thrust load, N (lbf)

90(20) 445 (100) 3100 (700)

Inner Ma)dmum Hertzian stress, GPa (ksi) 1.28 (185) 2.09 (303) 3.63 (527)
Semimajor axis, cm (in.) 0.0510 (0.0200) 0.0840 (0.0330) 0.1500 (0.0570)
Semiminor axis, cm (in.) 0.0088 (0.0028) 0.0110 (0.0043) 0.0190 (0.0076)

Outer Maximum Hertzian stress, GPa (ksi) 1.13 (164) 1.85 (289) 3.27 (474)
Semimajor axis, cm (in.) 0.0480 (0.0180) 0.0740 (0.0290) 0.1300 (0.0500)
Semiminor axis, cm (in.) 0.0088 (0.0034) 0.0140 (0.0055) 0.0250 (0.005:)

TABLE 11. - DIGITIZATION SAMPLE INTERVALS, NUMBER OF SAMPLE

POINTS, AND TOTAL LENGTH OF SURFACE PROFILE SAMPLED

Trace Profile Sample interval,
A,
µm

Sample points,
N

Sampled length,
cm

1 Ball, 00 0.94 14 220 1.30

2 Ball, 450 .75 32 232 2.40

3 Ball, 900 .71 9 954 .70

4 Flat, 00 0.31 29 388 0.90
5 Flat, 180 25 122 .77

6 Flat, 360 27 492 .84

7 Flat, 540 29 388 .90
8 Flat, 720 29 388 .90
9 Flat, 900 25 122 .77

10 1 Flat, 900 (repeat) 28 440 .87



TABLE III. - TOTAL NUMBER OF SAMPLE POWT8

USED IN COMPUTING MOVING AVERAGE

Trace Pro[iie

1

Thrust load, N (lb)

90 (20) 445 (100) 3100 (700)

1 Btu, d° 3183 3 587 8 183
2 Ball, 450 2711 4 475 7 729
3 Ball, 90° 2857 4 715 8 143

4 Flat, & 8823 10 927 18 875
5 Flat, 180
8 Flat, 380
7 Fiat, 540
8 Flat, 720
9 Flat, 900

10 Flat, 900 (repeat)
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TABLZ V. - DOtZNBDNLESS CONTACT MACTDNB

Load Dimensionless Summits of ftursiae above Dimeasionless contact tractions
IIUn h*ht A level A par

thickness, per square square
centimeter, centimeter,

N lbr A ' f(A) Z(x) Tc, In Tc, out To

90 30 4.35 3118 679.8 0.717 0.643 0.062

90 20 4.40 2440 543.9 .573 .675 .230

90 20 4. CO 1584 345.7 .364 .429 .601

90 20 4.60 1017 217.5 .229 .270 .826

90 30 4.70 647 135.6 .143 .168 .9296

90 20 4.80 407 83.7 .088 .104 .9727

90 20 4.90 254 51.2 .054 .064 .9897

90 20 5.00 157 31.1 .033 .039 .99622

90 20 5.10 96 18.7 .020 .023 .99663

445 100 4.55 1242 267.8 0.771 0.866 0.037

445 100 4.60 994 212.2 .610 .686 .196

445 100 4.70 632 132.2 .380 .428 .587

445 100 4.80 398 81.6 .235 .264 .825

445 100 4.90 248 49.9 .144 .161 .1231

445 100 5.00 153 30.3 .087 .098 .9747

445 100 5.10 93 18.2 .052 .059 .99082

3100 700 4.90 403 82.8 0.727 0.814 0.068

3100 700 4.90 251 50.6 .444 .498 .472

3100 700 5.00 155 30.7 .269 .302 .770

3100 700 5.10 95 18.4 .162 .181 .9149

3100 700 5.20 57 10.9 .096 .108 .9693

3100 700 5.30 34 6.4 .057 1063 .9893
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CURVES OF To VS A FOR 90N l20 bl LOAD USING MODELS IN LITERATURE CITED
A	 ADLER AND HASOFER (REF. 23) WITH SPECTRAL MOMENTS FROM TABLE IV
8	 MOMENTS FROM TABLE N REDUCED BY 10
C	 MOMENTS FROM TABLE TV REDUCED BY 100
D	 JOHNSON, GREENWOOD, AND POOH (REF. 11) (20 ODD summitslcm2)
E	 KANNEL AND SNEDIKER (REF. 61(50 000 summitslcm2)
F	 [JOHNSON, ET AL (REF. III (ED(I FROM TABLE VI

KANNEL AND SNEDIKER (REF. 6)4-108 summitslcm2l

o	 TALLIAN (REF. 7)
o	 POON AND HARK	 ;21

b 1.0
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