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ABSTRACT
 

The design, development, fabrication and testing of a shingle-type terrestrial solar 

of exposed module area at 1 kW/m 2 insolationcell module which produces 98 watts/m 2 

possible to easily incorporate photovoltaicand 610C are reported. These modules make it 

power generation into the sloping roofs of residential or commercial buildings by simply 

nailing the modules to the, plywood roof sheathing. 

This design consists of nineteen series-connected 53 mm diameter solar cells arranged 

in a closely packed hexagon configuration. These cells are individually bonded to the 

embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of ASG 

Monsanto SAFLEX polyvinyl butyral is used as the laminating adhesive.SUNADEX glass. 

RTVII functions as the encapsulant between the underside of the glass superstrate 

and a rear protective sheet of 0.8 mm thick TEXTOLITE. The semi-flexible portion of 

each shingle module is a composite 	laminate construction consisting of outer layers of 

B. F. Goodrich FLEXSEAL and an 	epichlorohydrin closed cell foam core. 

The module design has satisfactorily survived the JPL - defined qualification testing 

and +90°C, a seven day tempera­program which includes 50 thermal 	cycles between -40 

a mechanical integrity test consisting of a bidirectionalture - humidity exposure test and 

intended to simulate loads due to a 45 m/scyclic loading at 2390 Pa (50 lb/ft2 ) which is 

(100 mnh) wind. 
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SECTION 1 

3 SUMMARY 

3 The shingle-type solar cell module shown in Figure 1-1 has been designed and developed 

during the one year period covered by this final report. A total of 50 modules have 
been fabricated for delivery to JPL. Six of these have been subjected to an environ­

-I mental testing program consisting of 50 thermal cycles between -40 to +900C, a one 
- week temperature-humidity exposure, and a 100 cycle bidirectional mechanical integrity 

test to simulate snow and wind loading at 2390 Pa (50 lb/ft2) . This module design sand­
wiches the interconnected solar cells between a sheet of tempered SUNADEX glass on 

I 
3the front surface and a sheet of fiberglass/epoxy on the rear side. The 19 series­

connected solar cells are bonded to the embossed surface of this glass with polyvinyl
 
butyral (PVB) film and the space between the covers is filled with RTVII which functions 
as the primary encapsulant. The semi-flexible portion of each module is a laminate'constructed of B. F. Goodrich FLEXSEAL outer skins and an epichlorohydrin closed 
cell foam core. A two-sided printed wiring board, which is sandwiched within this 
laminate, provides the connection between the ends of the solar cell circuit string and5_ the four output terminals of the module. These terminals overlap, negative on positive, 
and are interconnected with a machine screw/flat washer to produce the shingle instafla-Ition shown in Figure 1-2. 

I 


An average module electrical performance of 5.79 watts was measured at 100 mW/cm2
 

insolation and at 289C using JPL-supplied Terrestrial Secondary Standard No. 025 as
 

the reference. This represents an overall module efficiency of 11.4 percent based on
 

the exposed module area. If this performance is reflected to the calculated Nominal 
Operating Cell Temperature (NOCT) of 610C, the resulting module output yields an3 areal specific power output of 98 watts/m 2 of exposed module area at 100 mW/cm2 

insolation and at the NOCT. 
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SECTION 2 

INTRODUCTION 

The general scope of work under this contract involves the design, development, fabri­

cation and testing of a solar cell module which is suitable for use in place of shingles 

on the sloping roofs of residential or commercial buildings. Modules of this type em­

ploy a semi-flexible substrate which is suitable for mounting on an independent rigid 

surface such as plywood roof sheathing. As specified in the contract statement of work, 

these modules shall be capable of producing an electrical power output of 80 W/m 2 of 

installed module area at a module temperature of 60OC with an insolation of I kW /m 2 . 

The installed weight of these shingle-type modules shall not exceed 250 kg/kW of peak 

power output. As a design goal these modules shall be designed for a service life of 

at least 15 years. An implicit requirement is that the shingle not sustain damage during 

the normal handling associated with installation on a roof. The vulnerability to the 

localized bearing loads associated with walking or kneeling on the installed shingles 

does not constitute a design requirement but will be assessed as part of this develop­

ment effort. The program is organized into seven major tasks as given below. 

Task-No. Description 

I Substrate Evaluation and Testing 

2 Solar Cell Tray Evaluation and Testing 

3 Module Interconnection and Testing 

4 Shingle Module Design 

5 Fabrication and Acceptance Testing of Modules 

6 Qualification Testing of Modules 

7 Analytical Model of a Zero Depth Solar Photovoltaic 
Concentrator 

During the initial phases of the program, the activities on Tasks 1, 2 and 3 involved 

the investigation of a variety of shingle module implementation approaches. 

Considerable effort was expended in an attempt to develop an approach which used 

methyl methacrylate (MMA) as the sole solar cell encapsulant. This proved to be 
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impractical because the relatively high modulus MMA could not elastically accommodate 

the strains at the specified low temperature extreme of -400C. Attempts to buffer 

the solar cells with a transparent silicone conformal coating prior to embedding within 

MMA also proved to be unsuccessful. 

This activity, as well as the evaluation of various module-to-module interconnection 

concepts, has been reported in the first two quarterly reports published under this 

contract. These results will not be repeated here, but rather the emphasis of this 

final report will be on the design, fabrication, and testing of the tempered glass covered 

shingle module. 

Task 7 was added after the completion of the initial contract effort. The results of 

this additional task activity, which involved the development of an analytical model of 

a zero depth solar photovoltaic concentrator, are reported in Appendix A to this docu­

ment. 

Fifty shingle solar cell modules were delivered to JPL on May 19, 1978. Forty of these 

modules were mounted on a simulated roof structure and have been undergoing out­

door exposure testing at the JPL Field Test Site since October 17, 1978. 
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SECTION 3 

TECHNICAL DISCUSSION 

3.1 DESCRIPTION OF SELECTED DESIGN 

3.1.1 GENERAL DESCRIPTION 

The selected design for the shingle solar cell module is represented by the assembly 

drawing shown in Figure 3-1. This module consists of two basic functional parts: an 

exposed rigid portion which contains the solar cell assembly, and a flexible portion which 

is overlapped by the higher courses of the roof installation. The design of the shingle 

module provides a closely-packed array of 19 series-connected solar cells. A minimum 

separation of 0.5 mm (0.020.inch) is maintained between adjacent cells by assembly tool­

ing which positi6ns the cells prior to bonding to the glass coverplate. The position of the 

four output terminals of the module has been established to permit the connection of the 

negative terminals of one course on the roof directly to the positive terminals of the 

course below. The method of connection, which uses a.machine screw and flat washer, 

is discussed in Section 3.1.6. 

As shown in Sections C-C .and D-D of Figure 3-1, the top substrate FLEXSEAL skin over­

laps, and is bonded to, the glass coverplate to form a weather-tight joint around the 

upper three sides of the hexagon. The bottom skin and printed wiring board are sand­

wiched between the glass coverplate and the bottom fiberglass/epoxy cover to produce. 

a similar seal around these three edges on the bottom. The exposed edges of the glass 

coverplate are sealed with a bead of RTV102 which is applied between the coverplate and 

the bottom fiberglass/epoxy cover as. shown in Section F-F. 

"The key features of this shingle module design are summarized in Table,3-1. The cal­

culated module output of 4.95 watts at the Standard Operating Conditions (SOC) which 

include a calculated NOCT of 610 C, yields an areal specific output of 98 watts/m 2 of ex­

posed module area. This is 23 percent better than the minimum requirement of the con­

tract. The specific weight of the module is 202 kg/kW of peak power output at SOC as 

compared to a maximum specified value of 250 kg/kW. 
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Table 3-1. Key Features of Shingle Module Design 

Parameter Value 
2419.2 cmTotal Solar Cell Area 
2507.0 cmExposed Module Area 

Packing Factor 0;-827 

Electrical Power Output at the Maximum 
Power Point 

At 1 kW/m 2 and 280 C 5.79 Watts* 

At Standard Operating Conditions 4.95 Watts 

Module Weight 1.00 kg* 

* Average of 50 modules delivered 

3.1.2 SUBSTRATE CONFIGURATION 
The semi-flexible substrate portion of the shingle is of laminar construction as shown 

in Figure 3-2. The two outer-skins of this substrate are FLEXSEAL polyester scrim re­

inforced HYPALON. This material is white in color and provides the weather-resistance 

properties required to meet the 15 year service life goals. A center core of -closed cell 

epichldrohydrin foam (Rubatex No. R-473-E) provides a low-density, high-temperature 

resistant filer material to achieve a nearly uniform thickness of the entire surface area 

of the shingle. The substrate also affords protection to the flexible printed wiring board 

which is sandwiched between the bottom skin and the core. This double sided printed 

wiring board, which carries both the positive and negative terminations for the module, 
is made from material identified by GE designation FLGF 0.006 C 2/2 which consists of 

2 oz'/ft 2 copper foil on both sides of a 0.00&inch thick fiberglass/epoxy substrate. This 

copper is etched' away to form the bus strip patterns. The calculated series resistance 

of this copper bus network is the 4.6 m &2at 20 0C, which represents a negligible power 

loss. 

The entire composite substrate is bonded together with the B .F. Goodrich adhesive sys­

tem described in Table 3-2. This contact adhesive and associated primers are tradition­

ally used as part of the FLEXSEAL roofing system. Two different primers have been 

specified depending upon the nature of the surface to be bonded. In either case the 
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primer is applied in a very thin coating-and allowed to dry thoroughly prior to the appli­

cation of the contact adhesive to both surfaces to be joined. The edge sealer (A1436-B) 

is applied to the outer edges of the substrate to seal the exposed foam core material. 

TOP SUBSTRATE (POLYESTER FIBER REINFORCED 
HYPALCN FLEXSEAL) 

SUBSTRATE CORE (RUBATEX EPICHLOROHYDRIN 

FOAM NO. R-473-E) 

ZFLEXIBLE PRINTED CIRCUIT 

BO-OM SUBSTRATE (POLYESTER REINFORCED 
HYPAL.ON FLEXSEAL) 

Figure 3-2. Section Through Shingle Module Substrate 

Table 3-2. Substrate Adhesive System 

Identification No. * Description/Application 

A 1104-B Primer for Non-porous Surfaces 

A 178-B Primer for Porous Surfaces 

CA-1056 Contact Adhesive (all surfaces) 

A 1436-B Edge Sealer 

* B. F. Goodrich Co. 
General Products Division
 
Solon, Ohio 44139
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A load-deflection test was performed on a segment of the substrate consisting of a top 

atd bottom skin of polyester scrim reinforced FLEXSEAL. bonded to a cord of epichloro, 

hydrin foam. The resulting load-deflection curve with. a14. 3 mm (0. 563 inch) diameter 

bearing surface is as given in Figure 3-3. The use of these data in the determination of 

module-to-module interconnection joint contact force will be discussed later. 

3.1.3 SOLAR CELL SELECTION 

A Spectrolab solar cell was. selected -for,use in this module design on the basic of the 

lowest specific cost of the delivered power output. The distribution of the electrical out­

put of the cells 'received from Spectrolab is given in Table 3-3. As measured by Spectre­

lab these cells have an average electrical output of 569 mA at 0Z475 volts when measured 

at 1 kW/m 2 insolation and 28 0 C. A random sample of 66 cells fr6mthis ,goup yielded an 

average performance of 595 mA at 0.475 volts under these same test conditions when mea­

sured by GE using the Large Area Pulse Solar Simulator (LAPSS) with JPL - supplied 

Terrestrial Secondary Standard No. 025 as the reference. 

Scanning electron micrographs of the frbnt and rear contacts of these cells are shown 

in Figures 3-4 and 3-5, respectively. These micrographs clearly reveal the nature of 

the printed contact surface. 

3.1.4 SOLAR CELL INTERCONNECTOR 

The solar cell interconnector shown in Figure 3-6 is fabricated from nominal 50 m (0.002 

inch) thick soft copper foil (Alloy No. 110) which is subsequently solder plated to a 
thickness of 13 to 18gm (0.0005 to 0.0007 inch) on both surfaces. The resistance of 

this interconnector measured between the two "N" joints and the three "PI" joints is 1.67 

m -2 at 25 0C. At 60CC- this series resistance loss amounts to 0.3 percent of the cell maxi­
mum power output. Figure 3-7 shows a typical "N" contact solder-joint which was made 

by reflowing the solder plating-on the iterconneetor with a hand soldering iron. 

3.1.5 MODULE ENCAPUSLATION 
The details of the encapsulation surrounding the solar cell assembly are shown in Figure 

3-8. The solar cells- are individually bonded tothe underside of the glass coverplate 

with disks of Monsanto SAFLEX SR-10 PVB film. This glass coverplate is fabricated from 

3 mm thick ASG SUNADEX low-iron glass (0.01%iron-Qxide content) which is cut to the 

hexagon shape and then thermally tempered to provide the flexudl strength required to 
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Table 3-3. Electrical Performance of Production Solar Cells 
as Measured by Spectrolab 

Range of Quantity of 
Output Current Solar Cells 

Group (mA at 0.475 V) In Group 

510 - 519 69 
520 - 529 95 
530 - 539 108 
540 - 549 115 
550 - 559 120 
560 - 569 .127 
570- 579 164 
580- 589 147 
590- 599" 146 
600 - 609 97 
610 - 619 72 
620 - 629 27 
630- 639 13 

sustain the bearing loads associated with walking or kneeling. The transmission of 

this glass is compared with that of'ASG LO-IRON (0.05% iron-oxide content) in Figure 

3-9. These data do not indicate a clear transmittance advantage associated with the use 

of the SUNADEX glass, but this selection was made because of the embossed surface 

texture of this glass and its influence on the enhanced output of the module as discussed' 

in Section 3.4. 

The primary encapsulation around the solar cells is provided by RTV 11, which is a 

white pourable conformal coating. This dimethyl silicone compound fills the space sur­

rounding the solar cells and interconnectors and bonds the front glass coverplate to the 

rear protective sheet of fiberglass/epoxy. This rear sheet is required to prevent damage 

to the module from sharp objects such as nails which are everpresent during the instal­

lation of a shingle roof. The adhesion of the RTV 11 to both the glass coverplate and the 

rear TEXTOLITE sheet is increased by the use of GE .primer ntamber SS-4044 followed by 

a thin coating-of RTV 108 (10 to 20'percent by weight mixed with heptane). 

3.1.6 MODULE-TO-MODULE INTERCONNECTION 

The module-to-module interconnection is accomplished as shown in Figure 3-10. This 

basic concept relies on the development of high contact pressure under three conical pro­

jections, which -are part of solder plated copper bosses within each mating shingle, to 

achieve a low-resistance, environmental stable connection. 
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(a) Front Contact Interface (b) Front Contact 
With Active Area 

Figure 3-4. Scanning Electron Micrographs of Solar Cell Front Contact 

Figure -. Scanning lectron Mirogr.aph of Solar Cell Back Contact 
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Figure 3-6. Solar Cell Interconnector 

Figure 3-7. Typical "N" Contact Solder Joint 

/ASG SUNAD*.X GLASS (SMOOTH SIDE OUT) 

It ] ITP,
IIIZXTUI No.11637-B (.031 INCH THICK) 

Figure 3-8. Module Encapsulation 
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The two positive terminals of each shingle are provided with these copper bosses which 5 
A 6-32are soldered to the circular pads on the top of the printed circuit board. 

TENNUT, which has been modified by shortening the barrel and removing the prongs, 3 
is centered within each of these positive terminals with an insulating sleeve. Both this 

sleeve and the TEENUT are made captive by bonding to each other and to the copper I 
boss. The TEENUT is thus insulated from the positive terminal by the sleeve and by 

the bottom FLEXSEAL skin under the circuit board. The two negative terminals of 

each module are provided with thinner copper bosses which are soldered to the bottom 

of the printed circuit board at the circular pad mounting locations. Upon assembly, con­

tact pressure is developed between these two overlapping copper bosses by compressing 

the substrate core with a 6-32 flat head machine screw and 16.5 mm (0.650 inch) dia­

meter flat washer. The screw is driven into the TEENUT until the top surface of the £ 
washer is flush with the top surface of the outer FLEXSEAL skin as shown in Figure 

3-11. Under these conditions the 1.8 mm (0.070 inch) thick washer will have developed 5 
a total compressive force of 52 N (see Figure 3-4) or 17.3 N per conical projection. 

This is adequate force to provide a reliable high-pressure, gas-tight contact. The in­

sulating sleeve around the screw thread prevents electrical contact with the negative 

Figure 3-11. Installation of Modue-to-Module Interconnector 
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terminal of the module so that the exposed screw head/washer/TEENUT are electrically 

neutral after installation. This interconnector design concept is also capable of accom­
modating up to 1.8 mm (0.07 inch) of misregistration between the centerlines of over­

lapping terminal bosses. 

3.2 SYSTEM INSTALLATION CONSIDERATIONS 

The shingle modules described above are installed by overlapping in the manner shown 

in Figures 3-12 and 3-13. The four electrical terminals of each module are interconnected 
as previously described using a flat-head machine screw and washer to apply the contact 

force. The shingles are attached to the roof sheathing by nailing through the substrate 
at two places per shingle with ordinary roofing nails as shown In Figure 3-14. The 

module-to-module interconnectors between overlapping layers form a series/parallel 
matrix of interconnected modules, as shown in Figure 3-15, with the current increasing 

as modules are added in the parallel direction across the length of the roof from gable­
to-gable and voltage increasing as modules are added in the series direction along the 

slant height of the roof from eave-to-ridge. At both the positive and negative termin­

ations of each solar cell circuit it is necessary to attach conductors to carry the current 
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MODULE-TO-MODULE
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ROOFING NAIL 
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ROOF BASE3 

Figure 3-13. Exploded View of Shingle Module Installation on Roof 

Figure 3-14. Nailing of Shingle Module to Roof Sheathing 
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--- MOI LE-TO-MODULE INI ERCONNECTOR 

Figure 3-15. Electrical Schematic of Moduls-to-Module Interconnection 

to the central collection point which Is at the ridge of the roof. A negative circuit ter­

mination which is typical of that required at the save of the roof is shown In Figure 

3-16. The connection between the negative terminals of adjacent modules In the first 

activecourse of the roof is made by underlaying a special shingle which contains a built­

in printed circuit bard to make this jumper connection. At every fifth parallel-connected 

module a top is made from this common negative bus by soldering a fiat-conductor cable 

to this special shingle and running this cable under the shingles to the ridge of the roof 

as shown in Figure 3- 17. Jn this way it is possible to limit the current density in the 

common negative bus which s the negative conductor within the shingle modules, and 

control the series resistance losses for the overall installation. Similar terminations are 

required at the ridge of the roof and at electrically common bus connections which may 

be required at intermediate points along the slant height because of requirements to 

provide a specified voltage within the physical constraints imposed by roof dimensions. 

In this latter case modules with opposite polarity for the output terminals are used to 

built-up voltage in the opposite sense as the roof is advanced toward the ridge. 
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The determination of the size for the rectangular roof surface area required for an in­

stallation of these shingle modules is based on the general arrangement given in Figure 

3-18. Using this nomenclature, Wis the required length of the roof measured from 

gable-to-gable and S is the slant height measured from eave-to-ridge. The values of 

these dimensions are given by: 

W = E (3 Np + 1/2) 

and 

S =E(N s +1) cos 301? +T, 

where: 

E = edge dimension of hexagon (mm) 

1 139.7 mm 

Np = number of parallel-connected modules across the length of the roof 

NS= number of series-connected modules along the slant height at the roof 

T = space at ridge required to bus together top terminals (mm) 

= 63.5 mm 

The cross hatched area on Figure 3-18 represents wasted space which detracts from the 

overall packing efficiency of the Installation. For a typical Installation of 1872 modules 

which are arranged as three circuits, each with 26 series connected modules and 24 

parallel-connected modules, the dimension W is 10.128 m. The slant height of the roof 

(S) is 9.621 m since there are three circuits in this direction which yields a value of 

NS = 78 for the installation. Thus, therequiredroof area of 97.44 m2 for this typical 

installation results in an overall area utilization of 0.805, which is defined as the ratio 

of solar cell area to rectangular roof area. In more general terms Figure 3-19 gives this 

area utilization as a function of the number of parallel connected modules and the total 

solar cell area. For smaller installations, these results Indicate the Importance of using 

roof sections which are narrow from gable-to-gable and long from eave-to-ridge. 
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Figure 3-18. Arrangement of Shingle Modules on a Rectangular Roof 

3.3 MODULE FABRICATION 

3.3.1 INTRODUCTION 

The module assembly was begun on February 28, 1978 with the bonding of the 19 cells 

for module Serial No. SM-1 and completed by May 5, 1978 with the encapsulation of 

Serial No. SM-59. During this time several changes In design and process control had 

been instituted to improve the performance and producibility of the shingle modules. 

Table 3-4 summarizes, by serial number, the significant differences of this type which 

are latent within each module. The serial numbers which contain an "A" have been sub­

jected to an autoclave processing step as described In Section 3.3.3. As a consequence 

these modules, which have an unstable solution of air within the PVB, are subject to the 

appearance of bubbles as a result of slight elevations in temperature. Such a condition 

did occur on a few of these modules, notably on serial number SM-10AQ when subjected 

to the thermal cycling test. As reported in Section 3.5.1, a change in maximum power 

output of only 2 percent resulted from the appearance of these bubbles. The serial 

numbers which contain a "Q" have been subjected to the qualification testing program 

as reported in Section 3.5. 
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Table 3-4. Summary of Module Fabrication Differences 

Module 
Serial SAFLEX Autoclave 
Number Type Cycle 

SM-1Q PT-10 No 
-2Q No 
-3 No 
-4Q No 
-5A Yes 
-6Q No 
-7Q No 
-10AQ Yes 
-12A Yes 
-13A PT-10 Yes 
-18A SR-10 Yes 
-18 No 
-19 No 
-20A Yes 
-21 No 
-22Q 
-23 
-24 
-26 
-27 
-28 
-29 
-30 
-31 
-32 
-34 
-35 
-36 
-37-38 

-39 

-41 

-42 


-43 

-44

-45 

-46
 
-47
 
-48 

-49 

-50-51
 
-52
 
-53

-54
 

-55 
-56 
-57
 
-58 
-59 SR-10 No 

Primer on 

Rear Surface 


Of Glass 


RTVIOS 
RTV108 
RTV108 

RTV108 
SS4044 + RTV108 
RTV108 
RTV108 
RTV108 
RTV108
 
SS4044 + RTV108 
SS4044 + RTV108
 
RTV08
 
RTV108 
S84044 + RTV108 
RTV108 
SS4044 + RTV108 

SS4044 + RTV108 


Rework
 
To Replace 
Broken Ceals
 

No
 
No
 
Yes (1)
 
No
 
Yes (3)
 
No
 

No
 
Yes (1)
 
Yes (3)
 
No
 

7 
* 

9 
No
 
No 
No
 
Yes (1) 
No
No

No
 
Yes (1)
 
Yes (1) 

No
 

No
 
Yes (1) 
No
 

No 

I 
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was made with serial number SM-17A.A change in SAFLEX type from PT-10 to SR-10 

The reasons for this change are discussed in Section 3.3.3. The use of a two step 

priming system on the rear side of the glass coverplate was instituted as indicated in 

the table to enhance the adhesion of the RTV11 pottant. A rework procedure to replace 

cracked solar cells which resulted from the PVB bonding operation was performed on 

ten of the modules as indicated in parentheses. With the exception of serial number 

SM-3 all of these replacement cells were bonded to the glass coverplate with RTV655. 

In the former case the replacement cell was laminated to the glass coverplate with 

SAFLEX SR-10 using a vacuum bag to apply pressure while locally heating the cell by 

passing a forward current of approximately 25 amperes through the cell. This rework 

method proved to be unsatisfactory due to the nonuniform temperature distribution over 

the surface of the cell with hot spots at the "N" contact solder joints. 

3.3.2 SOLAR CELL SOLDERING 

Soldering of the interconnector to the solar cell "N" contacts is the first step in the 

assembly 	sequence. The solder-plated copper interconnector is performed with the strain 

contact soldering operation withrelief loop prior to this step. Figure 3-20 shows the "N" 
a soldering fixture.the solar cell and interconnector held in the correct relative position In 

During process development, joints were made at several soldering iron temperatures in 

order to determine the effect of this parameter on the resulting contact pull strength. 

Table 3-5 summarizes the results of these measurements for a 45 degree pull angle be­

tween the cell and the interconnector strip. A soldering iron temperature of 3100C (590 0F) 

In all cases joint failure occurred by a separationwas found to give satisfactory results. 

of the cell metalization from the silicon wafer. 

Following "N" contact soldering the cells are cleaned untrasonically to remove traces of 

flux. 

Soldering of the "P" contact at three places per cell occurs following bonding of the 19­

cell array to the glass coverplate. No positioning fixture 	is required for this operation 

since the cells are securely bonded to the glass with the 	PVB film. 
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Figure 3-20. Soldering of Solar Cell "N" Contacts 

Table 3-5. 450 Contact Pull Test Results 

Soldering 
Iron 

Solder Temperature 
Type (OF) 

Sn 60 700 

Sn 60 700 

Sn 62 640'. 

Sn 62 640 

Sn 62 590 

Sn 62 590 

Sn 62 590 

Sn 62 590 

Sn 62 590 

"N" Contact 
Pull Strength 

(grams) 

397 

397 

1049 


368 


1049 

822 

709 

737 

567 


on Spectrolab Calls 

Remarks 

20%Ag/Si separation 

80%Ag/Si separation 

30%Ag/Si separation 

100%Ag/Si separation 

Cell broke 

Interconnect broke at hole 

80%Ag/Si separation 

100%Ag/Si separation 

100%Ag/Si separation 

.7.riORIGOViM.,-3-22
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IThe bonding of the solar cells to the embossed surface of the tempered glass coverplate 

U
 

IA 


3.3.3 SOLAR CELL BONDING 

is the next assembly step. The 19 cells are loaded in the module bonding fixture shown 

in Figure -21. This fixture, which has a pocket for each cell, controls the linear 

positioning of each cell within the module as well as the angular orientation of each cell. 

series of holes drilled into an internal cavity permits the later application of vacuum 

to the space between the fixture and the glass coverplate. A thermocouple has been 

embedded within the fixture to enable monitoring of plate temperature during the sub­

sequent bonding operation. 

Two disks of 1.75-inch diameter SAFLEX SR-10 polyvinyl butyral are next centered on 

the top of each solar cell. One surface of this product is grooved to enhance the escape 

of air during vacuum lamination. This surface of each of the two disks Is placed in con­

tact with the glass or solar cell. 

A glass coverplate is positioned on top of the cells and PVB disks and taped to the bond­

ing fixture around the perimeter with high temperature Teflon tape. This fixture Is then 

placed on a preheated hot plate as shown In Figure 3-22(a). An insulation blanket is 

placed on top of the glass to reduce heat loss from the coverplate surface as shown In 

Figure 3-22(b). A thermocouple is placed at the center of the module between the glass 

coverplate and insulation blanket. The Insulation blanket reduces the temperature dif­
ference between the fixture and glass coverplate and produces a more uniform flow-out 

of the PVB from cell-to-cell across the module. 

Table 3-6 gives the temperature-vacuum profile which has been developed to give satis­

factory bonds with two disks of SAFLEX 5R-10 as described above. Figure 2-23 shows 

front and rear views of the glass coverplate for Module Serial No. SM-2 following cell 

bonding and soldering of the interconnectors to the "P"1 contacts. 

Initial attempts to bond cells to the glass coverplate with a single disk of 2.00-inch dia­
meter SAFLEX PT-10 proved to be unsuccessful in terms of the repeatability of obtaining 

a void-free lamination. The thickness of the PVB was doubled by adding another 2.00­

inch disk of PT-10 to each cell. This approach was successful in eliminating the large area 

voids in the lamination, but bubbles continued to be a problem. Attempts were made to 

dissolve these bubbles by subjecting the coverplate assembli6s to an autoclave cycle which 
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Figure 3-21. Loading of Bonding Fixture 
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Figure 3-22. Solar Cell Bonding Operation 
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Table 3-6. Typical Cell Bonding Cycle 

Elapsed Fixture Coverplate"
 
Time Temp. Temp. vacuum
minutes) (OF) (OF) (in. Hg Gauge) Remarks 

0 75 75 0 Place on hot plate 
6 150 110 5 I 

14 200 170 10 

16 220 190 20 

22 250 225 27 
38 285 266 0 Vent for 2 minutes 
40 285 268 27 
84 0 Remove from hot plate and cool 3 

consisted of a pressure of 180 psi at 3000F. The coverplates were maintained at this 3 
temperature and pressure for at least 30 minutes before the temperature was allowed to 
decrease. The pressure was maintained until the overplate temperature was below 1200F. 
This cycle was successful in eliminating entrapped bubles, but in some cases these 5 
bubbles reappeared following overnight soak at ambient conditions. Some yellowing of the 
PVB where it runs out around the circumference of the cells was also a result of the auto- 3 
clave cycle. Since this autoclave step is an expensive addition to the processing sequence, 
efforts were made to obtain bubble-free bonds directly. To this end, the change to SAFLEX 3 
SR-10, which has more plasticizer and better flow characteristics at a lower temper­
ature, has resulted in satisfactory bonds without the need for an autoclave processing 
step. Experiments with the diameter of the SR-10 disks, which included 2.00, 1.87, and 
1.75 inch diameters, has led to the selection of two 1.75-inch diameter disks. This 

selection provides nearly bubble-free bonds with limited run-out around the cell cir­
cumference and virtually no underrun. 

3.3.4 SUBSTRATE LAMINATION 
The lamination of the semi-flexible substrate, which is the next step in the processing 3 
sequences, involving bonding the outer FLEXSKAL skins to the epichlorohydrin foam core 
and to the two-sided flexible printed circuit board. The B.F. Goodrich FLEXSEAL con- 3 
tact adhesive system, which was selected for this application, has been found to give 

I 
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(a) Front 

(b) Back 

Figure 3-23. Coverplate /Solar Cell Assembly for Module Serial No. SM-2
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satisfactory results if care is exercised when the initial contact is made between the ad­
hesive-coated surfaces. Waxed paper is slipped between these surfaces so that proper 

alignment can be achieved before contact is made. This, paper interlayer is then gradu­

ally pulled out while the surfaces are rolled together along a line to minimize the amount 

of entrapped air pockets. 

The flexible printed circuit board substrate material has been made large enough to 
cover the entire area of the foam core. This change was found necessary to reduce the 
formation of bubbles under the FLEXSEAL skins when the module is exposed to elevated3 

temperatures. 

3.3.5 MODULE ENCAPSULATION I 
The encapsulation of the module and the bonding of the rear TEXTOLITE cover are both 
accomplished using RTV11. The reat side of the glass coverplate and solar cells are 3 
primed with SS-4044 followed by a spray coating of RTV108 (10 to 20% by weight mixed 
with heptane). The RTV11 is mixed, dearated and poured over the rear surface of the 
glass coverplate assembly. The material is spread over the entire glass surface until the 
height of the silicone just covers the interconnector strain relief loops. The spread RTV- 3 
11 is aZain deaerated in a large vacuum enclosure to remove entrapped bubbles before 
the rear TEXTOLITE cover, which has also been previously primed with SS-4044 and 3 
RTV108, is attached. 

3.4 MODULE ELECTRICAL PERFORMANCE I 
Table 3-7 summarizes the electrical performance measurements made using the Large Area 
Pulsed Solar Simulator (LAPSS) with JPL-supplled Terrestrial Secondary Standard No. 3 
025 as the reference cell. In the case of the qualification modules which are designated 
by a 'IQ"following the serial number, the electrical performance reported in this table 3 
represents the final measurement made after all environmental exposures. Figure 3-24 
is an example of a typical I-V characteristic as obtained using the LAPSS. The mean 
performance of these modules is 5.79 watts at the maximum power point with a standard 
deviation of 0.169 watts. Module Serial Number SM-7Q was eliminated from the average 
since a cracked cell within this module results in a significant degradation in performance. S 

This average module performance reflects a net enhancement of 7.8 percent compared to I 
the measured average bare cell performance which is 282.6 mW per cell or 5.37 watts 
per module. As a further verification of this result, module Serial Number SM-12 was 3 
3-28 3 



Table 3-7. Summary of Module Electrical Performance Measurements 
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Figure 3-24. I-V Characteristic for Module Serial Number SM-4 ­

built using solar cells which had been previously serialized and illuminated to determine 

The use of these cells permits the accurate deter­the I-V characteristic for each cell. 


mination of the absolute gain due to covering and encapsulation.
 

Table 3-8 gives the voltage reading for each cell at four current values which bracket 

of the values for all 19 cells at each ofthe maximum power point of the cells. The sum 

these four currents yields the composite module characteristic with no coverplate. The U 
at a maximum power pointoverall module performance with bare cells is 5.56 Watts 

This equates to an average bare cell efficiency of 13.3 percentvoltage of 9.25 Volts. 2 
I.based on a nominal total solar cell area of 419.2 cm 

glassFollowing the bonding of these cells to the embossed surface of an ASG SUNADEX 

coverplate with PVB film, the I-V characteristic of the entire module was measured be­

fore encapsulation with RTV11. Figure 3-25 shows this characteristic both before and 

Prior to encapsulation the enhance­after encapsulation with the white silicone pottant. 

ment in maximum power output Is calculated to be 2.3 percent based on the composite 
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Table 3-8. Performance of individual Solar Cells In Module Serial No. SM-12* 

cell Voltage at Specified Current (Volts)cell Identification -

Position Number 575 mA 600 mA 625 mA 650 mA 

1 580-1 0.497 0.485 0.466 0.432 
2 590-1 0.504 0.488 0.460 0.350 
3 590-2 0.497 0.485 0.467 0.440 
4 590-3 0.504 0.490 0.468 0.420 

5 600-1 0.508 0.493 0.470 0.410 

6 600-1 0.512 0.500 0.485 0.452 
.7 590-8 0.503 0.487 0.460 0.400 
8 570-13 0.495 0.480 0.456 0.400 

9 600-2 0.508 0.495 0.473 0.420 
10 610-1 0.502 0.492 0.474 0.442 
11 610-2 0.507 0.495 0.476 0.437 
12 580-2 0.495 0.480 0.454 0.390 
13 
14 

580-5 
620-1 

0.500 
0.499 

0.487 
0.486 

0.460 
0.469 

0.385 
0.435 

15 580-3 0.500 0.488 0.470 0.423 
16 580-7 0.499 0.482 0.452 0.350 
17 580-9 0.499 0.485 0.456 0.375 
18 580-12 0.498 0.484 0.465 0.407 
19 590-10 0.500 0.483 0.455 0.375 

Total Voltage 9.52 9.27 8.84 7.74 

Measured on SM-12 
Before Encapsulation 9.72 9.50 9.00 8.00 

Measured on SM-12 
After Encapsulation 10.00 9.80 9.30 9.22 

*At 100 mW/cm 2 insolation and at 280C 
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Figure 3-25. 	 I-V Characteristicsof Module Serial No. SM-12 
Before and After Encapsulation 

characteristic of the 19 bare solar cells. Following encapsulation, this enhancement is 

increased to 7. 7 percent compared to the same composite bare cell characteristic. This 

agrees closely with the result sighted above based on the average performance of all modules. 

It should be noted that this is the net enhancement, which includes the transmission and 

reflection losses associated with the glass and PVB. The exposed surface of the glass cover­

plate was untreated. The addition of a suitable anti-reflective coating to this outside surface 

could further augment the module output by an additional 1.5 to 2.0 percent. 

This enhancement in module electrical output can be attributed to the internal reflection of 

light incident on the embossed surface of the SUNADEX glass in the white interstices. This 

light, which would be otherwise wasted, is internally reflected within the glass coverplate 

until some portion is absorbed by the solar cell active surface or converted into electrical 

output. This phenomenon which has been called the "zero depth concentrator", was reported 
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under the New Technology provision of this contract (See Section 6). Figure 3-26 shows the 
enhancement in short-circuit current as a function of packing factor. These results wereIobtained using the test specimen shown In Figure 3-27 and varying the size on the circular 

aperture which was placed over the glass coverplate to achieve differing exposed annulus 

areas around the solar cell. Appendix A describes an analytical model for the zero depth 

concentrator enhancement phenomenon. 

I 3.5 MODULE QUAIICATION TESTING 

I3.5.1 ELECTRICAL PERFORMANCE RESULTS 

The electrical performance of each qualification module was measured initially and again 

after each of the environmental exposures. Table 3-9 summarizes the results of these 

illumination tests which were performed using the LAPSS with JPL-supplied Terrestrial 

Secondary Standard No. 025 used as the reference. 

With the exception of module serial number SM-10AQ, the change in maximum power output 

due to the thermal cycling exposure was positive with an average Improvement of 2 percent. 

This improvement was due to an Increase in the curve fill factor (CFF) in all cases, which 
would tend to inicate a decrease in contact series resistance or an increase in shunt resist­

ance. In the case of module serial number SM-1OAQ the appearance of a relatively large 

number of bubbles within the PVB caused a 2.5 percent decrease in the short-circuit current. 

However, even in this case the module experienced an increase in the CFF as a result of 

the thermal cycling exposure. 

The humidity-temperature exposure was found to cause no significant change in the module 

electrical performance. Similarly the mechanical integrity test did not cause a change in 

module electrical performance beyond the expected accuracy of the measurement. However, 

In the case of module serial number SM-7Q the 22 percent decrease in maximum power out­
put can be attributed to a single cracked cell which resulted from a highly localized bearing 

load imposed by standing on the glass coverplate as discussed in Section 3.5.4. 
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Table 3-9. Summary of Qualification Module Electrical Performance 

10tl MeaMureaent After Therval Cycle Tett A lwftlTp x Teat After Idrwaitel Intt Test 

Bert. 
Number 

8N-1Q 

8m-IQ 

SM4Q 

s4Q 
8M-YQ 

8M-IOAQ 
4)M-2Q 

Isc 
(cIA) 

70S 

720 

713 

719 
707 

713 
706 

VOC 
(Volts) 

11.3 

11.7 

11.8 

11.7 
11.8 

11.7 

11.4 

Vmp 
(Volt.) 

9.10 

9.30 

9.30 

9.23 
9.6 

9.30 

9.30 

PMAX 
(Watt) 

5.32 

6.05 

6.01 

5.9 
S.45 

9.93 

5.91 

C 
CmA) 

705 

714 

713 

715 

704 

a9 

111 

VOC 
(v-lta) 

11.5 

11.6 

11.7 

11.5 

11.5 

11.7 

11.4 

VMp 
(Volts) 

.0 

9.40 

S.40 

9.40 

5.30 

9.40 

9.30 

MAX 
(Webt) 

5.67 

4.10 

906 

5.46 

3.76 

579 

6.03 

I8C 
fnA) 
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113 

716 

707 

95 

712 

VOC 
(vowt) 

11.5 

11.46 

11.65 
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9.80 

9.40 
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9.40 

9.35 
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6,90 

5.68 
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-
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(Volts) 

11.4 

11.5 

11.4 

11.5 

11.4 

-

11.6 

Vmp 
(Volts) 

9.35 

9.50 

9.50 

9.50 

10.10 
-

9.40 1 

PMX 
(Waft) 

5.71 

Lit 

6.14 

6913 

4. 9 

-
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Module serial number SM-10AQ was not subjected to the mechanical integrity test since 

there were only six positions for qualification modules within the simulated roof test matrix. 

3.5.2 THERMAL CYCLE TESTING
 

The qualification modules were arranged within the thermal cycling chamber as shown in
 

Figure 3-28. An aluminum foil tent was constructed over the modules to reduce the rate of
 

change of temperature and provide a uniform temperature distribution in the gas surrounding
 

the modules. Thermocouples within this tent were monitored during the test and were indica­

tive of the chamber temperature as the cycling was performed in accordance with the profile
 

shown in Figure 3-29.
 

A visual examination of the modules, which was performed after the completion of a few I 
thermal cycles, revealed that delamination was occurring between the RTVl1 encapsulant 

and the glass coverplate. This was generally localized around the perimeter of the glass I 
coverplate. These modules had a thin coating of diluted RTV1O8 applied to the rear side of
 

the glass coverplate to act as a primer for the RTVl. In view of this development an effort
 

was made to improve this adhesion by applying SS-4044 primer to the glass coverplate prior
 

to coating with diluted RTV108. A module (Serial Number SM-22Q) was fabricated with this 
 U 
two step priming system and introduced into the thermal cycling chamber at the conclusion I 
of cycle number 33. 

Post-test examination of this module revealed no evidence of delamination resulting from the n 

17 cycle exposure while the other six initial modules had shown delaminations after a few 3 
thermal cycles with no observable increase in area affected after the completion of the 50
 

cycles. Based on these observations it can be concluded that the two-step priming system
 

provided the necessary adhesion between the glass and the RTV11.
 

The formation of bubbles between the top FLEXSEAL skin and the foam core was also ob- I 
served at the conclusion of this exposure. The occurrence of these bubbles, which is not 3 
considered to be a functional problem, appears to be related to the initial uniformity of the
 

layer of CA1056 contact adhesive which bonds this interface. A thin, uniform application of 
 3 
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Figure 3-28. Test set-up for Thermal Cycling Exposure 

3337 



MAXIMUM CYCLE TIME -U 

490 II 

.-
4025 1 '.2 4 

TM 
5. 

I' 
I \ 

/

/ 

• , . I i * . * I * * * I a * I . * I I 

I 
* I p , I * * 

Figure 3-29. Thermal Cycle Test Profile 

this adhesive Is necessary to prevent bond failure during thermal cycling. Efforts have been 

made on subsequent modules to achieve the necessary uniformity of this adhesive and to pre­

vent the initial entrapment of air during lamination. 

3.5.3 TEMPERATURE-HUMIDITY TESTING 

The qualification modules were subjected to the temperature-humidity profile shown in 

Figure 3-30. A post-test visual examination of these modules revealed a failure of the bond­

ed joint between the glass coverplate and the top FLEXSEAL skin. This failure was a lack 

of adhesion between the CA 1056 contact adhesive and the glass surface. These joints were 

reworked by bonding with RTV102 on all modules and using RTV102 as the bonding adhesive 

for all new modules. 3 
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Figure 3-30. Temperature-Humidity Test Profile 

3.5.4 MECHANICAL INTEGRITY TESTING 

The mechanical integrity testing consisted of 100 cycles of bidirectional loading at 2394 Pa 

(50 lb/ft2 ) applied as a uniformly distributed load over the exposed coverplate surface of 

each individual qualification shingle. This loading was accomplished as shown in Figure 3-31. 

A vacuum fixture was designed to fit over the top of the glass coverplate. This fixture was 

weighted to obtain a total mass of 12.38 kg (27.3 lb). With an exposed module area of 

0. 0507 m 2 this amounts to the required 2394 Pa in the downward direction. The upward 

loading was then obtained by pulling up on the loaded vacuum fixture until the force gauge 

read approximately 243N (54.6 lb). This loading cycle was repeated 100 times for each of 

the six qualification shingles. 

The maximum upward deflection measured at the bottom edge of the coverplate ranged from 

25 to 13 mm (1. 0 to 0. 5 inches) depending on the location of the module within the matrix. 
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Figure 3-31. 	 Test Set-up for Mechanical Integrity Testing 

(Photo No. VF 78-249) 
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There was no visual damage as a result of this loading test. However, a post-test examina-

Since this wastion of module no. SM-7Q revealed the presence of one cracked solar cell. 

the module which was previously loaded by standing on the glass coverplate as shown in 

it is probable that this crack was caused by this highly localized bearing loadFigure 3-32, 


which was at one time 667 N (150 lb) distributed over the area of the ball of one foot.
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Figure 3-32. Standing on installed Shingle Modules 
(Photo No. VF 78-237A) 
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SECTION 4 

CONCLUSIONS 

The shingle module design described herein offers many advantages for applications which 

require the mounting of photovoltaic modules on the sloping roofs of new or existing 

residential or commercial buildings since no changes in conventional roof construction are 

imposed by the photovoltaic installation, The ancillary function of this module, viz., that 

of a weathertight roof covering; affects additional economy by eliminating the need for a 

conventional roof surface under the photovoltaic module installation. The relatively high 

areal specific output of this shingle module makes its use particularly attractive for installa­

tion on area limited roof surfaces. An average module maximum power output of 98 watts/m 2 

of exposed module area at the Standard Operating Conditions has been calculated based on the 

measured performance of the 50 modules delivered under this contract. This high specific 

power output can be attributed to the efficient packing of the circular cells within the hexagon 

shape and to the enhancement of the output due to the reflected light from the embossed 

glass pattern in the white interstices. An enhancement of 7. 7 percent, compared to bare 

cell performance, has been measured on a shingle module of this design. Another way of 

looking at this enhancement is that the white interstices, which amount to 87 cm 2 per module, 

perform as solar cells with an efficiency of about 5 percent. 

A typical installation of 1872 modules which are arranged as three circuits, each with 

26 series-connected modules and 24 parallel-connected modules, would require a roof 

length of 10.128 m. A slant height of 9.621 m is required to accommodate three cir­

cuits In this direction. Thus, the required roof area of 97.44 m 2 for this typical installa­

tion results in an overall area utilization of 0. 805, which is defined as the ratio of solar 

cell area to rectangular roof area. This installation will produce a rated output of 9.2 kW 

at 205 vdc at the Standard Operating Conditions which include a calculated NOCT of 610C. 

The installation of a shingle solar cell module roof will require special precautions and pro­

cedures to protect against electrical shook hazards and mechanical damage to the modules. 

Each module could be covered with an opaque pressure-sensitive layer over the exposed 
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electrical installation isglass coverplate that would remain in place until after the 

completed, or, as an alternative, the module installation could be performed at night. The 

localized bearing loads associated with standing or kneeling on the installed module cover­

plate must be distributed over' a large coverplate surface area to prevent breakage of solar 

cells due to excessive deflection near the center of the coverplate. Specially constructed 

platforms which distribute the load uniformly over the area of four coverplates should be 

employed during installation to prevent breakage of solar cells. 
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SECTION 5
 

RECOMMENDATIONS
 

An outdoor exposure test of an assembly of shingle modules would seem appropriate as the 

next step.in the application of this development. This exposure is currently underway at the 

JPL Field Test Site. 

The matching of individual solar cells to fully utilize the electrical output of each cell within 

a module is an important consideration which is often overlooked and could have a significant 

moreimpact on the overall cost per watt of delivered module output. This matching requires 

than just knowledge of the individual solar -cell current output at a specified test voltage. Of 

equal importance is the short-circuit current (Isc) output of each cell since a cell with low 

ISC, when connected as a series element with cells of higher ISC will limit the total module 

output ISC to its value. Therefore, it is recommended that both the ISC and the current at 

a specified test voltage, which is slightly lower than the anticipated maximum power voltage, 

be measured for each individual solar cell. Matching of cells within a module should be 

based primarily on the ISC readings with secondary emphasis given to the difference between 

the two current readings which is measure of the slope of the "constant" current portion of 

the I-V characteristics. 

depth concentrator shouldDesign optimization studies using the analytical model for the zero 


be performed to determine if further enhancements in module output are possible.
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NEW TECHNOLOGY
 

The 	following New Technology disclosures have been reported to JPL: 

1. 	 Descriptive Title: A Zero Depth Solar Photovoltaic Concentrator
 
Date Submitted: November 14, 1977
 
Name of Innovator: N. F. Shepard, Jr.
 

References: 	 Quarterly Report No. 2-DOE/JPL 954607-78/2, pages 3-14, 3-15, 
6-1 

2. 	 Descriptive Title: Interconnector for Overlapping Solar Cell Modules
 

Date Submitted: March 23, 1978
 
Name of Innovator: N. F. Shepard, Jr.
 
References: 	 Quarterly Report No. 2-DOE/JPL 954607-78/2, pages 3-11, 3-13, 

3-29, 3-32, 3-33, 3-34 

3. 	 Descriptive Title: Embossed Glass-Covered Shingle Solar Cell Module
 

Date Submitted: March 23, 1978
 
Name of Innovator: N. F. Shepard, Jr.
 
References: 	 Quarterly Report No. 2-DOE/JPL 954607-78/2, pages 1-1, 1-2, 3-1 

through 3-16 
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APPENDIX A
 

ANALYTICALMODEL OF A ZERO DEPTH
 
SOLAR PHOTOVOLTAIC CONCENTRATOR
 

IA.1 INTRODUCTION 

Light incident on the white interstices of an embossed glass covered module results 

in an enhancement of the electrical output. The additional task activity described 

herein concerns the development of an analytical model to calculate the improvement
 

possible for a variety of module design parameters. This model is capable of
 

assessing the impact on optical performance of the following variables acting inde­

pendently: 

1. indices of refraction of each of the encapsulant layers 

2. cover plate thickness 

3. cell diameter 

4. cell spacing 

5. surface roughness of outer coverplate surface 

6. surface roughness of inner coverplate surface 

7. reflection properties of the interstices 

8. optical transmission of each of the layers through which solar energy 
passes
 

9. varying angles of light incidence upon the outer coverplate surface 

This model will permit the optical performance of a glass-covered, hexagon-shaped shingle 

solar cell module, in terms of the enhancement in the annual energy incident on the 

active solat cell surfaces, to be evaluated for various combinations of the above mentioned 

variables. 

In combination with algorithms which define the shingle module cost as a function of
 

cell diameter and spacing, it will be possible to evaluate the shingle module cost per
 

unit of annual energy output as a function of shingle geometry.
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A. 2 GENERAL DESCRIPTION OF OPTICAL MODEL 

can be visualized with the aid of FigureThe factors to be considered in the optical model 

a section through the glass coverplate with the underlying solar cells.
A-1 which shows 

the factors to be considered include the
Related to the letter designations on the figure, 

following: 

to the normal to the cover-A. 	 orientation of the earth-sun line relative 

plate of the shingle module 

B. 	 surface coating at the air-to-glass interface 

of the outside or exposed surface of the glass coverplate.C. 	 structure 

In the case of SUNDADEX glass, this surface has a slightly matte
 

finish.
 

D. 	 the glass material 

structure of the inside surface of the glass coverplate. In the case ofE. 
SUNADEX glass, this surface has a deeply embossed regular pattern of 

indentations. 

F. the material in contact with the inside surface of the glass coverplate in the 

interstices between the solar cell-pattern 

G. 	 the transparent solar cell bonding material 

H. 	 the solar cell spacing and configuration 

the 	optical portion of this model entails the consideration of manyAs described above, 

factors which influence the ultimate conversion of incident solar energy into electrical 

energy at the solar cell array. For maximum annual electrical energy output from a 

cover­shingle, the goal is to maximize the useful solar energy which crosses the glass 

plate outside surface and to maximize the containment and absorption, by the solar cells, 

of the admitted energy. 

will 	first consider theThe analytical approach to the optical portion of this problem 

incident solar energy particularly as it relates to the angle of incidence effects. Light 

incident on the shingle module and traversing the glass is definable in terms of two 

angles as shovn in Figure A-2: an angle of incidence (I), measured with respect to the 

shingle'normal; and an azimuth angle (A), measured with respect to a due south axis in 

the plane of the module surface. 
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Figure A-1. Section Through Glass Coverplate Showing Factors
 
Influencing Enhancement of Output Due to Zero Depth
 

Concentrator Phenomena
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Figure A-2. Earth-Sun Line Orientation 
on Shingle Module Surface 
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Since the solar cell pattern is not point-symmetrical, performance will, in general, 

however, thedepend on azimuth, which will vary with time. Over a period of a year, 

dependence on azimuth will be at least suppressed, if not washed out completely. There­

fore, since the ultimate concern is with energy collected over a one year period, the 

problem will be defined only in terms of incidence angle, with all dependencies on azimuth 

being averaged out in the computation. 

The basic form of the input data .will be a histogram representing, the annual energy 

incident on the glass coverplate surface over 2 degree intervals of the angle of incidence. 

As shown in Figure A-3, this histogram can be represented in the data structure as an 

array W (I) of 45 elements. 

W(O) l 

01 2 3 4 5 6 V88 89 90 
ANGLE OF CIDENCE INTERVAL (DEGREES) 

Figure A-3. Histogram of Annual Input' Direct Beam
 
Solar Energy
 

The various refraction and reflection processes within, the transparent coverplate are 

shown in Figure A-4. Process ( represents the entrance of incident solar energy 

into the coverplate. A portion of this energy is lost by a Fresnel reflection process 

at the rare to dense outer surface interface. Figure A-5 represents a typical Fresnel 

reflection process function. 
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Figure A-4. Refraction and Reflection Processes
 
Within Transparent Coverplate
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Typical Function for Fresnel ReflectionFigure A-5. 
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This function can be modified by appropriate anti-reflective surface coatings. The 

specular beam of energy which passes into the coverplate is refracted by a Snell's 

Law refraction process where the ray is deflected toward the surface normal when pass­

ing from the rare-to-dense medium. The exit angle, U is given by: 

I sin)O=sin-

Similar reflection and refraction processes occur at the internal coverplate-to-solar 

cell interface, represented by Process © ; at the internal coverplate-to-interstices 

; and at the Internal coverplate-to-air inter­interface, represented by Process 

face, represented.by Process 0 

At each of these interfaces the specular, beam is modifed by a scattering function which 

is shown diagraically in Figure A 6; 

W(0) 

Figure A-6. Scattering at-Outer and Inner
 
Coverplate Surfaces
 

A scattering function, which operates on W (0) by convolution, can' be identified for 

each of these surfaces to account for this angular spread of the incident beam. 

A-6 

http:represented.by


The passage of light through the coverplate material is also influenced by a bulk 
absorption process which is shown in Figure A-7. The absorption coefficient k is 
defined as an average over the sunlight spectrum. 

Beam division processes also play an important role in the analytical definition of optical 
performance of the zero depth concentrator. Figure A-8 shows an array of circular 
beams representing reflected light from a solar cell pattern at an inclination angle 6. 
In making two passes through the coverplate (bottom to top and back to bottom) this 
pattern is sheared with respect to the original by an amount, S, given by: 

S = 2t. tan 

The overlap of the sheared pattern and original pattern is defined as the beam division 
function AA(s). Compound beam division functions are definable as a consequence of 

sequential passes through the coverplate as shown in Figure A-9. 

A diagram of the various processes involved in the optical model is given in Figure A-10. 
Starting at the top of the page, this diagram shows the sequential process steps which 
operate on the incident energy distribution array W (1) to produce consecutive definitions 
of W as the energy passes through the coverplate for the first time and is incident on a 
solar cell, in the case of the "A" branch of the flow diagram, or on the interstices, is 
the case of the "A" branch. The various processes described above and enumerated on 
Figure A-10 operate on each "2-pass" branch after the initial reflection and beam division 
at the bottom surface of the coverplate. The "2-pass" sequence of operations relates 
to energy which passes from the bottom surface through the glass, is reflected and 
scattered from the top surface, and passes through the glass again before being incident 
on the bottom surface. At each occurence of reflection at the bottom surface an areal 
beam division, takes place, accompanied by an associated translation or shear of the geo­
metric pattern of circles within a hexagon. The program continues until the light 
energy has reached the bottom surface for the third time, or until two "2-pass" sequences 
have been completed. At appropriate places within the sequence the amount of energy 
incident on the solar cells is accumulated. The amount of energy available for collection 
is successively reduced as the chain of processes continues until after two "2-pass" 
sequences it is felt that the residual energy will be quite small. 
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Figure A-7. Bulk Absorption Process 
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Figure A-8. Beam Division Processes 
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Figure A-9. Definition of Beam Division Functions 

A.3 ASSUMPTIONS
 

The development of the analytical model will be based on the existing shingle solar cell 

module concept which consists of an array of circular solar cells arranged in a hexagon 

configuration under.a common glass coverplate, as shown in Figure A-i. The cell 

diameter (d), spacing (S) and the number of solar cells (7 or 19) will be varied in the 

model but the basic hexagon geometry will be retained. For this module geometry the 

edge dimension of the hexagon (E) can be expressed in terms of the aforementioned 

variables by the following relationships. 

E = 2.57735d + 3.1547S (for 19 cell module) 

E = 1.57735d + 2.1547S (for 7 cell module) 

Using the shingle module geometry shown in Figure A-12, the areas of the coverplate. 

(A p) and substrate (A s) can be expressed as a function of E by the following ex­

pressions: 

A = 2. 598E 2 

cp 

A = 3.8971E 
2 

A
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The minimum required glass coverplate thickness is given in Figure A-13,as a function 

of the hexagon edge dimension. A constant deflection at the center of a simply supported 

plate subjected to a central point load was used as the criterion for establishing this 

curve. It was assumed that the existing shingle design; which uses 3.2mm thick glass 

with a 139.7 mm edge dimension, gives a marginally acceptable deflection under these 

loading conditions. 

Only direct beam radiation will be considered in the model. The assumption is made that 

the combination .offactors which optimize the enhancement due to the direct component 

of insolation will also act in a similar manner to enhance the contribution due to the 

diffuse component. Since the angle of incidence on the outer coverplate surface has a 

major influence on the enhancement due to this phenomenon, the evaluation of the system 

performance will be made based on calculated hourly values for the angle of incidence 

and corresponding direct beam insolation component on the module surface. SOLMET 

data tapes for Boston, MA and Phoenix, AZ will be used to represent two diverse sites 

for this analysis. Figures A-14 and A-15 give the accumulative distribution of the 

annual direct beam energy density on the module surface as a function of angle of 

incidence for Bostom, MA and Phoenix, AZ, respectively. Hourly SOLMET data were 

used in both cases with a roof slope angle of 10 degrees less than the site latitude. 

These data show that a fixed E-W tilted solar array collects more than 50 percent of its 

annual direct energy at incidence angles of greater than 30 degrees. Table A-1-tabulates 

these data in 2 degree angular intervals for use as an input to the model. 

A.4 EXPERIMENTAL RESULTS 

A.4.1 SCATTERING FUNCTIONS FOR SUNADEX GLASS 

The determination of the scattering functions for each surface of SUNADEX glass involved 

the measurement of the reflected energy which passes through an aperture of known size. 

Two different experimental test set-ups were required as shown in Figures A-16 and A-17. 

The first of these was used to determine the scattering function for the matte surface 

of the .coverplate, but a focusing lens could not be obtained with a small enough f/ 

number to permit the measurement of the more widely dispersed pattern from the 

embossed surface. Consequently the test set-up shown in Figure A-18 was used for 

this case. 
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Table A-i. Angular Distribution of Annual Direct ,Beam, Energy ,Density for 
Boston, MA and Phoenix, AZ 

BOSTON, NA 1960 SOLNET DATA TAPE PUOENIZ, AZ 1953 SOLMET DATA TAPE 

ANGLEofINCIDENCE 
ANNUAL DIRECT 

BEAMENERGYDENSITY 
ONMODULESURFACE 

ANNUAL DIRECT FRACTION OF ANNUAL ANNUAL DIRECT 
BEAMENERGY DENSITY DIRECT BEANENERGYBEAMENERGYDENSITY 
ONNODULE SURFACEDENSITY 0? NODULE O MODULESURACE 

ANNUAL DIRECT FRACTION OF ANNUAL 
BEAMENERGYDENSITY DIRECT BEA ENERGY 
ONMODULESURFACEDERITY ON OD9LE 

-

* 
AT ANGLES OF IN INTERVAL SURFACEIN INTERNAL AT ANGLES OF IN INTERVAL SURFACEIN INTERVAL 
INCIDENCE 2> 0 (0I - ) (01 -00) NCDEN E>0 (0 - Y (01- 02) 

P1 02 (kWh/m) (kIh/m (kWh/m (iWh/m )C 

0 
2 
4 

2 
4
6 

932.4 
932.4 
922,8 

0. 
.9,6
15.5 

0. 
O.01030 
0.01662 

1853.6 
1836.9 
1816.8 

16.7, 
20.1t,
19.3 

0.00901 
0,01084
0.01041 

- ) 

6 
8 

8 
10 

907.3 
895.2 

12.1-
12.8 

0.01298 
0,01373 

1797.5 
'1778.2 

19.3 
20.5 

0.01041 
0.01106 

10 
12 
14 

12 
14 
16 

882.4 
848.5 
807.7 

33.9 
40.8 
34.9 

0.03636 
0.04376 
0.03743 

1757.7 
1781.6 
1608.4 

26.2 
43.1 
130.2 

0.01413 
0.C2325 
0.07024 

16 
18 
20 
22 
24 

18 
20 
22 
24 
26 

772.8 
734.9 
688.8 
658.4 
618.4 

37.9 
46.1 
30.4 
40,0
32.1 

0,04065 
0.04944 
0.03260 
0.04290 
0,03443 

1558.2 
1467.3 
1366.2 
1312.1 
1202.7 

90.9 
101.1 
54.1 
29.4 
27.4 

0.04904 
0.05454 
0.02919 
0.01586 
0.01478 

26 
28 

28 
30 

585.3 
539.1 

47.2 
40.8 

0.05062 
0.04376 

1255.3 
1225.4 

30.0 
144.8 

0.01618 
0.07812 

30 32 498.3 22.0 002360 1080.6 173.0 0.09333 
32 34 476.3 70.0 0.07508 907.6 I01.9 0.05497 
34 
36 

36 
38 

406.3 
346.6 

59.7 
22.9 

0.06403 
0.02456 

805.7 
737.7 

68.0 
35.0 

0.03669 
0.01883 

38 40 323.7 22.2 0.02381 702.7 21.6 0.01165 
40 
42 
44 

42 
44 
46 

301.5 
246,7 
220.7 

54.8 
26.0 
10.6 

0,05877 
0.02789 
0.01137 

681.1 
656.9 
650.7 

24.2 
106,2 
176.7 

0.01306 
0.05729 
0.09533 

40 
48 
6o 

48 
50 
52 

210.1 
174.3 
139.5 

36.8 
34.8 
9.2 

0,03840 
0.03732 
0.00987 

374.0 
349.4 
32800 

24.6 
21.4 
17.9 

0.01327 
0.01155 
0.00966 

52 
54 
56 
58 
60 
62 
64 
66 

54 
56 
58 
60 
62 
64 
66 
68 

130.3 
116.0 
87.7 
74.8 
69.8 
60.3 
35.9 
32.5 

14.3 
28.3 
12.9 
5.0 
9.5 

24.4 
3.4 
1.3 
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For the limited scattering from the matte surface the apparatus shown in Figure A-18 
proved to give satisfactory results. A lamp, whose brightness is controlled by a Variac, 
is focused on the pin hole aperture. Energy passing through the pin hole is collimated 
and passes through an iris whose function is to limit the collimated bundle to a controlled 
size. 

Approximately 50 percent of the illuminating bundle is reflected by the beam splitter 
face. The SUNADEX glass has previously been aluminized with a thin but opaque coat­
ing. The coating was deliberately kept thin in order to retain"the print of the rough 
surface. The reflected beam, which is diverging due to the diffuse reflection, passes
 
through the beam splitter. It is important to keep the bundle as large as possible, but
 
relatively small with respect to the size of the beam splitter, 
to prevent internal re­
flection from interfering with the measurements.
 

An "image" of the diffuse bundle is formed at the focal plane of the focusing lens. 
This plane coincides with the variable size analyzing iris. The diameter of the iris is 
related to the slope by: 

D = 4f tana 

where 

R = the image diameter 

f = the focal length of the focusing lens 

= 3.00 inches for the test set-up in Figure A-16 

0= the surface slope error 

The signal received is a function of the analyzing iris diameter. If the pin hole were 
an infinitesimal point source, and the sample perfectly smooth, the output signal 
would be constant as the analyzing aperture diameter is varied. Since the hole is 
finite, however, there is a variable signal as a function of the analyzing aperture hut: 
only for very small values of diameter. If the scattered "Image" is fairly large compared 
to the pin hole image, the analyzing function is essentially constant representing a delta 
function input. In such a case the measured signal from the matte surface, as a function 
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of iris diameter, is a direct function of surface slope error. The function of the field 
lens is to relay the energy passing through the analyzing iris to the detector. Its focal 

length is chosen so that the entire diameter of the focusing lens is imaged on the detector 

surface and its diameter is chosen to match the largest surface slope deviation to be con­

sidered. In this way, all energy passing through the focusing lens is imaged on the 

detector.
 

A photovoltaic detector coupled to a lock-in voltmeter whose reference signal was derived 
from a mechanical chopper was employed-. A chopping frequency of 200 Hertz was em­
ployed to avoid interference from room light which operate on a base frequency of 120 

Hertz. 

In the case of the embossed surface, shown in the scanning electron micrograph of 

Figure A-19 the test set-up was changed to accomodate the wider scatter of the reflected 
light from ths.surface. As shown schematically in Figure A-17 a laser beam impinges on 

the embossed glass surface. and is reflected onto a Mangin mirror through an analyzing 
iris. The Mangin mirror then focuses the scattered radiation, which passes through the 
iris, onto a photovoltaic detector which yields an electrical signal proportional to the 

intensity of the light on the detector. The formula for the determination of surface 

slope error is the same as previously presented for the matte surface set-up except 
that (f) becomes the distance between the plane of the analyzing iris and the -pdiht of 

focus on the embossed surface. In the case of the set-up. shown in Figure A-17, the 

value of (f) is 4. 875 inches. 

Figure A-20 gives the normalized detector signal as a functioh of analyzing iris diameter 
for both surfaces of the SUNADEX glass. These data-were fitted with a polynomial of 

the form: 

a2D4V 'a- +a D a 3 D3 + a 4D4 

6+ a5D5 + ap '+ a7D7 

where 

V = normalized detector signal 

D = analyzing iris diameter (inches) 
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Figure A-20. Normalized Detector Signal vs. Analyzing Iris Diameter 
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For these two surfaces the values for the polynomial coefficients are .as given in 

Table A-2. 

Table A-2. Coefficients of the Polynomial
 
Describing the Detector Signal as a Function of the
 

Analyzing Iris Diameter
 

Embossed Matte 

Surface Surface 

a0 i.44754E-4 -4.10052E-3 

a1 1.31156E-1 6.65302E-1 

aa2 -6. 97379E-1 1.51415EI 

a3 1. 4787.3 -4.40255E1 

a 4 -1.031-39 4.56052EI 

a5 3.44919E-1 -1.63851E1 

a6 -5.,70684E-2 0 

a7 - 3.75892E-3 0 

The derivative of these expressions yields the fraction of the scattered energy which 

occurs within an infinitesimally small surface slope error. Figure A-21 presents these 

results expressed as a fraction of the surface area which-can be characterized by a 

given surface slope error. It should be noted for the case of the matte surface the 

data pertains to a normally incident specular beam while for the embossed surface the 

angle of incidence of the specular beam was approximately 20 degrees., There is also 

some uncertainty regarding the shape of these curves for surface slope errors of less 

than 10 milliradians due to limitations on minimum opening for the analyzing iris. 

A.4.2 BEAM*DIVISION FUNCTIONS FOR CIRCLES WITHIN A HEXAGON 

The beam division functions for seven circles packed within a hexagon were determined 

experimentally using the test'set-up shown in Figure A-22. Glass photographic plates 

were prepared for the four different module geometries shown in Figure A-23, which 

represent overall packing factors (PF) ranging from 0.814 to 0.514. These glass plates 

representing the various patterns were shifted 'in the test setup to obtain the various 
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beam division functions given in Figure A-24. The nomenclature DD, DD refers to 

energy which is reflected from a solar cell (D) or from the interstices (D) and con­

sequently falls on a solar cell (D) after a single reflection from the top coverplate 

surface. This nomenclature i.further-clarified by referring to Figure A-25 which 

graphically represents the four possible combinations with a single reflection from the 

top coverplate--surface. 

For the case where two reflections are involved the nomenclature consist of three 

characters, e.g., DDD. In this example the beam division function represents that­

energy Wvhich falls on a solar cell after two reflections from tho top cotrerplate surface 

of energy which falls on a solar cell. 

A. 5 DESCRIPTION OF OPTICAL ANALYSIS PROGRAM 

A.5.1 OVERALL PROGRAM FLOW 

The overall organization of the optical analysis program is shown in Figure A-26. The 

program is written in Honeywell Level 66/6000 FORTRAN and should be compatible, with 

minor modifications, with any FORTRAN compiler. The program is configured for exe­

cution in a time-sharing mode from a remote terminal. An introductory program explan­

ation will be outputted on request after compilation has been completed. Input data 

will then be requested before the main portion of the program is entered. As shown in 

Figure A-27 this main program 'consists of an accounting of various integer identifiers 

or flags and repeted,calis pf two principal calculation procedures identified as "1-PASS" 

and -"2-PASS" ;'hTese two procedures consist of the sequential call of five subroutines 

as shown in Figures A-28 and A-29, respe.ctively. 

The details of the main progiam logi&'are given in Figure A-27 along with-the status:of 

the five integer, identifiers or flags at each stage of the calculation sequence. The 

notations D, fl,. (D)D, (D)D; etc. dan be explained with the.aid of Figure A-30 which , 

sequencesshows the successive routes through the glass coverplate for the two 2-PASS 

considered in the, model. 

The notation "'C" beside some blocks on Figure A-27 indicates that energy is collected 

by the solar cell as a consequence of that set of processes. 
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IREFLECT ,) 

REFRACT (F) 

Figure A-28. Logic Flow Diagram for the 1-PASS Procedure 

A.5.2 SUBROUTINE REFLECT 

Figure A-31 gives a detailed logic flow diagram for the REFLECT subroutine. The 
function of this subroutine is the account for the Fresnel reflection from both the upper 
and lower surfaces of the glass coverplate. The logic diagram has been annotated to 
indicate the nature of the operation being performed in each block. The routine includes 

the flexibility to consider a single-layer anti-reflective coating 'on the upper surface of 
the coverplate. The following definitions are appropriate to the understanding of this 

routine: 

F=1 Upper surface, rare-to-dense interface
 

F=2 Lower surface, solar cell interface
 

F=3 Lower surface, interstices interface
 

F=4 Upper surface, dense-to-rare interface
 

N(1) = Index of refraction for air (1)
 

A-33 



(D)
 
IDIVIDE 


REFLECT
 

(F,D) 

810 D? 

1SCATTER­
(F) 

ABSORB

(L,G) 

REFLECT
 
(F, D.). 

SCATTER
 
(F) 

ABSORB
 

I(L, G) 

CEND-

Figure A-29. Logic Flow Diagram for the 2-PASS Procedure 

A-34 



D 

D)D ______________ $1_/
 

(DD)D (DD)D 

(D)D --

DDiDr)D ( 5) 

Figure A-3O. Description of Beam Division Notation 



IF1,4 UPPER SURFACE 

2,3LOWER nSURFACEo 


ICATING 
,, 

SINGLE-LAYER COATING 

ES
 
FM. = N(I2 

YES N: = N(2) 

F = 2 M:= N(3) 

F =3 YSN: =N(2) ­
/ M: N(4)N 

G~ENO NO' 

YE" N N(2)NoF-=o
4MN:= N(1)
 

Flow Diagram for Subroutine REFLECTFigure A-31. Logic 

A-36 



. \ RIS, RIP , 

N1 R2S,R2P__ 

B 	 -# 

L =WAVELENGTH 
I=1__ 	 RS, RP 

\--7RIS, RIP 

I.. .'LOAD G(f " 

1:+ 2'1=89 

Ii: =.E 

12: - ASIN((N1/N2) * SIN(fl)) ANGLES IN MEDIA 

FROM SHELL'S LAWSIN(I1))13: -ASIN((N/N)* 

NIS: = Ni * 	COSI) 

N2S: = N2 * 	COS(12) 

C0S(13) EFFECTIVE INDEXES
NSS: ' = N& * 

F6ANON-2RORMAL 
NIP: = NI/COS(II) INCIDENCE
 

N2P: = N2/COS(2)
 

NaP: = N3/COS(3)
 

PHASE ANGLE BETWEEN 
P5: = (4 * PI* D/L) * N2S AMPLITUDE VECTORS 

K 	 3 

Figure A-S1. Logic Flow ;Diagram for Subroutine REFLECT (Conttd) 

A-37 



K 
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'Figure A-31; Logic Flow Diagram for Subroutine REFLECT (Cont'd) 
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R:=l- SIN([ T:=0* 

NO 

RP :=(COS (1)- (N/M) *SQRT (R))/ FRESNEL 
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RS:((N/M]*COS(!)-SQRT(R)) 1 
((N/M*COS(i) + SQRT(R)) 

T := - (RP**2+RS**2)/21 

Figure A-31. Logic Flow Diagram for Subroutine REFLECT (Cont'd) 
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Figure A-31. Logic Flow Diagram for Subroutine REFLECT (Cont t d) 
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N(2) = Index of refraction for glass coverplate 

N(3) = Index of refraction for cell bonding adhesive 

N(4) = Index of refraction for encapsulant 

The routine treats reflection at each of.the interface. identified by 'IF" by the appropriate 

assignment of the indices of refraction. 

This routine also includes the logic for the accumulation of the collected energy on the 

solar cell. 

A.5.3 SUBROUTINE REFRACT 

Snell's Law refraction which occurs at the air-to-glass interface as the energy enters the 

glass (Interface F=) is accounted for by this sjibroutine as shown in Figure A-32. The 

refraction process changes the angular boundaries of each two degree energy cell. A 

major portion of' this procedure deals with the technique employed to redistribute the 

refracted energy into the originally assigned 45 ahgular energy cells. The refracted 

boundaries (A and C) for each cell are calculated and the redistribution of the energy 

into the original cell boundaries is carried out as shown in Figure A-33. 

A.5.4 SUBROUTINE SCATTER 

The SCATTER subroutine shown in Figure A-34 performs a piecewise convolution of 

the energy function (W) with the scattering function (S). This latter function takes 

the form of a set of data tables as defined in Figure A735. For the SUNADEX glass 

surfaces under consideration the values for these. data tables can be derived from the 

experinientally det6rmined function shown in Figure:A-21. Tables A-3 through A-5 

give the required scattering function data tables for the four interfaces in question. 

Both of the embossed. (or iower) ihferfaces will have the same scattering function table, 

but the matte (or upper) surface interfaces (F=1 and F=4) will be diffeient because 

scattering is by refraction in one ease and by reflection in the other. 

A.5.5 SUBROUTINE ABSORB 

The ABSORB subroutine shown in Figure A-36 accounts for the broad-band bulk 

cover plate material.absorption which occurs as the energy passes through the glass 

Table A-6 gives typical values for the broad-band bulk absorption coefficient, G, for 

several soda-lime glass compositions. 
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Figure A-3 2 . Logic Flow Diagram for Subroutine REFRACT 
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Figure A-32. Logic Flow Diagram for Subroutine REFRACT (Cont'd) 
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Figure A-34. Logic Flow Diagram for Subroutine SCATTER 
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Figure A-34. Logic Flow Diagram for Subroutine SCATTER (Cont'd) 
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Figure A-35. Definition of Scatter Function Table 
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Table A-3. Scatter Function Table for SUNADEX Glass -

Matte Surface (F=1) 

J (R6ceiver Cell) 

191 3 5 7 9 11 13 15 17 

1 0 0 0 0 0 0
 

( 3 0 0 0 0 0 0
(Donor 

5 0 0 0 0 0 0Cell) 


7 0 0 0 0 0 0
 

9 0 0 0 0 0 0
 

11
 

13
 

Table A-4. Scatter Function Table for SUNADEX Glass -


Matte Surface (F=4)
 

J (Receiver Cell)
 

3 5 7 9 11 13 15 17 19 '* 

1 -. 08 .04 0 0 0
 
(


(Donor 3 .04 -. 08 .04 0 0 

Cell) 5 0 .04 -. 08 .04 0 

7 0 0 .04 -. 08 .04 '0
 

9
 

11
 

13 
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Table A-5. Scatter Function Table for SUNADEX Glass -

Embossed Surface (F=2 and F=3)
 

J (Receiver Cell) 

1- 3 5 7 9 11 13 15 17 19 21 09023 

1 -. 94 .31 .34 .19 .09 .01 0 0 0 0 0 

3 .155 -;94 .155 .34 .19 .09 .01 0 0 0 0 

1 5 .17 .155 -.94 .155 .17 .19 .09 .01 0 0 0 

7 .095 .17 .155 -.94 .155 .17 .095 .09 .01 0 0 

(Donor 9 .045 .095 .17 .155 -.94 .155 .17 .095 .045 .01 0 
Cell) 11 .005 .045 .095 .17 .155 -. 94 .155 .17 .095 .045 .005 0 

13 0 .005 d045- .095 .17 .155 -.­94 .155 .17 .095 .045 .005 

15 

17 
0 

0 

a
 
__ . INCRE MENT 

P: =P + f PROCESSBEGIN COUNT 

-- GREINITIALIZEL--
RELOAD

LOALFOR 

LOAD LOOP 

W(P, I): E(I) RELOAD 
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S: COS(I) EXECUTE PROCESS 
=E(). EXP(-G*S) * E() LOOP ­
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Figure A-36. Logic Flow Diagram for Subroutine ABSORB 
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Table A-6. Broad-band Bulk Absorption Coefficients for Several 
Soda-Lime Glass Compositions 

-1)
G (mmIron Oxide Content (%)
Glass Identification 

0.01 	 0.00184ASG SUNADEX 
0.00926ASG LO-IRON 0.05 
0.01933AGS STARLUX 	 0.12 

A.5.6 SUBROUTINE DIVIDE 

Figure A-37 gives the logic flow diagram for the DIVIDE subroutine which accounts for 

the 	beam division which occurs at each reflection from the lower surface of the cover 

plate. An empirically determined beam division function (F) is used to describe the 

geometric fraction of reflected area which is coincident with the solar cells. The deter­

mination of these functional relationships is described in Section A.4.2. 

A.6 DESCRIPTION OF COST MODELS 

The expected costs, for shingle solar cell modules have been developed as a function of 

solar cell area, cover plate area and substrate area based on the following ground rules: 

* 	 500 kW peak 

* 	 Late 1980 time period 

* 	 13 percent bare cell efficiency at 280C 

a 	 Circular solar cells packed within a hexagon shape as shown in Figure A-11. 
Both a 19 cell and a 7 cell configuration will be considered in the cost model. 

* 	 The shinle module configuration is as shown in Figure A-12. 

Tle shingle module cost has been divided into three categories as described below: 

1. 	 Solar Cell Cost - The specific cost of the circular solar cells is given in 
Figure A-38 as a function of the total solar cell area per module and the 
module configuration (7 or 19 cells). This cost element includes the inter­
connection between cells as well as the cost of laminating the cells to the 
glass coverplate. 

2. 	 Encapsulation Cost - The specific cost of the encapsulation system, which 
includes the glass coverplate, the hard back and the solar cell encapsula­
tion material, is given in Figure A-39 as a function of the coverplate area 
per module and the glass coverplate thickness. 
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Figure A-37. Logic Flow Diagram for Subroutine DIVIDE 
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Figure A-38. Specific Solar Cell Cost 
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Figure A-39. Specific Encapsulation Cost 
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3. Substrate Cost - The specific cost of the semi-flexible shingle module sub­
strate, 	which includes the flexible circuit board, the outer skins and the 

given in Figure A-40 as a function of the substrate areacore material, is 

per module and the glass coverplate thickness.
 

Applying the cost model to the existing shingle module geometry with a cell diameter of
2 

and a53 mm, a hexagon edge dimension of 139.7 mm, a cover plate area of 0. 0507 m 

Table A.-7.substrate area of 0.-0761 m 2 yields the results listed in 

Table A-7. Cost Prediction Using Existing Shingle Module Geometry 

Cost per 
Module Fraction of 

Item (1975-$) Total Cost 

* 	 Solar Cells (including 19.53 0.834 
interconnection and 
lamination) 

e 	 Encapsulation 2.03 0.087 

@ 	 Substrate 1.86 0.079 

Total Cost 23.42 	 1.000 

Such a modile'will produe 5.88 watts using a 13.0 percent bare cell efficiency at 28 0C. 

At the Standard Operating Conditions, which include a-palculated NOOT of 6100 , this 

module output-,will be reduced to 5.03 watts. Thus, the resulting costt-to-power ratio 

is $4.66/peak watt. 

A.7: SAMPLE CASE .CALCULATIONS 

A sample calculation using the optical analysis program for the zero depth concentrator 

is shown in Table A-8. This program -has been written for time-share execution from a 

remote terminal. In the example given the responses required by the user have been 

underlined. The. results of the calculation for the Phoenix distribution-of incident 

energy as a function of angle of incidence (from Table A-i) are given as the energy 

collected on the solar cells in each two degree angular increment representing the angle 

of the refracted specular ray as it passes through the top coverplate surface. The total 
2 

collected energy is calculated to.be 1644.52 kWh/m . With an input insolation of 1853.6 

kW /m2 (from Table A-i) this result represents'an overall eihanceeent of 1.6 percent for 

the packing factor used. 
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Figure A-40. Specific Substrate Cost 

Table A-8. Sample Calculation Using Optical 

Model of Zero Depth Concentrator 

NO. OF COATING LAYERP 1 OR 0=0 

INDEXES OF REFPACTION OF GLASS COVER, BONDING ADHESIVE & ENCAkSULANT
 

MODULE PACKING 	FACTOR eBETWEEN .512 & .814)
 
=.764 

BULK ABSORP. COEFF. (I/MM)
GLASS THICKNESS(3.2, 4 OR 4.8MM), 


REFLECTANCE OF 	ENCARSULAHT 
=.
 

0- 2 2- 4 4- 6 6- 8 8-10 10-12 12-14 14-16 16-18
 
38.19


19.76 	 21.75 22.22 29..33 91.70 117.59 92.47 40.08 


28-30 32-34
18-20 20-22 22-24 24-26 26-28 	 30-32 34-36
 
76.16 41.b6 85.89 135.06
68.26 	 219.25
205.19 	 149.28 37.14 


42-44 46-48 50-52 52-54

36-38 38-40 40-42 	 44-46 48-50 


0.81 	 0.23
37.63 	 98.11 14.85 1.27 0.47 0.11 0.04
 

58-60 62-64 64-66 66-68 68-70 70-72

54-56 56-58 	 60-62 


0.00 0.00 	 0. 0.0.01 0.00 0.00 0.00 	 0. 

84-86 	 -88-90
80-82 82-84 	 86-88
72-74 74-76 76-78 	 78-80 

0. 0. 	 0. 0. 0. 0.0. 0. 0. 

TOTAL ENERGY COLLECTED= 1644.52 
MAKING MORE RUS? I=YES, -O=NO 
=0 
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The 	model was used to calculate the enchanceitent, relative to the cosine relationship, 

function of angle of incidence on the outer coverplate surface for these same con­as a 

ditions of module packing factor, etc. The result shown in Figure A-41 shows a signif­

icant enhancement in the performance of this type of module relative to the cosine re­

lationship which is representative of the output of a closely-packed planar module. 

A. 8 FORTRAN CODE 

Table A-9 is a listing, of the FORTRAN code of the optical analysis program developed 

for the zero-depth concentrator. This program is compatible with the Honeywell L66 

system, but can be executed on any system with a FORTRAN compiler with minor modifi­

cations to the source statements. 

1.0 

ZERO DEPTH CONCENTRATOR 
8- MODEL 

COSINE \ 

CURVE 
0 

.2-\ 

0\
 

0 20 40 60 80 

INCIDENT ANGLE (DEGREES) 

Figure A-41. Output Enhancement vs. Angle of Incidence 
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Table A-9. Source Listing for Optical Analysis Program 

COMMON/M/IPR INTF IBDCW5,45)GL.IzNCOATIBRANCHPACK

COMMON/REFL/TRANS(45) ,COLL(5545) 


DIMENSION COLLT(45) 

5 CONTINUE 


TOTW:O 

00 7 1=1,45 

COLLT(I)=O 

DO 6 K=1,55 

COLL(KI)=O 


6 	 CONTINUE 

7 	 CONTINUE 


CALL DATAIN 

CALL MAIN 

DO 20 I=1,45 

DO 10 J=1,55 

COLLT(I)=COLLT(I)+COLLrJI) 


10 	 CONTINUE 

TOT=TOTW+COLLT(I) 


20 CONTINUE 

DO 30 M=18o90,18 

L=M-16 

MM=M/2; LL=MM-8 

WRITE(6,90) (K-2,K,KL,M,2) 

WRITE(6,91)(COLLT(I),I=LL,MM) 


30 CONTINUE-

WRITE(6,92)TOTW 


90 FORMAT(/,10(2X,12-...,12,1X)) 

91 FORMAT(9F8.2) 

92 	FORMAT("TOTAL ENERGY COLLECTED=",F9.2) 


PRINT "MAKING MORE RUNS? 1=YES, O=NO" 

READ, IAGAIN 

IFCIAGAIN EQ. 1)GO TO 5 

SIOP 

END 


C 

SUBROUTINE MAIN 

COMMON/M/IPRINTFIBD,W(55,45),GLIZNCOATIBRANCHPACK 


C 

IBRANCH=1 

INTF=I 

IBD= 

IPR=I 

IZ=O 

CALL ONEPASS 


10 	CONTINUE 

IF(IBRANCH NE. 1)GO TO 40 

IBD=1 

INTF=2 

CALL TWOFASS 


20 	CONTINUE 

IF(IBRANCH .NE. 1)GO TO 30 

IBD=2 

I-N'=? 

CALL TWOPASS 

IBD=3 

CALL TWOPASS 

1I0MrUt=U 
GO 	TO 20 


00000010
 
00000020
 

00000030
 
00000031
 
00000032
 
00000033
 
00000034
 
00000035
 
00000036
 
00000037
 
00000038
 
00000050
 
00000060
 

00000070
 
00000071
 
00000072
 
00000074
 
00000076
 
00000078
 
00000080
 
00000081
 
00000082
 
00000083
 
00000084
 
00000086
 
00000088
 
00000090
 
00000091
 
00000092
 
00000093
 

00000110
 
00000111
 
00000112
 
00000113
 
00000114
 
00000130
 
00000140
 
00000150
 
00000160
 
00000170
 
00000180
 
00000190
 
00000200
 
00000210
 
00000220
 
00000230
 
00000240
 
00000250
 
00000260
 
00000270
 
00000280
 
00000290
 
00000300
 
00000310
 
00000320
 
00000330
 
00000340
 
00000350
 
00000360
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Table A-9. Source Listing for Optical Analysis Program (Cont'd) 

C 

0 


30 CONT INUE 

IPR=12 

IZ=9 

IBD=4 

INTF=3
 
CALL TWOPASS 

IZ=O 

IBD=5 

INTF=2 

CALL TWOPASS 

IBRANCH=O 

GO TO 10 


c 

40 	CONTINUE 


IPR 5 

IZ=25 

IBRANCH=4 

IBD=6 

INTF=3 

CALL TWOPASS 

IZ=O, 


50 	CONTINUE 

IF(IBRANCH .NE. 1)GO TO 60 


IBD=7 

-0nnnsN
INTF=2 


CALL TWOPASS 

IBD=8 

INTF=2 

CALL TWOPASS -

IBRANCH=O 

GO TO 50 


C 

60 CONTINUE -,00000700
 

IPR-37 

IZ=9 

IBD=9 

INTF=3 

CALL TWOPASS 

-IZ=O 

IBD=10 

INTF=2 

CALL TWOPASS 

RETURN 

END 


.0 - . 
0 "00000830
 

C 

SUBROUTINE ONEPASS 

CALL REFLCOL 

CALL REFRACT 

CALL SCATTER 

CALL ABSORB 

RETURN 

END 


0 

C 

C 


SUBROUTINE TWOPASS 

COMMON/M/IPR, INTFJIBD,W(55,45),GL, IZ,NCOAT, IBRANCH,PACK 


00000370
 
00000380
 
00n00-00
 

00000400
 
00000410
 
00000420
 

00000440
 
00000450
 
00000460
 
00000470
 

00000480
 
00000490
 
00000500
 
00000510
 
00000520
 
00000530
 
00000540
 
00000550
 
.00000560
 
00000570
 
00000580
 

00000590
 
00000600
 
00000610
 
00000620
 

00000640
 
00000650
 
00000660
 
OOlOfn70
 
00000675
 
00000680
 
00000690
 

00000710
 
00000720
 
00000730
 
00000740
 
00000750
 
00000760
 
00000770
 
00000780
 
00000790
 
obooo8oo
 
00000810
 
00000820
 

00000840
 
00000850
 
00000860
 
00000870
 
00000880
 
0000089q
 
00000900
 
00000910
 
00000920
 
00000930
 
00000940
 
00000950
 
00000960
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Table A-9. Source Listing for Optical Analysis Program (Cont'd) 

C 

CALL DIVIDE 

CALL REFLCOL 

GO TO (10,10,20,10,20,10,10,20,10,20),IBS 


10 	CONTINUE 

CALL SCATTER 

CALL ABSORB 

INTF=4 

CALL REFLCOL 

CALL SCATTER 

CALL ABSORB 


20 	CONTINUE 

RETURN 

END 


.C 

C 

C 


SUBROUTINE REFLCOL 

COMMON/REFR/RF(5).REFF 

COMMON/REFL/TRANS(45), COLL(55,45) 

COMMON/M/IPR, INTF, IBD,W(55,45),GL,IZNCOAT,IBRANCH,PACK 

DIMENSION E(45),G(45) 


C ­
DTR=.0174533 

GO TO (10,20,20,10),INTF 


10 CONTINUE 

IF(NCOAT EQ. O)GO TO 20 

DO 11 1=1,45 

G(I)=W(IPR, ) 

E(I)=G(I)*TRANS(1) 


11 	CONTINUE 

IF(INTF NE. 4)GO TO 60 

DO 12 I=1,45 

E(I)=G(I)-E(I) 


12 CONTINUE 

GO TO 60 


C 

20 CONTINUE 


DO 22 I=1,45 

22 G(I)=W(IPRI) 


GO TO (24,25,26,27),INTF 

24 	RFRN=RF(1) 


RFRM RF(2+NCOAT) 

GO TO,28 


25 	RFRN=RF(2+NCOAT) 

RFRM=RF(3+NCOAT) 

GO TO 28 


26 	RFRN=RF(2+NCOAT) 

RFRM=RF(4+NCOAT) 

GO TO 28 


27 RFRN=RF(2+NCOAT) 

SRFRM=RF(1) 


28 CONTINUE 

C 


DO 50 N=1,45 

I=N+N-I 

R=1-(CRFRN/RFRM)*SIN(I*DTR))**2 

IF(R ST. O)SO TO 30 

TR=O 

GO I0 4U 


30 CONTINUE 


00000970
 
00000980
 
00000990
 
00001000
 
00001010
 
00001020
 
00001030
 
00001040
 
00001050
 
00001060
 
00001070
 
00001080
 
00001090
 
00001100
 
00001110
 
00001120
 
00001130
 
00001140
 
00001150
 
00001160
 
00001170
 
00001180
 
00001190
 
00001200
 
00001210
 
00001220
 
00001230
 
00001240
 
00001250
 
00001260
 
00001270
 
00001280
 
00001290
 
00001300
 
00001310
 
00001320
 
00001330
 
00001340
 
00001344
 
00001,345
 
00001350
 
00001360
 
00001370
 
00001380
 
00001390
 
00001400
 
00001410
 
00001420
 
00001430
 
00001440
 
00001450
 
00001460
 
00001470
 
00001480
 
00001490
 
00001500
 
00001510
 
00001520
 
00001530
 
00001540
 
00001550
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Table A-9. Source Listing for Optical Analysis Program (Cont'd) 

00001560

RP=(COS(I DTR)_(RFRN/RFRM)*SQRT(R))/(COS(I*OTR)+ 
 00001570

& (RFRN/RFRM)XSQRT(R)) 
 RFRN/RFRM ' nnnfinAn 
RS=(fS(IQfTRQ*RFRN/RFRMnRTE(R-)/(fl S(*nTR 
 00001590
 

& SQRT(R)) 
 00001600

TR=1-(RP9*2+RS**2)/2 
 00001605

IF(TR .LE. O)TR=O 


40 CONTTNUEI
 00001620

IF(INTF EQ. 1)SO TO 45 


00001524

GO TO (41,41,41,42,41,42,41,41j42,41),IBD 


00001630
 
41 TR=1-TR 
 00001634
 

GO TO 4E 

00001634
 

42 TR=1-TR+REFF*TR**2 

00001640
 

45 E(N)=G(N)*TR 
 00001650

50 CONTINUE 
 n issn
 
60 CONTINUJE 


00001670

C 
 00001680
IPR=IPR+1 
 00001690
n00n17nn
DO 70 1=1,45
W(IIPR, )=EK(11 


00001710

70 CONTINUE 
 00001720
C 
 00001725
IF(INTF .EQ. 1)GO TO 85 


00,017B0
GO TO (80 , 80 ,9 85. 80.85.D0,R5.0 IBD 

00001740
80 CONTINUE 
 00001750
DO 82 I=1,45 

00001755
ANGI=(I*1-1)*.0174533 
 00001770
COLL(IPRL)=iW(IPR-.1.1-W(IPR.I))*COS(ANGI) 

00001770
82 CONTINUE 
 00001780


85 RETURN 
 00001790
END 
 00001800

C 
 00001810

C 
 00001820
C 


00001830

SUBROUTINE SCATTER 
 00001840
COMMON/S/ SCAT(45,45,4) 


00001850
COMMON/M/IPR,INTF,IBD,W(55,45)jGL,IZ,NCOATIBRANCH,PACK 
 00001860
DIMENSION E(45),0(45) 

00001870
DO 10 1=1,45 

00001880


G(I)=W(IPRI) 

00001885
E(I)=O 

00001890
10 CONTINUE 

00001900


C 
 00001910
145 00001920
"D ­20 J=1,45-DO 


00001930
E(J)=E(J)+GI)*SCAT(IJINTF) 

00001940
20 CONTINUE 
 00001950


30 CONTINUE 
 00001960
IPR=IPR+I 
 00001970
DC-40 1=1,45 

00001980
W(IPRI)=G(I)+E(I) 
 00001990
 

40 CONTINUE 

00002000
-RETURN 

00002010
* END 

00002020
C 

00002030
CI - ­
00002040
C 

00002050
 

- SUBROUTINE ABSORB 00002060
COMMON/ABS/ABSF 

00002070
"COMMON/M/IPRINTFIBD,W(55,45),GL.IZ.NCOATIBRANCH,PACK 

00002080
DIMENSION E(45) 
 00002090
DO 10 N=1j45 
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Table A-9. Source Listing for'Optical Analysis Program (Cont'd) 

00002100
E(N) W(IPRN) 
 00002110
I=N+N-1'
S=GL/CO(I .01745S3) -.	 0022 
pj 1153)-.00002120p~j, 00002130
E(N)_EXP-SABSF) E(N) 

00002140
10 CONTINUE 

00002150
IPR=IPR+1 
 00002160
DO 20 I=1.45 

00002170
20 W(IPRI)=EI) 00002180
RETURN 

000021,90
END


"C 	 00002200
 
00002210
C 
00002220
C 

00002230
SUBROUTINE REFRACT 

00002240,
COMMONAREFR/RF(5),REFF 


COrMON/M/IPR,INTF, IBD,W(55,45),GL, IZ;NCOAT, IBRANCH,PACK 00002250
 
00002260
DIMENSION 0(45),E(45) 

00002270
c 
00002280
IF(,INTF .NE. 1).GO TO 40 


-	 00002290J=1 

00002292.
DO 5 1=1,45 

00002294
EI)=O


5 . G(I)=W(IPR3 I) 	 00002296 
00002300
DTR=.0174533 
00002310
RFRN'-RF(1) 

00002320
RFRM:RF(2+NCOAT) 

00002330
DO 20 N.45, 
00002350.
I=N+N-1 
00002360
A=ARSIN(SIN((I-I)DTR)fRFRN/RFRM)/DTR 

00002370
C=ARSIN(SIN((I+1),DTR)*RFRN/RFRM)/DTR 

00002380
11 CONTINUE , 


IF(A .LT. J+I.)GO TO 12 	 00002390 
00002400J=J+2 

00002410
GO TO 11 


12 CONTINUE. 
 00002420 
IF(C .GT. J-.)G- TO 13 00002430 
J=J'-2 00002440. 

00002450
GO TO 11 

13 CONTINUE 
 00002460
 

00002470
K=(J+" )/2 
IF(C LT. J+1,)GO TO 14 00002480 
E(K+1)=EK+I)+(C-J-1)'G(N)/(C-A) 00002490 

00002500E(K)=E(K)+(J+I-A)tG(N)/(C-A) 

0O To 20 
 00002510 

00002520
 
IF(A ,GT J-1.)GO TO 15 00002530
 
.E(K):E(K)+(C-J+I)tG(N)/(0-A) 00002540
 
E(K-1J=E(K-1)+(4-1-A)*G(N)/(C-A) 00002550
 

14 CONTINUE 


00002560
GO TO 20 

15 E(K)=E(K)+G(N) 00002570
 

00002580
20 CONTINUE

L; 	 00002590
 

00002600
IPR=IPR+1 
DO 30 K=I,45 00002610 
W(IPR,K)=E(K), 00002620 

00002630UO UONIWNUL 
00002640
40 RETURN 

00002650
'END 

00002660
C 
0002670 
00002680
C 
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Table A-9. Source Listing for Optical Analysis Program (Cont'd) 

SUBROUTINE DIVIDE 
COMMON/REFR/RF(5),REFF 

00002690 
00002705 

CONMMN/M/PR. NTF TAM W(SS 4S 1 t7,NCAT 1RAnH PAK" nnnlh71 
DIMENSION E(45),G(45),H(4Z) 00002720 

o 00009730 
,DO 10 i=1,45 00002740 
0(1) W( IPR.?) 
IANG=I 

nnn27sn 
00002755 

ECI)=G(I)xCELLBDF(IBD, IANG,GL,NCOATPACK,,RF) 00002760 
H(1)=G(I)-E( ) 00002770 

10 CONTINUE 0000..O780 
IPR=IPR I+IZ 00002790 
IF(IRRANCH .EQ. 1)GO TO 30 00002800 
DO 20 1=1,45 00002810 
W(IPR. l)=R(I) 

20 CONTINUE 
- , nO:Oe52O 

00002630 
GO TO 50 00002840 

30'DO 40 I-1,45 00002850 
WUIPR.I)=E(I) 000028S0 

40 CONTINUE 00002870 
50 RETURN' 00002880 

END-
C .. 

00002890 
.. O=02900 

o "00002910 -
C 00002920 

SUBROUTINE DATAIN 00002930 
COMNON/REFL/TRANS(45),COLL(55,4) - 00002940 
COMMON/ABS/ABSF 
COMNON/REFR/RF(5),REFF 

00002950 
00002960 

COMMON/M/IPR, INTFJIBD,W(55,45),,GL,IZ,NCCAT,.IBRANCHPACK 
COMMON/S/8CAT(45454) 

00002980 
00002990 

*DIMENSION FSCAT(5),SOLAR(45) 00003000 
DATA FSCAT/155.17,_095,.045,e005/ 00003010 

C, 
0 INSOLATION FOR PHOENIX 1953 

00003020 
00003030 

DATA S0LAR/16.7,20. ,19.3,19.,20.5,26.243.1,130.2,90.9, 00003040 
& 101.1,54.1,29.4,27.4,30.,144,8,173.,101.9,68.,35.,.21.6, 

-­& 
2 4 . 2 ,3 ,1.2,1767,,24.6,21.4,17.9,201,26.5,38.1,103 9,19.3,

& 11,4.9.1,11,7,4.5,125.533.3,1,2.l,2. o,.,,ol,0 1. 5 7 ,,7 / ,-

00003050 
00003060 
00003070 
00003080 

0 SCATTERING FUNCTION LOADING 00003090 
0 00003100 

'DO 10 I!145 000031110 
SCATCII,11=O. 00003120 
SCAT(II,2)=-.94 00003130 
SCAT(I, 1,3)=-..94 . 00003140 
-SCA7(,I,4=-.0. 

10 CONTINUE 
00003J5Q 
00003160 

DO 20 1=1,44 00003170 
SCAT(I+1,[,4)=,04. 00003180 
SQAT(I.1+1,4)=.04 00003190 

20 CONTINUE 00003200 
DO 40 J=1,5 
K=45-J ,, 

0000210, 
00003220 

FK=FSCAT(J) 00003230 
DO 30 I=1,K 00003240 
"FKI=FK 00003244 
.IF(I .LE. 5, AND. I+J GE, 2*IFKI=2FK . '0003245 
SCAT( I4J, I2)=FK 00003250 
SEATS .I+J,2)=FK1 -00003260 
SCAT(I+JjI;31=FK V 0000$270 
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Table A-9. Source Listing for Optical Analysis Program (Cont'd) 

SCAT(I, IJ,3)=FKI 
 00003280
 
30 CONTINUE 
 00003290
 
40 CONTINUE 
 00003300
 

C 
 00003310

C INSOLATION DATA LOADING 
 00003320
 

DO 45 J=1,45 000O33
 
ANGI=(J+J-1)*.o17453


45 "W(1,J)=SOLAR(J)/COS(ANGI) 
 00003340
 
o 
 00003350
 

PRINT "NO. OF COATING LAYER, I OR 0" 00003360
 
READ.NCOAT 
 fnnffln0 
IF(NCOAT .EQ. O)GO TO 60 
 00003380
 

C 
 00003390
 
PRINT "COATING INDEX OF REFRACTION" 
 00003400
 
RFAD.RF(P) .. 
 tnnnndin
 
PRINT "COATING THICKNESS & WAVELENGTH (MUST HAVE SAME UNITS)" 00003420
 
READCOATLWAVEL 
 00003450
 

60 CONTINUE 
 00003460
 
RF(1)=i 
 flf0t47n 
PRINT "INDEXES OF REFRACTION OF BLASS COVER, BONDING ADHESIVE a 0003480
 

&ENCALSULANT" 
 00003490
 
READ,(RF(J+NCOAT),J=2,4) 
 00003510
 
PRINT "MODULE PACKING FACTOR (BETWEEN ,512 S .814)" 00003520
 
READ, PACK 
 00003530
 
PRINT "GLASS THICKNESS(3.2, 4 OR 4.SMM), BULK ABSORP. COEFF.(1/MM)"3540
 
READOGLABSF 
 00003560
 
PRINT "REFLECTANCE OF ENCALSULANT" 
 00003582
 

EAD, REF 00003564
 
C 
 00003570
 
C CALCULATION OF TRANSMISSIVITY FOR ONE LAYER COATING 
 00003580
 
C 
 00003590


IF(NCOAT .EQ. 0)60 TO 80 
 00003600
 
DTR=.017453 
 00003610
 
00 70 N=1,45 
 00003620
 
I=N+N-1 
 0000360
 

C 
 00003640
 
C 
 00003650
 
C INCIDENCE ANGLES IN MEDIA FROM SNELL'S LAW 
 00003660
 
C 
 00003670
 

ANGI1,I*DTR 
 00003680
 
ANG2=ARSIN( RF(I)/RF(2))*SIN(ANG1)) 
 00003690
 

C ANGO=ARSIN((RF(1)/RF(3))8SIN(ANGI)) 
 00003700
 
C 
 00003710
 
C 
 00003720

C EFFECTIVE INDEXES FOR NON-NORMAL INCIDENCE 
 00003730
 
C 00003740
 

RF1S=RF(1)*COS(ANG1) 
 00003750
 
RF2S=RF(2)2COS(ANG2) 
 00003760 
RFGS=RF(3)*COS(ANG3) 
 00003770
 
RFIP=RF(I)/COSCANGI) 
 00003780
 
RF2P=RF(2)/COS(ANG2) 
 00003790
 
RF3P=RF(3)/COS(ANG3) 
 00003800


C 
 00003810

C PHASE ANGLE BETWEEN AMPLITUDE VECTORS 
 00003820
 

PHS=(423,1416*COATL/WAVEL)?RF2S 
 00003830
C 
 00003640
 
C AMPLITUDE REFLECTANCE S & P COMPONENTS 
 00003850
 

R1S=(RF2S-RF1S)/(RF2S+RF18) 
 00003860
 
R2Sz(RFGS-RF2S)/(RF3S+RF2S) 
 00003570
 
RIP=(RF2P-RFIP)/(RF2P+RFIP) 
 00003680
 
R2P=(RF3P-RF2P)/(RF3P+RF2P) 
 00003690
 

A-66 



Table A-9. Source Listing for Optical Analysis Program (Cont'd) 

o 00003900 
C INTENSITY REFLECTIVITIES 00003910 

RS=RISX2+R2S**2+2*R1S*R2SxCOS(PHS) eolop9n 

RP=R1P*l2+R2P**2+2R1PR2P*COS(PHS) 00003930 
C 00003940 
C AVERAGE FOR POLORIZED LIGHT 00003950 

R=(RS+RP)/2. 00003980 
TRANS(N)=I-R 00003970 

70 CONTINUE 00003980 
80 CONTINUE 00003990 

RETURN 00004200 
END 00004210 
FUNCTION CELLBDF(IBD, IGLJNCOATPACKJRF) 00004250 
DIMENSION RSHIFT2(10),RSHIFT1(10),FPACK(4),RF(5) 00004260 
DIMENSION DD(10,4),DND(10,4),NDD(10.4),NDND(10.4),DDD(10,4). 00004270 

&DNDD(10,4),NDDDOl,4) ,NDNDD(10,4) 00004280 
REAL NDD, NDND, NDDD, NDNDD 00004283 

C 00004285 
DATA RSHIFT1/0..01, .02,.03..04,.05,.08..07,.08..1/ 00004290 
DATA RSHIFT2/.O,.02,.04,.06,.08,.1,.12,.16,,18,.2/ 00004300 
DATA FPACK/.512,.658,.782,.814/ 00004310 

C 00004315 
DATA DD/1.,.994,.98,.965,.951,.936,.922..907..893,.868, 00004320 

a1., .994,.98,.9G5,.51,.936, .922,.907,.893, .868, 00004330 
81.,.994 .98,.965,.951,.936,.922,.907,.893,.868, 00004340 
81.,j.994.98,.965,.951,.936.922.907,.893,.868/ 00004350 

"C 00004355 
DATA DDD/1.,.992,.965,.934,.895,.846,.8,.705,.66,.63, 00004360 
&l.,.992,.965,.934,.895,.846,.8,.705,.66,.63, 00004370 
&1,. .992,.965,.934,.9,.873,,.845,.79,.763,.736, 00004380 
&1_..992,.965,.934,.9,.873,.845,.79 .763,.736/ 00004390 

C 00004395 
DATA DND/O.,.O06,.021j.042,.061,.082,.1,.117,.134.15, 00004400 
&o.,.ooo,.027,.048,.071,.094,.116,.139,.161,.183, 00004410 
8.O,.008j.027,.048,.065,.081,.1,.117,.134,.15, 00004420 
&.0,.O06,.02,.o0e6-.051,.064,.075, .09,.102,.115/ 00004430 

C 00004435 
DATA DNDD/O.,O.,O.O.,O.,O.,0.,O.,O.,O., 00004440 

&0.,0.,0.,0.,.001,.0054,.0156,.0156,.0156,.0156 00004450 
&0.,0.,.0012.006,.0122,.02,.0296,.0296,.0296, .0296, 00004460 
&0.,.0014,.0048,.0096,.0158,.023,.032,.032,.032,.032/ 00004470 

C 00004475 
DATA NDD/O.,.o08,.025,.046,.07,.096,.124,.124,.124,.124, 00004480 
0.,.016;.044j.0,.12,.164,.208,.208,.208,.208, 00004490 
80.,.025,.076,.133,.19,.24,.29,.29,,29,.29, 00004500 
80.,.025,.076,.133,.19,.24,.29,.29,.29,.29/ 00004502 

C 00004505 
DATA NDOD/O.,.012,.033,.057,.081,.105,.105,.105,.105,.105 00004510 

80.j.012,.042,.079,.116.153,.153,.153,.153,.153, 00004520 
&.0,.012,.06,.118,.172,.24,.24,.24,24,.24, 00004530 
&0.,.012,.06j.118,.172,.24,.24,.24,,24i.24/ 00004540 

00004545 

DATA NDND/1.,.99,.967,.94,.912,.88,.855,.855,.855,.855, 00004550 
81.j,.986,.945,.892,.84,.798,.767,.767,.767,.767, 00004560 
&1.,.962,.88,.79,.71,.64,.585,.585,.585,.585, 00004570 
&1.,.97/J897,. I,./25, .656,.605,.605,.605,.605/ 00004580 

C 00004585 
DATA NDNDD/O.,.01,.028,.051,.076,.101,.101,.101,.101,.101, 00004590 

&O.j.018,.051,.078,.098.108,.108j.108,.108.108 00004600 
&U. .U1B,.Ofl=.US,094.,.105,.105,.10b,.1O5.105, 00004610 
80.,.025,.058,.082,.095,,105,.105,.105,.105,.105/ 00004620 
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C 0000462t 
AI=1+1-1 )*.01745$ 00004630 
RFM=RfF(2) .... fnnn4fl 
IF(NCOAT .EQ. I)RFM=RF(3) 00004650 
ANGSARSIN(SIN(AI)/RFM) 00004660 
S=2*GL*TAN(ANGS)/5,9545/25,4 00004670 
SO TO 

10 CELLBDF=PACK 
2.64-28.2S).11 0 40.12,l4.16.1Sp0000f46R0 

00004690 
G0 TO 35 00004700 

12 CELLSDF=TNT2(S,PACK,10,4,RSHIFT1,FPACKD0, 11,12,10) 00004710 
GO TO 35 .. 00004720 

14 S=Sx2 00004730 
CELLBDF=TNT2(2,PACK,10,4,RSHIFT2,FPACKDDD,13,14,10)
GO. TO 35 

00004740 
00004750 

16 CELLBDF=TNT2(S.PACK.10,4.RSHIFT1,FPACKDND.15,I6I0) ,00004760 
GO TO 35 00004770 

18 S=S*2 00004780 
CELLBDF=TNT2(S,PACK.10,4,RSHIFT2,FPACKDNDD,17,18,10) 00004790 

20 
00 TO 35 
CELLBDF=1-PACK 

.. 00004800 
00004810 

00 TO 35 00004820 
22 CELLBDF=TNT2(8,PACK,10,4,RSHIFTI,FPACKNDD,[9,110,10)

GO TO 35 
00004830 
00004840 

24 S=3S2 00004850 
CELLBDF=TNT2(SPACK,1OJ4,RSHIFT2jFPACKNDDDJIJ2,10) 00004860 
GO TO 35 00004870 

26 CELLBDF=TNT2(SPACK,10,4RSHIFT1,FPACK+NDND,J3J4 10) 00004880 
GO TO 35 00004890 

28 S=S*2 00004900 
CELLBDF=TNT2(SPACK,10,4,RSHIFT2,FPACKNDNDDJ5,J6,10) 00004910 

35 CONTINUE 00004920 
RETURN 00004930 
END 00004940 
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GENERAL * ELECTRIC
 

Headquarters: Valley Forge, Pennsylvania []Daytona Beach, Fla. E3Evendale, Ohio 

Space Division [OHuntsville, Ala.r Bay St. Louis, Miss. UHouston, TexasUSunnyvale, Calif. 

OBeltsville, Md.UTacoma, Wash. U Palmdale, Calif. DBedford, Mass. 

OUWashington, D.C. Area 


